1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4 * RT-specific reader/writer semaphores and reader/writer locks
5 *
6 * down_write/write_lock()
7 * 1) Lock rtmutex
8 * 2) Remove the reader BIAS to force readers into the slow path
9 * 3) Wait until all readers have left the critical section
10 * 4) Mark it write locked
11 *
12 * up_write/write_unlock()
13 * 1) Remove the write locked marker
14 * 2) Set the reader BIAS, so readers can use the fast path again
15 * 3) Unlock rtmutex, to release blocked readers
16 *
17 * down_read/read_lock()
18 * 1) Try fast path acquisition (reader BIAS is set)
19 * 2) Take tmutex::wait_lock, which protects the writelocked flag
20 * 3) If !writelocked, acquire it for read
21 * 4) If writelocked, block on tmutex
22 * 5) unlock rtmutex, goto 1)
23 *
24 * up_read/read_unlock()
25 * 1) Try fast path release (reader count != 1)
26 * 2) Wake the writer waiting in down_write()/write_lock() #3
27 *
28 * down_read/read_lock()#3 has the consequence, that rw semaphores and rw
29 * locks on RT are not writer fair, but writers, which should be avoided in
30 * RT tasks (think mmap_sem), are subject to the rtmutex priority/DL
31 * inheritance mechanism.
32 *
33 * It's possible to make the rw primitives writer fair by keeping a list of
34 * active readers. A blocked writer would force all newly incoming readers
35 * to block on the rtmutex, but the rtmutex would have to be proxy locked
36 * for one reader after the other. We can't use multi-reader inheritance
37 * because there is no way to support that with SCHED_DEADLINE.
38 * Implementing the one by one reader boosting/handover mechanism is a
39 * major surgery for a very dubious value.
40 *
41 * The risk of writer starvation is there, but the pathological use cases
42 * which trigger it are not necessarily the typical RT workloads.
43 *
44 * Fast-path orderings:
45 * The lock/unlock of readers can run in fast paths: lock and unlock are only
46 * atomic ops, and there is no inner lock to provide ACQUIRE and RELEASE
47 * semantics of rwbase_rt. Atomic ops should thus provide _acquire()
48 * and _release() (or stronger).
49 *
50 * Common code shared between RT rw_semaphore and rwlock
51 */
52
rwbase_read_trylock(struct rwbase_rt * rwb)53 static __always_inline int rwbase_read_trylock(struct rwbase_rt *rwb)
54 {
55 int r;
56
57 /*
58 * Increment reader count, if sem->readers < 0, i.e. READER_BIAS is
59 * set.
60 */
61 for (r = atomic_read(&rwb->readers); r < 0;) {
62 if (likely(atomic_try_cmpxchg_acquire(&rwb->readers, &r, r + 1)))
63 return 1;
64 }
65 return 0;
66 }
67
__rwbase_read_lock(struct rwbase_rt * rwb,unsigned int state)68 static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
69 unsigned int state)
70 {
71 struct rt_mutex_base *rtm = &rwb->rtmutex;
72 int ret;
73
74 rwbase_pre_schedule();
75 raw_spin_lock_irq(&rtm->wait_lock);
76
77 /*
78 * Call into the slow lock path with the rtmutex->wait_lock
79 * held, so this can't result in the following race:
80 *
81 * Reader1 Reader2 Writer
82 * down_read()
83 * down_write()
84 * rtmutex_lock(m)
85 * wait()
86 * down_read()
87 * unlock(m->wait_lock)
88 * up_read()
89 * wake(Writer)
90 * lock(m->wait_lock)
91 * sem->writelocked=true
92 * unlock(m->wait_lock)
93 *
94 * up_write()
95 * sem->writelocked=false
96 * rtmutex_unlock(m)
97 * down_read()
98 * down_write()
99 * rtmutex_lock(m)
100 * wait()
101 * rtmutex_lock(m)
102 *
103 * That would put Reader1 behind the writer waiting on
104 * Reader2 to call up_read(), which might be unbound.
105 */
106
107 trace_contention_begin(rwb, LCB_F_RT | LCB_F_READ);
108
109 /*
110 * For rwlocks this returns 0 unconditionally, so the below
111 * !ret conditionals are optimized out.
112 */
113 ret = rwbase_rtmutex_slowlock_locked(rtm, state);
114
115 /*
116 * On success the rtmutex is held, so there can't be a writer
117 * active. Increment the reader count and immediately drop the
118 * rtmutex again.
119 *
120 * rtmutex->wait_lock has to be unlocked in any case of course.
121 */
122 if (!ret)
123 atomic_inc(&rwb->readers);
124 raw_spin_unlock_irq(&rtm->wait_lock);
125 if (!ret)
126 rwbase_rtmutex_unlock(rtm);
127
128 trace_contention_end(rwb, ret);
129 rwbase_post_schedule();
130 return ret;
131 }
132
rwbase_read_lock(struct rwbase_rt * rwb,unsigned int state)133 static __always_inline int rwbase_read_lock(struct rwbase_rt *rwb,
134 unsigned int state)
135 {
136 lockdep_assert(!current->pi_blocked_on);
137
138 if (rwbase_read_trylock(rwb))
139 return 0;
140
141 return __rwbase_read_lock(rwb, state);
142 }
143
__rwbase_read_unlock(struct rwbase_rt * rwb,unsigned int state)144 static void __sched __rwbase_read_unlock(struct rwbase_rt *rwb,
145 unsigned int state)
146 {
147 struct rt_mutex_base *rtm = &rwb->rtmutex;
148 struct task_struct *owner;
149 DEFINE_RT_WAKE_Q(wqh);
150
151 raw_spin_lock_irq(&rtm->wait_lock);
152 /*
153 * Wake the writer, i.e. the rtmutex owner. It might release the
154 * rtmutex concurrently in the fast path (due to a signal), but to
155 * clean up rwb->readers it needs to acquire rtm->wait_lock. The
156 * worst case which can happen is a spurious wakeup.
