1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, 2021 Intel Corporation
5 */
6
7 #include <linux/atomic.h>
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/ioport.h>
19 #include <linux/math64.h>
20 #include <linux/minmax.h>
21 #include <linux/module.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/property.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26
27 #include <linux/spi/spi.h>
28
29 #include "internals.h"
30 #include "spi-pxa2xx.h"
31
32 #define TIMOUT_DFLT 1000
33
34 /*
35 * For testing SSCR1 changes that require SSP restart, basically
36 * everything except the service and interrupt enables, the PXA270 developer
37 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
38 * list, but the PXA255 developer manual says all bits without really meaning
39 * the service and interrupt enables.
40 */
41 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
42 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
43 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
44 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
45 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
46 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
47
48 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
49 | QUARK_X1000_SSCR1_EFWR \
50 | QUARK_X1000_SSCR1_RFT \
51 | QUARK_X1000_SSCR1_TFT \
52 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53
54 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
55 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
56 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
57 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
58 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
59 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60
61 struct chip_data {
62 u32 cr1;
63 u32 dds_rate;
64 u32 threshold;
65 u16 lpss_rx_threshold;
66 u16 lpss_tx_threshold;
67 };
68
69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
70 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
71 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
72 #define LPSS_CAPS_CS_EN_SHIFT 9
73 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
74
75 #define LPSS_PRIV_CLOCK_GATE 0x38
76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
78
79 struct lpss_config {
80 /* LPSS offset from drv_data->ioaddr */
81 unsigned offset;
82 /* Register offsets from drv_data->lpss_base or -1 */
83 int reg_general;
84 int reg_ssp;
85 int reg_cs_ctrl;
86 int reg_capabilities;
87 /* FIFO thresholds */
88 u32 rx_threshold;
89 u32 tx_threshold_lo;
90 u32 tx_threshold_hi;
91 /* Chip select control */
92 unsigned cs_sel_shift;
93 unsigned cs_sel_mask;
94 /* Quirks */
95 unsigned cs_clk_stays_gated : 1;
96 };
97
98 /* Keep these sorted with enum pxa_ssp_type */
99 static const struct lpss_config lpss_platforms[] = {
100 { /* LPSS_LPT_SSP */
101 .offset = 0x800,
102 .reg_general = 0x08,
103 .reg_ssp = 0x0c,
104 .reg_cs_ctrl = 0x18,
105 .reg_capabilities = -1,
106 .rx_threshold = 64,
107 .tx_threshold_lo = 160,
108 .tx_threshold_hi = 224,
109 },
110 { /* LPSS_BYT_SSP */
111 .offset = 0x400,
112 .reg_general = 0x08,
113 .reg_ssp = 0x0c,
114 .reg_cs_ctrl = 0x18,
115 .reg_capabilities = -1,
116 .rx_threshold = 64,
117 .tx_threshold_lo = 160,
118 .tx_threshold_hi = 224,
119 },
120 { /* LPSS_BSW_SSP */
121 .offset = 0x400,
122 .reg_general = 0x08,
123 .reg_ssp = 0x0c,
124 .reg_cs_ctrl = 0x18,
125 .reg_capabilities = -1,
126 .rx_threshold = 64,
127 .tx_threshold_lo = 160,
128 .tx_threshold_hi = 224,
129 .cs_sel_shift = 2,
130 .cs_sel_mask = 1 << 2,
131 },
132 { /* LPSS_SPT_SSP */
133 .offset = 0x200,
134 .reg_general = -1,
135 .reg_ssp = 0x20,
136 .reg_cs_ctrl = 0x24,
137 .reg_capabilities = -1,
138 .rx_threshold = 1,
139 .tx_threshold_lo = 32,
140 .tx_threshold_hi = 56,
141 },
142 { /* LPSS_BXT_SSP */
143 .offset = 0x200,
144 .reg_general = -1,
145 .reg_ssp = 0x20,
146 .reg_cs_ctrl = 0x24,
147 .reg_capabilities = 0xfc,
148 .rx_threshold = 1,
149 .tx_threshold_lo = 16,
150 .tx_threshold_hi = 48,
151 .cs_sel_shift = 8,
152 .cs_sel_mask = 3 << 8,
153 .cs_clk_stays_gated = true,
154 },
155 { /* LPSS_CNL_SSP */
156 .offset = 0x200,
157 .reg_general = -1,
158 .reg_ssp = 0x20,
159 .reg_cs_ctrl = 0x24,
160 .reg_capabilities = 0xfc,
161 .rx_threshold = 1,
162 .tx_threshold_lo = 32,
163 .tx_threshold_hi = 56,
164 .cs_sel_shift = 8,
165 .cs_sel_mask = 3 << 8,
166 .cs_clk_stays_gated = true,
167 },
168 };
169
170 static inline const struct lpss_config
lpss_get_config(const struct driver_data * drv_data)171 *lpss_get_config(const struct driver_data *drv_data)
172 {
173 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
174 }
175
is_lpss_ssp(const struct driver_data * drv_data)176 static bool is_lpss_ssp(const struct driver_data *drv_data)
177 {
178 switch (drv_data->ssp_type) {
179 case LPSS_LPT_SSP:
180 case LPSS_BYT_SSP:
181 case LPSS_BSW_SSP:
182 case LPSS_SPT_SSP:
183 case LPSS_BXT_SSP:
184 case LPSS_CNL_SSP:
185 return true;
186 default:
187 return false;
188 }
189 }
190
is_quark_x1000_ssp(const struct driver_data * drv_data)191 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
192 {
193 return drv_data->ssp_type == QUARK_X1000_SSP;
194 }
195
is_mmp2_ssp(const struct driver_data * drv_data)196 static bool is_mmp2_ssp(const struct driver_data *drv_data)
197 {
198 return drv_data->ssp_type == MMP2_SSP;
199 }
200
is_mrfld_ssp(const struct driver_data * drv_data)201 static bool is_mrfld_ssp(const struct driver_data *drv_data)
202 {
203 return drv_data->ssp_type == MRFLD_SSP;
204 }
205
pxa2xx_spi_update(const struct driver_data * drv_data,u32 reg,u32 mask,u32 value)206 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
207 {
208 if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
209 pxa2xx_spi_write(drv_data, reg, value & mask);
210 }
211
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data * drv_data)212 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
213 {
214 switch (drv_data->ssp_type) {
215 case QUARK_X1000_SSP:
216 return QUARK_X1000_SSCR1_CHANGE_MASK;
217 case CE4100_SSP:
218 return CE4100_SSCR1_CHANGE_MASK;
