1 /* SPDX-License-Identifier: ISC */
2 /*
3 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4 */
5
6 #ifndef __MT76_H
7 #define __MT76_H
8
9 #include <linux/kernel.h>
10 #include <linux/io.h>
11 #include <linux/spinlock.h>
12 #include <linux/skbuff.h>
13 #include <linux/leds.h>
14 #include <linux/usb.h>
15 #include <linux/average.h>
16 #include <linux/soc/mediatek/mtk_wed.h>
17 #if defined(__FreeBSD__)
18 #include <linux/wait.h>
19 #include <linux/bitfield.h>
20 #include <linux/debugfs.h>
21 #include <linux/pci.h>
22 #include <linux/interrupt.h>
23 #include <net/page_pool.h>
24 #endif
25 #include <net/mac80211.h>
26 #include "util.h"
27 #include "testmode.h"
28
29 #define MT_MCU_RING_SIZE 32
30 #define MT_RX_BUF_SIZE 2048
31 #define MT_SKB_HEAD_LEN 256
32
33 #define MT_MAX_NON_AQL_PKT 16
34 #define MT_TXQ_FREE_THR 32
35
36 #define MT76_TOKEN_FREE_THR 64
37
38 #define MT_QFLAG_WED_RING GENMASK(1, 0)
39 #define MT_QFLAG_WED_TYPE GENMASK(3, 2)
40 #define MT_QFLAG_WED BIT(4)
41
42 #define __MT_WED_Q(_type, _n) (MT_QFLAG_WED | \
43 FIELD_PREP(MT_QFLAG_WED_TYPE, _type) | \
44 FIELD_PREP(MT_QFLAG_WED_RING, _n))
45 #define MT_WED_Q_TX(_n) __MT_WED_Q(MT76_WED_Q_TX, _n)
46 #define MT_WED_Q_RX(_n) __MT_WED_Q(MT76_WED_Q_RX, _n)
47 #define MT_WED_Q_TXFREE __MT_WED_Q(MT76_WED_Q_TXFREE, 0)
48
49 struct mt76_dev;
50 struct mt76_phy;
51 struct mt76_wcid;
52 struct mt76s_intr;
53
54 struct mt76_reg_pair {
55 u32 reg;
56 u32 value;
57 };
58
59 enum mt76_bus_type {
60 MT76_BUS_MMIO,
61 MT76_BUS_USB,
62 MT76_BUS_SDIO,
63 };
64
65 enum mt76_wed_type {
66 MT76_WED_Q_TX,
67 MT76_WED_Q_TXFREE,
68 MT76_WED_Q_RX,
69 };
70
71 struct mt76_bus_ops {
72 u32 (*rr)(struct mt76_dev *dev, u32 offset);
73 void (*wr)(struct mt76_dev *dev, u32 offset, u32 val);
74 u32 (*rmw)(struct mt76_dev *dev, u32 offset, u32 mask, u32 val);
75 void (*write_copy)(struct mt76_dev *dev, u32 offset, const void *data,
76 int len);
77 void (*read_copy)(struct mt76_dev *dev, u32 offset, void *data,
78 int len);
79 int (*wr_rp)(struct mt76_dev *dev, u32 base,
80 const struct mt76_reg_pair *rp, int len);
81 int (*rd_rp)(struct mt76_dev *dev, u32 base,
82 struct mt76_reg_pair *rp, int len);
83 enum mt76_bus_type type;
84 };
85
86 #define mt76_is_usb(dev) ((dev)->bus->type == MT76_BUS_USB)
87 #define mt76_is_mmio(dev) ((dev)->bus->type == MT76_BUS_MMIO)
88 #define mt76_is_sdio(dev) ((dev)->bus->type == MT76_BUS_SDIO)
89
90 enum mt76_txq_id {
91 MT_TXQ_VO = IEEE80211_AC_VO,
92 MT_TXQ_VI = IEEE80211_AC_VI,
93 MT_TXQ_BE = IEEE80211_AC_BE,
94 MT_TXQ_BK = IEEE80211_AC_BK,
95 MT_TXQ_PSD,
96 MT_TXQ_BEACON,
97 MT_TXQ_CAB,
98 __MT_TXQ_MAX
99 };
100
101 enum mt76_mcuq_id {
102 MT_MCUQ_WM,
103 MT_MCUQ_WA,
104 MT_MCUQ_FWDL,
105 __MT_MCUQ_MAX
106 };
107
108 enum mt76_rxq_id {
109 MT_RXQ_MAIN,
110 MT_RXQ_MCU,
111 MT_RXQ_MCU_WA,
112 MT_RXQ_BAND1,
113 MT_RXQ_BAND1_WA,
114 MT_RXQ_MAIN_WA,
115 MT_RXQ_BAND2,
116 MT_RXQ_BAND2_WA,
117 __MT_RXQ_MAX
118 };
119
120 enum mt76_band_id {
121 MT_BAND0,
122 MT_BAND1,
123 MT_BAND2,
124 __MT_MAX_BAND
125 };
126
127 enum mt76_cipher_type {
128 MT_CIPHER_NONE,
129 MT_CIPHER_WEP40,
130 MT_CIPHER_TKIP,
131 MT_CIPHER_TKIP_NO_MIC,
132 MT_CIPHER_AES_CCMP,
133 MT_CIPHER_WEP104,
134 MT_CIPHER_BIP_CMAC_128,
135 MT_CIPHER_WEP128,
136 MT_CIPHER_WAPI,
137 MT_CIPHER_CCMP_CCX,
138 MT_CIPHER_CCMP_256,
139 MT_CIPHER_GCMP,
140 MT_CIPHER_GCMP_256,
141 };
142
143 enum mt76_dfs_state {
144 MT_DFS_STATE_UNKNOWN,
145 MT_DFS_STATE_DISABLED,
146 MT_DFS_STATE_CAC,
147 MT_DFS_STATE_ACTIVE,
148 };
149
150 struct mt76_queue_buf {
151 dma_addr_t addr;
152 u16 len;
153 bool skip_unmap;
154 };
155
156 struct mt76_tx_info {
157 struct mt76_queue_buf buf[32];
158 struct sk_buff *skb;
159 int nbuf;
160 u32 info;
161 };
162
163 struct mt76_queue_entry {
164 union {
165 void *buf;
166 struct sk_buff *skb;
167 };
168 union {
169 struct mt76_txwi_cache *txwi;
170 struct urb *urb;
171 int buf_sz;
172 };
173 u32 dma_addr[2];
174 u16 dma_len[2];
175 u16 wcid;
176 bool skip_buf0:1;
177 bool skip_buf1:1;
178 bool done:1;
179 };
180
181 struct mt76_queue_regs {
182 u32 desc_base;
183 u32 ring_size;
184 u32 cpu_idx;
185 u32 dma_idx;
186 } __packed __aligned(4);
187
188 struct mt76_queue {
189 struct mt76_queue_regs __iomem *regs;
190
191 spinlock_t lock;
192 spinlock_t cleanup_lock;
193 struct mt76_queue_entry *entry;
194 struct mt76_desc *desc;
195
196 u16 first;
197 u16 head;
198 u16 tail;
199 int ndesc;
200 int queued;
201 int buf_size;
202 bool stopped;
203 bool blocked;
204
205 u8 buf_offset;
206 u8 hw_idx;
207 u8 flags;
208
209 u32 wed_regs;
210
211 dma_addr_t desc_dma;
212 struct sk_buff *rx_head;
213 struct page_pool *page_pool;
214 };
215
216 struct mt76_mcu_ops {
217 u32 headroom;
218 u32 tailroom;
219
220 int (*mcu_send_msg)(struct mt76_dev *dev, int cmd, const void *data,
221 int len, bool wait_resp);
222 int (*mcu_skb_send_msg)(struct mt76_dev *dev, struct sk_buff *skb,
223 int cmd, int *seq);
224 int (*mcu_parse_response)(struct mt76_dev *dev, int cmd,
225 struct sk_buff *skb, int seq);
226 u32 (*mcu_rr)(struct mt76_dev *dev, u32 offset);
227 void (*mcu_wr)(struct mt76_dev *dev, u32 offset, u32 val);
228 int (*mcu_wr_rp)(struct mt76_dev *dev, u32 base,
229 const struct mt76_reg_pair *rp, int len);
230 int (*mcu_rd_rp)(struct mt76_dev *dev, u32 base,
231 struct mt76_reg_pair *rp, int len);
232 int (*mcu_restart)(struct mt76_dev *dev);
233 };
234
235 struct mt76_queue_ops {
236 int (*init)(struct mt76_dev *dev,
237 int (*poll)(struct napi_struct *napi, int budget));
238
239 int (*alloc)(struct mt76_dev *dev, struct mt76_queue *q,
240 int idx, int n_desc, int bufsize,
241 u32 ring_base);
242
243 int (*tx_queue_skb)(struct mt76_dev *dev, struct mt76_queue *q,
244 enum mt76_txq_id qid, struct sk_buff *skb,
245 struct mt76_wcid *wcid, struct ieee80211_sta *sta);
246
247 int (*tx_queue_skb_raw)(struct mt76_dev *dev, struct mt76_queue *q,
248 struct sk_buff *skb, u32 tx_info);
249
250 void *(*dequeue)(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
251 int *len, u32 *info, bool *more);
252
