xref: /linux/drivers/infiniband/sw/rdmavt/qp.c (revision 0ea5c948cb64bab5bc7a5516774eb8536f05aa0d)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright(c) 2016 - 2020 Intel Corporation.
4  */
5 
6 #include <linux/hash.h>
7 #include <linux/bitops.h>
8 #include <linux/lockdep.h>
9 #include <linux/vmalloc.h>
10 #include <linux/slab.h>
11 #include <rdma/ib_verbs.h>
12 #include <rdma/ib_hdrs.h>
13 #include <rdma/opa_addr.h>
14 #include <rdma/uverbs_ioctl.h>
15 #include "qp.h"
16 #include "vt.h"
17 #include "trace.h"
18 
19 #define RVT_RWQ_COUNT_THRESHOLD 16
20 
21 static void rvt_rc_timeout(struct timer_list *t);
22 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
23 			 enum ib_qp_type type);
24 
25 /*
26  * Convert the AETH RNR timeout code into the number of microseconds.
27  */
28 static const u32 ib_rvt_rnr_table[32] = {
29 	655360, /* 00: 655.36 */
30 	10,     /* 01:    .01 */
31 	20,     /* 02     .02 */
32 	30,     /* 03:    .03 */
33 	40,     /* 04:    .04 */
34 	60,     /* 05:    .06 */
35 	80,     /* 06:    .08 */
36 	120,    /* 07:    .12 */
37 	160,    /* 08:    .16 */
38 	240,    /* 09:    .24 */
39 	320,    /* 0A:    .32 */
40 	480,    /* 0B:    .48 */
41 	640,    /* 0C:    .64 */
42 	960,    /* 0D:    .96 */
43 	1280,   /* 0E:   1.28 */
44 	1920,   /* 0F:   1.92 */
45 	2560,   /* 10:   2.56 */
46 	3840,   /* 11:   3.84 */
47 	5120,   /* 12:   5.12 */
48 	7680,   /* 13:   7.68 */
49 	10240,  /* 14:  10.24 */
50 	15360,  /* 15:  15.36 */
51 	20480,  /* 16:  20.48 */
52 	30720,  /* 17:  30.72 */
53 	40960,  /* 18:  40.96 */
54 	61440,  /* 19:  61.44 */
55 	81920,  /* 1A:  81.92 */
56 	122880, /* 1B: 122.88 */
57 	163840, /* 1C: 163.84 */
58 	245760, /* 1D: 245.76 */
59 	327680, /* 1E: 327.68 */
60 	491520  /* 1F: 491.52 */
61 };
62 
63 /*
64  * Note that it is OK to post send work requests in the SQE and ERR
65  * states; rvt_do_send() will process them and generate error
66  * completions as per IB 1.2 C10-96.
67  */
68 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
69 	[IB_QPS_RESET] = 0,
70 	[IB_QPS_INIT] = RVT_POST_RECV_OK,
71 	[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
72 	[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
73 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
74 	    RVT_PROCESS_NEXT_SEND_OK,
75 	[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
76 	    RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
77 	[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
78 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
79 	[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
80 	    RVT_POST_SEND_OK | RVT_FLUSH_SEND,
81 };
82 EXPORT_SYMBOL(ib_rvt_state_ops);
83 
84 /* platform specific: return the last level cache (llc) size, in KiB */
rvt_wss_llc_size(void)85 static int rvt_wss_llc_size(void)
86 {
87 	/* assume that the boot CPU value is universal for all CPUs */
88 	return boot_cpu_data.x86_cache_size;
89 }
90 
91 /* platform specific: cacheless copy */
cacheless_memcpy(void * dst,void * src,size_t n)92 static void cacheless_memcpy(void *dst, void *src, size_t n)
93 {
94 	/*
95 	 * Use the only available X64 cacheless copy.  Add a __user cast
96 	 * to quiet sparse.  The src agument is already in the kernel so
97 	 * there are no security issues.  The extra fault recovery machinery
98 	 * is not invoked.
99 	 */
100 	__copy_user_nocache(dst, (void __user *)src, n);
101 }
102 
rvt_wss_exit(struct rvt_dev_info * rdi)103 void rvt_wss_exit(struct rvt_dev_info *rdi)
104 {
105 	struct rvt_wss *wss = rdi->wss;
106 
107 	if (!wss)
108 		return;
109 
110 	/* coded to handle partially initialized and repeat callers */
111 	kfree(wss->entries);
112 	wss->entries = NULL;
113 	kfree(rdi->wss);
114 	rdi->wss = NULL;
115 }
116 
117 /*
118  * rvt_wss_init - Init wss data structures
119  *
120  * Return: 0 on success
121  */
rvt_wss_init(struct rvt_dev_info * rdi)122 int rvt_wss_init(struct rvt_dev_info *rdi)
123 {
124 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
125 	unsigned int wss_threshold = rdi->dparms.wss_threshold;
126 	unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
127 	long llc_size;
128 	long llc_bits;
129 	long table_size;
130 	long table_bits;
131 	struct rvt_wss *wss;
132 	int node = rdi->dparms.node;
133 
134 	if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
135 		rdi->wss = NULL;
136 		return 0;
137 	}
138 
139 	rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
140 	if (!rdi->wss)
141 		return -ENOMEM;
142 	wss = rdi->wss;
143 
144 	/* check for a valid percent range - default to 80 if none or invalid */
145 	if (wss_threshold < 1 || wss_threshold > 100)
146 		wss_threshold = 80;
147 
148 	/* reject a wildly large period */
149 	if (wss_clean_period > 1000000)
150 		wss_clean_period = 256;
151 
152 	/* reject a zero period */
153 	if (wss_clean_period == 0)
154 		wss_clean_period = 1;
155 
156 	/*
157 	 * Calculate the table size - the next power of 2 larger than the
158 	 * LLC size.  LLC size is in KiB.
159 	 */
160 	llc_size = rvt_wss_llc_size() * 1024;
161 	table_size = roundup_pow_of_two(llc_size);
162 
163 	/* one bit per page in rounded up table */
164 	llc_bits = llc_size / PAGE_SIZE;
165 	table_bits = table_size / PAGE_SIZE;
166 	wss->pages_mask = table_bits - 1;
167 	wss->num_entries = table_bits / BITS_PER_LONG;
168 
169 	wss->threshold = (llc_bits * wss_threshold) / 100;
170 	if (wss->threshold == 0)
171 		wss->threshold = 1;
172 
173 	wss->clean_period = wss_clean_period;
174 	atomic_set(&wss->clean_counter, wss_clean_period);
175 
176 	wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
177 				    GFP_KERNEL, node);
178 	if (!wss->entries) {
179 		rvt_wss_exit(rdi);
180 		return -ENOMEM;
181 	}
182 
183 	return 0;
184 }
185 
186 /*
187  * Advance the clean counter.  When the clean period has expired,
188  * clean an entry.
189  *
190  * This is implemented in atomics to avoid locking.  Because multiple
191  * variables are involved, it can be racy which can lead to slightly
192  * inaccurate information.  Since this is only a heuristic, this is
193  * OK.  Any innaccuracies will clean themselves out as the counter
194  * advances.  That said, it is unlikely the entry clean operation will
195  * race - the next possible racer will not start until the next clean
196  * period.
197  *
198  * The clean counter is implemented as a decrement to zero.  When zero
199  * is reached an entry is cleaned.
200  */
wss_advance_clean_counter(struct rvt_wss * wss)201 static void wss_advance_clean_counter(struct rvt_wss *wss)
202 {
203 	int entry;
204 	int weight;
205 	unsigned long bits;
206 
207 	/* become the cleaner if we decrement the counter to zero */
208 	if (atomic_dec_and_test(&wss->clean_counter)) {
209 		/*
210 		 * Set, not add, the clean period.  This avoids an issue
211 		 * where the counter could decrement below the clean period.
212 		 * Doing a set can result in lost decrements, slowing the
213 		 * clean advance.  Since this a heuristic, this possible
214 		 * slowdown is OK.
215 		 *
216 		 * An alternative is to loop, advancing the counter by a
217 		 * clean period until the result is > 0. However, this could
218 		 * lead to several threads keeping another in the clean loop.
219 		 * This could be mitigated by limiting the number of times
220 		 * we stay in the loop.
221 		 */
222 		atomic_set(&wss->clean_counter, wss->clean_period);
223 
224 		/*
225 		 * Uniquely grab the entry to clean and move to next.
226 		 * The current entry is always the lower bits of
227 		 * wss.clean_entry.  The table size, wss.num_entries,
228 		 * is always a power-of-2.
229 		 */
230 		entry = (atomic_inc_return(&wss->clean_entry) - 1)
231 			& (wss->num_entries - 1);
232 
233 		/* clear the entry and count the bits */
234 		bits = xchg(&wss->entries[entry], 0);
235 		weight = hweight64((u64)bits);
236 		/* only adjust the contended total count if needed */
237 		if (weight)
238 			atomic_sub(weight, &wss->total_count);
239 	}
240 }
241 
242 /*
243  * Insert the given address into the working set array.
244  */
wss_insert(struct rvt_wss * wss,void * address)245 static void wss_insert(struct rvt_wss *wss, void *address)
246 {
247 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
248 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
249 	u32 nr = page & (BITS_PER_LONG - 1);
250 
251 	if (!test_and_set_bit(nr, &wss->entries[entry]))
252 		atomic_inc(&wss->total_count);
253 
254 	wss_advance_clean_counter(wss);
255 }
256 
257 /*
258  * Is the working set larger than the threshold?
259  */
wss_exceeds_threshold(struct rvt_wss * wss)260 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
261 {
262 	return atomic_read(&wss->total_count) >= wss->threshold;
263 }
264 
get_map_page(struct rvt_qpn_table * qpt,struct rvt_qpn_map * map)265 static void get_map_page(struct rvt_qpn_table *qpt,
266 			 struct rvt_qpn_map *map)
267 {
268 	unsigned long page = get_zeroed_page(GFP_KERNEL);
269 
270 	/*
271 	 * Free the page if someone raced with us installing it.
272 	 */
273 
274 	spin_lock(&qpt->lock);
275 	if (map->page)
276 		free_page(page);
277 	else
278 		map->page = (void *)page;
279 	spin_unlock(&qpt->lock);
280 }
281 
282 /**
283  * init_qpn_table - initialize the QP number table for a device
284  * @rdi: rvt dev struct
285  * @qpt: the QPN table
286  */
init_qpn_table(struct rvt_dev_info * rdi,struct rvt_qpn_table * qpt)287 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
288 {
289 	u32 offset, i;
290 	struct rvt_qpn_map *map;
291 	int ret = 0;
292 
293 	if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
294 		return -EINVAL;
295 
296 	spin_lock_init(&qpt->lock);
297 
298 	qpt->last = rdi->dparms.qpn_start;
299 	qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
300 
301 	/*
302 	 * Drivers may want some QPs beyond what we need for verbs let them use
303 	 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
304 	 * for those. The reserved range must be *after* the range which verbs
305 	 * will pick from.
306 	 */
307 
308 	/* Figure out number of bit maps needed before reserved range */
309 	qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
310 
311 	/* This should always be zero */
312 	offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
313 
314 	/* Starting with the first reserved bit map */
315 	map = &qpt->map[qpt->nmaps];
316 
317 	rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
318 		    rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
319 	for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
320 		if (!map->page) {
321 			get_map_page(qpt, map);
322 			if (!map->page) {
323 				ret = -ENOMEM;
324 				break;
325 			}
326 		}
327 		set_bit(offset, map->page);
328 		offset++;
329 		if (offset == RVT_BITS_PER_PAGE) {
330 			/* next page */
331 			qpt->nmaps++;
332 			map++;
333 			offset = 0;
334 		}
335 	}
336 	return ret;
337 }
338 
339 /**
340  * free_qpn_table - free the QP number table for a device
341  * @qpt: the QPN table
342  */
free_qpn_table(struct rvt_qpn_table * qpt)343 static void free_qpn_table(struct rvt_qpn_table *qpt)
344 {
345 	int i;
346 
347 	for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
348 		free_page((unsigned long)qpt->map[i].page);
349 }
350 
351 /**
352  * rvt_driver_qp_init - Init driver qp resources
353  * @rdi: rvt dev strucutre
354  *
355  * Return: 0 on success
356  */
rvt_driver_qp_init(struct rvt_dev_info * rdi)357 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
358 {
359 	int i;
360 	int ret = -ENOMEM;
361 
362 	if (!rdi->dparms.qp_table_size)
363 		return -EINVAL;
364 
365 	/*
366 	 * If driver is not doing any QP allocation then make sure it is
367 	 * providing the necessary QP functions.
368 	 */
369 	if (!rdi->driver_f.free_all_qps ||
370 	    !rdi->driver_f.qp_priv_alloc ||
371 	    !rdi->driver_f.qp_priv_free ||
372 	    !rdi->driver_f.notify_qp_reset ||
373 	    !rdi->driver_f.notify_restart_rc)
374 		return -EINVAL;
375 
376 	/* allocate parent object */
377 	rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
378 				   rdi->dparms.node);
379 	if (!rdi->qp_dev)
380 		return -ENOMEM;
381 
382 	/* allocate hash table */
383 	rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
384 	rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
385 	rdi->qp_dev->qp_table =
386 		kmalloc_array_node(rdi->qp_dev->qp_table_size,
387 			     sizeof(*rdi->qp_dev->qp_table),
388 			     GFP_KERNEL, rdi->dparms.node);
389 	if (!rdi->qp_dev->qp_table)
390 		goto no_qp_table;
391 
392 	for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
393 		RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
394 
395 	spin_lock_init(&rdi->qp_dev->qpt_lock);
396 
397 	/* initialize qpn map */
398 	if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
399 		goto fail_table;
400 
401 	spin_lock_init(&rdi->n_qps_lock);
402 
403 	return 0;
404 
405 fail_table:
406 	kfree(rdi->qp_dev->qp_table);
407 	free_qpn_table(&rdi->qp_dev->qpn_table);
408 
409 no_qp_table:
410 	kfree(rdi->qp_dev);
411 
412 	return ret;
413 }
414 
415 /**
416  * rvt_free_qp_cb - callback function to reset a qp
417  * @qp: the qp to reset
418  * @v: a 64-bit value
419  *
420  * This function resets the qp and removes it from the
421  * qp hash table.