219 default:
220 return SSCR1_CHANGE_MASK;
221 }
222 }
223
224 static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data * drv_data)225 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
226 {
227 switch (drv_data->ssp_type) {
228 case QUARK_X1000_SSP:
229 return RX_THRESH_QUARK_X1000_DFLT;
230 case CE4100_SSP:
231 return RX_THRESH_CE4100_DFLT;
232 default:
233 return RX_THRESH_DFLT;
234 }
235 }
236
pxa2xx_spi_txfifo_full(const struct driver_data * drv_data)237 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
238 {
239 u32 mask;
240
241 switch (drv_data->ssp_type) {
242 case QUARK_X1000_SSP:
243 mask = QUARK_X1000_SSSR_TFL_MASK;
244 break;
245 case CE4100_SSP:
246 mask = CE4100_SSSR_TFL_MASK;
247 break;
248 default:
249 mask = SSSR_TFL_MASK;
250 break;
251 }
252
253 return read_SSSR_bits(drv_data, mask) == mask;
254 }
255
pxa2xx_spi_clear_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg)256 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
257 u32 *sccr1_reg)
258 {
259 u32 mask;
260
261 switch (drv_data->ssp_type) {
262 case QUARK_X1000_SSP:
263 mask = QUARK_X1000_SSCR1_RFT;
264 break;
265 case CE4100_SSP:
266 mask = CE4100_SSCR1_RFT;
267 break;
268 default:
269 mask = SSCR1_RFT;
270 break;
271 }
272 *sccr1_reg &= ~mask;
273 }
274
pxa2xx_spi_set_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg,u32 threshold)275 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
276 u32 *sccr1_reg, u32 threshold)
277 {
278 switch (drv_data->ssp_type) {
279 case QUARK_X1000_SSP:
280 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
281 break;
282 case CE4100_SSP:
283 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
284 break;
285 default:
286 *sccr1_reg |= SSCR1_RxTresh(threshold);
287 break;
288 }
289 }
290
pxa2xx_configure_sscr0(const struct driver_data * drv_data,u32 clk_div,u8 bits)291 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
292 u32 clk_div, u8 bits)
293 {
294 switch (drv_data->ssp_type) {
295 case QUARK_X1000_SSP:
296 return clk_div
297 | QUARK_X1000_SSCR0_Motorola
298 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
299 default:
300 return clk_div
301 | SSCR0_Motorola
302 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
303 | (bits > 16 ? SSCR0_EDSS : 0);
304 }
305 }
306
307 /*
308 * Read and write LPSS SSP private registers. Caller must first check that
309 * is_lpss_ssp() returns true before these can be called.
310 */
__lpss_ssp_read_priv(struct driver_data * drv_data,unsigned offset)311 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
312 {
313 WARN_ON(!drv_data->lpss_base);
314 return readl(drv_data->lpss_base + offset);
315 }
316
__lpss_ssp_write_priv(struct driver_data * drv_data,unsigned offset,u32 value)317 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
318 unsigned offset, u32 value)
319 {
320 WARN_ON(!drv_data->lpss_base);
321 writel(value, drv_data->lpss_base + offset);
322 }
323
324 /*
325 * lpss_ssp_setup - perform LPSS SSP specific setup
326 * @drv_data: pointer to the driver private data
327 *
328 * Perform LPSS SSP specific setup. This function must be called first if
329 * one is going to use LPSS SSP private registers.
330 */
lpss_ssp_setup(struct driver_data * drv_data)331 static void lpss_ssp_setup(struct driver_data *drv_data)
332 {
333 const struct lpss_config *config;
334 u32 value;
335
336 config = lpss_get_config(drv_data);
337 drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
338
339 /* Enable software chip select control */
340 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
341 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
342 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
343 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
344
345 /* Enable multiblock DMA transfers */
346 if (drv_data->controller_info->enable_dma) {
347 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
348
349 if (config->reg_general >= 0) {
350 value = __lpss_ssp_read_priv(drv_data,
351 config->reg_general);
352 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
353 __lpss_ssp_write_priv(drv_data,
354 config->reg_general, value);
355 }
356 }
357 }
358
lpss_ssp_select_cs(struct spi_device * spi,const struct lpss_config * config)359 static void lpss_ssp_select_cs(struct spi_device *spi,
360 const struct lpss_config *config)
361 {
362 struct driver_data *drv_data =
363 spi_controller_get_devdata(spi->controller);
364 u32 value, cs;
365
366 if (!config->cs_sel_mask)
367 return;
368
369 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
370
371 cs = spi_get_chipselect(spi, 0);
372 cs <<= config->cs_sel_shift;
373 if (cs != (value & config->cs_sel_mask)) {
374 /*
375 * When switching another chip select output active the
376 * output must be selected first and wait 2 ssp_clk cycles
377 * before changing state to active. Otherwise a short
378 * glitch will occur on the previous chip select since
379 * output select is latched but state control is not.
380 */
381 value &= ~config->cs_sel_mask;
382 value |= cs;
383 __lpss_ssp_write_priv(drv_data,
384 config->reg_cs_ctrl, value);
385 ndelay(1000000000 /
386 (drv_data->controller->max_speed_hz / 2));
387 }
388 }
389
lpss_ssp_cs_control(struct spi_device * spi,bool enable)390 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
391 {
392 struct driver_data *drv_data =
393 spi_controller_get_devdata(spi->controller);
394 const struct lpss_config *config;
395 u32 value;
396
397 config = lpss_get_config(drv_data);
398
399 if (enable)
400 lpss_ssp_select_cs(spi, config);
401
402 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
403 if (enable)
404 value &= ~LPSS_CS_CONTROL_CS_HIGH;
405 else
406 value |= LPSS_CS_CONTROL_CS_HIGH;
407 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
408 if (config->cs_clk_stays_gated) {
409 u32 clkgate;
410
411 /*
412 * Changing CS alone when dynamic clock gating is on won't
413 * actually flip CS at that time. This ruins SPI transfers
414 * that specify delays, or have no data. Toggle the clock mode
415 * to force on briefly to poke the CS pin to move.
