1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include "lint.h"
27 #include "thr_uberdata.h"
28 #include <sys/sdt.h>
29
30 #define TRY_FLAG 0x10
31 #define READ_LOCK 0
32 #define WRITE_LOCK 1
33 #define READ_LOCK_TRY (READ_LOCK | TRY_FLAG)
34 #define WRITE_LOCK_TRY (WRITE_LOCK | TRY_FLAG)
35
36 #define NLOCKS 4 /* initial number of readlock_t structs allocated */
37
38 #define ASSERT_CONSISTENT_STATE(readers) \
39 ASSERT(!((readers) & URW_WRITE_LOCKED) || \
40 ((readers) & ~URW_HAS_WAITERS) == URW_WRITE_LOCKED)
41
42 /*
43 * Find/allocate an entry for rwlp in our array of rwlocks held for reading.
44 * We must be deferring signals for this to be safe.
45 * Else if we are returning an entry with ul_rdlockcnt == 0,
46 * it could be reassigned behind our back in a signal handler.
47 */
48 static readlock_t *
rwl_entry(rwlock_t * rwlp)49 rwl_entry(rwlock_t *rwlp)
50 {
51 ulwp_t *self = curthread;
52 readlock_t *remembered = NULL;
53 readlock_t *readlockp;
54 uint_t nlocks;
55
56 /* we must be deferring signals */
57 ASSERT((self->ul_critical + self->ul_sigdefer) != 0);
58
59 if ((nlocks = self->ul_rdlockcnt) != 0)
60 readlockp = self->ul_readlock.array;
61 else {
62 nlocks = 1;
63 readlockp = &self->ul_readlock.single;
64 }
65
66 for (; nlocks; nlocks--, readlockp++) {
67 if (readlockp->rd_rwlock == rwlp)
68 return (readlockp);
69 if (readlockp->rd_count == 0 && remembered == NULL)
70 remembered = readlockp;
71 }
72 if (remembered != NULL) {
73 remembered->rd_rwlock = rwlp;
74 return (remembered);
75 }
76
77 /*
78 * No entry available. Allocate more space, converting the single
79 * readlock_t entry into an array of readlock_t entries if necessary.
80 */
81 if ((nlocks = self->ul_rdlockcnt) == 0) {
82 /*
83 * Initial allocation of the readlock_t array.
84 * Convert the single entry into an array.
85 */
86 self->ul_rdlockcnt = nlocks = NLOCKS;
87 readlockp = lmalloc(nlocks * sizeof (readlock_t));
88 /*
89 * The single readlock_t becomes the first entry in the array.
90 */
91 *readlockp = self->ul_readlock.single;
92 self->ul_readlock.single.rd_count = 0;
93 self->ul_readlock.array = readlockp;
94 /*
95 * Return the next available entry in the array.
96 */
97 (++readlockp)->rd_rwlock = rwlp;
98 return (readlockp);
99 }
100 /*
101 * Reallocate the array, double the size each time.
102 */
103 readlockp = lmalloc(nlocks * 2 * sizeof (readlock_t));
104 (void) memcpy(readlockp, self->ul_readlock.array,
105 nlocks * sizeof (readlock_t));
106 lfree(self->ul_readlock.array, nlocks * sizeof (readlock_t));
107 self->ul_readlock.array = readlockp;
108 self->ul_rdlockcnt *= 2;
109 /*
110 * Return the next available entry in the newly allocated array.
111 */
112 (readlockp += nlocks)->rd_rwlock = rwlp;
113 return (readlockp);
114 }
115
116 /*
117 * Free the array of rwlocks held for reading.
118 */
119 void
rwl_free(ulwp_t * ulwp)120 rwl_free(ulwp_t *ulwp)
121 {
122 uint_t nlocks;
123
124 if ((nlocks = ulwp->ul_rdlockcnt) != 0)
125 lfree(ulwp->ul_readlock.array, nlocks * sizeof (readlock_t));
126 ulwp->ul_rdlockcnt = 0;
127 ulwp->ul_readlock.single.rd_rwlock = NULL;
128 ulwp->ul_readlock.single.rd_count = 0;
129 }
130
131 /*
132 * Check if a reader version of the lock is held by the current thread.
133 */
134 #pragma weak _rw_read_held = rw_read_held
135 int
rw_read_held(rwlock_t * rwlp)136 rw_read_held(rwlock_t *rwlp)
137 {
138 volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
139 uint32_t readers;
140 ulwp_t *self = curthread;
141 readlock_t *readlockp;
142 uint_t nlocks;
143 int rval = 0;
144
145 no_preempt(self);
146
147 readers = *rwstate;
148 ASSERT_CONSISTENT_STATE(readers);
149 if (!(readers & URW_WRITE_LOCKED) &&
150 (readers & URW_READERS_MASK) != 0) {
151 /*
152 * The lock is held for reading by some thread.
153 * Search our array of rwlocks held for reading for a match.