422  */
rvt_free_qp_cb(struct rvt_qp * qp,u64 v)423 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
424 {
425 	unsigned int *qp_inuse = (unsigned int *)v;
426 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
427 
428 	/* Reset the qp and remove it from the qp hash list */
429 	rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
430 
431 	/* Increment the qp_inuse count */
432 	(*qp_inuse)++;
433 }
434 
435 /**
436  * rvt_free_all_qps - check for QPs still in use
437  * @rdi: rvt device info structure
438  *
439  * There should not be any QPs still in use.
440  * Free memory for table.
441  * Return the number of QPs still in use.
442  */
rvt_free_all_qps(struct rvt_dev_info * rdi)443 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
444 {
445 	unsigned int qp_inuse = 0;
446 
447 	qp_inuse += rvt_mcast_tree_empty(rdi);
448 
449 	rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
450 
451 	return qp_inuse;
452 }
453 
454 /**
455  * rvt_qp_exit - clean up qps on device exit
456  * @rdi: rvt dev structure
457  *
458  * Check for qp leaks and free resources.
459  */
rvt_qp_exit(struct rvt_dev_info * rdi)460 void rvt_qp_exit(struct rvt_dev_info *rdi)
461 {
462 	u32 qps_inuse = rvt_free_all_qps(rdi);
463 
464 	if (qps_inuse)
465 		rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
466 			   qps_inuse);
467 
468 	kfree(rdi->qp_dev->qp_table);
469 	free_qpn_table(&rdi->qp_dev->qpn_table);
470 	kfree(rdi->qp_dev);
471 }
472 
mk_qpn(struct rvt_qpn_table * qpt,struct rvt_qpn_map * map,unsigned off)473 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
474 			      struct rvt_qpn_map *map, unsigned off)
475 {
476 	return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
477 }
478 
479 /**
480  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
481  *	       IB_QPT_SMI/IB_QPT_GSI
482  * @rdi: rvt device info structure
483  * @qpt: queue pair number table pointer
484  * @type: the QP type
485  * @port_num: IB port number, 1 based, comes from core
486  * @exclude_prefix: prefix of special queue pair number being allocated
487  *
488  * Return: The queue pair number
489  */
alloc_qpn(struct rvt_dev_info * rdi,struct rvt_qpn_table * qpt,enum ib_qp_type type,u8 port_num,u8 exclude_prefix)490 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
491 		     enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
492 {
493 	u32 i, offset, max_scan, qpn;
494 	struct rvt_qpn_map *map;
495 	u32 ret;
496 	u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
497 		RVT_AIP_QPN_MAX : RVT_QPN_MAX;
498 
499 	if (rdi->driver_f.alloc_qpn)
500 		return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
501 
502 	if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
503 		unsigned n;
504 
505 		ret = type == IB_QPT_GSI;
506 		n = 1 << (ret + 2 * (port_num - 1));
507 		spin_lock(&qpt->lock);
508 		if (qpt->flags & n)
509 			ret = -EINVAL;
510 		else
511 			qpt->flags |= n;
512 		spin_unlock(&qpt->lock);
513 		goto bail;
514 	}
515 
516 	qpn = qpt->last + qpt->incr;
517 	if (qpn >= max_qpn)
518 		qpn = qpt->incr | ((qpt->last & 1) ^ 1);
519 	/* offset carries bit 0 */
520 	offset = qpn & RVT_BITS_PER_PAGE_MASK;
521 	map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
522 	max_scan = qpt->nmaps - !offset;
523 	for (i = 0;;) {
524 		if (unlikely(!map->page)) {
525 			get_map_page(qpt, map);
526 			if (unlikely(!map->page))
527 				break;
528 		}
529 		do {
530 			if (!test_and_set_bit(offset, map->page)) {
531 				qpt->last = qpn;
532 				ret = qpn;
533 				goto bail;
534 			}
535 			offset += qpt->incr;
536 			/*
537 			 * This qpn might be bogus if offset >= BITS_PER_PAGE.
538 			 * That is OK.   It gets re-assigned below
539 			 */
540 			qpn = mk_qpn(qpt, map, offset);
541 		} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
542 		/*
543 		 * In order to keep the number of pages allocated to a
544 		 * minimum, we scan the all existing pages before increasing
545 		 * the size of the bitmap table.
546 		 */
547 		if (++i > max_scan) {
548 			if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
549 				break;
550 			map = &qpt->map[qpt->nmaps++];
551 			/* start at incr with current bit 0 */
552 			offset = qpt->incr | (offset & 1);
553 		} else if (map < &qpt->map[qpt->nmaps]) {
554 			++map;
555 			/* start at incr with current bit 0 */
556 			offset = qpt->incr | (offset & 1);
557 		} else {
558 			map = &qpt->map[0];
559 			/* wrap to first map page, invert bit 0 */
560 			offset = qpt->incr | ((offset & 1) ^ 1);
561 		}
562 		/* there can be no set bits in low-order QoS bits */
563 		WARN_ON(rdi->dparms.qos_shift > 1 &&
564 			offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
565 		qpn = mk_qpn(qpt, map, offset);
566 	}
567 
568 	ret = -ENOMEM;
569 
570 bail:
571 	return ret;
572 }
573 
574 /**
575  * rvt_clear_mr_refs - Drop help mr refs
576  * @qp: rvt qp data structure
577  * @clr_sends: If shoudl clear send side or not
578  */
rvt_clear_mr_refs(struct rvt_qp * qp,int clr_sends)579 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
580 {
581 	unsigned n;
582 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
583 
584 	if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
585 		rvt_put_ss(&qp->s_rdma_read_sge);
586 
587 	rvt_put_ss(&qp->r_sge);
588 
589 	if (clr_sends) {
590 		while (qp->s_last != qp->s_head) {
591 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
592 
593 			rvt_put_qp_swqe(qp, wqe);
594 			if (++qp->s_last >= qp->s_size)
595 				qp->s_last = 0;
596 			smp_wmb(); /* see qp_set_savail */
597 		}
598 		if (qp->s_rdma_mr) {
599 			rvt_put_mr(qp->s_rdma_mr);
600 			qp->s_rdma_mr = NULL;
601 		}
602 	}
603 
604 	for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
605 		struct rvt_ack_entry *e = &qp->s_ack_queue[n];
606 
607 		if (e->rdma_sge.mr) {
608 			rvt_put_mr(e->rdma_sge.mr);
609 			e->rdma_sge.mr = NULL;
610 		}
611 	}
612 }
613 
614 /**
615  * rvt_swqe_has_lkey - return true if lkey is used by swqe
616  * @wqe: the send wqe
617  * @lkey: the lkey
618  *
619  * Test the swqe for using lkey
620  */
rvt_swqe_has_lkey(struct rvt_swqe * wqe,u32 lkey)621 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
622 {
623 	int i;
624 
625 	for (i = 0; i < wqe->wr.num_sge; i++) {
626 		struct rvt_sge *sge = &wqe->sg_list[i];
627 
628 		if (rvt_mr_has_lkey(sge->mr, lkey))
629 			return true;
630 	}
631 	return false;
632 }
633 
634 /**
635  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
636  * @qp: the rvt_qp
637  * @lkey: the lkey
638  */
rvt_qp_sends_has_lkey(struct rvt_qp * qp,u32 lkey)639 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
640 {
641 	u32 s_last = qp->s_last;
642 
643 	while (s_last != qp->s_head) {
644 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
645 
646 		if (rvt_swqe_has_lkey(wqe, lkey))
647 			return true;
648 
649 		if (++s_last >= qp->s_size)
650 			s_last = 0;
651 	}
652 	if (qp->s_rdma_mr)
653 		if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
654 			return true;
655 	return false;
656 }
657 
658 /**
659  * rvt_qp_acks_has_lkey - return true if acks have lkey
660  * @qp: the qp
661  * @lkey: the lkey
662  */
rvt_qp_acks_has_lkey(struct rvt_qp * qp,u32 lkey)663 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
664 {
665 	int i;
666 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
667 
668 	for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
669 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
670 
671 		if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
672 			return true;
673 	}
674 	return false;
675 }
676 
677 /**
678  * rvt_qp_mr_clean - clean up remote ops for lkey
679  * @qp: the qp
680  * @lkey: the lkey that is being de-registered
681  *
682  * This routine checks if the lkey is being used by
683  * the qp.
684  *
685  * If so, the qp is put into an error state to elminate
686  * any references from the qp.
687  */
rvt_qp_mr_clean(struct rvt_qp * qp,u32 lkey)688 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
689 {
690 	bool lastwqe = false;
691 
692 	if (qp->ibqp.qp_type == IB_QPT_SMI ||
693 	    qp->ibqp.qp_type == IB_QPT_GSI)
694 		/* avoid special QPs */
695 		return;
696 	spin_lock_irq(&qp->r_lock);
697 	spin_lock(&qp->s_hlock);
698 	spin_lock(&qp->s_lock);
699 
700 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
701 		goto check_lwqe;
702 
703 	if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
704 	    rvt_qp_sends_has_lkey(qp, lkey) ||
705 	    rvt_qp_acks_has_lkey(qp, lkey))
706 		lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
707 check_lwqe:
708 	spin_unlock(&qp->s_lock);
709 	spin_unlock(&qp->s_hlock);
710 	spin_unlock_irq(&qp->r_lock);
711 	if (lastwqe) {
712 		struct ib_event ev;
713 
714 		ev.device = qp->ibqp.device;
715 		ev.element.qp = &qp->ibqp;
716 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
717 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
718 	}
719 }
720 
721 /**
722  * rvt_remove_qp - remove qp form table
723  * @rdi: rvt dev struct
724  * @qp: qp to remove
725  *
726  * Remove the QP from the table so it can't be found asynchronously by
727  * the receive routine.
728  */
rvt_remove_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp)729 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
730 {
731 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
732 	u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
733 	unsigned long flags;
734 	int removed = 1;
735 
736 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
737 
738 	if (rcu_dereference_protected(rvp->qp[0],
739 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
740 		RCU_INIT_POINTER(rvp->qp[0], NULL);
741 	} else if (rcu_dereference_protected(rvp->qp[1],
742 			lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
743 		RCU_INIT_POINTER(rvp->qp[1], NULL);
744 	} else {
745 		struct rvt_qp *q;
746 		struct rvt_qp __rcu **qpp;
747 
748 		removed = 0;
749 		qpp = &rdi->qp_dev->qp_table[n];
750 		for (; (q = rcu_dereference_protected(*qpp,
751 			lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
752 			qpp = &q->next) {
753 			if (q == qp) {
754 				RCU_INIT_POINTER(*qpp,
755 				     rcu_dereference_protected(qp->next,
756 				     lockdep_is_held(&rdi->qp_dev->qpt_lock)));
757 				removed = 1;
758 				trace_rvt_qpremove(qp, n);
759 				break;
760 			}
761 		}
762 	}
763 
764 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
765 	if (removed) {
766 		synchronize_rcu();
767 		rvt_put_qp(qp);
768 	}
769 }
770 
771 /**
772  * rvt_alloc_rq - allocate memory for user or kernel buffer
773  * @rq: receive queue data structure
774  * @size: number of request queue entries
775  * @node: The NUMA node
776  * @udata: True if user data is available or not false
777  *
778  * Return: If memory allocation failed, return -ENONEM
779  * This function is used by both shared receive
780  * queues and non-shared receive queues to allocate
781  * memory.
782  */
rvt_alloc_rq(struct rvt_rq * rq,u32 size,int node,struct ib_udata * udata)783 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
784 		 struct ib_udata *udata)
785 {
786 	if (udata) {
787 		rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
788 		if (!rq->wq)
789 			goto bail;
790 		/* need kwq with no buffers */
791 		rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
792 		if (!rq->kwq)
793 			goto bail;
794 		rq->kwq->curr_wq = rq->wq->wq;
795 	} else {
796 		/* need kwq with buffers */
797 		rq->kwq =
798 			vzalloc_node(sizeof(struct rvt_krwq) + size, node);
799 		if (!rq->kwq)
800 			goto bail;
801 		rq->kwq->curr_wq = rq->kwq->wq;
802 	}
803 
804 	spin_lock_init(&rq->kwq->p_lock);
805 	spin_lock_init(&rq->kwq->c_lock);
806 	return 0;
807 bail:
808 	rvt_free_rq(rq);
809 	return -ENOMEM;
810 }
811 
812 /**
813  * rvt_init_qp - initialize the QP state to the reset state
814  * @rdi: rvt dev struct
815  * @qp: the QP to init or reinit
816  * @type: the QP type
817  *
818  * This function is called from both rvt_create_qp() and
819  * rvt_reset_qp().   The difference is that the reset
820  * patch the necessary locks to protect against concurent
821  * access.