416 */
417 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
418 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
419 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
420
421 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
422 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
423 }
424 }
425
cs_assert(struct spi_device * spi)426 static void cs_assert(struct spi_device *spi)
427 {
428 struct driver_data *drv_data =
429 spi_controller_get_devdata(spi->controller);
430
431 if (drv_data->ssp_type == CE4100_SSP) {
432 pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0));
433 return;
434 }
435
436 if (is_lpss_ssp(drv_data))
437 lpss_ssp_cs_control(spi, true);
438 }
439
cs_deassert(struct spi_device * spi)440 static void cs_deassert(struct spi_device *spi)
441 {
442 struct driver_data *drv_data =
443 spi_controller_get_devdata(spi->controller);
444 unsigned long timeout;
445
446 if (drv_data->ssp_type == CE4100_SSP)
447 return;
448
449 /* Wait until SSP becomes idle before deasserting the CS */
450 timeout = jiffies + msecs_to_jiffies(10);
451 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
452 !time_after(jiffies, timeout))
453 cpu_relax();
454
455 if (is_lpss_ssp(drv_data))
456 lpss_ssp_cs_control(spi, false);
457 }
458
pxa2xx_spi_set_cs(struct spi_device * spi,bool level)459 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
460 {
461 if (level)
462 cs_deassert(spi);
463 else
464 cs_assert(spi);
465 }
466
pxa2xx_spi_flush(struct driver_data * drv_data)467 int pxa2xx_spi_flush(struct driver_data *drv_data)
468 {
469 unsigned long limit = loops_per_jiffy << 1;
470
471 do {
472 while (read_SSSR_bits(drv_data, SSSR_RNE))
473 pxa2xx_spi_read(drv_data, SSDR);
474 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
475 write_SSSR_CS(drv_data, SSSR_ROR);
476
477 return limit;
478 }
479
pxa2xx_spi_off(struct driver_data * drv_data)480 static void pxa2xx_spi_off(struct driver_data *drv_data)
481 {
482 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */
483 if (is_mmp2_ssp(drv_data))
484 return;
485
486 pxa_ssp_disable(drv_data->ssp);
487 }
488
null_writer(struct driver_data * drv_data)489 static int null_writer(struct driver_data *drv_data)
490 {
491 u8 n_bytes = drv_data->n_bytes;
492
493 if (pxa2xx_spi_txfifo_full(drv_data)
494 || (drv_data->tx == drv_data->tx_end))
495 return 0;
496
497 pxa2xx_spi_write(drv_data, SSDR, 0);
498 drv_data->tx += n_bytes;
499
500 return 1;
501 }
502
null_reader(struct driver_data * drv_data)503 static int null_reader(struct driver_data *drv_data)
504 {
505 u8 n_bytes = drv_data->n_bytes;
506
507 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
508 pxa2xx_spi_read(drv_data, SSDR);
509 drv_data->rx += n_bytes;
510 }
511
512 return drv_data->rx == drv_data->rx_end;
513 }
514
u8_writer(struct driver_data * drv_data)515 static int u8_writer(struct driver_data *drv_data)
516 {
517 if (pxa2xx_spi_txfifo_full(drv_data)
518 || (drv_data->tx == drv_data->tx_end))
519 return 0;
520
521 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
522 ++drv_data->tx;
523
524 return 1;
525 }
526
u8_reader(struct driver_data * drv_data)527 static int u8_reader(struct driver_data *drv_data)
528 {
529 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
530 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
531 ++drv_data->rx;
532 }
533
534 return drv_data->rx == drv_data->rx_end;
535 }
536
u16_writer(struct driver_data * drv_data)537 static int u16_writer(struct driver_data *drv_data)
538 {
539 if (pxa2xx_spi_txfifo_full(drv_data)
540 || (drv_data->tx == drv_data->tx_end))
541 return 0;
542
543 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
544 drv_data->tx += 2;
545
546 return 1;
547 }
548
u16_reader(struct driver_data * drv_data)549 static int u16_reader(struct driver_data *drv_data)
550 {
551 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
552 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
553 drv_data->rx += 2;
554 }
555
556 return drv_data->rx == drv_data->rx_end;
557 }
558
u32_writer(struct driver_data * drv_data)559 static int u32_writer(struct driver_data *drv_data)
560 {
561 if (pxa2xx_spi_txfifo_full(drv_data)
562 || (drv_data->tx == drv_data->tx_end))
563 return 0;
564
565 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
566 drv_data->tx += 4;
567
568 return 1;
569 }
570
u32_reader(struct driver_data * drv_data)571 static int u32_reader(struct driver_data *drv_data)
572 {
573 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
574 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
575 drv_data->rx += 4;
576 }
577
578 return drv_data->rx == drv_data->rx_end;
579 }
580
reset_sccr1(struct driver_data * drv_data)581 static void reset_sccr1(struct driver_data *drv_data)
582 {
583 u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
584 struct chip_data *chip;
585
586 if (drv_data->controller->cur_msg) {
587 chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
588 threshold = chip->threshold;
589 } else {
590 threshold = 0;
591 }
592
593 switch (drv_data->ssp_type) {
594 case QUARK_X1000_SSP:
595 mask |= QUARK_X1000_SSCR1_RFT;
596 break;
597 case CE4100_SSP:
598 mask |= CE4100_SSCR1_RFT;
599 break;
600 default:
601 mask |= SSCR1_RFT;
602 break;
603 }
604
605 pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
606 }
607
int_stop_and_reset(struct driver_data * drv_data)608 static void int_stop_and_reset(struct driver_data *drv_data)
609 {
610 /* Clear and disable interrupts */
611 write_SSSR_CS(drv_data, drv_data->clear_sr);
612 reset_sccr1(drv_data);
