xref: /freebsd/sys/net/iflib.c (revision c9e4643da132c50f082a474c540108d7afee2d18)
1 /*-
2  * Copyright (c) 2014-2018, Matthew Macy <mmacy@mattmacy.io>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Neither the name of Matthew Macy nor the names of its
12  *     contributors may be used to endorse or promote products derived from
13  *     this software without specific prior written permission.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_acpi.h"
32 #include "opt_sched.h"
33 
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/bus.h>
37 #include <sys/eventhandler.h>
38 #include <sys/kernel.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/module.h>
42 #include <sys/kobj.h>
43 #include <sys/rman.h>
44 #include <sys/sbuf.h>
45 #include <sys/smp.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/syslog.h>
50 #include <sys/taskqueue.h>
51 #include <sys/limits.h>
52 
53 #include <net/if.h>
54 #include <net/if_var.h>
55 #include <net/if_private.h>
56 #include <net/if_types.h>
57 #include <net/if_media.h>
58 #include <net/bpf.h>
59 #include <net/ethernet.h>
60 #include <net/mp_ring.h>
61 #include <net/debugnet.h>
62 #include <net/pfil.h>
63 #include <net/vnet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_pcb.h>
67 #include <netinet/tcp_lro.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 #include <netinet/ip6.h>
72 #include <netinet/tcp.h>
73 #include <netinet/udp.h>
74 #include <netinet/ip_var.h>
75 #include <netinet6/ip6_var.h>
76 
77 #include <machine/bus.h>
78 #include <machine/in_cksum.h>
79 
80 #include <vm/vm.h>
81 #include <vm/pmap.h>
82 
83 #include <dev/led/led.h>
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 #include <dev/pci/pci_private.h>
87 
88 #include <net/iflib.h>
89 
90 #include "ifdi_if.h"
91 
92 #ifdef PCI_IOV
93 #include <dev/pci/pci_iov.h>
94 #endif
95 
96 #include <sys/bitstring.h>
97 /*
98  * enable accounting of every mbuf as it comes in to and goes out of
99  * iflib's software descriptor references
100  */
101 #define MEMORY_LOGGING 0
102 /*
103  * Enable mbuf vectors for compressing long mbuf chains
104  */
105 
106 /*
107  * NB:
108  * - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead
109  *   we prefetch needs to be determined by the time spent in m_free vis a vis
110  *   the cost of a prefetch. This will of course vary based on the workload:
111  *      - NFLX's m_free path is dominated by vm-based M_EXT manipulation which
112  *        is quite expensive, thus suggesting very little prefetch.
113  *      - small packet forwarding which is just returning a single mbuf to
114  *        UMA will typically be very fast vis a vis the cost of a memory
115  *        access.
116  */
117 
118 /*
119  * File organization:
120  *  - private structures
121  *  - iflib private utility functions
122  *  - ifnet functions
123  *  - vlan registry and other exported functions
124  *  - iflib public core functions
125  *
126  *
127  */
128 static MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library");
129 
130 #define	IFLIB_RXEOF_MORE	(1U << 0)
131 #define	IFLIB_RXEOF_EMPTY	(2U << 0)
132 
133 struct iflib_txq;
134 typedef struct iflib_txq *iflib_txq_t;
135 struct iflib_rxq;
136 typedef struct iflib_rxq *iflib_rxq_t;
137 struct iflib_fl;
138 typedef struct iflib_fl *iflib_fl_t;
139 
140 struct iflib_ctx;
141 
142 static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid);
143 static void iflib_timer(void *arg);
144 static void iflib_tqg_detach(if_ctx_t ctx);
145 #ifndef ALTQ
146 static int  iflib_simple_transmit(if_t ifp, struct mbuf *m);
147 #endif
148 
149 typedef struct iflib_filter_info {
150 	driver_filter_t *ifi_filter;
151 	void *ifi_filter_arg;
152 	struct grouptask *ifi_task;
153 	void *ifi_ctx;
154 } *iflib_filter_info_t;
155 
156 struct iflib_ctx {
157 	KOBJ_FIELDS;
158 	/*
159 	 * Pointer to hardware driver's softc
160 	 */
161 	void *ifc_softc;
162 	device_t ifc_dev;
163 	if_t ifc_ifp;
164 
165 	cpuset_t ifc_cpus;
166 	if_shared_ctx_t ifc_sctx;
167 	struct if_softc_ctx ifc_softc_ctx;
168 
169 	struct sx ifc_ctx_sx;
170 	struct mtx ifc_state_mtx;
171 
172 	iflib_txq_t ifc_txqs;
173 	iflib_rxq_t ifc_rxqs;
174 	uint32_t ifc_if_flags;
175 	uint32_t ifc_flags;
176 	uint32_t ifc_max_fl_buf_size;
177 	uint32_t ifc_rx_mbuf_sz;
178 
179 	int ifc_link_state;
180 	int ifc_watchdog_events;
181 	struct cdev *ifc_led_dev;
182 	struct resource *ifc_msix_mem;
183 
184 	struct if_irq ifc_legacy_irq;
185 	struct task ifc_admin_task;
186 	struct task ifc_vflr_task;
187 	struct taskqueue *ifc_tq;
188 	struct iflib_filter_info ifc_filter_info;
189 	struct ifmedia	ifc_media;
190 	struct ifmedia	*ifc_mediap;
191 
192 	struct sysctl_oid *ifc_sysctl_node;
193 	uint16_t ifc_sysctl_ntxqs;
194 	uint16_t ifc_sysctl_nrxqs;
195 	uint16_t ifc_sysctl_qs_eq_override;
196 	uint16_t ifc_sysctl_rx_budget;
197 	uint16_t ifc_sysctl_tx_abdicate;
198 	uint16_t ifc_sysctl_core_offset;
199 #define	CORE_OFFSET_UNSPECIFIED	0xffff
200 	uint8_t  ifc_sysctl_separate_txrx;
201 	uint8_t  ifc_sysctl_use_logical_cores;
202 	uint16_t ifc_sysctl_extra_msix_vectors;
203 	bool     ifc_cpus_are_physical_cores;
204 	bool     ifc_sysctl_simple_tx;
205 	uint16_t ifc_sysctl_tx_reclaim_thresh;
206 	uint16_t ifc_sysctl_tx_reclaim_ticks;
207 
208 	qidx_t ifc_sysctl_ntxds[8];
209 	qidx_t ifc_sysctl_nrxds[8];
210 	struct if_txrx ifc_txrx;
211 #define isc_txd_encap		ifc_txrx.ift_txd_encap
212 #define isc_txd_flush		ifc_txrx.ift_txd_flush
213 #define isc_txd_credits_update	ifc_txrx.ift_txd_credits_update
214 #define isc_rxd_available	ifc_txrx.ift_rxd_available
215 #define isc_rxd_pkt_get		ifc_txrx.ift_rxd_pkt_get
216 #define isc_rxd_refill		ifc_txrx.ift_rxd_refill
217 #define isc_rxd_flush		ifc_txrx.ift_rxd_flush
218 #define isc_legacy_intr		ifc_txrx.ift_legacy_intr
219 #define isc_txq_select		ifc_txrx.ift_txq_select
220 #define isc_txq_select_v2	ifc_txrx.ift_txq_select_v2
221 
222 	eventhandler_tag ifc_vlan_attach_event;
223 	eventhandler_tag ifc_vlan_detach_event;
224 	struct ether_addr ifc_mac;
225 };
226 
227 void *
iflib_get_softc(if_ctx_t ctx)228 iflib_get_softc(if_ctx_t ctx)
229 {
230 
231 	return (ctx->ifc_softc);
232 }
233 
234 device_t
iflib_get_dev(if_ctx_t ctx)235 iflib_get_dev(if_ctx_t ctx)
236 {
237 
238 	return (ctx->ifc_dev);
239 }
240 
241 if_t
iflib_get_ifp(if_ctx_t ctx)242 iflib_get_ifp(if_ctx_t ctx)
243 {
244 
245 	return (ctx->ifc_ifp);
246 }
247 
248 struct ifmedia *
iflib_get_media(if_ctx_t ctx)249 iflib_get_media(if_ctx_t ctx)
250 {
251 
252 	return (ctx->ifc_mediap);
253 }
254 
255 void
iflib_set_mac(if_ctx_t ctx,uint8_t mac[ETHER_ADDR_LEN])256 iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN])
257 {
258 
259 	bcopy(mac, ctx->ifc_mac.octet, ETHER_ADDR_LEN);
260 }
261 
262 if_softc_ctx_t
iflib_get_softc_ctx(if_ctx_t ctx)263 iflib_get_softc_ctx(if_ctx_t ctx)
264 {
265 
266 	return (&ctx->ifc_softc_ctx);
267 }
268 
269 if_shared_ctx_t
iflib_get_sctx(if_ctx_t ctx)270 iflib_get_sctx(if_ctx_t ctx)
271 {
272 
273 	return (ctx->ifc_sctx);
274 }
275 
276 uint16_t
iflib_get_extra_msix_vectors_sysctl(if_ctx_t ctx)277 iflib_get_extra_msix_vectors_sysctl(if_ctx_t ctx)
278 {
279 
280 	return (ctx->ifc_sysctl_extra_msix_vectors);
281 }
282 
283 #define IP_ALIGNED(m)		((((uintptr_t)(m)->m_data) & 0x3) == 0x2)
284 #define CACHE_PTR_INCREMENT	(CACHE_LINE_SIZE / sizeof(void *))
285 #define CACHE_PTR_NEXT(ptr)	((void *)(roundup2(ptr, CACHE_LINE_SIZE)))
286 
287 #define LINK_ACTIVE(ctx)	((ctx)->ifc_link_state == LINK_STATE_UP)
288 #define CTX_IS_VF(ctx)		((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF)
289 
290 typedef struct iflib_sw_rx_desc_array {
291 	bus_dmamap_t	*ifsd_map;	/* bus_dma maps for packet */
292 	struct mbuf	**ifsd_m;	/* pkthdr mbufs */
293 	caddr_t		*ifsd_cl;	/* direct cluster pointer for rx */
294 	bus_addr_t	*ifsd_ba;	/* bus addr of cluster for rx */
295 } iflib_rxsd_array_t;
296 
297 typedef struct iflib_sw_tx_desc_array {
298 	bus_dmamap_t	*ifsd_map;	/* bus_dma maps for packet */
299 	bus_dmamap_t	*ifsd_tso_map;	/* bus_dma maps for TSO packet */
300 	struct mbuf	**ifsd_m;	/* pkthdr mbufs */
301 } if_txsd_vec_t;
302 
303 /* magic number that should be high enough for any hardware */
304 #define IFLIB_MAX_TX_SEGS		128
305 #define IFLIB_RX_COPY_THRESH		128
306 #define IFLIB_MAX_RX_REFRESH		32
307 /* The minimum descriptors per second before we start coalescing */
308 #define IFLIB_MIN_DESC_SEC		16384
309 #define IFLIB_DEFAULT_TX_UPDATE_FREQ	16
310 #define IFLIB_QUEUE_IDLE		0
311 #define IFLIB_QUEUE_HUNG		1
312 #define IFLIB_QUEUE_WORKING		2
313 /* maximum number of txqs that can share an rx interrupt */
314 #define IFLIB_MAX_TX_SHARED_INTR	4
315 
316 /* this should really scale with ring size - this is a fairly arbitrary value */
317 #define TX_BATCH_SIZE			32
318 
319 #define IFLIB_RESTART_BUDGET		8
320 
321 #define	IFC_LEGACY		0x001
322 #define	IFC_QFLUSH		0x002
323 #define	IFC_MULTISEG		0x004
324 #define	IFC_SPARE1		0x008
325 #define	IFC_SC_ALLOCATED	0x010
326 #define	IFC_INIT_DONE		0x020
327 #define	IFC_PREFETCH		0x040
328 #define	IFC_DO_RESET		0x080
329 #define	IFC_DO_WATCHDOG		0x100
330 #define	IFC_SPARE0		0x200
331 #define	IFC_SPARE2		0x400
332 #define	IFC_IN_DETACH		0x800
333 
334 #define	IFC_NETMAP_TX_IRQ	0x80000000
335 
336 #define CSUM_OFFLOAD		(CSUM_IP_TSO | CSUM_IP6_TSO | CSUM_IP | \
337 				 CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \
338 				 CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP)
339 
340 struct iflib_txq {
341 	qidx_t		ift_in_use;
342 	qidx_t		ift_cidx;
343 	qidx_t		ift_cidx_processed;
344 	qidx_t		ift_pidx;
345 	uint8_t		ift_gen;
346 	uint8_t		ift_br_offset;
347 	uint16_t	ift_npending;
348 	uint16_t	ift_db_pending;
349 	uint16_t	ift_rs_pending;
350 	uint32_t	ift_last_reclaim;
351 	uint16_t	ift_reclaim_thresh;
352 	uint16_t	ift_reclaim_ticks;
353 	uint8_t		ift_txd_size[8];
354 	uint64_t	ift_processed;
355 	uint64_t	ift_cleaned;
356 	uint64_t	ift_cleaned_prev;
357 #if MEMORY_LOGGING
358 	uint64_t	ift_enqueued;
359 	uint64_t	ift_dequeued;
360 #endif
361 	uint64_t	ift_no_tx_dma_setup;
362 	uint64_t	ift_no_desc_avail;
363 	uint64_t	ift_mbuf_defrag_failed;
364 	uint64_t	ift_mbuf_defrag;
365 	uint64_t	ift_map_failed;
366 	uint64_t	ift_txd_encap_efbig;
367 	uint64_t	ift_pullups;
368 	uint64_t	ift_last_timer_tick;
369 
370 	struct mtx	ift_mtx;
371 	struct mtx	ift_db_mtx;
372 
373 	/* constant values */
374 	if_ctx_t	ift_ctx;
375 	struct ifmp_ring	*ift_br;
376 	struct grouptask	ift_task;
377 	qidx_t		ift_size;
378 	uint16_t	ift_id;
379 	struct callout	ift_timer;
380 #ifdef DEV_NETMAP
381 	struct callout	ift_netmap_timer;
382 #endif /* DEV_NETMAP */
383 
384 	if_txsd_vec_t	ift_sds;
385 	uint8_t		ift_qstatus;
386 	uint8_t		ift_closed;
387 	uint8_t		ift_update_freq;
388 	struct iflib_filter_info ift_filter_info;
389 	bus_dma_tag_t	ift_buf_tag;
390 	bus_dma_tag_t	ift_tso_buf_tag;
391 	iflib_dma_info_t	ift_ifdi;
392 #define	MTX_NAME_LEN	32
393 	char		ift_mtx_name[MTX_NAME_LEN];
394 	bus_dma_segment_t	ift_segs[IFLIB_MAX_TX_SEGS]  __aligned(CACHE_LINE_SIZE);
395 #ifdef IFLIB_DIAGNOSTICS
396 	uint64_t ift_cpu_exec_count[256];
397 #endif
398 } __aligned(CACHE_LINE_SIZE);
399 
400 struct iflib_fl {
401 	qidx_t		ifl_cidx;
402 	qidx_t		ifl_pidx;
403 	qidx_t		ifl_credits;
404 	uint8_t		ifl_gen;
405 	uint8_t		ifl_rxd_size;
406 #if MEMORY_LOGGING
407 	uint64_t	ifl_m_enqueued;
408 	uint64_t	ifl_m_dequeued;
409 	uint64_t	ifl_cl_enqueued;
410 	uint64_t	ifl_cl_dequeued;
411 #endif
412 	/* implicit pad */
413 	bitstr_t	*ifl_rx_bitmap;
414 	qidx_t		ifl_fragidx;
415 	/* constant */
416 	qidx_t		ifl_size;
417 	uint16_t	ifl_buf_size;
418 	uint16_t	ifl_cltype;
419 	uma_zone_t	ifl_zone;
420 	iflib_rxsd_array_t	ifl_sds;
421 	iflib_rxq_t	ifl_rxq;
422 	uint8_t		ifl_id;
423 	bus_dma_tag_t	ifl_buf_tag;
424 	iflib_dma_info_t	ifl_ifdi;
425 	uint64_t	ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE);
426 	qidx_t		ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH];
427 }  __aligned(CACHE_LINE_SIZE);
428 
429 static inline qidx_t
get_inuse(int size,qidx_t cidx,qidx_t pidx,uint8_t gen)430 get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen)
431 {
432 	qidx_t used;
433 
434 	if (pidx > cidx)
435 		used = pidx - cidx;
436 	else if (pidx < cidx)
437 		used = size - cidx + pidx;
438 	else if (gen == 0 && pidx == cidx)
439 		used = 0;
440 	else if (gen == 1 && pidx == cidx)
441 		used = size;
442 	else
443 		panic("bad state");
444 
445 	return (used);
446 }
447 
448 #define TXQ_AVAIL(txq) (txq->ift_size - get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen))
449 
450 #define IDXDIFF(head, tail, wrap) \
451 	((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head))
452 
453 struct iflib_rxq {
454 	if_ctx_t	ifr_ctx;
455 	iflib_fl_t	ifr_fl;
456 	uint64_t	ifr_rx_irq;
457 	struct pfil_head	*pfil;
458 	/*
459 	 * If there is a separate completion queue (IFLIB_HAS_RXCQ), this is
460 	 * the completion queue consumer index.  Otherwise it's unused.
461 	 */
462 	qidx_t		ifr_cq_cidx;
463 	uint16_t	ifr_id;
464 	uint8_t		ifr_nfl;
465 	uint8_t		ifr_ntxqirq;
466 	uint8_t		ifr_txqid[IFLIB_MAX_TX_SHARED_INTR];
467 	uint8_t		ifr_fl_offset;
468 	struct lro_ctrl		ifr_lc;
469 	struct grouptask	ifr_task;
470 	struct callout		ifr_watchdog;
471 	struct iflib_filter_info ifr_filter_info;
472 	iflib_dma_info_t	ifr_ifdi;
473 
474 	/* dynamically allocate if any drivers need a value substantially larger than this */
475 	struct if_rxd_frag	ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE);
476 #ifdef IFLIB_DIAGNOSTICS
477 	uint64_t ifr_cpu_exec_count[256];
478 #endif
479 }  __aligned(CACHE_LINE_SIZE);
480 
481 typedef struct if_rxsd {
482 	caddr_t *ifsd_cl;
483 	iflib_fl_t ifsd_fl;
484 } *if_rxsd_t;
485 
486 /* multiple of word size */
487 #ifdef __LP64__
488 #define PKT_INFO_SIZE	6
489 #define RXD_INFO_SIZE	5
490 #define PKT_TYPE uint64_t
491 #else
492 #define PKT_INFO_SIZE	11
493 #define RXD_INFO_SIZE	8
494 #define PKT_TYPE uint32_t
495 #endif
496 #define PKT_LOOP_BOUND	((PKT_INFO_SIZE / 3) * 3)
497 #define RXD_LOOP_BOUND	((RXD_INFO_SIZE / 4) * 4)
498 
499 typedef struct if_pkt_info_pad {
500 	PKT_TYPE pkt_val[PKT_INFO_SIZE];
501 } *if_pkt_info_pad_t;
502 typedef struct if_rxd_info_pad {
503 	PKT_TYPE rxd_val[RXD_INFO_SIZE];
504 } *if_rxd_info_pad_t;
505 
506 CTASSERT(sizeof(struct if_pkt_info_pad) == sizeof(struct if_pkt_info));
507 CTASSERT(sizeof(struct if_rxd_info_pad) == sizeof(struct if_rxd_info));
508 
509 static inline void
pkt_info_zero(if_pkt_info_t pi)510 pkt_info_zero(if_pkt_info_t pi)
511 {
512 	if_pkt_info_pad_t pi_pad;
513 
514 	pi_pad = (if_pkt_info_pad_t)pi;
515 	pi_pad->pkt_val[0] = 0; pi_pad->pkt_val[1] = 0; pi_pad->pkt_val[2] = 0;
516 	pi_pad->pkt_val[3] = 0; pi_pad->pkt_val[4] = 0; pi_pad->pkt_val[5] = 0;
517 #ifndef __LP64__
518 	pi_pad->pkt_val[6] = 0; pi_pad->pkt_val[7] = 0; pi_pad->pkt_val[8] = 0;
519 	pi_pad->pkt_val[9] = 0; pi_pad->pkt_val[10] = 0;
520 #endif
521 }
522 
523 static inline void
rxd_info_zero(if_rxd_info_t ri)524 rxd_info_zero(if_rxd_info_t ri)
525 {
526 	if_rxd_info_pad_t ri_pad;
527 	int i;
528 
529 	ri_pad = (if_rxd_info_pad_t)ri;
530 	for (i = 0; i < RXD_LOOP_BOUND; i += 4) {
531 		ri_pad->rxd_val[i] = 0;
532 		ri_pad->rxd_val[i + 1] = 0;
533 		ri_pad->rxd_val[i + 2] = 0;
534 		ri_pad->rxd_val[i + 3] = 0;
535 	}
536 #ifdef __LP64__
537 	ri_pad->rxd_val[RXD_INFO_SIZE - 1] = 0;
538 #endif
539 }
540 
541 /*
542  * Only allow a single packet to take up most 1/nth of the tx ring
543  */
544 #define MAX_SINGLE_PACKET_FRACTION 12
545 #define IF_BAD_DMA	((bus_addr_t)-1)
546 
547 #define CTX_ACTIVE(ctx)	((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING))
548 
549 #define CTX_LOCK_INIT(_sc)	sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock")
550 #define CTX_LOCK(ctx)		sx_xlock(&(ctx)->ifc_ctx_sx)
551 #define CTX_UNLOCK(ctx)		sx_xunlock(&(ctx)->ifc_ctx_sx)
552 #define CTX_LOCK_DESTROY(ctx)	sx_destroy(&(ctx)->ifc_ctx_sx)
553 
554 #define STATE_LOCK_INIT(_sc, _name)	mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF)
555 #define STATE_LOCK(ctx)		mtx_lock(&(ctx)->ifc_state_mtx)
556 #define STATE_UNLOCK(ctx)	mtx_unlock(&(ctx)->ifc_state_mtx)
557 #define STATE_LOCK_DESTROY(ctx)	mtx_destroy(&(ctx)->ifc_state_mtx)
558 
559 #define CALLOUT_LOCK(txq)	mtx_lock(&txq->ift_mtx)
560 #define CALLOUT_UNLOCK(txq)	mtx_unlock(&txq->ift_mtx)
561 
562 /* Our boot-time initialization hook */
563 static int	iflib_module_event_handler(module_t, int, void *);
564 
565 static moduledata_t iflib_moduledata = {
566 	"iflib",
567 	iflib_module_event_handler,
568 	NULL
569 };
570 
571 DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY);
572 MODULE_VERSION(iflib, 1);
573 
574 MODULE_DEPEND(iflib, pci, 1, 1, 1);
575 MODULE_DEPEND(iflib, ether, 1, 1, 1);
576 
577 TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1);
578 TASKQGROUP_DEFINE(if_config_tqg, 1, 1);
579 
580 #ifndef IFLIB_DEBUG_COUNTERS
581 #ifdef INVARIANTS
582 #define IFLIB_DEBUG_COUNTERS 1
583 #else
584 #define IFLIB_DEBUG_COUNTERS 0
585 #endif /* !INVARIANTS */
586 #endif
587 
588 static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
589     "iflib driver parameters");
590 
591 /*
592  * XXX need to ensure that this can't accidentally cause the head to be moved backwards
593  */
594 static int iflib_min_tx_latency = 0;
595 SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW,
596     &iflib_min_tx_latency, 0,
597     "minimize transmit latency at the possible expense of throughput");
598 static int iflib_no_tx_batch = 0;
599 SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW,
600     &iflib_no_tx_batch, 0,
601     "minimize transmit latency at the possible expense of throughput");
602 static int iflib_timer_default = 1000;
603 SYSCTL_INT(_net_iflib, OID_AUTO, timer_default, CTLFLAG_RW,
604     &iflib_timer_default, 0, "number of ticks between iflib_timer calls");
605 
606 
607 #if IFLIB_DEBUG_COUNTERS
608 
609 static int iflib_tx_seen;
610 static int iflib_tx_sent;
611 static int iflib_tx_encap;
612 static int iflib_rx_allocs;
613 static int iflib_fl_refills;
614 static int iflib_fl_refills_large;
615 static int iflib_tx_frees;
616 
617 SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD, &iflib_tx_seen, 0,
618     "# TX mbufs seen");
619 SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD, &iflib_tx_sent, 0,
620     "# TX mbufs sent");
621 SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD, &iflib_tx_encap, 0,
622     "# TX mbufs encapped");
623 SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD, &iflib_tx_frees, 0,
624     "# TX frees");
625 SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD, &iflib_rx_allocs, 0,
626     "# RX allocations");
627 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD, &iflib_fl_refills, 0,
628     "# refills");
629 SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD,
630     &iflib_fl_refills_large, 0, "# large refills");
631 
632 static int iflib_txq_drain_flushing;
633 static int iflib_txq_drain_oactive;
634 static int iflib_txq_drain_notready;
635 
636 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD,
637     &iflib_txq_drain_flushing, 0, "# drain flushes");
638 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD,
639     &iflib_txq_drain_oactive, 0, "# drain oactives");
640 SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD,
641     &iflib_txq_drain_notready, 0, "# drain notready");
642 
643 static int iflib_encap_load_mbuf_fail;
644 static int iflib_encap_pad_mbuf_fail;
645 static int iflib_encap_txq_avail_fail;
646 static int iflib_encap_txd_encap_fail;
647 
648 SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD,
649     &iflib_encap_load_mbuf_fail, 0, "# busdma load failures");
650 SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD,
651     &iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures");
652 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD,
653     &iflib_encap_txq_avail_fail, 0, "# txq avail failures");
654 SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD,
655     &iflib_encap_txd_encap_fail, 0, "# driver encap failures");
656 
657 static int iflib_task_fn_rxs;
658 static int iflib_rx_intr_enables;
659 static int iflib_fast_intrs;
660 static int iflib_rx_unavail;
661 static int iflib_rx_ctx_inactive;
662 static int iflib_rx_if_input;
663 static int iflib_rxd_flush;
664 
665 static int iflib_verbose_debug;
666 
667 SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD, &iflib_task_fn_rxs, 0,
668     "# task_fn_rx calls");
669 SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD,
670     &iflib_rx_intr_enables, 0, "# RX intr enables");
671 SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD, &iflib_fast_intrs, 0,
672     "# fast_intr calls");
673 SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD, &iflib_rx_unavail, 0,
674     "# times rxeof called with no available data");
675 SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD,
676     &iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context");
677 SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD, &iflib_rx_if_input,
678     0, "# times rxeof called if_input");
679 SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD, &iflib_rxd_flush, 0,
680     "# times rxd_flush called");
681 SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW,
682     &iflib_verbose_debug, 0, "enable verbose debugging");
683 
684 #define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1)
685 static void
iflib_debug_reset(void)686 iflib_debug_reset(void)
687 {
688 	iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs =
689 		iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees =
690 		iflib_txq_drain_flushing = iflib_txq_drain_oactive =
691 		iflib_txq_drain_notready =
692 		iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail =
693 		iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail =
694 		iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs =
695 		iflib_rx_unavail =
696 		iflib_rx_ctx_inactive = iflib_rx_if_input =
697 		iflib_rxd_flush = 0;
698 }
699 
700 #else
701 #define DBG_COUNTER_INC(name)
iflib_debug_reset(void)702 static void iflib_debug_reset(void) {}
703 #endif
704 
705 #define IFLIB_DEBUG 0
706 
707 static void iflib_tx_structures_free(if_ctx_t ctx);
708 static void iflib_rx_structures_free(if_ctx_t ctx);
709 static int iflib_queues_alloc(if_ctx_t ctx);
710 static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq);
711 static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget);
712 static int iflib_qset_structures_setup(if_ctx_t ctx);
713 static int iflib_msix_init(if_ctx_t ctx);
714 static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str);
715 static void iflib_txq_check_drain(iflib_txq_t txq, int budget);
716 static uint32_t iflib_txq_can_drain(struct ifmp_ring *);
717 #ifdef ALTQ
718 static void iflib_altq_if_start(if_t ifp);
719 static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m);
720 #endif
721 static void iflib_register(if_ctx_t);
722 static void iflib_deregister(if_ctx_t);
723 static void iflib_unregister_vlan_handlers(if_ctx_t ctx);
724 static uint16_t iflib_get_mbuf_size_for(unsigned int size);
725 static void iflib_init_locked(if_ctx_t ctx);
726 static void iflib_add_device_sysctl_pre(if_ctx_t ctx);
727 static void iflib_add_device_sysctl_post(if_ctx_t ctx);
728 static void iflib_ifmp_purge(iflib_txq_t txq);
729 static void _iflib_pre_assert(if_softc_ctx_t scctx);
730 static void iflib_stop(if_ctx_t ctx);
731 static void iflib_if_init_locked(if_ctx_t ctx);
732 static void iflib_free_intr_mem(if_ctx_t ctx);
733 #ifndef __NO_STRICT_ALIGNMENT
734 static struct mbuf *iflib_fixup_rx(struct mbuf *m);
735 #endif
736 static __inline int iflib_completed_tx_reclaim(iflib_txq_t txq);
737 
738 static SLIST_HEAD(cpu_offset_list, cpu_offset) cpu_offsets =
739     SLIST_HEAD_INITIALIZER(cpu_offsets);
740 struct cpu_offset {
741 	SLIST_ENTRY(cpu_offset) entries;
742 	cpuset_t	set;
743 	unsigned int	refcount;
744 	uint16_t	next_cpuid;
745 };
746 static struct mtx cpu_offset_mtx;
747 MTX_SYSINIT(iflib_cpu_offset, &cpu_offset_mtx, "iflib_cpu_offset lock",
748     MTX_DEF);
749 
750 DEBUGNET_DEFINE(iflib);
751 
752 static int
iflib_num_rx_descs(if_ctx_t ctx)753 iflib_num_rx_descs(if_ctx_t ctx)
754 {
755 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
756 	if_shared_ctx_t sctx = ctx->ifc_sctx;
757 	uint16_t first_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0;
758 
759 	return (scctx->isc_nrxd[first_rxq]);
760 }
761 
762 static int
iflib_num_tx_descs(if_ctx_t ctx)763 iflib_num_tx_descs(if_ctx_t ctx)
764 {
765 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
766 	if_shared_ctx_t sctx = ctx->ifc_sctx;
767 	uint16_t first_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0;
768 
769 	return (scctx->isc_ntxd[first_txq]);
770 }
771 
772 #ifdef DEV_NETMAP
773 #include <sys/selinfo.h>
774 #include <net/netmap.h>
775 #include <dev/netmap/netmap_kern.h>
776 
777 MODULE_DEPEND(iflib, netmap, 1, 1, 1);
778 
779 static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init);
780 static void iflib_netmap_timer(void *arg);
781 
782 /*
783  * device-specific sysctl variables:
784  *
785  * iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it.
786  *	During regular operations the CRC is stripped, but on some
787  *	hardware reception of frames not multiple of 64 is slower,
788  *	so using crcstrip=0 helps in benchmarks.
789  *
790  * iflib_rx_miss, iflib_rx_miss_bufs:
791  *	count packets that might be missed due to lost interrupts.
792  */
793 SYSCTL_DECL(_dev_netmap);
794 /*
795  * The xl driver by default strips CRCs and we do not override it.
796  */
797 
798 int iflib_crcstrip = 1;
799 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip,
800     CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on RX frames");
801 
802 int iflib_rx_miss, iflib_rx_miss_bufs;
803 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss,
804     CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed RX intr");
805 SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs,
806     CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed RX intr bufs");
807 
808 /*
809  * Register/unregister. We are already under netmap lock.
810  * Only called on the first register or the last unregister.
811  */
812 static int
iflib_netmap_register(struct netmap_adapter * na,int onoff)813 iflib_netmap_register(struct netmap_adapter *na, int onoff)
814 {
815 	if_t ifp = na->ifp;
816 	if_ctx_t ctx = if_getsoftc(ifp);
817 	int status;
818 
819 	CTX_LOCK(ctx);
820 	if (!CTX_IS_VF(ctx))
821 		IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip);
822 
823 	iflib_stop(ctx);
824 
825 	/*
826 	 * Enable (or disable) netmap flags, and intercept (or restore)
827 	 * ifp->if_transmit. This is done once the device has been stopped
828 	 * to prevent race conditions. Also, this must be done after
829 	 * calling netmap_disable_all_rings() and before calling
830 	 * netmap_enable_all_rings(), so that these two functions see the
831 	 * updated state of the NAF_NETMAP_ON bit.
832 	 */
833 	if (onoff) {
834 		nm_set_native_flags(na);
835 	} else {
836 		nm_clear_native_flags(na);
837 	}
838 
839 	iflib_init_locked(ctx);
840 	IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ?
841 	status = if_getdrvflags(ifp) & IFF_DRV_RUNNING ? 0 : 1;
842 	if (status)
843 		nm_clear_native_flags(na);
844 	CTX_UNLOCK(ctx);
845 	return (status);
846 }
847 
848 static int
iflib_netmap_config(struct netmap_adapter * na,struct nm_config_info * info)849 iflib_netmap_config(struct netmap_adapter *na, struct nm_config_info *info)
850 {
851 	if_t ifp = na->ifp;
852 	if_ctx_t ctx = if_getsoftc(ifp);
853 	iflib_rxq_t rxq = &ctx->ifc_rxqs[0];
854 	iflib_fl_t fl = &rxq->ifr_fl[0];
855 
856 	info->num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
857 	info->num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
858 	info->num_tx_descs = iflib_num_tx_descs(ctx);
859 	info->num_rx_descs = iflib_num_rx_descs(ctx);
860 	info->rx_buf_maxsize = fl->ifl_buf_size;
861 	nm_prinf("txr %u rxr %u txd %u rxd %u rbufsz %u",
862 		info->num_tx_rings, info->num_rx_rings, info->num_tx_descs,
863 		info->num_rx_descs, info->rx_buf_maxsize);
864 
865 	return (0);
866 }
867 
868 static int
netmap_fl_refill(iflib_rxq_t rxq,struct netmap_kring * kring,bool init)869 netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, bool init)
870 {
871 	struct netmap_adapter *na = kring->na;
872 	u_int const lim = kring->nkr_num_slots - 1;
873 	struct netmap_ring *ring = kring->ring;
874 	bus_dmamap_t *map;
875 	struct if_rxd_update iru;
876 	if_ctx_t ctx = rxq->ifr_ctx;
877 	iflib_fl_t fl = &rxq->ifr_fl[0];
878 	u_int nic_i_first, nic_i;
879 	u_int nm_i;
880 	int i, n;
881 #if IFLIB_DEBUG_COUNTERS
882 	int rf_count = 0;
883 #endif
884 
885 	/*
886 	 * This function is used both at initialization and in rxsync.
887 	 * At initialization we need to prepare (with isc_rxd_refill())
888 	 * all the netmap buffers currently owned by the kernel, in
889 	 * such a way to keep fl->ifl_pidx and kring->nr_hwcur in sync
890 	 * (except for kring->nkr_hwofs). These may be less than
891 	 * kring->nkr_num_slots if netmap_reset() was called while
892 	 * an application using the kring that still owned some
893 	 * buffers.
894 	 * At rxsync time, both indexes point to the next buffer to be
895 	 * refilled.
896 	 * In any case we publish (with isc_rxd_flush()) up to
897 	 * (fl->ifl_pidx - 1) % N (included), to avoid the NIC tail/prod
898 	 * pointer to overrun the head/cons pointer, although this is
899 	 * not necessary for some NICs (e.g. vmx).
900 	 */
901 	if (__predict_false(init)) {
902 		n = kring->nkr_num_slots - nm_kr_rxspace(kring);
903 	} else {
904 		n = kring->rhead - kring->nr_hwcur;
905 		if (n == 0)
906 			return (0); /* Nothing to do. */
907 		if (n < 0)
908 			n += kring->nkr_num_slots;
909 	}
910 
911 	iru_init(&iru, rxq, 0 /* flid */);
912 	map = fl->ifl_sds.ifsd_map;
913 	nic_i = fl->ifl_pidx;
914 	nm_i = netmap_idx_n2k(kring, nic_i);
915 	if (__predict_false(init)) {
916 		/*
917 		 * On init/reset, nic_i must be 0, and we must
918 		 * start to refill from hwtail (see netmap_reset()).