154 */
155 if ((nlocks = self->ul_rdlockcnt) != 0)
156 readlockp = self->ul_readlock.array;
157 else {
158 nlocks = 1;
159 readlockp = &self->ul_readlock.single;
160 }
161 for (; nlocks; nlocks--, readlockp++) {
162 if (readlockp->rd_rwlock == rwlp) {
163 if (readlockp->rd_count)
164 rval = 1;
165 break;
166 }
167 }
168 }
169
170 preempt(self);
171 return (rval);
172 }
173
174 /*
175 * Check if a writer version of the lock is held by the current thread.
176 */
177 #pragma weak _rw_write_held = rw_write_held
178 int
rw_write_held(rwlock_t * rwlp)179 rw_write_held(rwlock_t *rwlp)
180 {
181 volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
182 uint32_t readers;
183 ulwp_t *self = curthread;
184 int rval;
185
186 no_preempt(self);
187
188 readers = *rwstate;
189 ASSERT_CONSISTENT_STATE(readers);
190 rval = ((readers & URW_WRITE_LOCKED) &&
191 rwlp->rwlock_owner == (uintptr_t)self &&
192 (rwlp->rwlock_type == USYNC_THREAD ||
193 rwlp->rwlock_ownerpid == self->ul_uberdata->pid));
194
195 preempt(self);
196 return (rval);
197 }
198
199 #pragma weak _rwlock_init = rwlock_init
200 /* ARGSUSED2 */
201 int
rwlock_init(rwlock_t * rwlp,int type,void * arg)202 rwlock_init(rwlock_t *rwlp, int type, void *arg)
203 {
204 ulwp_t *self = curthread;
205
206 if (type != USYNC_THREAD && type != USYNC_PROCESS)
207 return (EINVAL);
208 /*
209 * Once reinitialized, we can no longer be holding a read or write lock.
210 * We can do nothing about other threads that are holding read locks.
211 */
212 sigoff(self);
213 rwl_entry(rwlp)->rd_count = 0;
214 sigon(self);
215 (void) memset(rwlp, 0, sizeof (*rwlp));
216 rwlp->rwlock_type = (uint16_t)type;
217 rwlp->rwlock_magic = RWL_MAGIC;
218 rwlp->mutex.mutex_type = (uint8_t)type;
219 rwlp->mutex.mutex_flag = LOCK_INITED;
220 rwlp->mutex.mutex_magic = MUTEX_MAGIC;
221
222 /*
223 * This should be at the beginning of the function,
224 * but for the sake of old broken applications that
225 * do not have proper alignment for their rwlocks
226 * (and don't check the return code from rwlock_init),
227 * we put it here, after initializing the rwlock regardless.
228 */
229 if (((uintptr_t)rwlp & (_LONG_LONG_ALIGNMENT - 1)) &&
230 self->ul_misaligned == 0)
231 return (EINVAL);
232
233 return (0);
234 }
235
236 #pragma weak pthread_rwlock_destroy = rwlock_destroy
237 #pragma weak _rwlock_destroy = rwlock_destroy
238 int
rwlock_destroy(rwlock_t * rwlp)239 rwlock_destroy(rwlock_t *rwlp)
240 {
241 ulwp_t *self = curthread;
242
243 /*
244 * Once destroyed, we can no longer be holding a read or write lock.
245 * We can do nothing about other threads that are holding read locks.
246 */
247 sigoff(self);
248 rwl_entry(rwlp)->rd_count = 0;
249 sigon(self);
250 rwlp->rwlock_magic = 0;
251 tdb_sync_obj_deregister(rwlp);
252 return (0);
253 }
254
255 /*
256 * The following four functions:
257 * read_lock_try()
258 * read_unlock_try()
259 * write_lock_try()
260 * write_unlock_try()
261 * lie at the heart of the fast-path code for rwlocks,
262 * both process-private and process-shared.
263 *
264 * They are called once without recourse to any other locking primitives.
265 * If they succeed, we are done and the fast-path code was successful.
266 * If they fail, we have to deal with lock queues, either to enqueue
267 * ourself and sleep or to dequeue and wake up someone else (slow paths).
268 *
269 * Unless 'ignore_waiters_flag' is true (a condition that applies only
270 * when read_lock_try() or write_lock_try() is called from code that
271 * is already in the slow path and has already acquired the queue lock),
272 * these functions will always fail if the waiters flag, URW_HAS_WAITERS,
273 * is set in the 'rwstate' word. Thus, setting the waiters flag on the
274 * rwlock and acquiring the queue lock guarantees exclusive access to
275 * the rwlock (and is the only way to guarantee exclusive access).
276 */
277
278 /*
279 * Attempt to acquire a readers lock. Return true on success.
280 */
281 static int
read_lock_try(rwlock_t * rwlp,int ignore_waiters_flag)282 read_lock_try(rwlock_t *rwlp, int ignore_waiters_flag)
283 {
284 volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
285 uint32_t mask = ignore_waiters_flag?
286 URW_WRITE_LOCKED : (URW_HAS_WAITERS | URW_WRITE_LOCKED);
287 uint32_t readers;
288 ulwp_t *self = curthread;
289
290 no_preempt(self);
291 while (((readers = *rwstate) & mask) == 0) {
292 if (atomic_cas_32(rwstate, readers, readers + 1) == readers) {
293 preempt(self);
294 return (1);
295 }
296 }
297 preempt(self);
298 return (0);
299 }
300
301 /*
302 * Attempt to release a reader lock. Return true on success.