253 void (*rx_reset)(struct mt76_dev *dev, enum mt76_rxq_id qid);
254
255 void (*tx_cleanup)(struct mt76_dev *dev, struct mt76_queue *q,
256 bool flush);
257
258 void (*rx_cleanup)(struct mt76_dev *dev, struct mt76_queue *q);
259
260 void (*kick)(struct mt76_dev *dev, struct mt76_queue *q);
261
262 void (*reset_q)(struct mt76_dev *dev, struct mt76_queue *q);
263 };
264
265 enum mt76_phy_type {
266 MT_PHY_TYPE_CCK,
267 MT_PHY_TYPE_OFDM,
268 MT_PHY_TYPE_HT,
269 MT_PHY_TYPE_HT_GF,
270 MT_PHY_TYPE_VHT,
271 MT_PHY_TYPE_HE_SU = 8,
272 MT_PHY_TYPE_HE_EXT_SU,
273 MT_PHY_TYPE_HE_TB,
274 MT_PHY_TYPE_HE_MU,
275 MT_PHY_TYPE_EHT_SU = 13,
276 MT_PHY_TYPE_EHT_TRIG,
277 MT_PHY_TYPE_EHT_MU,
278 __MT_PHY_TYPE_MAX,
279 };
280
281 struct mt76_sta_stats {
282 u64 tx_mode[__MT_PHY_TYPE_MAX];
283 u64 tx_bw[5]; /* 20, 40, 80, 160, 320 */
284 u64 tx_nss[4]; /* 1, 2, 3, 4 */
285 u64 tx_mcs[16]; /* mcs idx */
286 u64 tx_bytes;
287 /* WED TX */
288 u32 tx_packets; /* unit: MSDU */
289 u32 tx_retries;
290 u32 tx_failed;
291 /* WED RX */
292 u64 rx_bytes;
293 u32 rx_packets;
294 u32 rx_errors;
295 u32 rx_drops;
296 };
297
298 enum mt76_wcid_flags {
299 MT_WCID_FLAG_CHECK_PS,
300 MT_WCID_FLAG_PS,
301 MT_WCID_FLAG_4ADDR,
302 MT_WCID_FLAG_HDR_TRANS,
303 };
304
305 #define MT76_N_WCIDS 1088
306
307 /* stored in ieee80211_tx_info::hw_queue */
308 #define MT_TX_HW_QUEUE_PHY GENMASK(3, 2)
309
310 DECLARE_EWMA(signal, 10, 8);
311
312 #define MT_WCID_TX_INFO_RATE GENMASK(15, 0)
313 #define MT_WCID_TX_INFO_NSS GENMASK(17, 16)
314 #define MT_WCID_TX_INFO_TXPWR_ADJ GENMASK(25, 18)
315 #define MT_WCID_TX_INFO_SET BIT(31)
316
317 struct mt76_wcid {
318 struct mt76_rx_tid __rcu *aggr[IEEE80211_NUM_TIDS];
319
320 atomic_t non_aql_packets;
321 unsigned long flags;
322
323 struct ewma_signal rssi;
324 int inactive_count;
325
326 struct rate_info rate;
327 unsigned long ampdu_state;
328
329 u16 idx;
330 u8 hw_key_idx;
331 u8 hw_key_idx2;
332
333 u8 sta:1;
334 u8 amsdu:1;
335 u8 phy_idx:2;
336
337 u8 rx_check_pn;
338 u8 rx_key_pn[IEEE80211_NUM_TIDS + 1][6];
339 u16 cipher;
340
341 u32 tx_info;
342 bool sw_iv;
343
344 struct list_head list;
345 struct idr pktid;
346
347 struct mt76_sta_stats stats;
348
349 struct list_head poll_list;
350 };
351
352 struct mt76_txq {
353 u16 wcid;
354
355 u16 agg_ssn;
356 bool send_bar;
357 bool aggr;
358 };
359
360 struct mt76_txwi_cache {
361 struct list_head list;
362 dma_addr_t dma_addr;
363
364 union {
365 struct sk_buff *skb;
366 void *ptr;
367 };
368 };
369
370 struct mt76_rx_tid {
371 struct rcu_head rcu_head;
372
373 struct mt76_dev *dev;
374
375 spinlock_t lock;
376 struct delayed_work reorder_work;
377
378 u16 head;
379 u16 size;
380 u16 nframes;
381
382 u8 num;
383
384 u8 started:1, stopped:1, timer_pending:1;
385
386 struct sk_buff *reorder_buf[];
387 };
388
389 #define MT_TX_CB_DMA_DONE BIT(0)
390 #define MT_TX_CB_TXS_DONE BIT(1)
391 #define MT_TX_CB_TXS_FAILED BIT(2)
392
393 #define MT_PACKET_ID_MASK GENMASK(6, 0)
394 #define MT_PACKET_ID_NO_ACK 0
395 #define MT_PACKET_ID_NO_SKB 1
396 #define MT_PACKET_ID_WED 2
397 #define MT_PACKET_ID_FIRST 3
398 #define MT_PACKET_ID_HAS_RATE BIT(7)
399 /* This is timer for when to give up when waiting for TXS callback,
400 * with starting time being the time at which the DMA_DONE callback
401 * was seen (so, we know packet was processed then, it should not take
402 * long after that for firmware to send the TXS callback if it is going
403 * to do so.)
404 */
405 #define MT_TX_STATUS_SKB_TIMEOUT (HZ / 4)
406
407 struct mt76_tx_cb {
408 unsigned long jiffies;
409 u16 wcid;
410 u8 pktid;
411 u8 flags;
412 };
413
414 enum {
415 MT76_STATE_INITIALIZED,
416 MT76_STATE_REGISTERED,
417 MT76_STATE_RUNNING,
418 MT76_STATE_MCU_RUNNING,
419 MT76_SCANNING,
420 MT76_HW_SCANNING,
421 MT76_HW_SCHED_SCANNING,
422 MT76_RESTART,
423 MT76_RESET,
424 MT76_MCU_RESET,
425 MT76_REMOVED,
426 MT76_READING_STATS,
427 MT76_STATE_POWER_OFF,
428 MT76_STATE_SUSPEND,
429 MT76_STATE_ROC,
430 MT76_STATE_PM,
431 MT76_STATE_WED_RESET,
432 };
433
434 struct mt76_hw_cap {
435 bool has_2ghz;
436 bool has_5ghz;
437 bool has_6ghz;
438 };
439
440 #define MT_DRV_TXWI_NO_FREE BIT(0)
441 #define MT_DRV_TX_ALIGNED4_SKBS BIT(1)
442 #define MT_DRV_SW_RX_AIRTIME BIT(2)
443 #define MT_DRV_RX_DMA_HDR BIT(3)
444 #define MT_DRV_HW_MGMT_TXQ BIT(4)
445 #define MT_DRV_AMSDU_OFFLOAD BIT(5)
446
447 struct mt76_driver_ops {
448 u32 drv_flags;
449 u32 survey_flags;
450 u16 txwi_size;
451 u16 token_size;
452 u8 mcs_rates;
453
454 void (*update_survey)(struct mt76_phy *phy);
455
456 int (*tx_prepare_skb)(struct mt76_dev *dev, void *txwi_ptr,
457 enum mt76_txq_id qid, struct mt76_wcid *wcid,
458 struct ieee80211_sta *sta,
459 struct mt76_tx_info *tx_info);
460
461 void (*tx_complete_skb)(struct mt76_dev *dev,
462 struct mt76_queue_entry *e);
463
464 bool (*tx_status_data)(struct mt76_dev *dev, u8 *update);
465
466 bool (*rx_check)(struct mt76_dev *dev, void *data, int len);
467
468 void (*rx_skb)(struct mt76_dev *dev, enum mt76_rxq_id q,
469 struct sk_buff *skb, u32 *info);
470
471 void (*rx_poll_complete)(struct mt76_dev *dev, enum mt76_rxq_id q);
472
473 void (*sta_ps)(struct mt76_dev *dev, struct ieee80211_sta *sta,
474 bool ps);
475
476 int (*sta_add)(struct mt76_dev *dev, struct ieee80211_vif *vif,
477 struct ieee80211_sta *sta);
478
479 void (*sta_assoc)(struct mt76_dev *dev, struct ieee80211_vif *vif,
480 struct ieee80211_sta *sta);
481
482 void (*sta_remove)(struct mt76_dev *dev, struct ieee80211_vif *vif,
483 struct ieee80211_sta *sta);
484 };
485
486 struct mt76_channel_state {
487 u64 cc_active;
488 u64 cc_busy;
489 u64 cc_rx;
490 u64 cc_bss_rx;
491 u64 cc_tx;
492
493 s8 noise;
494 };
495
496 struct mt76_sband {
497 struct ieee80211_supported_band sband;
498 struct mt76_channel_state *chan;
499 };
500
501 /* addr req mask */
502 #define MT_VEND_TYPE_EEPROM BIT(31)
503 #define MT_VEND_TYPE_CFG BIT(30)
504 #define MT_VEND_TYPE_MASK (MT_VEND_TYPE_EEPROM | MT_VEND_TYPE_CFG)
505
506 #define MT_VEND_ADDR(type, n) (MT_VEND_TYPE_##type | (n))
507 enum mt_vendor_req {