919 		 */
920 		MPASS(nic_i == 0);
921 		MPASS(nm_i == kring->nr_hwtail);
922 	} else
923 		MPASS(nm_i == kring->nr_hwcur);
924 	DBG_COUNTER_INC(fl_refills);
925 	while (n > 0) {
926 #if IFLIB_DEBUG_COUNTERS
927 		if (++rf_count == 9)
928 			DBG_COUNTER_INC(fl_refills_large);
929 #endif
930 		nic_i_first = nic_i;
931 		for (i = 0; n > 0 && i < IFLIB_MAX_RX_REFRESH; n--, i++) {
932 			struct netmap_slot *slot = &ring->slot[nm_i];
933 			uint64_t paddr;
934 			void *addr = PNMB(na, slot, &paddr);
935 
936 			MPASS(i < IFLIB_MAX_RX_REFRESH);
937 
938 			if (addr == NETMAP_BUF_BASE(na)) /* bad buf */
939 				return (netmap_ring_reinit(kring));
940 
941 			fl->ifl_bus_addrs[i] = paddr +
942 			    nm_get_offset(kring, slot);
943 			fl->ifl_rxd_idxs[i] = nic_i;
944 
945 			if (__predict_false(init)) {
946 				netmap_load_map(na, fl->ifl_buf_tag,
947 				    map[nic_i], addr);
948 			} else if (slot->flags & NS_BUF_CHANGED) {
949 				/* buffer has changed, reload map */
950 				netmap_reload_map(na, fl->ifl_buf_tag,
951 				    map[nic_i], addr);
952 			}
953 			bus_dmamap_sync(fl->ifl_buf_tag, map[nic_i],
954 			    BUS_DMASYNC_PREREAD);
955 			slot->flags &= ~NS_BUF_CHANGED;
956 
957 			nm_i = nm_next(nm_i, lim);
958 			nic_i = nm_next(nic_i, lim);
959 		}
960 
961 		iru.iru_pidx = nic_i_first;
962 		iru.iru_count = i;
963 		ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
964 	}
965 	fl->ifl_pidx = nic_i;
966 	/*
967 	 * At the end of the loop we must have refilled everything
968 	 * we could possibly refill.
969 	 */
970 	MPASS(nm_i == kring->rhead);
971 	kring->nr_hwcur = nm_i;
972 
973 	bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
974 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
975 	ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id,
976 	    nm_prev(nic_i, lim));
977 	DBG_COUNTER_INC(rxd_flush);
978 
979 	return (0);
980 }
981 
982 #define NETMAP_TX_TIMER_US	90
983 
984 /*
985  * Reconcile kernel and user view of the transmit ring.
986  *
987  * All information is in the kring.
988  * Userspace wants to send packets up to the one before kring->rhead,
989  * kernel knows kring->nr_hwcur is the first unsent packet.
990  *
991  * Here we push packets out (as many as possible), and possibly
992  * reclaim buffers from previously completed transmission.
993  *
994  * The caller (netmap) guarantees that there is only one instance
995  * running at any time. Any interference with other driver
996  * methods should be handled by the individual drivers.
997  */
998 static int
iflib_netmap_txsync(struct netmap_kring * kring,int flags)999 iflib_netmap_txsync(struct netmap_kring *kring, int flags)
1000 {
1001 	struct netmap_adapter *na = kring->na;
1002 	if_t ifp = na->ifp;
1003 	struct netmap_ring *ring = kring->ring;
1004 	u_int nm_i;	/* index into the netmap kring */
1005 	u_int nic_i;	/* index into the NIC ring */
1006 	u_int const lim = kring->nkr_num_slots - 1;
1007 	u_int const head = kring->rhead;
1008 	struct if_pkt_info pi;
1009 	int tx_pkts = 0, tx_bytes = 0;
1010 
1011 	/*
1012 	 * interrupts on every tx packet are expensive so request
1013 	 * them every half ring, or where NS_REPORT is set
1014 	 */
1015 	u_int report_frequency = kring->nkr_num_slots >> 1;
1016 	/* device-specific */
1017 	if_ctx_t ctx = if_getsoftc(ifp);
1018 	iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id];
1019 
1020 	bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1021 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1022 
1023 	/*
1024 	 * First part: process new packets to send.
1025 	 * nm_i is the current index in the netmap kring,
1026 	 * nic_i is the corresponding index in the NIC ring.
1027 	 *
1028 	 * If we have packets to send (nm_i != head)
1029 	 * iterate over the netmap ring, fetch length and update
1030 	 * the corresponding slot in the NIC ring. Some drivers also
1031 	 * need to update the buffer's physical address in the NIC slot
1032 	 * even NS_BUF_CHANGED is not set (PNMB computes the addresses).
1033 	 *
1034 	 * The netmap_reload_map() calls is especially expensive,
1035 	 * even when (as in this case) the tag is 0, so do only
1036 	 * when the buffer has actually changed.
1037 	 *
1038 	 * If possible do not set the report/intr bit on all slots,
1039 	 * but only a few times per ring or when NS_REPORT is set.
1040 	 *
1041 	 * Finally, on 10G and faster drivers, it might be useful
1042 	 * to prefetch the next slot and txr entry.
1043 	 */
1044 
1045 	nm_i = kring->nr_hwcur;
1046 	if (nm_i != head) {	/* we have new packets to send */
1047 		uint32_t pkt_len = 0, seg_idx = 0;
1048 		int nic_i_start = -1, flags = 0;
1049 		pkt_info_zero(&pi);
1050 		pi.ipi_segs = txq->ift_segs;
1051 		pi.ipi_qsidx = kring->ring_id;
1052 		nic_i = netmap_idx_k2n(kring, nm_i);
1053 
1054 		__builtin_prefetch(&ring->slot[nm_i]);
1055 		__builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]);
1056 		__builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]);
1057 
1058 		while (nm_i != head) {
1059 			struct netmap_slot *slot = &ring->slot[nm_i];
1060 			uint64_t offset = nm_get_offset(kring, slot);
1061 			u_int len = slot->len;
1062 			uint64_t paddr;
1063 			void *addr = PNMB(na, slot, &paddr);
1064 
1065 			flags |= (slot->flags & NS_REPORT ||
1066 				nic_i == 0 || nic_i == report_frequency) ?
1067 				IPI_TX_INTR : 0;
1068 
1069 			/*
1070 			 * If this is the first packet fragment, save the
1071 			 * index of the first NIC slot for later.
1072 			 */
1073 			if (nic_i_start < 0)
1074 				nic_i_start = nic_i;
1075 
1076 			pi.ipi_segs[seg_idx].ds_addr = paddr + offset;
1077 			pi.ipi_segs[seg_idx].ds_len = len;
1078 			if (len) {
1079 				pkt_len += len;
1080 				seg_idx++;
1081 			}
1082 
1083 			if (!(slot->flags & NS_MOREFRAG)) {
1084 				pi.ipi_len = pkt_len;
1085 				pi.ipi_nsegs = seg_idx;
1086 				pi.ipi_pidx = nic_i_start;
1087 				pi.ipi_ndescs = 0;
1088 				pi.ipi_flags = flags;
1089 
1090 				/* Prepare the NIC TX ring. */
1091 				ctx->isc_txd_encap(ctx->ifc_softc, &pi);
1092 				DBG_COUNTER_INC(tx_encap);
1093 
1094 				/* Update transmit counters */
1095 				tx_bytes += pi.ipi_len;
1096 				tx_pkts++;
1097 
1098 				/* Reinit per-packet info for the next one. */
1099 				flags = seg_idx = pkt_len = 0;
1100 				nic_i_start = -1;
1101 			}
1102 
1103 			/* prefetch for next round */
1104 			__builtin_prefetch(&ring->slot[nm_i + 1]);
1105 			__builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]);
1106 			__builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]);
1107 
1108 			NM_CHECK_ADDR_LEN_OFF(na, len, offset);
1109 
1110 			if (slot->flags & NS_BUF_CHANGED) {
1111 				/* buffer has changed, reload map */
1112 				netmap_reload_map(na, txq->ift_buf_tag,
1113 				    txq->ift_sds.ifsd_map[nic_i], addr);
1114 			}
1115 			/* make sure changes to the buffer are synced */
1116 			bus_dmamap_sync(txq->ift_buf_tag,
1117 			    txq->ift_sds.ifsd_map[nic_i],
1118 			    BUS_DMASYNC_PREWRITE);
1119 
1120 			slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED | NS_MOREFRAG);
1121 			nm_i = nm_next(nm_i, lim);
1122 			nic_i = nm_next(nic_i, lim);
1123 		}
1124 		kring->nr_hwcur = nm_i;
1125 
1126 		/* synchronize the NIC ring */
1127 		bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1128 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1129 
1130 		/* (re)start the tx unit up to slot nic_i (excluded) */
1131 		ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i);
1132 	}
1133 
1134 	/*
1135 	 * Second part: reclaim buffers for completed transmissions.
1136 	 *
1137 	 * If there are unclaimed buffers, attempt to reclaim them.
1138 	 * If we don't manage to reclaim them all, and TX IRQs are not in use,
1139 	 * trigger a per-tx-queue timer to try again later.
1140 	 */
1141 	if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1142 		if (iflib_tx_credits_update(ctx, txq)) {
1143 			/* some tx completed, increment avail */
1144 			nic_i = txq->ift_cidx_processed;
1145 			kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim);
1146 		}
1147 	}
1148 
1149 	if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ))
1150 		if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) {
1151 			callout_reset_sbt_on(&txq->ift_netmap_timer,
1152 			    NETMAP_TX_TIMER_US * SBT_1US, SBT_1US,
1153 			    iflib_netmap_timer, txq,
1154 			    txq->ift_netmap_timer.c_cpu, 0);
1155 		}
1156 
1157 	if_inc_counter(ifp, IFCOUNTER_OBYTES, tx_bytes);
1158 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, tx_pkts);
1159 
1160 	return (0);
1161 }
1162 
1163 /*
1164  * Reconcile kernel and user view of the receive ring.
1165  * Same as for the txsync, this routine must be efficient.
1166  * The caller guarantees a single invocations, but races against
1167  * the rest of the driver should be handled here.
1168  *
1169  * On call, kring->rhead is the first packet that userspace wants
1170  * to keep, and kring->rcur is the wakeup point.
1171  * The kernel has previously reported packets up to kring->rtail.
1172  *
1173  * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective
1174  * of whether or not we received an interrupt.
1175  */
1176 static int
iflib_netmap_rxsync(struct netmap_kring * kring,int flags)1177 iflib_netmap_rxsync(struct netmap_kring *kring, int flags)
1178 {
1179 	struct netmap_adapter *na = kring->na;
1180 	struct netmap_ring *ring = kring->ring;
1181 	if_t ifp = na->ifp;
1182 	uint32_t nm_i;	/* index into the netmap ring */
1183 	uint32_t nic_i;	/* index into the NIC ring */
1184 	u_int n;
1185 	u_int const lim = kring->nkr_num_slots - 1;
1186 	int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
1187 	int i = 0, rx_bytes = 0, rx_pkts = 0;
1188 
1189 	if_ctx_t ctx = if_getsoftc(ifp);
1190 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1191 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1192 	iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id];
1193 	iflib_fl_t fl = &rxq->ifr_fl[0];
1194 	struct if_rxd_info ri;
1195 	qidx_t *cidxp;
1196 
1197 	/*
1198 	 * netmap only uses free list 0, to avoid out of order consumption
1199 	 * of receive buffers
1200 	 */
1201 
1202 	bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
1203 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1204 
1205 	/*
1206 	 * First part: import newly received packets.
1207 	 *
1208 	 * nm_i is the index of the next free slot in the netmap ring,
1209 	 * nic_i is the index of the next received packet in the NIC ring
1210 	 * (or in the free list 0 if IFLIB_HAS_RXCQ is set), and they may
1211 	 * differ in case if_init() has been called while
1212 	 * in netmap mode. For the receive ring we have
1213 	 *
1214 	 *	nic_i = fl->ifl_cidx;
1215 	 *	nm_i = kring->nr_hwtail (previous)
1216 	 * and
1217 	 *	nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1218 	 *
1219 	 * fl->ifl_cidx is set to 0 on a ring reinit
1220 	 */
1221 	if (netmap_no_pendintr || force_update) {
1222 		uint32_t hwtail_lim = nm_prev(kring->nr_hwcur, lim);
1223 		bool have_rxcq = sctx->isc_flags & IFLIB_HAS_RXCQ;
1224 		int crclen = iflib_crcstrip ? 0 : 4;
1225 		int error, avail;
1226 
1227 		/*
1228 		 * For the free list consumer index, we use the same
1229 		 * logic as in iflib_rxeof().
1230 		 */
1231 		if (have_rxcq)
1232 			cidxp = &rxq->ifr_cq_cidx;
1233 		else
1234 			cidxp = &fl->ifl_cidx;
1235 		avail = ctx->isc_rxd_available(ctx->ifc_softc,
1236 		    rxq->ifr_id, *cidxp, USHRT_MAX);
1237 
1238 		nic_i = fl->ifl_cidx;
1239 		nm_i = netmap_idx_n2k(kring, nic_i);
1240 		MPASS(nm_i == kring->nr_hwtail);
1241 		for (n = 0; avail > 0 && nm_i != hwtail_lim; n++, avail--) {
1242 			rxd_info_zero(&ri);
1243 			ri.iri_frags = rxq->ifr_frags;
1244 			ri.iri_qsidx = kring->ring_id;
1245 			ri.iri_ifp = ctx->ifc_ifp;
1246 			ri.iri_cidx = *cidxp;
1247 
1248 			error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
1249 			for (i = 0; i < ri.iri_nfrags; i++) {
1250 				if (error) {
1251 					ring->slot[nm_i].len = 0;
1252 					ring->slot[nm_i].flags = 0;
1253 				} else {
1254 					ring->slot[nm_i].len = ri.iri_frags[i].irf_len;
1255 					if (i == (ri.iri_nfrags - 1)) {
1256 						ring->slot[nm_i].len -= crclen;
1257 						ring->slot[nm_i].flags = 0;
1258 
1259 						/* Update receive counters */
1260 						rx_bytes += ri.iri_len;
1261 						rx_pkts++;
1262 					} else
1263 						ring->slot[nm_i].flags = NS_MOREFRAG;
1264 				}
1265 
1266 				bus_dmamap_sync(fl->ifl_buf_tag,
1267 				    fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD);
1268 				nm_i = nm_next(nm_i, lim);
1269 				fl->ifl_cidx = nic_i = nm_next(nic_i, lim);
1270 			}
1271 
1272 			if (have_rxcq) {
1273 				*cidxp = ri.iri_cidx;
1274 				while (*cidxp >= scctx->isc_nrxd[0])
1275 					*cidxp -= scctx->isc_nrxd[0];
1276 			}
1277 
1278 		}
1279 		if (n) { /* update the state variables */
1280 			if (netmap_no_pendintr && !force_update) {
1281 				/* diagnostics */
1282 				iflib_rx_miss++;
1283 				iflib_rx_miss_bufs += n;
1284 			}
1285 			kring->nr_hwtail = nm_i;
1286 		}
1287 		kring->nr_kflags &= ~NKR_PENDINTR;
1288 	}
1289 	/*
1290 	 * Second part: skip past packets that userspace has released.
1291 	 * (kring->nr_hwcur to head excluded),
1292 	 * and make the buffers available for reception.
1293 	 * As usual nm_i is the index in the netmap ring,
1294 	 * nic_i is the index in the NIC ring, and
1295 	 * nm_i == (nic_i + kring->nkr_hwofs) % ring_size
1296 	 */
1297 	netmap_fl_refill(rxq, kring, false);
1298 
1299 	if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
1300 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
1301 
1302 	return (0);
1303 }
1304 
1305 static void
iflib_netmap_intr(struct netmap_adapter * na,int onoff)1306 iflib_netmap_intr(struct netmap_adapter *na, int onoff)
1307 {
1308 	if_ctx_t ctx = if_getsoftc(na->ifp);
1309 
1310 	CTX_LOCK(ctx);
1311 	if (onoff) {
1312 		IFDI_INTR_ENABLE(ctx);
1313 	} else {
1314 		IFDI_INTR_DISABLE(ctx);
1315 	}
1316 	CTX_UNLOCK(ctx);
1317 }
1318 
1319 static int
iflib_netmap_attach(if_ctx_t ctx)1320 iflib_netmap_attach(if_ctx_t ctx)
1321 {
1322 	struct netmap_adapter na;
1323 
1324 	bzero(&na, sizeof(na));
1325 
1326 	na.ifp = ctx->ifc_ifp;
1327 	na.na_flags = NAF_BDG_MAYSLEEP | NAF_MOREFRAG | NAF_OFFSETS;
1328 	MPASS(ctx->ifc_softc_ctx.isc_ntxqsets);
1329 	MPASS(ctx->ifc_softc_ctx.isc_nrxqsets);
1330 
1331 	na.num_tx_desc = iflib_num_tx_descs(ctx);
1332 	na.num_rx_desc = iflib_num_rx_descs(ctx);
1333 	na.nm_txsync = iflib_netmap_txsync;
1334 	na.nm_rxsync = iflib_netmap_rxsync;
1335 	na.nm_register = iflib_netmap_register;
1336 	na.nm_intr = iflib_netmap_intr;
1337 	na.nm_config = iflib_netmap_config;
1338 	na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets;
1339 	na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets;
1340 	return (netmap_attach(&na));
1341 }
1342 
1343 static int
iflib_netmap_txq_init(if_ctx_t ctx,iflib_txq_t txq)1344 iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq)
1345 {
1346 	struct netmap_adapter *na = NA(ctx->ifc_ifp);
1347 	struct netmap_slot *slot;
1348 
1349 	slot = netmap_reset(na, NR_TX, txq->ift_id, 0);
1350 	if (slot == NULL)
1351 		return (0);
1352 	for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) {
1353 		/*
1354 		 * In netmap mode, set the map for the packet buffer.
1355 		 * NOTE: Some drivers (not this one) also need to set
1356 		 * the physical buffer address in the NIC ring.
1357 		 * netmap_idx_n2k() maps a nic index, i, into the corresponding
1358 		 * netmap slot index, si
1359 		 */
1360 		int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i);
1361 		netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i],
1362 		    NMB(na, slot + si));
1363 	}
1364 	return (1);
1365 }
1366 
1367 static int
iflib_netmap_rxq_init(if_ctx_t ctx,iflib_rxq_t rxq)1368 iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq)
1369 {
1370 	struct netmap_adapter *na = NA(ctx->ifc_ifp);
1371 	struct netmap_kring *kring;
1372 	struct netmap_slot *slot;
1373 
1374 	slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0);
1375 	if (slot == NULL)
1376 		return (0);
1377 	kring = na->rx_rings[rxq->ifr_id];
1378 	netmap_fl_refill(rxq, kring, true);
1379 	return (1);
1380 }
1381 
1382 static void
iflib_netmap_timer(void * arg)1383 iflib_netmap_timer(void *arg)
1384 {
1385 	iflib_txq_t txq = arg;
1386 	if_ctx_t ctx = txq->ift_ctx;
1387 
1388 	/*
1389 	 * Wake up the netmap application, to give it a chance to
1390 	 * call txsync and reclaim more completed TX buffers.
1391 	 */
1392 	netmap_tx_irq(ctx->ifc_ifp, txq->ift_id);
1393 }
1394 
1395 #define iflib_netmap_detach(ifp) netmap_detach(ifp)
1396 
1397 #else
1398 #define iflib_netmap_txq_init(ctx, txq) (0)
1399 #define iflib_netmap_rxq_init(ctx, rxq) (0)
1400 #define iflib_netmap_detach(ifp)
1401 #define netmap_enable_all_rings(ifp)
1402 #define netmap_disable_all_rings(ifp)
1403 
1404 #define iflib_netmap_attach(ctx) (0)
1405 #define netmap_rx_irq(ifp, qid, budget) (0)
1406 #endif
1407 
1408 #if defined(__i386__) || defined(__amd64__)
1409 static __inline void
prefetch(void * x)1410 prefetch(void *x)
1411 {
1412 	__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1413 }
1414 
1415 static __inline void
prefetch2cachelines(void * x)1416 prefetch2cachelines(void *x)
1417 {
1418 	__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
1419 #if (CACHE_LINE_SIZE < 128)
1420 	__asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x) + CACHE_LINE_SIZE / (sizeof(unsigned long)))));
1421 #endif
1422 }
1423 #else
1424 static __inline void
prefetch(void * x)1425 prefetch(void *x)
1426 {
1427 }
1428 
1429 static __inline void
prefetch2cachelines(void * x)1430 prefetch2cachelines(void *x)
1431 {
1432 }
1433 #endif
1434 
1435 static void
iru_init(if_rxd_update_t iru,iflib_rxq_t rxq,uint8_t flid)1436 iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid)
1437 {
1438 	iflib_fl_t fl;
1439 
1440 	fl = &rxq->ifr_fl[flid];
1441 	iru->iru_paddrs = fl->ifl_bus_addrs;
1442 	iru->iru_idxs = fl->ifl_rxd_idxs;
1443 	iru->iru_qsidx = rxq->ifr_id;
1444 	iru->iru_buf_size = fl->ifl_buf_size;
1445 	iru->iru_flidx = fl->ifl_id;
1446 }
1447 
1448 static void
_iflib_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int err)1449 _iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
1450 {
1451 	if (err)
1452 		return;
1453 	*(bus_addr_t *) arg = segs[0].ds_addr;
1454 }
1455 
1456 #define	DMA_WIDTH_TO_BUS_LOWADDR(width)				\
1457 	(((width) == 0) || (width) == flsll(BUS_SPACE_MAXADDR) ?	\
1458 	    BUS_SPACE_MAXADDR : (1ULL << (width)) - 1ULL)
1459 
1460 int
iflib_dma_alloc_align(if_ctx_t ctx,int size,int align,iflib_dma_info_t dma,int mapflags)1461 iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags)
1462 {
1463 	int err;
1464 	device_t dev = ctx->ifc_dev;
1465 	bus_addr_t lowaddr;
1466 
1467 	lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(ctx->ifc_softc_ctx.isc_dma_width);
1468 
1469 	err = bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
1470 		    align, 0,		/* alignment, bounds */
1471 		    lowaddr,		/* lowaddr */
1472 		    BUS_SPACE_MAXADDR,	/* highaddr */
1473 		    NULL, NULL,		/* filter, filterarg */
1474 		    size,		/* maxsize */
1475 		    1,			/* nsegments */
1476 		    size,		/* maxsegsize */
1477 		    BUS_DMA_ALLOCNOW,	/* flags */
1478 		    NULL,		/* lockfunc */
1479 		    NULL,		/* lockarg */
1480 		    &dma->idi_tag);
1481 	if (err) {
1482 		device_printf(dev,
1483 		    "%s: bus_dma_tag_create failed: %d (size=%d, align=%d)\n",
1484 		    __func__, err, size, align);
1485 		goto fail_0;
1486 	}
1487 
1488 	err = bus_dmamem_alloc(dma->idi_tag, (void **)&dma->idi_vaddr,
1489 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map);
1490 	if (err) {
1491 		device_printf(dev,
1492 		    "%s: bus_dmamem_alloc(%ju) failed: %d\n",
1493 		    __func__, (uintmax_t)size, err);
1494 		goto fail_1;
1495 	}
1496 
1497 	dma->idi_paddr = IF_BAD_DMA;
1498 	err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr,
1499 	    size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT);
1500 	if (err || dma->idi_paddr == IF_BAD_DMA) {
1501 		device_printf(dev,
1502 		    "%s: bus_dmamap_load failed: %d\n",
1503 		    __func__, err);
1504 		goto fail_2;
1505 	}
1506 
1507 	dma->idi_size = size;
1508 	return (0);
1509 
1510 fail_2:
1511 	bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1512 fail_1:
1513 	bus_dma_tag_destroy(dma->idi_tag);
1514 fail_0:
1515 	dma->idi_tag = NULL;
1516 
1517 	return (err);
1518 }
1519 
1520 int
iflib_dma_alloc(if_ctx_t ctx,int size,iflib_dma_info_t dma,int mapflags)1521 iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags)
1522 {
1523 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1524 
1525 	KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized"));
1526 
1527 	return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags));
1528 }
1529 
1530 int
iflib_dma_alloc_multi(if_ctx_t ctx,int * sizes,iflib_dma_info_t * dmalist,int mapflags,int count)1531 iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count)
1532 {
1533 	int i, err;
1534 	iflib_dma_info_t *dmaiter;
1535 
1536 	dmaiter = dmalist;
1537 	for (i = 0; i < count; i++, dmaiter++) {
1538 		if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0)
1539 			break;
1540 	}
1541 	if (err)
1542 		iflib_dma_free_multi(dmalist, i);
1543 	return (err);
1544 }
1545 
1546 void
iflib_dma_free(iflib_dma_info_t dma)1547 iflib_dma_free(iflib_dma_info_t dma)
1548 {
1549 	if (dma->idi_tag == NULL)
1550 		return;
1551 	if (dma->idi_paddr != IF_BAD_DMA) {
1552 		bus_dmamap_sync(dma->idi_tag, dma->idi_map,
1553 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1554 		bus_dmamap_unload(dma->idi_tag, dma->idi_map);
1555 		dma->idi_paddr = IF_BAD_DMA;
1556 	}
1557 	if (dma->idi_vaddr != NULL) {
1558 		bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map);
1559 		dma->idi_vaddr = NULL;
1560 	}
1561 	bus_dma_tag_destroy(dma->idi_tag);
1562 	dma->idi_tag = NULL;
1563 }
1564 
1565 void
iflib_dma_free_multi(iflib_dma_info_t * dmalist,int count)1566 iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count)
1567 {
1568 	int i;
1569 	iflib_dma_info_t *dmaiter = dmalist;
1570 
1571 	for (i = 0; i < count; i++, dmaiter++)
1572 		iflib_dma_free(*dmaiter);
1573 }
1574 
1575 static int
iflib_fast_intr(void * arg)1576 iflib_fast_intr(void *arg)
1577 {
1578 	iflib_filter_info_t info = arg;
1579 	struct grouptask *gtask = info->ifi_task;
1580 	int result;
1581 
1582 	DBG_COUNTER_INC(fast_intrs);
1583 	if (info->ifi_filter != NULL) {
1584 		result = info->ifi_filter(info->ifi_filter_arg);
1585 		if ((result & FILTER_SCHEDULE_THREAD) == 0)
1586 			return (result);
1587 	}
1588 
1589 	GROUPTASK_ENQUEUE(gtask);
1590 	return (FILTER_HANDLED);
1591 }
1592 
1593 static int
iflib_fast_intr_rxtx(void * arg)1594 iflib_fast_intr_rxtx(void *arg)
1595 {
1596 	iflib_filter_info_t info = arg;
1597 	struct grouptask *gtask = info->ifi_task;
1598 	if_ctx_t ctx;
1599 	iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx;
1600 	iflib_txq_t txq;
1601 	void *sc;
1602 	int i, cidx, result;
1603 	qidx_t txqid;
1604 	bool intr_enable, intr_legacy;
1605 
1606 	DBG_COUNTER_INC(fast_intrs);
1607 	if (info->ifi_filter != NULL) {
1608 		result = info->ifi_filter(info->ifi_filter_arg);
1609 		if ((result & FILTER_SCHEDULE_THREAD) == 0)
1610 			return (result);
1611 	}
1612 
1613 	ctx = rxq->ifr_ctx;
1614 	sc = ctx->ifc_softc;
1615 	intr_enable = false;
1616 	intr_legacy = !!(ctx->ifc_flags & IFC_LEGACY);
1617 	MPASS(rxq->ifr_ntxqirq);
1618 	for (i = 0; i < rxq->ifr_ntxqirq; i++) {
1619 		txqid = rxq->ifr_txqid[i];
1620 		txq = &ctx->ifc_txqs[txqid];
1621 		bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
1622 		    BUS_DMASYNC_POSTREAD);
1623 		if (!ctx->isc_txd_credits_update(sc, txqid, false)) {
1624 			if (intr_legacy)
1625 				intr_enable = true;
1626 			else
1627 				IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid);
1628 			continue;
1629 		}
1630 		GROUPTASK_ENQUEUE(&txq->ift_task);
1631 	}
1632 	if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ)
1633 		cidx = rxq->ifr_cq_cidx;
1634 	else
1635 		cidx = rxq->ifr_fl[0].ifl_cidx;
1636 	if (iflib_rxd_avail(ctx, rxq, cidx, 1))
1637 		GROUPTASK_ENQUEUE(gtask);
1638 	else {
1639 		if (intr_legacy)
1640 			intr_enable = true;
1641 		else
1642 			IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
1643 		DBG_COUNTER_INC(rx_intr_enables);
1644 	}
1645 	if (intr_enable)
1646 		IFDI_INTR_ENABLE(ctx);
1647 	return (FILTER_HANDLED);
1648 }
1649 
1650 static int
iflib_fast_intr_ctx(void * arg)1651 iflib_fast_intr_ctx(void *arg)
1652 {
1653 	iflib_filter_info_t info = arg;
1654 	if_ctx_t ctx = info->ifi_ctx;
1655 	int result;
1656 
1657 	DBG_COUNTER_INC(fast_intrs);
1658 	if (info->ifi_filter != NULL) {
1659 		result = info->ifi_filter(info->ifi_filter_arg);
1660 		if ((result & FILTER_SCHEDULE_THREAD) == 0)
1661 			return (result);
1662 	}
1663 
1664 	taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_admin_task);
1665 	return (FILTER_HANDLED);
1666 }
1667 
1668 static int
_iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,driver_intr_t handler,void * arg,const char * name)1669 _iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
1670 		 driver_filter_t filter, driver_intr_t handler, void *arg,
1671 		 const char *name)
1672 {
1673 	struct resource *res;
1674 	void *tag = NULL;
1675 	device_t dev = ctx->ifc_dev;
1676 	int flags, i, rc;
1677 
1678 	flags = RF_ACTIVE;
1679 	if (ctx->ifc_flags & IFC_LEGACY)
1680 		flags |= RF_SHAREABLE;
1681 	MPASS(rid < 512);
1682 	i = rid;
1683 	res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, flags);
1684 	if (res == NULL) {
1685 		device_printf(dev,
1686 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
1687 		return (ENOMEM);
1688 	}
1689 	irq->ii_res = res;
1690 	KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL"));
1691 	rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET,
1692 		    filter, handler, arg, &tag);
1693 	if (rc != 0) {
1694 		device_printf(dev,
1695 		    "failed to setup interrupt for rid %d, name %s: %d\n",
1696 		    rid, name ? name : "unknown", rc);
1697 		return (rc);
1698 	} else if (name)
1699 		bus_describe_intr(dev, res, tag, "%s", name);
1700 
1701 	irq->ii_tag = tag;
1702 	return (0);
1703 }
1704 
1705 /*********************************************************************
1706  *
1707  *  Allocate DMA resources for TX buffers as well as memory for the TX
1708  *  mbuf map.  TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a
1709  *  iflib_sw_tx_desc_array structure, storing all the information that
1710  *  is needed to transmit a packet on the wire.  This is called only
1711  *  once at attach, setup is done every reset.
1712  *
1713  **********************************************************************/
1714 static int
iflib_txsd_alloc(iflib_txq_t txq)1715 iflib_txsd_alloc(iflib_txq_t txq)
1716 {
1717 	if_ctx_t ctx = txq->ift_ctx;
1718 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1719 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1720 	device_t dev = ctx->ifc_dev;
1721 	bus_size_t tsomaxsize;
1722 	bus_addr_t lowaddr;
1723 	int err, nsegments, ntsosegments;
1724 	bool tso;
1725 
1726 	nsegments = scctx->isc_tx_nsegments;
1727 	ntsosegments = scctx->isc_tx_tso_segments_max;
1728 	tsomaxsize = scctx->isc_tx_tso_size_max;
1729 	if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU)
1730 		tsomaxsize += sizeof(struct ether_vlan_header);
1731 	MPASS(scctx->isc_ntxd[0] > 0);
1732 	MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0);
1733 	MPASS(nsegments > 0);
1734 	if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) {
1735 		MPASS(ntsosegments > 0);
1736 		MPASS(sctx->isc_tso_maxsize >= tsomaxsize);
1737 	}
1738 
1739 	lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width);
1740 
1741 	/*
1742 	 * Set up DMA tags for TX buffers.
1743 	 */
1744 	if ((err = bus_dma_tag_create(bus_get_dma_tag(dev),
1745 		    1, 0,			/* alignment, bounds */
1746 		    lowaddr,			/* lowaddr */
1747 		    BUS_SPACE_MAXADDR,		/* highaddr */
1748 		    NULL, NULL,			/* filter, filterarg */
1749 		    sctx->isc_tx_maxsize,	/* maxsize */
1750 		    nsegments,			/* nsegments */
1751 		    sctx->isc_tx_maxsegsize,	/* maxsegsize */
1752 		    0,				/* flags */
1753 		    NULL,			/* lockfunc */
1754 		    NULL,			/* lockfuncarg */
1755 		    &txq->ift_buf_tag))) {
1756 		device_printf(dev, "Unable to allocate TX DMA tag: %d\n", err);
1757 		device_printf(dev, "maxsize: %ju nsegments: %d maxsegsize: %ju\n",
1758 		    (uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize);
1759 		goto fail;
1760 	}
1761 	tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0;
1762 	if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev),
1763 		    1, 0,			/* alignment, bounds */
1764 		    lowaddr,			/* lowaddr */
1765 		    BUS_SPACE_MAXADDR,		/* highaddr */
1766 		    NULL, NULL,			/* filter, filterarg */
1767 		    tsomaxsize,			/* maxsize */
1768 		    ntsosegments,		/* nsegments */
1769 		    sctx->isc_tso_maxsegsize,	/* maxsegsize */
1770 		    0,				/* flags */
1771 		    NULL,			/* lockfunc */
1772 		    NULL,			/* lockfuncarg */
1773 		    &txq->ift_tso_buf_tag))) {
1774 		device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n",
1775 		    err);
1776 		goto fail;
1777 	}
1778 
1779 	/* Allocate memory for the TX mbuf map. */
1780 	if (!(txq->ift_sds.ifsd_m =
1781 	    (struct mbuf **) malloc(sizeof(struct mbuf *) *
1782 	    scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
1783 		device_printf(dev, "Unable to allocate TX mbuf map memory\n");
1784 		err = ENOMEM;
1785 		goto fail;
1786 	}
1787 
1788 	/*
1789 	 * Create the DMA maps for TX buffers.