822  */
rvt_init_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)823 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
824 			enum ib_qp_type type)
825 {
826 	qp->remote_qpn = 0;
827 	qp->qkey = 0;
828 	qp->qp_access_flags = 0;
829 	qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
830 	qp->s_hdrwords = 0;
831 	qp->s_wqe = NULL;
832 	qp->s_draining = 0;
833 	qp->s_next_psn = 0;
834 	qp->s_last_psn = 0;
835 	qp->s_sending_psn = 0;
836 	qp->s_sending_hpsn = 0;
837 	qp->s_psn = 0;
838 	qp->r_psn = 0;
839 	qp->r_msn = 0;
840 	if (type == IB_QPT_RC) {
841 		qp->s_state = IB_OPCODE_RC_SEND_LAST;
842 		qp->r_state = IB_OPCODE_RC_SEND_LAST;
843 	} else {
844 		qp->s_state = IB_OPCODE_UC_SEND_LAST;
845 		qp->r_state = IB_OPCODE_UC_SEND_LAST;
846 	}
847 	qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
848 	qp->r_nak_state = 0;
849 	qp->r_aflags = 0;
850 	qp->r_flags = 0;
851 	qp->s_head = 0;
852 	qp->s_tail = 0;
853 	qp->s_cur = 0;
854 	qp->s_acked = 0;
855 	qp->s_last = 0;
856 	qp->s_ssn = 1;
857 	qp->s_lsn = 0;
858 	qp->s_mig_state = IB_MIG_MIGRATED;
859 	qp->r_head_ack_queue = 0;
860 	qp->s_tail_ack_queue = 0;
861 	qp->s_acked_ack_queue = 0;
862 	qp->s_num_rd_atomic = 0;
863 	qp->r_sge.num_sge = 0;
864 	atomic_set(&qp->s_reserved_used, 0);
865 }
866 
867 /**
868  * _rvt_reset_qp - initialize the QP state to the reset state
869  * @rdi: rvt dev struct
870  * @qp: the QP to reset
871  * @type: the QP type
872  *
873  * r_lock, s_hlock, and s_lock are required to be held by the caller
874  */
_rvt_reset_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)875 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
876 			  enum ib_qp_type type)
877 	__must_hold(&qp->s_lock)
878 	__must_hold(&qp->s_hlock)
879 	__must_hold(&qp->r_lock)
880 {
881 	lockdep_assert_held(&qp->r_lock);
882 	lockdep_assert_held(&qp->s_hlock);
883 	lockdep_assert_held(&qp->s_lock);
884 	if (qp->state != IB_QPS_RESET) {
885 		qp->state = IB_QPS_RESET;
886 
887 		/* Let drivers flush their waitlist */
888 		rdi->driver_f.flush_qp_waiters(qp);
889 		rvt_stop_rc_timers(qp);
890 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
891 		spin_unlock(&qp->s_lock);
892 		spin_unlock(&qp->s_hlock);
893 		spin_unlock_irq(&qp->r_lock);
894 
895 		/* Stop the send queue and the retry timer */
896 		rdi->driver_f.stop_send_queue(qp);
897 		rvt_del_timers_sync(qp);
898 		/* Wait for things to stop */
899 		rdi->driver_f.quiesce_qp(qp);
900 
901 		/* take qp out the hash and wait for it to be unused */
902 		rvt_remove_qp(rdi, qp);
903 
904 		/* grab the lock b/c it was locked at call time */
905 		spin_lock_irq(&qp->r_lock);
906 		spin_lock(&qp->s_hlock);
907 		spin_lock(&qp->s_lock);
908 
909 		rvt_clear_mr_refs(qp, 1);
910 		/*
911 		 * Let the driver do any tear down or re-init it needs to for
912 		 * a qp that has been reset
913 		 */
914 		rdi->driver_f.notify_qp_reset(qp);
915 	}
916 	rvt_init_qp(rdi, qp, type);
917 	lockdep_assert_held(&qp->r_lock);
918 	lockdep_assert_held(&qp->s_hlock);
919 	lockdep_assert_held(&qp->s_lock);
920 }
921 
922 /**
923  * rvt_reset_qp - initialize the QP state to the reset state
924  * @rdi: the device info
925  * @qp: the QP to reset
926  * @type: the QP type
927  *
928  * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
929  * before calling _rvt_reset_qp().
930  */
rvt_reset_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)931 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
932 			 enum ib_qp_type type)
933 {
934 	spin_lock_irq(&qp->r_lock);
935 	spin_lock(&qp->s_hlock);
936 	spin_lock(&qp->s_lock);
937 	_rvt_reset_qp(rdi, qp, type);
938 	spin_unlock(&qp->s_lock);
939 	spin_unlock(&qp->s_hlock);
940 	spin_unlock_irq(&qp->r_lock);
941 }
942 
943 /**
944  * rvt_free_qpn - Free a qpn from the bit map
945  * @qpt: QP table
946  * @qpn: queue pair number to free
947  */
rvt_free_qpn(struct rvt_qpn_table * qpt,u32 qpn)948 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
949 {
950 	struct rvt_qpn_map *map;
951 
952 	if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
953 		qpn &= RVT_AIP_QP_SUFFIX;
954 
955 	map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
956 	if (map->page)
957 		clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
958 }
959 
960 /**
961  * get_allowed_ops - Given a QP type return the appropriate allowed OP
962  * @type: valid, supported, QP type
963  */
get_allowed_ops(enum ib_qp_type type)964 static u8 get_allowed_ops(enum ib_qp_type type)
965 {
966 	return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
967 		IB_OPCODE_UC : IB_OPCODE_UD;
968 }
969 
970 /**
971  * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
972  * @qp: Valid QP with allowed_ops set
973  *
974  * The rvt_swqe data structure being used is a union, so this is
975  * only valid for UD QPs.
976  */
free_ud_wq_attr(struct rvt_qp * qp)977 static void free_ud_wq_attr(struct rvt_qp *qp)
978 {
979 	struct rvt_swqe *wqe;
980 	int i;
981 
982 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
983 		wqe = rvt_get_swqe_ptr(qp, i);
984 		kfree(wqe->ud_wr.attr);
985 		wqe->ud_wr.attr = NULL;
986 	}
987 }
988 
989 /**
990  * alloc_ud_wq_attr - AH attribute cache for UD QPs
991  * @qp: Valid QP with allowed_ops set
992  * @node: Numa node for allocation
993  *
994  * The rvt_swqe data structure being used is a union, so this is
995  * only valid for UD QPs.
996  */
alloc_ud_wq_attr(struct rvt_qp * qp,int node)997 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
998 {
999 	struct rvt_swqe *wqe;
1000 	int i;
1001 
1002 	for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1003 		wqe = rvt_get_swqe_ptr(qp, i);
1004 		wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1005 					       GFP_KERNEL, node);
1006 		if (!wqe->ud_wr.attr) {
1007 			free_ud_wq_attr(qp);
1008 			return -ENOMEM;
1009 		}
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * rvt_create_qp - create a queue pair for a device
1017  * @ibqp: the queue pair
1018  * @init_attr: the attributes of the queue pair
1019  * @udata: user data for libibverbs.so
1020  *
1021  * Queue pair creation is mostly an rvt issue. However, drivers have their own
1022  * unique idea of what queue pair numbers mean. For instance there is a reserved
1023  * range for PSM.
1024  *
1025  * Return: 0 on success, otherwise returns an errno.
1026  *
1027  * Called by the ib_create_qp() core verbs function.
1028  */
rvt_create_qp(struct ib_qp * ibqp,struct ib_qp_init_attr * init_attr,struct ib_udata * udata)1029 int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr,
1030 		  struct ib_udata *udata)
1031 {
1032 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1033 	int ret = -ENOMEM;
1034 	struct rvt_swqe *swq = NULL;
1035 	size_t sz;
1036 	size_t sg_list_sz = 0;
1037 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1038 	void *priv = NULL;
1039 	size_t sqsize;
1040 	u8 exclude_prefix = 0;
1041 
1042 	if (!rdi)
1043 		return -EINVAL;
1044 
1045 	if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1046 		return -EOPNOTSUPP;
1047 
1048 	if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1049 	    init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1050 		return -EINVAL;
1051 
1052 	/* Check receive queue parameters if no SRQ is specified. */
1053 	if (!init_attr->srq) {
1054 		if (init_attr->cap.max_recv_sge >
1055 		    rdi->dparms.props.max_recv_sge ||
1056 		    init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1057 			return -EINVAL;
1058 
1059 		if (init_attr->cap.max_send_sge +
1060 		    init_attr->cap.max_send_wr +
1061 		    init_attr->cap.max_recv_sge +
1062 		    init_attr->cap.max_recv_wr == 0)
1063 			return -EINVAL;
1064 	}
1065 	sqsize =
1066 		init_attr->cap.max_send_wr + 1 +
1067 		rdi->dparms.reserved_operations;
1068 	switch (init_attr->qp_type) {
1069 	case IB_QPT_SMI:
1070 	case IB_QPT_GSI:
1071 		if (init_attr->port_num == 0 ||
1072 		    init_attr->port_num > ibqp->device->phys_port_cnt)
1073 			return -EINVAL;
1074 		fallthrough;
1075 	case IB_QPT_UC:
1076 	case IB_QPT_RC:
1077 	case IB_QPT_UD:
1078 		sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1079 		swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1080 		if (!swq)
1081 			return -ENOMEM;
1082 
1083 		if (init_attr->srq) {
1084 			struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1085 
1086 			if (srq->rq.max_sge > 1)
1087 				sg_list_sz = sizeof(*qp->r_sg_list) *
1088 					(srq->rq.max_sge - 1);
1089 		} else if (init_attr->cap.max_recv_sge > 1)
1090 			sg_list_sz = sizeof(*qp->r_sg_list) *
1091 				(init_attr->cap.max_recv_sge - 1);
1092 		qp->r_sg_list =
1093 			kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node);
1094 		if (!qp->r_sg_list)
1095 			goto bail_qp;
1096 		qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1097 
1098 		RCU_INIT_POINTER(qp->next, NULL);
1099 		if (init_attr->qp_type == IB_QPT_RC) {
1100 			qp->s_ack_queue =
1101 				kcalloc_node(rvt_max_atomic(rdi),
1102 					     sizeof(*qp->s_ack_queue),
1103 					     GFP_KERNEL,
1104 					     rdi->dparms.node);
1105 			if (!qp->s_ack_queue)
1106 				goto bail_qp;
1107 		}
1108 		/* initialize timers needed for rc qp */
1109 		timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1110 		hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1111 			     HRTIMER_MODE_REL);
1112 		qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1113 
1114 		/*
1115 		 * Driver needs to set up it's private QP structure and do any
1116 		 * initialization that is needed.
1117 		 */
1118 		priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1119 		if (IS_ERR(priv)) {
1120 			ret = PTR_ERR(priv);
1121 			goto bail_qp;
1122 		}
1123 		qp->priv = priv;
1124 		qp->timeout_jiffies =
1125 			usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1126 				1000UL);
1127 		if (init_attr->srq) {
1128 			sz = 0;
1129 		} else {
1130 			qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1131 			qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1132 			sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1133 				sizeof(struct rvt_rwqe);
1134 			ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1135 					   rdi->dparms.node, udata);
1136 			if (ret)
1137 				goto bail_driver_priv;
1138 		}
1139 
1140 		/*
1141 		 * ib_create_qp() will initialize qp->ibqp
1142 		 * except for qp->ibqp.qp_num.
1143 		 */
1144 		spin_lock_init(&qp->r_lock);
1145 		spin_lock_init(&qp->s_hlock);
1146 		spin_lock_init(&qp->s_lock);
1147 		atomic_set(&qp->refcount, 0);
1148 		atomic_set(&qp->local_ops_pending, 0);
1149 		init_waitqueue_head(&qp->wait);
1150 		INIT_LIST_HEAD(&qp->rspwait);
1151 		qp->state = IB_QPS_RESET;
1152 		qp->s_wq = swq;
1153 		qp->s_size = sqsize;
1154 		qp->s_avail = init_attr->cap.max_send_wr;
1155 		qp->s_max_sge = init_attr->cap.max_send_sge;
1156 		if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1157 			qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1158 		ret = alloc_ud_wq_attr(qp, rdi->dparms.node);
1159 		if (ret)
1160 			goto bail_rq_rvt;
1161 
1162 		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1163 			exclude_prefix = RVT_AIP_QP_PREFIX;
1164 
1165 		ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1166 				init_attr->qp_type,
1167 				init_attr->port_num,
1168 				exclude_prefix);
1169 		if (ret < 0)
1170 			goto bail_rq_wq;
1171 
1172 		qp->ibqp.qp_num = ret;
1173 		if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1174 			qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1175 		qp->port_num = init_attr->port_num;
1176 		rvt_init_qp(rdi, qp, init_attr->qp_type);
1177 		if (rdi->driver_f.qp_priv_init) {
1178 			ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1179 			if (ret)
1180 				goto bail_rq_wq;
1181 		}
1182 		break;
1183 
1184 	default:
1185 		/* Don't support raw QPs */
1186 		return -EOPNOTSUPP;
1187 	}
1188 
1189 	init_attr->cap.max_inline_data = 0;
1190 
1191 	/*
1192 	 * Return the address of the RWQ as the offset to mmap.
1193 	 * See rvt_mmap() for details.