303 */
304 static int
read_unlock_try(rwlock_t * rwlp)305 read_unlock_try(rwlock_t *rwlp)
306 {
307 volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
308 uint32_t readers;
309 ulwp_t *self = curthread;
310
311 no_preempt(self);
312 while (((readers = *rwstate) & URW_HAS_WAITERS) == 0) {
313 if (atomic_cas_32(rwstate, readers, readers - 1) == readers) {
314 preempt(self);
315 return (1);
316 }
317 }
318 preempt(self);
319 return (0);
320 }
321
322 /*
323 * Attempt to acquire a writer lock. Return true on success.
324 */
325 static int
write_lock_try(rwlock_t * rwlp,int ignore_waiters_flag)326 write_lock_try(rwlock_t *rwlp, int ignore_waiters_flag)
327 {
328 volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
329 uint32_t mask = ignore_waiters_flag?
330 (URW_WRITE_LOCKED | URW_READERS_MASK) :
331 (URW_HAS_WAITERS | URW_WRITE_LOCKED | URW_READERS_MASK);
332 ulwp_t *self = curthread;
333 uint32_t readers;
334
335 no_preempt(self);
336 while (((readers = *rwstate) & mask) == 0) {
337 if (atomic_cas_32(rwstate, readers, readers | URW_WRITE_LOCKED)
338 == readers) {
339 preempt(self);
340 return (1);
341 }
342 }
343 preempt(self);
344 return (0);
345 }
346
347 /*
348 * Attempt to release a writer lock. Return true on success.
349 */
350 static int
write_unlock_try(rwlock_t * rwlp)351 write_unlock_try(rwlock_t *rwlp)
352 {
353 volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
354 uint32_t readers;
355 ulwp_t *self = curthread;
356
357 no_preempt(self);
358 while (((readers = *rwstate) & URW_HAS_WAITERS) == 0) {
359 if (atomic_cas_32(rwstate, readers, 0) == readers) {
360 preempt(self);
361 return (1);
362 }
363 }
364 preempt(self);
365 return (0);
366 }
367
368 /*
369 * Release a process-private rwlock and wake up any thread(s) sleeping on it.
370 * This is called when a thread releases a lock that appears to have waiters.
371 */
372 static void
rw_queue_release(rwlock_t * rwlp)373 rw_queue_release(rwlock_t *rwlp)
374 {
375 volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
376 queue_head_t *qp;
377 uint32_t readers;
378 uint32_t writer;
379 ulwp_t **ulwpp;
380 ulwp_t *ulwp;
381 ulwp_t *prev;
382 int nlwpid = 0;
383 int more;
384 int maxlwps = MAXLWPS;
385 lwpid_t buffer[MAXLWPS];
386 lwpid_t *lwpid = buffer;
387
388 qp = queue_lock(rwlp, MX);
389
390 /*
391 * Here is where we actually drop the lock,
392 * but we retain the URW_HAS_WAITERS flag, if it is already set.
393 */
394 readers = *rwstate;
395 ASSERT_CONSISTENT_STATE(readers);
396 if (readers & URW_WRITE_LOCKED) /* drop the writer lock */
397 atomic_and_32(rwstate, ~URW_WRITE_LOCKED);
398 else /* drop the readers lock */
399 atomic_dec_32(rwstate);
400 if (!(readers & URW_HAS_WAITERS)) { /* no waiters */
401 queue_unlock(qp);
402 return;
403 }
404
405 /*
406 * The presence of the URW_HAS_WAITERS flag causes all rwlock
407 * code to go through the slow path, acquiring queue_lock(qp).
408 * Therefore, the rest of this code is safe because we are
409 * holding the queue lock and the URW_HAS_WAITERS flag is set.
410 */
411
412 readers = *rwstate; /* must fetch the value again */
413 ASSERT_CONSISTENT_STATE(readers);
414 ASSERT(readers & URW_HAS_WAITERS);
415 readers &= URW_READERS_MASK; /* count of current readers */
416 writer = 0; /* no current writer */
417
418 /*
419 * Examine the queue of waiters in priority order and prepare
420 * to wake up as many readers as we encounter before encountering
421 * a writer. If the highest priority thread on the queue is a
422 * writer, stop there and wake it up.
423 *
424 * We keep track of lwpids that are to be unparked in lwpid[].
425 * __lwp_unpark_all() is called to unpark all of them after
426 * they have been removed from the sleep queue and the sleep
427 * queue lock has been dropped. If we run out of space in our
428 * on-stack buffer, we need to allocate more but we can't call
429 * lmalloc() because we are holding a queue lock when the overflow
430 * occurs and lmalloc() acquires a lock. We can't use alloca()
431 * either because the application may have allocated a small
432 * stack and we don't want to overrun the stack. So we call
433 * alloc_lwpids() to allocate a bigger buffer using the mmap()
434 * system call directly since that path acquires no locks.