1790 	 */
1791 	if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc(
1792 	    sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1793 	    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1794 		device_printf(dev,
1795 		    "Unable to allocate TX buffer DMA map memory\n");
1796 		err = ENOMEM;
1797 		goto fail;
1798 	}
1799 	if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc(
1800 	    sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset],
1801 	    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
1802 		device_printf(dev,
1803 		    "Unable to allocate TSO TX buffer map memory\n");
1804 		err = ENOMEM;
1805 		goto fail;
1806 	}
1807 	for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) {
1808 		err = bus_dmamap_create(txq->ift_buf_tag, 0,
1809 		    &txq->ift_sds.ifsd_map[i]);
1810 		if (err != 0) {
1811 			device_printf(dev, "Unable to create TX DMA map\n");
1812 			goto fail;
1813 		}
1814 		if (!tso)
1815 			continue;
1816 		err = bus_dmamap_create(txq->ift_tso_buf_tag, 0,
1817 		    &txq->ift_sds.ifsd_tso_map[i]);
1818 		if (err != 0) {
1819 			device_printf(dev, "Unable to create TSO TX DMA map\n");
1820 			goto fail;
1821 		}
1822 	}
1823 	return (0);
1824 fail:
1825 	/* We free all, it handles case where we are in the middle */
1826 	iflib_tx_structures_free(ctx);
1827 	return (err);
1828 }
1829 
1830 static void
iflib_txsd_destroy(if_ctx_t ctx,iflib_txq_t txq,int i)1831 iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i)
1832 {
1833 	bus_dmamap_t map;
1834 
1835 	if (txq->ift_sds.ifsd_map != NULL) {
1836 		map = txq->ift_sds.ifsd_map[i];
1837 		bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE);
1838 		bus_dmamap_unload(txq->ift_buf_tag, map);
1839 		bus_dmamap_destroy(txq->ift_buf_tag, map);
1840 		txq->ift_sds.ifsd_map[i] = NULL;
1841 	}
1842 
1843 	if (txq->ift_sds.ifsd_tso_map != NULL) {
1844 		map = txq->ift_sds.ifsd_tso_map[i];
1845 		bus_dmamap_sync(txq->ift_tso_buf_tag, map,
1846 		    BUS_DMASYNC_POSTWRITE);
1847 		bus_dmamap_unload(txq->ift_tso_buf_tag, map);
1848 		bus_dmamap_destroy(txq->ift_tso_buf_tag, map);
1849 		txq->ift_sds.ifsd_tso_map[i] = NULL;
1850 	}
1851 }
1852 
1853 static void
iflib_txq_destroy(iflib_txq_t txq)1854 iflib_txq_destroy(iflib_txq_t txq)
1855 {
1856 	if_ctx_t ctx = txq->ift_ctx;
1857 
1858 	for (int i = 0; i < txq->ift_size; i++)
1859 		iflib_txsd_destroy(ctx, txq, i);
1860 
1861 	if (txq->ift_br != NULL) {
1862 		ifmp_ring_free(txq->ift_br);
1863 		txq->ift_br = NULL;
1864 	}
1865 
1866 	mtx_destroy(&txq->ift_mtx);
1867 
1868 	if (txq->ift_sds.ifsd_map != NULL) {
1869 		free(txq->ift_sds.ifsd_map, M_IFLIB);
1870 		txq->ift_sds.ifsd_map = NULL;
1871 	}
1872 	if (txq->ift_sds.ifsd_tso_map != NULL) {
1873 		free(txq->ift_sds.ifsd_tso_map, M_IFLIB);
1874 		txq->ift_sds.ifsd_tso_map = NULL;
1875 	}
1876 	if (txq->ift_sds.ifsd_m != NULL) {
1877 		free(txq->ift_sds.ifsd_m, M_IFLIB);
1878 		txq->ift_sds.ifsd_m = NULL;
1879 	}
1880 	if (txq->ift_buf_tag != NULL) {
1881 		bus_dma_tag_destroy(txq->ift_buf_tag);
1882 		txq->ift_buf_tag = NULL;
1883 	}
1884 	if (txq->ift_tso_buf_tag != NULL) {
1885 		bus_dma_tag_destroy(txq->ift_tso_buf_tag);
1886 		txq->ift_tso_buf_tag = NULL;
1887 	}
1888 	if (txq->ift_ifdi != NULL) {
1889 		free(txq->ift_ifdi, M_IFLIB);
1890 	}
1891 }
1892 
1893 static void
iflib_txsd_free(if_ctx_t ctx,iflib_txq_t txq,int i)1894 iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i)
1895 {
1896 	struct mbuf **mp;
1897 
1898 	mp = &txq->ift_sds.ifsd_m[i];
1899 	if (*mp == NULL)
1900 		return;
1901 
1902 	if (txq->ift_sds.ifsd_map != NULL) {
1903 		bus_dmamap_sync(txq->ift_buf_tag,
1904 		    txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE);
1905 		bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]);
1906 	}
1907 	if (txq->ift_sds.ifsd_tso_map != NULL) {
1908 		bus_dmamap_sync(txq->ift_tso_buf_tag,
1909 		    txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE);
1910 		bus_dmamap_unload(txq->ift_tso_buf_tag,
1911 		    txq->ift_sds.ifsd_tso_map[i]);
1912 	}
1913 	m_freem(*mp);
1914 	DBG_COUNTER_INC(tx_frees);
1915 	*mp = NULL;
1916 }
1917 
1918 static int
iflib_txq_setup(iflib_txq_t txq)1919 iflib_txq_setup(iflib_txq_t txq)
1920 {
1921 	if_ctx_t ctx = txq->ift_ctx;
1922 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1923 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1924 	iflib_dma_info_t di;
1925 	int i;
1926 
1927 	/* Set number of descriptors available */
1928 	txq->ift_qstatus = IFLIB_QUEUE_IDLE;
1929 	/* XXX make configurable */
1930 	txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ;
1931 
1932 	/* Reset indices */
1933 	txq->ift_cidx_processed = 0;
1934 	txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0;
1935 	txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset];
1936 
1937 	for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1938 		bzero((void *)di->idi_vaddr, di->idi_size);
1939 
1940 	IFDI_TXQ_SETUP(ctx, txq->ift_id);
1941 	for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++)
1942 		bus_dmamap_sync(di->idi_tag, di->idi_map,
1943 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1944 	return (0);
1945 }
1946 
1947 /*********************************************************************
1948  *
1949  *  Allocate DMA resources for RX buffers as well as memory for the RX
1950  *  mbuf map, direct RX cluster pointer map and RX cluster bus address
1951  *  map.  RX DMA map, RX mbuf map, direct RX cluster pointer map and
1952  *  RX cluster map are kept in a iflib_sw_rx_desc_array structure.
1953  *  Since we use use one entry in iflib_sw_rx_desc_array per received
1954  *  packet, the maximum number of entries we'll need is equal to the
1955  *  number of hardware receive descriptors that we've allocated.
1956  *
1957  **********************************************************************/
1958 static int
iflib_rxsd_alloc(iflib_rxq_t rxq)1959 iflib_rxsd_alloc(iflib_rxq_t rxq)
1960 {
1961 	if_ctx_t ctx = rxq->ifr_ctx;
1962 	if_shared_ctx_t sctx = ctx->ifc_sctx;
1963 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
1964 	device_t dev = ctx->ifc_dev;
1965 	iflib_fl_t fl;
1966 	bus_addr_t lowaddr;
1967 	int err;
1968 
1969 	MPASS(scctx->isc_nrxd[0] > 0);
1970 	MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0);
1971 
1972 	lowaddr = DMA_WIDTH_TO_BUS_LOWADDR(scctx->isc_dma_width);
1973 
1974 	fl = rxq->ifr_fl;
1975 	for (int i = 0; i < rxq->ifr_nfl; i++, fl++) {
1976 		fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */
1977 		/* Set up DMA tag for RX buffers. */
1978 		err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1979 			    1, 0,			/* alignment, bounds */
1980 			    lowaddr,			/* lowaddr */
1981 			    BUS_SPACE_MAXADDR,		/* highaddr */
1982 			    NULL, NULL,			/* filter, filterarg */
1983 			    sctx->isc_rx_maxsize,	/* maxsize */
1984 			    sctx->isc_rx_nsegments,	/* nsegments */
1985 			    sctx->isc_rx_maxsegsize,	/* maxsegsize */
1986 			    0,				/* flags */
1987 			    NULL,			/* lockfunc */
1988 			    NULL,			/* lockarg */
1989 			    &fl->ifl_buf_tag);
1990 		if (err) {
1991 			device_printf(dev,
1992 			    "Unable to allocate RX DMA tag: %d\n", err);
1993 			goto fail;
1994 		}
1995 
1996 		/* Allocate memory for the RX mbuf map. */
1997 		if (!(fl->ifl_sds.ifsd_m =
1998 		    (struct mbuf **) malloc(sizeof(struct mbuf *) *
1999 			    scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2000 			device_printf(dev,
2001 			    "Unable to allocate RX mbuf map memory\n");
2002 			err = ENOMEM;
2003 			goto fail;
2004 		}
2005 
2006 		/* Allocate memory for the direct RX cluster pointer map. */
2007 		if (!(fl->ifl_sds.ifsd_cl =
2008 		    (caddr_t *) malloc(sizeof(caddr_t) *
2009 			    scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2010 			device_printf(dev,
2011 			    "Unable to allocate RX cluster map memory\n");
2012 			err = ENOMEM;
2013 			goto fail;
2014 		}
2015 
2016 		/* Allocate memory for the RX cluster bus address map. */
2017 		if (!(fl->ifl_sds.ifsd_ba =
2018 		    (bus_addr_t *) malloc(sizeof(bus_addr_t) *
2019 			    scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2020 			device_printf(dev,
2021 			    "Unable to allocate RX bus address map memory\n");
2022 			err = ENOMEM;
2023 			goto fail;
2024 		}
2025 
2026 		/*
2027 		 * Create the DMA maps for RX buffers.
2028 		 */
2029 		if (!(fl->ifl_sds.ifsd_map =
2030 		    (bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) {
2031 			device_printf(dev,
2032 			    "Unable to allocate RX buffer DMA map memory\n");
2033 			err = ENOMEM;
2034 			goto fail;
2035 		}
2036 		for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) {
2037 			err = bus_dmamap_create(fl->ifl_buf_tag, 0,
2038 			    &fl->ifl_sds.ifsd_map[i]);
2039 			if (err != 0) {
2040 				device_printf(dev, "Unable to create RX buffer DMA map\n");
2041 				goto fail;
2042 			}
2043 		}
2044 	}
2045 	return (0);
2046 
2047 fail:
2048 	iflib_rx_structures_free(ctx);
2049 	return (err);
2050 }
2051 
2052 /*
2053  * Internal service routines
2054  */
2055 
2056 struct rxq_refill_cb_arg {
2057 	int               error;
2058 	bus_dma_segment_t seg;
2059 	int               nseg;
2060 };
2061 
2062 static void
_rxq_refill_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)2063 _rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2064 {
2065 	struct rxq_refill_cb_arg *cb_arg = arg;
2066 
2067 	cb_arg->error = error;
2068 	cb_arg->seg = segs[0];
2069 	cb_arg->nseg = nseg;
2070 }
2071 
2072 /**
2073  * iflib_fl_refill - refill an rxq free-buffer list
2074  * @ctx: the iflib context
2075  * @fl: the free list to refill
2076  * @count: the number of new buffers to allocate
2077  *
2078  * (Re)populate an rxq free-buffer list with up to @count new packet buffers.
2079  * The caller must assure that @count does not exceed the queue's capacity
2080  * minus one (since we always leave a descriptor unavailable).
2081  */
2082 static uint8_t
iflib_fl_refill(if_ctx_t ctx,iflib_fl_t fl,int count)2083 iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count)
2084 {
2085 	struct if_rxd_update iru;
2086 	struct rxq_refill_cb_arg cb_arg;
2087 	struct mbuf *m;
2088 	caddr_t cl, *sd_cl;
2089 	struct mbuf **sd_m;
2090 	bus_dmamap_t *sd_map;
2091 	bus_addr_t bus_addr, *sd_ba;
2092 	int err, frag_idx, i, idx, n, pidx;
2093 	qidx_t credits;
2094 
2095 	MPASS(count <= fl->ifl_size - fl->ifl_credits - 1);
2096 
2097 	sd_m = fl->ifl_sds.ifsd_m;
2098 	sd_map = fl->ifl_sds.ifsd_map;
2099 	sd_cl = fl->ifl_sds.ifsd_cl;
2100 	sd_ba = fl->ifl_sds.ifsd_ba;
2101 	pidx = fl->ifl_pidx;
2102 	idx = pidx;
2103 	frag_idx = fl->ifl_fragidx;
2104 	credits = fl->ifl_credits;
2105 
2106 	i = 0;
2107 	n = count;
2108 	MPASS(n > 0);
2109 	MPASS(credits + n <= fl->ifl_size);
2110 
2111 	if (pidx < fl->ifl_cidx)
2112 		MPASS(pidx + n <= fl->ifl_cidx);
2113 	if (pidx == fl->ifl_cidx && (credits < fl->ifl_size))
2114 		MPASS(fl->ifl_gen == 0);
2115 	if (pidx > fl->ifl_cidx)
2116 		MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx);
2117 
2118 	DBG_COUNTER_INC(fl_refills);
2119 	if (n > 8)
2120 		DBG_COUNTER_INC(fl_refills_large);
2121 	iru_init(&iru, fl->ifl_rxq, fl->ifl_id);
2122 	while (n-- > 0) {
2123 		/*
2124 		 * We allocate an uninitialized mbuf + cluster, mbuf is
2125 		 * initialized after rx.
2126 		 *
2127 		 * If the cluster is still set then we know a minimum sized
2128 		 * packet was received
2129 		 */
2130 		bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size,
2131 		    &frag_idx);
2132 		if (frag_idx < 0)
2133 			bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx);
2134 		MPASS(frag_idx >= 0);
2135 		if ((cl = sd_cl[frag_idx]) == NULL) {
2136 			cl = uma_zalloc(fl->ifl_zone, M_NOWAIT);
2137 			if (__predict_false(cl == NULL))
2138 				break;
2139 
2140 			cb_arg.error = 0;
2141 			MPASS(sd_map != NULL);
2142 			err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx],
2143 			    cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg,
2144 			    BUS_DMA_NOWAIT);
2145 			if (__predict_false(err != 0 || cb_arg.error)) {
2146 				uma_zfree(fl->ifl_zone, cl);
2147 				break;
2148 			}
2149 
2150 			sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr;
2151 			sd_cl[frag_idx] = cl;
2152 #if MEMORY_LOGGING
2153 			fl->ifl_cl_enqueued++;
2154 #endif
2155 		} else {
2156 			bus_addr = sd_ba[frag_idx];
2157 		}
2158 		bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx],
2159 		    BUS_DMASYNC_PREREAD);
2160 
2161 		if (sd_m[frag_idx] == NULL) {
2162 			m = m_gethdr_raw(M_NOWAIT, 0);
2163 			if (__predict_false(m == NULL))
2164 				break;
2165 			sd_m[frag_idx] = m;
2166 		}
2167 		bit_set(fl->ifl_rx_bitmap, frag_idx);
2168 #if MEMORY_LOGGING
2169 		fl->ifl_m_enqueued++;
2170 #endif
2171 
2172 		DBG_COUNTER_INC(rx_allocs);
2173 		fl->ifl_rxd_idxs[i] = frag_idx;
2174 		fl->ifl_bus_addrs[i] = bus_addr;
2175 		credits++;
2176 		i++;
2177 		MPASS(credits <= fl->ifl_size);
2178 		if (++idx == fl->ifl_size) {
2179 #ifdef INVARIANTS
2180 			fl->ifl_gen = 1;
2181 #endif
2182 			idx = 0;
2183 		}
2184 		if (n == 0 || i == IFLIB_MAX_RX_REFRESH) {
2185 			iru.iru_pidx = pidx;
2186 			iru.iru_count = i;
2187 			ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2188 			fl->ifl_pidx = idx;
2189 			fl->ifl_credits = credits;
2190 			pidx = idx;
2191 			i = 0;
2192 		}
2193 	}
2194 
2195 	if (n < count - 1) {
2196 		if (i != 0) {
2197 			iru.iru_pidx = pidx;
2198 			iru.iru_count = i;
2199 			ctx->isc_rxd_refill(ctx->ifc_softc, &iru);
2200 			fl->ifl_pidx = idx;
2201 			fl->ifl_credits = credits;
2202 		}
2203 		DBG_COUNTER_INC(rxd_flush);
2204 		bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2205 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2206 		ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id,
2207 		    fl->ifl_id, fl->ifl_pidx);
2208 		if (__predict_true(bit_test(fl->ifl_rx_bitmap, frag_idx))) {
2209 			fl->ifl_fragidx = frag_idx + 1;
2210 			if (fl->ifl_fragidx == fl->ifl_size)
2211 				fl->ifl_fragidx = 0;
2212 		} else {
2213 			fl->ifl_fragidx = frag_idx;
2214 		}
2215 	}
2216 
2217 	return (n == -1 ? 0 : IFLIB_RXEOF_EMPTY);
2218 }
2219 
2220 static inline uint8_t
iflib_fl_refill_all(if_ctx_t ctx,iflib_fl_t fl)2221 iflib_fl_refill_all(if_ctx_t ctx, iflib_fl_t fl)
2222 {
2223 	/*
2224 	 * We leave an unused descriptor to avoid pidx to catch up with cidx.
2225 	 * This is important as it confuses most NICs. For instance,
2226 	 * Intel NICs have (per receive ring) RDH and RDT registers, where
2227 	 * RDH points to the next receive descriptor to be used by the NIC,
2228 	 * and RDT for the next receive descriptor to be published by the
2229 	 * driver to the NIC (RDT - 1 is thus the last valid one).
2230 	 * The condition RDH == RDT means no descriptors are available to
2231 	 * the NIC, and thus it would be ambiguous if it also meant that
2232 	 * all the descriptors are available to the NIC.
2233 	 */
2234 	int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1;
2235 #ifdef INVARIANTS
2236 	int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1;
2237 #endif
2238 
2239 	MPASS(fl->ifl_credits <= fl->ifl_size);
2240 	MPASS(reclaimable == delta);
2241 
2242 	if (reclaimable > 0)
2243 		return (iflib_fl_refill(ctx, fl, reclaimable));
2244 	return (0);
2245 }
2246 
2247 uint8_t
iflib_in_detach(if_ctx_t ctx)2248 iflib_in_detach(if_ctx_t ctx)
2249 {
2250 	bool in_detach;
2251 
2252 	STATE_LOCK(ctx);
2253 	in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH);
2254 	STATE_UNLOCK(ctx);
2255 	return (in_detach);
2256 }
2257 
2258 static void
iflib_fl_bufs_free(iflib_fl_t fl)2259 iflib_fl_bufs_free(iflib_fl_t fl)
2260 {
2261 	iflib_dma_info_t idi = fl->ifl_ifdi;
2262 	bus_dmamap_t sd_map;
2263 	uint32_t i;
2264 
2265 	for (i = 0; i < fl->ifl_size; i++) {
2266 		struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i];
2267 		caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i];
2268 
2269 		if (*sd_cl != NULL) {
2270 			sd_map = fl->ifl_sds.ifsd_map[i];
2271 			bus_dmamap_sync(fl->ifl_buf_tag, sd_map,
2272 			    BUS_DMASYNC_POSTREAD);
2273 			bus_dmamap_unload(fl->ifl_buf_tag, sd_map);
2274 			uma_zfree(fl->ifl_zone, *sd_cl);
2275 			*sd_cl = NULL;
2276 			if (*sd_m != NULL) {
2277 				m_init(*sd_m, M_NOWAIT, MT_DATA, 0);
2278 				m_free_raw(*sd_m);
2279 				*sd_m = NULL;
2280 			}
2281 		} else {
2282 			MPASS(*sd_m == NULL);
2283 		}
2284 #if MEMORY_LOGGING
2285 		fl->ifl_m_dequeued++;
2286 		fl->ifl_cl_dequeued++;
2287 #endif
2288 	}
2289 #ifdef INVARIANTS
2290 	for (i = 0; i < fl->ifl_size; i++) {
2291 		MPASS(fl->ifl_sds.ifsd_cl[i] == NULL);
2292 		MPASS(fl->ifl_sds.ifsd_m[i] == NULL);
2293 	}
2294 #endif
2295 	/*
2296 	 * Reset free list values
2297 	 */
2298 	fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0;
2299 	bzero(idi->idi_vaddr, idi->idi_size);
2300 }
2301 
2302 /*********************************************************************
2303  *
2304  *  Initialize a free list and its buffers.
2305  *
2306  **********************************************************************/
2307 static int
iflib_fl_setup(iflib_fl_t fl)2308 iflib_fl_setup(iflib_fl_t fl)
2309 {
2310 	iflib_rxq_t rxq = fl->ifl_rxq;
2311 	if_ctx_t ctx = rxq->ifr_ctx;
2312 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2313 	int qidx;
2314 
2315 	bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1);
2316 	/*
2317 	 * Free current RX buffer structs and their mbufs
2318 	 */
2319 	iflib_fl_bufs_free(fl);
2320 	/* Now replenish the mbufs */
2321 	MPASS(fl->ifl_credits == 0);
2322 	qidx = rxq->ifr_fl_offset + fl->ifl_id;
2323 	if (scctx->isc_rxd_buf_size[qidx] != 0)
2324 		fl->ifl_buf_size = scctx->isc_rxd_buf_size[qidx];
2325 	else
2326 		fl->ifl_buf_size = ctx->ifc_rx_mbuf_sz;
2327 	/*
2328 	 * ifl_buf_size may be a driver-supplied value, so pull it up
2329 	 * to the selected mbuf size.
2330 	 */
2331 	fl->ifl_buf_size = iflib_get_mbuf_size_for(fl->ifl_buf_size);
2332 	if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size)
2333 		ctx->ifc_max_fl_buf_size = fl->ifl_buf_size;
2334 	fl->ifl_cltype = m_gettype(fl->ifl_buf_size);
2335 	fl->ifl_zone = m_getzone(fl->ifl_buf_size);
2336 
2337 	/*
2338 	 * Avoid pre-allocating zillions of clusters to an idle card
2339 	 * potentially speeding up attach. In any case make sure
2340 	 * to leave a descriptor unavailable. See the comment in
2341 	 * iflib_fl_refill_all().
2342 	 */
2343 	MPASS(fl->ifl_size > 0);
2344 	(void)iflib_fl_refill(ctx, fl, min(128, fl->ifl_size - 1));
2345 	if (min(128, fl->ifl_size - 1) != fl->ifl_credits)
2346 		return (ENOBUFS);
2347 	/*
2348 	 * handle failure
2349 	 */
2350 	MPASS(rxq != NULL);
2351 	MPASS(fl->ifl_ifdi != NULL);
2352 	bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
2353 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2354 	return (0);
2355 }
2356 
2357 /*********************************************************************
2358  *
2359  *  Free receive ring data structures
2360  *
2361  **********************************************************************/
2362 static void
iflib_rx_sds_free(iflib_rxq_t rxq)2363 iflib_rx_sds_free(iflib_rxq_t rxq)
2364 {
2365 	iflib_fl_t fl;
2366 	int i, j;
2367 
2368 	if (rxq->ifr_fl != NULL) {
2369 		for (i = 0; i < rxq->ifr_nfl; i++) {
2370 			fl = &rxq->ifr_fl[i];
2371 			if (fl->ifl_buf_tag != NULL) {
2372 				if (fl->ifl_sds.ifsd_map != NULL) {
2373 					for (j = 0; j < fl->ifl_size; j++) {
2374 						bus_dmamap_sync(
2375 						    fl->ifl_buf_tag,
2376 						    fl->ifl_sds.ifsd_map[j],
2377 						    BUS_DMASYNC_POSTREAD);
2378 						bus_dmamap_unload(
2379 						    fl->ifl_buf_tag,
2380 						    fl->ifl_sds.ifsd_map[j]);
2381 						bus_dmamap_destroy(
2382 						    fl->ifl_buf_tag,
2383 						    fl->ifl_sds.ifsd_map[j]);
2384 					}
2385 				}
2386 				bus_dma_tag_destroy(fl->ifl_buf_tag);
2387 				fl->ifl_buf_tag = NULL;
2388 			}
2389 			free(fl->ifl_sds.ifsd_m, M_IFLIB);
2390 			free(fl->ifl_sds.ifsd_cl, M_IFLIB);
2391 			free(fl->ifl_sds.ifsd_ba, M_IFLIB);
2392 			free(fl->ifl_sds.ifsd_map, M_IFLIB);
2393 			free(fl->ifl_rx_bitmap, M_IFLIB);
2394 			fl->ifl_sds.ifsd_m = NULL;
2395 			fl->ifl_sds.ifsd_cl = NULL;
2396 			fl->ifl_sds.ifsd_ba = NULL;
2397 			fl->ifl_sds.ifsd_map = NULL;
2398 			fl->ifl_rx_bitmap = NULL;
2399 		}
2400 		free(rxq->ifr_fl, M_IFLIB);
2401 		rxq->ifr_fl = NULL;
2402 		free(rxq->ifr_ifdi, M_IFLIB);
2403 		rxq->ifr_ifdi = NULL;
2404 		rxq->ifr_cq_cidx = 0;
2405 	}
2406 }
2407 
2408 /*
2409  * Timer routine
2410  */
2411 static void
iflib_timer(void * arg)2412 iflib_timer(void *arg)
2413 {
2414 	iflib_txq_t txq = arg;
2415 	if_ctx_t ctx = txq->ift_ctx;
2416 	if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2417 	uint64_t this_tick = ticks;
2418 
2419 	if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))
2420 		return;
2421 
2422 	/*
2423 	** Check on the state of the TX queue(s), this
2424 	** can be done without the lock because its RO
2425 	** and the HUNG state will be static if set.
2426 	*/
2427 	if (this_tick - txq->ift_last_timer_tick >= iflib_timer_default) {
2428 		txq->ift_last_timer_tick = this_tick;
2429 		IFDI_TIMER(ctx, txq->ift_id);
2430 		if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) &&
2431 		    ((txq->ift_cleaned_prev == txq->ift_cleaned) ||
2432 		     (sctx->isc_pause_frames == 0)))
2433 			goto hung;
2434 
2435 		if (txq->ift_qstatus != IFLIB_QUEUE_IDLE &&
2436 		    ifmp_ring_is_stalled(txq->ift_br)) {
2437 			KASSERT(ctx->ifc_link_state == LINK_STATE_UP,
2438 			    ("queue can't be marked as hung if interface is down"));
2439 			txq->ift_qstatus = IFLIB_QUEUE_HUNG;
2440 		}
2441 		txq->ift_cleaned_prev = txq->ift_cleaned;
2442 	}
2443 	/* handle any laggards */
2444 	if (txq->ift_db_pending)
2445 		GROUPTASK_ENQUEUE(&txq->ift_task);
2446 
2447 	sctx->isc_pause_frames = 0;
2448 	if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)
2449 		callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer,
2450 		    txq, txq->ift_timer.c_cpu);
2451 	return;
2452 
2453  hung:
2454 	device_printf(ctx->ifc_dev,
2455 	    "Watchdog timeout (TX: %d desc avail: %d pidx: %d) -- resetting\n",
2456 	    txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx);
2457 	STATE_LOCK(ctx);
2458 	if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2459 	ctx->ifc_flags |= (IFC_DO_WATCHDOG | IFC_DO_RESET);
2460 	iflib_admin_intr_deferred(ctx);
2461 	STATE_UNLOCK(ctx);
2462 }
2463 
2464 static uint16_t
iflib_get_mbuf_size_for(unsigned int size)2465 iflib_get_mbuf_size_for(unsigned int size)
2466 {
2467 
2468 	if (size <= MCLBYTES)
2469 		return (MCLBYTES);
2470 	else
2471 		return (MJUMPAGESIZE);
2472 }
2473 
2474 static void
iflib_calc_rx_mbuf_sz(if_ctx_t ctx)2475 iflib_calc_rx_mbuf_sz(if_ctx_t ctx)
2476 {
2477 	if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
2478 
2479 	/*
2480 	 * XXX don't set the max_frame_size to larger
2481 	 * than the hardware can handle
2482 	 */
2483 	ctx->ifc_rx_mbuf_sz =
2484 	    iflib_get_mbuf_size_for(sctx->isc_max_frame_size);
2485 }
2486 
2487 uint32_t
iflib_get_rx_mbuf_sz(if_ctx_t ctx)2488 iflib_get_rx_mbuf_sz(if_ctx_t ctx)
2489 {
2490 
2491 	return (ctx->ifc_rx_mbuf_sz);
2492 }
2493 
2494 static void
iflib_init_locked(if_ctx_t ctx)2495 iflib_init_locked(if_ctx_t ctx)
2496 {
2497 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2498 	if_t ifp = ctx->ifc_ifp;
2499 	iflib_fl_t fl;
2500 	iflib_txq_t txq;
2501 	iflib_rxq_t rxq;
2502 	int i, j, tx_ip_csum_flags, tx_ip6_csum_flags;
2503 
2504 	if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2505 	IFDI_INTR_DISABLE(ctx);
2506 
2507 	/*
2508 	 * See iflib_stop(). Useful in case iflib_init_locked() is
2509 	 * called without first calling iflib_stop().
2510 	 */
2511 	netmap_disable_all_rings(ifp);
2512 
2513 	tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP);
2514 	tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP);
2515 	/* Set hardware offload abilities */
2516 	if_clearhwassist(ifp);
2517 	if (if_getcapenable(ifp) & IFCAP_TXCSUM)
2518 		if_sethwassistbits(ifp, tx_ip_csum_flags, 0);
2519 	if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6)
2520 		if_sethwassistbits(ifp,  tx_ip6_csum_flags, 0);
2521 	if (if_getcapenable(ifp) & IFCAP_TSO4)
2522 		if_sethwassistbits(ifp, CSUM_IP_TSO, 0);
2523 	if (if_getcapenable(ifp) & IFCAP_TSO6)
2524 		if_sethwassistbits(ifp, CSUM_IP6_TSO, 0);
2525 
2526 	for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
2527 		CALLOUT_LOCK(txq);
2528 		callout_stop(&txq->ift_timer);
2529 #ifdef DEV_NETMAP
2530 		callout_stop(&txq->ift_netmap_timer);
2531 #endif /* DEV_NETMAP */
2532 		CALLOUT_UNLOCK(txq);
2533 		(void)iflib_netmap_txq_init(ctx, txq);
2534 	}
2535 
2536 	/*
2537 	 * Calculate a suitable Rx mbuf size prior to calling IFDI_INIT, so
2538 	 * that drivers can use the value when setting up the hardware receive
2539 	 * buffers.
2540 	 */
2541 	iflib_calc_rx_mbuf_sz(ctx);
2542 
2543 #ifdef INVARIANTS
2544 	i = if_getdrvflags(ifp);
2545 #endif
2546 	IFDI_INIT(ctx);
2547 	MPASS(if_getdrvflags(ifp) == i);
2548 	for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
2549 		if (iflib_netmap_rxq_init(ctx, rxq) > 0) {
2550 			/* This rxq is in netmap mode. Skip normal init. */
2551 			continue;
2552 		}
2553 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
2554 			if (iflib_fl_setup(fl)) {
2555 				device_printf(ctx->ifc_dev,
2556 				    "setting up free list %d failed - "
2557 				    "check cluster settings\n", j);
2558 				goto done;
2559 			}
2560 		}
2561 	}
2562 done:
2563 	if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
2564 	IFDI_INTR_ENABLE(ctx);
2565 	txq = ctx->ifc_txqs;
2566 	for (i = 0; i < scctx->isc_ntxqsets; i++, txq++)
2567 		callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
2568 			txq->ift_timer.c_cpu);
2569 
2570 	/* Re-enable txsync/rxsync. */
2571 	netmap_enable_all_rings(ifp);
2572 }
2573 
2574 static int
iflib_media_change(if_t ifp)2575 iflib_media_change(if_t ifp)
2576 {
2577 	if_ctx_t ctx = if_getsoftc(ifp);
2578 	int err;
2579 
2580 	CTX_LOCK(ctx);
2581 	if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0)
2582 		iflib_if_init_locked(ctx);
2583 	CTX_UNLOCK(ctx);
2584 	return (err);
2585 }
2586 
2587 static void
iflib_media_status(if_t ifp,struct ifmediareq * ifmr)2588 iflib_media_status(if_t ifp, struct ifmediareq *ifmr)
2589 {
2590 	if_ctx_t ctx = if_getsoftc(ifp);
2591 
2592 	CTX_LOCK(ctx);
2593 	IFDI_UPDATE_ADMIN_STATUS(ctx);
2594 	IFDI_MEDIA_STATUS(ctx, ifmr);
2595 	CTX_UNLOCK(ctx);
2596 }
2597 
2598 static void
iflib_stop(if_ctx_t ctx)2599 iflib_stop(if_ctx_t ctx)
2600 {
2601 	iflib_txq_t txq = ctx->ifc_txqs;
2602 	iflib_rxq_t rxq = ctx->ifc_rxqs;
2603 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2604 	if_shared_ctx_t sctx = ctx->ifc_sctx;
2605 	iflib_dma_info_t di;
2606 	iflib_fl_t fl;
2607 	int i, j;
2608 
2609 	/* Tell the stack that the interface is no longer active */
2610 	if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
2611 
2612 	IFDI_INTR_DISABLE(ctx);
2613 	DELAY(1000);
2614 	IFDI_STOP(ctx);
2615 	DELAY(1000);
2616 
2617 	/*
2618 	 * Stop any pending txsync/rxsync and prevent new ones
2619 	 * form starting. Processes blocked in poll() will get
2620 	 * POLLERR.
2621 	 */
2622 	netmap_disable_all_rings(ctx->ifc_ifp);
2623 
2624 	iflib_debug_reset();
2625 	/* Wait for current tx queue users to exit to disarm watchdog timer. */
2626 	for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) {
2627 		/* make sure all transmitters have completed before proceeding XXX */
2628 
2629 		CALLOUT_LOCK(txq);
2630 		callout_stop(&txq->ift_timer);
2631 #ifdef DEV_NETMAP
2632 		callout_stop(&txq->ift_netmap_timer);
2633 #endif /* DEV_NETMAP */
2634 		CALLOUT_UNLOCK(txq);
2635 
2636 		if (!ctx->ifc_sysctl_simple_tx) {
2637 			/* clean any enqueued buffers */
2638 			iflib_ifmp_purge(txq);
2639 		}
2640 		/* Free any existing tx buffers. */
2641 		for (j = 0; j < txq->ift_size; j++) {
2642 			iflib_txsd_free(ctx, txq, j);
2643 		}
2644 		txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0;
2645 		txq->ift_in_use = txq->ift_gen = txq->ift_no_desc_avail = 0;
2646 		if (sctx->isc_flags & IFLIB_PRESERVE_TX_INDICES)
2647 			txq->ift_cidx = txq->ift_pidx;
2648 		else
2649 			txq->ift_cidx = txq->ift_pidx = 0;
2650 
2651 		txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0;
2652 		txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0;
2653 		txq->ift_pullups = 0;
2654 		ifmp_ring_reset_stats(txq->ift_br);
2655 		for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++)
2656 			bzero((void *)di->idi_vaddr, di->idi_size);
2657 	}
2658 	for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) {
2659 		if (rxq->ifr_task.gt_taskqueue != NULL)
2660 			gtaskqueue_drain(rxq->ifr_task.gt_taskqueue,
2661 				 &rxq->ifr_task.gt_task);
2662 
2663 		rxq->ifr_cq_cidx = 0;
2664 		for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++)
2665 			bzero((void *)di->idi_vaddr, di->idi_size);
2666 		/* also resets the free lists pidx/cidx */
2667 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
2668 			iflib_fl_bufs_free(fl);
2669 	}
2670 }
2671 
2672 static inline caddr_t
calc_next_rxd(iflib_fl_t fl,int cidx)2673 calc_next_rxd(iflib_fl_t fl, int cidx)
2674 {
2675 	qidx_t size;
2676 	int nrxd;
2677 	caddr_t start, end, cur, next;
2678 
2679 	nrxd = fl->ifl_size;
2680 	size = fl->ifl_rxd_size;
2681 	start = fl->ifl_ifdi->idi_vaddr;
2682 
2683 	if (__predict_false(size == 0))
2684 		return (start);
2685 	cur = start + size * cidx;
2686 	end = start + size * nrxd;
2687 	next = CACHE_PTR_NEXT(cur);
2688 	return (next < end ? next : start);
2689 }
2690 
2691 static inline void
prefetch_pkts(iflib_fl_t fl,int cidx)2692 prefetch_pkts(iflib_fl_t fl, int cidx)
2693 {
2694 	int nextptr;
2695 	int nrxd = fl->ifl_size;
2696 	caddr_t next_rxd;
2697 
2698 	nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd - 1);
2699 	prefetch(&fl->ifl_sds.ifsd_m[nextptr]);
2700 	prefetch(&fl->ifl_sds.ifsd_cl[nextptr]);
2701 	next_rxd = calc_next_rxd(fl, cidx);
2702 	prefetch(next_rxd);
2703 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd - 1)]);
2704 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd - 1)]);
2705 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd - 1)]);
2706 	prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd - 1)]);
2707 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd - 1)]);
2708 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd - 1)]);
2709 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd - 1)]);
2710 	prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd - 1)]);
2711 }
2712 
2713 static struct mbuf *
rxd_frag_to_sd(iflib_rxq_t rxq,if_rxd_frag_t irf,bool unload,if_rxsd_t sd,int * pf_rv,if_rxd_info_t ri)2714 rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, bool unload, if_rxsd_t sd,
2715     int *pf_rv, if_rxd_info_t ri)
2716 {
2717 	bus_dmamap_t map;
2718 	iflib_fl_t fl;
2719 	caddr_t payload;
2720 	struct mbuf *m;
2721 	int flid, cidx, len, next;
2722 
2723 	map = NULL;
2724 	flid = irf->irf_flid;
2725 	cidx = irf->irf_idx;
2726 	fl = &rxq->ifr_fl[flid];
2727 	sd->ifsd_fl = fl;
2728 	sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx];
2729 	fl->ifl_credits--;
2730 #if MEMORY_LOGGING
2731 	fl->ifl_m_dequeued++;
2732 #endif
2733 	if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH)
2734 		prefetch_pkts(fl, cidx);
2735 	next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size - 1);
2736 	prefetch(&fl->ifl_sds.ifsd_map[next]);
2737 	map = fl->ifl_sds.ifsd_map[cidx];
2738 
2739 	bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD);
2740 
2741 	if (rxq->pfil != NULL && PFIL_HOOKED_IN(rxq->pfil) && pf_rv != NULL &&
2742 	    irf->irf_len != 0) {
2743 		payload  = *sd->ifsd_cl;
2744 		payload +=  ri->iri_pad;
2745 		len = ri->iri_len - ri->iri_pad;
2746 		*pf_rv = pfil_mem_in(rxq->pfil, payload, len, ri->iri_ifp, &m);
2747 		switch (*pf_rv) {
2748 		case PFIL_DROPPED:
2749 		case PFIL_CONSUMED:
2750 			/*
2751 			 * The filter ate it.  Everything is recycled.