613 if (pxa25x_ssp_comp(drv_data))
614 return;
615
616 pxa2xx_spi_write(drv_data, SSTO, 0);
617 }
618
int_error_stop(struct driver_data * drv_data,const char * msg,int err)619 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
620 {
621 int_stop_and_reset(drv_data);
622 pxa2xx_spi_flush(drv_data);
623 pxa2xx_spi_off(drv_data);
624
625 dev_err(drv_data->ssp->dev, "%s\n", msg);
626
627 drv_data->controller->cur_msg->status = err;
628 spi_finalize_current_transfer(drv_data->controller);
629 }
630
int_transfer_complete(struct driver_data * drv_data)631 static void int_transfer_complete(struct driver_data *drv_data)
632 {
633 int_stop_and_reset(drv_data);
634
635 spi_finalize_current_transfer(drv_data->controller);
636 }
637
interrupt_transfer(struct driver_data * drv_data)638 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
639 {
640 u32 irq_status;
641
642 irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
643 if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
644 irq_status &= ~SSSR_TFS;
645
646 if (irq_status & SSSR_ROR) {
647 int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
648 return IRQ_HANDLED;
649 }
650
651 if (irq_status & SSSR_TUR) {
652 int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
653 return IRQ_HANDLED;
654 }
655
656 if (irq_status & SSSR_TINT) {
657 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
658 if (drv_data->read(drv_data)) {
659 int_transfer_complete(drv_data);
660 return IRQ_HANDLED;
661 }
662 }
663
664 /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
665 do {
666 if (drv_data->read(drv_data)) {
667 int_transfer_complete(drv_data);
668 return IRQ_HANDLED;
669 }
670 } while (drv_data->write(drv_data));
671
672 if (drv_data->read(drv_data)) {
673 int_transfer_complete(drv_data);
674 return IRQ_HANDLED;
675 }
676
677 if (drv_data->tx == drv_data->tx_end) {
678 u32 bytes_left;
679 u32 sccr1_reg;
680
681 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
682 sccr1_reg &= ~SSCR1_TIE;
683
684 /*
685 * PXA25x_SSP has no timeout, set up Rx threshold for
686 * the remaining Rx bytes.
687 */
688 if (pxa25x_ssp_comp(drv_data)) {
689 u32 rx_thre;
690
691 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
692
693 bytes_left = drv_data->rx_end - drv_data->rx;
694 switch (drv_data->n_bytes) {
695 case 4:
696 bytes_left >>= 2;
697 break;
698 case 2:
699 bytes_left >>= 1;
700 break;
701 }
702
703 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
704 if (rx_thre > bytes_left)
705 rx_thre = bytes_left;
706
707 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
708 }
709 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
710 }
711
712 /* We did something */
713 return IRQ_HANDLED;
714 }
715
handle_bad_msg(struct driver_data * drv_data)716 static void handle_bad_msg(struct driver_data *drv_data)
717 {
718 int_stop_and_reset(drv_data);
719 pxa2xx_spi_off(drv_data);
720
721 dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
722 }
723
ssp_int(int irq,void * dev_id)724 static irqreturn_t ssp_int(int irq, void *dev_id)
725 {
726 struct driver_data *drv_data = dev_id;
727 u32 sccr1_reg;
728 u32 mask = drv_data->mask_sr;
729 u32 status;
730
731 /*
732 * The IRQ might be shared with other peripherals so we must first
733 * check that are we RPM suspended or not. If we are we assume that
734 * the IRQ was not for us (we shouldn't be RPM suspended when the
735 * interrupt is enabled).
736 */
737 if (pm_runtime_suspended(drv_data->ssp->dev))
738 return IRQ_NONE;
739
740 /*
741 * If the device is not yet in RPM suspended state and we get an
742 * interrupt that is meant for another device, check if status bits
743 * are all set to one. That means that the device is already
744 * powered off.
745 */
746 status = pxa2xx_spi_read(drv_data, SSSR);
747 if (status == ~0)
748 return IRQ_NONE;
749
750 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
751
752 /* Ignore possible writes if we don't need to write */
753 if (!(sccr1_reg & SSCR1_TIE))
754 mask &= ~SSSR_TFS;
755
756 /* Ignore RX timeout interrupt if it is disabled */
757 if (!(sccr1_reg & SSCR1_TINTE))
758 mask &= ~SSSR_TINT;
759
760 if (!(status & mask))
761 return IRQ_NONE;
762
763 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
764 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
765
766 if (!drv_data->controller->cur_msg) {
767 handle_bad_msg(drv_data);
768 /* Never fail */
769 return IRQ_HANDLED;
770 }
771
772 return drv_data->transfer_handler(drv_data);
773 }
774
775 /*
776 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
777 * input frequency by fractions of 2^24. It also has a divider by 5.
778 *
779 * There are formulas to get baud rate value for given input frequency and
780 * divider parameters, such as DDS_CLK_RATE and SCR:
781 *
782 * Fsys = 200MHz
783 *
784 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
785 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
786 *
787 * DDS_CLK_RATE either 2^n or 2^n / 5.
788 * SCR is in range 0 .. 255
789 *
790 * Divisor = 5^i * 2^j * 2 * k
791 * i = [0, 1] i = 1 iff j = 0 or j > 3
792 * j = [0, 23] j = 0 iff i = 1
793 * k = [1, 256]
794 * Special case: j = 0, i = 1: Divisor = 2 / 5
795 *
796 * Accordingly to the specification the recommended values for DDS_CLK_RATE
797 * are:
798 * Case 1: 2^n, n = [0, 23]
799 * Case 2: 2^24 * 2 / 5 (0x666666)
800 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
801 *
802 * In all cases the lowest possible value is better.
803 *
804 * The function calculates parameters for all cases and chooses the one closest
805 * to the asked baud rate.