508 MT_VEND_DEV_MODE = 0x1,
509 MT_VEND_WRITE = 0x2,
510 MT_VEND_POWER_ON = 0x4,
511 MT_VEND_MULTI_WRITE = 0x6,
512 MT_VEND_MULTI_READ = 0x7,
513 MT_VEND_READ_EEPROM = 0x9,
514 MT_VEND_WRITE_FCE = 0x42,
515 MT_VEND_WRITE_CFG = 0x46,
516 MT_VEND_READ_CFG = 0x47,
517 MT_VEND_READ_EXT = 0x63,
518 MT_VEND_WRITE_EXT = 0x66,
519 MT_VEND_FEATURE_SET = 0x91,
520 };
521
522 enum mt76u_in_ep {
523 MT_EP_IN_PKT_RX,
524 MT_EP_IN_CMD_RESP,
525 __MT_EP_IN_MAX,
526 };
527
528 enum mt76u_out_ep {
529 MT_EP_OUT_INBAND_CMD,
530 MT_EP_OUT_AC_BE,
531 MT_EP_OUT_AC_BK,
532 MT_EP_OUT_AC_VI,
533 MT_EP_OUT_AC_VO,
534 MT_EP_OUT_HCCA,
535 __MT_EP_OUT_MAX,
536 };
537
538 struct mt76_mcu {
539 struct mutex mutex;
540 u32 msg_seq;
541 int timeout;
542
543 struct sk_buff_head res_q;
544 wait_queue_head_t wait;
545 };
546
547 #define MT_TX_SG_MAX_SIZE 8
548 #define MT_RX_SG_MAX_SIZE 4
549 #define MT_NUM_TX_ENTRIES 256
550 #define MT_NUM_RX_ENTRIES 128
551 #define MCU_RESP_URB_SIZE 1024
552 struct mt76_usb {
553 struct mutex usb_ctrl_mtx;
554 u8 *data;
555 u16 data_len;
556
557 struct mt76_worker status_worker;
558 struct mt76_worker rx_worker;
559
560 struct work_struct stat_work;
561
562 u8 out_ep[__MT_EP_OUT_MAX];
563 u8 in_ep[__MT_EP_IN_MAX];
564 bool sg_en;
565
566 struct mt76u_mcu {
567 u8 *data;
568 /* multiple reads */
569 struct mt76_reg_pair *rp;
570 int rp_len;
571 u32 base;
572 } mcu;
573 };
574
575 #define MT76S_XMIT_BUF_SZ 0x3fe00
576 #define MT76S_NUM_TX_ENTRIES 256
577 #define MT76S_NUM_RX_ENTRIES 512
578 struct mt76_sdio {
579 struct mt76_worker txrx_worker;
580 struct mt76_worker status_worker;
581 struct mt76_worker net_worker;
582
583 struct work_struct stat_work;
584
585 u8 *xmit_buf;
586 u32 xmit_buf_sz;
587
588 struct sdio_func *func;
589 void *intr_data;
590 u8 hw_ver;
591 wait_queue_head_t wait;
592
593 struct {
594 int pse_data_quota;
595 int ple_data_quota;
596 int pse_mcu_quota;
597 int pse_page_size;
598 int deficit;
599 } sched;
600
601 int (*parse_irq)(struct mt76_dev *dev, struct mt76s_intr *intr);
602 };
603
604 struct mt76_mmio {
605 void __iomem *regs;
606 spinlock_t irq_lock;
607 u32 irqmask;
608
609 struct mtk_wed_device wed;
610 struct completion wed_reset;
611 struct completion wed_reset_complete;
612 };
613
614 struct mt76_rx_status {
615 union {
616 struct mt76_wcid *wcid;
617 u16 wcid_idx;
618 };
619
620 u32 reorder_time;
621
622 u32 ampdu_ref;
623 u32 timestamp;
624
625 u8 iv[6];
626
627 u8 phy_idx:2;
628 u8 aggr:1;
629 u8 qos_ctl;
630 u16 seqno;
631
632 u16 freq;
633 u32 flag;
634 u8 enc_flags;
635 u8 encoding:3, bw:4;
636 union {
637 struct {
638 u8 he_ru:3;
639 u8 he_gi:2;
640 u8 he_dcm:1;
641 };
642 struct {
643 u8 ru:4;
644 u8 gi:2;
645 } eht;
646 };
647
648 u8 amsdu:1, first_amsdu:1, last_amsdu:1;
649 u8 rate_idx;
650 u8 nss:5, band:3;
651 s8 signal;
652 u8 chains;
653 s8 chain_signal[IEEE80211_MAX_CHAINS];
654 };
655
656 struct mt76_freq_range_power {
657 const struct cfg80211_sar_freq_ranges *range;
658 s8 power;
659 };
660
661 struct mt76_testmode_ops {
662 int (*set_state)(struct mt76_phy *phy, enum mt76_testmode_state state);
663 int (*set_params)(struct mt76_phy *phy, struct nlattr **tb,
664 enum mt76_testmode_state new_state);
665 int (*dump_stats)(struct mt76_phy *phy, struct sk_buff *msg);
666 };
667
668 struct mt76_testmode_data {
669 enum mt76_testmode_state state;
670
671 u32 param_set[DIV_ROUND_UP(NUM_MT76_TM_ATTRS, 32)];
672 struct sk_buff *tx_skb;
673
674 u32 tx_count;
675 u16 tx_mpdu_len;
676
677 u8 tx_rate_mode;
678 u8 tx_rate_idx;
679 u8 tx_rate_nss;
680 u8 tx_rate_sgi;
681 u8 tx_rate_ldpc;
682 u8 tx_rate_stbc;
683 u8 tx_ltf;
684
685 u8 tx_antenna_mask;
686 u8 tx_spe_idx;
687
688 u8 tx_duty_cycle;
689 u32 tx_time;
690 u32 tx_ipg;
691
692 u32 freq_offset;
693
694 u8 tx_power[4];
695 u8 tx_power_control;
696
697 u8 addr[3][ETH_ALEN];
698
699 u32 tx_pending;
700 u32 tx_queued;
701 u16 tx_queued_limit;
702 u32 tx_done;
703 struct {
704 u64 packets[__MT_RXQ_MAX];
705 u64 fcs_error[__MT_RXQ_MAX];
706 } rx_stats;
707 };
708
709 struct mt76_vif {
710 u8 idx;
711 u8 omac_idx;
712 u8 band_idx;
713 u8 wmm_idx;
714 u8 scan_seq_num;
715 u8 cipher;
716 u8 basic_rates_idx;
717 u8 mcast_rates_idx;
718 u8 beacon_rates_idx;
719 };
720
721 struct mt76_phy {
722 struct ieee80211_hw *hw;
723 struct mt76_dev *dev;
724 void *priv;
725
726 unsigned long state;
727 u8 band_idx;
728
729 struct mt76_queue *q_tx[__MT_TXQ_MAX];
730
731 struct cfg80211_chan_def chandef;
732 struct ieee80211_channel *main_chan;
733
734 struct mt76_channel_state *chan_state;
735 enum mt76_dfs_state dfs_state;
736 ktime_t survey_time;
737
738 u32 aggr_stats[32];
739
740 struct mt76_hw_cap cap;
741 struct mt76_sband sband_2g;
742 struct mt76_sband sband_5g;
743 struct mt76_sband sband_6g;
744
745 u8 macaddr[ETH_ALEN];
746
747 int txpower_cur;
748 u8 antenna_mask;
749 u16 chainmask;
750
751 #ifdef CONFIG_NL80211_TESTMODE
752 struct mt76_testmode_data test;
753 #endif
754
755 struct delayed_work mac_work;
756 u8 mac_work_count;
757
758 struct {
759 struct sk_buff *head;
760 struct sk_buff **tail;
761 u16 seqno;
762 } rx_amsdu[__MT_RXQ_MAX];
763
764 struct mt76_freq_range_power *frp;
765
766 struct {
767 struct led_classdev cdev;
768 char name[32];
769 bool al;
770 u8 pin;
771 } leds;
772 };
773
774 struct mt76_dev {
775 struct mt76_phy phy; /* must be first */
776 struct mt76_phy *phys[__MT_MAX_BAND];
777
778 struct ieee80211_hw *hw;
779
780 spinlock_t wed_lock;
781 spinlock_t lock;
782 spinlock_t cc_lock;
783
784 u32 cur_cc_bss_rx;
785
786 struct mt76_rx_status rx_ampdu_status;
787 u32 rx_ampdu_len;
788 u32 rx_ampdu_ref;
789
790 struct mutex mutex;
791
792 const struct mt76_bus_ops *bus;
793 const struct mt76_driver_ops *drv;
794 const struct mt76_mcu_ops *mcu_ops;
795 struct device *dev;
796 struct device *dma_dev;
797
798 struct mt76_mcu mcu;
799
800 struct net_device napi_dev;
801 struct net_device tx_napi_dev;
802 spinlock_t rx_lock;
803 struct napi_struct napi[__MT_RXQ_MAX];
804 struct sk_buff_head rx_skb[__MT_RXQ_MAX];
805 struct tasklet_struct irq_tasklet;