2752 			 */
2753 			m = NULL;
2754 			unload = 0;
2755 			break;
2756 		case PFIL_REALLOCED:
2757 			/*
2758 			 * The filter copied it.  Everything is recycled.
2759 			 * 'm' points at new mbuf.
2760 			 */
2761 			unload = 0;
2762 			break;
2763 		case PFIL_PASS:
2764 			/*
2765 			 * Filter said it was OK, so receive like
2766 			 * normal
2767 			 */
2768 			m = fl->ifl_sds.ifsd_m[cidx];
2769 			fl->ifl_sds.ifsd_m[cidx] = NULL;
2770 			break;
2771 		default:
2772 			MPASS(0);
2773 		}
2774 	} else {
2775 		m = fl->ifl_sds.ifsd_m[cidx];
2776 		fl->ifl_sds.ifsd_m[cidx] = NULL;
2777 		if (pf_rv != NULL)
2778 			*pf_rv = PFIL_PASS;
2779 	}
2780 
2781 	if (unload && irf->irf_len != 0)
2782 		bus_dmamap_unload(fl->ifl_buf_tag, map);
2783 	fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size - 1);
2784 	if (__predict_false(fl->ifl_cidx == 0))
2785 		fl->ifl_gen = 0;
2786 	bit_clear(fl->ifl_rx_bitmap, cidx);
2787 	return (m);
2788 }
2789 
2790 static struct mbuf *
assemble_segments(iflib_rxq_t rxq,if_rxd_info_t ri,if_rxsd_t sd,int * pf_rv)2791 assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd, int *pf_rv)
2792 {
2793 	struct mbuf *m, *mh, *mt;
2794 	caddr_t cl;
2795 	int  *pf_rv_ptr, flags, i, padlen;
2796 	bool consumed;
2797 
2798 	i = 0;
2799 	mh = NULL;
2800 	consumed = false;
2801 	*pf_rv = PFIL_PASS;
2802 	pf_rv_ptr = pf_rv;
2803 	do {
2804 		m = rxd_frag_to_sd(rxq, &ri->iri_frags[i], !consumed, sd,
2805 		    pf_rv_ptr, ri);
2806 
2807 		MPASS(*sd->ifsd_cl != NULL);
2808 
2809 		/*
2810 		 * Exclude zero-length frags & frags from
2811 		 * packets the filter has consumed or dropped
2812 		 */
2813 		if (ri->iri_frags[i].irf_len == 0 || consumed ||
2814 		    *pf_rv == PFIL_CONSUMED || *pf_rv == PFIL_DROPPED) {
2815 			if (mh == NULL) {
2816 				/* everything saved here */
2817 				consumed = true;
2818 				pf_rv_ptr = NULL;
2819 				continue;
2820 			}
2821 			/* XXX we can save the cluster here, but not the mbuf */
2822 			m_init(m, M_NOWAIT, MT_DATA, 0);
2823 			m_free(m);
2824 			continue;
2825 		}
2826 		if (mh == NULL) {
2827 			flags = M_PKTHDR | M_EXT;
2828 			mh = mt = m;
2829 			padlen = ri->iri_pad;
2830 		} else {
2831 			flags = M_EXT;
2832 			mt->m_next = m;
2833 			mt = m;
2834 			/* assuming padding is only on the first fragment */
2835 			padlen = 0;
2836 		}
2837 		cl = *sd->ifsd_cl;
2838 		*sd->ifsd_cl = NULL;
2839 
2840 		/* Can these two be made one ? */
2841 		m_init(m, M_NOWAIT, MT_DATA, flags);
2842 		m_cljset(m, cl, sd->ifsd_fl->ifl_cltype);
2843 		/*
2844 		 * These must follow m_init and m_cljset
2845 		 */
2846 		m->m_data += padlen;
2847 		ri->iri_len -= padlen;
2848 		m->m_len = ri->iri_frags[i].irf_len;
2849 	} while (++i < ri->iri_nfrags);
2850 
2851 	return (mh);
2852 }
2853 
2854 /*
2855  * Process one software descriptor
2856  */
2857 static struct mbuf *
iflib_rxd_pkt_get(iflib_rxq_t rxq,if_rxd_info_t ri)2858 iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri)
2859 {
2860 	struct if_rxsd sd;
2861 	struct mbuf *m;
2862 	int pf_rv;
2863 
2864 	/* should I merge this back in now that the two paths are basically duplicated? */
2865 	if (ri->iri_nfrags == 1 &&
2866 	    ri->iri_frags[0].irf_len != 0 &&
2867 	    ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) {
2868 		m = rxd_frag_to_sd(rxq, &ri->iri_frags[0], false, &sd,
2869 		    &pf_rv, ri);
2870 		if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2871 			return (m);
2872 		if (pf_rv == PFIL_PASS) {
2873 			m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
2874 #ifndef __NO_STRICT_ALIGNMENT
2875 			if (!IP_ALIGNED(m) && ri->iri_pad == 0)
2876 				m->m_data += 2;
2877 #endif
2878 			memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len);
2879 			m->m_len = ri->iri_frags[0].irf_len;
2880 			m->m_data += ri->iri_pad;
2881 			ri->iri_len -= ri->iri_pad;
2882 		}
2883 	} else {
2884 		m = assemble_segments(rxq, ri, &sd, &pf_rv);
2885 		if (m == NULL)
2886 			return (NULL);
2887 		if (pf_rv != PFIL_PASS && pf_rv != PFIL_REALLOCED)
2888 			return (m);
2889 	}
2890 	m->m_pkthdr.len = ri->iri_len;
2891 	m->m_pkthdr.rcvif = ri->iri_ifp;
2892 	m->m_flags |= ri->iri_flags;
2893 	m->m_pkthdr.ether_vtag = ri->iri_vtag;
2894 	m->m_pkthdr.flowid = ri->iri_flowid;
2895 #ifdef NUMA
2896 	m->m_pkthdr.numa_domain = if_getnumadomain(ri->iri_ifp);
2897 #endif
2898 	M_HASHTYPE_SET(m, ri->iri_rsstype);
2899 	m->m_pkthdr.csum_flags = ri->iri_csum_flags;
2900 	m->m_pkthdr.csum_data = ri->iri_csum_data;
2901 	return (m);
2902 }
2903 
2904 static void
_task_fn_rx_watchdog(void * context)2905 _task_fn_rx_watchdog(void *context)
2906 {
2907 	iflib_rxq_t rxq = context;
2908 
2909 	GROUPTASK_ENQUEUE(&rxq->ifr_task);
2910 }
2911 
2912 static uint8_t
iflib_rxeof(iflib_rxq_t rxq,qidx_t budget)2913 iflib_rxeof(iflib_rxq_t rxq, qidx_t budget)
2914 {
2915 	if_t ifp;
2916 	if_ctx_t ctx = rxq->ifr_ctx;
2917 	if_shared_ctx_t sctx = ctx->ifc_sctx;
2918 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
2919 	int avail, i;
2920 	qidx_t *cidxp;
2921 	struct if_rxd_info ri;
2922 	int err, budget_left, rx_bytes, rx_pkts;
2923 	iflib_fl_t fl;
2924 #if defined(INET6) || defined(INET)
2925 	int lro_enabled;
2926 #endif
2927 	uint8_t retval = 0;
2928 
2929 	/*
2930 	 * XXX early demux data packets so that if_input processing only handles
2931 	 * acks in interrupt context
2932 	 */
2933 	struct mbuf *m, *mh, *mt;
2934 
2935 	NET_EPOCH_ASSERT();
2936 
2937 	ifp = ctx->ifc_ifp;
2938 	mh = mt = NULL;
2939 	MPASS(budget > 0);
2940 	rx_pkts	= rx_bytes = 0;
2941 	if (sctx->isc_flags & IFLIB_HAS_RXCQ)
2942 		cidxp = &rxq->ifr_cq_cidx;
2943 	else
2944 		cidxp = &rxq->ifr_fl[0].ifl_cidx;
2945 	if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) {
2946 		for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
2947 			retval |= iflib_fl_refill_all(ctx, fl);
2948 		DBG_COUNTER_INC(rx_unavail);
2949 		return (retval);
2950 	}
2951 
2952 #if defined(INET6) || defined(INET)
2953 	lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO);
2954 #endif
2955 
2956 	/* pfil needs the vnet to be set */
2957 	CURVNET_SET_QUIET(if_getvnet(ifp));
2958 	for (budget_left = budget; budget_left > 0 && avail > 0;) {
2959 		if (__predict_false(!CTX_ACTIVE(ctx))) {
2960 			DBG_COUNTER_INC(rx_ctx_inactive);
2961 			break;
2962 		}
2963 		/*
2964 		 * Reset client set fields to their default values
2965 		 */
2966 		rxd_info_zero(&ri);
2967 		ri.iri_qsidx = rxq->ifr_id;
2968 		ri.iri_cidx = *cidxp;
2969 		ri.iri_ifp = ifp;
2970 		ri.iri_frags = rxq->ifr_frags;
2971 		err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri);
2972 
2973 		if (err)
2974 			goto err;
2975 		rx_pkts += 1;
2976 		rx_bytes += ri.iri_len;
2977 		if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
2978 			*cidxp = ri.iri_cidx;
2979 			/* Update our consumer index */
2980 			/* XXX NB: shurd - check if this is still safe */
2981 			while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0])
2982 				rxq->ifr_cq_cidx -= scctx->isc_nrxd[0];
2983 			/* was this only a completion queue message? */
2984 			if (__predict_false(ri.iri_nfrags == 0))
2985 				continue;
2986 		}
2987 		MPASS(ri.iri_nfrags != 0);
2988 		MPASS(ri.iri_len != 0);
2989 
2990 		/* will advance the cidx on the corresponding free lists */
2991 		m = iflib_rxd_pkt_get(rxq, &ri);
2992 		avail--;
2993 		budget_left--;
2994 		if (avail == 0 && budget_left)
2995 			avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left);
2996 
2997 		if (__predict_false(m == NULL))
2998 			continue;
2999 
3000 #ifndef __NO_STRICT_ALIGNMENT
3001 		if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL)
3002 			continue;
3003 #endif
3004 #if defined(INET6) || defined(INET)
3005 		if (lro_enabled) {
3006 			tcp_lro_queue_mbuf(&rxq->ifr_lc, m);
3007 			continue;
3008 		}
3009 #endif
3010 
3011 		if (mh == NULL)
3012 			mh = mt = m;
3013 		else {
3014 			mt->m_nextpkt = m;
3015 			mt = m;
3016 		}
3017 	}
3018 	CURVNET_RESTORE();
3019 	/* make sure that we can refill faster than drain */
3020 	for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++)
3021 		retval |= iflib_fl_refill_all(ctx, fl);
3022 
3023 	if (mh != NULL) {
3024 		if_input(ifp, mh);
3025 		DBG_COUNTER_INC(rx_if_input);
3026 	}
3027 
3028 	if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes);
3029 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts);
3030 
3031 	/*
3032 	 * Flush any outstanding LRO work
3033 	 */
3034 #if defined(INET6) || defined(INET)
3035 	tcp_lro_flush_all(&rxq->ifr_lc);
3036 #endif
3037 	if (avail != 0 || iflib_rxd_avail(ctx, rxq, *cidxp, 1) != 0)
3038 		retval |= IFLIB_RXEOF_MORE;
3039 	return (retval);
3040 err:
3041 	STATE_LOCK(ctx);
3042 	ctx->ifc_flags |= IFC_DO_RESET;
3043 	iflib_admin_intr_deferred(ctx);
3044 	STATE_UNLOCK(ctx);
3045 	return (0);
3046 }
3047 
3048 #define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq) - 1)
3049 static inline qidx_t
txq_max_db_deferred(iflib_txq_t txq,qidx_t in_use)3050 txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use)
3051 {
3052 	qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3053 	qidx_t minthresh = txq->ift_size / 8;
3054 	if (in_use > 4 * minthresh)
3055 		return (notify_count);
3056 	if (in_use > 2 * minthresh)
3057 		return (notify_count >> 1);
3058 	if (in_use > minthresh)
3059 		return (notify_count >> 3);
3060 	return (0);
3061 }
3062 
3063 static inline qidx_t
txq_max_rs_deferred(iflib_txq_t txq)3064 txq_max_rs_deferred(iflib_txq_t txq)
3065 {
3066 	qidx_t notify_count = TXD_NOTIFY_COUNT(txq);
3067 	qidx_t minthresh = txq->ift_size / 8;
3068 	if (txq->ift_in_use > 4 * minthresh)
3069 		return (notify_count);
3070 	if (txq->ift_in_use > 2 * minthresh)
3071 		return (notify_count >> 1);
3072 	if (txq->ift_in_use > minthresh)
3073 		return (notify_count >> 2);
3074 	return (2);
3075 }
3076 
3077 #define M_CSUM_FLAGS(m)		((m)->m_pkthdr.csum_flags)
3078 #define M_HAS_VLANTAG(m)	(m->m_flags & M_VLANTAG)
3079 
3080 #define TXQ_MAX_DB_DEFERRED(txq, in_use)	txq_max_db_deferred((txq), (in_use))
3081 #define TXQ_MAX_RS_DEFERRED(txq)	txq_max_rs_deferred(txq)
3082 #define TXQ_MAX_DB_CONSUMED(size)	(size >> 4)
3083 
3084 /* forward compatibility for cxgb */
3085 #define FIRST_QSET(ctx) 0
3086 #define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets)
3087 #define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets)
3088 #define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx))
3089 #define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments))
3090 
3091 #define	MAX_TX_DESC(ctx) MAX((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \
3092     (ctx)->ifc_softc_ctx.isc_tx_nsegments)
3093 
3094 static inline bool
iflib_txd_db_check(iflib_txq_t txq,int ring)3095 iflib_txd_db_check(iflib_txq_t txq, int ring)
3096 {
3097 	if_ctx_t ctx = txq->ift_ctx;
3098 	qidx_t dbval, max;
3099 
3100 	max = TXQ_MAX_DB_DEFERRED(txq, txq->ift_in_use);
3101 
3102 	/* force || threshold exceeded || at the edge of the ring */
3103 	if (ring || (txq->ift_db_pending >= max) || (TXQ_AVAIL(txq) <= MAX_TX_DESC(ctx) + 2)) {
3104 
3105 		/*
3106 		 * 'npending' is used if the card's doorbell is in terms of the number of descriptors
3107 		 * pending flush (BRCM). 'pidx' is used in cases where the card's doorbeel uses the
3108 		 * producer index explicitly (INTC).
3109 		 */
3110 		dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx;
3111 		bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3112 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3113 		ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval);
3114 
3115 		/*
3116 		 * Absent bugs there are zero packets pending so reset pending counts to zero.
3117 		 */
3118 		txq->ift_db_pending = txq->ift_npending = 0;
3119 		return (true);
3120 	}
3121 	return (false);
3122 }
3123 
3124 #ifdef PKT_DEBUG
3125 static void
print_pkt(if_pkt_info_t pi)3126 print_pkt(if_pkt_info_t pi)
3127 {
3128 	printf("pi len:  %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n",
3129 	    pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx);
3130 	printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n",
3131 	    pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag);
3132 	printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n",
3133 	    pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto);
3134 }
3135 #endif
3136 
3137 #define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO)
3138 #define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO))
3139 #define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO)
3140 #define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO))
3141 
3142 /**
3143  * Parses out ethernet header information in the given mbuf.
3144  * Returns in pi: ipi_etype (EtherType) and ipi_ehdrlen (Ethernet header length)
3145  *
3146  * This will account for the VLAN header if present.
3147  *
3148  * XXX: This doesn't handle QinQ, which could prevent TX offloads for those
3149  * types of packets.
3150  */
3151 static int
iflib_parse_ether_header(if_pkt_info_t pi,struct mbuf ** mp,uint64_t * pullups)3152 iflib_parse_ether_header(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups)
3153 {
3154 	struct ether_vlan_header *eh;
3155 	struct mbuf *m;
3156 
3157 	m = *mp;
3158 	if (__predict_false(m->m_len < sizeof(*eh))) {
3159 		(*pullups)++;
3160 		if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL))
3161 			return (ENOMEM);
3162 	}
3163 	eh = mtod(m, struct ether_vlan_header *);
3164 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
3165 		pi->ipi_etype = ntohs(eh->evl_proto);
3166 		pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3167 	} else {
3168 		pi->ipi_etype = ntohs(eh->evl_encap_proto);
3169 		pi->ipi_ehdrlen = ETHER_HDR_LEN;
3170 	}
3171 	*mp = m;
3172 
3173 	return (0);
3174 }
3175 
3176 /**
3177  * Parse up to the L3 header and extract IPv4/IPv6 header information into pi.
3178  * Currently this information includes: IP ToS value, IP header version/presence
3179  *
3180  * This is missing some checks and doesn't edit the packet content as it goes,
3181  * unlike iflib_parse_header(), in order to keep the amount of code here minimal.
3182  */
3183 static int
iflib_parse_header_partial(if_pkt_info_t pi,struct mbuf ** mp,uint64_t * pullups)3184 iflib_parse_header_partial(if_pkt_info_t pi, struct mbuf **mp, uint64_t *pullups)
3185 {
3186 	struct mbuf *m;
3187 	int err;
3188 
3189 	*pullups = 0;
3190 	m = *mp;
3191 	if (!M_WRITABLE(m)) {
3192 		if ((m = m_dup(m, M_NOWAIT)) == NULL) {
3193 			return (ENOMEM);
3194 		} else {
3195 			m_freem(*mp);
3196 			DBG_COUNTER_INC(tx_frees);
3197 			*mp = m;
3198 		}
3199 	}
3200 
3201 	/* Fills out pi->ipi_etype */
3202 	err = iflib_parse_ether_header(pi, mp, pullups);
3203 	if (err)
3204 		return (err);
3205 	m = *mp;
3206 
3207 	switch (pi->ipi_etype) {
3208 #ifdef INET
3209 	case ETHERTYPE_IP:
3210 	{
3211 		struct mbuf *n;
3212 		struct ip *ip = NULL;
3213 		int miniplen;
3214 
3215 		miniplen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip));
3216 		if (__predict_false(m->m_len < miniplen)) {
3217 			/*
3218 			 * Check for common case where the first mbuf only contains
3219 			 * the Ethernet header
3220 			 */
3221 			if (m->m_len == pi->ipi_ehdrlen) {
3222 				n = m->m_next;
3223 				MPASS(n);
3224 				/* If next mbuf contains at least the minimal IP header, then stop */
3225 				if (n->m_len >= sizeof(*ip)) {
3226 					ip = (struct ip *)n->m_data;
3227 				} else {
3228 					(*pullups)++;
3229 					if (__predict_false((m = m_pullup(m, miniplen)) == NULL))
3230 						return (ENOMEM);
3231 					ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3232 				}
3233 			} else {
3234 				(*pullups)++;
3235 				if (__predict_false((m = m_pullup(m, miniplen)) == NULL))
3236 					return (ENOMEM);
3237 				ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3238 			}
3239 		} else {
3240 			ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3241 		}
3242 
3243 		/* Have the IPv4 header w/ no options here */
3244 		pi->ipi_ip_hlen = ip->ip_hl << 2;
3245 		pi->ipi_ipproto = ip->ip_p;
3246 		pi->ipi_ip_tos = ip->ip_tos;
3247 		pi->ipi_flags |= IPI_TX_IPV4;
3248 
3249 		break;
3250 	}
3251 #endif
3252 #ifdef INET6
3253 	case ETHERTYPE_IPV6:
3254 	{
3255 		struct ip6_hdr *ip6;
3256 
3257 		if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
3258 			(*pullups)++;
3259 			if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
3260 				return (ENOMEM);
3261 		}
3262 		ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
3263 
3264 		/* Have the IPv6 fixed header here */
3265 		pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
3266 		pi->ipi_ipproto = ip6->ip6_nxt;
3267 		pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6);
3268 		pi->ipi_flags |= IPI_TX_IPV6;
3269 
3270 		break;
3271 	}
3272 #endif
3273 	default:
3274 		pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
3275 		pi->ipi_ip_hlen = 0;
3276 		break;
3277 	}
3278 	*mp = m;
3279 
3280 	return (0);
3281 
3282 }
3283 
3284 static int
iflib_parse_header(iflib_txq_t txq,if_pkt_info_t pi,struct mbuf ** mp)3285 iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp)
3286 {
3287 	if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx;
3288 	struct mbuf *m;
3289 	int err;
3290 
3291 	m = *mp;
3292 	if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) &&
3293 	    M_WRITABLE(m) == 0) {
3294 		if ((m = m_dup(m, M_NOWAIT)) == NULL) {
3295 			return (ENOMEM);
3296 		} else {
3297 			m_freem(*mp);
3298 			DBG_COUNTER_INC(tx_frees);
3299 			*mp = m;
3300 		}
3301 	}
3302 
3303 	/* Fills out pi->ipi_etype */
3304 	err = iflib_parse_ether_header(pi, mp, &txq->ift_pullups);
3305 	if (__predict_false(err))
3306 		return (err);
3307 	m = *mp;
3308 
3309 	switch (pi->ipi_etype) {
3310 #ifdef INET
3311 	case ETHERTYPE_IP:
3312 	{
3313 		struct ip *ip;
3314 		struct tcphdr *th;
3315 		uint8_t hlen;
3316 
3317 		hlen = pi->ipi_ehdrlen + sizeof(*ip);
3318 		if (__predict_false(m->m_len < hlen)) {
3319 			txq->ift_pullups++;
3320 			if (__predict_false((m = m_pullup(m, hlen)) == NULL))
3321 				return (ENOMEM);
3322 		}
3323 		ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen);
3324 		hlen = pi->ipi_ehdrlen + (ip->ip_hl << 2);
3325 		if (ip->ip_p == IPPROTO_TCP) {
3326 			hlen += sizeof(*th);
3327 			th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
3328 		} else if (ip->ip_p == IPPROTO_UDP) {
3329 			hlen += sizeof(struct udphdr);
3330 		}
3331 		if (__predict_false(m->m_len < hlen)) {
3332 			txq->ift_pullups++;
3333 			if ((m = m_pullup(m, hlen)) == NULL)
3334 				return (ENOMEM);
3335 		}
3336 		pi->ipi_ip_hlen = ip->ip_hl << 2;
3337 		pi->ipi_ipproto = ip->ip_p;
3338 		pi->ipi_ip_tos = ip->ip_tos;
3339 		pi->ipi_flags |= IPI_TX_IPV4;
3340 
3341 		/* TCP checksum offload may require TCP header length */
3342 		if (IS_TX_OFFLOAD4(pi)) {
3343 			if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) {
3344 				pi->ipi_tcp_hflags = tcp_get_flags(th);
3345 				pi->ipi_tcp_hlen = th->th_off << 2;
3346 				pi->ipi_tcp_seq = th->th_seq;
3347 			}
3348 			if (IS_TSO4(pi)) {
3349 				if (__predict_false(ip->ip_p != IPPROTO_TCP))
3350 					return (ENXIO);
3351 				/*
3352 				 * TSO always requires hardware checksum offload.
3353 				 */
3354 				pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP);
3355 				th->th_sum = in_pseudo(ip->ip_src.s_addr,
3356 						       ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3357 				pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3358 				if (sctx->isc_flags & IFLIB_TSO_INIT_IP) {
3359 					ip->ip_sum = 0;
3360 					ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz);
3361 				}
3362 			}
3363 		}
3364 		if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP))
3365 			ip->ip_sum = 0;
3366 
3367 		break;
3368 	}
3369 #endif
3370 #ifdef INET6
3371 	case ETHERTYPE_IPV6:
3372 	{
3373 		struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen);
3374 		struct tcphdr *th;
3375 		pi->ipi_ip_hlen = sizeof(struct ip6_hdr);
3376 
3377 		if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) {
3378 			txq->ift_pullups++;
3379 			if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL))
3380 				return (ENOMEM);
3381 		}
3382 		th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen);
3383 
3384 		/* XXX-BZ this will go badly in case of ext hdrs. */
3385 		pi->ipi_ipproto = ip6->ip6_nxt;
3386 		pi->ipi_ip_tos = IPV6_TRAFFIC_CLASS(ip6);
3387 		pi->ipi_flags |= IPI_TX_IPV6;
3388 
3389 		/* TCP checksum offload may require TCP header length */
3390 		if (IS_TX_OFFLOAD6(pi)) {
3391 			if (pi->ipi_ipproto == IPPROTO_TCP) {
3392 				if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) {
3393 					txq->ift_pullups++;
3394 					if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL))
3395 						return (ENOMEM);
3396 				}
3397 				pi->ipi_tcp_hflags = tcp_get_flags(th);
3398 				pi->ipi_tcp_hlen = th->th_off << 2;
3399 				pi->ipi_tcp_seq = th->th_seq;
3400 			}
3401 			if (IS_TSO6(pi)) {
3402 				if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP))
3403 					return (ENXIO);
3404 				/*
3405 				 * TSO always requires hardware checksum offload.
3406 				 */
3407 				pi->ipi_csum_flags |= CSUM_IP6_TCP;
3408 				th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
3409 				pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz;
3410 			}
3411 		}
3412 		break;
3413 	}
3414 #endif
3415 	default:
3416 		pi->ipi_csum_flags &= ~CSUM_OFFLOAD;
3417 		pi->ipi_ip_hlen = 0;
3418 		break;
3419 	}
3420 	*mp = m;
3421 
3422 	return (0);
3423 }
3424 
3425 /*
3426  * If dodgy hardware rejects the scatter gather chain we've handed it
3427  * we'll need to remove the mbuf chain from ifsg_m[] before we can add the
3428  * m_defrag'd mbufs
3429  */
3430 static __noinline struct mbuf *
iflib_remove_mbuf(iflib_txq_t txq)3431 iflib_remove_mbuf(iflib_txq_t txq)
3432 {
3433 	int ntxd, pidx;
3434 	struct mbuf *m, **ifsd_m;
3435 
3436 	ifsd_m = txq->ift_sds.ifsd_m;
3437 	ntxd = txq->ift_size;
3438 	pidx = txq->ift_pidx & (ntxd - 1);
3439 	ifsd_m = txq->ift_sds.ifsd_m;
3440 	m = ifsd_m[pidx];
3441 	ifsd_m[pidx] = NULL;
3442 	bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]);
3443 	if (txq->ift_sds.ifsd_tso_map != NULL)
3444 		bus_dmamap_unload(txq->ift_tso_buf_tag,
3445 		    txq->ift_sds.ifsd_tso_map[pidx]);
3446 #if MEMORY_LOGGING
3447 	txq->ift_dequeued++;
3448 #endif
3449 	return (m);
3450 }
3451 
3452 /*
3453  * Pad an mbuf to ensure a minimum ethernet frame size.
3454  * min_frame_size is the frame size (less CRC) to pad the mbuf to
3455  */
3456 static __noinline int
iflib_ether_pad(device_t dev,struct mbuf ** m_head,uint16_t min_frame_size)3457 iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size)
3458 {
3459 	/*
3460 	 * 18 is enough bytes to pad an ARP packet to 46 bytes, and
3461 	 * and ARP message is the smallest common payload I can think of
3462 	 */
3463 	static char pad[18];	/* just zeros */
3464 	int n;
3465 	struct mbuf *new_head;
3466 
3467 	if (!M_WRITABLE(*m_head)) {
3468 		new_head = m_dup(*m_head, M_NOWAIT);
3469 		if (new_head == NULL) {
3470 			m_freem(*m_head);
3471 			device_printf(dev, "cannot pad short frame, m_dup() failed");
3472 			DBG_COUNTER_INC(encap_pad_mbuf_fail);
3473 			DBG_COUNTER_INC(tx_frees);
3474 			return (ENOMEM);
3475 		}
3476 		m_freem(*m_head);
3477 		*m_head = new_head;
3478 	}
3479 
3480 	for (n = min_frame_size - (*m_head)->m_pkthdr.len;
3481 	     n > 0; n -= sizeof(pad))
3482 		if (!m_append(*m_head, min(n, sizeof(pad)), pad))
3483 			break;
3484 
3485 	if (n > 0) {
3486 		m_freem(*m_head);
3487 		device_printf(dev, "cannot pad short frame\n");
3488 		DBG_COUNTER_INC(encap_pad_mbuf_fail);
3489 		DBG_COUNTER_INC(tx_frees);
3490 		return (ENOBUFS);
3491 	}
3492 
3493 	return (0);
3494 }
3495 
3496 static int
iflib_encap(iflib_txq_t txq,struct mbuf ** m_headp)3497 iflib_encap(iflib_txq_t txq, struct mbuf **m_headp)
3498 {
3499 	if_ctx_t		ctx;
3500 	if_shared_ctx_t		sctx;
3501 	if_softc_ctx_t		scctx;
3502 	bus_dma_tag_t		buf_tag;
3503 	bus_dma_segment_t	*segs;
3504 	struct mbuf		*m_head, **ifsd_m;
3505 	bus_dmamap_t		map;
3506 	struct if_pkt_info	pi;
3507 	int remap = 0;
3508 	int err, nsegs, ndesc, max_segs, pidx;
3509 
3510 	ctx = txq->ift_ctx;
3511 	sctx = ctx->ifc_sctx;
3512 	scctx = &ctx->ifc_softc_ctx;
3513 	segs = txq->ift_segs;
3514 	m_head = *m_headp;
3515 	map = NULL;
3516 
3517 	/*
3518 	 * If we're doing TSO the next descriptor to clean may be quite far ahead
3519 	 */
3520 	pidx = txq->ift_pidx;
3521 	map = txq->ift_sds.ifsd_map[pidx];
3522 	ifsd_m = txq->ift_sds.ifsd_m;
3523 
3524 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3525 		buf_tag = txq->ift_tso_buf_tag;
3526 		max_segs = scctx->isc_tx_tso_segments_max;
3527 		map = txq->ift_sds.ifsd_tso_map[pidx];
3528 		MPASS(buf_tag != NULL);
3529 		MPASS(max_segs > 0);
3530 	} else {
3531 		buf_tag = txq->ift_buf_tag;
3532 		max_segs = scctx->isc_tx_nsegments;
3533 		map = txq->ift_sds.ifsd_map[pidx];
3534 	}
3535 	if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) &&
3536 	    __predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) {
3537 		err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size);
3538 		if (err) {
3539 			DBG_COUNTER_INC(encap_txd_encap_fail);
3540 			return (err);
3541 		}
3542 	}
3543 	m_head = *m_headp;
3544 
3545 	pkt_info_zero(&pi);
3546 	pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG | M_BCAST | M_MCAST));
3547 	pi.ipi_pidx = pidx;
3548 	pi.ipi_qsidx = txq->ift_id;
3549 	pi.ipi_len = m_head->m_pkthdr.len;
3550 	pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags;
3551 	pi.ipi_vtag = M_HAS_VLANTAG(m_head) ? m_head->m_pkthdr.ether_vtag : 0;
3552 
3553 	/* deliberate bitwise OR to make one condition */
3554 	if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) {
3555 		if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) {
3556 			DBG_COUNTER_INC(encap_txd_encap_fail);
3557 			return (err);
3558 		}
3559 		m_head = *m_headp;
3560 	}
3561 
3562 retry:
3563 	err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs,
3564 	    BUS_DMA_NOWAIT);
3565 defrag:
3566 	if (__predict_false(err)) {
3567 		switch (err) {
3568 		case EFBIG:
3569 			/* try collapse once and defrag once */
3570 			if (remap == 0) {
3571 				m_head = m_collapse(*m_headp, M_NOWAIT, max_segs);
3572 				/* try defrag if collapsing fails */
3573 				if (m_head == NULL)
3574 					remap++;
3575 			}
3576 			if (remap == 1) {
3577 				txq->ift_mbuf_defrag++;
3578 				m_head = m_defrag(*m_headp, M_NOWAIT);
3579 			}
3580 			/*
3581 			 * remap should never be >1 unless bus_dmamap_load_mbuf_sg
3582 			 * failed to map an mbuf that was run through m_defrag
3583 			 */
3584 			MPASS(remap <= 1);
3585 			if (__predict_false(m_head == NULL || remap > 1))
3586 				goto defrag_failed;
3587 			remap++;
3588 			*m_headp = m_head;
3589 			goto retry;
3590 			break;
3591 		case ENOMEM:
3592 			txq->ift_no_tx_dma_setup++;
3593 			break;
3594 		default:
3595 			txq->ift_no_tx_dma_setup++;
3596 			m_freem(*m_headp);
3597 			DBG_COUNTER_INC(tx_frees);
3598 			*m_headp = NULL;
3599 			break;
3600 		}
3601 		txq->ift_map_failed++;
3602 		DBG_COUNTER_INC(encap_load_mbuf_fail);
3603 		DBG_COUNTER_INC(encap_txd_encap_fail);
3604 		return (err);
3605 	}
3606 	ifsd_m[pidx] = m_head;
3607 	/*
3608 	 * XXX assumes a 1 to 1 relationship between segments and
3609 	 *        descriptors - this does not hold true on all drivers, e.g.
3610 	 *        cxgb
3611 	 */
3612 	if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) {
3613 		(void)iflib_completed_tx_reclaim(txq);
3614 		if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) {
3615 			txq->ift_no_desc_avail++;
3616 			bus_dmamap_unload(buf_tag, map);
3617 			DBG_COUNTER_INC(encap_txq_avail_fail);
3618 			DBG_COUNTER_INC(encap_txd_encap_fail);
3619 			if (ctx->ifc_sysctl_simple_tx) {
3620 				*m_headp = m_head = iflib_remove_mbuf(txq);
3621 				m_freem(*m_headp);
3622 				DBG_COUNTER_INC(tx_frees);
3623 				*m_headp = NULL;
3624 			}
3625 			if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0)
3626 				GROUPTASK_ENQUEUE(&txq->ift_task);
3627 			return (ENOBUFS);
3628 		}
3629 	}
3630 	/*
3631 	 * On Intel cards we can greatly reduce the number of TX interrupts
3632 	 * we see by only setting report status on every Nth descriptor.
3633 	 * However, this also means that the driver will need to keep track
3634 	 * of the descriptors that RS was set on to check them for the DD bit.