1194 	 */
1195 	if (udata && udata->outlen >= sizeof(__u64)) {
1196 		if (!qp->r_rq.wq) {
1197 			__u64 offset = 0;
1198 
1199 			ret = ib_copy_to_udata(udata, &offset,
1200 					       sizeof(offset));
1201 			if (ret)
1202 				goto bail_qpn;
1203 		} else {
1204 			u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1205 
1206 			qp->ip = rvt_create_mmap_info(rdi, s, udata,
1207 						      qp->r_rq.wq);
1208 			if (IS_ERR(qp->ip)) {
1209 				ret = PTR_ERR(qp->ip);
1210 				goto bail_qpn;
1211 			}
1212 
1213 			ret = ib_copy_to_udata(udata, &qp->ip->offset,
1214 					       sizeof(qp->ip->offset));
1215 			if (ret)
1216 				goto bail_ip;
1217 		}
1218 		qp->pid = current->pid;
1219 	}
1220 
1221 	spin_lock(&rdi->n_qps_lock);
1222 	if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1223 		spin_unlock(&rdi->n_qps_lock);
1224 		ret = -ENOMEM;
1225 		goto bail_ip;
1226 	}
1227 
1228 	rdi->n_qps_allocated++;
1229 	/*
1230 	 * Maintain a busy_jiffies variable that will be added to the timeout
1231 	 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1232 	 * is scaled by the number of rc qps created for the device to reduce
1233 	 * the number of timeouts occurring when there is a large number of
1234 	 * qps. busy_jiffies is incremented every rc qp scaling interval.
1235 	 * The scaling interval is selected based on extensive performance
1236 	 * evaluation of targeted workloads.
1237 	 */
1238 	if (init_attr->qp_type == IB_QPT_RC) {
1239 		rdi->n_rc_qps++;
1240 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1241 	}
1242 	spin_unlock(&rdi->n_qps_lock);
1243 
1244 	if (qp->ip) {
1245 		spin_lock_irq(&rdi->pending_lock);
1246 		list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1247 		spin_unlock_irq(&rdi->pending_lock);
1248 	}
1249 
1250 	return 0;
1251 
1252 bail_ip:
1253 	if (qp->ip)
1254 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1255 
1256 bail_qpn:
1257 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1258 
1259 bail_rq_wq:
1260 	free_ud_wq_attr(qp);
1261 
1262 bail_rq_rvt:
1263 	rvt_free_rq(&qp->r_rq);
1264 
1265 bail_driver_priv:
1266 	rdi->driver_f.qp_priv_free(rdi, qp);
1267 
1268 bail_qp:
1269 	kfree(qp->s_ack_queue);
1270 	kfree(qp->r_sg_list);
1271 	vfree(swq);
1272 	return ret;
1273 }
1274 
1275 /**
1276  * rvt_error_qp - put a QP into the error state
1277  * @qp: the QP to put into the error state
1278  * @err: the receive completion error to signal if a RWQE is active
1279  *
1280  * Flushes both send and receive work queues.
1281  *
1282  * Return: true if last WQE event should be generated.
1283  * The QP r_lock and s_lock should be held and interrupts disabled.
1284  * If we are already in error state, just return.
1285  */
rvt_error_qp(struct rvt_qp * qp,enum ib_wc_status err)1286 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1287 {
1288 	struct ib_wc wc;
1289 	int ret = 0;
1290 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1291 
1292 	lockdep_assert_held(&qp->r_lock);
1293 	lockdep_assert_held(&qp->s_lock);
1294 	if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1295 		goto bail;
1296 
1297 	qp->state = IB_QPS_ERR;
1298 
1299 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1300 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1301 		del_timer(&qp->s_timer);
1302 	}
1303 
1304 	if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1305 		qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1306 
1307 	rdi->driver_f.notify_error_qp(qp);
1308 
1309 	/* Schedule the sending tasklet to drain the send work queue. */
1310 	if (READ_ONCE(qp->s_last) != qp->s_head)
1311 		rdi->driver_f.schedule_send(qp);
1312 
1313 	rvt_clear_mr_refs(qp, 0);
1314 
1315 	memset(&wc, 0, sizeof(wc));
1316 	wc.qp = &qp->ibqp;
1317 	wc.opcode = IB_WC_RECV;
1318 
1319 	if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1320 		wc.wr_id = qp->r_wr_id;
1321 		wc.status = err;
1322 		rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1323 	}
1324 	wc.status = IB_WC_WR_FLUSH_ERR;
1325 
1326 	if (qp->r_rq.kwq) {
1327 		u32 head;
1328 		u32 tail;
1329 		struct rvt_rwq *wq = NULL;
1330 		struct rvt_krwq *kwq = NULL;
1331 
1332 		spin_lock(&qp->r_rq.kwq->c_lock);
1333 		/* qp->ip used to validate if there is a  user buffer mmaped */
1334 		if (qp->ip) {
1335 			wq = qp->r_rq.wq;
1336 			head = RDMA_READ_UAPI_ATOMIC(wq->head);
1337 			tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1338 		} else {
1339 			kwq = qp->r_rq.kwq;
1340 			head = kwq->head;
1341 			tail = kwq->tail;
1342 		}
1343 		/* sanity check pointers before trusting them */
1344 		if (head >= qp->r_rq.size)
1345 			head = 0;
1346 		if (tail >= qp->r_rq.size)
1347 			tail = 0;
1348 		while (tail != head) {
1349 			wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1350 			if (++tail >= qp->r_rq.size)
1351 				tail = 0;
1352 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1353 		}
1354 		if (qp->ip)
1355 			RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1356 		else
1357 			kwq->tail = tail;
1358 		spin_unlock(&qp->r_rq.kwq->c_lock);
1359 	} else if (qp->ibqp.event_handler) {
1360 		ret = 1;
1361 	}
1362 
1363 bail:
1364 	return ret;
1365 }
1366 EXPORT_SYMBOL(rvt_error_qp);
1367 
1368 /*
1369  * Put the QP into the hash table.
1370  * The hash table holds a reference to the QP.
1371  */
rvt_insert_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp)1372 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1373 {
1374 	struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1375 	unsigned long flags;
1376 
1377 	rvt_get_qp(qp);
1378 	spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1379 
1380 	if (qp->ibqp.qp_num <= 1) {
1381 		rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1382 	} else {
1383 		u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1384 
1385 		qp->next = rdi->qp_dev->qp_table[n];
1386 		rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1387 		trace_rvt_qpinsert(qp, n);
1388 	}
1389 
1390 	spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1391 }
1392 
1393 /**
1394  * rvt_modify_qp - modify the attributes of a queue pair
1395  * @ibqp: the queue pair who's attributes we're modifying
1396  * @attr: the new attributes
1397  * @attr_mask: the mask of attributes to modify
1398  * @udata: user data for libibverbs.so
1399  *
1400  * Return: 0 on success, otherwise returns an errno.
1401  */
rvt_modify_qp(struct ib_qp * ibqp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1402 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1403 		  int attr_mask, struct ib_udata *udata)
1404 {
1405 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1406 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1407 	enum ib_qp_state cur_state, new_state;
1408 	struct ib_event ev;
1409 	int lastwqe = 0;
1410 	int mig = 0;
1411 	int pmtu = 0; /* for gcc warning only */
1412 	int opa_ah;
1413 
1414 	if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1415 		return -EOPNOTSUPP;
1416 
1417 	spin_lock_irq(&qp->r_lock);
1418 	spin_lock(&qp->s_hlock);
1419 	spin_lock(&qp->s_lock);
1420 
1421 	cur_state = attr_mask & IB_QP_CUR_STATE ?
1422 		attr->cur_qp_state : qp->state;
1423 	new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1424 	opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1425 
1426 	if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1427 				attr_mask))
1428 		goto inval;
1429 
1430 	if (rdi->driver_f.check_modify_qp &&
1431 	    rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1432 		goto inval;
1433 
1434 	if (attr_mask & IB_QP_AV) {
1435 		if (opa_ah) {
1436 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1437 				opa_get_mcast_base(OPA_MCAST_NR))
1438 				goto inval;
1439 		} else {
1440 			if (rdma_ah_get_dlid(&attr->ah_attr) >=
1441 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1442 				goto inval;
1443 		}
1444 
1445 		if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1446 			goto inval;
1447 	}
1448 
1449 	if (attr_mask & IB_QP_ALT_PATH) {
1450 		if (opa_ah) {
1451 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1452 				opa_get_mcast_base(OPA_MCAST_NR))
1453 				goto inval;
1454 		} else {
1455 			if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1456 				be16_to_cpu(IB_MULTICAST_LID_BASE))
1457 				goto inval;
1458 		}
1459 
1460 		if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1461 			goto inval;
1462 		if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1463 			goto inval;
1464 	}
1465 
1466 	if (attr_mask & IB_QP_PKEY_INDEX)
1467 		if (attr->pkey_index >= rvt_get_npkeys(rdi))
1468 			goto inval;
1469 
1470 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1471 		if (attr->min_rnr_timer > 31)
1472 			goto inval;
1473 
1474 	if (attr_mask & IB_QP_PORT)
1475 		if (qp->ibqp.qp_type == IB_QPT_SMI ||
1476 		    qp->ibqp.qp_type == IB_QPT_GSI ||
1477 		    attr->port_num == 0 ||
1478 		    attr->port_num > ibqp->device->phys_port_cnt)
1479 			goto inval;
1480 
1481 	if (attr_mask & IB_QP_DEST_QPN)
1482 		if (attr->dest_qp_num > RVT_QPN_MASK)
1483 			goto inval;
1484 
1485 	if (attr_mask & IB_QP_RETRY_CNT)
1486 		if (attr->retry_cnt > 7)
1487 			goto inval;
1488 
1489 	if (attr_mask & IB_QP_RNR_RETRY)
1490 		if (attr->rnr_retry > 7)
1491 			goto inval;
1492 
1493 	/*
1494 	 * Don't allow invalid path_mtu values.  OK to set greater
1495 	 * than the active mtu (or even the max_cap, if we have tuned
1496 	 * that to a small mtu.  We'll set qp->path_mtu
1497 	 * to the lesser of requested attribute mtu and active,
1498 	 * for packetizing messages.
1499 	 * Note that the QP port has to be set in INIT and MTU in RTR.
1500 	 */
1501 	if (attr_mask & IB_QP_PATH_MTU) {
1502 		pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1503 		if (pmtu < 0)
1504 			goto inval;
1505 	}
1506 
1507 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1508 		if (attr->path_mig_state == IB_MIG_REARM) {
1509 			if (qp->s_mig_state == IB_MIG_ARMED)
1510 				goto inval;
1511 			if (new_state != IB_QPS_RTS)
1512 				goto inval;
1513 		} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1514 			if (qp->s_mig_state == IB_MIG_REARM)
1515 				goto inval;
1516 			if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1517 				goto inval;
1518 			if (qp->s_mig_state == IB_MIG_ARMED)
1519 				mig = 1;
1520 		} else {
1521 			goto inval;
1522 		}
1523 	}
1524 
1525 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1526 		if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1527 			goto inval;
1528 
1529 	switch (new_state) {
1530 	case IB_QPS_RESET:
1531 		if (qp->state != IB_QPS_RESET)
1532 			_rvt_reset_qp(rdi, qp, ibqp->qp_type);
1533 		break;
1534 
1535 	case IB_QPS_RTR:
1536 		/* Allow event to re-trigger if QP set to RTR more than once */
1537 		qp->r_flags &= ~RVT_R_COMM_EST;
1538 		qp->state = new_state;
1539 		break;
1540 
1541 	case IB_QPS_SQD:
1542 		qp->s_draining = qp->s_last != qp->s_cur;
1543 		qp->state = new_state;
1544 		break;
1545 
1546 	case IB_QPS_SQE:
1547 		if (qp->ibqp.qp_type == IB_QPT_RC)
1548 			goto inval;
1549 		qp->state = new_state;
1550 		break;
1551 
1552 	case IB_QPS_ERR:
1553 		lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1554 		break;
1555 
1556 	default:
1557 		qp->state = new_state;
1558 		break;
1559 	}
1560 
1561 	if (attr_mask & IB_QP_PKEY_INDEX)
1562 		qp->s_pkey_index = attr->pkey_index;
1563 
1564 	if (attr_mask & IB_QP_PORT)
1565 		qp->port_num = attr->port_num;
1566 
1567 	if (attr_mask & IB_QP_DEST_QPN)
1568 		qp->remote_qpn = attr->dest_qp_num;
1569 
1570 	if (attr_mask & IB_QP_SQ_PSN) {
1571 		qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1572 		qp->s_psn = qp->s_next_psn;
1573 		qp->s_sending_psn = qp->s_next_psn;
1574 		qp->s_last_psn = qp->s_next_psn - 1;
1575 		qp->s_sending_hpsn = qp->s_last_psn;
1576 	}
1577 
1578 	if (attr_mask & IB_QP_RQ_PSN)
1579 		qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1580 
1581 	if (attr_mask & IB_QP_ACCESS_FLAGS)
1582 		qp->qp_access_flags = attr->qp_access_flags;
1583 
1584 	if (attr_mask & IB_QP_AV) {
1585 		rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1586 		qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1587 		qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1588 	}
1589 
1590 	if (attr_mask & IB_QP_ALT_PATH) {
1591 		rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1592 		qp->s_alt_pkey_index = attr->alt_pkey_index;
1593 	}
1594 
1595 	if (attr_mask & IB_QP_PATH_MIG_STATE) {
1596 		qp->s_mig_state = attr->path_mig_state;
1597 		if (mig) {
1598 			qp->remote_ah_attr = qp->alt_ah_attr;
1599 			qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1600 			qp->s_pkey_index = qp->s_alt_pkey_index;
1601 		}
1602 	}
1603 
1604 	if (attr_mask & IB_QP_PATH_MTU) {
1605 		qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1606 		qp->log_pmtu = ilog2(qp->pmtu);
1607 	}
1608 
1609 	if (attr_mask & IB_QP_RETRY_CNT) {
1610 		qp->s_retry_cnt = attr->retry_cnt;
1611 		qp->s_retry = attr->retry_cnt;
1612 	}
1613 
1614 	if (attr_mask & IB_QP_RNR_RETRY) {
1615 		qp->s_rnr_retry_cnt = attr->rnr_retry;
1616 		qp->s_rnr_retry = attr->rnr_retry;
1617 	}
1618 
1619 	if (attr_mask & IB_QP_MIN_RNR_TIMER)
1620 		qp->r_min_rnr_timer = attr->min_rnr_timer;
1621 
1622 	if (attr_mask & IB_QP_TIMEOUT) {
1623 		qp->timeout = attr->timeout;
1624 		qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1625 	}
1626 
1627 	if (attr_mask & IB_QP_QKEY)
1628 		qp->qkey = attr->qkey;
1629 
1630 	if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1631 		qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1632 
1633 	if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1634 		qp->s_max_rd_atomic = attr->max_rd_atomic;
1635 
1636 	if (rdi->driver_f.modify_qp)
1637 		rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1638 
1639 	spin_unlock(&qp->s_lock);
1640 	spin_unlock(&qp->s_hlock);
1641 	spin_unlock_irq(&qp->r_lock);
1642 
1643 	if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1644 		rvt_insert_qp(rdi, qp);
1645 
1646 	if (lastwqe) {
1647 		ev.device = qp->ibqp.device;
1648 		ev.element.qp = &qp->ibqp;
1649 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1650 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1651 	}
1652 	if (mig) {
1653 		ev.device = qp->ibqp.device;
1654 		ev.element.qp = &qp->ibqp;
1655 		ev.event = IB_EVENT_PATH_MIG;
1656 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1657 	}
1658 	return 0;
1659 
1660 inval:
1661 	spin_unlock(&qp->s_lock);
1662 	spin_unlock(&qp->s_hlock);
1663 	spin_unlock_irq(&qp->r_lock);
1664 	return -EINVAL;
1665 }
1666 
1667 /**
1668  * rvt_destroy_qp - destroy a queue pair
1669  * @ibqp: the queue pair to destroy
1670  * @udata: unused by the driver
1671  *
1672  * Note that this can be called while the QP is actively sending or
1673  * receiving!