435 */
436 while ((ulwpp = queue_slot(qp, &prev, &more)) != NULL) {
437 ulwp = *ulwpp;
438 ASSERT(ulwp->ul_wchan == rwlp);
439 if (ulwp->ul_writer) {
440 if (writer != 0 || readers != 0)
441 break;
442 /* one writer to wake */
443 writer++;
444 } else {
445 if (writer != 0)
446 break;
447 /* at least one reader to wake */
448 readers++;
449 if (nlwpid == maxlwps)
450 lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps);
451 }
452 queue_unlink(qp, ulwpp, prev);
453 ulwp->ul_sleepq = NULL;
454 ulwp->ul_wchan = NULL;
455 if (writer) {
456 /*
457 * Hand off the lock to the writer we will be waking.
458 */
459 ASSERT((*rwstate & ~URW_HAS_WAITERS) == 0);
460 atomic_or_32(rwstate, URW_WRITE_LOCKED);
461 rwlp->rwlock_owner = (uintptr_t)ulwp;
462 }
463 lwpid[nlwpid++] = ulwp->ul_lwpid;
464 }
465
466 /*
467 * This modification of rwstate must be done last.
468 * The presence of the URW_HAS_WAITERS flag causes all rwlock
469 * code to go through the slow path, acquiring queue_lock(qp).
470 * Otherwise the read_lock_try() and write_lock_try() fast paths
471 * are effective.
472 */
473 if (ulwpp == NULL)
474 atomic_and_32(rwstate, ~URW_HAS_WAITERS);
475
476 if (nlwpid == 0) {
477 queue_unlock(qp);
478 } else {
479 ulwp_t *self = curthread;
480 no_preempt(self);
481 queue_unlock(qp);
482 if (nlwpid == 1)
483 (void) __lwp_unpark(lwpid[0]);
484 else
485 (void) __lwp_unpark_all(lwpid, nlwpid);
486 preempt(self);
487 }
488 if (lwpid != buffer)
489 (void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t));
490 }
491
492 /*
493 * Common code for rdlock, timedrdlock, wrlock, timedwrlock, tryrdlock,
494 * and trywrlock for process-shared (USYNC_PROCESS) rwlocks.
495 *
496 * Note: if the lock appears to be contended we call __lwp_rwlock_rdlock()
497 * or __lwp_rwlock_wrlock() holding the mutex. These return with the mutex
498 * released, and if they need to sleep will release the mutex first. In the
499 * event of a spurious wakeup, these will return EAGAIN (because it is much
500 * easier for us to re-acquire the mutex here).
501 */
502 int
shared_rwlock_lock(rwlock_t * rwlp,timespec_t * tsp,int rd_wr)503 shared_rwlock_lock(rwlock_t *rwlp, timespec_t *tsp, int rd_wr)
504 {
505 volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
506 mutex_t *mp = &rwlp->mutex;
507 uint32_t readers;
508 int try_flag;
509 int error;
510
511 try_flag = (rd_wr & TRY_FLAG);
512 rd_wr &= ~TRY_FLAG;
513 ASSERT(rd_wr == READ_LOCK || rd_wr == WRITE_LOCK);
514
515 if (!try_flag) {
516 DTRACE_PROBE2(plockstat, rw__block, rwlp, rd_wr);
517 }
518
519 do {
520 if (try_flag && (*rwstate & URW_WRITE_LOCKED)) {
521 error = EBUSY;
522 break;
523 }
524 if ((error = mutex_lock(mp)) != 0)
525 break;
526 if (rd_wr == READ_LOCK) {
527 if (read_lock_try(rwlp, 0)) {
528 (void) mutex_unlock(mp);
529 break;
530 }
531 } else {
532 if (write_lock_try(rwlp, 0)) {
533 (void) mutex_unlock(mp);
534 break;
535 }
536 }
537 atomic_or_32(rwstate, URW_HAS_WAITERS);
538 readers = *rwstate;
539 ASSERT_CONSISTENT_STATE(readers);
540 /*
541 * The calls to __lwp_rwlock_*() below will release the mutex,
542 * so we need a dtrace probe here. The owner field of the
543 * mutex is cleared in the kernel when the mutex is released,
544 * so we should not clear it here.
545 */
546 DTRACE_PROBE2(plockstat, mutex__release, mp, 0);
547 /*
548 * The waiters bit may be inaccurate.
549 * Only the kernel knows for sure.
550 */
551 if (rd_wr == READ_LOCK) {
552 if (try_flag)
553 error = __lwp_rwlock_tryrdlock(rwlp);
554 else
555 error = __lwp_rwlock_rdlock(rwlp, tsp);
556 } else {
557 if (try_flag)
558 error = __lwp_rwlock_trywrlock(rwlp);
559 else
560 error = __lwp_rwlock_wrlock(rwlp, tsp);
561 }
562 } while (error == EAGAIN || error == EINTR);
563
564 if (!try_flag) {
565 DTRACE_PROBE3(plockstat, rw__blocked, rwlp, rd_wr, error == 0);
566 }
567
568 return (error);
569 }
570
571 /*
572 * Common code for rdlock, timedrdlock, wrlock, timedwrlock, tryrdlock,
573 * and trywrlock for process-private (USYNC_THREAD) rwlocks.