806 */
quark_x1000_get_clk_div(int rate,u32 * dds)807 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
808 {
809 unsigned long xtal = 200000000;
810 unsigned long fref = xtal / 2; /* mandatory division by 2,
811 see (2) */
812 /* case 3 */
813 unsigned long fref1 = fref / 2; /* case 1 */
814 unsigned long fref2 = fref * 2 / 5; /* case 2 */
815 unsigned long scale;
816 unsigned long q, q1, q2;
817 long r, r1, r2;
818 u32 mul;
819
820 /* Case 1 */
821
822 /* Set initial value for DDS_CLK_RATE */
823 mul = (1 << 24) >> 1;
824
825 /* Calculate initial quot */
826 q1 = DIV_ROUND_UP(fref1, rate);
827
828 /* Scale q1 if it's too big */
829 if (q1 > 256) {
830 /* Scale q1 to range [1, 512] */
831 scale = fls_long(q1 - 1);
832 if (scale > 9) {
833 q1 >>= scale - 9;
834 mul >>= scale - 9;
835 }
836
837 /* Round the result if we have a remainder */
838 q1 += q1 & 1;
839 }
840
841 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
842 scale = __ffs(q1);
843 q1 >>= scale;
844 mul >>= scale;
845
846 /* Get the remainder */
847 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
848
849 /* Case 2 */
850
851 q2 = DIV_ROUND_UP(fref2, rate);
852 r2 = abs(fref2 / q2 - rate);
853
854 /*
855 * Choose the best between two: less remainder we have the better. We
856 * can't go case 2 if q2 is greater than 256 since SCR register can
857 * hold only values 0 .. 255.
858 */
859 if (r2 >= r1 || q2 > 256) {
860 /* case 1 is better */
861 r = r1;
862 q = q1;
863 } else {
864 /* case 2 is better */
865 r = r2;
866 q = q2;
867 mul = (1 << 24) * 2 / 5;
868 }
869
870 /* Check case 3 only if the divisor is big enough */
871 if (fref / rate >= 80) {
872 u64 fssp;
873 u32 m;
874
875 /* Calculate initial quot */
876 q1 = DIV_ROUND_UP(fref, rate);
877 m = (1 << 24) / q1;
878
879 /* Get the remainder */
880 fssp = (u64)fref * m;
881 do_div(fssp, 1 << 24);
882 r1 = abs(fssp - rate);
883
884 /* Choose this one if it suits better */
885 if (r1 < r) {
886 /* case 3 is better */
887 q = 1;
888 mul = m;
889 }
890 }
891
892 *dds = mul;
893 return q - 1;
894 }
895
ssp_get_clk_div(struct driver_data * drv_data,int rate)896 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
897 {
898 unsigned long ssp_clk = drv_data->controller->max_speed_hz;
899 const struct ssp_device *ssp = drv_data->ssp;
900
901 rate = min_t(int, ssp_clk, rate);
902
903 /*
904 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
905 * that the SSP transmission rate can be greater than the device rate.
906 */
907 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
908 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
909 else
910 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff;
911 }
912
pxa2xx_ssp_get_clk_div(struct driver_data * drv_data,int rate)913 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
914 int rate)
915 {
916 struct chip_data *chip =
917 spi_get_ctldata(drv_data->controller->cur_msg->spi);
918 unsigned int clk_div;
919
920 switch (drv_data->ssp_type) {
921 case QUARK_X1000_SSP:
922 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
923 break;
924 default:
925 clk_div = ssp_get_clk_div(drv_data, rate);
926 break;
927 }
928 return clk_div << 8;
929 }
930
pxa2xx_spi_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * xfer)931 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
932 struct spi_device *spi,
933 struct spi_transfer *xfer)
934 {
935 struct driver_data *drv_data = spi_controller_get_devdata(controller);
936
937 return drv_data->controller_info->enable_dma &&
938 xfer->len <= MAX_DMA_LEN &&
939 xfer->len >= drv_data->controller_info->dma_burst_size;
940 }
941
pxa2xx_spi_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)942 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
943 struct spi_device *spi,
944 struct spi_transfer *transfer)
945 {
946 struct driver_data *drv_data = spi_controller_get_devdata(controller);
947 struct chip_data *chip = spi_get_ctldata(spi);
948 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
949 u32 dma_thresh;
950 u32 clk_div;
951 u8 bits;
952 u32 speed;
953 u32 cr0;
954 u32 cr1;
955 int err;
956 int dma_mapped;
957
958 /* Check if we can DMA this transfer */
959 if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) {
960 /* Warn ... we force this to PIO mode */
961 dev_warn_ratelimited(&spi->dev,
962 "DMA disabled for transfer length %u greater than %d\n",
963 transfer->len, MAX_DMA_LEN);
964 }
965
966 /* Setup the transfer state based on the type of transfer */
967 if (pxa2xx_spi_flush(drv_data) == 0) {
968 dev_err(&spi->dev, "Flush failed\n");
969 return -EIO;
970 }
971 drv_data->tx = (void *)transfer->tx_buf;
972 drv_data->tx_end = drv_data->tx + transfer->len;
973 drv_data->rx = transfer->rx_buf;
974 drv_data->rx_end = drv_data->rx + transfer->len;
975
976 /* Change speed and bit per word on a per transfer */
977 bits = transfer->bits_per_word;
978 speed = transfer->speed_hz;
979
980 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
981
982 if (bits <= 8) {
983 drv_data->n_bytes = 1;
984 drv_data->read = drv_data->rx ? u8_reader : null_reader;
985 drv_data->write = drv_data->tx ? u8_writer : null_writer;
986 } else if (bits <= 16) {
987 drv_data->n_bytes = 2;
988 drv_data->read = drv_data->rx ? u16_reader : null_reader;
989 drv_data->write = drv_data->tx ? u16_writer : null_writer;
990 } else if (bits <= 32) {
991 drv_data->n_bytes = 4;
992 drv_data->read = drv_data->rx ? u32_reader : null_reader;
993 drv_data->write = drv_data->tx ? u32_writer : null_writer;
994 }
995
996 dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT);
997 dma_mapped = spi_xfer_is_dma_mapped(controller, spi, transfer);
998 if (dma_mapped) {
999 /* Ensure we have the correct interrupt handler */
1000 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1001
1002 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1003 if (err)
1004 return err;
1005