806
807 struct list_head txwi_cache;
808 struct list_head rxwi_cache;
809 struct mt76_queue *q_mcu[__MT_MCUQ_MAX];
810 struct mt76_queue q_rx[__MT_RXQ_MAX];
811 const struct mt76_queue_ops *queue_ops;
812 int tx_dma_idx[4];
813
814 struct mt76_worker tx_worker;
815 struct napi_struct tx_napi;
816
817 spinlock_t token_lock;
818 struct idr token;
819 u16 wed_token_count;
820 u16 token_count;
821 u16 token_size;
822
823 spinlock_t rx_token_lock;
824 struct idr rx_token;
825 u16 rx_token_size;
826
827 wait_queue_head_t tx_wait;
828 /* spinclock used to protect wcid pktid linked list */
829 spinlock_t status_lock;
830
831 u32 wcid_mask[DIV_ROUND_UP(MT76_N_WCIDS, 32)];
832 u32 wcid_phy_mask[DIV_ROUND_UP(MT76_N_WCIDS, 32)];
833
834 u64 vif_mask;
835
836 struct mt76_wcid global_wcid;
837 struct mt76_wcid __rcu *wcid[MT76_N_WCIDS];
838 struct list_head wcid_list;
839
840 struct list_head sta_poll_list;
841 spinlock_t sta_poll_lock;
842
843 u32 rev;
844
845 struct tasklet_struct pre_tbtt_tasklet;
846 int beacon_int;
847 u8 beacon_mask;
848
849 struct debugfs_blob_wrapper eeprom;
850 struct debugfs_blob_wrapper otp;
851
852 char alpha2[3];
853 enum nl80211_dfs_regions region;
854
855 u32 debugfs_reg;
856
857 u8 csa_complete;
858
859 u32 rxfilter;
860
861 #ifdef CONFIG_NL80211_TESTMODE
862 const struct mt76_testmode_ops *test_ops;
863 struct {
864 const char *name;
865 u32 offset;
866 } test_mtd;
867 #endif
868 struct workqueue_struct *wq;
869
870 union {
871 struct mt76_mmio mmio;
872 struct mt76_usb usb;
873 struct mt76_sdio sdio;
874 };
875 };
876
877 /* per-phy stats. */
878 struct mt76_mib_stats {
879 u32 ack_fail_cnt;
880 u32 fcs_err_cnt;
881 u32 rts_cnt;
882 u32 rts_retries_cnt;
883 u32 ba_miss_cnt;
884 u32 tx_bf_cnt;
885 u32 tx_mu_bf_cnt;
886 u32 tx_mu_mpdu_cnt;
887 u32 tx_mu_acked_mpdu_cnt;
888 u32 tx_su_acked_mpdu_cnt;
889 u32 tx_bf_ibf_ppdu_cnt;
890 u32 tx_bf_ebf_ppdu_cnt;
891
892 u32 tx_bf_rx_fb_all_cnt;
893 u32 tx_bf_rx_fb_eht_cnt;
894 u32 tx_bf_rx_fb_he_cnt;
895 u32 tx_bf_rx_fb_vht_cnt;
896 u32 tx_bf_rx_fb_ht_cnt;
897
898 u32 tx_bf_rx_fb_bw; /* value of last sample, not cumulative */
899 u32 tx_bf_rx_fb_nc_cnt;
900 u32 tx_bf_rx_fb_nr_cnt;
901 u32 tx_bf_fb_cpl_cnt;
902 u32 tx_bf_fb_trig_cnt;
903
904 u32 tx_ampdu_cnt;
905 u32 tx_stop_q_empty_cnt;
906 u32 tx_mpdu_attempts_cnt;
907 u32 tx_mpdu_success_cnt;
908 u32 tx_pkt_ebf_cnt;
909 u32 tx_pkt_ibf_cnt;
910
911 u32 tx_rwp_fail_cnt;
912 u32 tx_rwp_need_cnt;
913
914 /* rx stats */
915 u32 rx_fifo_full_cnt;
916 u32 channel_idle_cnt;
917 u32 primary_cca_busy_time;
918 u32 secondary_cca_busy_time;
919 u32 primary_energy_detect_time;
920 u32 cck_mdrdy_time;
921 u32 ofdm_mdrdy_time;
922 u32 green_mdrdy_time;
923 u32 rx_vector_mismatch_cnt;
924 u32 rx_delimiter_fail_cnt;
925 u32 rx_mrdy_cnt;
926 u32 rx_len_mismatch_cnt;
927 u32 rx_mpdu_cnt;
928 u32 rx_ampdu_cnt;
929 u32 rx_ampdu_bytes_cnt;
930 u32 rx_ampdu_valid_subframe_cnt;
931 u32 rx_ampdu_valid_subframe_bytes_cnt;
932 u32 rx_pfdrop_cnt;
933 u32 rx_vec_queue_overflow_drop_cnt;
934 u32 rx_ba_cnt;
935
936 u32 tx_amsdu[8];
937 u32 tx_amsdu_cnt;
938
939 /* mcu_muru_stats */
940 u32 dl_cck_cnt;
941 u32 dl_ofdm_cnt;
942 u32 dl_htmix_cnt;
943 u32 dl_htgf_cnt;
944 u32 dl_vht_su_cnt;
945 u32 dl_vht_2mu_cnt;
946 u32 dl_vht_3mu_cnt;
947 u32 dl_vht_4mu_cnt;
948 u32 dl_he_su_cnt;
949 u32 dl_he_ext_su_cnt;
950 u32 dl_he_2ru_cnt;
951 u32 dl_he_2mu_cnt;
952 u32 dl_he_3ru_cnt;
953 u32 dl_he_3mu_cnt;
954 u32 dl_he_4ru_cnt;
955 u32 dl_he_4mu_cnt;
956 u32 dl_he_5to8ru_cnt;
957 u32 dl_he_9to16ru_cnt;
958 u32 dl_he_gtr16ru_cnt;
959
960 u32 ul_hetrig_su_cnt;
961 u32 ul_hetrig_2ru_cnt;
962 u32 ul_hetrig_3ru_cnt;
963 u32 ul_hetrig_4ru_cnt;
964 u32 ul_hetrig_5to8ru_cnt;
965 u32 ul_hetrig_9to16ru_cnt;
966 u32 ul_hetrig_gtr16ru_cnt;
967 u32 ul_hetrig_2mu_cnt;
968 u32 ul_hetrig_3mu_cnt;
969 u32 ul_hetrig_4mu_cnt;
970 };
971
972 struct mt76_power_limits {
973 s8 cck[4];
974 s8 ofdm[8];
975 s8 mcs[4][10];
976 s8 ru[7][12];
977 };
978
979 struct mt76_ethtool_worker_info {
980 u64 *data;
981 int idx;
982 int initial_stat_idx;
983 int worker_stat_count;
984 int sta_count;
985 };
986
987 #define CCK_RATE(_idx, _rate) { \
988 .bitrate = _rate, \
989 .flags = IEEE80211_RATE_SHORT_PREAMBLE, \
990 .hw_value = (MT_PHY_TYPE_CCK << 8) | (_idx), \
991 .hw_value_short = (MT_PHY_TYPE_CCK << 8) | (4 + _idx), \
992 }
993
994 #define OFDM_RATE(_idx, _rate) { \
995 .bitrate = _rate, \
996 .hw_value = (MT_PHY_TYPE_OFDM << 8) | (_idx), \
997 .hw_value_short = (MT_PHY_TYPE_OFDM << 8) | (_idx), \
998 }
999
1000 extern struct ieee80211_rate mt76_rates[12];
1001
1002 #define __mt76_rr(dev, ...) (dev)->bus->rr((dev), __VA_ARGS__)
1003 #define __mt76_wr(dev, ...) (dev)->bus->wr((dev), __VA_ARGS__)
1004 #define __mt76_rmw(dev, ...) (dev)->bus->rmw((dev), __VA_ARGS__)
1005 #define __mt76_wr_copy(dev, ...) (dev)->bus->write_copy((dev), __VA_ARGS__)
1006 #define __mt76_rr_copy(dev, ...) (dev)->bus->read_copy((dev), __VA_ARGS__)
1007
1008 #define __mt76_set(dev, offset, val) __mt76_rmw(dev, offset, 0, val)
1009 #define __mt76_clear(dev, offset, val) __mt76_rmw(dev, offset, val, 0)
1010
1011 #define mt76_rr(dev, ...) (dev)->mt76.bus->rr(&((dev)->mt76), __VA_ARGS__)
1012 #define mt76_wr(dev, ...) (dev)->mt76.bus->wr(&((dev)->mt76), __VA_ARGS__)
1013 #define mt76_rmw(dev, ...) (dev)->mt76.bus->rmw(&((dev)->mt76), __VA_ARGS__)
1014 #define mt76_wr_copy(dev, ...) (dev)->mt76.bus->write_copy(&((dev)->mt76), __VA_ARGS__)
1015 #define mt76_rr_copy(dev, ...) (dev)->mt76.bus->read_copy(&((dev)->mt76), __VA_ARGS__)
1016 #define mt76_wr_rp(dev, ...) (dev)->mt76.bus->wr_rp(&((dev)->mt76), __VA_ARGS__)
1017 #define mt76_rd_rp(dev, ...) (dev)->mt76.bus->rd_rp(&((dev)->mt76), __VA_ARGS__)
1018
1019
1020 #define mt76_mcu_restart(dev, ...) (dev)->mt76.mcu_ops->mcu_restart(&((dev)->mt76))
1021
1022 #define mt76_set(dev, offset, val) mt76_rmw(dev, offset, 0, val)
1023 #define mt76_clear(dev, offset, val) mt76_rmw(dev, offset, val, 0)
1024
1025 #define mt76_get_field(_dev, _reg, _field) \
1026 FIELD_GET(_field, mt76_rr(dev, _reg))