574 */
575 int
rwlock_lock(rwlock_t * rwlp,timespec_t * tsp,int rd_wr)576 rwlock_lock(rwlock_t *rwlp, timespec_t *tsp, int rd_wr)
577 {
578 volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
579 uint32_t readers;
580 ulwp_t *self = curthread;
581 queue_head_t *qp;
582 ulwp_t *ulwp;
583 int try_flag;
584 int ignore_waiters_flag;
585 int error = 0;
586
587 try_flag = (rd_wr & TRY_FLAG);
588 rd_wr &= ~TRY_FLAG;
589 ASSERT(rd_wr == READ_LOCK || rd_wr == WRITE_LOCK);
590
591 if (!try_flag) {
592 DTRACE_PROBE2(plockstat, rw__block, rwlp, rd_wr);
593 }
594
595 qp = queue_lock(rwlp, MX);
596 /* initial attempt to acquire the lock fails if there are waiters */
597 ignore_waiters_flag = 0;
598 while (error == 0) {
599 if (rd_wr == READ_LOCK) {
600 if (read_lock_try(rwlp, ignore_waiters_flag))
601 break;
602 } else {
603 if (write_lock_try(rwlp, ignore_waiters_flag))
604 break;
605 }
606 /* subsequent attempts do not fail due to waiters */
607 ignore_waiters_flag = 1;
608 atomic_or_32(rwstate, URW_HAS_WAITERS);
609 readers = *rwstate;
610 ASSERT_CONSISTENT_STATE(readers);
611 if ((readers & URW_WRITE_LOCKED) ||
612 (rd_wr == WRITE_LOCK &&
613 (readers & URW_READERS_MASK) != 0))
614 /* EMPTY */; /* somebody holds the lock */
615 else if ((ulwp = queue_waiter(qp)) == NULL) {
616 atomic_and_32(rwstate, ~URW_HAS_WAITERS);
617 ignore_waiters_flag = 0;
618 continue; /* no queued waiters, start over */
619 } else {
620 /*
621 * Do a priority check on the queued waiter (the
622 * highest priority thread on the queue) to see
623 * if we should defer to him or just grab the lock.
624 */
625 int our_pri = real_priority(self);
626 int his_pri = real_priority(ulwp);
627
628 if (rd_wr == WRITE_LOCK) {
629 /*
630 * We defer to a queued thread that has
631 * a higher priority than ours.
632 */
633 if (his_pri <= our_pri) {
634 /*
635 * Don't defer, just grab the lock.
636 */
637 continue;
638 }
639 } else {
640 /*
641 * We defer to a queued thread that has
642 * a higher priority than ours or that
643 * is a writer whose priority equals ours.
644 */
645 if (his_pri < our_pri ||
646 (his_pri == our_pri && !ulwp->ul_writer)) {
647 /*
648 * Don't defer, just grab the lock.
649 */
650 continue;
651 }
652 }
653 }
654 /*
655 * We are about to block.
656 * If we're doing a trylock, return EBUSY instead.
657 */
658 if (try_flag) {
659 error = EBUSY;
660 break;
661 }
662 /*
663 * Enqueue writers ahead of readers.
664 */
665 self->ul_writer = rd_wr; /* *must* be 0 or 1 */
666 enqueue(qp, self, 0);
667 set_parking_flag(self, 1);
668 queue_unlock(qp);
669 if ((error = __lwp_park(tsp, 0)) == EINTR)
670 error = 0;
671 set_parking_flag(self, 0);
672 qp = queue_lock(rwlp, MX);
673 if (self->ul_sleepq && dequeue_self(qp) == 0) {
674 atomic_and_32(rwstate, ~URW_HAS_WAITERS);
675 ignore_waiters_flag = 0;
676 }
677 self->ul_writer = 0;
678 if (rd_wr == WRITE_LOCK &&
679 (*rwstate & URW_WRITE_LOCKED) &&
680 rwlp->rwlock_owner == (uintptr_t)self) {
681 /*
682 * We acquired the lock by hand-off
683 * from the previous owner,
684 */
685 error = 0; /* timedlock did not fail */
686 break;
687 }
688 }
689
690 /*
691 * Make one final check to see if there are any threads left
692 * on the rwlock queue. Clear the URW_HAS_WAITERS flag if not.
693 */
694 if (qp->qh_root == NULL || qp->qh_root->qr_head == NULL)
695 atomic_and_32(rwstate, ~URW_HAS_WAITERS);
696
697 queue_unlock(qp);
698
699 if (!try_flag) {
700 DTRACE_PROBE3(plockstat, rw__blocked, rwlp, rd_wr, error == 0);
701 }
702
703 return (error);
704 }
705
706 int
rw_rdlock_impl(rwlock_t * rwlp,timespec_t * tsp)707 rw_rdlock_impl(rwlock_t *rwlp, timespec_t *tsp)
708 {
709 ulwp_t *self = curthread;
710 uberdata_t *udp = self->ul_uberdata;
711 readlock_t *readlockp;
712 tdb_rwlock_stats_t *rwsp = RWLOCK_STATS(rwlp, udp);
713 int error;
714
715 /*
716 * If we already hold a readers lock on this rwlock,
717 * just increment our reference count and return.