1006 /* Clear status and start DMA engine */
1007 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1008 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1009
1010 pxa2xx_spi_dma_start(drv_data);
1011 } else {
1012 /* Ensure we have the correct interrupt handler */
1013 drv_data->transfer_handler = interrupt_transfer;
1014
1015 /* Clear status */
1016 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1017 write_SSSR_CS(drv_data, drv_data->clear_sr);
1018 }
1019
1020 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1021 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1022 if (!pxa25x_ssp_comp(drv_data))
1023 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1024 controller->max_speed_hz
1025 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1026 dma_mapped ? "DMA" : "PIO");
1027 else
1028 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1029 controller->max_speed_hz / 2
1030 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1031 dma_mapped ? "DMA" : "PIO");
1032
1033 if (is_lpss_ssp(drv_data)) {
1034 pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1035 pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1036 }
1037
1038 if (is_mrfld_ssp(drv_data)) {
1039 u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1040 u32 thresh = 0;
1041
1042 thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1043 thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1044
1045 pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1046 }
1047
1048 if (is_quark_x1000_ssp(drv_data))
1049 pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1050
1051 /* Stop the SSP */
1052 if (!is_mmp2_ssp(drv_data))
1053 pxa_ssp_disable(drv_data->ssp);
1054
1055 if (!pxa25x_ssp_comp(drv_data))
1056 pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT);
1057
1058 /* First set CR1 without interrupt and service enables */
1059 pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1060
1061 /* See if we need to reload the configuration registers */
1062 pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1063
1064 /* Restart the SSP */
1065 pxa_ssp_enable(drv_data->ssp);
1066
1067 if (is_mmp2_ssp(drv_data)) {
1068 u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1069
1070 if (tx_level) {
1071 /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1072 dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1073 if (tx_level > transfer->len)
1074 tx_level = transfer->len;
1075 drv_data->tx += tx_level;
1076 }
1077 }
1078
1079 if (spi_controller_is_target(controller)) {
1080 while (drv_data->write(drv_data))
1081 ;
1082 if (drv_data->gpiod_ready) {
1083 gpiod_set_value(drv_data->gpiod_ready, 1);
1084 udelay(1);
1085 gpiod_set_value(drv_data->gpiod_ready, 0);
1086 }
1087 }
1088
1089 /*
1090 * Release the data by enabling service requests and interrupts,
1091 * without changing any mode bits.
1092 */
1093 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1094
1095 return 1;
1096 }
1097
pxa2xx_spi_target_abort(struct spi_controller * controller)1098 static int pxa2xx_spi_target_abort(struct spi_controller *controller)
1099 {
1100 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1101
1102 int_error_stop(drv_data, "transfer aborted", -EINTR);
1103
1104 return 0;
1105 }
1106
pxa2xx_spi_handle_err(struct spi_controller * controller,struct spi_message * msg)1107 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1108 struct spi_message *msg)
1109 {
1110 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1111
1112 int_stop_and_reset(drv_data);
1113
1114 /* Disable the SSP */
1115 pxa2xx_spi_off(drv_data);
1116
1117 /*
1118 * Stop the DMA if running. Note DMA callback handler may have unset
1119 * the dma_running already, which is fine as stopping is not needed
1120 * then but we shouldn't rely this flag for anything else than
1121 * stopping. For instance to differentiate between PIO and DMA
1122 * transfers.
1123 */
1124 if (atomic_read(&drv_data->dma_running))
1125 pxa2xx_spi_dma_stop(drv_data);
1126 }
1127
pxa2xx_spi_unprepare_transfer(struct spi_controller * controller)1128 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1129 {
1130 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1131
1132 /* Disable the SSP now */
1133 pxa2xx_spi_off(drv_data);
1134
1135 return 0;
1136 }
1137
setup(struct spi_device * spi)1138 static int setup(struct spi_device *spi)
1139 {
1140 struct chip_data *chip;
1141 const struct lpss_config *config;
1142 struct driver_data *drv_data =
1143 spi_controller_get_devdata(spi->controller);
1144 uint tx_thres, tx_hi_thres, rx_thres;
1145
1146 switch (drv_data->ssp_type) {
1147 case QUARK_X1000_SSP:
1148 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1149 tx_hi_thres = 0;
1150 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1151 break;
1152 case MRFLD_SSP:
1153 tx_thres = TX_THRESH_MRFLD_DFLT;
1154 tx_hi_thres = 0;
1155 rx_thres = RX_THRESH_MRFLD_DFLT;
1156 break;
1157 case CE4100_SSP:
1158 tx_thres = TX_THRESH_CE4100_DFLT;
1159 tx_hi_thres = 0;
1160 rx_thres = RX_THRESH_CE4100_DFLT;
1161 break;
1162 case LPSS_LPT_SSP:
1163 case LPSS_BYT_SSP:
1164 case LPSS_BSW_SSP:
1165 case LPSS_SPT_SSP:
1166 case LPSS_BXT_SSP:
1167 case LPSS_CNL_SSP:
1168 config = lpss_get_config(drv_data);
1169 tx_thres = config->tx_threshold_lo;
1170 tx_hi_thres = config->tx_threshold_hi;
1171 rx_thres = config->rx_threshold;
1172 break;
1173 default:
1174 tx_hi_thres = 0;
1175 if (spi_controller_is_target(drv_data->controller)) {
1176 tx_thres = 1;
1177 rx_thres = 2;
1178 } else {
1179 tx_thres = TX_THRESH_DFLT;
1180 rx_thres = RX_THRESH_DFLT;
1181 }
1182 break;
1183 }
1184
1185 if (drv_data->ssp_type == CE4100_SSP) {
1186 if (spi_get_chipselect(spi, 0) > 4) {
1187 dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n");
1188 return -EINVAL;
1189 }
1190 }
1191
1192 /* Only allocate on the first setup */
1193 chip = spi_get_ctldata(spi);