1674  *
1675  * Return: 0 on success.
1676  */
rvt_destroy_qp(struct ib_qp * ibqp,struct ib_udata * udata)1677 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1678 {
1679 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1680 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1681 
1682 	rvt_reset_qp(rdi, qp, ibqp->qp_type);
1683 
1684 	wait_event(qp->wait, !atomic_read(&qp->refcount));
1685 	/* qpn is now available for use again */
1686 	rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1687 
1688 	spin_lock(&rdi->n_qps_lock);
1689 	rdi->n_qps_allocated--;
1690 	if (qp->ibqp.qp_type == IB_QPT_RC) {
1691 		rdi->n_rc_qps--;
1692 		rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1693 	}
1694 	spin_unlock(&rdi->n_qps_lock);
1695 
1696 	if (qp->ip)
1697 		kref_put(&qp->ip->ref, rvt_release_mmap_info);
1698 	kvfree(qp->r_rq.kwq);
1699 	rdi->driver_f.qp_priv_free(rdi, qp);
1700 	kfree(qp->s_ack_queue);
1701 	kfree(qp->r_sg_list);
1702 	rdma_destroy_ah_attr(&qp->remote_ah_attr);
1703 	rdma_destroy_ah_attr(&qp->alt_ah_attr);
1704 	free_ud_wq_attr(qp);
1705 	vfree(qp->s_wq);
1706 	return 0;
1707 }
1708 
1709 /**
1710  * rvt_query_qp - query an ipbq
1711  * @ibqp: IB qp to query
1712  * @attr: attr struct to fill in
1713  * @attr_mask: attr mask ignored
1714  * @init_attr: struct to fill in
1715  *
1716  * Return: always 0
1717  */
rvt_query_qp(struct ib_qp * ibqp,struct ib_qp_attr * attr,int attr_mask,struct ib_qp_init_attr * init_attr)1718 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1719 		 int attr_mask, struct ib_qp_init_attr *init_attr)
1720 {
1721 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1722 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1723 
1724 	attr->qp_state = qp->state;
1725 	attr->cur_qp_state = attr->qp_state;
1726 	attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1727 	attr->path_mig_state = qp->s_mig_state;
1728 	attr->qkey = qp->qkey;
1729 	attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1730 	attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1731 	attr->dest_qp_num = qp->remote_qpn;
1732 	attr->qp_access_flags = qp->qp_access_flags;
1733 	attr->cap.max_send_wr = qp->s_size - 1 -
1734 		rdi->dparms.reserved_operations;
1735 	attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1736 	attr->cap.max_send_sge = qp->s_max_sge;
1737 	attr->cap.max_recv_sge = qp->r_rq.max_sge;
1738 	attr->cap.max_inline_data = 0;
1739 	attr->ah_attr = qp->remote_ah_attr;
1740 	attr->alt_ah_attr = qp->alt_ah_attr;
1741 	attr->pkey_index = qp->s_pkey_index;
1742 	attr->alt_pkey_index = qp->s_alt_pkey_index;
1743 	attr->en_sqd_async_notify = 0;
1744 	attr->sq_draining = qp->s_draining;
1745 	attr->max_rd_atomic = qp->s_max_rd_atomic;
1746 	attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1747 	attr->min_rnr_timer = qp->r_min_rnr_timer;
1748 	attr->port_num = qp->port_num;
1749 	attr->timeout = qp->timeout;
1750 	attr->retry_cnt = qp->s_retry_cnt;
1751 	attr->rnr_retry = qp->s_rnr_retry_cnt;
1752 	attr->alt_port_num =
1753 		rdma_ah_get_port_num(&qp->alt_ah_attr);
1754 	attr->alt_timeout = qp->alt_timeout;
1755 
1756 	init_attr->event_handler = qp->ibqp.event_handler;
1757 	init_attr->qp_context = qp->ibqp.qp_context;
1758 	init_attr->send_cq = qp->ibqp.send_cq;
1759 	init_attr->recv_cq = qp->ibqp.recv_cq;
1760 	init_attr->srq = qp->ibqp.srq;
1761 	init_attr->cap = attr->cap;
1762 	if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1763 		init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1764 	else
1765 		init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1766 	init_attr->qp_type = qp->ibqp.qp_type;
1767 	init_attr->port_num = qp->port_num;
1768 	return 0;
1769 }
1770 
1771 /**
1772  * rvt_post_recv - post a receive on a QP
1773  * @ibqp: the QP to post the receive on
1774  * @wr: the WR to post
1775  * @bad_wr: the first bad WR is put here
1776  *
1777  * This may be called from interrupt context.
1778  *
1779  * Return: 0 on success otherwise errno
1780  */
rvt_post_recv(struct ib_qp * ibqp,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)1781 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1782 		  const struct ib_recv_wr **bad_wr)
1783 {
1784 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1785 	struct rvt_krwq *wq = qp->r_rq.kwq;
1786 	unsigned long flags;
1787 	int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1788 				!qp->ibqp.srq;
1789 
1790 	/* Check that state is OK to post receive. */
1791 	if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1792 		*bad_wr = wr;
1793 		return -EINVAL;
1794 	}
1795 
1796 	for (; wr; wr = wr->next) {
1797 		struct rvt_rwqe *wqe;
1798 		u32 next;
1799 		int i;
1800 
1801 		if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1802 			*bad_wr = wr;
1803 			return -EINVAL;
1804 		}
1805 
1806 		spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1807 		next = wq->head + 1;
1808 		if (next >= qp->r_rq.size)
1809 			next = 0;
1810 		if (next == READ_ONCE(wq->tail)) {
1811 			spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1812 			*bad_wr = wr;
1813 			return -ENOMEM;
1814 		}
1815 		if (unlikely(qp_err_flush)) {
1816 			struct ib_wc wc;
1817 
1818 			memset(&wc, 0, sizeof(wc));
1819 			wc.qp = &qp->ibqp;
1820 			wc.opcode = IB_WC_RECV;
1821 			wc.wr_id = wr->wr_id;
1822 			wc.status = IB_WC_WR_FLUSH_ERR;
1823 			rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1824 		} else {
1825 			wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1826 			wqe->wr_id = wr->wr_id;
1827 			wqe->num_sge = wr->num_sge;
1828 			for (i = 0; i < wr->num_sge; i++) {
1829 				wqe->sg_list[i].addr = wr->sg_list[i].addr;
1830 				wqe->sg_list[i].length = wr->sg_list[i].length;
1831 				wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1832 			}
1833 			/*
1834 			 * Make sure queue entry is written
1835 			 * before the head index.
1836 			 */
1837 			smp_store_release(&wq->head, next);
1838 		}
1839 		spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1840 	}
1841 	return 0;
1842 }
1843 
1844 /**
1845  * rvt_qp_valid_operation - validate post send wr request
1846  * @qp: the qp
1847  * @post_parms: the post send table for the driver
1848  * @wr: the work request
1849  *
1850  * The routine validates the operation based on the
1851  * validation table an returns the length of the operation
1852  * which can extend beyond the ib_send_bw.  Operation
1853  * dependent flags key atomic operation validation.
1854  *
1855  * There is an exception for UD qps that validates the pd and
1856  * overrides the length to include the additional UD specific
1857  * length.
1858  *
1859  * Returns a negative error or the length of the work request
1860  * for building the swqe.
1861  */
rvt_qp_valid_operation(struct rvt_qp * qp,const struct rvt_operation_params * post_parms,const struct ib_send_wr * wr)1862 static inline int rvt_qp_valid_operation(
1863 	struct rvt_qp *qp,
1864 	const struct rvt_operation_params *post_parms,
1865 	const struct ib_send_wr *wr)
1866 {
1867 	int len;
1868 
1869 	if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1870 		return -EINVAL;
1871 	if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1872 		return -EINVAL;
1873 	if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1874 	    ibpd_to_rvtpd(qp->ibqp.pd)->user)
1875 		return -EINVAL;
1876 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1877 	    (wr->num_sge == 0 ||
1878 	     wr->sg_list[0].length < sizeof(u64) ||
1879 	     wr->sg_list[0].addr & (sizeof(u64) - 1)))
1880 		return -EINVAL;
1881 	if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1882 	    !qp->s_max_rd_atomic)
1883 		return -EINVAL;
1884 	len = post_parms[wr->opcode].length;
1885 	/* UD specific */
1886 	if (qp->ibqp.qp_type != IB_QPT_UC &&
1887 	    qp->ibqp.qp_type != IB_QPT_RC) {
1888 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1889 			return -EINVAL;
1890 		len = sizeof(struct ib_ud_wr);
1891 	}
1892 	return len;
1893 }
1894 
1895 /**
1896  * rvt_qp_is_avail - determine queue capacity
1897  * @qp: the qp
1898  * @rdi: the rdmavt device
1899  * @reserved_op: is reserved operation
1900  *
1901  * This assumes the s_hlock is held but the s_last
1902  * qp variable is uncontrolled.
1903  *
1904  * For non reserved operations, the qp->s_avail
1905  * may be changed.
1906  *
1907  * The return value is zero or a -ENOMEM.
1908  */
rvt_qp_is_avail(struct rvt_qp * qp,struct rvt_dev_info * rdi,bool reserved_op)1909 static inline int rvt_qp_is_avail(
1910 	struct rvt_qp *qp,
1911 	struct rvt_dev_info *rdi,
1912 	bool reserved_op)
1913 {
1914 	u32 slast;
1915 	u32 avail;
1916 	u32 reserved_used;
1917 
1918 	/* see rvt_qp_wqe_unreserve() */
1919 	smp_mb__before_atomic();
1920 	if (unlikely(reserved_op)) {
1921 		/* see rvt_qp_wqe_unreserve() */
1922 		reserved_used = atomic_read(&qp->s_reserved_used);
1923 		if (reserved_used >= rdi->dparms.reserved_operations)
1924 			return -ENOMEM;
1925 		return 0;
1926 	}
1927 	/* non-reserved operations */
1928 	if (likely(qp->s_avail))
1929 		return 0;
1930 	/* See rvt_qp_complete_swqe() */
1931 	slast = smp_load_acquire(&qp->s_last);
1932 	if (qp->s_head >= slast)
1933 		avail = qp->s_size - (qp->s_head - slast);
1934 	else
1935 		avail = slast - qp->s_head;
1936 
1937 	reserved_used = atomic_read(&qp->s_reserved_used);
1938 	avail =  avail - 1 -
1939 		(rdi->dparms.reserved_operations - reserved_used);
1940 	/* insure we don't assign a negative s_avail */
1941 	if ((s32)avail <= 0)
1942 		return -ENOMEM;
1943 	qp->s_avail = avail;
1944 	if (WARN_ON(qp->s_avail >
1945 		    (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1946 		rvt_pr_err(rdi,
1947 			   "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1948 			   qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1949 			   qp->s_head, qp->s_tail, qp->s_cur,
1950 			   qp->s_acked, qp->s_last);
1951 	return 0;
1952 }
1953 
1954 /**
1955  * rvt_post_one_wr - post one RC, UC, or UD send work request
1956  * @qp: the QP to post on
1957  * @wr: the work request to send
1958  * @call_send: kick the send engine into gear
1959  */
rvt_post_one_wr(struct rvt_qp * qp,const struct ib_send_wr * wr,bool * call_send)1960 static int rvt_post_one_wr(struct rvt_qp *qp,
1961 			   const struct ib_send_wr *wr,
1962 			   bool *call_send)
1963 {
1964 	struct rvt_swqe *wqe;
1965 	u32 next;
1966 	int i;
1967 	int j;
1968 	int acc;
1969 	struct rvt_lkey_table *rkt;
1970 	struct rvt_pd *pd;
1971 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1972 	u8 log_pmtu;
1973 	int ret;
1974 	size_t cplen;
1975 	bool reserved_op;
1976 	int local_ops_delayed = 0;
1977 
1978 	BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1979 
1980 	/* IB spec says that num_sge == 0 is OK. */
1981 	if (unlikely(wr->num_sge > qp->s_max_sge))
1982 		return -EINVAL;
1983 
1984 	ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1985 	if (ret < 0)
1986 		return ret;
1987 	cplen = ret;
1988 
1989 	/*
1990 	 * Local operations include fast register and local invalidate.