718 */
719 sigoff(self);
720 readlockp = rwl_entry(rwlp);
721 if (readlockp->rd_count != 0) {
722 if (readlockp->rd_count == READ_LOCK_MAX) {
723 sigon(self);
724 error = EAGAIN;
725 goto out;
726 }
727 sigon(self);
728 error = 0;
729 goto out;
730 }
731 sigon(self);
732
733 /*
734 * If we hold the writer lock, bail out.
735 */
736 if (rw_write_held(rwlp)) {
737 if (self->ul_error_detection)
738 rwlock_error(rwlp, "rwlock_rdlock",
739 "calling thread owns the writer lock");
740 error = EDEADLK;
741 goto out;
742 }
743
744 if (read_lock_try(rwlp, 0))
745 error = 0;
746 else if (rwlp->rwlock_type == USYNC_PROCESS) /* kernel-level */
747 error = shared_rwlock_lock(rwlp, tsp, READ_LOCK);
748 else /* user-level */
749 error = rwlock_lock(rwlp, tsp, READ_LOCK);
750
751 out:
752 if (error == 0) {
753 sigoff(self);
754 rwl_entry(rwlp)->rd_count++;
755 sigon(self);
756 if (rwsp)
757 tdb_incr(rwsp->rw_rdlock);
758 DTRACE_PROBE2(plockstat, rw__acquire, rwlp, READ_LOCK);
759 } else {
760 DTRACE_PROBE3(plockstat, rw__error, rwlp, READ_LOCK, error);
761 }
762
763 return (error);
764 }
765
766 #pragma weak pthread_rwlock_rdlock = rw_rdlock
767 #pragma weak _rw_rdlock = rw_rdlock
768 int
rw_rdlock(rwlock_t * rwlp)769 rw_rdlock(rwlock_t *rwlp)
770 {
771 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
772 return (rw_rdlock_impl(rwlp, NULL));
773 }
774
775 void
lrw_rdlock(rwlock_t * rwlp)776 lrw_rdlock(rwlock_t *rwlp)
777 {
778 enter_critical(curthread);
779 (void) rw_rdlock_impl(rwlp, NULL);
780 }
781
782 int
pthread_rwlock_reltimedrdlock_np(pthread_rwlock_t * _RESTRICT_KYWD rwlp,const struct timespec * _RESTRICT_KYWD reltime)783 pthread_rwlock_reltimedrdlock_np(pthread_rwlock_t *_RESTRICT_KYWD rwlp,
784 const struct timespec *_RESTRICT_KYWD reltime)
785 {
786 timespec_t tslocal = *reltime;
787 int error;
788
789 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
790 error = rw_rdlock_impl((rwlock_t *)rwlp, &tslocal);
791 if (error == ETIME)
792 error = ETIMEDOUT;
793 return (error);
794 }
795
796 int
pthread_rwlock_timedrdlock(pthread_rwlock_t * _RESTRICT_KYWD rwlp,const struct timespec * _RESTRICT_KYWD abstime)797 pthread_rwlock_timedrdlock(pthread_rwlock_t *_RESTRICT_KYWD rwlp,
798 const struct timespec *_RESTRICT_KYWD abstime)
799 {
800 timespec_t tslocal;
801 int error;
802
803 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
804 abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
805 error = rw_rdlock_impl((rwlock_t *)rwlp, &tslocal);
806 if (error == ETIME)
807 error = ETIMEDOUT;
808 return (error);
809 }
810
811 int
rw_wrlock_impl(rwlock_t * rwlp,timespec_t * tsp)812 rw_wrlock_impl(rwlock_t *rwlp, timespec_t *tsp)
813 {
814 ulwp_t *self = curthread;
815 uberdata_t *udp = self->ul_uberdata;
816 tdb_rwlock_stats_t *rwsp = RWLOCK_STATS(rwlp, udp);
817 int error;
818
819 /*
820 * If we hold a readers lock on this rwlock, bail out.
821 */
822 if (rw_read_held(rwlp)) {
823 if (self->ul_error_detection)
824 rwlock_error(rwlp, "rwlock_wrlock",
825 "calling thread owns the readers lock");
826 error = EDEADLK;
827 goto out;
828 }
829
830 /*
831 * If we hold the writer lock, bail out.