1194 if (!chip) {
1195 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1196 if (!chip)
1197 return -ENOMEM;
1198 }
1199
1200 chip->cr1 = 0;
1201 if (spi_controller_is_target(drv_data->controller)) {
1202 chip->cr1 |= SSCR1_SCFR;
1203 chip->cr1 |= SSCR1_SCLKDIR;
1204 chip->cr1 |= SSCR1_SFRMDIR;
1205 chip->cr1 |= SSCR1_SPH;
1206 }
1207
1208 if (is_lpss_ssp(drv_data)) {
1209 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1210 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1211 SSITF_TxHiThresh(tx_hi_thres);
1212 }
1213
1214 if (is_mrfld_ssp(drv_data)) {
1215 chip->lpss_rx_threshold = rx_thres;
1216 chip->lpss_tx_threshold = tx_thres;
1217 }
1218
1219 switch (drv_data->ssp_type) {
1220 case QUARK_X1000_SSP:
1221 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1222 & QUARK_X1000_SSCR1_RFT)
1223 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1224 & QUARK_X1000_SSCR1_TFT);
1225 break;
1226 case CE4100_SSP:
1227 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1228 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1229 break;
1230 default:
1231 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1232 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1233 break;
1234 }
1235
1236 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1237 chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1238 ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1239
1240 if (spi->mode & SPI_LOOP)
1241 chip->cr1 |= SSCR1_LBM;
1242
1243 spi_set_ctldata(spi, chip);
1244
1245 return 0;
1246 }
1247
cleanup(struct spi_device * spi)1248 static void cleanup(struct spi_device *spi)
1249 {
1250 struct chip_data *chip = spi_get_ctldata(spi);
1251
1252 kfree(chip);
1253 }
1254
pxa2xx_spi_fw_translate_cs(struct spi_controller * controller,unsigned int cs)1255 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1256 unsigned int cs)
1257 {
1258 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1259
1260 switch (drv_data->ssp_type) {
1261 /*
1262 * For some of Intel Atoms the ACPI DeviceSelection used by the Windows
1263 * driver starts from 1 instead of 0 so translate it here to match what
1264 * Linux expects.
1265 */
1266 case LPSS_BYT_SSP:
1267 case LPSS_BSW_SSP:
1268 return cs - 1;
1269
1270 default:
1271 return cs;
1272 }
1273 }
1274
pxa2xx_spi_max_dma_transfer_size(struct spi_device * spi)1275 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1276 {
1277 return MAX_DMA_LEN;
1278 }
1279
pxa2xx_spi_probe(struct device * dev,struct ssp_device * ssp,struct pxa2xx_spi_controller * platform_info)1280 int pxa2xx_spi_probe(struct device *dev, struct ssp_device *ssp,
1281 struct pxa2xx_spi_controller *platform_info)
1282 {
1283 struct spi_controller *controller;
1284 struct driver_data *drv_data;
1285 const struct lpss_config *config;
1286 int status;
1287 u32 tmp;
1288
1289 if (platform_info->is_target)
1290 controller = devm_spi_alloc_target(dev, sizeof(*drv_data));
1291 else
1292 controller = devm_spi_alloc_host(dev, sizeof(*drv_data));
1293 if (!controller)
1294 return dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n");
1295
1296 drv_data = spi_controller_get_devdata(controller);
1297 drv_data->controller = controller;
1298 drv_data->controller_info = platform_info;
1299 drv_data->ssp = ssp;
1300
1301 device_set_node(&controller->dev, dev_fwnode(dev));
1302
1303 /* The spi->mode bits understood by this driver: */
1304 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1305
1306 controller->bus_num = ssp->port_id;
1307 controller->dma_alignment = DMA_ALIGNMENT;
1308 controller->cleanup = cleanup;
1309 controller->setup = setup;
1310 controller->set_cs = pxa2xx_spi_set_cs;
1311 controller->transfer_one = pxa2xx_spi_transfer_one;
1312 controller->target_abort = pxa2xx_spi_target_abort;
1313 controller->handle_err = pxa2xx_spi_handle_err;
1314 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1315 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1316 controller->auto_runtime_pm = true;
1317 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1318
1319 drv_data->ssp_type = ssp->type;
1320
1321 if (pxa25x_ssp_comp(drv_data)) {
1322 switch (drv_data->ssp_type) {
1323 case QUARK_X1000_SSP:
1324 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1325 break;
1326 default:
1327 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1328 break;
1329 }
1330
1331 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1332 drv_data->dma_cr1 = 0;
1333 drv_data->clear_sr = SSSR_ROR;
1334 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1335 } else {
1336 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1337 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1338 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1339 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1340 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1341 | SSSR_ROR | SSSR_TUR;
1342 }
1343
1344 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1345 drv_data);
1346 if (status < 0)
1347 return dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq);
1348
1349 /* Setup DMA if requested */
1350 if (platform_info->enable_dma) {
1351 status = pxa2xx_spi_dma_setup(drv_data);
1352 if (status) {
1353 dev_warn(dev, "no DMA channels available, using PIO\n");
1354 platform_info->enable_dma = false;
1355 } else {
1356 controller->can_dma = pxa2xx_spi_can_dma;
1357 controller->max_dma_len = MAX_DMA_LEN;
1358 controller->max_transfer_size =
1359 pxa2xx_spi_max_dma_transfer_size;
1360
1361 dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size);
1362 }
1363 }
1364
1365 /* Enable SOC clock */
1366 status = clk_prepare_enable(ssp->clk);
1367 if (status)
1368 goto out_error_dma_irq_alloc;
1369
1370 controller->max_speed_hz = clk_get_rate(ssp->clk);
1371 /*
1372 * Set minimum speed for all other platforms than Intel Quark which is
1373 * able do under 1 Hz transfers.