3635 	 */
3636 	txq->ift_rs_pending += nsegs + 1;
3637 	if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) ||
3638 	    iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx) + 2) {
3639 		pi.ipi_flags |= IPI_TX_INTR;
3640 		txq->ift_rs_pending = 0;
3641 	}
3642 
3643 	pi.ipi_segs = segs;
3644 	pi.ipi_nsegs = nsegs;
3645 
3646 	MPASS(pidx >= 0 && pidx < txq->ift_size);
3647 #ifdef PKT_DEBUG
3648 	print_pkt(&pi);
3649 #endif
3650 	if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) {
3651 		bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE);
3652 		DBG_COUNTER_INC(tx_encap);
3653 		MPASS(pi.ipi_new_pidx < txq->ift_size);
3654 
3655 		ndesc = pi.ipi_new_pidx - pi.ipi_pidx;
3656 		if (pi.ipi_new_pidx < pi.ipi_pidx) {
3657 			ndesc += txq->ift_size;
3658 			txq->ift_gen = 1;
3659 		}
3660 		/*
3661 		 * drivers can need as many as
3662 		 * two sentinels
3663 		 */
3664 		MPASS(ndesc <= pi.ipi_nsegs + 2);
3665 		MPASS(pi.ipi_new_pidx != pidx);
3666 		MPASS(ndesc > 0);
3667 		txq->ift_in_use += ndesc;
3668 		txq->ift_db_pending += ndesc;
3669 
3670 		/*
3671 		 * We update the last software descriptor again here because there may
3672 		 * be a sentinel and/or there may be more mbufs than segments
3673 		 */
3674 		txq->ift_pidx = pi.ipi_new_pidx;
3675 		txq->ift_npending += pi.ipi_ndescs;
3676 	} else {
3677 		*m_headp = m_head = iflib_remove_mbuf(txq);
3678 		if (err == EFBIG) {
3679 			txq->ift_txd_encap_efbig++;
3680 			if (remap < 2) {
3681 				remap = 1;
3682 				goto defrag;
3683 			}
3684 		}
3685 		goto defrag_failed;
3686 	}
3687 	/*
3688 	 * err can't possibly be non-zero here, so we don't neet to test it
3689 	 * to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail).
3690 	 */
3691 	return (err);
3692 
3693 defrag_failed:
3694 	txq->ift_mbuf_defrag_failed++;
3695 	txq->ift_map_failed++;
3696 	m_freem(*m_headp);
3697 	DBG_COUNTER_INC(tx_frees);
3698 	*m_headp = NULL;
3699 	DBG_COUNTER_INC(encap_txd_encap_fail);
3700 	return (ENOMEM);
3701 }
3702 
3703 static void
iflib_tx_desc_free(iflib_txq_t txq,int n)3704 iflib_tx_desc_free(iflib_txq_t txq, int n)
3705 {
3706 	uint32_t qsize, cidx, gen;
3707 	struct mbuf *m, **ifsd_m;
3708 
3709 	cidx = txq->ift_cidx;
3710 	gen = txq->ift_gen;
3711 	qsize = txq->ift_size;
3712 	ifsd_m = txq->ift_sds.ifsd_m;
3713 
3714 	while (n-- > 0) {
3715 		if ((m = ifsd_m[cidx]) != NULL) {
3716 			if (m->m_pkthdr.csum_flags & CSUM_TSO) {
3717 				bus_dmamap_sync(txq->ift_tso_buf_tag,
3718 				    txq->ift_sds.ifsd_tso_map[cidx],
3719 				    BUS_DMASYNC_POSTWRITE);
3720 				bus_dmamap_unload(txq->ift_tso_buf_tag,
3721 				    txq->ift_sds.ifsd_tso_map[cidx]);
3722 			} else {
3723 				bus_dmamap_sync(txq->ift_buf_tag,
3724 				    txq->ift_sds.ifsd_map[cidx],
3725 				    BUS_DMASYNC_POSTWRITE);
3726 				bus_dmamap_unload(txq->ift_buf_tag,
3727 				    txq->ift_sds.ifsd_map[cidx]);
3728 			}
3729 			/* XXX we don't support any drivers that batch packets yet */
3730 			MPASS(m->m_nextpkt == NULL);
3731 			m_freem(m);
3732 			ifsd_m[cidx] = NULL;
3733 #if MEMORY_LOGGING
3734 			txq->ift_dequeued++;
3735 #endif
3736 			DBG_COUNTER_INC(tx_frees);
3737 		}
3738 		if (__predict_false(++cidx == qsize)) {
3739 			cidx = 0;
3740 			gen = 0;
3741 		}
3742 	}
3743 	txq->ift_cidx = cidx;
3744 	txq->ift_gen = gen;
3745 }
3746 
3747 static __inline int
iflib_completed_tx_reclaim(iflib_txq_t txq)3748 iflib_completed_tx_reclaim(iflib_txq_t txq)
3749 {
3750 	int reclaim, thresh;
3751 	uint32_t now;
3752 	if_ctx_t ctx = txq->ift_ctx;
3753 
3754 	thresh = txq->ift_reclaim_thresh;
3755 	KASSERT(thresh >= 0, ("invalid threshold to reclaim"));
3756 	MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size);
3757 
3758 	now = ticks;
3759 	if (now <= (txq->ift_last_reclaim + txq->ift_reclaim_ticks) &&
3760 	    txq->ift_in_use < thresh)
3761 		return (0);
3762 	txq->ift_last_reclaim = now;
3763 	/*
3764 	 * Need a rate-limiting check so that this isn't called every time
3765 	 */
3766 	iflib_tx_credits_update(ctx, txq);
3767 	reclaim = DESC_RECLAIMABLE(txq);
3768 
3769 	if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) {
3770 #ifdef INVARIANTS
3771 		if (iflib_verbose_debug) {
3772 			printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __func__,
3773 			    txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments,
3774 			    reclaim, thresh);
3775 		}
3776 #endif
3777 		return (0);
3778 	}
3779 	iflib_tx_desc_free(txq, reclaim);
3780 	txq->ift_cleaned += reclaim;
3781 	txq->ift_in_use -= reclaim;
3782 
3783 	return (reclaim);
3784 }
3785 
3786 static struct mbuf **
_ring_peek_one(struct ifmp_ring * r,int cidx,int offset,int remaining)3787 _ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining)
3788 {
3789 	int next, size;
3790 	struct mbuf **items;
3791 
3792 	size = r->size;
3793 	next = (cidx + CACHE_PTR_INCREMENT) & (size - 1);
3794 	items = __DEVOLATILE(struct mbuf **, &r->items[0]);
3795 
3796 	prefetch(items[(cidx + offset) & (size - 1)]);
3797 	if (remaining > 1) {
3798 		prefetch2cachelines(&items[next]);
3799 		prefetch2cachelines(items[(cidx + offset + 1) & (size - 1)]);
3800 		prefetch2cachelines(items[(cidx + offset + 2) & (size - 1)]);
3801 		prefetch2cachelines(items[(cidx + offset + 3) & (size - 1)]);
3802 	}
3803 	return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size - 1)]));
3804 }
3805 
3806 static void
iflib_txq_check_drain(iflib_txq_t txq,int budget)3807 iflib_txq_check_drain(iflib_txq_t txq, int budget)
3808 {
3809 
3810 	ifmp_ring_check_drainage(txq->ift_br, budget);
3811 }
3812 
3813 static uint32_t
iflib_txq_can_drain(struct ifmp_ring * r)3814 iflib_txq_can_drain(struct ifmp_ring *r)
3815 {
3816 	iflib_txq_t txq = r->cookie;
3817 	if_ctx_t ctx = txq->ift_ctx;
3818 
3819 	if (TXQ_AVAIL(txq) > MAX_TX_DESC(ctx) + 2)
3820 		return (1);
3821 	bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
3822 	    BUS_DMASYNC_POSTREAD);
3823 	return (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id,
3824 	    false));
3825 }
3826 
3827 static uint32_t
iflib_txq_drain(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3828 iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3829 {
3830 	iflib_txq_t txq = r->cookie;
3831 	if_ctx_t ctx = txq->ift_ctx;
3832 	if_t ifp = ctx->ifc_ifp;
3833 	struct mbuf *m, **mp;
3834 	int avail, bytes_sent, skipped, count, err, i;
3835 	int mcast_sent, pkt_sent, reclaimed;
3836 	bool do_prefetch, rang, ring;
3837 
3838 	if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) ||
3839 			    !LINK_ACTIVE(ctx))) {
3840 		DBG_COUNTER_INC(txq_drain_notready);
3841 		return (0);
3842 	}
3843 	reclaimed = iflib_completed_tx_reclaim(txq);
3844 	rang = iflib_txd_db_check(txq, reclaimed && txq->ift_db_pending);
3845 	avail = IDXDIFF(pidx, cidx, r->size);
3846 
3847 	if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) {
3848 		/*
3849 		 * The driver is unloading so we need to free all pending packets.
3850 		 */
3851 		DBG_COUNTER_INC(txq_drain_flushing);
3852 		for (i = 0; i < avail; i++) {
3853 			if (__predict_true(r->items[(cidx + i) & (r->size - 1)] != (void *)txq))
3854 				m_freem(r->items[(cidx + i) & (r->size - 1)]);
3855 			r->items[(cidx + i) & (r->size - 1)] = NULL;
3856 		}
3857 		return (avail);
3858 	}
3859 
3860 	if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) {
3861 		txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3862 		CALLOUT_LOCK(txq);
3863 		callout_stop(&txq->ift_timer);
3864 		CALLOUT_UNLOCK(txq);
3865 		DBG_COUNTER_INC(txq_drain_oactive);
3866 		return (0);
3867 	}
3868 
3869 	/*
3870 	 * If we've reclaimed any packets this queue cannot be hung.
3871 	 */
3872 	if (reclaimed)
3873 		txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3874 	skipped = mcast_sent = bytes_sent = pkt_sent = 0;
3875 	count = MIN(avail, TX_BATCH_SIZE);
3876 #ifdef INVARIANTS
3877 	if (iflib_verbose_debug)
3878 		printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __func__,
3879 		    avail, ctx->ifc_flags, TXQ_AVAIL(txq));
3880 #endif
3881 	do_prefetch = (ctx->ifc_flags & IFC_PREFETCH);
3882 	err = 0;
3883 	for (i = 0; i < count && TXQ_AVAIL(txq) >= MAX_TX_DESC(ctx) + 2; i++) {
3884 		int rem = do_prefetch ? count - i : 0;
3885 
3886 		mp = _ring_peek_one(r, cidx, i, rem);
3887 		MPASS(mp != NULL && *mp != NULL);
3888 
3889 		/*
3890 		 * Completion interrupts will use the address of the txq
3891 		 * as a sentinel to enqueue _something_ in order to acquire
3892 		 * the lock on the mp_ring (there's no direct lock call).
3893 		 * We obviously whave to check for these sentinel cases
3894 		 * and skip them.
3895 		 */
3896 		if (__predict_false(*mp == (struct mbuf *)txq)) {
3897 			skipped++;
3898 			continue;
3899 		}
3900 		err = iflib_encap(txq, mp);
3901 		if (__predict_false(err)) {
3902 			/* no room - bail out */
3903 			if (err == ENOBUFS)
3904 				break;
3905 			skipped++;
3906 			/* we can't send this packet - skip it */
3907 			continue;
3908 		}
3909 		pkt_sent++;
3910 		m = *mp;
3911 		DBG_COUNTER_INC(tx_sent);
3912 		bytes_sent += m->m_pkthdr.len;
3913 		mcast_sent += !!(m->m_flags & M_MCAST);
3914 
3915 		if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)))
3916 			break;
3917 		ETHER_BPF_MTAP(ifp, m);
3918 		rang = iflib_txd_db_check(txq, false);
3919 	}
3920 
3921 	/* deliberate use of bitwise or to avoid gratuitous short-circuit */
3922 	ring = rang ? false  : (iflib_min_tx_latency | err | (!!txq->ift_reclaim_thresh));
3923 	iflib_txd_db_check(txq, ring);
3924 	if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
3925 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
3926 	if (mcast_sent)
3927 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
3928 #ifdef INVARIANTS
3929 	if (iflib_verbose_debug)
3930 		printf("consumed=%d\n", skipped + pkt_sent);
3931 #endif
3932 	return (skipped + pkt_sent);
3933 }
3934 
3935 static uint32_t
iflib_txq_drain_always(struct ifmp_ring * r)3936 iflib_txq_drain_always(struct ifmp_ring *r)
3937 {
3938 	return (1);
3939 }
3940 
3941 static uint32_t
iflib_txq_drain_free(struct ifmp_ring * r,uint32_t cidx,uint32_t pidx)3942 iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx)
3943 {
3944 	int i, avail;
3945 	struct mbuf **mp;
3946 	iflib_txq_t txq;
3947 
3948 	txq = r->cookie;
3949 
3950 	txq->ift_qstatus = IFLIB_QUEUE_IDLE;
3951 	CALLOUT_LOCK(txq);
3952 	callout_stop(&txq->ift_timer);
3953 	CALLOUT_UNLOCK(txq);
3954 
3955 	avail = IDXDIFF(pidx, cidx, r->size);
3956 	for (i = 0; i < avail; i++) {
3957 		mp = _ring_peek_one(r, cidx, i, avail - i);
3958 		if (__predict_false(*mp == (struct mbuf *)txq))
3959 			continue;
3960 		m_freem(*mp);
3961 		DBG_COUNTER_INC(tx_frees);
3962 	}
3963 	MPASS(ifmp_ring_is_stalled(r) == 0);
3964 	return (avail);
3965 }
3966 
3967 static void
iflib_ifmp_purge(iflib_txq_t txq)3968 iflib_ifmp_purge(iflib_txq_t txq)
3969 {
3970 	struct ifmp_ring *r;
3971 
3972 	r = txq->ift_br;
3973 	r->drain = iflib_txq_drain_free;
3974 	r->can_drain = iflib_txq_drain_always;
3975 
3976 	ifmp_ring_check_drainage(r, r->size);
3977 
3978 	r->drain = iflib_txq_drain;
3979 	r->can_drain = iflib_txq_can_drain;
3980 }
3981 
3982 static void
_task_fn_tx(void * context)3983 _task_fn_tx(void *context)
3984 {
3985 	iflib_txq_t txq = context;
3986 	if_ctx_t ctx = txq->ift_ctx;
3987 	if_t ifp = ctx->ifc_ifp;
3988 	int abdicate = ctx->ifc_sysctl_tx_abdicate;
3989 
3990 #ifdef IFLIB_DIAGNOSTICS
3991 	txq->ift_cpu_exec_count[curcpu]++;
3992 #endif
3993 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
3994 		return;
3995 #ifdef DEV_NETMAP
3996 	if ((if_getcapenable(ifp) & IFCAP_NETMAP) &&
3997 	    netmap_tx_irq(ifp, txq->ift_id))
3998 		goto skip_ifmp;
3999 #endif
4000         if (ctx->ifc_sysctl_simple_tx) {
4001                 mtx_lock(&txq->ift_mtx);
4002                 (void)iflib_completed_tx_reclaim(txq);
4003                 mtx_unlock(&txq->ift_mtx);
4004                 goto skip_ifmp;
4005         }
4006 #ifdef ALTQ
4007 	if (if_altq_is_enabled(ifp))
4008 		iflib_altq_if_start(ifp);
4009 #endif
4010 	if (txq->ift_db_pending)
4011 		ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate);
4012 	else if (!abdicate)
4013 		ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4014 	/*
4015 	 * When abdicating, we always need to check drainage, not just when we don't enqueue
4016 	 */
4017 	if (abdicate)
4018 		ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4019 
4020 skip_ifmp:
4021 	if (ctx->ifc_flags & IFC_LEGACY)
4022 		IFDI_INTR_ENABLE(ctx);
4023 	else
4024 		IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id);
4025 }
4026 
4027 static void
_task_fn_rx(void * context)4028 _task_fn_rx(void *context)
4029 {
4030 	iflib_rxq_t rxq = context;
4031 	if_ctx_t ctx = rxq->ifr_ctx;
4032 	uint8_t more;
4033 	uint16_t budget;
4034 #ifdef DEV_NETMAP
4035 	u_int work = 0;
4036 	int nmirq;
4037 #endif
4038 
4039 #ifdef IFLIB_DIAGNOSTICS
4040 	rxq->ifr_cpu_exec_count[curcpu]++;
4041 #endif
4042 	DBG_COUNTER_INC(task_fn_rxs);
4043 	if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
4044 		return;
4045 #ifdef DEV_NETMAP
4046 	nmirq = netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work);
4047 	if (nmirq != NM_IRQ_PASS) {
4048 		more = (nmirq == NM_IRQ_RESCHED) ? IFLIB_RXEOF_MORE : 0;
4049 		goto skip_rxeof;
4050 	}
4051 #endif
4052 	budget = ctx->ifc_sysctl_rx_budget;
4053 	if (budget == 0)
4054 		budget = 16;	/* XXX */
4055 	more = iflib_rxeof(rxq, budget);
4056 #ifdef DEV_NETMAP
4057 skip_rxeof:
4058 #endif
4059 	if ((more & IFLIB_RXEOF_MORE) == 0) {
4060 		if (ctx->ifc_flags & IFC_LEGACY)
4061 			IFDI_INTR_ENABLE(ctx);
4062 		else
4063 			IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id);
4064 		DBG_COUNTER_INC(rx_intr_enables);
4065 	}
4066 	if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)))
4067 		return;
4068 
4069 	if (more & IFLIB_RXEOF_MORE)
4070 		GROUPTASK_ENQUEUE(&rxq->ifr_task);
4071 	else if (more & IFLIB_RXEOF_EMPTY)
4072 		callout_reset_curcpu(&rxq->ifr_watchdog, 1, &_task_fn_rx_watchdog, rxq);
4073 }
4074 
4075 static void
_task_fn_admin(void * context,int pending)4076 _task_fn_admin(void *context, int pending)
4077 {
4078 	if_ctx_t ctx = context;
4079 	if_softc_ctx_t sctx = &ctx->ifc_softc_ctx;
4080 	iflib_txq_t txq;
4081 	int i;
4082 	bool oactive, running, do_reset, do_watchdog, in_detach;
4083 
4084 	STATE_LOCK(ctx);
4085 	running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING);
4086 	oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE);
4087 	do_reset = (ctx->ifc_flags & IFC_DO_RESET);
4088 	do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG);
4089 	in_detach = (ctx->ifc_flags & IFC_IN_DETACH);
4090 	ctx->ifc_flags &= ~(IFC_DO_RESET | IFC_DO_WATCHDOG);
4091 	STATE_UNLOCK(ctx);
4092 
4093 	if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4094 		return;
4095 	if (in_detach)
4096 		return;
4097 
4098 	CTX_LOCK(ctx);
4099 	for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4100 		CALLOUT_LOCK(txq);
4101 		callout_stop(&txq->ift_timer);
4102 		CALLOUT_UNLOCK(txq);
4103 	}
4104 	if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_ADMINCQ)
4105 		IFDI_ADMIN_COMPLETION_HANDLE(ctx);
4106 	if (do_watchdog) {
4107 		ctx->ifc_watchdog_events++;
4108 		IFDI_WATCHDOG_RESET(ctx);
4109 	}
4110 	IFDI_UPDATE_ADMIN_STATUS(ctx);
4111 	for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) {
4112 		callout_reset_on(&txq->ift_timer, iflib_timer_default, iflib_timer, txq,
4113 		    txq->ift_timer.c_cpu);
4114 	}
4115 	IFDI_LINK_INTR_ENABLE(ctx);
4116 	if (do_reset)
4117 		iflib_if_init_locked(ctx);
4118 	CTX_UNLOCK(ctx);
4119 
4120 	if (LINK_ACTIVE(ctx) == 0)
4121 		return;
4122 	for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++)
4123 		iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
4124 }
4125 
4126 static void
_task_fn_iov(void * context,int pending)4127 _task_fn_iov(void *context, int pending)
4128 {
4129 	if_ctx_t ctx = context;
4130 
4131 	if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) &&
4132 	    !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN))
4133 		return;
4134 
4135 	CTX_LOCK(ctx);
4136 	IFDI_VFLR_HANDLE(ctx);
4137 	CTX_UNLOCK(ctx);
4138 }
4139 
4140 static int
iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)4141 iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4142 {
4143 	int err;
4144 	if_int_delay_info_t info;
4145 	if_ctx_t ctx;
4146 
4147 	info = (if_int_delay_info_t)arg1;
4148 	ctx = info->iidi_ctx;
4149 	info->iidi_req = req;
4150 	info->iidi_oidp = oidp;
4151 	CTX_LOCK(ctx);
4152 	err = IFDI_SYSCTL_INT_DELAY(ctx, info);
4153 	CTX_UNLOCK(ctx);
4154 	return (err);
4155 }
4156 
4157 /*********************************************************************
4158  *
4159  *  IFNET FUNCTIONS
4160  *
4161  **********************************************************************/
4162 
4163 static void
iflib_if_init_locked(if_ctx_t ctx)4164 iflib_if_init_locked(if_ctx_t ctx)
4165 {
4166 	iflib_stop(ctx);
4167 	iflib_init_locked(ctx);
4168 }
4169 
4170 static void
iflib_if_init(void * arg)4171 iflib_if_init(void *arg)
4172 {
4173 	if_ctx_t ctx = arg;
4174 
4175 	CTX_LOCK(ctx);
4176 	iflib_if_init_locked(ctx);
4177 	CTX_UNLOCK(ctx);
4178 }
4179 
4180 static int
iflib_if_transmit(if_t ifp,struct mbuf * m)4181 iflib_if_transmit(if_t ifp, struct mbuf *m)
4182 {
4183 	if_ctx_t ctx = if_getsoftc(ifp);
4184 	iflib_txq_t txq;
4185 	int err, qidx;
4186 	int abdicate;
4187 
4188 	if (__predict_false((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) {
4189 		DBG_COUNTER_INC(tx_frees);
4190 		m_freem(m);
4191 		return (ENETDOWN);
4192 	}
4193 
4194 	MPASS(m->m_nextpkt == NULL);
4195 	/* ALTQ-enabled interfaces always use queue 0. */
4196 	qidx = 0;
4197 	/* Use driver-supplied queue selection method if it exists */
4198 	if (ctx->isc_txq_select_v2) {
4199 		struct if_pkt_info pi;
4200 		uint64_t early_pullups = 0;
4201 		pkt_info_zero(&pi);
4202 
4203 		err = iflib_parse_header_partial(&pi, &m, &early_pullups);
4204 		if (__predict_false(err != 0)) {
4205 			/* Assign pullups for bad pkts to default queue */
4206 			ctx->ifc_txqs[0].ift_pullups += early_pullups;
4207 			DBG_COUNTER_INC(encap_txd_encap_fail);
4208 			return (err);
4209 		}
4210 		/* Let driver make queueing decision */
4211 		qidx = ctx->isc_txq_select_v2(ctx->ifc_softc, m, &pi);
4212 		ctx->ifc_txqs[qidx].ift_pullups += early_pullups;
4213 	}
4214 	/* Backwards compatibility w/ simpler queue select */
4215 	else if (ctx->isc_txq_select)
4216 		qidx = ctx->isc_txq_select(ctx->ifc_softc, m);
4217 	/* If not, use iflib's standard method */
4218 	else if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !if_altq_is_enabled(ifp))
4219 		qidx = QIDX(ctx, m);
4220 
4221 	/* Set TX queue */
4222 	txq = &ctx->ifc_txqs[qidx];
4223 
4224 #ifdef DRIVER_BACKPRESSURE
4225 	if (txq->ift_closed) {
4226 		while (m != NULL) {
4227 			next = m->m_nextpkt;
4228 			m->m_nextpkt = NULL;
4229 			m_freem(m);
4230 			DBG_COUNTER_INC(tx_frees);
4231 			m = next;
4232 		}
4233 		return (ENOBUFS);
4234 	}
4235 #endif
4236 #ifdef notyet
4237 	qidx = count = 0;
4238 	mp = marr;
4239 	next = m;
4240 	do {
4241 		count++;
4242 		next = next->m_nextpkt;
4243 	} while (next != NULL);
4244 
4245 	if (count > nitems(marr))
4246 		if ((mp = malloc(count * sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) {
4247 			/* XXX check nextpkt */
4248 			m_freem(m);
4249 			/* XXX simplify for now */
4250 			DBG_COUNTER_INC(tx_frees);
4251 			return (ENOBUFS);
4252 		}
4253 	for (next = m, i = 0; next != NULL; i++) {
4254 		mp[i] = next;
4255 		next = next->m_nextpkt;
4256 		mp[i]->m_nextpkt = NULL;
4257 	}
4258 #endif
4259 	DBG_COUNTER_INC(tx_seen);
4260 	abdicate = ctx->ifc_sysctl_tx_abdicate;
4261 
4262 	err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate);
4263 
4264 	if (abdicate)
4265 		GROUPTASK_ENQUEUE(&txq->ift_task);
4266 	if (err) {
4267 		if (!abdicate)
4268 			GROUPTASK_ENQUEUE(&txq->ift_task);
4269 		/* support forthcoming later */
4270 #ifdef DRIVER_BACKPRESSURE
4271 		txq->ift_closed = TRUE;
4272 #endif
4273 		ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE);
4274 		m_freem(m);
4275 		DBG_COUNTER_INC(tx_frees);
4276 		if (err == ENOBUFS)
4277 			if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4278 		else
4279 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4280 	}
4281 
4282 	return (err);
4283 }
4284 
4285 #ifdef ALTQ
4286 /*
4287  * The overall approach to integrating iflib with ALTQ is to continue to use
4288  * the iflib mp_ring machinery between the ALTQ queue(s) and the hardware
4289  * ring.  Technically, when using ALTQ, queueing to an intermediate mp_ring
4290  * is redundant/unnecessary, but doing so minimizes the amount of
4291  * ALTQ-specific code required in iflib.  It is assumed that the overhead of
4292  * redundantly queueing to an intermediate mp_ring is swamped by the
4293  * performance limitations inherent in using ALTQ.
4294  *
4295  * When ALTQ support is compiled in, all iflib drivers will use a transmit
4296  * routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the
4297  * given interface.  If ALTQ is enabled for an interface, then all
4298  * transmitted packets for that interface will be submitted to the ALTQ
4299  * subsystem via IFQ_ENQUEUE().  We don't use the legacy if_transmit()
4300  * implementation because it uses IFQ_HANDOFF(), which will duplicatively
4301  * update stats that the iflib machinery handles, and which is sensitve to
4302  * the disused IFF_DRV_OACTIVE flag.  Additionally, iflib_altq_if_start()
4303  * will be installed as the start routine for use by ALTQ facilities that
4304  * need to trigger queue drains on a scheduled basis.
4305  *
4306  */
4307 static void
iflib_altq_if_start(if_t ifp)4308 iflib_altq_if_start(if_t ifp)
4309 {
4310 	struct ifaltq *ifq = &ifp->if_snd; /* XXX - DRVAPI */
4311 	struct mbuf *m;
4312 
4313 	IFQ_LOCK(ifq);
4314 	IFQ_DEQUEUE_NOLOCK(ifq, m);
4315 	while (m != NULL) {
4316 		iflib_if_transmit(ifp, m);
4317 		IFQ_DEQUEUE_NOLOCK(ifq, m);
4318 	}
4319 	IFQ_UNLOCK(ifq);
4320 }
4321 
4322 static int
iflib_altq_if_transmit(if_t ifp,struct mbuf * m)4323 iflib_altq_if_transmit(if_t ifp, struct mbuf *m)
4324 {
4325 	int err;
4326 
4327 	if (if_altq_is_enabled(ifp)) {
4328 		IFQ_ENQUEUE(&ifp->if_snd, m, err); /* XXX - DRVAPI */
4329 		if (err == 0)
4330 			iflib_altq_if_start(ifp);
4331 	} else
4332 		err = iflib_if_transmit(ifp, m);
4333 
4334 	return (err);
4335 }
4336 #endif /* ALTQ */
4337 
4338 static void
iflib_if_qflush(if_t ifp)4339 iflib_if_qflush(if_t ifp)
4340 {
4341 	if_ctx_t ctx = if_getsoftc(ifp);
4342 	iflib_txq_t txq = ctx->ifc_txqs;
4343 	int i;
4344 
4345 	STATE_LOCK(ctx);
4346 	ctx->ifc_flags |= IFC_QFLUSH;
4347 	STATE_UNLOCK(ctx);
4348 	for (i = 0; i < NTXQSETS(ctx); i++, txq++)
4349 		while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br)))
4350 			iflib_txq_check_drain(txq, 0);
4351 	STATE_LOCK(ctx);
4352 	ctx->ifc_flags &= ~IFC_QFLUSH;
4353 	STATE_UNLOCK(ctx);
4354 
4355 	/*
4356 	 * When ALTQ is enabled, this will also take care of purging the
4357 	 * ALTQ queue(s).
4358 	 */
4359 	if_qflush(ifp);
4360 }
4361 
4362 #define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \
4363 		    IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \
4364 		    IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \
4365 		    IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM | IFCAP_MEXTPG)
4366 
4367 static int
iflib_if_ioctl(if_t ifp,u_long command,caddr_t data)4368 iflib_if_ioctl(if_t ifp, u_long command, caddr_t data)
4369 {
4370 	if_ctx_t ctx = if_getsoftc(ifp);
4371 	struct ifreq	*ifr = (struct ifreq *)data;
4372 #if defined(INET) || defined(INET6)
4373 	struct ifaddr	*ifa = (struct ifaddr *)data;
4374 #endif
4375 	bool		avoid_reset = false;
4376 	int		err = 0, reinit = 0, bits;
4377 
4378 	switch (command) {
4379 	case SIOCSIFADDR:
4380 #ifdef INET
4381 		if (ifa->ifa_addr->sa_family == AF_INET)
4382 			avoid_reset = true;
4383 #endif
4384 #ifdef INET6
4385 		if (ifa->ifa_addr->sa_family == AF_INET6)
4386 			avoid_reset = true;
4387 #endif
4388 		/*
4389 		 * Calling init results in link renegotiation,
4390 		 * so we avoid doing it when possible.
4391 		 */
4392 		if (avoid_reset) {
4393 			if_setflagbits(ifp, IFF_UP, 0);
4394 			if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4395 				reinit = 1;
4396 #ifdef INET
4397 			if (!(if_getflags(ifp) & IFF_NOARP))
4398 				arp_ifinit(ifp, ifa);
4399 #endif
4400 		} else
4401 			err = ether_ioctl(ifp, command, data);
4402 		break;
4403 	case SIOCSIFMTU:
4404 		CTX_LOCK(ctx);
4405 		if (ifr->ifr_mtu == if_getmtu(ifp)) {
4406 			CTX_UNLOCK(ctx);
4407 			break;
4408 		}
4409 		bits = if_getdrvflags(ifp);
4410 		/* stop the driver and free any clusters before proceeding */
4411 		iflib_stop(ctx);
4412 
4413 		if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) {
4414 			STATE_LOCK(ctx);
4415 			if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size)
4416 				ctx->ifc_flags |= IFC_MULTISEG;
4417 			else
4418 				ctx->ifc_flags &= ~IFC_MULTISEG;
4419 			STATE_UNLOCK(ctx);
4420 			err = if_setmtu(ifp, ifr->ifr_mtu);
4421 		}
4422 		iflib_init_locked(ctx);
4423 		STATE_LOCK(ctx);
4424 		if_setdrvflags(ifp, bits);
4425 		STATE_UNLOCK(ctx);
4426 		CTX_UNLOCK(ctx);
4427 		break;
4428 	case SIOCSIFFLAGS:
4429 		CTX_LOCK(ctx);
4430 		if (if_getflags(ifp) & IFF_UP) {
4431 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4432 				if ((if_getflags(ifp) ^ ctx->ifc_if_flags) &
4433 				    (IFF_PROMISC | IFF_ALLMULTI)) {
4434 					CTX_UNLOCK(ctx);
4435 					err = IFDI_PROMISC_SET(ctx, if_getflags(ifp));
4436 					CTX_LOCK(ctx);
4437 				}
4438 			} else
4439 				reinit = 1;
4440 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4441 			iflib_stop(ctx);
4442 		}
4443 		ctx->ifc_if_flags = if_getflags(ifp);
4444 		CTX_UNLOCK(ctx);
4445 		break;
4446 	case SIOCADDMULTI:
4447 	case SIOCDELMULTI:
4448 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4449 			CTX_LOCK(ctx);
4450 			IFDI_INTR_DISABLE(ctx);
4451 			IFDI_MULTI_SET(ctx);
4452 			IFDI_INTR_ENABLE(ctx);
4453 			CTX_UNLOCK(ctx);
4454 		}
4455 		break;
4456 	case SIOCSIFMEDIA:
4457 		CTX_LOCK(ctx);
4458 		IFDI_MEDIA_SET(ctx);
4459 		CTX_UNLOCK(ctx);
4460 		/* FALLTHROUGH */
4461 	case SIOCGIFMEDIA:
4462 	case SIOCGIFXMEDIA:
4463 		err = ifmedia_ioctl(ifp, ifr, ctx->ifc_mediap, command);
4464 		break;
4465 	case SIOCGI2C:
4466 	{
4467 		struct ifi2creq i2c;
4468 
4469 		err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
4470 		if (err != 0)
4471 			break;
4472 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
4473 			err = EINVAL;
4474 			break;
4475 		}
4476 		if (i2c.len > sizeof(i2c.data)) {
4477 			err = EINVAL;
4478 			break;
4479 		}
4480 
4481 		if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0)
4482 			err = copyout(&i2c, ifr_data_get_ptr(ifr),
4483 			    sizeof(i2c));
4484 		break;
4485 	}
4486 	case SIOCSIFCAP:
4487 	{
4488 		int mask, setmask, oldmask;
4489 
4490 		oldmask = if_getcapenable(ifp);
4491 		mask = ifr->ifr_reqcap ^ oldmask;
4492 		mask &= ctx->ifc_softc_ctx.isc_capabilities | IFCAP_MEXTPG;
4493 		setmask = 0;
4494 #ifdef TCP_OFFLOAD
4495 		setmask |= mask & (IFCAP_TOE4 | IFCAP_TOE6);
4496 #endif
4497 		setmask |= (mask & IFCAP_FLAGS);
4498 		setmask |= (mask & IFCAP_WOL);
4499 
4500 		/*
4501 		 * If any RX csum has changed, change all the ones that
4502 		 * are supported by the driver.