832 */
833 if (rw_write_held(rwlp)) {
834 if (self->ul_error_detection)
835 rwlock_error(rwlp, "rwlock_wrlock",
836 "calling thread owns the writer lock");
837 error = EDEADLK;
838 goto out;
839 }
840
841 if (write_lock_try(rwlp, 0))
842 error = 0;
843 else if (rwlp->rwlock_type == USYNC_PROCESS) /* kernel-level */
844 error = shared_rwlock_lock(rwlp, tsp, WRITE_LOCK);
845 else /* user-level */
846 error = rwlock_lock(rwlp, tsp, WRITE_LOCK);
847
848 out:
849 if (error == 0) {
850 rwlp->rwlock_owner = (uintptr_t)self;
851 if (rwlp->rwlock_type == USYNC_PROCESS)
852 rwlp->rwlock_ownerpid = udp->pid;
853 if (rwsp) {
854 tdb_incr(rwsp->rw_wrlock);
855 rwsp->rw_wrlock_begin_hold = gethrtime();
856 }
857 DTRACE_PROBE2(plockstat, rw__acquire, rwlp, WRITE_LOCK);
858 } else {
859 DTRACE_PROBE3(plockstat, rw__error, rwlp, WRITE_LOCK, error);
860 }
861 return (error);
862 }
863
864 #pragma weak pthread_rwlock_wrlock = rw_wrlock
865 #pragma weak _rw_wrlock = rw_wrlock
866 int
rw_wrlock(rwlock_t * rwlp)867 rw_wrlock(rwlock_t *rwlp)
868 {
869 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
870 return (rw_wrlock_impl(rwlp, NULL));
871 }
872
873 void
lrw_wrlock(rwlock_t * rwlp)874 lrw_wrlock(rwlock_t *rwlp)
875 {
876 enter_critical(curthread);
877 (void) rw_wrlock_impl(rwlp, NULL);
878 }
879
880 int
pthread_rwlock_reltimedwrlock_np(pthread_rwlock_t * _RESTRICT_KYWD rwlp,const struct timespec * _RESTRICT_KYWD reltime)881 pthread_rwlock_reltimedwrlock_np(pthread_rwlock_t *_RESTRICT_KYWD rwlp,
882 const struct timespec *_RESTRICT_KYWD reltime)
883 {
884 timespec_t tslocal = *reltime;
885 int error;
886
887 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
888 error = rw_wrlock_impl((rwlock_t *)rwlp, &tslocal);
889 if (error == ETIME)
890 error = ETIMEDOUT;
891 return (error);
892 }
893
894 int
pthread_rwlock_timedwrlock(pthread_rwlock_t * rwlp,const timespec_t * abstime)895 pthread_rwlock_timedwrlock(pthread_rwlock_t *rwlp, const timespec_t *abstime)
896 {
897 timespec_t tslocal;
898 int error;
899
900 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
901 abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal);
902 error = rw_wrlock_impl((rwlock_t *)rwlp, &tslocal);
903 if (error == ETIME)
904 error = ETIMEDOUT;
905 return (error);
906 }
907
908 #pragma weak pthread_rwlock_tryrdlock = rw_tryrdlock
909 int
rw_tryrdlock(rwlock_t * rwlp)910 rw_tryrdlock(rwlock_t *rwlp)
911 {
912 ulwp_t *self = curthread;
913 uberdata_t *udp = self->ul_uberdata;
914 tdb_rwlock_stats_t *rwsp = RWLOCK_STATS(rwlp, udp);
915 readlock_t *readlockp;
916 int error;
917
918 ASSERT(!curthread->ul_critical || curthread->ul_bindflags);
919
920 if (rwsp)
921 tdb_incr(rwsp->rw_rdlock_try);
922
923 /*
924 * If we already hold a readers lock on this rwlock,
925 * just increment our reference count and return.
926 */
927 sigoff(self);
928 readlockp = rwl_entry(rwlp);
929 if (readlockp->rd_count != 0) {
930 if (readlockp->rd_count == READ_LOCK_MAX) {
931 sigon(self);
932 error = EAGAIN;
933 goto out;
934 }
935 sigon(self);
936 error = 0;
937 goto out;
938 }
939 sigon(self);
940
941 if (read_lock_try(rwlp, 0))
942 error = 0;
943 else if (rwlp->rwlock_type == USYNC_PROCESS) /* kernel-level */
944 error = shared_rwlock_lock(rwlp, NULL, READ_LOCK_TRY);
945 else /* user-level */
946 error = rwlock_lock(rwlp, NULL, READ_LOCK_TRY);
947
948 out:
949 if (error == 0) {
950 sigoff(self);
951 rwl_entry(rwlp)->rd_count++;
952 sigon(self);
953 DTRACE_PROBE2(plockstat, rw__acquire, rwlp, READ_LOCK);
954 } else {
955 if (rwsp)
956 tdb_incr(rwsp->rw_rdlock_try_fail);
957 if (error != EBUSY) {
958 DTRACE_PROBE3(plockstat, rw__error, rwlp, READ_LOCK,
959 error);
960 }
961 }
962
963 return (error);
964 }
965
966 #pragma weak pthread_rwlock_trywrlock = rw_trywrlock
967 int