1991 	 * Fast register needs to be processed immediately because the
1992 	 * registered lkey may be used by following work requests and the
1993 	 * lkey needs to be valid at the time those requests are posted.
1994 	 * Local invalidate can be processed immediately if fencing is
1995 	 * not required and no previous local invalidate ops are pending.
1996 	 * Signaled local operations that have been processed immediately
1997 	 * need to have requests with "completion only" flags set posted
1998 	 * to the send queue in order to generate completions.
1999 	 */
2000 	if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2001 		switch (wr->opcode) {
2002 		case IB_WR_REG_MR:
2003 			ret = rvt_fast_reg_mr(qp,
2004 					      reg_wr(wr)->mr,
2005 					      reg_wr(wr)->key,
2006 					      reg_wr(wr)->access);
2007 			if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2008 				return ret;
2009 			break;
2010 		case IB_WR_LOCAL_INV:
2011 			if ((wr->send_flags & IB_SEND_FENCE) ||
2012 			    atomic_read(&qp->local_ops_pending)) {
2013 				local_ops_delayed = 1;
2014 			} else {
2015 				ret = rvt_invalidate_rkey(
2016 					qp, wr->ex.invalidate_rkey);
2017 				if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2018 					return ret;
2019 			}
2020 			break;
2021 		default:
2022 			return -EINVAL;
2023 		}
2024 	}
2025 
2026 	reserved_op = rdi->post_parms[wr->opcode].flags &
2027 			RVT_OPERATION_USE_RESERVE;
2028 	/* check for avail */
2029 	ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2030 	if (ret)
2031 		return ret;
2032 	next = qp->s_head + 1;
2033 	if (next >= qp->s_size)
2034 		next = 0;
2035 
2036 	rkt = &rdi->lkey_table;
2037 	pd = ibpd_to_rvtpd(qp->ibqp.pd);
2038 	wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2039 
2040 	/* cplen has length from above */
2041 	memcpy(&wqe->ud_wr, wr, cplen);
2042 
2043 	wqe->length = 0;
2044 	j = 0;
2045 	if (wr->num_sge) {
2046 		struct rvt_sge *last_sge = NULL;
2047 
2048 		acc = wr->opcode >= IB_WR_RDMA_READ ?
2049 			IB_ACCESS_LOCAL_WRITE : 0;
2050 		for (i = 0; i < wr->num_sge; i++) {
2051 			u32 length = wr->sg_list[i].length;
2052 
2053 			if (length == 0)
2054 				continue;
2055 			ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2056 					  &wr->sg_list[i], acc);
2057 			if (unlikely(ret < 0))
2058 				goto bail_inval_free;
2059 			wqe->length += length;
2060 			if (ret)
2061 				last_sge = &wqe->sg_list[j];
2062 			j += ret;
2063 		}
2064 		wqe->wr.num_sge = j;
2065 	}
2066 
2067 	/*
2068 	 * Calculate and set SWQE PSN values prior to handing it off
2069 	 * to the driver's check routine. This give the driver the
2070 	 * opportunity to adjust PSN values based on internal checks.
2071 	 */
2072 	log_pmtu = qp->log_pmtu;
2073 	if (qp->allowed_ops == IB_OPCODE_UD) {
2074 		struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2075 
2076 		log_pmtu = ah->log_pmtu;
2077 		rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2078 	}
2079 
2080 	if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2081 		if (local_ops_delayed)
2082 			atomic_inc(&qp->local_ops_pending);
2083 		else
2084 			wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2085 		wqe->ssn = 0;
2086 		wqe->psn = 0;
2087 		wqe->lpsn = 0;
2088 	} else {
2089 		wqe->ssn = qp->s_ssn++;
2090 		wqe->psn = qp->s_next_psn;
2091 		wqe->lpsn = wqe->psn +
2092 				(wqe->length ?
2093 					((wqe->length - 1) >> log_pmtu) :
2094 					0);
2095 	}
2096 
2097 	/* general part of wqe valid - allow for driver checks */
2098 	if (rdi->driver_f.setup_wqe) {
2099 		ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2100 		if (ret < 0)
2101 			goto bail_inval_free_ref;
2102 	}
2103 
2104 	if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2105 		qp->s_next_psn = wqe->lpsn + 1;
2106 
2107 	if (unlikely(reserved_op)) {
2108 		wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2109 		rvt_qp_wqe_reserve(qp, wqe);
2110 	} else {
2111 		wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2112 		qp->s_avail--;
2113 	}
2114 	trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2115 	smp_wmb(); /* see request builders */
2116 	qp->s_head = next;
2117 
2118 	return 0;
2119 
2120 bail_inval_free_ref:
2121 	if (qp->allowed_ops == IB_OPCODE_UD)
2122 		rdma_destroy_ah_attr(wqe->ud_wr.attr);
2123 bail_inval_free:
2124 	/* release mr holds */
2125 	while (j) {
2126 		struct rvt_sge *sge = &wqe->sg_list[--j];
2127 
2128 		rvt_put_mr(sge->mr);
2129 	}
2130 	return ret;
2131 }
2132 
2133 /**
2134  * rvt_post_send - post a send on a QP
2135  * @ibqp: the QP to post the send on
2136  * @wr: the list of work requests to post
2137  * @bad_wr: the first bad WR is put here
2138  *
2139  * This may be called from interrupt context.
2140  *
2141  * Return: 0 on success else errno
2142  */
rvt_post_send(struct ib_qp * ibqp,const struct ib_send_wr * wr,const struct ib_send_wr ** bad_wr)2143 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2144 		  const struct ib_send_wr **bad_wr)
2145 {
2146 	struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2147 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2148 	unsigned long flags = 0;
2149 	bool call_send;
2150 	unsigned nreq = 0;
2151 	int err = 0;
2152 
2153 	spin_lock_irqsave(&qp->s_hlock, flags);
2154 
2155 	/*
2156 	 * Ensure QP state is such that we can send. If not bail out early,
2157 	 * there is no need to do this every time we post a send.
2158 	 */
2159 	if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2160 		spin_unlock_irqrestore(&qp->s_hlock, flags);
2161 		return -EINVAL;
2162 	}
2163 
2164 	/*
2165 	 * If the send queue is empty, and we only have a single WR then just go
2166 	 * ahead and kick the send engine into gear. Otherwise we will always
2167 	 * just schedule the send to happen later.
2168 	 */
2169 	call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2170 
2171 	for (; wr; wr = wr->next) {
2172 		err = rvt_post_one_wr(qp, wr, &call_send);
2173 		if (unlikely(err)) {
2174 			*bad_wr = wr;
2175 			goto bail;
2176 		}
2177 		nreq++;
2178 	}
2179 bail:
2180 	spin_unlock_irqrestore(&qp->s_hlock, flags);
2181 	if (nreq) {
2182 		/*
2183 		 * Only call do_send if there is exactly one packet, and the
2184 		 * driver said it was ok.
2185 		 */
2186 		if (nreq == 1 && call_send)
2187 			rdi->driver_f.do_send(qp);
2188 		else
2189 			rdi->driver_f.schedule_send_no_lock(qp);
2190 	}
2191 	return err;
2192 }
2193 
2194 /**
2195  * rvt_post_srq_recv - post a receive on a shared receive queue
2196  * @ibsrq: the SRQ to post the receive on
2197  * @wr: the list of work requests to post
2198  * @bad_wr: A pointer to the first WR to cause a problem is put here
2199  *
2200  * This may be called from interrupt context.
2201  *
2202  * Return: 0 on success else errno
2203  */
rvt_post_srq_recv(struct ib_srq * ibsrq,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)2204 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2205 		      const struct ib_recv_wr **bad_wr)
2206 {
2207 	struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2208 	struct rvt_krwq *wq;
2209 	unsigned long flags;
2210 
2211 	for (; wr; wr = wr->next) {
2212 		struct rvt_rwqe *wqe;
2213 		u32 next;
2214 		int i;
2215 
2216 		if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2217 			*bad_wr = wr;
2218 			return -EINVAL;
2219 		}
2220 
2221 		spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2222 		wq = srq->rq.kwq;
2223 		next = wq->head + 1;
2224 		if (next >= srq->rq.size)
2225 			next = 0;
2226 		if (next == READ_ONCE(wq->tail)) {
2227 			spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2228 			*bad_wr = wr;
2229 			return -ENOMEM;
2230 		}
2231 
2232 		wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2233 		wqe->wr_id = wr->wr_id;
2234 		wqe->num_sge = wr->num_sge;
2235 		for (i = 0; i < wr->num_sge; i++) {
2236 			wqe->sg_list[i].addr = wr->sg_list[i].addr;
2237 			wqe->sg_list[i].length = wr->sg_list[i].length;
2238 			wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2239 		}
2240 		/* Make sure queue entry is written before the head index. */
2241 		smp_store_release(&wq->head, next);
2242 		spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2243 	}
2244 	return 0;
2245 }
2246 
2247 /*
2248  * rvt used the internal kernel struct as part of its ABI, for now make sure
2249  * the kernel struct does not change layout. FIXME: rvt should never cast the
2250  * user struct to a kernel struct.
2251  */
rvt_cast_sge(struct rvt_wqe_sge * sge)2252 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2253 {
2254 	BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2255 		     offsetof(struct rvt_wqe_sge, addr));
2256 	BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2257 		     offsetof(struct rvt_wqe_sge, length));
2258 	BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2259 		     offsetof(struct rvt_wqe_sge, lkey));
2260 	return (struct ib_sge *)sge;
2261 }
2262 
2263 /*
2264  * Validate a RWQE and fill in the SGE state.
2265  * Return 1 if OK.
2266  */
init_sge(struct rvt_qp * qp,struct rvt_rwqe * wqe)2267 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2268 {
2269 	int i, j, ret;
2270 	struct ib_wc wc;
2271 	struct rvt_lkey_table *rkt;
2272 	struct rvt_pd *pd;
2273 	struct rvt_sge_state *ss;
2274 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2275 
2276 	rkt = &rdi->lkey_table;
2277 	pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2278 	ss = &qp->r_sge;
2279 	ss->sg_list = qp->r_sg_list;
2280 	qp->r_len = 0;
2281 	for (i = j = 0; i < wqe->num_sge; i++) {
2282 		if (wqe->sg_list[i].length == 0)
2283 			continue;
2284 		/* Check LKEY */
2285 		ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2286 				  NULL, rvt_cast_sge(&wqe->sg_list[i]),
2287 				  IB_ACCESS_LOCAL_WRITE);
2288 		if (unlikely(ret <= 0))
2289 			goto bad_lkey;
2290 		qp->r_len += wqe->sg_list[i].length;
2291 		j++;
2292 	}
2293 	ss->num_sge = j;
2294 	ss->total_len = qp->r_len;
2295 	return 1;
2296 
2297 bad_lkey:
2298 	while (j) {
2299 		struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2300 
2301 		rvt_put_mr(sge->mr);
2302 	}
2303 	ss->num_sge = 0;
2304 	memset(&wc, 0, sizeof(wc));
2305 	wc.wr_id = wqe->wr_id;
2306 	wc.status = IB_WC_LOC_PROT_ERR;
2307 	wc.opcode = IB_WC_RECV;
2308 	wc.qp = &qp->ibqp;
2309 	/* Signal solicited completion event. */
2310 	rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2311 	return 0;
2312 }
2313 
2314 /**
2315  * get_rvt_head - get head indices of the circular buffer
2316  * @rq: data structure for request queue entry
2317  * @ip: the QP
2318  *
2319  * Return - head index value
2320  */
get_rvt_head(struct rvt_rq * rq,void * ip)2321 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2322 {
2323 	u32 head;
2324 
2325 	if (ip)
2326 		head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2327 	else
2328 		head = rq->kwq->head;
2329 
2330 	return head;
2331 }
2332 
2333 /**
2334  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2335  * @qp: the QP
2336  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2337  *
2338  * Return -1 if there is a local error, 0 if no RWQE is available,
2339  * otherwise return 1.
2340  *
2341  * Can be called from interrupt level.
2342  */
rvt_get_rwqe(struct rvt_qp * qp,bool wr_id_only)2343 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2344 {
2345 	unsigned long flags;
2346 	struct rvt_rq *rq;
2347 	struct rvt_krwq *kwq = NULL;
2348 	struct rvt_rwq *wq;
2349 	struct rvt_srq *srq;
2350 	struct rvt_rwqe *wqe;
2351 	void (*handler)(struct ib_event *, void *);
2352 	u32 tail;
2353 	u32 head;
2354 	int ret;
2355 	void *ip = NULL;
2356 
2357 	if (qp->ibqp.srq) {
2358 		srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2359 		handler = srq->ibsrq.event_handler;
2360 		rq = &srq->rq;
2361 		ip = srq->ip;
2362 	} else {
2363 		srq = NULL;
2364 		handler = NULL;
2365 		rq = &qp->r_rq;
2366 		ip = qp->ip;
2367 	}
2368 
2369 	spin_lock_irqsave(&rq->kwq->c_lock, flags);
2370 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2371 		ret = 0;
2372 		goto unlock;
2373 	}
2374 	kwq = rq->kwq;
2375 	if (ip) {
2376 		wq = rq->wq;
2377 		tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2378 	} else {
2379 		tail = kwq->tail;
2380 	}
2381 
2382 	/* Validate tail before using it since it is user writable. */
2383 	if (tail >= rq->size)
2384 		tail = 0;
2385 
2386 	if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2387 		head = get_rvt_head(rq, ip);
2388 		kwq->count = rvt_get_rq_count(rq, head, tail);
2389 	}
2390 	if (unlikely(kwq->count == 0)) {
2391 		ret = 0;
2392 		goto unlock;
2393 	}
2394 	/* Make sure entry is read after the count is read. */
2395 	smp_rmb();
2396 	wqe = rvt_get_rwqe_ptr(rq, tail);
2397 	/*
2398 	 * Even though we update the tail index in memory, the verbs
2399 	 * consumer is not supposed to post more entries until a
2400 	 * completion is generated.