1027
1028 #define mt76_rmw_field(_dev, _reg, _field, _val) \
1029 mt76_rmw(_dev, _reg, _field, FIELD_PREP(_field, _val))
1030
1031 #define __mt76_rmw_field(_dev, _reg, _field, _val) \
1032 __mt76_rmw(_dev, _reg, _field, FIELD_PREP(_field, _val))
1033
1034 #define mt76_hw(dev) (dev)->mphy.hw
1035
1036 bool __mt76_poll(struct mt76_dev *dev, u32 offset, u32 mask, u32 val,
1037 int timeout);
1038
1039 #define mt76_poll(dev, ...) __mt76_poll(&((dev)->mt76), __VA_ARGS__)
1040
1041 bool ____mt76_poll_msec(struct mt76_dev *dev, u32 offset, u32 mask, u32 val,
1042 int timeout, int kick);
1043 #define __mt76_poll_msec(...) ____mt76_poll_msec(__VA_ARGS__, 10)
1044 #define mt76_poll_msec(dev, ...) ____mt76_poll_msec(&((dev)->mt76), __VA_ARGS__, 10)
1045 #define mt76_poll_msec_tick(dev, ...) ____mt76_poll_msec(&((dev)->mt76), __VA_ARGS__)
1046
1047 void mt76_mmio_init(struct mt76_dev *dev, void __iomem *regs);
1048 void mt76_pci_disable_aspm(struct pci_dev *pdev);
1049
mt76_chip(struct mt76_dev * dev)1050 static inline u16 mt76_chip(struct mt76_dev *dev)
1051 {
1052 return dev->rev >> 16;
1053 }
1054
mt76_rev(struct mt76_dev * dev)1055 static inline u16 mt76_rev(struct mt76_dev *dev)
1056 {
1057 return dev->rev & 0xffff;
1058 }
1059
1060 #define mt76xx_chip(dev) mt76_chip(&((dev)->mt76))
1061 #define mt76xx_rev(dev) mt76_rev(&((dev)->mt76))
1062
1063 #define mt76_init_queues(dev, ...) (dev)->mt76.queue_ops->init(&((dev)->mt76), __VA_ARGS__)
1064 #define mt76_queue_alloc(dev, ...) (dev)->mt76.queue_ops->alloc(&((dev)->mt76), __VA_ARGS__)
1065 #define mt76_tx_queue_skb_raw(dev, ...) (dev)->mt76.queue_ops->tx_queue_skb_raw(&((dev)->mt76), __VA_ARGS__)
1066 #define mt76_tx_queue_skb(dev, ...) (dev)->mt76.queue_ops->tx_queue_skb(&((dev)->mt76), __VA_ARGS__)
1067 #define mt76_queue_rx_reset(dev, ...) (dev)->mt76.queue_ops->rx_reset(&((dev)->mt76), __VA_ARGS__)
1068 #define mt76_queue_tx_cleanup(dev, ...) (dev)->mt76.queue_ops->tx_cleanup(&((dev)->mt76), __VA_ARGS__)
1069 #define mt76_queue_rx_cleanup(dev, ...) (dev)->mt76.queue_ops->rx_cleanup(&((dev)->mt76), __VA_ARGS__)
1070 #define mt76_queue_kick(dev, ...) (dev)->mt76.queue_ops->kick(&((dev)->mt76), __VA_ARGS__)
1071 #define mt76_queue_reset(dev, ...) (dev)->mt76.queue_ops->reset_q(&((dev)->mt76), __VA_ARGS__)
1072
1073 #define mt76_for_each_q_rx(dev, i) \
1074 for (i = 0; i < ARRAY_SIZE((dev)->q_rx); i++) \
1075 if ((dev)->q_rx[i].ndesc)
1076
1077 struct mt76_dev *mt76_alloc_device(struct device *pdev, unsigned int size,
1078 const struct ieee80211_ops *ops,
1079 const struct mt76_driver_ops *drv_ops);
1080 int mt76_register_device(struct mt76_dev *dev, bool vht,
1081 struct ieee80211_rate *rates, int n_rates);
1082 void mt76_unregister_device(struct mt76_dev *dev);
1083 void mt76_free_device(struct mt76_dev *dev);
1084 void mt76_unregister_phy(struct mt76_phy *phy);
1085
1086 struct mt76_phy *mt76_alloc_phy(struct mt76_dev *dev, unsigned int size,
1087 const struct ieee80211_ops *ops,
1088 u8 band_idx);
1089 int mt76_register_phy(struct mt76_phy *phy, bool vht,
1090 struct ieee80211_rate *rates, int n_rates);
1091
1092 struct dentry *mt76_register_debugfs_fops(struct mt76_phy *phy,
1093 const struct file_operations *ops);
mt76_register_debugfs(struct mt76_dev * dev)1094 static inline struct dentry *mt76_register_debugfs(struct mt76_dev *dev)
1095 {
1096 return mt76_register_debugfs_fops(&dev->phy, NULL);
1097 }
1098
1099 int mt76_queues_read(struct seq_file *s, void *data);
1100 void mt76_seq_puts_array(struct seq_file *file, const char *str,
1101 s8 *val, int len);
1102
1103 int mt76_eeprom_init(struct mt76_dev *dev, int len);
1104 void mt76_eeprom_override(struct mt76_phy *phy);
1105 int mt76_get_of_eeprom(struct mt76_dev *dev, void *data, int offset, int len);
1106
1107 struct mt76_queue *
1108 mt76_init_queue(struct mt76_dev *dev, int qid, int idx, int n_desc,
1109 int ring_base, u32 flags);
1110 u16 mt76_calculate_default_rate(struct mt76_phy *phy, int rateidx);
mt76_init_tx_queue(struct mt76_phy * phy,int qid,int idx,int n_desc,int ring_base,u32 flags)1111 static inline int mt76_init_tx_queue(struct mt76_phy *phy, int qid, int idx,
1112 int n_desc, int ring_base, u32 flags)
1113 {
1114 struct mt76_queue *q;
1115
1116 q = mt76_init_queue(phy->dev, qid, idx, n_desc, ring_base, flags);
1117 if (IS_ERR(q))
1118 return PTR_ERR(q);
1119
1120 phy->q_tx[qid] = q;
1121
1122 return 0;
1123 }
1124
mt76_init_mcu_queue(struct mt76_dev * dev,int qid,int idx,int n_desc,int ring_base)1125 static inline int mt76_init_mcu_queue(struct mt76_dev *dev, int qid, int idx,
1126 int n_desc, int ring_base)
1127 {
1128 struct mt76_queue *q;
1129
1130 q = mt76_init_queue(dev, qid, idx, n_desc, ring_base, 0);
1131 if (IS_ERR(q))
1132 return PTR_ERR(q);
1133
1134 dev->q_mcu[qid] = q;
1135
1136 return 0;
1137 }
1138
1139 static inline struct mt76_phy *
mt76_dev_phy(struct mt76_dev * dev,u8 phy_idx)1140 mt76_dev_phy(struct mt76_dev *dev, u8 phy_idx)
1141 {
1142 if ((phy_idx == MT_BAND1 && dev->phys[phy_idx]) ||
1143 (phy_idx == MT_BAND2 && dev->phys[phy_idx]))
1144 return dev->phys[phy_idx];
1145
1146 return &dev->phy;
1147 }
1148
1149 static inline struct ieee80211_hw *
mt76_phy_hw(struct mt76_dev * dev,u8 phy_idx)1150 mt76_phy_hw(struct mt76_dev *dev, u8 phy_idx)
1151 {
1152 return mt76_dev_phy(dev, phy_idx)->hw;
1153 }
1154
1155 static inline u8 *
mt76_get_txwi_ptr(struct mt76_dev * dev,struct mt76_txwi_cache * t)1156 mt76_get_txwi_ptr(struct mt76_dev *dev, struct mt76_txwi_cache *t)
1157 {
1158 return (u8 *)t - dev->drv->txwi_size;
1159 }
1160
1161 /* increment with wrap-around */
mt76_incr(int val,int size)1162 static inline int mt76_incr(int val, int size)
1163 {
1164 return (val + 1) & (size - 1);
1165 }
1166
1167 /* decrement with wrap-around */
mt76_decr(int val,int size)1168 static inline int mt76_decr(int val, int size)
1169 {
1170 return (val - 1) & (size - 1);
1171 }
1172
1173 u8 mt76_ac_to_hwq(u8 ac);
1174
1175 static inline struct ieee80211_txq *
mtxq_to_txq(struct mt76_txq * mtxq)1176 mtxq_to_txq(struct mt76_txq *mtxq)