rw_trywrlock(rwlock_t * rwlp)968 rw_trywrlock(rwlock_t *rwlp)
969 {
970 ulwp_t *self = curthread;
971 uberdata_t *udp = self->ul_uberdata;
972 tdb_rwlock_stats_t *rwsp = RWLOCK_STATS(rwlp, udp);
973 int error;
974
975 ASSERT(!self->ul_critical || self->ul_bindflags);
976
977 if (rwsp)
978 tdb_incr(rwsp->rw_wrlock_try);
979
980 if (write_lock_try(rwlp, 0))
981 error = 0;
982 else if (rwlp->rwlock_type == USYNC_PROCESS) /* kernel-level */
983 error = shared_rwlock_lock(rwlp, NULL, WRITE_LOCK_TRY);
984 else /* user-level */
985 error = rwlock_lock(rwlp, NULL, WRITE_LOCK_TRY);
986
987 if (error == 0) {
988 rwlp->rwlock_owner = (uintptr_t)self;
989 if (rwlp->rwlock_type == USYNC_PROCESS)
990 rwlp->rwlock_ownerpid = udp->pid;
991 if (rwsp)
992 rwsp->rw_wrlock_begin_hold = gethrtime();
993 DTRACE_PROBE2(plockstat, rw__acquire, rwlp, WRITE_LOCK);
994 } else {
995 if (rwsp)
996 tdb_incr(rwsp->rw_wrlock_try_fail);
997 if (error != EBUSY) {
998 DTRACE_PROBE3(plockstat, rw__error, rwlp, WRITE_LOCK,
999 error);
1000 }
1001 }
1002 return (error);
1003 }
1004
1005 #pragma weak pthread_rwlock_unlock = rw_unlock
1006 #pragma weak _rw_unlock = rw_unlock
1007 int
rw_unlock(rwlock_t * rwlp)1008 rw_unlock(rwlock_t *rwlp)
1009 {
1010 volatile uint32_t *rwstate = (volatile uint32_t *)&rwlp->rwlock_readers;
1011 uint32_t readers;
1012 ulwp_t *self = curthread;
1013 uberdata_t *udp = self->ul_uberdata;
1014 tdb_rwlock_stats_t *rwsp;
1015 int rd_wr;
1016
1017 readers = *rwstate;
1018 ASSERT_CONSISTENT_STATE(readers);
1019 if (readers & URW_WRITE_LOCKED) {
1020 rd_wr = WRITE_LOCK;
1021 readers = 0;
1022 } else {
1023 rd_wr = READ_LOCK;
1024 readers &= URW_READERS_MASK;
1025 }
1026
1027 if (rd_wr == WRITE_LOCK) {
1028 /*
1029 * Since the writer lock is held, we'd better be
1030 * holding it, else we cannot legitimately be here.
1031 */
1032 if (!rw_write_held(rwlp)) {
1033 if (self->ul_error_detection)
1034 rwlock_error(rwlp, "rwlock_unlock",
1035 "writer lock held, "
1036 "but not by the calling thread");
1037 return (EPERM);
1038 }
1039 if ((rwsp = RWLOCK_STATS(rwlp, udp)) != NULL) {
1040 if (rwsp->rw_wrlock_begin_hold)
1041 rwsp->rw_wrlock_hold_time +=
1042 gethrtime() - rwsp->rw_wrlock_begin_hold;
1043 rwsp->rw_wrlock_begin_hold = 0;
1044 }
1045 rwlp->rwlock_owner = 0;
1046 rwlp->rwlock_ownerpid = 0;
1047 } else if (readers > 0) {
1048 /*
1049 * A readers lock is held; if we don't hold one, bail out.
1050 */
1051 readlock_t *readlockp;
1052
1053 sigoff(self);
1054 readlockp = rwl_entry(rwlp);
1055 if (readlockp->rd_count == 0) {
1056 sigon(self);
1057 if (self->ul_error_detection)
1058 rwlock_error(rwlp, "rwlock_unlock",
1059 "readers lock held, "
1060 "but not by the calling thread");
1061 return (EPERM);
1062 }
1063 /*
1064 * If we hold more than one readers lock on this rwlock,
1065 * just decrement our reference count and return.
1066 */
1067 if (--readlockp->rd_count != 0) {
1068 sigon(self);
1069 goto out;
1070 }
1071 sigon(self);
1072 } else {
1073 /*
1074 * This is a usage error.
1075 * No thread should release an unowned lock.
1076 */
1077 if (self->ul_error_detection)
1078 rwlock_error(rwlp, "rwlock_unlock", "lock not owned");
1079 return (EPERM);
1080 }
1081
1082 if (rd_wr == WRITE_LOCK && write_unlock_try(rwlp)) {
1083 /* EMPTY */;
1084 } else if (rd_wr == READ_LOCK && read_unlock_try(rwlp)) {
1085 /* EMPTY */;
1086 } else if (rwlp->rwlock_type == USYNC_PROCESS) {
1087 (void) mutex_lock(&rwlp->mutex);
1088 (void) __lwp_rwlock_unlock(rwlp);
1089 (void) mutex_unlock(&rwlp->mutex);
1090 } else {
1091 rw_queue_release(rwlp);
1092 }
1093
1094 out:
1095 DTRACE_PROBE2(plockstat, rw__release, rwlp, rd_wr);
1096 return (0);
1097 }
1098
1099 void
lrw_unlock(rwlock_t * rwlp)1100 lrw_unlock(rwlock_t *rwlp)
1101 {
1102 (void) rw_unlock(rwlp);
1103 exit_critical(curthread);
1104 }
1105