2401 	 */
2402 	if (++tail >= rq->size)
2403 		tail = 0;
2404 	if (ip)
2405 		RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2406 	else
2407 		kwq->tail = tail;
2408 	if (!wr_id_only && !init_sge(qp, wqe)) {
2409 		ret = -1;
2410 		goto unlock;
2411 	}
2412 	qp->r_wr_id = wqe->wr_id;
2413 
2414 	kwq->count--;
2415 	ret = 1;
2416 	set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2417 	if (handler) {
2418 		/*
2419 		 * Validate head pointer value and compute
2420 		 * the number of remaining WQEs.
2421 		 */
2422 		if (kwq->count < srq->limit) {
2423 			kwq->count =
2424 				rvt_get_rq_count(rq,
2425 						 get_rvt_head(rq, ip), tail);
2426 			if (kwq->count < srq->limit) {
2427 				struct ib_event ev;
2428 
2429 				srq->limit = 0;
2430 				spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2431 				ev.device = qp->ibqp.device;
2432 				ev.element.srq = qp->ibqp.srq;
2433 				ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2434 				handler(&ev, srq->ibsrq.srq_context);
2435 				goto bail;
2436 			}
2437 		}
2438 	}
2439 unlock:
2440 	spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2441 bail:
2442 	return ret;
2443 }
2444 EXPORT_SYMBOL(rvt_get_rwqe);
2445 
2446 /**
2447  * rvt_comm_est - handle trap with QP established
2448  * @qp: the QP
2449  */
rvt_comm_est(struct rvt_qp * qp)2450 void rvt_comm_est(struct rvt_qp *qp)
2451 {
2452 	qp->r_flags |= RVT_R_COMM_EST;
2453 	if (qp->ibqp.event_handler) {
2454 		struct ib_event ev;
2455 
2456 		ev.device = qp->ibqp.device;
2457 		ev.element.qp = &qp->ibqp;
2458 		ev.event = IB_EVENT_COMM_EST;
2459 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2460 	}
2461 }
2462 EXPORT_SYMBOL(rvt_comm_est);
2463 
rvt_rc_error(struct rvt_qp * qp,enum ib_wc_status err)2464 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2465 {
2466 	unsigned long flags;
2467 	int lastwqe;
2468 
2469 	spin_lock_irqsave(&qp->s_lock, flags);
2470 	lastwqe = rvt_error_qp(qp, err);
2471 	spin_unlock_irqrestore(&qp->s_lock, flags);
2472 
2473 	if (lastwqe) {
2474 		struct ib_event ev;
2475 
2476 		ev.device = qp->ibqp.device;
2477 		ev.element.qp = &qp->ibqp;
2478 		ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2479 		qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2480 	}
2481 }
2482 EXPORT_SYMBOL(rvt_rc_error);
2483 
2484 /*
2485  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2486  *  @index - the index
2487  *  return usec from an index into ib_rvt_rnr_table
2488  */
rvt_rnr_tbl_to_usec(u32 index)2489 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2490 {
2491 	return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2492 }
2493 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2494 
rvt_aeth_to_usec(u32 aeth)2495 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2496 {
2497 	return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2498 				  IB_AETH_CREDIT_MASK];
2499 }
2500 
2501 /*
2502  *  rvt_add_retry_timer_ext - add/start a retry timer
2503  *  @qp - the QP
2504  *  @shift - timeout shift to wait for multiple packets
2505  *  add a retry timer on the QP
2506  */
rvt_add_retry_timer_ext(struct rvt_qp * qp,u8 shift)2507 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2508 {
2509 	struct ib_qp *ibqp = &qp->ibqp;
2510 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2511 
2512 	lockdep_assert_held(&qp->s_lock);
2513 	qp->s_flags |= RVT_S_TIMER;
2514        /* 4.096 usec. * (1 << qp->timeout) */
2515 	qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2516 			      (qp->timeout_jiffies << shift);
2517 	add_timer(&qp->s_timer);
2518 }
2519 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2520 
2521 /**
2522  * rvt_add_rnr_timer - add/start an rnr timer on the QP
2523  * @qp: the QP
2524  * @aeth: aeth of RNR timeout, simulated aeth for loopback
2525  */
rvt_add_rnr_timer(struct rvt_qp * qp,u32 aeth)2526 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2527 {
2528 	u32 to;
2529 
2530 	lockdep_assert_held(&qp->s_lock);
2531 	qp->s_flags |= RVT_S_WAIT_RNR;
2532 	to = rvt_aeth_to_usec(aeth);
2533 	trace_rvt_rnrnak_add(qp, to);
2534 	hrtimer_start(&qp->s_rnr_timer,
2535 		      ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2536 }
2537 EXPORT_SYMBOL(rvt_add_rnr_timer);
2538 
2539 /**
2540  * rvt_stop_rc_timers - stop all timers
2541  * @qp: the QP
2542  * stop any pending timers
2543  */
rvt_stop_rc_timers(struct rvt_qp * qp)2544 void rvt_stop_rc_timers(struct rvt_qp *qp)
2545 {
2546 	lockdep_assert_held(&qp->s_lock);
2547 	/* Remove QP from all timers */
2548 	if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2549 		qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2550 		del_timer(&qp->s_timer);
2551 		hrtimer_try_to_cancel(&qp->s_rnr_timer);
2552 	}
2553 }
2554 EXPORT_SYMBOL(rvt_stop_rc_timers);
2555 
2556 /**
2557  * rvt_stop_rnr_timer - stop an rnr timer
2558  * @qp: the QP
2559  *
2560  * stop an rnr timer and return if the timer
2561  * had been pending.
2562  */
rvt_stop_rnr_timer(struct rvt_qp * qp)2563 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2564 {
2565 	lockdep_assert_held(&qp->s_lock);
2566 	/* Remove QP from rnr timer */
2567 	if (qp->s_flags & RVT_S_WAIT_RNR) {
2568 		qp->s_flags &= ~RVT_S_WAIT_RNR;
2569 		trace_rvt_rnrnak_stop(qp, 0);
2570 	}
2571 }
2572 
2573 /**
2574  * rvt_del_timers_sync - wait for any timeout routines to exit
2575  * @qp: the QP
2576  */
rvt_del_timers_sync(struct rvt_qp * qp)2577 void rvt_del_timers_sync(struct rvt_qp *qp)
2578 {
2579 	del_timer_sync(&qp->s_timer);
2580 	hrtimer_cancel(&qp->s_rnr_timer);
2581 }
2582 EXPORT_SYMBOL(rvt_del_timers_sync);
2583 
2584 /*
2585  * This is called from s_timer for missing responses.
2586  */
rvt_rc_timeout(struct timer_list * t)2587 static void rvt_rc_timeout(struct timer_list *t)
2588 {
2589 	struct rvt_qp *qp = from_timer(qp, t, s_timer);
2590 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2591 	unsigned long flags;
2592 
2593 	spin_lock_irqsave(&qp->r_lock, flags);
2594 	spin_lock(&qp->s_lock);
2595 	if (qp->s_flags & RVT_S_TIMER) {
2596 		struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2597 
2598 		qp->s_flags &= ~RVT_S_TIMER;
2599 		rvp->n_rc_timeouts++;
2600 		del_timer(&qp->s_timer);
2601 		trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2602 		if (rdi->driver_f.notify_restart_rc)
2603 			rdi->driver_f.notify_restart_rc(qp,
2604 							qp->s_last_psn + 1,
2605 							1);
2606 		rdi->driver_f.schedule_send(qp);
2607 	}
2608 	spin_unlock(&qp->s_lock);
2609 	spin_unlock_irqrestore(&qp->r_lock, flags);
2610 }
2611 
2612 /*
2613  * This is called from s_timer for RNR timeouts.
2614  */
rvt_rc_rnr_retry(struct hrtimer * t)2615 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2616 {
2617 	struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2618 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2619 	unsigned long flags;
2620 
2621 	spin_lock_irqsave(&qp->s_lock, flags);
2622 	rvt_stop_rnr_timer(qp);
2623 	trace_rvt_rnrnak_timeout(qp, 0);
2624 	rdi->driver_f.schedule_send(qp);
2625 	spin_unlock_irqrestore(&qp->s_lock, flags);
2626 	return HRTIMER_NORESTART;
2627 }
2628 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2629 
2630 /**
2631  * rvt_qp_iter_init - initial for QP iteration
2632  * @rdi: rvt devinfo
2633  * @v: u64 value
2634  * @cb: user-defined callback
2635  *
2636  * This returns an iterator suitable for iterating QPs
2637  * in the system.
2638  *
2639  * The @cb is a user-defined callback and @v is a 64-bit
2640  * value passed to and relevant for processing in the
2641  * @cb.  An example use case would be to alter QP processing
2642  * based on criteria not part of the rvt_qp.
2643  *
2644  * Use cases that require memory allocation to succeed
2645  * must preallocate appropriately.
2646  *
2647  * Return: a pointer to an rvt_qp_iter or NULL
2648  */
rvt_qp_iter_init(struct rvt_dev_info * rdi,u64 v,void (* cb)(struct rvt_qp * qp,u64 v))2649 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2650 				     u64 v,
2651 				     void (*cb)(struct rvt_qp *qp, u64 v))
2652 {
2653 	struct rvt_qp_iter *i;
2654 
2655 	i = kzalloc(sizeof(*i), GFP_KERNEL);
2656 	if (!i)
2657 		return NULL;
2658 
2659 	i->rdi = rdi;
2660 	/* number of special QPs (SMI/GSI) for device */
2661 	i->specials = rdi->ibdev.phys_port_cnt * 2;
2662 	i->v = v;
2663 	i->cb = cb;
2664 
2665 	return i;
2666 }
2667 EXPORT_SYMBOL(rvt_qp_iter_init);
2668 
2669 /**
2670  * rvt_qp_iter_next - return the next QP in iter
2671  * @iter: the iterator
2672  *
2673  * Fine grained QP iterator suitable for use
2674  * with debugfs seq_file mechanisms.
2675  *
2676  * Updates iter->qp with the current QP when the return
2677  * value is 0.
2678  *
2679  * Return: 0 - iter->qp is valid 1 - no more QPs
2680  */
rvt_qp_iter_next(struct rvt_qp_iter * iter)2681 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2682 	__must_hold(RCU)
2683 {
2684 	int n = iter->n;
2685 	int ret = 1;
2686 	struct rvt_qp *pqp = iter->qp;
2687 	struct rvt_qp *qp;
2688 	struct rvt_dev_info *rdi = iter->rdi;
2689 
2690 	/*
2691 	 * The approach is to consider the special qps
2692 	 * as additional table entries before the
2693 	 * real hash table.  Since the qp code sets
2694 	 * the qp->next hash link to NULL, this works just fine.
2695 	 *
2696 	 * iter->specials is 2 * # ports
2697 	 *
2698 	 * n = 0..iter->specials is the special qp indices
2699 	 *
2700 	 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2701 	 * the potential hash bucket entries
2702 	 *
2703 	 */
2704 	for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2705 		if (pqp) {
2706 			qp = rcu_dereference(pqp->next);
2707 		} else {
2708 			if (n < iter->specials) {
2709 				struct rvt_ibport *rvp;
2710 				int pidx;
2711 
2712 				pidx = n % rdi->ibdev.phys_port_cnt;
2713 				rvp = rdi->ports[pidx];
2714 				qp = rcu_dereference(rvp->qp[n & 1]);
2715 			} else {
2716 				qp = rcu_dereference(
2717 					rdi->qp_dev->qp_table[
2718 						(n - iter->specials)]);
2719 			}
2720 		}
2721 		pqp = qp;
2722 		if (qp) {
2723 			iter->qp = qp;
2724 			iter->n = n;
2725 			return 0;
2726 		}
2727 	}
2728 	return ret;
2729 }
2730 EXPORT_SYMBOL(rvt_qp_iter_next);
2731 
2732 /**
2733  * rvt_qp_iter - iterate all QPs
2734  * @rdi: rvt devinfo
2735  * @v: a 64-bit value
2736  * @cb: a callback
2737  *
2738  * This provides a way for iterating all QPs.
2739  *
2740  * The @cb is a user-defined callback and @v is a 64-bit
2741  * value passed to and relevant for processing in the
2742  * cb.  An example use case would be to alter QP processing
2743  * based on criteria not part of the rvt_qp.
2744  *
2745  * The code has an internal iterator to simplify
2746  * non seq_file use cases.