4503 		 */
4504 		if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) {
4505 			setmask |= ctx->ifc_softc_ctx.isc_capabilities &
4506 			    (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6);
4507 		}
4508 
4509 		/*
4510 		 * want to ensure that traffic has stopped before we change any of the flags
4511 		 */
4512 		if (setmask) {
4513 			CTX_LOCK(ctx);
4514 			bits = if_getdrvflags(ifp);
4515 			if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4516 				iflib_stop(ctx);
4517 			STATE_LOCK(ctx);
4518 			if_togglecapenable(ifp, setmask);
4519 			ctx->ifc_softc_ctx.isc_capenable ^= setmask;
4520 			STATE_UNLOCK(ctx);
4521 			if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL)
4522 				iflib_init_locked(ctx);
4523 			STATE_LOCK(ctx);
4524 			if_setdrvflags(ifp, bits);
4525 			STATE_UNLOCK(ctx);
4526 			CTX_UNLOCK(ctx);
4527 		}
4528 		if_vlancap(ifp);
4529 		break;
4530 	}
4531 	case SIOCGPRIVATE_0:
4532 	case SIOCSDRVSPEC:
4533 	case SIOCGDRVSPEC:
4534 		CTX_LOCK(ctx);
4535 		err = IFDI_PRIV_IOCTL(ctx, command, data);
4536 		CTX_UNLOCK(ctx);
4537 		break;
4538 	default:
4539 		err = ether_ioctl(ifp, command, data);
4540 		break;
4541 	}
4542 	if (reinit)
4543 		iflib_if_init(ctx);
4544 	return (err);
4545 }
4546 
4547 static uint64_t
iflib_if_get_counter(if_t ifp,ift_counter cnt)4548 iflib_if_get_counter(if_t ifp, ift_counter cnt)
4549 {
4550 	if_ctx_t ctx = if_getsoftc(ifp);
4551 
4552 	return (IFDI_GET_COUNTER(ctx, cnt));
4553 }
4554 
4555 /*********************************************************************
4556  *
4557  *  OTHER FUNCTIONS EXPORTED TO THE STACK
4558  *
4559  **********************************************************************/
4560 
4561 static void
iflib_vlan_register(void * arg,if_t ifp,uint16_t vtag)4562 iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag)
4563 {
4564 	if_ctx_t ctx = if_getsoftc(ifp);
4565 
4566 	if ((void *)ctx != arg)
4567 		return;
4568 
4569 	if ((vtag == 0) || (vtag > 4095))
4570 		return;
4571 
4572 	if (iflib_in_detach(ctx))
4573 		return;
4574 
4575 	CTX_LOCK(ctx);
4576 	/* Driver may need all untagged packets to be flushed */
4577 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4578 		iflib_stop(ctx);
4579 	IFDI_VLAN_REGISTER(ctx, vtag);
4580 	/* Re-init to load the changes, if required */
4581 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4582 		iflib_init_locked(ctx);
4583 	CTX_UNLOCK(ctx);
4584 }
4585 
4586 static void
iflib_vlan_unregister(void * arg,if_t ifp,uint16_t vtag)4587 iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag)
4588 {
4589 	if_ctx_t ctx = if_getsoftc(ifp);
4590 
4591 	if ((void *)ctx != arg)
4592 		return;
4593 
4594 	if ((vtag == 0) || (vtag > 4095))
4595 		return;
4596 
4597 	CTX_LOCK(ctx);
4598 	/* Driver may need all tagged packets to be flushed */
4599 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4600 		iflib_stop(ctx);
4601 	IFDI_VLAN_UNREGISTER(ctx, vtag);
4602 	/* Re-init to load the changes, if required */
4603 	if (IFDI_NEEDS_RESTART(ctx, IFLIB_RESTART_VLAN_CONFIG))
4604 		iflib_init_locked(ctx);
4605 	CTX_UNLOCK(ctx);
4606 }
4607 
4608 static void
iflib_led_func(void * arg,int onoff)4609 iflib_led_func(void *arg, int onoff)
4610 {
4611 	if_ctx_t ctx = arg;
4612 
4613 	CTX_LOCK(ctx);
4614 	IFDI_LED_FUNC(ctx, onoff);
4615 	CTX_UNLOCK(ctx);
4616 }
4617 
4618 /*********************************************************************
4619  *
4620  *  BUS FUNCTION DEFINITIONS
4621  *
4622  **********************************************************************/
4623 
4624 int
iflib_device_probe(device_t dev)4625 iflib_device_probe(device_t dev)
4626 {
4627 	const pci_vendor_info_t *ent;
4628 	if_shared_ctx_t sctx;
4629 	uint16_t pci_device_id, pci_rev_id, pci_subdevice_id, pci_subvendor_id;
4630 	uint16_t pci_vendor_id;
4631 
4632 	if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
4633 		return (ENOTSUP);
4634 
4635 	pci_vendor_id = pci_get_vendor(dev);
4636 	pci_device_id = pci_get_device(dev);
4637 	pci_subvendor_id = pci_get_subvendor(dev);
4638 	pci_subdevice_id = pci_get_subdevice(dev);
4639 	pci_rev_id = pci_get_revid(dev);
4640 	if (sctx->isc_parse_devinfo != NULL)
4641 		sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id);
4642 
4643 	ent = sctx->isc_vendor_info;
4644 	while (ent->pvi_vendor_id != 0) {
4645 		if (pci_vendor_id != ent->pvi_vendor_id) {
4646 			ent++;
4647 			continue;
4648 		}
4649 		if ((pci_device_id == ent->pvi_device_id) &&
4650 		    ((pci_subvendor_id == ent->pvi_subvendor_id) ||
4651 		     (ent->pvi_subvendor_id == 0)) &&
4652 		    ((pci_subdevice_id == ent->pvi_subdevice_id) ||
4653 		     (ent->pvi_subdevice_id == 0)) &&
4654 		    ((pci_rev_id == ent->pvi_rev_id) ||
4655 		     (ent->pvi_rev_id == 0))) {
4656 			device_set_desc_copy(dev, ent->pvi_name);
4657 			/* this needs to be changed to zero if the bus probing code
4658 			 * ever stops re-probing on best match because the sctx
4659 			 * may have its values over written by register calls
4660 			 * in subsequent probes
4661 			 */
4662 			return (BUS_PROBE_DEFAULT);
4663 		}
4664 		ent++;
4665 	}
4666 	return (ENXIO);
4667 }
4668 
4669 int
iflib_device_probe_vendor(device_t dev)4670 iflib_device_probe_vendor(device_t dev)
4671 {
4672 	int probe;
4673 
4674 	probe = iflib_device_probe(dev);
4675 	if (probe == BUS_PROBE_DEFAULT)
4676 		return (BUS_PROBE_VENDOR);
4677 	else
4678 		return (probe);
4679 }
4680 
4681 static void
iflib_reset_qvalues(if_ctx_t ctx)4682 iflib_reset_qvalues(if_ctx_t ctx)
4683 {
4684 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4685 	if_shared_ctx_t sctx = ctx->ifc_sctx;
4686 	device_t dev = ctx->ifc_dev;
4687 	int i;
4688 
4689 	if (ctx->ifc_sysctl_ntxqs != 0)
4690 		scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs;
4691 	if (ctx->ifc_sysctl_nrxqs != 0)
4692 		scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs;
4693 
4694 	for (i = 0; i < sctx->isc_ntxqs; i++) {
4695 		if (ctx->ifc_sysctl_ntxds[i] != 0)
4696 			scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i];
4697 		else
4698 			scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4699 	}
4700 
4701 	for (i = 0; i < sctx->isc_nrxqs; i++) {
4702 		if (ctx->ifc_sysctl_nrxds[i] != 0)
4703 			scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i];
4704 		else
4705 			scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4706 	}
4707 
4708 	for (i = 0; i < sctx->isc_nrxqs; i++) {
4709 		if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) {
4710 			device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n",
4711 			    i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]);
4712 			scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i];
4713 		}
4714 		if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) {
4715 			device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n",
4716 			    i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]);
4717 			scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i];
4718 		}
4719 		if (!powerof2(scctx->isc_nrxd[i])) {
4720 			device_printf(dev, "nrxd%d: %d is not a power of 2 - using default value of %d\n",
4721 			    i, scctx->isc_nrxd[i], sctx->isc_nrxd_default[i]);
4722 			scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i];
4723 		}
4724 	}
4725 
4726 	for (i = 0; i < sctx->isc_ntxqs; i++) {
4727 		if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) {
4728 			device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n",
4729 			    i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]);
4730 			scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i];
4731 		}
4732 		if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) {
4733 			device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n",
4734 			    i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]);
4735 			scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i];
4736 		}
4737 		if (!powerof2(scctx->isc_ntxd[i])) {
4738 			device_printf(dev, "ntxd%d: %d is not a power of 2 - using default value of %d\n",
4739 			    i, scctx->isc_ntxd[i], sctx->isc_ntxd_default[i]);
4740 			scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i];
4741 		}
4742 	}
4743 }
4744 
4745 static void
iflib_add_pfil(if_ctx_t ctx)4746 iflib_add_pfil(if_ctx_t ctx)
4747 {
4748 	struct pfil_head *pfil;
4749 	struct pfil_head_args pa;
4750 	iflib_rxq_t rxq;
4751 	int i;
4752 
4753 	pa.pa_version = PFIL_VERSION;
4754 	pa.pa_flags = PFIL_IN;
4755 	pa.pa_type = PFIL_TYPE_ETHERNET;
4756 	pa.pa_headname = if_name(ctx->ifc_ifp);
4757 	pfil = pfil_head_register(&pa);
4758 
4759 	for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
4760 		rxq->pfil = pfil;
4761 	}
4762 }
4763 
4764 static void
iflib_rem_pfil(if_ctx_t ctx)4765 iflib_rem_pfil(if_ctx_t ctx)
4766 {
4767 	struct pfil_head *pfil;
4768 	iflib_rxq_t rxq;
4769 	int i;
4770 
4771 	rxq = ctx->ifc_rxqs;
4772 	pfil = rxq->pfil;
4773 	for (i = 0; i < NRXQSETS(ctx); i++, rxq++) {
4774 		rxq->pfil = NULL;
4775 	}
4776 	pfil_head_unregister(pfil);
4777 }
4778 
4779 
4780 /*
4781  * Advance forward by n members of the cpuset ctx->ifc_cpus starting from
4782  * cpuid and wrapping as necessary.
4783  */
4784 static unsigned int
cpuid_advance(if_ctx_t ctx,unsigned int cpuid,unsigned int n)4785 cpuid_advance(if_ctx_t ctx, unsigned int cpuid, unsigned int n)
4786 {
4787 	unsigned int first_valid;
4788 	unsigned int last_valid;
4789 
4790 	/* cpuid should always be in the valid set */
4791 	MPASS(CPU_ISSET(cpuid, &ctx->ifc_cpus));
4792 
4793 	/* valid set should never be empty */
4794 	MPASS(!CPU_EMPTY(&ctx->ifc_cpus));
4795 
4796 	first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
4797 	last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
4798 	n = n % CPU_COUNT(&ctx->ifc_cpus);
4799 	while (n > 0) {
4800 		do {
4801 			cpuid++;
4802 			if (cpuid > last_valid)
4803 				cpuid = first_valid;
4804 		} while (!CPU_ISSET(cpuid, &ctx->ifc_cpus));
4805 		n--;
4806 	}
4807 
4808 	return (cpuid);
4809 }
4810 
4811 #if defined(SMP) && defined(SCHED_ULE)
4812 extern struct cpu_group *cpu_top;	/* CPU topology */
4813 
4814 static int
find_child_with_core(int cpu,struct cpu_group * grp)4815 find_child_with_core(int cpu, struct cpu_group *grp)
4816 {
4817 	int i;
4818 
4819 	if (grp->cg_children == 0)
4820 		return (-1);
4821 
4822 	MPASS(grp->cg_child);
4823 	for (i = 0; i < grp->cg_children; i++) {
4824 		if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask))
4825 			return (i);
4826 	}
4827 
4828 	return (-1);
4829 }
4830 
4831 
4832 /*
4833  * Find an L2 neighbor of the given CPU or return -1 if none found.  This
4834  * does not distinguish among multiple L2 neighbors if the given CPU has
4835  * more than one (it will always return the same result in that case).
4836  */
4837 static int
find_l2_neighbor(int cpu)4838 find_l2_neighbor(int cpu)
4839 {
4840 	struct cpu_group *grp;
4841 	int i;
4842 
4843 	grp = cpu_top;
4844 	if (grp == NULL)
4845 		return (-1);
4846 
4847 	/*
4848 	 * Find the smallest CPU group that contains the given core.
4849 	 */
4850 	i = 0;
4851 	while ((i = find_child_with_core(cpu, grp)) != -1) {
4852 		/*
4853 		 * If the smallest group containing the given CPU has less
4854 		 * than two members, we conclude the given CPU has no
4855 		 * L2 neighbor.
4856 		 */
4857 		if (grp->cg_child[i].cg_count <= 1)
4858 			return (-1);
4859 		grp = &grp->cg_child[i];
4860 	}
4861 
4862 	/* Must share L2. */
4863 	if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE)
4864 		return (-1);
4865 
4866 	/*
4867 	 * Select the first member of the set that isn't the reference
4868 	 * CPU, which at this point is guaranteed to exist.
4869 	 */
4870 	for (i = 0; i < CPU_SETSIZE; i++) {
4871 		if (CPU_ISSET(i, &grp->cg_mask) && i != cpu)
4872 			return (i);
4873 	}
4874 
4875 	/* Should never be reached */
4876 	return (-1);
4877 }
4878 
4879 #else
4880 static int
find_l2_neighbor(int cpu)4881 find_l2_neighbor(int cpu)
4882 {
4883 
4884 	return (-1);
4885 }
4886 #endif
4887 
4888 /*
4889  * CPU mapping behaviors
4890  * ---------------------
4891  * 'separate txrx' refers to the separate_txrx sysctl
4892  * 'use logical' refers to the use_logical_cores sysctl
4893  * 'INTR CPUS' indicates whether bus_get_cpus(INTR_CPUS) succeeded
4894  *
4895  *  separate     use     INTR
4896  *    txrx     logical   CPUS   result
4897  * ---------- --------- ------ ------------------------------------------------
4898  *     -          -       X     RX and TX queues mapped to consecutive physical
4899  *                              cores with RX/TX pairs on same core and excess
4900  *                              of either following
4901  *     -          X       X     RX and TX queues mapped to consecutive cores
4902  *                              of any type with RX/TX pairs on same core and
4903  *                              excess of either following
4904  *     X          -       X     RX and TX queues mapped to consecutive physical
4905  *                              cores; all RX then all TX
4906  *     X          X       X     RX queues mapped to consecutive physical cores
4907  *                              first, then TX queues mapped to L2 neighbor of
4908  *                              the corresponding RX queue if one exists,
4909  *                              otherwise to consecutive physical cores
4910  *     -         n/a      -     RX and TX queues mapped to consecutive cores of
4911  *                              any type with RX/TX pairs on same core and excess
4912  *                              of either following
4913  *     X         n/a      -     RX and TX queues mapped to consecutive cores of
4914  *                              any type; all RX then all TX
4915  */
4916 static unsigned int
get_cpuid_for_queue(if_ctx_t ctx,unsigned int base_cpuid,unsigned int qid,bool is_tx)4917 get_cpuid_for_queue(if_ctx_t ctx, unsigned int base_cpuid, unsigned int qid,
4918     bool is_tx)
4919 {
4920 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4921 	unsigned int core_index;
4922 
4923 	if (ctx->ifc_sysctl_separate_txrx) {
4924 		/*
4925 		 * When using separate CPUs for TX and RX, the assignment
4926 		 * will always be of a consecutive CPU out of the set of
4927 		 * context CPUs, except for the specific case where the
4928 		 * context CPUs are phsyical cores, the use of logical cores
4929 		 * has been enabled, the assignment is for TX, the TX qid
4930 		 * corresponds to an RX qid, and the CPU assigned to the
4931 		 * corresponding RX queue has an L2 neighbor.
4932 		 */
4933 		if (ctx->ifc_sysctl_use_logical_cores &&
4934 		    ctx->ifc_cpus_are_physical_cores &&
4935 		    is_tx && qid < scctx->isc_nrxqsets) {
4936 			int l2_neighbor;
4937 			unsigned int rx_cpuid;
4938 
4939 			rx_cpuid = cpuid_advance(ctx, base_cpuid, qid);
4940 			l2_neighbor = find_l2_neighbor(rx_cpuid);
4941 			if (l2_neighbor != -1) {
4942 				return (l2_neighbor);
4943 			}
4944 			/*
4945 			 * ... else fall through to the normal
4946 			 * consecutive-after-RX assignment scheme.
4947 			 *
4948 			 * Note that we are assuming that all RX queue CPUs
4949 			 * have an L2 neighbor, or all do not.  If a mixed
4950 			 * scenario is possible, we will have to keep track
4951 			 * separately of how many queues prior to this one
4952 			 * were not able to be assigned to an L2 neighbor.
4953 			 */
4954 		}
4955 		if (is_tx)
4956 			core_index = scctx->isc_nrxqsets + qid;
4957 		else
4958 			core_index = qid;
4959 	} else {
4960 		core_index = qid;
4961 	}
4962 
4963 	return (cpuid_advance(ctx, base_cpuid, core_index));
4964 }
4965 
4966 static uint16_t
get_ctx_core_offset(if_ctx_t ctx)4967 get_ctx_core_offset(if_ctx_t ctx)
4968 {
4969 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
4970 	struct cpu_offset *op;
4971 	cpuset_t assigned_cpus;
4972 	unsigned int cores_consumed;
4973 	unsigned int base_cpuid = ctx->ifc_sysctl_core_offset;
4974 	unsigned int first_valid;
4975 	unsigned int last_valid;
4976 	unsigned int i;
4977 
4978 	first_valid = CPU_FFS(&ctx->ifc_cpus) - 1;
4979 	last_valid = CPU_FLS(&ctx->ifc_cpus) - 1;
4980 
4981 	if (base_cpuid != CORE_OFFSET_UNSPECIFIED) {
4982 		/*
4983 		 * Align the user-chosen base CPU ID to the next valid CPU
4984 		 * for this device.  If the chosen base CPU ID is smaller
4985 		 * than the first valid CPU or larger than the last valid
4986 		 * CPU, we assume the user does not know what the valid
4987 		 * range is for this device and is thinking in terms of a
4988 		 * zero-based reference frame, and so we shift the given
4989 		 * value into the valid range (and wrap accordingly) so the
4990 		 * intent is translated to the proper frame of reference.
4991 		 * If the base CPU ID is within the valid first/last, but
4992 		 * does not correspond to a valid CPU, it is advanced to the
4993 		 * next valid CPU (wrapping if necessary).
4994 		 */
4995 		if (base_cpuid < first_valid || base_cpuid > last_valid) {
4996 			/* shift from zero-based to first_valid-based */
4997 			base_cpuid += first_valid;
4998 			/* wrap to range [first_valid, last_valid] */
4999 			base_cpuid = (base_cpuid - first_valid) %
5000 			    (last_valid - first_valid + 1);
5001 		}
5002 		if (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus)) {
5003 			/*
5004 			 * base_cpuid is in [first_valid, last_valid], but
5005 			 * not a member of the valid set.  In this case,
5006 			 * there will always be a member of the valid set
5007 			 * with a CPU ID that is greater than base_cpuid,
5008 			 * and we simply advance to it.
5009 			 */
5010 			while (!CPU_ISSET(base_cpuid, &ctx->ifc_cpus))
5011 				base_cpuid++;
5012 		}
5013 		return (base_cpuid);
5014 	}
5015 
5016 	/*
5017 	 * Determine how many cores will be consumed by performing the CPU
5018 	 * assignments and counting how many of the assigned CPUs correspond
5019 	 * to CPUs in the set of context CPUs.  This is done using the CPU
5020 	 * ID first_valid as the base CPU ID, as the base CPU must be within
5021 	 * the set of context CPUs.
5022 	 *
5023 	 * Note not all assigned CPUs will be in the set of context CPUs
5024 	 * when separate CPUs are being allocated to TX and RX queues,
5025 	 * assignment to logical cores has been enabled, the set of context
5026 	 * CPUs contains only physical CPUs, and TX queues are mapped to L2
5027 	 * neighbors of CPUs that RX queues have been mapped to - in this
5028 	 * case we do only want to count how many CPUs in the set of context
5029 	 * CPUs have been consumed, as that determines the next CPU in that
5030 	 * set to start allocating at for the next device for which
5031 	 * core_offset is not set.
5032 	 */
5033 	CPU_ZERO(&assigned_cpus);
5034 	for (i = 0; i < scctx->isc_ntxqsets; i++)
5035 		CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, true),
5036 		    &assigned_cpus);
5037 	for (i = 0; i < scctx->isc_nrxqsets; i++)
5038 		CPU_SET(get_cpuid_for_queue(ctx, first_valid, i, false),
5039 		    &assigned_cpus);
5040 	CPU_AND(&assigned_cpus, &assigned_cpus, &ctx->ifc_cpus);
5041 	cores_consumed = CPU_COUNT(&assigned_cpus);
5042 
5043 	mtx_lock(&cpu_offset_mtx);
5044 	SLIST_FOREACH(op, &cpu_offsets, entries) {
5045 		if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
5046 			base_cpuid = op->next_cpuid;
5047 			op->next_cpuid = cpuid_advance(ctx, op->next_cpuid,
5048 			    cores_consumed);
5049 			MPASS(op->refcount < UINT_MAX);
5050 			op->refcount++;
5051 			break;
5052 		}
5053 	}
5054 	if (base_cpuid == CORE_OFFSET_UNSPECIFIED) {
5055 		base_cpuid = first_valid;
5056 		op = malloc(sizeof(struct cpu_offset), M_IFLIB,
5057 		    M_NOWAIT | M_ZERO);
5058 		if (op == NULL) {
5059 			device_printf(ctx->ifc_dev,
5060 			    "allocation for cpu offset failed.\n");
5061 		} else {
5062 			op->next_cpuid = cpuid_advance(ctx, base_cpuid,
5063 			    cores_consumed);
5064 			op->refcount = 1;
5065 			CPU_COPY(&ctx->ifc_cpus, &op->set);
5066 			SLIST_INSERT_HEAD(&cpu_offsets, op, entries);
5067 		}
5068 	}
5069 	mtx_unlock(&cpu_offset_mtx);
5070 
5071 	return (base_cpuid);
5072 }
5073 
5074 static void
unref_ctx_core_offset(if_ctx_t ctx)5075 unref_ctx_core_offset(if_ctx_t ctx)
5076 {
5077 	struct cpu_offset *op, *top;
5078 
5079 	mtx_lock(&cpu_offset_mtx);
5080 	SLIST_FOREACH_SAFE(op, &cpu_offsets, entries, top) {
5081 		if (CPU_CMP(&ctx->ifc_cpus, &op->set) == 0) {
5082 			MPASS(op->refcount > 0);
5083 			op->refcount--;
5084 			if (op->refcount == 0) {
5085 				SLIST_REMOVE(&cpu_offsets, op, cpu_offset, entries);
5086 				free(op, M_IFLIB);
5087 			}
5088 			break;
5089 		}
5090 	}
5091 	mtx_unlock(&cpu_offset_mtx);
5092 }
5093 
5094 int
iflib_device_register(device_t dev,void * sc,if_shared_ctx_t sctx,if_ctx_t * ctxp)5095 iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp)
5096 {
5097 	if_ctx_t ctx;
5098 	if_t ifp;
5099 	if_softc_ctx_t scctx;
5100 	kobjop_desc_t kobj_desc;
5101 	kobj_method_t *kobj_method;
5102 	int err, msix, rid;
5103 	int num_txd, num_rxd;
5104 	char namebuf[TASKQUEUE_NAMELEN];
5105 
5106 	ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK | M_ZERO);
5107 
5108 	if (sc == NULL) {
5109 		sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK | M_ZERO);
5110 		device_set_softc(dev, ctx);
5111 		ctx->ifc_flags |= IFC_SC_ALLOCATED;
5112 	}
5113 
5114 	ctx->ifc_sctx = sctx;
5115 	ctx->ifc_dev = dev;
5116 	ctx->ifc_softc = sc;
5117 
5118 	iflib_register(ctx);
5119 	iflib_add_device_sysctl_pre(ctx);
5120 
5121 	scctx = &ctx->ifc_softc_ctx;
5122 	ifp = ctx->ifc_ifp;
5123 	if (ctx->ifc_sysctl_simple_tx) {
5124 #ifndef ALTQ
5125 		if_settransmitfn(ifp, iflib_simple_transmit);
5126 		device_printf(dev, "using simple if_transmit\n");
5127 #else
5128 		device_printf(dev, "ALTQ prevents using simple if_transmit\n");
5129 #endif
5130 	}
5131 	iflib_reset_qvalues(ctx);
5132 	IFNET_WLOCK();
5133 	CTX_LOCK(ctx);
5134 	if ((err = IFDI_ATTACH_PRE(ctx)) != 0) {
5135 		device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err);
5136 		goto fail_unlock;
5137 	}
5138 	_iflib_pre_assert(scctx);
5139 	ctx->ifc_txrx = *scctx->isc_txrx;
5140 
5141 	MPASS(scctx->isc_dma_width <= flsll(BUS_SPACE_MAXADDR));
5142 
5143 	if (sctx->isc_flags & IFLIB_DRIVER_MEDIA)
5144 		ctx->ifc_mediap = scctx->isc_media;
5145 
5146 #ifdef INVARIANTS
5147 	if (scctx->isc_capabilities & IFCAP_TXCSUM)
5148 		MPASS(scctx->isc_tx_csum_flags);
5149 #endif
5150 
5151 	if_setcapabilities(ifp,
5152 	    scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_MEXTPG);
5153 	if_setcapenable(ifp,
5154 	    scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_MEXTPG);
5155 
5156 	if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets))
5157 		scctx->isc_ntxqsets = scctx->isc_ntxqsets_max;
5158 	if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets))
5159 		scctx->isc_nrxqsets = scctx->isc_nrxqsets_max;
5160 
5161 	num_txd = iflib_num_tx_descs(ctx);
5162 	num_rxd = iflib_num_rx_descs(ctx);
5163 
5164 	/* XXX change for per-queue sizes */
5165 	device_printf(dev, "Using %d TX descriptors and %d RX descriptors\n",
5166 	    num_txd, num_rxd);
5167 
5168 	if (scctx->isc_tx_nsegments > num_txd / MAX_SINGLE_PACKET_FRACTION)
5169 		scctx->isc_tx_nsegments = max(1, num_txd /
5170 		    MAX_SINGLE_PACKET_FRACTION);
5171 	if (scctx->isc_tx_tso_segments_max > num_txd /
5172 	    MAX_SINGLE_PACKET_FRACTION)
5173 		scctx->isc_tx_tso_segments_max = max(1,
5174 		    num_txd / MAX_SINGLE_PACKET_FRACTION);
5175 
5176 	/* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */
5177 	if (if_getcapabilities(ifp) & IFCAP_TSO) {
5178 		/*
5179 		 * The stack can't handle a TSO size larger than IP_MAXPACKET,
5180 		 * but some MACs do.
5181 		 */
5182 		if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max,
5183 		    IP_MAXPACKET));
5184 		/*
5185 		 * Take maximum number of m_pullup(9)'s in iflib_parse_header()
5186 		 * into account.  In the worst case, each of these calls will
5187 		 * add another mbuf and, thus, the requirement for another DMA
5188 		 * segment.  So for best performance, it doesn't make sense to
5189 		 * advertize a maximum of TSO segments that typically will
5190 		 * require defragmentation in iflib_encap().
5191 		 */
5192 		if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3);
5193 		if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max);
5194 	}
5195 	if (scctx->isc_rss_table_size == 0)
5196 		scctx->isc_rss_table_size = 64;
5197 	scctx->isc_rss_table_mask = scctx->isc_rss_table_size - 1;
5198 
5199 	/* Create and start admin taskqueue */
5200 	snprintf(namebuf, TASKQUEUE_NAMELEN, "if_%s_tq", device_get_nameunit(dev));
5201 	ctx->ifc_tq = taskqueue_create_fast(namebuf, M_NOWAIT,
5202 	    taskqueue_thread_enqueue, &ctx->ifc_tq);
5203 	if (ctx->ifc_tq == NULL) {
5204 		device_printf(dev, "Unable to create admin taskqueue\n");
5205 		return (ENOMEM);
5206 	}
5207 
5208 	err = taskqueue_start_threads(&ctx->ifc_tq, 1, PI_NET, "%s", namebuf);
5209 	if (err) {
5210 		device_printf(dev,
5211 		    "Unable to start admin taskqueue threads error: %d\n",
5212 		    err);
5213 		taskqueue_free(ctx->ifc_tq);
5214 		return (err);
5215 	}
5216 
5217 	TASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx);
5218 
5219 	/* Set up cpu set.  If it fails, use the set of all CPUs. */
5220 	if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) {
5221 		device_printf(dev, "Unable to fetch CPU list\n");
5222 		CPU_COPY(&all_cpus, &ctx->ifc_cpus);
5223 		ctx->ifc_cpus_are_physical_cores = false;
5224 	} else
5225 		ctx->ifc_cpus_are_physical_cores = true;
5226 	MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0);
5227 
5228 	/*
5229 	 * Now set up MSI or MSI-X, should return us the number of supported
5230 	 * vectors (will be 1 for a legacy interrupt and MSI).
5231 	 */
5232 	if (sctx->isc_flags & IFLIB_SKIP_MSIX) {
5233 		msix = scctx->isc_vectors;
5234 	} else if (scctx->isc_msix_bar != 0)
5235 		/*
5236 		 * The simple fact that isc_msix_bar is not 0 does not mean we
5237 		 * we have a good value there that is known to work.
5238 		 */
5239 		msix = iflib_msix_init(ctx);
5240 	else {
5241 		scctx->isc_vectors = 1;
5242 		scctx->isc_ntxqsets = 1;
5243 		scctx->isc_nrxqsets = 1;
5244 		scctx->isc_intr = IFLIB_INTR_LEGACY;
5245 		msix = 0;
5246 	}
5247 	/* Get memory for the station queues */
5248 	if ((err = iflib_queues_alloc(ctx))) {
5249 		device_printf(dev, "Unable to allocate queue memory\n");
5250 		goto fail_intr_free;
5251 	}
5252 
5253 	if ((err = iflib_qset_structures_setup(ctx)))
5254 		goto fail_queues;
5255 
5256 	/*
5257 	 * Now that we know how many queues there are, get the core offset.
5258 	 */
5259 	ctx->ifc_sysctl_core_offset = get_ctx_core_offset(ctx);
5260 
5261 	if (msix > 1) {
5262 		/*
5263 		 * When using MSI-X, ensure that ifdi_{r,t}x_queue_intr_enable
5264 		 * aren't the default NULL implementation.
5265 		 */
5266 		kobj_desc = &ifdi_rx_queue_intr_enable_desc;
5267 		kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5268 		    kobj_desc);
5269 		if (kobj_method == &kobj_desc->deflt) {
5270 			device_printf(dev,
5271 			    "MSI-X requires ifdi_rx_queue_intr_enable method");
5272 			err = EOPNOTSUPP;
5273 			goto fail_queues;
5274 		}
5275 		kobj_desc = &ifdi_tx_queue_intr_enable_desc;
5276 		kobj_method = kobj_lookup_method(((kobj_t)ctx)->ops->cls, NULL,
5277 		    kobj_desc);
5278 		if (kobj_method == &kobj_desc->deflt) {
5279 			device_printf(dev,
5280 			    "MSI-X requires ifdi_tx_queue_intr_enable method");
5281 			err = EOPNOTSUPP;
5282 			goto fail_queues;
5283 		}
5284 
5285 		/*
5286 		 * Assign the MSI-X vectors.
5287 		 * Note that the default NULL ifdi_msix_intr_assign method will
5288 		 * fail here, too.
5289 		 */
5290 		err = IFDI_MSIX_INTR_ASSIGN(ctx, msix);
5291 		if (err != 0) {
5292 			device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n",
5293 			    err);
5294 			goto fail_queues;
5295 		}
5296 	} else if (scctx->isc_intr != IFLIB_INTR_MSIX) {
5297 		rid = 0;
5298 		if (scctx->isc_intr == IFLIB_INTR_MSI) {
5299 			MPASS(msix == 1);
5300 			rid = 1;
5301 		}
5302 		if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) {
5303 			device_printf(dev, "iflib_legacy_setup failed %d\n", err);
5304 			goto fail_queues;
5305 		}
5306 	} else {
5307 		device_printf(dev,
5308 		    "Cannot use iflib with only 1 MSI-X interrupt!\n");
5309 		err = ENODEV;
5310 		goto fail_queues;
5311 	}
5312 
5313 	/*
5314 	 * It prevents a double-locking panic with iflib_media_status when
5315 	 * the driver loads.
5316 	 */
5317 	CTX_UNLOCK(ctx);
5318 	ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac.octet);
5319 	CTX_LOCK(ctx);
5320 
5321 	if ((err = IFDI_ATTACH_POST(ctx)) != 0) {
5322 		device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err);
5323 		goto fail_detach;
5324 	}
5325 
5326 	/*
5327 	 * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported.
5328 	 * This must appear after the call to ether_ifattach() because
5329 	 * ether_ifattach() sets if_hdrlen to the default value.