1177 {
1178 void *ptr = mtxq;
1179
1180 return container_of(ptr, struct ieee80211_txq, drv_priv);
1181 }
1182
1183 static inline struct ieee80211_sta *
wcid_to_sta(struct mt76_wcid * wcid)1184 wcid_to_sta(struct mt76_wcid *wcid)
1185 {
1186 void *ptr = wcid;
1187
1188 if (!wcid || !wcid->sta)
1189 return NULL;
1190
1191 return container_of(ptr, struct ieee80211_sta, drv_priv);
1192 }
1193
mt76_tx_skb_cb(struct sk_buff * skb)1194 static inline struct mt76_tx_cb *mt76_tx_skb_cb(struct sk_buff *skb)
1195 {
1196 BUILD_BUG_ON(sizeof(struct mt76_tx_cb) >
1197 sizeof(IEEE80211_SKB_CB(skb)->status.status_driver_data));
1198 return ((void *)IEEE80211_SKB_CB(skb)->status.status_driver_data);
1199 }
1200
mt76_skb_get_hdr(struct sk_buff * skb)1201 static inline void *mt76_skb_get_hdr(struct sk_buff *skb)
1202 {
1203 struct mt76_rx_status mstat;
1204 u8 *data = skb->data;
1205
1206 /* Alignment concerns */
1207 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
1208 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
1209
1210 mstat = *((struct mt76_rx_status *)skb->cb);
1211
1212 if (mstat.flag & RX_FLAG_RADIOTAP_HE)
1213 data += sizeof(struct ieee80211_radiotap_he);
1214 if (mstat.flag & RX_FLAG_RADIOTAP_HE_MU)
1215 data += sizeof(struct ieee80211_radiotap_he_mu);
1216
1217 return data;
1218 }
1219
mt76_insert_hdr_pad(struct sk_buff * skb)1220 static inline void mt76_insert_hdr_pad(struct sk_buff *skb)
1221 {
1222 int len = ieee80211_get_hdrlen_from_skb(skb);
1223
1224 if (len % 4 == 0)
1225 return;
1226
1227 skb_push(skb, 2);
1228 memmove(skb->data, skb->data + 2, len);
1229
1230 skb->data[len] = 0;
1231 skb->data[len + 1] = 0;
1232 }
1233
mt76_is_skb_pktid(u8 pktid)1234 static inline bool mt76_is_skb_pktid(u8 pktid)
1235 {
1236 if (pktid & MT_PACKET_ID_HAS_RATE)
1237 return false;
1238
1239 return pktid >= MT_PACKET_ID_FIRST;
1240 }
1241
mt76_tx_power_nss_delta(u8 nss)1242 static inline u8 mt76_tx_power_nss_delta(u8 nss)
1243 {
1244 static const u8 nss_delta[4] = { 0, 6, 9, 12 };
1245 u8 idx = nss - 1;
1246
1247 return (idx < ARRAY_SIZE(nss_delta)) ? nss_delta[idx] : 0;
1248 }
1249
mt76_testmode_enabled(struct mt76_phy * phy)1250 static inline bool mt76_testmode_enabled(struct mt76_phy *phy)
1251 {
1252 #ifdef CONFIG_NL80211_TESTMODE
1253 return phy->test.state != MT76_TM_STATE_OFF;
1254 #else
1255 return false;
1256 #endif
1257 }
1258
mt76_is_testmode_skb(struct mt76_dev * dev,struct sk_buff * skb,struct ieee80211_hw ** hw)1259 static inline bool mt76_is_testmode_skb(struct mt76_dev *dev,
1260 struct sk_buff *skb,
1261 struct ieee80211_hw **hw)
1262 {
1263 #ifdef CONFIG_NL80211_TESTMODE
1264 int i;
1265
1266 for (i = 0; i < ARRAY_SIZE(dev->phys); i++) {
1267 struct mt76_phy *phy = dev->phys[i];
1268
1269 if (phy && skb == phy->test.tx_skb) {
1270 *hw = dev->phys[i]->hw;
1271 return true;
1272 }
1273 }
1274 return false;
1275 #else
1276 return false;
1277 #endif
1278 }
1279
1280 void mt76_rx(struct mt76_dev *dev, enum mt76_rxq_id q, struct sk_buff *skb);
1281 void mt76_tx(struct mt76_phy *dev, struct ieee80211_sta *sta,
1282 struct mt76_wcid *wcid, struct sk_buff *skb);
1283 void mt76_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *txq);
1284 void mt76_stop_tx_queues(struct mt76_phy *phy, struct ieee80211_sta *sta,
1285 bool send_bar);
1286 void mt76_tx_check_agg_ssn(struct ieee80211_sta *sta, struct sk_buff *skb);
1287 void mt76_txq_schedule(struct mt76_phy *phy, enum mt76_txq_id qid);
1288 void mt76_txq_schedule_all(struct mt76_phy *phy);
1289 void mt76_tx_worker_run(struct mt76_dev *dev);
1290 void mt76_tx_worker(struct mt76_worker *w);
1291 void mt76_release_buffered_frames(struct ieee80211_hw *hw,
1292 struct ieee80211_sta *sta,
1293 u16 tids, int nframes,
1294 enum ieee80211_frame_release_type reason,
1295 bool more_data);
1296 bool mt76_has_tx_pending(struct mt76_phy *phy);
1297 void mt76_set_channel(struct mt76_phy *phy);
1298 void mt76_update_survey(struct mt76_phy *phy);
1299 void mt76_update_survey_active_time(struct mt76_phy *phy, ktime_t time);
1300 int mt76_get_survey(struct ieee80211_hw *hw, int idx,
1301 struct survey_info *survey);
1302 int mt76_rx_signal(u8 chain_mask, s8 *chain_signal);
1303 void mt76_set_stream_caps(struct mt76_phy *phy, bool vht);
1304
1305 int mt76_rx_aggr_start(struct mt76_dev *dev, struct mt76_wcid *wcid, u8 tid,
1306 u16 ssn, u16 size);
1307 void mt76_rx_aggr_stop(struct mt76_dev *dev, struct mt76_wcid *wcid, u8 tid);
1308
1309 void mt76_wcid_key_setup(struct mt76_dev *dev, struct mt76_wcid *wcid,
1310 struct ieee80211_key_conf *key);
1311
1312 void mt76_tx_status_lock(struct mt76_dev *dev, struct sk_buff_head *list)
1313 __acquires(&dev->status_lock);
1314 void mt76_tx_status_unlock(struct mt76_dev *dev, struct sk_buff_head *list)
1315 __releases(&dev->status_lock);
1316
1317 int mt76_tx_status_skb_add(struct mt76_dev *dev, struct mt76_wcid *wcid,
1318 struct sk_buff *skb);
1319 struct sk_buff *mt76_tx_status_skb_get(struct mt76_dev *dev,
1320 struct mt76_wcid *wcid, int pktid,
1321 struct sk_buff_head *list);
1322 void mt76_tx_status_skb_done(struct mt76_dev *dev, struct sk_buff *skb,
1323 struct sk_buff_head *list);
1324 void __mt76_tx_complete_skb(struct mt76_dev *dev, u16 wcid, struct sk_buff *skb,
1325 struct list_head *free_list);
1326 static inline void
mt76_tx_complete_skb(struct mt76_dev * dev,u16 wcid,struct sk_buff * skb)1327 mt76_tx_complete_skb(struct mt76_dev *dev, u16 wcid, struct sk_buff *skb)
1328 {
1329 __mt76_tx_complete_skb(dev, wcid, skb, NULL);
1330 }
1331
1332 void mt76_tx_status_check(struct mt76_dev *dev, bool flush);
1333 int mt76_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1334 struct ieee80211_sta *sta,
1335 enum ieee80211_sta_state old_state,
1336 enum ieee80211_sta_state new_state);
1337 void __mt76_sta_remove(struct mt76_dev *dev, struct ieee80211_vif *vif,
1338 struct ieee80211_sta *sta);
1339 void mt76_sta_pre_rcu_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1340 struct ieee80211_sta *sta);
1341