157 */
158 owner = rt_mutex_owner(rtm);
159 if (owner)
160 rt_mutex_wake_q_add_task(&wqh, owner, state);
161
162 /* Pairs with the preempt_enable in rt_mutex_wake_up_q() */
163 preempt_disable();
164 raw_spin_unlock_irq(&rtm->wait_lock);
165 rt_mutex_wake_up_q(&wqh);
166 }
167
rwbase_read_unlock(struct rwbase_rt * rwb,unsigned int state)168 static __always_inline void rwbase_read_unlock(struct rwbase_rt *rwb,
169 unsigned int state)
170 {
171 /*
172 * rwb->readers can only hit 0 when a writer is waiting for the
173 * active readers to leave the critical section.
174 *
175 * dec_and_test() is fully ordered, provides RELEASE.
176 */
177 if (unlikely(atomic_dec_and_test(&rwb->readers)))
178 __rwbase_read_unlock(rwb, state);
179 }
180
__rwbase_write_unlock(struct rwbase_rt * rwb,int bias,unsigned long flags)181 static inline void __rwbase_write_unlock(struct rwbase_rt *rwb, int bias,
182 unsigned long flags)
183 {
184 struct rt_mutex_base *rtm = &rwb->rtmutex;
185
186 /*
187 * _release() is needed in case that reader is in fast path, pairing
188 * with atomic_try_cmpxchg_acquire() in rwbase_read_trylock().
189 */
190 (void)atomic_add_return_release(READER_BIAS - bias, &rwb->readers);
191 raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
192 rwbase_rtmutex_unlock(rtm);
193 }
194
rwbase_write_unlock(struct rwbase_rt * rwb)195 static inline void rwbase_write_unlock(struct rwbase_rt *rwb)
196 {
197 struct rt_mutex_base *rtm = &rwb->rtmutex;
198 unsigned long flags;
199
200 raw_spin_lock_irqsave(&rtm->wait_lock, flags);
201 __rwbase_write_unlock(rwb, WRITER_BIAS, flags);
202 }
203
rwbase_write_downgrade(struct rwbase_rt * rwb)204 static inline void rwbase_write_downgrade(struct rwbase_rt *rwb)
205 {
206 struct rt_mutex_base *rtm = &rwb->rtmutex;
207 unsigned long flags;
208
209 raw_spin_lock_irqsave(&rtm->wait_lock, flags);
210 /* Release it and account current as reader */
211 __rwbase_write_unlock(rwb, WRITER_BIAS - 1, flags);
212 }
213
__rwbase_write_trylock(struct rwbase_rt * rwb)214 static inline bool __rwbase_write_trylock(struct rwbase_rt *rwb)
215 {
216 /* Can do without CAS because we're serialized by wait_lock. */
217 lockdep_assert_held(&rwb->rtmutex.wait_lock);
218
219 /*
220 * _acquire is needed in case the reader is in the fast path, pairing
221 * with rwbase_read_unlock(), provides ACQUIRE.
222 */
223 if (!atomic_read_acquire(&rwb->readers)) {
224 atomic_set(&rwb->readers, WRITER_BIAS);
225 return 1;
226 }
227
228 return 0;
229 }
230
rwbase_write_lock(struct rwbase_rt * rwb,unsigned int state)231 static int __sched rwbase_write_lock(struct rwbase_rt *rwb,
232 unsigned int state)
233 {
234 struct rt_mutex_base *rtm = &rwb->rtmutex;
235 unsigned long flags;
236
237 /* Take the rtmutex as a first step */
238 if (rwbase_rtmutex_lock_state(rtm, state))
239 return -EINTR;
240
241 /* Force readers into slow path */
242 atomic_sub(READER_BIAS, &rwb->readers);
243
244 rwbase_pre_schedule();
245
246 raw_spin_lock_irqsave(&rtm->wait_lock, flags);
247 if (__rwbase_write_trylock(rwb))
248 goto out_unlock;
249
250 rwbase_set_and_save_current_state(state);
251 trace_contention_begin(rwb, LCB_F_RT | LCB_F_WRITE);
252 for (;;) {
253 /* Optimized out for rwlocks */
254 if (rwbase_signal_pending_state(state, current)) {
255 rwbase_restore_current_state();
256 __rwbase_write_unlock(rwb, 0, flags);
257 rwbase_post_schedule();
258 trace_contention_end(rwb, -EINTR);
259 return -EINTR;
260 }
261
262 if (__rwbase_write_trylock(rwb))
263 break;
264
265 raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
266 rwbase_schedule();
267 raw_spin_lock_irqsave(&rtm->wait_lock, flags);
268
269 set_current_state(state);
270 }
271 rwbase_restore_current_state();
272 trace_contention_end(rwb, 0);
273
274 out_unlock:
275 raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
276 rwbase_post_schedule();
277 return 0;
278 }
279
rwbase_write_trylock(struct rwbase_rt * rwb)280 static inline int rwbase_write_trylock(struct rwbase_rt *rwb)
281 {
282 struct rt_mutex_base *rtm = &rwb->rtmutex;
283 unsigned long flags;
284
285 if (!rwbase_rtmutex_trylock(rtm))
286 return 0;
287
288 atomic_sub(READER_BIAS, &rwb->readers);
289
290 raw_spin_lock_irqsave(&rtm->wait_lock, flags);
291 if (__rwbase_write_trylock(rwb)) {
292 raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
293 return 1;
294 }
295 __rwbase_write_unlock(rwb, 0, flags);
296 return 0;
297 }
298