5330 	 */
5331 	if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU)
5332 		if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
5333 
5334 	if ((err = iflib_netmap_attach(ctx))) {
5335 		device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err);
5336 		goto fail_detach;
5337 	}
5338 	*ctxp = ctx;
5339 
5340 	DEBUGNET_SET(ctx->ifc_ifp, iflib);
5341 
5342 	iflib_add_device_sysctl_post(ctx);
5343 	iflib_add_pfil(ctx);
5344 	ctx->ifc_flags |= IFC_INIT_DONE;
5345 	CTX_UNLOCK(ctx);
5346 	IFNET_WUNLOCK();
5347 
5348 	return (0);
5349 
5350 fail_detach:
5351 	ether_ifdetach(ctx->ifc_ifp);
5352 fail_queues:
5353 	taskqueue_free(ctx->ifc_tq);
5354 	iflib_tqg_detach(ctx);
5355 	iflib_tx_structures_free(ctx);
5356 	iflib_rx_structures_free(ctx);
5357 	IFDI_DETACH(ctx);
5358 	IFDI_QUEUES_FREE(ctx);
5359 fail_intr_free:
5360 	iflib_free_intr_mem(ctx);
5361 fail_unlock:
5362 	CTX_UNLOCK(ctx);
5363 	IFNET_WUNLOCK();
5364 	iflib_deregister(ctx);
5365 	device_set_softc(ctx->ifc_dev, NULL);
5366 	if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5367 		free(ctx->ifc_softc, M_IFLIB);
5368 	free(ctx, M_IFLIB);
5369 	return (err);
5370 }
5371 
5372 int
iflib_device_attach(device_t dev)5373 iflib_device_attach(device_t dev)
5374 {
5375 	if_ctx_t ctx;
5376 	if_shared_ctx_t sctx;
5377 
5378 	if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC)
5379 		return (ENOTSUP);
5380 
5381 	pci_enable_busmaster(dev);
5382 
5383 	return (iflib_device_register(dev, NULL, sctx, &ctx));
5384 }
5385 
5386 int
iflib_device_deregister(if_ctx_t ctx)5387 iflib_device_deregister(if_ctx_t ctx)
5388 {
5389 	if_t ifp = ctx->ifc_ifp;
5390 	device_t dev = ctx->ifc_dev;
5391 
5392 	/* Make sure VLANS are not using driver */
5393 	if (if_vlantrunkinuse(ifp)) {
5394 		device_printf(dev, "Vlan in use, detach first\n");
5395 		return (EBUSY);
5396 	}
5397 #ifdef PCI_IOV
5398 	if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) {
5399 		device_printf(dev, "SR-IOV in use; detach first.\n");
5400 		return (EBUSY);
5401 	}
5402 #endif
5403 
5404 	STATE_LOCK(ctx);
5405 	ctx->ifc_flags |= IFC_IN_DETACH;
5406 	STATE_UNLOCK(ctx);
5407 
5408 	/* Unregister VLAN handlers before calling iflib_stop() */
5409 	iflib_unregister_vlan_handlers(ctx);
5410 
5411 	iflib_netmap_detach(ifp);
5412 	ether_ifdetach(ifp);
5413 
5414 	CTX_LOCK(ctx);
5415 	iflib_stop(ctx);
5416 	CTX_UNLOCK(ctx);
5417 
5418 	iflib_rem_pfil(ctx);
5419 	if (ctx->ifc_led_dev != NULL)
5420 		led_destroy(ctx->ifc_led_dev);
5421 
5422 	iflib_tqg_detach(ctx);
5423 	iflib_tx_structures_free(ctx);
5424 	iflib_rx_structures_free(ctx);
5425 
5426 	CTX_LOCK(ctx);
5427 	IFDI_DETACH(ctx);
5428 	IFDI_QUEUES_FREE(ctx);
5429 	CTX_UNLOCK(ctx);
5430 
5431 	taskqueue_free(ctx->ifc_tq);
5432 	ctx->ifc_tq = NULL;
5433 
5434 	/* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5435 	iflib_free_intr_mem(ctx);
5436 
5437 	bus_generic_detach(dev);
5438 
5439 	iflib_deregister(ctx);
5440 
5441 	device_set_softc(ctx->ifc_dev, NULL);
5442 	if (ctx->ifc_flags & IFC_SC_ALLOCATED)
5443 		free(ctx->ifc_softc, M_IFLIB);
5444 	unref_ctx_core_offset(ctx);
5445 	free(ctx, M_IFLIB);
5446 	return (0);
5447 }
5448 
5449 static void
iflib_tqg_detach(if_ctx_t ctx)5450 iflib_tqg_detach(if_ctx_t ctx)
5451 {
5452 	iflib_txq_t txq;
5453 	iflib_rxq_t rxq;
5454 	int i;
5455 	struct taskqgroup *tqg;
5456 
5457 	/* XXX drain any dependent tasks */
5458 	tqg = qgroup_if_io_tqg;
5459 	for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) {
5460 		callout_drain(&txq->ift_timer);
5461 #ifdef DEV_NETMAP
5462 		callout_drain(&txq->ift_netmap_timer);
5463 #endif /* DEV_NETMAP */
5464 		if (txq->ift_task.gt_uniq != NULL)
5465 			taskqgroup_detach(tqg, &txq->ift_task);
5466 	}
5467 	for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) {
5468 		if (rxq->ifr_task.gt_uniq != NULL)
5469 			taskqgroup_detach(tqg, &rxq->ifr_task);
5470 	}
5471 }
5472 
5473 static void
iflib_free_intr_mem(if_ctx_t ctx)5474 iflib_free_intr_mem(if_ctx_t ctx)
5475 {
5476 
5477 	if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) {
5478 		iflib_irq_free(ctx, &ctx->ifc_legacy_irq);
5479 	}
5480 	if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) {
5481 		pci_release_msi(ctx->ifc_dev);
5482 	}
5483 	if (ctx->ifc_msix_mem != NULL) {
5484 		bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY,
5485 		    rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem);
5486 		ctx->ifc_msix_mem = NULL;
5487 	}
5488 }
5489 
5490 int
iflib_device_detach(device_t dev)5491 iflib_device_detach(device_t dev)
5492 {
5493 	if_ctx_t ctx = device_get_softc(dev);
5494 
5495 	return (iflib_device_deregister(ctx));
5496 }
5497 
5498 int
iflib_device_suspend(device_t dev)5499 iflib_device_suspend(device_t dev)
5500 {
5501 	if_ctx_t ctx = device_get_softc(dev);
5502 
5503 	CTX_LOCK(ctx);
5504 	IFDI_SUSPEND(ctx);
5505 	CTX_UNLOCK(ctx);
5506 
5507 	return (bus_generic_suspend(dev));
5508 }
5509 int
iflib_device_shutdown(device_t dev)5510 iflib_device_shutdown(device_t dev)
5511 {
5512 	if_ctx_t ctx = device_get_softc(dev);
5513 
5514 	CTX_LOCK(ctx);
5515 	IFDI_SHUTDOWN(ctx);
5516 	CTX_UNLOCK(ctx);
5517 
5518 	return (bus_generic_suspend(dev));
5519 }
5520 
5521 int
iflib_device_resume(device_t dev)5522 iflib_device_resume(device_t dev)
5523 {
5524 	if_ctx_t ctx = device_get_softc(dev);
5525 	iflib_txq_t txq = ctx->ifc_txqs;
5526 
5527 	CTX_LOCK(ctx);
5528 	IFDI_RESUME(ctx);
5529 	iflib_if_init_locked(ctx);
5530 	CTX_UNLOCK(ctx);
5531 	for (int i = 0; i < NTXQSETS(ctx); i++, txq++)
5532 		iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET);
5533 
5534 	return (bus_generic_resume(dev));
5535 }
5536 
5537 int
iflib_device_iov_init(device_t dev,uint16_t num_vfs,const nvlist_t * params)5538 iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params)
5539 {
5540 	int error;
5541 	if_ctx_t ctx = device_get_softc(dev);
5542 
5543 	CTX_LOCK(ctx);
5544 	error = IFDI_IOV_INIT(ctx, num_vfs, params);
5545 	CTX_UNLOCK(ctx);
5546 
5547 	return (error);
5548 }
5549 
5550 void
iflib_device_iov_uninit(device_t dev)5551 iflib_device_iov_uninit(device_t dev)
5552 {
5553 	if_ctx_t ctx = device_get_softc(dev);
5554 
5555 	CTX_LOCK(ctx);
5556 	IFDI_IOV_UNINIT(ctx);
5557 	CTX_UNLOCK(ctx);
5558 }
5559 
5560 int
iflib_device_iov_add_vf(device_t dev,uint16_t vfnum,const nvlist_t * params)5561 iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params)
5562 {
5563 	int error;
5564 	if_ctx_t ctx = device_get_softc(dev);
5565 
5566 	CTX_LOCK(ctx);
5567 	error = IFDI_IOV_VF_ADD(ctx, vfnum, params);
5568 	CTX_UNLOCK(ctx);
5569 
5570 	return (error);
5571 }
5572 
5573 /*********************************************************************
5574  *
5575  *  MODULE FUNCTION DEFINITIONS
5576  *
5577  **********************************************************************/
5578 
5579 /*
5580  * - Start a fast taskqueue thread for each core
5581  * - Start a taskqueue for control operations
5582  */
5583 static int
iflib_module_init(void)5584 iflib_module_init(void)
5585 {
5586 	iflib_timer_default = hz / 2;
5587 	return (0);
5588 }
5589 
5590 static int
iflib_module_event_handler(module_t mod,int what,void * arg)5591 iflib_module_event_handler(module_t mod, int what, void *arg)
5592 {
5593 	int err;
5594 
5595 	switch (what) {
5596 	case MOD_LOAD:
5597 		if ((err = iflib_module_init()) != 0)
5598 			return (err);
5599 		break;
5600 	case MOD_UNLOAD:
5601 		return (EBUSY);
5602 	default:
5603 		return (EOPNOTSUPP);
5604 	}
5605 
5606 	return (0);
5607 }
5608 
5609 /*********************************************************************
5610  *
5611  *  PUBLIC FUNCTION DEFINITIONS
5612  *     ordered as in iflib.h
5613  *
5614  **********************************************************************/
5615 
5616 static void
_iflib_assert(if_shared_ctx_t sctx)5617 _iflib_assert(if_shared_ctx_t sctx)
5618 {
5619 	int i;
5620 
5621 	MPASS(sctx->isc_tx_maxsize);
5622 	MPASS(sctx->isc_tx_maxsegsize);
5623 
5624 	MPASS(sctx->isc_rx_maxsize);
5625 	MPASS(sctx->isc_rx_nsegments);
5626 	MPASS(sctx->isc_rx_maxsegsize);
5627 
5628 	MPASS(sctx->isc_nrxqs >= 1 && sctx->isc_nrxqs <= 8);
5629 	for (i = 0; i < sctx->isc_nrxqs; i++) {
5630 		MPASS(sctx->isc_nrxd_min[i]);
5631 		MPASS(powerof2(sctx->isc_nrxd_min[i]));
5632 		MPASS(sctx->isc_nrxd_max[i]);
5633 		MPASS(powerof2(sctx->isc_nrxd_max[i]));
5634 		MPASS(sctx->isc_nrxd_default[i]);
5635 		MPASS(powerof2(sctx->isc_nrxd_default[i]));
5636 	}
5637 
5638 	MPASS(sctx->isc_ntxqs >= 1 && sctx->isc_ntxqs <= 8);
5639 	for (i = 0; i < sctx->isc_ntxqs; i++) {
5640 		MPASS(sctx->isc_ntxd_min[i]);
5641 		MPASS(powerof2(sctx->isc_ntxd_min[i]));
5642 		MPASS(sctx->isc_ntxd_max[i]);
5643 		MPASS(powerof2(sctx->isc_ntxd_max[i]));
5644 		MPASS(sctx->isc_ntxd_default[i]);
5645 		MPASS(powerof2(sctx->isc_ntxd_default[i]));
5646 	}
5647 }
5648 
5649 static void
_iflib_pre_assert(if_softc_ctx_t scctx)5650 _iflib_pre_assert(if_softc_ctx_t scctx)
5651 {
5652 
5653 	MPASS(scctx->isc_txrx->ift_txd_encap);
5654 	MPASS(scctx->isc_txrx->ift_txd_flush);
5655 	MPASS(scctx->isc_txrx->ift_txd_credits_update);
5656 	MPASS(scctx->isc_txrx->ift_rxd_available);
5657 	MPASS(scctx->isc_txrx->ift_rxd_pkt_get);
5658 	MPASS(scctx->isc_txrx->ift_rxd_refill);
5659 	MPASS(scctx->isc_txrx->ift_rxd_flush);
5660 }
5661 
5662 static void
iflib_register(if_ctx_t ctx)5663 iflib_register(if_ctx_t ctx)
5664 {
5665 	if_shared_ctx_t sctx = ctx->ifc_sctx;
5666 	driver_t *driver = sctx->isc_driver;
5667 	device_t dev = ctx->ifc_dev;
5668 	if_t ifp;
5669 
5670 	_iflib_assert(sctx);
5671 
5672 	CTX_LOCK_INIT(ctx);
5673 	STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev));
5674 	ifp = ctx->ifc_ifp = if_alloc_dev(IFT_ETHER, dev);
5675 
5676 	/*
5677 	 * Initialize our context's device specific methods
5678 	 */
5679 	kobj_init((kobj_t) ctx, (kobj_class_t) driver);
5680 	kobj_class_compile((kobj_class_t) driver);
5681 
5682 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
5683 	if_setsoftc(ifp, ctx);
5684 	if_setdev(ifp, dev);
5685 	if_setinitfn(ifp, iflib_if_init);
5686 	if_setioctlfn(ifp, iflib_if_ioctl);
5687 #ifdef ALTQ
5688 	if_setstartfn(ifp, iflib_altq_if_start);
5689 	if_settransmitfn(ifp, iflib_altq_if_transmit);
5690 	if_setsendqready(ifp);
5691 #else
5692 	if_settransmitfn(ifp, iflib_if_transmit);
5693 #endif
5694 	if_setqflushfn(ifp, iflib_if_qflush);
5695 	if_setgetcounterfn(ifp, iflib_if_get_counter);
5696 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
5697 	ctx->ifc_vlan_attach_event =
5698 	    EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx,
5699 		    EVENTHANDLER_PRI_FIRST);
5700 	ctx->ifc_vlan_detach_event =
5701 	    EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx,
5702 		    EVENTHANDLER_PRI_FIRST);
5703 
5704 	if ((sctx->isc_flags & IFLIB_DRIVER_MEDIA) == 0) {
5705 		ctx->ifc_mediap = &ctx->ifc_media;
5706 		ifmedia_init(ctx->ifc_mediap, IFM_IMASK,
5707 		    iflib_media_change, iflib_media_status);
5708 	}
5709 }
5710 
5711 static void
iflib_unregister_vlan_handlers(if_ctx_t ctx)5712 iflib_unregister_vlan_handlers(if_ctx_t ctx)
5713 {
5714 	/* Unregister VLAN events */
5715 	if (ctx->ifc_vlan_attach_event != NULL) {
5716 		EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event);
5717 		ctx->ifc_vlan_attach_event = NULL;
5718 	}
5719 	if (ctx->ifc_vlan_detach_event != NULL) {
5720 		EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event);
5721 		ctx->ifc_vlan_detach_event = NULL;
5722 	}
5723 
5724 }
5725 
5726 static void
iflib_deregister(if_ctx_t ctx)5727 iflib_deregister(if_ctx_t ctx)
5728 {
5729 	if_t ifp = ctx->ifc_ifp;
5730 
5731 	/* Remove all media */
5732 	ifmedia_removeall(&ctx->ifc_media);
5733 
5734 	/* Ensure that VLAN event handlers are unregistered */
5735 	iflib_unregister_vlan_handlers(ctx);
5736 
5737 	/* Release kobject reference */
5738 	kobj_delete((kobj_t) ctx, NULL);
5739 
5740 	/* Free the ifnet structure */
5741 	if_free(ifp);
5742 
5743 	STATE_LOCK_DESTROY(ctx);
5744 
5745 	/* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/
5746 	CTX_LOCK_DESTROY(ctx);
5747 }
5748 
5749 static int
iflib_queues_alloc(if_ctx_t ctx)5750 iflib_queues_alloc(if_ctx_t ctx)
5751 {
5752 	if_shared_ctx_t sctx = ctx->ifc_sctx;
5753 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
5754 	device_t dev = ctx->ifc_dev;
5755 	int nrxqsets = scctx->isc_nrxqsets;
5756 	int ntxqsets = scctx->isc_ntxqsets;
5757 	iflib_txq_t txq;
5758 	iflib_rxq_t rxq;
5759 	iflib_fl_t fl = NULL;
5760 	int i, j, cpu, err, txconf, rxconf;
5761 	iflib_dma_info_t ifdip;
5762 	uint32_t *rxqsizes = scctx->isc_rxqsizes;
5763 	uint32_t *txqsizes = scctx->isc_txqsizes;
5764 	uint8_t nrxqs = sctx->isc_nrxqs;
5765 	uint8_t ntxqs = sctx->isc_ntxqs;
5766 	int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1;
5767 	int fl_offset = (sctx->isc_flags & IFLIB_HAS_RXCQ ? 1 : 0);
5768 	caddr_t *vaddrs;
5769 	uint64_t *paddrs;
5770 
5771 	KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1"));
5772 	KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1"));
5773 	KASSERT(nrxqs >= fl_offset + nfree_lists,
5774 	    ("there must be at least a rxq for each free list"));
5775 
5776 	/* Allocate the TX ring struct memory */
5777 	if (!(ctx->ifc_txqs =
5778 	    (iflib_txq_t) malloc(sizeof(struct iflib_txq) *
5779 		    ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5780 		device_printf(dev, "Unable to allocate TX ring memory\n");
5781 		err = ENOMEM;
5782 		goto fail;
5783 	}
5784 
5785 	/* Now allocate the RX */
5786 	if (!(ctx->ifc_rxqs =
5787 	    (iflib_rxq_t) malloc(sizeof(struct iflib_rxq) *
5788 		    nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) {
5789 		device_printf(dev, "Unable to allocate RX ring memory\n");
5790 		err = ENOMEM;
5791 		goto rx_fail;
5792 	}
5793 
5794 	txq = ctx->ifc_txqs;
5795 	rxq = ctx->ifc_rxqs;
5796 
5797 	/*
5798 	 * XXX handle allocation failure
5799 	 */
5800 	for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) {
5801 		/* Set up some basics */
5802 
5803 		if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs,
5804 		    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5805 			device_printf(dev,
5806 			    "Unable to allocate TX DMA info memory\n");
5807 			err = ENOMEM;
5808 			goto err_tx_desc;
5809 		}
5810 		txq->ift_ifdi = ifdip;
5811 		for (j = 0; j < ntxqs; j++, ifdip++) {
5812 			if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) {
5813 				device_printf(dev,
5814 				    "Unable to allocate TX descriptors\n");
5815 				err = ENOMEM;
5816 				goto err_tx_desc;
5817 			}
5818 			txq->ift_txd_size[j] = scctx->isc_txd_size[j];
5819 			bzero((void *)ifdip->idi_vaddr, txqsizes[j]);
5820 		}
5821 		txq->ift_ctx = ctx;
5822 		txq->ift_id = i;
5823 		if (sctx->isc_flags & IFLIB_HAS_TXCQ) {
5824 			txq->ift_br_offset = 1;
5825 		} else {
5826 			txq->ift_br_offset = 0;
5827 		}
5828 
5829 		if (iflib_txsd_alloc(txq)) {
5830 			device_printf(dev, "Critical Failure setting up TX buffers\n");
5831 			err = ENOMEM;
5832 			goto err_tx_desc;
5833 		}
5834 
5835 		/* Initialize the TX lock */
5836 		snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:TX(%d):callout",
5837 		    device_get_nameunit(dev), txq->ift_id);
5838 		mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF);
5839 		callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0);
5840 		txq->ift_timer.c_cpu = cpu;
5841 #ifdef DEV_NETMAP
5842 		callout_init_mtx(&txq->ift_netmap_timer, &txq->ift_mtx, 0);
5843 		txq->ift_netmap_timer.c_cpu = cpu;
5844 #endif /* DEV_NETMAP */
5845 
5846 		err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain,
5847 		    iflib_txq_can_drain, M_IFLIB, M_WAITOK);
5848 		if (err) {
5849 			/* XXX free any allocated rings */
5850 			device_printf(dev, "Unable to allocate buf_ring\n");
5851 			goto err_tx_desc;
5852 		}
5853 		txq->ift_reclaim_thresh = ctx->ifc_sysctl_tx_reclaim_thresh;
5854 	}
5855 
5856 	for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) {
5857 		/* Set up some basics */
5858 		callout_init(&rxq->ifr_watchdog, 1);
5859 
5860 		if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs,
5861 		    M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) {
5862 			device_printf(dev,
5863 			    "Unable to allocate RX DMA info memory\n");
5864 			err = ENOMEM;
5865 			goto err_tx_desc;
5866 		}
5867 
5868 		rxq->ifr_ifdi = ifdip;
5869 		/* XXX this needs to be changed if #rx queues != #tx queues */
5870 		rxq->ifr_ntxqirq = 1;
5871 		rxq->ifr_txqid[0] = i;
5872 		for (j = 0; j < nrxqs; j++, ifdip++) {
5873 			if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) {
5874 				device_printf(dev,
5875 				    "Unable to allocate RX descriptors\n");
5876 				err = ENOMEM;
5877 				goto err_tx_desc;
5878 			}
5879 			bzero((void *)ifdip->idi_vaddr, rxqsizes[j]);
5880 		}
5881 		rxq->ifr_ctx = ctx;
5882 		rxq->ifr_id = i;
5883 		rxq->ifr_fl_offset = fl_offset;
5884 		rxq->ifr_nfl = nfree_lists;
5885 		if (!(fl =
5886 		    (iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) {
5887 			device_printf(dev, "Unable to allocate free list memory\n");
5888 			err = ENOMEM;
5889 			goto err_tx_desc;
5890 		}
5891 		rxq->ifr_fl = fl;
5892 		for (j = 0; j < nfree_lists; j++) {
5893 			fl[j].ifl_rxq = rxq;
5894 			fl[j].ifl_id = j;
5895 			fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset];
5896 			fl[j].ifl_rxd_size = scctx->isc_rxd_size[j];
5897 		}
5898 		/* Allocate receive buffers for the ring */
5899 		if (iflib_rxsd_alloc(rxq)) {
5900 			device_printf(dev,
5901 			    "Critical Failure setting up receive buffers\n");
5902 			err = ENOMEM;
5903 			goto err_rx_desc;
5904 		}
5905 
5906 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++)
5907 			fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB,
5908 			    M_WAITOK);
5909 	}
5910 
5911 	/* TXQs */
5912 	vaddrs = malloc(sizeof(caddr_t)  * ntxqsets * ntxqs, M_IFLIB, M_WAITOK);
5913 	paddrs = malloc(sizeof(uint64_t) * ntxqsets * ntxqs, M_IFLIB, M_WAITOK);
5914 	for (i = 0; i < ntxqsets; i++) {
5915 		iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi;
5916 
5917 		for (j = 0; j < ntxqs; j++, di++) {
5918 			vaddrs[i * ntxqs + j] = di->idi_vaddr;
5919 			paddrs[i * ntxqs + j] = di->idi_paddr;
5920 		}
5921 	}
5922 	if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) {
5923 		device_printf(ctx->ifc_dev,
5924 		    "Unable to allocate device TX queue\n");
5925 		iflib_tx_structures_free(ctx);
5926 		free(vaddrs, M_IFLIB);
5927 		free(paddrs, M_IFLIB);
5928 		goto err_rx_desc;
5929 	}
5930 	free(vaddrs, M_IFLIB);
5931 	free(paddrs, M_IFLIB);
5932 
5933 	/* RXQs */
5934 	vaddrs = malloc(sizeof(caddr_t)  * nrxqsets * nrxqs, M_IFLIB, M_WAITOK);
5935 	paddrs = malloc(sizeof(uint64_t) * nrxqsets * nrxqs, M_IFLIB, M_WAITOK);
5936 	for (i = 0; i < nrxqsets; i++) {
5937 		iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi;
5938 
5939 		for (j = 0; j < nrxqs; j++, di++) {
5940 			vaddrs[i * nrxqs + j] = di->idi_vaddr;
5941 			paddrs[i * nrxqs + j] = di->idi_paddr;
5942 		}
5943 	}
5944 	if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) {
5945 		device_printf(ctx->ifc_dev,
5946 		    "Unable to allocate device RX queue\n");
5947 		iflib_tx_structures_free(ctx);
5948 		free(vaddrs, M_IFLIB);
5949 		free(paddrs, M_IFLIB);
5950 		goto err_rx_desc;
5951 	}
5952 	free(vaddrs, M_IFLIB);
5953 	free(paddrs, M_IFLIB);
5954 
5955 	return (0);
5956 
5957 /* XXX handle allocation failure changes */
5958 err_rx_desc:
5959 err_tx_desc:
5960 rx_fail:
5961 	if (ctx->ifc_rxqs != NULL)
5962 		free(ctx->ifc_rxqs, M_IFLIB);
5963 	ctx->ifc_rxqs = NULL;
5964 	if (ctx->ifc_txqs != NULL)
5965 		free(ctx->ifc_txqs, M_IFLIB);
5966 	ctx->ifc_txqs = NULL;
5967 fail:
5968 	return (err);
5969 }
5970 
5971 static int
iflib_tx_structures_setup(if_ctx_t ctx)5972 iflib_tx_structures_setup(if_ctx_t ctx)
5973 {
5974 	iflib_txq_t txq = ctx->ifc_txqs;
5975 	int i;
5976 
5977 	for (i = 0; i < NTXQSETS(ctx); i++, txq++)
5978 		iflib_txq_setup(txq);
5979 
5980 	return (0);
5981 }
5982 
5983 static void
iflib_tx_structures_free(if_ctx_t ctx)5984 iflib_tx_structures_free(if_ctx_t ctx)
5985 {
5986 	iflib_txq_t txq = ctx->ifc_txqs;
5987 	if_shared_ctx_t sctx = ctx->ifc_sctx;
5988 	int i, j;
5989 
5990 	for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
5991 		for (j = 0; j < sctx->isc_ntxqs; j++)
5992 			iflib_dma_free(&txq->ift_ifdi[j]);
5993 		iflib_txq_destroy(txq);
5994 	}
5995 	free(ctx->ifc_txqs, M_IFLIB);
5996 	ctx->ifc_txqs = NULL;
5997 }
5998 
5999 /*********************************************************************
6000  *
6001  *  Initialize all receive rings.
6002  *
6003  **********************************************************************/
6004 static int
iflib_rx_structures_setup(if_ctx_t ctx)6005 iflib_rx_structures_setup(if_ctx_t ctx)
6006 {
6007 	iflib_rxq_t rxq = ctx->ifc_rxqs;
6008 	int q;
6009 #if defined(INET6) || defined(INET)
6010 	int err, i;
6011 #endif
6012 
6013 	for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) {
6014 #if defined(INET6) || defined(INET)
6015 		err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp,
6016 		    TCP_LRO_ENTRIES, min(1024,
6017 		    ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset]));
6018 		if (err != 0) {
6019 			device_printf(ctx->ifc_dev,
6020 			    "LRO Initialization failed!\n");
6021 			goto fail;
6022 		}
6023 #endif
6024 		IFDI_RXQ_SETUP(ctx, rxq->ifr_id);
6025 	}
6026 	return (0);
6027 #if defined(INET6) || defined(INET)
6028 fail:
6029 	/*
6030 	 * Free LRO resources allocated so far, we will only handle
6031 	 * the rings that completed, the failing case will have
6032 	 * cleaned up for itself.  'q' failed, so its the terminus.
6033 	 */
6034 	rxq = ctx->ifc_rxqs;
6035 	for (i = 0; i < q; ++i, rxq++) {
6036 		tcp_lro_free(&rxq->ifr_lc);
6037 	}
6038 	return (err);
6039 #endif
6040 }
6041 
6042 /*********************************************************************
6043  *
6044  *  Free all receive rings.
6045  *
6046  **********************************************************************/
6047 static void
iflib_rx_structures_free(if_ctx_t ctx)6048 iflib_rx_structures_free(if_ctx_t ctx)
6049 {
6050 	iflib_rxq_t rxq = ctx->ifc_rxqs;
6051 	if_shared_ctx_t sctx = ctx->ifc_sctx;
6052 	int i, j;
6053 
6054 	for (i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) {
6055 		for (j = 0; j < sctx->isc_nrxqs; j++)
6056 			iflib_dma_free(&rxq->ifr_ifdi[j]);
6057 		iflib_rx_sds_free(rxq);
6058 #if defined(INET6) || defined(INET)
6059 		tcp_lro_free(&rxq->ifr_lc);
6060 #endif
6061 	}
6062 	free(ctx->ifc_rxqs, M_IFLIB);
6063 	ctx->ifc_rxqs = NULL;
6064 }
6065 
6066 static int
iflib_qset_structures_setup(if_ctx_t ctx)6067 iflib_qset_structures_setup(if_ctx_t ctx)
6068 {
6069 	int err;
6070 
6071 	/*
6072 	 * It is expected that the caller takes care of freeing queues if this
6073 	 * fails.
6074 	 */
6075 	if ((err = iflib_tx_structures_setup(ctx)) != 0) {
6076 		device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err);
6077 		return (err);
6078 	}
6079 
6080 	if ((err = iflib_rx_structures_setup(ctx)) != 0)
6081 		device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err);
6082 
6083 	return (err);
6084 }
6085 
6086 int
iflib_irq_alloc(if_ctx_t ctx,if_irq_t irq,int rid,driver_filter_t filter,void * filter_arg,driver_intr_t handler,void * arg,const char * name)6087 iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid,
6088 		driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name)
6089 {
6090 
6091 	return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name));
6092 }
6093 
6094 /* Just to avoid copy/paste */
6095 static inline int
iflib_irq_set_affinity(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,int qid,struct grouptask * gtask,struct taskqgroup * tqg,void * uniq,const char * name)6096 iflib_irq_set_affinity(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
6097     int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq,
6098     const char *name)
6099 {
6100 	device_t dev;
6101 	unsigned int base_cpuid, cpuid;
6102 	int err;
6103 
6104 	dev = ctx->ifc_dev;
6105 	base_cpuid = ctx->ifc_sysctl_core_offset;
6106 	cpuid = get_cpuid_for_queue(ctx, base_cpuid, qid, type == IFLIB_INTR_TX);
6107 	err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, dev,
6108 	    irq ? irq->ii_res : NULL, name);
6109 	if (err) {
6110 		device_printf(dev, "taskqgroup_attach_cpu failed %d\n", err);
6111 		return (err);
6112 	}
6113 #ifdef notyet
6114 	if (cpuid > ctx->ifc_cpuid_highest)
6115 		ctx->ifc_cpuid_highest = cpuid;
6116 #endif
6117 	return (0);
6118 }
6119 
6120 /*
6121  * Allocate a hardware interrupt for subctx using the parent (ctx)'s hardware
6122  * resources.
6123  *
6124  * Similar to iflib_irq_alloc_generic(), but for interrupt type IFLIB_INTR_RXTX
6125  * only.
6126  *
6127  * XXX: Could be removed if subctx's dev has its intr resource allocation
6128  * methods replaced with custom ones?
6129  */
6130 int
iflib_irq_alloc_generic_subctx(if_ctx_t ctx,if_ctx_t subctx,if_irq_t irq,int rid,iflib_intr_type_t type,driver_filter_t * filter,void * filter_arg,int qid,const char * name)6131 iflib_irq_alloc_generic_subctx(if_ctx_t ctx, if_ctx_t subctx, if_irq_t irq,
6132 			       int rid, iflib_intr_type_t type,
6133 			       driver_filter_t *filter, void *filter_arg,
6134 			       int qid, const char *name)
6135 {
6136 	device_t dev, subdev;
6137 	struct grouptask *gtask;
6138 	struct taskqgroup *tqg;
6139 	iflib_filter_info_t info;
6140 	gtask_fn_t *fn;
6141 	int tqrid, err;
6142 	driver_filter_t *intr_fast;
6143 	void *q;
6144 
6145 	MPASS(ctx != NULL);
6146 	MPASS(subctx != NULL);
6147 
6148 	tqrid = rid;
6149 	dev = ctx->ifc_dev;
6150 	subdev = subctx->ifc_dev;
6151 
6152 	switch (type) {
6153 	case IFLIB_INTR_RXTX:
6154 		q = &subctx->ifc_rxqs[qid];
6155 		info = &subctx->ifc_rxqs[qid].ifr_filter_info;
6156 		gtask = &subctx->ifc_rxqs[qid].ifr_task;
6157 		tqg = qgroup_if_io_tqg;
6158 		fn = _task_fn_rx;
6159 		intr_fast = iflib_fast_intr_rxtx;
6160 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6161 		break;
6162 	default:
6163 		device_printf(dev, "%s: unknown net intr type for subctx %s (%d)\n",
6164 		    __func__, device_get_nameunit(subdev), type);
6165 		return (EINVAL);
6166 	}
6167 
6168 	info->ifi_filter = filter;
6169 	info->ifi_filter_arg = filter_arg;
6170 	info->ifi_task = gtask;
6171 	info->ifi_ctx = q;
6172 
6173 	NET_GROUPTASK_INIT(gtask, 0, fn, q);
6174 
6175 	/* Allocate interrupts from hardware using parent context */
6176 	err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name);
6177 	if (err != 0) {
6178 		device_printf(dev, "_iflib_irq_alloc failed for subctx %s: %d\n",
6179 		    device_get_nameunit(subdev), err);
6180 		return (err);
6181 	}
6182 
6183 	if (tqrid != -1) {
6184 		err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q,
6185 		    name);
6186 		if (err)
6187 			return (err);
6188 	} else {
6189 		taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
6190 	}
6191 
6192 	return (0);
6193 }
6194 
6195 int
iflib_irq_alloc_generic(if_ctx_t ctx,if_irq_t irq,int rid,iflib_intr_type_t type,driver_filter_t * filter,void * filter_arg,int qid,const char * name)6196 iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid,
6197 			iflib_intr_type_t type, driver_filter_t *filter,
6198 			void *filter_arg, int qid, const char *name)
6199 {
6200 	device_t dev;
6201 	struct grouptask *gtask;
6202 	struct taskqgroup *tqg;
6203 	iflib_filter_info_t info;
6204 	gtask_fn_t *fn;
6205 	int tqrid, err;
6206 	driver_filter_t *intr_fast;
6207 	void *q;
6208 
6209 	info = &ctx->ifc_filter_info;
6210 	tqrid = rid;
6211 
6212 	switch (type) {
6213 	/* XXX merge tx/rx for netmap? */
6214 	case IFLIB_INTR_TX:
6215 		q = &ctx->ifc_txqs[qid];
6216 		info = &ctx->ifc_txqs[qid].ift_filter_info;
6217 		gtask = &ctx->ifc_txqs[qid].ift_task;
6218 		tqg = qgroup_if_io_tqg;
6219 		fn = _task_fn_tx;
6220 		intr_fast = iflib_fast_intr;
6221 		GROUPTASK_INIT(gtask, 0, fn, q);
6222 		ctx->ifc_flags |= IFC_NETMAP_TX_IRQ;
6223 		break;
6224 	case IFLIB_INTR_RX:
6225 		q = &ctx->ifc_rxqs[qid];
6226 		info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6227 		gtask = &ctx->ifc_rxqs[qid].ifr_task;
6228 		tqg = qgroup_if_io_tqg;
6229 		fn = _task_fn_rx;
6230 		intr_fast = iflib_fast_intr;
6231 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6232 		break;
6233 	case IFLIB_INTR_RXTX:
6234 		q = &ctx->ifc_rxqs[qid];
6235 		info = &ctx->ifc_rxqs[qid].ifr_filter_info;
6236 		gtask = &ctx->ifc_rxqs[qid].ifr_task;
6237 		tqg = qgroup_if_io_tqg;
6238 		fn = _task_fn_rx;
6239 		intr_fast = iflib_fast_intr_rxtx;
6240 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6241 		break;
6242 	case IFLIB_INTR_ADMIN:
6243 		q = ctx;
6244 		tqrid = -1;
6245 		info = &ctx->ifc_filter_info;
6246 		gtask = NULL;
6247 		intr_fast = iflib_fast_intr_ctx;
6248 		break;
6249 	default:
6250 		device_printf(ctx->ifc_dev, "%s: unknown net intr type\n",
6251 		    __func__);
6252 		return (EINVAL);
6253 	}
6254 
6255 	info->ifi_filter = filter;
6256 	info->ifi_filter_arg = filter_arg;
6257 	info->ifi_task = gtask;
6258 	info->ifi_ctx = q;
6259 
6260 	dev = ctx->ifc_dev;
6261 	err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info,  name);
6262 	if (err != 0) {
6263 		device_printf(dev, "_iflib_irq_alloc failed %d\n", err);
6264 		return (err);
6265 	}
6266 	if (type == IFLIB_INTR_ADMIN)
6267 		return (0);
6268 
6269 	if (tqrid != -1) {
6270 		err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q,
6271 		    name);
6272 		if (err)
6273 			return (err);
6274 	} else {
6275 		taskqgroup_attach(tqg, gtask, q, dev, irq->ii_res, name);
6276 	}
6277 
6278 	return (0);
6279 }
6280 
6281 void
iflib_softirq_alloc_generic(if_ctx_t ctx,if_irq_t irq,iflib_intr_type_t type,void * arg,int qid,const char * name)6282 iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type,
6283 			    void *arg, int qid, const char *name)
6284 {
6285 	device_t dev;
6286 	struct grouptask *gtask;
6287 	struct taskqgroup *tqg;
6288 	gtask_fn_t *fn;
6289 	void *q;
6290 	int err;
6291 
6292 	switch (type) {
6293 	case IFLIB_INTR_TX:
6294 		q = &ctx->ifc_txqs[qid];
6295 		gtask = &ctx->ifc_txqs[qid].ift_task;
6296 		tqg = qgroup_if_io_tqg;
6297 		fn = _task_fn_tx;
6298 		GROUPTASK_INIT(gtask, 0, fn, q);
6299 		break;
6300 	case IFLIB_INTR_RX:
6301 		q = &ctx->ifc_rxqs[qid];
6302 		gtask = &ctx->ifc_rxqs[qid].ifr_task;
6303 		tqg = qgroup_if_io_tqg;
6304 		fn = _task_fn_rx;
6305 		NET_GROUPTASK_INIT(gtask, 0, fn, q);
6306 		break;
6307 	case IFLIB_INTR_IOV:
6308 		TASK_INIT(&ctx->ifc_vflr_task, 0, _task_fn_iov, ctx);
6309 		return;
6310 	default:
6311 		panic("unknown net intr type");
6312 	}
6313 	err = iflib_irq_set_affinity(ctx, irq, type, qid, gtask, tqg, q, name);
6314 	if (err) {
6315 		dev = ctx->ifc_dev;
6316 		taskqgroup_attach(tqg, gtask, q, dev, irq ? irq->ii_res : NULL,
6317 		    name);
6318 	}
6319 }
6320 
6321 void
iflib_irq_free(if_ctx_t ctx,if_irq_t irq)6322 iflib_irq_free(if_ctx_t ctx, if_irq_t irq)
6323 {
6324 
6325 	if (irq->ii_tag)
6326 		bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag);
6327 
6328 	if (irq->ii_res)
6329 		bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ,
6330 		    rman_get_rid(irq->ii_res), irq->ii_res);
6331 }
6332 
6333 static int
iflib_legacy_setup(if_ctx_t ctx,driver_filter_t filter,void * filter_arg,int * rid,const char * name)6334 iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name)
6335 {
6336 	iflib_txq_t txq = ctx->ifc_txqs;
6337 	iflib_rxq_t rxq = ctx->ifc_rxqs;
6338 	if_irq_t irq = &ctx->ifc_legacy_irq;
6339 	iflib_filter_info_t info;
6340 	device_t dev;
6341 	struct grouptask *gtask;
6342 	struct resource *res;
6343 	int err, tqrid;
6344 	bool rx_only;
6345 
6346 	info = &rxq->ifr_filter_info;
6347 	gtask = &rxq->ifr_task;
6348 	tqrid = *rid;
6349 	rx_only = (ctx->ifc_sctx->isc_flags & IFLIB_SINGLE_IRQ_RX_ONLY) != 0;
6350 
6351 	ctx->ifc_flags |= IFC_LEGACY;
6352 	info->ifi_filter = filter;
6353 	info->ifi_filter_arg = filter_arg;
6354 	info->ifi_task = gtask;
6355 	info->ifi_ctx = rxq;
6356 
6357 	dev = ctx->ifc_dev;
6358 	/* We allocate a single interrupt resource */
6359 	err = _iflib_irq_alloc(ctx, irq, tqrid, rx_only ? iflib_fast_intr :
6360 	    iflib_fast_intr_rxtx, NULL, info, name);
6361 	if (err != 0)
6362 		return (err);
6363 	NET_GROUPTASK_INIT(gtask, 0, _task_fn_rx, rxq);
6364 	res = irq->ii_res;
6365 	taskqgroup_attach(qgroup_if_io_tqg, gtask, rxq, dev, res, name);
6366 
6367 	GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq);
6368 	taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, dev, res,
6369 	    "tx");
6370 	return (0);
6371 }
6372 
6373 void
iflib_led_create(if_ctx_t ctx)6374 iflib_led_create(if_ctx_t ctx)
6375 {
6376 
6377 	ctx->ifc_led_dev = led_create(iflib_led_func, ctx,
6378 	    device_get_nameunit(ctx->ifc_dev));
6379 }
6380 
6381 void
iflib_tx_intr_deferred(if_ctx_t ctx,int txqid)6382 iflib_tx_intr_deferred(if_ctx_t ctx, int txqid)
6383 {
6384 
6385 	GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task);
6386 }
6387 
6388 void
iflib_rx_intr_deferred(if_ctx_t ctx,int rxqid)6389 iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid)
6390 {
6391 
6392 	GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task);
6393 }
6394 
6395 void
iflib_admin_intr_deferred(if_ctx_t ctx)6396 iflib_admin_intr_deferred(if_ctx_t ctx)
6397 {
6398 
6399 	taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_admin_task);
6400 }
6401 
6402 void
iflib_iov_intr_deferred(if_ctx_t ctx)6403 iflib_iov_intr_deferred(if_ctx_t ctx)
6404 {
6405 
6406 	taskqueue_enqueue(ctx->ifc_tq, &ctx->ifc_vflr_task);
6407 }
6408 
6409 void
iflib_io_tqg_attach(struct grouptask * gt,void * uniq,int cpu,const char * name)6410 iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, const char *name)
6411 {
6412 
6413 	taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, NULL, NULL,
6414 	    name);
6415 }
6416 
6417 void
iflib_config_task_init(if_ctx_t ctx,struct task * config_task,task_fn_t * fn)6418 iflib_config_task_init(if_ctx_t ctx, struct task *config_task, task_fn_t *fn)
6419 {
6420 	TASK_INIT(config_task, 0, fn, ctx);
6421 }
6422 
6423 void
iflib_config_task_enqueue(if_ctx_t ctx,struct task * config_task)6424 iflib_config_task_enqueue(if_ctx_t ctx, struct task *config_task)
6425 {
6426 	taskqueue_enqueue(ctx->ifc_tq, config_task);
6427 }
6428 
6429 void
iflib_link_state_change(if_ctx_t ctx,int link_state,uint64_t baudrate)6430 iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate)
6431 {
6432 	if_t ifp = ctx->ifc_ifp;
6433 	iflib_txq_t txq = ctx->ifc_txqs;
6434 
6435 	if_setbaudrate(ifp, baudrate);
6436 	if (baudrate >= IF_Gbps(10)) {
6437 		STATE_LOCK(ctx);
6438 		ctx->ifc_flags |= IFC_PREFETCH;
6439 		STATE_UNLOCK(ctx);
6440 	}
6441 	/* If link down, disable watchdog */
6442 	if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) {
6443 		for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++)
6444 			txq->ift_qstatus = IFLIB_QUEUE_IDLE;
6445 	}
6446 	ctx->ifc_link_state = link_state;
6447 	if_link_state_change(ifp, link_state);
6448 }
6449 
6450 static int
iflib_tx_credits_update(if_ctx_t ctx,iflib_txq_t txq)6451 iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq)
6452 {
6453 	int credits;
6454 #ifdef INVARIANTS
6455 	int credits_pre = txq->ift_cidx_processed;
6456 #endif
6457 
6458 	bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map,
6459 	    BUS_DMASYNC_POSTREAD);
6460 	if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0)
6461 		return (0);
6462 
6463 	txq->ift_processed += credits;
6464 	txq->ift_cidx_processed += credits;
6465 
6466 	MPASS(credits_pre + credits == txq->ift_cidx_processed);
6467 	if (txq->ift_cidx_processed >= txq->ift_size)
6468 		txq->ift_cidx_processed -= txq->ift_size;
6469 	return (credits);
6470 }
6471 
6472 static int
iflib_rxd_avail(if_ctx_t ctx,iflib_rxq_t rxq,qidx_t cidx,qidx_t budget)6473 iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget)
6474 {
6475 	iflib_fl_t fl;
6476 	u_int i;
6477 
6478 	for (i = 0, fl = &rxq->ifr_fl[0]; i < rxq->ifr_nfl; i++, fl++)
6479 		bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map,
6480 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6481 	return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx,
6482 	    budget));
6483 }
6484 
6485 void
iflib_add_int_delay_sysctl(if_ctx_t ctx,const char * name,const char * description,if_int_delay_info_t info,int offset,int value)6486 iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name,
6487 	const char *description, if_int_delay_info_t info,
6488 	int offset, int value)
6489 {
6490 	info->iidi_ctx = ctx;
6491 	info->iidi_offset = offset;
6492 	info->iidi_value = value;
6493 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev),
6494 	    SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)),
6495 	    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
6496 	    info, 0, iflib_sysctl_int_delay, "I", description);
6497 }
6498 
6499 struct sx *
iflib_ctx_lock_get(if_ctx_t ctx)6500 iflib_ctx_lock_get(if_ctx_t ctx)
6501 {
6502 
6503 	return (&ctx->ifc_ctx_sx);
6504 }
6505 
6506 static int
iflib_msix_init(if_ctx_t ctx)6507 iflib_msix_init(if_ctx_t ctx)
6508 {
6509 	device_t dev = ctx->ifc_dev;
6510 	if_shared_ctx_t sctx = ctx->ifc_sctx;
6511 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6512 	int admincnt, bar, err, iflib_num_rx_queues, iflib_num_tx_queues;
6513 	int msgs, queuemsgs, queues, rx_queues, tx_queues, vectors;
6514 
6515 	iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs;
6516 	iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs;
6517 
6518 	if (bootverbose)
6519 		device_printf(dev, "msix_init qsets capped at %d\n",
6520 		    imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets));
6521 
6522 	/* Override by tuneable */
6523 	if (scctx->isc_disable_msix)
6524 		goto msi;
6525 
6526 	/* First try MSI-X */
6527 	if ((msgs = pci_msix_count(dev)) == 0) {
6528 		if (bootverbose)
6529 			device_printf(dev, "MSI-X not supported or disabled\n");
6530 		goto msi;
6531 	}
6532 
6533 	bar = ctx->ifc_softc_ctx.isc_msix_bar;
6534 	/*
6535 	 * bar == -1 => "trust me I know what I'm doing"
6536 	 * Some drivers are for hardware that is so shoddily
6537 	 * documented that no one knows which bars are which
6538 	 * so the developer has to map all bars. This hack
6539 	 * allows shoddy garbage to use MSI-X in this framework.