1342 int mt76_get_min_avg_rssi(struct mt76_dev *dev, bool ext_phy);
1343
1344 int mt76_get_txpower(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1345 int *dbm);
1346 int mt76_init_sar_power(struct ieee80211_hw *hw,
1347 const struct cfg80211_sar_specs *sar);
1348 int mt76_get_sar_power(struct mt76_phy *phy,
1349 struct ieee80211_channel *chan,
1350 int power);
1351
1352 void mt76_csa_check(struct mt76_dev *dev);
1353 void mt76_csa_finish(struct mt76_dev *dev);
1354
1355 int mt76_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1356 int mt76_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set);
1357 void mt76_insert_ccmp_hdr(struct sk_buff *skb, u8 key_id);
1358 int mt76_get_rate(struct mt76_dev *dev,
1359 struct ieee80211_supported_band *sband,
1360 int idx, bool cck);
1361 void mt76_sw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1362 const u8 *mac);
1363 void mt76_sw_scan_complete(struct ieee80211_hw *hw,
1364 struct ieee80211_vif *vif);
1365 enum mt76_dfs_state mt76_phy_dfs_state(struct mt76_phy *phy);
1366 int mt76_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1367 void *data, int len);
1368 int mt76_testmode_dump(struct ieee80211_hw *hw, struct sk_buff *skb,
1369 struct netlink_callback *cb, void *data, int len);
1370 int mt76_testmode_set_state(struct mt76_phy *phy, enum mt76_testmode_state state);
1371 int mt76_testmode_alloc_skb(struct mt76_phy *phy, u32 len);
1372
mt76_testmode_reset(struct mt76_phy * phy,bool disable)1373 static inline void mt76_testmode_reset(struct mt76_phy *phy, bool disable)
1374 {
1375 #ifdef CONFIG_NL80211_TESTMODE
1376 enum mt76_testmode_state state = MT76_TM_STATE_IDLE;
1377
1378 if (disable || phy->test.state == MT76_TM_STATE_OFF)
1379 state = MT76_TM_STATE_OFF;
1380
1381 mt76_testmode_set_state(phy, state);
1382 #endif
1383 }
1384
1385
1386 /* internal */
1387 static inline struct ieee80211_hw *
mt76_tx_status_get_hw(struct mt76_dev * dev,struct sk_buff * skb)1388 mt76_tx_status_get_hw(struct mt76_dev *dev, struct sk_buff *skb)
1389 {
1390 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1391 u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2;
1392 struct ieee80211_hw *hw = mt76_phy_hw(dev, phy_idx);
1393
1394 info->hw_queue &= ~MT_TX_HW_QUEUE_PHY;
1395
1396 return hw;
1397 }
1398
1399 void mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t);
1400 void mt76_put_rxwi(struct mt76_dev *dev, struct mt76_txwi_cache *t);
1401 struct mt76_txwi_cache *mt76_get_rxwi(struct mt76_dev *dev);
1402 void mt76_free_pending_rxwi(struct mt76_dev *dev);
1403 void mt76_rx_complete(struct mt76_dev *dev, struct sk_buff_head *frames,
1404 struct napi_struct *napi);
1405 void mt76_rx_poll_complete(struct mt76_dev *dev, enum mt76_rxq_id q,
1406 struct napi_struct *napi);
1407 void mt76_rx_aggr_reorder(struct sk_buff *skb, struct sk_buff_head *frames);
1408 void mt76_testmode_tx_pending(struct mt76_phy *phy);
1409 void mt76_queue_tx_complete(struct mt76_dev *dev, struct mt76_queue *q,
1410 struct mt76_queue_entry *e);
1411
1412 /* usb */
mt76u_urb_error(struct urb * urb)1413 static inline bool mt76u_urb_error(struct urb *urb)
1414 {
1415 return urb->status &&
1416 urb->status != -ECONNRESET &&
1417 urb->status != -ESHUTDOWN &&
1418 urb->status != -ENOENT;
1419 }
1420
1421 /* Map hardware queues to usb endpoints */
q2ep(u8 qid)1422 static inline u8 q2ep(u8 qid)
1423 {
1424 /* TODO: take management packets to queue 5 */
1425 return qid + 1;
1426 }
1427
1428 static inline int
mt76u_bulk_msg(struct mt76_dev * dev,void * data,int len,int * actual_len,int timeout,int ep)1429 mt76u_bulk_msg(struct mt76_dev *dev, void *data, int len, int *actual_len,
1430 int timeout, int ep)
1431 {
1432 #if defined(__FreeBSD__) && !defined(CONFIG_USB)
1433 return (0);
1434 #else
1435 struct usb_interface *uintf = to_usb_interface(dev->dev);
1436 struct usb_device *udev = interface_to_usbdev(uintf);
1437 struct mt76_usb *usb = &dev->usb;
1438 unsigned int pipe;
1439
1440 if (actual_len)
1441 pipe = usb_rcvbulkpipe(udev, usb->in_ep[ep]);
1442 else
1443 pipe = usb_sndbulkpipe(udev, usb->out_ep[ep]);
1444
1445 return usb_bulk_msg(udev, pipe, data, len, actual_len, timeout);
1446 #endif
1447 }
1448
1449 void mt76_ethtool_page_pool_stats(struct mt76_dev *dev, u64 *data, int *index);
1450 void mt76_ethtool_worker(struct mt76_ethtool_worker_info *wi,
1451 struct mt76_sta_stats *stats, bool eht);
1452 int mt76_skb_adjust_pad(struct sk_buff *skb, int pad);
1453 int __mt76u_vendor_request(struct mt76_dev *dev, u8 req, u8 req_type,
1454 u16 val, u16 offset, void *buf, size_t len);
1455 int mt76u_vendor_request(struct mt76_dev *dev, u8 req,
1456 u8 req_type, u16 val, u16 offset,
1457 void *buf, size_t len);
1458 void mt76u_single_wr(struct mt76_dev *dev, const u8 req,
1459 const u16 offset, const u32 val);
1460 void mt76u_read_copy(struct mt76_dev *dev, u32 offset,
1461 void *data, int len);
1462 u32 ___mt76u_rr(struct mt76_dev *dev, u8 req, u8 req_type, u32 addr);
1463 void ___mt76u_wr(struct mt76_dev *dev, u8 req, u8 req_type,
1464 u32 addr, u32 val);
1465 int __mt76u_init(struct mt76_dev *dev, struct usb_interface *intf,
1466 struct mt76_bus_ops *ops);
1467 int mt76u_init(struct mt76_dev *dev, struct usb_interface *intf);
1468 int mt76u_alloc_mcu_queue(struct mt76_dev *dev);
1469 int mt76u_alloc_queues(struct mt76_dev *dev);
1470 void mt76u_stop_tx(struct mt76_dev *dev);
1471 void mt76u_stop_rx(struct mt76_dev *dev);
1472 int mt76u_resume_rx(struct mt76_dev *dev);
1473 void mt76u_queues_deinit(struct mt76_dev *dev);
1474
1475 int mt76s_init(struct mt76_dev *dev, struct sdio_func *func,
1476 const struct mt76_bus_ops *bus_ops);
1477 int mt76s_alloc_rx_queue(struct mt76_dev *dev, enum mt76_rxq_id qid);
1478 int mt76s_alloc_tx(struct mt76_dev *dev);
1479 void mt76s_deinit(struct mt76_dev *dev);
1480 void mt76s_sdio_irq(struct sdio_func *func);
1481 void mt76s_txrx_worker(struct mt76_sdio *sdio);
1482 bool mt76s_txqs_empty(struct mt76_dev *dev);
1483 int mt76s_hw_init(struct mt76_dev *dev, struct sdio_func *func,
1484 int hw_ver);