1374 */
1375 if (!pxa25x_ssp_comp(drv_data))
1376 controller->min_speed_hz =
1377 DIV_ROUND_UP(controller->max_speed_hz, 4096);
1378 else if (!is_quark_x1000_ssp(drv_data))
1379 controller->min_speed_hz =
1380 DIV_ROUND_UP(controller->max_speed_hz, 512);
1381
1382 pxa_ssp_disable(ssp);
1383
1384 /* Load default SSP configuration */
1385 switch (drv_data->ssp_type) {
1386 case QUARK_X1000_SSP:
1387 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1388 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1389 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1390
1391 /* Using the Motorola SPI protocol and use 8 bit frame */
1392 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1393 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1394 break;
1395 case CE4100_SSP:
1396 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1397 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1398 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1399 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1400 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1401 break;
1402 default:
1403
1404 if (spi_controller_is_target(controller)) {
1405 tmp = SSCR1_SCFR |
1406 SSCR1_SCLKDIR |
1407 SSCR1_SFRMDIR |
1408 SSCR1_RxTresh(2) |
1409 SSCR1_TxTresh(1) |
1410 SSCR1_SPH;
1411 } else {
1412 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1413 SSCR1_TxTresh(TX_THRESH_DFLT);
1414 }
1415 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1416 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1417 if (!spi_controller_is_target(controller))
1418 tmp |= SSCR0_SCR(2);
1419 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1420 break;
1421 }
1422
1423 if (!pxa25x_ssp_comp(drv_data))
1424 pxa2xx_spi_write(drv_data, SSTO, 0);
1425
1426 if (!is_quark_x1000_ssp(drv_data))
1427 pxa2xx_spi_write(drv_data, SSPSP, 0);
1428
1429 if (is_lpss_ssp(drv_data)) {
1430 lpss_ssp_setup(drv_data);
1431 config = lpss_get_config(drv_data);
1432 if (config->reg_capabilities >= 0) {
1433 tmp = __lpss_ssp_read_priv(drv_data,
1434 config->reg_capabilities);
1435 tmp &= LPSS_CAPS_CS_EN_MASK;
1436 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1437 platform_info->num_chipselect = ffz(tmp);
1438 }
1439 }
1440 controller->num_chipselect = platform_info->num_chipselect;
1441 controller->use_gpio_descriptors = true;
1442
1443 if (platform_info->is_target) {
1444 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1445 "ready", GPIOD_OUT_LOW);
1446 if (IS_ERR(drv_data->gpiod_ready)) {
1447 status = PTR_ERR(drv_data->gpiod_ready);
1448 goto out_error_clock_enabled;
1449 }
1450 }
1451
1452 /* Register with the SPI framework */
1453 dev_set_drvdata(dev, drv_data);
1454 status = spi_register_controller(controller);
1455 if (status) {
1456 dev_err_probe(dev, status, "problem registering SPI controller\n");
1457 goto out_error_clock_enabled;
1458 }
1459
1460 return status;
1461
1462 out_error_clock_enabled:
1463 clk_disable_unprepare(ssp->clk);
1464
1465 out_error_dma_irq_alloc:
1466 pxa2xx_spi_dma_release(drv_data);
1467 free_irq(ssp->irq, drv_data);
1468
1469 return status;
1470 }
1471 EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_probe, SPI_PXA2xx);
1472
pxa2xx_spi_remove(struct device * dev)1473 void pxa2xx_spi_remove(struct device *dev)
1474 {
1475 struct driver_data *drv_data = dev_get_drvdata(dev);
1476 struct ssp_device *ssp = drv_data->ssp;
1477
1478 spi_unregister_controller(drv_data->controller);
1479
1480 /* Disable the SSP at the peripheral and SOC level */
1481 pxa_ssp_disable(ssp);
1482 clk_disable_unprepare(ssp->clk);
1483
1484 /* Release DMA */
1485 if (drv_data->controller_info->enable_dma)
1486 pxa2xx_spi_dma_release(drv_data);
1487
1488 /* Release IRQ */
1489 free_irq(ssp->irq, drv_data);
1490 }
1491 EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_remove, SPI_PXA2xx);
1492
pxa2xx_spi_suspend(struct device * dev)1493 static int pxa2xx_spi_suspend(struct device *dev)
1494 {
1495 struct driver_data *drv_data = dev_get_drvdata(dev);
1496 struct ssp_device *ssp = drv_data->ssp;
1497 int status;
1498
1499 status = spi_controller_suspend(drv_data->controller);
1500 if (status)
1501 return status;
1502
1503 pxa_ssp_disable(ssp);
1504
1505 if (!pm_runtime_suspended(dev))
1506 clk_disable_unprepare(ssp->clk);
1507
1508 return 0;
1509 }
1510
pxa2xx_spi_resume(struct device * dev)1511 static int pxa2xx_spi_resume(struct device *dev)
1512 {
1513 struct driver_data *drv_data = dev_get_drvdata(dev);
1514 struct ssp_device *ssp = drv_data->ssp;
1515 int status;
1516
1517 /* Enable the SSP clock */
1518 if (!pm_runtime_suspended(dev)) {
1519 status = clk_prepare_enable(ssp->clk);
1520 if (status)
1521 return status;
1522 }
1523
1524 /* Start the queue running */
1525 return spi_controller_resume(drv_data->controller);
1526 }
1527
pxa2xx_spi_runtime_suspend(struct device * dev)1528 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1529 {
1530 struct driver_data *drv_data = dev_get_drvdata(dev);
1531
1532 clk_disable_unprepare(drv_data->ssp->clk);
1533 return 0;
1534 }
1535
pxa2xx_spi_runtime_resume(struct device * dev)1536 static int pxa2xx_spi_runtime_resume(struct device *dev)
1537 {
1538 struct driver_data *drv_data = dev_get_drvdata(dev);
1539
1540 return clk_prepare_enable(drv_data->ssp->clk);
1541 }
1542
1543 EXPORT_NS_GPL_DEV_PM_OPS(pxa2xx_spi_pm_ops, SPI_PXA2xx) = {
1544 SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1545 RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1546 };
1547
1548 MODULE_AUTHOR("Stephen Street");
1549 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller core driver");
1550 MODULE_LICENSE("GPL");
1551