6540 	 */
6541 	if (bar != -1) {
6542 		ctx->ifc_msix_mem = bus_alloc_resource_any(dev,
6543 		    SYS_RES_MEMORY, &bar, RF_ACTIVE);
6544 		if (ctx->ifc_msix_mem == NULL) {
6545 			device_printf(dev, "Unable to map MSI-X table\n");
6546 			goto msi;
6547 		}
6548 	}
6549 
6550 	admincnt = sctx->isc_admin_intrcnt;
6551 #if IFLIB_DEBUG
6552 	/* use only 1 qset in debug mode */
6553 	queuemsgs = min(msgs - admincnt, 1);
6554 #else
6555 	queuemsgs = msgs - admincnt;
6556 #endif
6557 #ifdef RSS
6558 	queues = imin(queuemsgs, rss_getnumbuckets());
6559 #else
6560 	queues = queuemsgs;
6561 #endif
6562 	queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues);
6563 	if (bootverbose)
6564 		device_printf(dev,
6565 		    "intr CPUs: %d queue msgs: %d admincnt: %d\n",
6566 		    CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt);
6567 #ifdef  RSS
6568 	/* If we're doing RSS, clamp at the number of RSS buckets */
6569 	if (queues > rss_getnumbuckets())
6570 		queues = rss_getnumbuckets();
6571 #endif
6572 	if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt)
6573 		rx_queues = iflib_num_rx_queues;
6574 	else
6575 		rx_queues = queues;
6576 
6577 	if (rx_queues > scctx->isc_nrxqsets)
6578 		rx_queues = scctx->isc_nrxqsets;
6579 
6580 	/*
6581 	 * We want this to be all logical CPUs by default
6582 	 */
6583 	if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues)
6584 		tx_queues = iflib_num_tx_queues;
6585 	else
6586 		tx_queues = mp_ncpus;
6587 
6588 	if (tx_queues > scctx->isc_ntxqsets)
6589 		tx_queues = scctx->isc_ntxqsets;
6590 
6591 	if (ctx->ifc_sysctl_qs_eq_override == 0) {
6592 #ifdef INVARIANTS
6593 		if (tx_queues != rx_queues)
6594 			device_printf(dev,
6595 			    "queue equality override not set, capping rx_queues at %d and tx_queues at %d\n",
6596 			    min(rx_queues, tx_queues), min(rx_queues, tx_queues));
6597 #endif
6598 		tx_queues = min(rx_queues, tx_queues);
6599 		rx_queues = min(rx_queues, tx_queues);
6600 	}
6601 
6602 	vectors = rx_queues + admincnt;
6603 	if (msgs < vectors) {
6604 		device_printf(dev,
6605 		    "insufficient number of MSI-X vectors "
6606 		    "(supported %d, need %d)\n", msgs, vectors);
6607 		goto msi;
6608 	}
6609 
6610 	device_printf(dev, "Using %d RX queues %d TX queues\n", rx_queues,
6611 	    tx_queues);
6612 	msgs = vectors;
6613 	if ((err = pci_alloc_msix(dev, &vectors)) == 0) {
6614 		if (vectors != msgs) {
6615 			device_printf(dev,
6616 			    "Unable to allocate sufficient MSI-X vectors "
6617 			    "(got %d, need %d)\n", vectors, msgs);
6618 			pci_release_msi(dev);
6619 			if (bar != -1) {
6620 				bus_release_resource(dev, SYS_RES_MEMORY, bar,
6621 				    ctx->ifc_msix_mem);
6622 				ctx->ifc_msix_mem = NULL;
6623 			}
6624 			goto msi;
6625 		}
6626 		device_printf(dev, "Using MSI-X interrupts with %d vectors\n",
6627 		    vectors);
6628 		scctx->isc_vectors = vectors;
6629 		scctx->isc_nrxqsets = rx_queues;
6630 		scctx->isc_ntxqsets = tx_queues;
6631 		scctx->isc_intr = IFLIB_INTR_MSIX;
6632 
6633 		return (vectors);
6634 	} else {
6635 		device_printf(dev,
6636 		    "failed to allocate %d MSI-X vectors, err: %d\n", vectors,
6637 		    err);
6638 		if (bar != -1) {
6639 			bus_release_resource(dev, SYS_RES_MEMORY, bar,
6640 			    ctx->ifc_msix_mem);
6641 			ctx->ifc_msix_mem = NULL;
6642 		}
6643 	}
6644 
6645 msi:
6646 	vectors = pci_msi_count(dev);
6647 	scctx->isc_nrxqsets = 1;
6648 	scctx->isc_ntxqsets = 1;
6649 	scctx->isc_vectors = vectors;
6650 	if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) {
6651 		device_printf(dev, "Using an MSI interrupt\n");
6652 		scctx->isc_intr = IFLIB_INTR_MSI;
6653 	} else {
6654 		scctx->isc_vectors = 1;
6655 		device_printf(dev, "Using a Legacy interrupt\n");
6656 		scctx->isc_intr = IFLIB_INTR_LEGACY;
6657 	}
6658 
6659 	return (vectors);
6660 }
6661 
6662 static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" };
6663 
6664 static int
mp_ring_state_handler(SYSCTL_HANDLER_ARGS)6665 mp_ring_state_handler(SYSCTL_HANDLER_ARGS)
6666 {
6667 	int rc;
6668 	uint16_t *state = ((uint16_t *)oidp->oid_arg1);
6669 	struct sbuf *sb;
6670 	const char *ring_state = "UNKNOWN";
6671 
6672 	/* XXX needed ? */
6673 	rc = sysctl_wire_old_buffer(req, 0);
6674 	MPASS(rc == 0);
6675 	if (rc != 0)
6676 		return (rc);
6677 	sb = sbuf_new_for_sysctl(NULL, NULL, 80, req);
6678 	MPASS(sb != NULL);
6679 	if (sb == NULL)
6680 		return (ENOMEM);
6681 	if (state[3] <= 3)
6682 		ring_state = ring_states[state[3]];
6683 
6684 	sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s",
6685 		    state[0], state[1], state[2], ring_state);
6686 	rc = sbuf_finish(sb);
6687 	sbuf_delete(sb);
6688 	return (rc);
6689 }
6690 
6691 enum iflib_ndesc_handler {
6692 	IFLIB_NTXD_HANDLER,
6693 	IFLIB_NRXD_HANDLER,
6694 };
6695 
6696 static int
mp_ndesc_handler(SYSCTL_HANDLER_ARGS)6697 mp_ndesc_handler(SYSCTL_HANDLER_ARGS)
6698 {
6699 	if_ctx_t ctx = (void *)arg1;
6700 	enum iflib_ndesc_handler type = arg2;
6701 	char buf[256] = {0};
6702 	qidx_t *ndesc;
6703 	char *p, *next;
6704 	int nqs, rc, i;
6705 
6706 	nqs = 8;
6707 	switch (type) {
6708 	case IFLIB_NTXD_HANDLER:
6709 		ndesc = ctx->ifc_sysctl_ntxds;
6710 		if (ctx->ifc_sctx)
6711 			nqs = ctx->ifc_sctx->isc_ntxqs;
6712 		break;
6713 	case IFLIB_NRXD_HANDLER:
6714 		ndesc = ctx->ifc_sysctl_nrxds;
6715 		if (ctx->ifc_sctx)
6716 			nqs = ctx->ifc_sctx->isc_nrxqs;
6717 		break;
6718 	default:
6719 		printf("%s: unhandled type\n", __func__);
6720 		return (EINVAL);
6721 	}
6722 	if (nqs == 0)
6723 		nqs = 8;
6724 
6725 	for (i = 0; i < 8; i++) {
6726 		if (i >= nqs)
6727 			break;
6728 		if (i)
6729 			strcat(buf, ",");
6730 		sprintf(strchr(buf, 0), "%d", ndesc[i]);
6731 	}
6732 
6733 	rc = sysctl_handle_string(oidp, buf, sizeof(buf), req);
6734 	if (rc || req->newptr == NULL)
6735 		return (rc);
6736 
6737 	for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p;
6738 	    i++, p = strsep(&next, " ,")) {
6739 		ndesc[i] = strtoul(p, NULL, 10);
6740 	}
6741 
6742 	return (rc);
6743 }
6744 
6745 static int
iflib_handle_tx_reclaim_thresh(SYSCTL_HANDLER_ARGS)6746 iflib_handle_tx_reclaim_thresh(SYSCTL_HANDLER_ARGS)
6747 {
6748 	if_ctx_t ctx = (void *)arg1;
6749 	iflib_txq_t txq;
6750 	int i, err;
6751 	int thresh;
6752 
6753 	thresh = ctx->ifc_sysctl_tx_reclaim_thresh;
6754 	err = sysctl_handle_int(oidp, &thresh, arg2, req);
6755 	if (err != 0) {
6756 		return err;
6757 	}
6758 
6759 	if (thresh == ctx->ifc_sysctl_tx_reclaim_thresh)
6760 		return 0;
6761 
6762 	if (thresh > ctx->ifc_softc_ctx.isc_ntxd[0] / 2) {
6763 		device_printf(ctx->ifc_dev, "TX Reclaim thresh must be <= %d\n",
6764 		    ctx->ifc_softc_ctx.isc_ntxd[0] / 2);
6765 		return (EINVAL);
6766 	}
6767 
6768 	ctx->ifc_sysctl_tx_reclaim_thresh = thresh;
6769 	if (ctx->ifc_txqs == NULL)
6770 		return (err);
6771 
6772 	txq = &ctx->ifc_txqs[0];
6773 	for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
6774 		txq->ift_reclaim_thresh = thresh;
6775 	}
6776 	return (err);
6777 }
6778 
6779 static int
iflib_handle_tx_reclaim_ticks(SYSCTL_HANDLER_ARGS)6780 iflib_handle_tx_reclaim_ticks(SYSCTL_HANDLER_ARGS)
6781 {
6782 	if_ctx_t ctx = (void *)arg1;
6783 	iflib_txq_t txq;
6784 	int i, err;
6785 	int ticks;
6786 
6787 	ticks = ctx->ifc_sysctl_tx_reclaim_ticks;
6788 	err = sysctl_handle_int(oidp, &ticks, arg2, req);
6789 	if (err != 0) {
6790 		return err;
6791 	}
6792 
6793 	if (ticks == ctx->ifc_sysctl_tx_reclaim_ticks)
6794 		return 0;
6795 
6796 	if (ticks > hz) {
6797 		device_printf(ctx->ifc_dev,
6798 		    "TX Reclaim ticks must be <= hz (%d)\n", hz);
6799 		return (EINVAL);
6800 	}
6801 
6802 	ctx->ifc_sysctl_tx_reclaim_ticks = ticks;
6803 	if (ctx->ifc_txqs == NULL)
6804 		return (err);
6805 
6806 	txq = &ctx->ifc_txqs[0];
6807 	for (i = 0; i < NTXQSETS(ctx); i++, txq++) {
6808 		txq->ift_reclaim_ticks = ticks;
6809 	}
6810 	return (err);
6811 }
6812 
6813 #define NAME_BUFLEN 32
6814 static void
iflib_add_device_sysctl_pre(if_ctx_t ctx)6815 iflib_add_device_sysctl_pre(if_ctx_t ctx)
6816 {
6817 	device_t dev = iflib_get_dev(ctx);
6818 	struct sysctl_oid_list *child, *oid_list;
6819 	struct sysctl_ctx_list *ctx_list;
6820 	struct sysctl_oid *node;
6821 
6822 	ctx_list = device_get_sysctl_ctx(dev);
6823 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
6824 	ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child,
6825 	    OID_AUTO, "iflib", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
6826 	    "IFLIB fields");
6827 	oid_list = SYSCTL_CHILDREN(node);
6828 
6829 	SYSCTL_ADD_CONST_STRING(ctx_list, oid_list, OID_AUTO, "driver_version",
6830 	    CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version, "driver version");
6831 
6832 	SYSCTL_ADD_BOOL(ctx_list, oid_list, OID_AUTO, "simple_tx",
6833 	    CTLFLAG_RDTUN, &ctx->ifc_sysctl_simple_tx, 0,
6834 	    "use simple tx ring");
6835 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs",
6836 	    CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0,
6837 	    "# of txqs to use, 0 => use default #");
6838 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs",
6839 	    CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0,
6840 	    "# of rxqs to use, 0 => use default #");
6841 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable",
6842 	    CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0,
6843 	    "permit #txq != #rxq");
6844 	SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix",
6845 	    CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0,
6846 	    "disable MSI-X (default 0)");
6847 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget",
6848 	    CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0, "set the RX budget");
6849 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate",
6850 	    CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0,
6851 	    "cause TX to abdicate instead of running to completion");
6852 	ctx->ifc_sysctl_core_offset = CORE_OFFSET_UNSPECIFIED;
6853 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "core_offset",
6854 	    CTLFLAG_RDTUN, &ctx->ifc_sysctl_core_offset, 0,
6855 	    "offset to start using cores at");
6856 	SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "separate_txrx",
6857 	    CTLFLAG_RDTUN, &ctx->ifc_sysctl_separate_txrx, 0,
6858 	    "use separate cores for TX and RX");
6859 	SYSCTL_ADD_U8(ctx_list, oid_list, OID_AUTO, "use_logical_cores",
6860 	    CTLFLAG_RDTUN, &ctx->ifc_sysctl_use_logical_cores, 0,
6861 	    "try to make use of logical cores for TX and RX");
6862 	SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "use_extra_msix_vectors",
6863 	    CTLFLAG_RDTUN, &ctx->ifc_sysctl_extra_msix_vectors, 0,
6864 	    "attempt to reserve the given number of extra MSI-X vectors during driver load for the creation of additional interfaces later");
6865 	SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "allocated_msix_vectors",
6866 	    CTLFLAG_RDTUN, &ctx->ifc_softc_ctx.isc_vectors, 0,
6867 	    "total # of MSI-X vectors allocated by driver");
6868 
6869 	/* XXX change for per-queue sizes */
6870 	SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds",
6871 	    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6872 	    IFLIB_NTXD_HANDLER, mp_ndesc_handler, "A",
6873 	    "list of # of TX descriptors to use, 0 = use default #");
6874 	SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds",
6875 	    CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, ctx,
6876 	    IFLIB_NRXD_HANDLER, mp_ndesc_handler, "A",
6877 	    "list of # of RX descriptors to use, 0 = use default #");
6878 }
6879 
6880 static void
iflib_add_device_sysctl_post(if_ctx_t ctx)6881 iflib_add_device_sysctl_post(if_ctx_t ctx)
6882 {
6883 	if_shared_ctx_t sctx = ctx->ifc_sctx;
6884 	if_softc_ctx_t scctx = &ctx->ifc_softc_ctx;
6885 	device_t dev = iflib_get_dev(ctx);
6886 	struct sysctl_oid_list *child;
6887 	struct sysctl_ctx_list *ctx_list;
6888 	iflib_fl_t fl;
6889 	iflib_txq_t txq;
6890 	iflib_rxq_t rxq;
6891 	int i, j;
6892 	char namebuf[NAME_BUFLEN];
6893 	char *qfmt;
6894 	struct sysctl_oid *queue_node, *fl_node, *node;
6895 	struct sysctl_oid_list *queue_list, *fl_list;
6896 	ctx_list = device_get_sysctl_ctx(dev);
6897 
6898 	node = ctx->ifc_sysctl_node;
6899 	child = SYSCTL_CHILDREN(node);
6900 
6901        SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "tx_reclaim_thresh",
6902            CTLTYPE_INT | CTLFLAG_RWTUN, ctx,
6903            0, iflib_handle_tx_reclaim_thresh, "I",
6904            "Number of TX descs outstanding before reclaim is called");
6905 
6906        SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "tx_reclaim_ticks",
6907            CTLTYPE_INT | CTLFLAG_RWTUN, ctx,
6908            0, iflib_handle_tx_reclaim_ticks, "I",
6909            "Number of ticks before a TX reclaim is forced");
6910 
6911 	if (scctx->isc_ntxqsets > 100)
6912 		qfmt = "txq%03d";
6913 	else if (scctx->isc_ntxqsets > 10)
6914 		qfmt = "txq%02d";
6915 	else
6916 		qfmt = "txq%d";
6917 	for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) {
6918 		snprintf(namebuf, NAME_BUFLEN, qfmt, i);
6919 		queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
6920 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
6921 		queue_list = SYSCTL_CHILDREN(queue_node);
6922 		SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
6923 		    CTLFLAG_RD, &txq->ift_task.gt_cpu, 0,
6924 		    "cpu this queue is bound to");
6925 #if MEMORY_LOGGING
6926 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued",
6927 		    CTLFLAG_RD, &txq->ift_dequeued, "total mbufs freed");
6928 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued",
6929 		    CTLFLAG_RD, &txq->ift_enqueued, "total mbufs enqueued");
6930 #endif
6931 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag",
6932 		    CTLFLAG_RD, &txq->ift_mbuf_defrag,
6933 		    "# of times m_defrag was called");
6934 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "m_pullups",
6935 		    CTLFLAG_RD, &txq->ift_pullups,
6936 		    "# of times m_pullup was called");
6937 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6938 		    "mbuf_defrag_failed", CTLFLAG_RD,
6939 		    &txq->ift_mbuf_defrag_failed, "# of times m_defrag failed");
6940 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6941 		    "no_desc_avail", CTLFLAG_RD, &txq->ift_no_desc_avail,
6942 		    "# of times no descriptors were available");
6943 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6944 		    "tx_map_failed", CTLFLAG_RD, &txq->ift_map_failed,
6945 		    "# of times DMA map failed");
6946 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6947 		    "txd_encap_efbig", CTLFLAG_RD, &txq->ift_txd_encap_efbig,
6948 		    "# of times txd_encap returned EFBIG");
6949 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6950 		    "no_tx_dma_setup", CTLFLAG_RD, &txq->ift_no_tx_dma_setup,
6951 		    "# of times map failed for other than EFBIG");
6952 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx",
6953 		    CTLFLAG_RD, &txq->ift_pidx, 1, "Producer Index");
6954 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx",
6955 		    CTLFLAG_RD, &txq->ift_cidx, 1, "Consumer Index");
6956 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO,
6957 		    "txq_cidx_processed", CTLFLAG_RD, &txq->ift_cidx_processed,
6958 		    1, "Consumer Index seen by credit update");
6959 		SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use",
6960 		    CTLFLAG_RD, &txq->ift_in_use, 1, "descriptors in use");
6961 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO,
6962 		    "txq_processed", CTLFLAG_RD, &txq->ift_processed,
6963 		    "descriptors procesed for clean");
6964 		SYSCTL_ADD_UQUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned",
6965 		    CTLFLAG_RD, &txq->ift_cleaned, "total cleaned");
6966 		SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state",
6967 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
6968 		    __DEVOLATILE(uint64_t *, &txq->ift_br->state), 0,
6969 		    mp_ring_state_handler, "A", "soft ring state");
6970 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6971 		    "r_enqueues", CTLFLAG_RD, &txq->ift_br->enqueues,
6972 		    "# of enqueues to the mp_ring for this queue");
6973 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6974 		    "r_drops", CTLFLAG_RD, &txq->ift_br->drops,
6975 		    "# of drops in the mp_ring for this queue");
6976 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6977 		    "r_starts", CTLFLAG_RD, &txq->ift_br->starts,
6978 		    "# of normal consumer starts in mp_ring for this queue");
6979 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6980 		    "r_stalls", CTLFLAG_RD, &txq->ift_br->stalls,
6981 		    "# of consumer stalls in the mp_ring for this queue");
6982 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6983 		    "r_restarts", CTLFLAG_RD, &txq->ift_br->restarts,
6984 		    "# of consumer restarts in the mp_ring for this queue");
6985 		SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO,
6986 		    "r_abdications", CTLFLAG_RD, &txq->ift_br->abdications,
6987 		    "# of consumer abdications in the mp_ring for this queue");
6988 	}
6989 
6990 	if (scctx->isc_nrxqsets > 100)
6991 		qfmt = "rxq%03d";
6992 	else if (scctx->isc_nrxqsets > 10)
6993 		qfmt = "rxq%02d";
6994 	else
6995 		qfmt = "rxq%d";
6996 	for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) {
6997 		snprintf(namebuf, NAME_BUFLEN, qfmt, i);
6998 		queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf,
6999 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Queue Name");
7000 		queue_list = SYSCTL_CHILDREN(queue_node);
7001 		SYSCTL_ADD_INT(ctx_list, queue_list, OID_AUTO, "cpu",
7002 		    CTLFLAG_RD, &rxq->ifr_task.gt_cpu, 0,
7003 		    "cpu this queue is bound to");
7004 		if (sctx->isc_flags & IFLIB_HAS_RXCQ) {
7005 			SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO,
7006 			    "rxq_cq_cidx", CTLFLAG_RD, &rxq->ifr_cq_cidx, 1,
7007 			    "Consumer Index");
7008 		}
7009 
7010 		for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) {
7011 			snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j);
7012 			fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list,
7013 			    OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE,
7014 			    NULL, "freelist Name");
7015 			fl_list = SYSCTL_CHILDREN(fl_node);
7016 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx",
7017 			    CTLFLAG_RD, &fl->ifl_pidx, 1, "Producer Index");
7018 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx",
7019 			    CTLFLAG_RD, &fl->ifl_cidx, 1, "Consumer Index");
7020 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits",
7021 			    CTLFLAG_RD, &fl->ifl_credits, 1,
7022 			    "credits available");
7023 			SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "buf_size",
7024 			    CTLFLAG_RD, &fl->ifl_buf_size, 1, "buffer size");
7025 #if MEMORY_LOGGING
7026 			SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7027 			    "fl_m_enqueued", CTLFLAG_RD, &fl->ifl_m_enqueued,
7028 			    "mbufs allocated");
7029 			SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7030 			    "fl_m_dequeued", CTLFLAG_RD, &fl->ifl_m_dequeued,
7031 			    "mbufs freed");
7032 			SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7033 			    "fl_cl_enqueued", CTLFLAG_RD, &fl->ifl_cl_enqueued,
7034 			    "clusters allocated");
7035 			SYSCTL_ADD_UQUAD(ctx_list, fl_list, OID_AUTO,
7036 			    "fl_cl_dequeued", CTLFLAG_RD, &fl->ifl_cl_dequeued,
7037 			    "clusters freed");
7038 #endif
7039 		}
7040 	}
7041 
7042 }
7043 
7044 void
iflib_request_reset(if_ctx_t ctx)7045 iflib_request_reset(if_ctx_t ctx)
7046 {
7047 
7048 	STATE_LOCK(ctx);
7049 	ctx->ifc_flags |= IFC_DO_RESET;
7050 	STATE_UNLOCK(ctx);
7051 }
7052 
7053 #ifndef __NO_STRICT_ALIGNMENT
7054 static struct mbuf *
iflib_fixup_rx(struct mbuf * m)7055 iflib_fixup_rx(struct mbuf *m)
7056 {
7057 	struct mbuf *n;
7058 
7059 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
7060 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
7061 		m->m_data += ETHER_HDR_LEN;
7062 		n = m;
7063 	} else {
7064 		MGETHDR(n, M_NOWAIT, MT_DATA);
7065 		if (n == NULL) {
7066 			m_freem(m);
7067 			return (NULL);
7068 		}
7069 		bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
7070 		m->m_data += ETHER_HDR_LEN;
7071 		m->m_len -= ETHER_HDR_LEN;
7072 		n->m_len = ETHER_HDR_LEN;
7073 		M_MOVE_PKTHDR(n, m);
7074 		n->m_next = m;
7075 	}
7076 	return (n);
7077 }
7078 #endif
7079 
7080 #ifdef DEBUGNET
7081 static void
iflib_debugnet_init(if_t ifp,int * nrxr,int * ncl,int * clsize)7082 iflib_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
7083 {
7084 	if_ctx_t ctx;
7085 
7086 	ctx = if_getsoftc(ifp);
7087 	CTX_LOCK(ctx);
7088 	*nrxr = NRXQSETS(ctx);
7089 	*ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size;
7090 	*clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size;
7091 	CTX_UNLOCK(ctx);
7092 }
7093 
7094 static void
iflib_debugnet_event(if_t ifp,enum debugnet_ev event)7095 iflib_debugnet_event(if_t ifp, enum debugnet_ev event)
7096 {
7097 	if_ctx_t ctx;
7098 	if_softc_ctx_t scctx;
7099 	iflib_fl_t fl;
7100 	iflib_rxq_t rxq;
7101 	int i, j;
7102 
7103 	ctx = if_getsoftc(ifp);
7104 	scctx = &ctx->ifc_softc_ctx;
7105 
7106 	switch (event) {
7107 	case DEBUGNET_START:
7108 		for (i = 0; i < scctx->isc_nrxqsets; i++) {
7109 			rxq = &ctx->ifc_rxqs[i];
7110 			for (j = 0; j < rxq->ifr_nfl; j++) {
7111 				fl = rxq->ifr_fl;
7112 				fl->ifl_zone = m_getzone(fl->ifl_buf_size);
7113 			}
7114 		}
7115 		iflib_no_tx_batch = 1;
7116 		break;
7117 	default:
7118 		break;
7119 	}
7120 }
7121 
7122 static int
iflib_debugnet_transmit(if_t ifp,struct mbuf * m)7123 iflib_debugnet_transmit(if_t ifp, struct mbuf *m)
7124 {
7125 	if_ctx_t ctx;
7126 	iflib_txq_t txq;
7127 	int error;
7128 
7129 	ctx = if_getsoftc(ifp);
7130 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7131 	    IFF_DRV_RUNNING)
7132 		return (EBUSY);
7133 
7134 	txq = &ctx->ifc_txqs[0];
7135 	error = iflib_encap(txq, &m);
7136 	if (error == 0)
7137 		(void)iflib_txd_db_check(txq, true);
7138 	return (error);
7139 }
7140 
7141 static int
iflib_debugnet_poll(if_t ifp,int count)7142 iflib_debugnet_poll(if_t ifp, int count)
7143 {
7144 	struct epoch_tracker et;
7145 	if_ctx_t ctx;
7146 	if_softc_ctx_t scctx;
7147 	iflib_txq_t txq;
7148 	int i;
7149 
7150 	ctx = if_getsoftc(ifp);
7151 	scctx = &ctx->ifc_softc_ctx;
7152 
7153 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7154 	    IFF_DRV_RUNNING)
7155 		return (EBUSY);
7156 
7157 	txq = &ctx->ifc_txqs[0];
7158 	(void)iflib_completed_tx_reclaim(txq);
7159 
7160 	NET_EPOCH_ENTER(et);
7161 	for (i = 0; i < scctx->isc_nrxqsets; i++)
7162 		(void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */);
7163 	NET_EPOCH_EXIT(et);
7164 	return (0);
7165 }
7166 #endif /* DEBUGNET */
7167 
7168 #ifndef ALTQ
7169 static inline iflib_txq_t
iflib_simple_select_queue(if_ctx_t ctx,struct mbuf * m)7170 iflib_simple_select_queue(if_ctx_t ctx, struct mbuf *m)
7171 {
7172 	int qidx;
7173 
7174 	if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m))
7175 		qidx = QIDX(ctx, m);
7176 	else
7177 		qidx = NTXQSETS(ctx) + FIRST_QSET(ctx) - 1;
7178 	return (&ctx->ifc_txqs[qidx]);
7179 }
7180 
7181 static int
iflib_simple_transmit(if_t ifp,struct mbuf * m)7182 iflib_simple_transmit(if_t ifp, struct mbuf *m)
7183 {
7184 	if_ctx_t ctx;
7185 	iflib_txq_t txq;
7186 	int error;
7187 	int bytes_sent = 0, pkt_sent = 0, mcast_sent = 0;
7188 
7189 
7190 	ctx = if_getsoftc(ifp);
7191 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
7192 	    IFF_DRV_RUNNING)
7193 		return (EBUSY);
7194 	txq = iflib_simple_select_queue(ctx, m);
7195 	mtx_lock(&txq->ift_mtx);
7196 	error = iflib_encap(txq, &m);
7197 	if (error == 0) {
7198 		pkt_sent++;
7199 		bytes_sent += m->m_pkthdr.len;
7200 		mcast_sent += !!(m->m_flags & M_MCAST);
7201 		(void)iflib_txd_db_check(txq, true);
7202 	} else {
7203 		if (error == ENOBUFS)
7204 			if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
7205 		else
7206 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
7207 	}
7208 	(void)iflib_completed_tx_reclaim(txq);
7209 	mtx_unlock(&txq->ift_mtx);
7210 	if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent);
7211 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent);
7212 	if (mcast_sent)
7213 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent);
7214 
7215 	return (error);
7216 }
7217 #endif
7218