1485 u32 mt76s_rr(struct mt76_dev *dev, u32 offset);
1486 void mt76s_wr(struct mt76_dev *dev, u32 offset, u32 val);
1487 u32 mt76s_rmw(struct mt76_dev *dev, u32 offset, u32 mask, u32 val);
1488 u32 mt76s_read_pcr(struct mt76_dev *dev);
1489 void mt76s_write_copy(struct mt76_dev *dev, u32 offset,
1490 const void *data, int len);
1491 void mt76s_read_copy(struct mt76_dev *dev, u32 offset,
1492 void *data, int len);
1493 int mt76s_wr_rp(struct mt76_dev *dev, u32 base,
1494 const struct mt76_reg_pair *data,
1495 int len);
1496 int mt76s_rd_rp(struct mt76_dev *dev, u32 base,
1497 struct mt76_reg_pair *data, int len);
1498
1499 struct sk_buff *
1500 __mt76_mcu_msg_alloc(struct mt76_dev *dev, const void *data,
1501 int len, int data_len, gfp_t gfp);
1502 static inline struct sk_buff *
mt76_mcu_msg_alloc(struct mt76_dev * dev,const void * data,int data_len)1503 mt76_mcu_msg_alloc(struct mt76_dev *dev, const void *data,
1504 int data_len)
1505 {
1506 return __mt76_mcu_msg_alloc(dev, data, data_len, data_len, GFP_KERNEL);
1507 }
1508
1509 void mt76_mcu_rx_event(struct mt76_dev *dev, struct sk_buff *skb);
1510 struct sk_buff *mt76_mcu_get_response(struct mt76_dev *dev,
1511 unsigned long expires);
1512 int mt76_mcu_send_and_get_msg(struct mt76_dev *dev, int cmd, const void *data,
1513 int len, bool wait_resp, struct sk_buff **ret);
1514 int mt76_mcu_skb_send_and_get_msg(struct mt76_dev *dev, struct sk_buff *skb,
1515 int cmd, bool wait_resp, struct sk_buff **ret);
1516 #if defined(__linux__)
1517 int __mt76_mcu_send_firmware(struct mt76_dev *dev, int cmd, const void *data,
1518 #elif defined(__FreeBSD__)
1519 int __mt76_mcu_send_firmware(struct mt76_dev *dev, int cmd, const u8 *data,
1520 #endif
1521 int len, int max_len);
1522 static inline int
mt76_mcu_send_firmware(struct mt76_dev * dev,int cmd,const void * data,int len)1523 mt76_mcu_send_firmware(struct mt76_dev *dev, int cmd, const void *data,
1524 int len)
1525 {
1526 int max_len = 4096 - dev->mcu_ops->headroom;
1527
1528 return __mt76_mcu_send_firmware(dev, cmd, data, len, max_len);
1529 }
1530
1531 static inline int
mt76_mcu_send_msg(struct mt76_dev * dev,int cmd,const void * data,int len,bool wait_resp)1532 mt76_mcu_send_msg(struct mt76_dev *dev, int cmd, const void *data, int len,
1533 bool wait_resp)
1534 {
1535 return mt76_mcu_send_and_get_msg(dev, cmd, data, len, wait_resp, NULL);
1536 }
1537
1538 static inline int
mt76_mcu_skb_send_msg(struct mt76_dev * dev,struct sk_buff * skb,int cmd,bool wait_resp)1539 mt76_mcu_skb_send_msg(struct mt76_dev *dev, struct sk_buff *skb, int cmd,
1540 bool wait_resp)
1541 {
1542 return mt76_mcu_skb_send_and_get_msg(dev, skb, cmd, wait_resp, NULL);
1543 }
1544
1545 void mt76_set_irq_mask(struct mt76_dev *dev, u32 addr, u32 clear, u32 set);
1546
1547 s8 mt76_get_rate_power_limits(struct mt76_phy *phy,
1548 struct ieee80211_channel *chan,
1549 struct mt76_power_limits *dest,
1550 s8 target_power);
1551
mt76_queue_is_wed_rx(struct mt76_queue * q)1552 static inline bool mt76_queue_is_wed_rx(struct mt76_queue *q)
1553 {
1554 return (q->flags & MT_QFLAG_WED) &&
1555 FIELD_GET(MT_QFLAG_WED_TYPE, q->flags) == MT76_WED_Q_RX;
1556 }
1557
1558 struct mt76_txwi_cache *
1559 mt76_token_release(struct mt76_dev *dev, int token, bool *wake);
1560 int mt76_token_consume(struct mt76_dev *dev, struct mt76_txwi_cache **ptxwi);
1561 void __mt76_set_tx_blocked(struct mt76_dev *dev, bool blocked);
1562 struct mt76_txwi_cache *mt76_rx_token_release(struct mt76_dev *dev, int token);
1563 int mt76_rx_token_consume(struct mt76_dev *dev, void *ptr,
1564 struct mt76_txwi_cache *r, dma_addr_t phys);
1565 int mt76_create_page_pool(struct mt76_dev *dev, struct mt76_queue *q);
mt76_put_page_pool_buf(void * buf,bool allow_direct)1566 static inline void mt76_put_page_pool_buf(void *buf, bool allow_direct)
1567 {
1568 struct page *page = virt_to_head_page(buf);
1569
1570 page_pool_put_full_page(page->pp, page, allow_direct);
1571 }
1572
1573 static inline void *
mt76_get_page_pool_buf(struct mt76_queue * q,u32 * offset,u32 size)1574 mt76_get_page_pool_buf(struct mt76_queue *q, u32 *offset, u32 size)
1575 {
1576 struct page *page;
1577
1578 page = page_pool_dev_alloc_frag(q->page_pool, offset, size);
1579 if (!page)
1580 return NULL;
1581
1582 #if defined(__linux__)
1583 return page_address(page) + *offset;
1584 #elif defined(__FreeBSD__)
1585 return (void *)((uintptr_t)page_address(page) + *offset);
1586 #endif
1587 }
1588
mt76_set_tx_blocked(struct mt76_dev * dev,bool blocked)1589 static inline void mt76_set_tx_blocked(struct mt76_dev *dev, bool blocked)
1590 {
1591 spin_lock_bh(&dev->token_lock);
1592 __mt76_set_tx_blocked(dev, blocked);
1593 spin_unlock_bh(&dev->token_lock);
1594 }
1595
1596 static inline int
mt76_token_get(struct mt76_dev * dev,struct mt76_txwi_cache ** ptxwi)1597 mt76_token_get(struct mt76_dev *dev, struct mt76_txwi_cache **ptxwi)
1598 {
1599 int token;
1600
1601 spin_lock_bh(&dev->token_lock);
1602 token = idr_alloc(&dev->token, *ptxwi, 0, dev->token_size, GFP_ATOMIC);
1603 spin_unlock_bh(&dev->token_lock);
1604
1605 return token;
1606 }
1607
1608 static inline struct mt76_txwi_cache *
mt76_token_put(struct mt76_dev * dev,int token)1609 mt76_token_put(struct mt76_dev *dev, int token)
1610 {
1611 struct mt76_txwi_cache *txwi;
1612
1613 spin_lock_bh(&dev->token_lock);
1614 txwi = idr_remove(&dev->token, token);
1615 spin_unlock_bh(&dev->token_lock);
1616
1617 return txwi;
1618 }
1619
mt76_packet_id_init(struct mt76_wcid * wcid)1620 static inline void mt76_packet_id_init(struct mt76_wcid *wcid)
1621 {
1622 INIT_LIST_HEAD(&wcid->list);
1623 idr_init(&wcid->pktid);
1624 }
1625
1626 static inline void
mt76_packet_id_flush(struct mt76_dev * dev,struct mt76_wcid * wcid)1627 mt76_packet_id_flush(struct mt76_dev *dev, struct mt76_wcid *wcid)
1628 {
1629 struct sk_buff_head list;
1630
1631 mt76_tx_status_lock(dev, &list);
1632 mt76_tx_status_skb_get(dev, wcid, -1, &list);
1633 mt76_tx_status_unlock(dev, &list);
1634
1635 idr_destroy(&wcid->pktid);
1636 }
1637
1638 #endif
1639