2747  */
rvt_qp_iter(struct rvt_dev_info * rdi,u64 v,void (* cb)(struct rvt_qp * qp,u64 v))2748 void rvt_qp_iter(struct rvt_dev_info *rdi,
2749 		 u64 v,
2750 		 void (*cb)(struct rvt_qp *qp, u64 v))
2751 {
2752 	int ret;
2753 	struct rvt_qp_iter i = {
2754 		.rdi = rdi,
2755 		.specials = rdi->ibdev.phys_port_cnt * 2,
2756 		.v = v,
2757 		.cb = cb
2758 	};
2759 
2760 	rcu_read_lock();
2761 	do {
2762 		ret = rvt_qp_iter_next(&i);
2763 		if (!ret) {
2764 			rvt_get_qp(i.qp);
2765 			rcu_read_unlock();
2766 			i.cb(i.qp, i.v);
2767 			rcu_read_lock();
2768 			rvt_put_qp(i.qp);
2769 		}
2770 	} while (!ret);
2771 	rcu_read_unlock();
2772 }
2773 EXPORT_SYMBOL(rvt_qp_iter);
2774 
2775 /*
2776  * This should be called with s_lock and r_lock held.
2777  */
rvt_send_complete(struct rvt_qp * qp,struct rvt_swqe * wqe,enum ib_wc_status status)2778 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2779 		       enum ib_wc_status status)
2780 {
2781 	u32 old_last, last;
2782 	struct rvt_dev_info *rdi;
2783 
2784 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2785 		return;
2786 	rdi = ib_to_rvt(qp->ibqp.device);
2787 
2788 	old_last = qp->s_last;
2789 	trace_rvt_qp_send_completion(qp, wqe, old_last);
2790 	last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2791 				    status);
2792 	if (qp->s_acked == old_last)
2793 		qp->s_acked = last;
2794 	if (qp->s_cur == old_last)
2795 		qp->s_cur = last;
2796 	if (qp->s_tail == old_last)
2797 		qp->s_tail = last;
2798 	if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2799 		qp->s_draining = 0;
2800 }
2801 EXPORT_SYMBOL(rvt_send_complete);
2802 
2803 /**
2804  * rvt_copy_sge - copy data to SGE memory
2805  * @qp: associated QP
2806  * @ss: the SGE state
2807  * @data: the data to copy
2808  * @length: the length of the data
2809  * @release: boolean to release MR
2810  * @copy_last: do a separate copy of the last 8 bytes
2811  */
rvt_copy_sge(struct rvt_qp * qp,struct rvt_sge_state * ss,void * data,u32 length,bool release,bool copy_last)2812 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2813 		  void *data, u32 length,
2814 		  bool release, bool copy_last)
2815 {
2816 	struct rvt_sge *sge = &ss->sge;
2817 	int i;
2818 	bool in_last = false;
2819 	bool cacheless_copy = false;
2820 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2821 	struct rvt_wss *wss = rdi->wss;
2822 	unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2823 
2824 	if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2825 		cacheless_copy = length >= PAGE_SIZE;
2826 	} else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2827 		if (length >= PAGE_SIZE) {
2828 			/*
2829 			 * NOTE: this *assumes*:
2830 			 * o The first vaddr is the dest.
2831 			 * o If multiple pages, then vaddr is sequential.
2832 			 */
2833 			wss_insert(wss, sge->vaddr);
2834 			if (length >= (2 * PAGE_SIZE))
2835 				wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2836 
2837 			cacheless_copy = wss_exceeds_threshold(wss);
2838 		} else {
2839 			wss_advance_clean_counter(wss);
2840 		}
2841 	}
2842 
2843 	if (copy_last) {
2844 		if (length > 8) {
2845 			length -= 8;
2846 		} else {
2847 			copy_last = false;
2848 			in_last = true;
2849 		}
2850 	}
2851 
2852 again:
2853 	while (length) {
2854 		u32 len = rvt_get_sge_length(sge, length);
2855 
2856 		WARN_ON_ONCE(len == 0);
2857 		if (unlikely(in_last)) {
2858 			/* enforce byte transfer ordering */
2859 			for (i = 0; i < len; i++)
2860 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2861 		} else if (cacheless_copy) {
2862 			cacheless_memcpy(sge->vaddr, data, len);
2863 		} else {
2864 			memcpy(sge->vaddr, data, len);
2865 		}
2866 		rvt_update_sge(ss, len, release);
2867 		data += len;
2868 		length -= len;
2869 	}
2870 
2871 	if (copy_last) {
2872 		copy_last = false;
2873 		in_last = true;
2874 		length = 8;
2875 		goto again;
2876 	}
2877 }
2878 EXPORT_SYMBOL(rvt_copy_sge);
2879 
loopback_qp_drop(struct rvt_ibport * rvp,struct rvt_qp * sqp)2880 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2881 					  struct rvt_qp *sqp)
2882 {
2883 	rvp->n_pkt_drops++;
2884 	/*
2885 	 * For RC, the requester would timeout and retry so
2886 	 * shortcut the timeouts and just signal too many retries.
2887 	 */
2888 	return sqp->ibqp.qp_type == IB_QPT_RC ?
2889 		IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2890 }
2891 
2892 /**
2893  * rvt_ruc_loopback - handle UC and RC loopback requests
2894  * @sqp: the sending QP
2895  *
2896  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2897  * Note that although we are single threaded due to the send engine, we still
2898  * have to protect against post_send().  We don't have to worry about
2899  * receive interrupts since this is a connected protocol and all packets
2900  * will pass through here.
2901  */
rvt_ruc_loopback(struct rvt_qp * sqp)2902 void rvt_ruc_loopback(struct rvt_qp *sqp)
2903 {
2904 	struct rvt_ibport *rvp =  NULL;
2905 	struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2906 	struct rvt_qp *qp;
2907 	struct rvt_swqe *wqe;
2908 	struct rvt_sge *sge;
2909 	unsigned long flags;
2910 	struct ib_wc wc;
2911 	u64 sdata;
2912 	atomic64_t *maddr;
2913 	enum ib_wc_status send_status;
2914 	bool release;
2915 	int ret;
2916 	bool copy_last = false;
2917 	int local_ops = 0;
2918 
2919 	rcu_read_lock();
2920 	rvp = rdi->ports[sqp->port_num - 1];
2921 
2922 	/*
2923 	 * Note that we check the responder QP state after
2924 	 * checking the requester's state.
2925 	 */
2926 
2927 	qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2928 			    sqp->remote_qpn);
2929 
2930 	spin_lock_irqsave(&sqp->s_lock, flags);
2931 
2932 	/* Return if we are already busy processing a work request. */
2933 	if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2934 	    !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2935 		goto unlock;
2936 
2937 	sqp->s_flags |= RVT_S_BUSY;
2938 
2939 again:
2940 	if (sqp->s_last == READ_ONCE(sqp->s_head))
2941 		goto clr_busy;
2942 	wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2943 
2944 	/* Return if it is not OK to start a new work request. */
2945 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2946 		if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2947 			goto clr_busy;
2948 		/* We are in the error state, flush the work request. */
2949 		send_status = IB_WC_WR_FLUSH_ERR;
2950 		goto flush_send;
2951 	}
2952 
2953 	/*
2954 	 * We can rely on the entry not changing without the s_lock
2955 	 * being held until we update s_last.
2956 	 * We increment s_cur to indicate s_last is in progress.
2957 	 */
2958 	if (sqp->s_last == sqp->s_cur) {
2959 		if (++sqp->s_cur >= sqp->s_size)
2960 			sqp->s_cur = 0;
2961 	}
2962 	spin_unlock_irqrestore(&sqp->s_lock, flags);
2963 
2964 	if (!qp) {
2965 		send_status = loopback_qp_drop(rvp, sqp);
2966 		goto serr_no_r_lock;
2967 	}
2968 	spin_lock_irqsave(&qp->r_lock, flags);
2969 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2970 	    qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2971 		send_status = loopback_qp_drop(rvp, sqp);
2972 		goto serr;
2973 	}
2974 
2975 	memset(&wc, 0, sizeof(wc));
2976 	send_status = IB_WC_SUCCESS;
2977 
2978 	release = true;
2979 	sqp->s_sge.sge = wqe->sg_list[0];
2980 	sqp->s_sge.sg_list = wqe->sg_list + 1;
2981 	sqp->s_sge.num_sge = wqe->wr.num_sge;
2982 	sqp->s_len = wqe->length;
2983 	switch (wqe->wr.opcode) {
2984 	case IB_WR_REG_MR:
2985 		goto send_comp;
2986 
2987 	case IB_WR_LOCAL_INV:
2988 		if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2989 			if (rvt_invalidate_rkey(sqp,
2990 						wqe->wr.ex.invalidate_rkey))
2991 				send_status = IB_WC_LOC_PROT_ERR;
2992 			local_ops = 1;
2993 		}
2994 		goto send_comp;
2995 
2996 	case IB_WR_SEND_WITH_INV:
2997 	case IB_WR_SEND_WITH_IMM:
2998 	case IB_WR_SEND:
2999 		ret = rvt_get_rwqe(qp, false);
3000 		if (ret < 0)
3001 			goto op_err;
3002 		if (!ret)
3003 			goto rnr_nak;
3004 		if (wqe->length > qp->r_len)
3005 			goto inv_err;
3006 		switch (wqe->wr.opcode) {
3007 		case IB_WR_SEND_WITH_INV:
3008 			if (!rvt_invalidate_rkey(qp,
3009 						 wqe->wr.ex.invalidate_rkey)) {
3010 				wc.wc_flags = IB_WC_WITH_INVALIDATE;
3011 				wc.ex.invalidate_rkey =
3012 					wqe->wr.ex.invalidate_rkey;
3013 			}
3014 			break;
3015 		case IB_WR_SEND_WITH_IMM:
3016 			wc.wc_flags = IB_WC_WITH_IMM;
3017 			wc.ex.imm_data = wqe->wr.ex.imm_data;
3018 			break;
3019 		default:
3020 			break;
3021 		}
3022 		break;
3023 
3024 	case IB_WR_RDMA_WRITE_WITH_IMM:
3025 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3026 			goto inv_err;
3027 		wc.wc_flags = IB_WC_WITH_IMM;
3028 		wc.ex.imm_data = wqe->wr.ex.imm_data;
3029 		ret = rvt_get_rwqe(qp, true);
3030 		if (ret < 0)
3031 			goto op_err;
3032 		if (!ret)
3033 			goto rnr_nak;
3034 		/* skip copy_last set and qp_access_flags recheck */
3035 		goto do_write;
3036 	case IB_WR_RDMA_WRITE:
3037 		copy_last = rvt_is_user_qp(qp);
3038 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3039 			goto inv_err;
3040 do_write:
3041 		if (wqe->length == 0)
3042 			break;
3043 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3044 					  wqe->rdma_wr.remote_addr,
3045 					  wqe->rdma_wr.rkey,
3046 					  IB_ACCESS_REMOTE_WRITE)))
3047 			goto acc_err;
3048 		qp->r_sge.sg_list = NULL;
3049 		qp->r_sge.num_sge = 1;
3050 		qp->r_sge.total_len = wqe->length;
3051 		break;
3052 
3053 	case IB_WR_RDMA_READ:
3054 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3055 			goto inv_err;
3056 		if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3057 					  wqe->rdma_wr.remote_addr,
3058 					  wqe->rdma_wr.rkey,
3059 					  IB_ACCESS_REMOTE_READ)))
3060 			goto acc_err;
3061 		release = false;
3062 		sqp->s_sge.sg_list = NULL;
3063 		sqp->s_sge.num_sge = 1;
3064 		qp->r_sge.sge = wqe->sg_list[0];
3065 		qp->r_sge.sg_list = wqe->sg_list + 1;
3066 		qp->r_sge.num_sge = wqe->wr.num_sge;
3067 		qp->r_sge.total_len = wqe->length;
3068 		break;
3069 
3070 	case IB_WR_ATOMIC_CMP_AND_SWP:
3071 	case IB_WR_ATOMIC_FETCH_AND_ADD:
3072 		if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3073 			goto inv_err;
3074 		if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1)))
3075 			goto inv_err;
3076 		if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3077 					  wqe->atomic_wr.remote_addr,
3078 					  wqe->atomic_wr.rkey,
3079 					  IB_ACCESS_REMOTE_ATOMIC)))
3080 			goto acc_err;
3081 		/* Perform atomic OP and save result. */
3082 		maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3083 		sdata = wqe->atomic_wr.compare_add;
3084 		*(u64 *)sqp->s_sge.sge.vaddr =
3085 			(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3086 			(u64)atomic64_add_return(sdata, maddr) - sdata :
3087 			(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3088 				      sdata, wqe->atomic_wr.swap);
3089 		rvt_put_mr(qp->r_sge.sge.mr);
3090 		qp->r_sge.num_sge = 0;
3091 		goto send_comp;
3092 
3093 	default:
3094 		send_status = IB_WC_LOC_QP_OP_ERR;
3095 		goto serr;
3096 	}
3097 
3098 	sge = &sqp->s_sge.sge;
3099 	while (sqp->s_len) {
3100 		u32 len = rvt_get_sge_length(sge, sqp->s_len);
3101 
3102 		WARN_ON_ONCE(len == 0);
3103 		rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3104 			     len, release, copy_last);
3105 		rvt_update_sge(&sqp->s_sge, len, !release);
3106 		sqp->s_len -= len;
3107 	}
3108 	if (release)
3109 		rvt_put_ss(&qp->r_sge);
3110 
3111 	if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3112 		goto send_comp;
3113 
3114 	if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3115 		wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3116 	else
3117 		wc.opcode = IB_WC_RECV;
3118 	wc.wr_id = qp->r_wr_id;
3119 	wc.status = IB_WC_SUCCESS;
3120 	wc.byte_len = wqe->length;
3121 	wc.qp = &qp->ibqp;
3122 	wc.src_qp = qp->remote_qpn;
3123 	wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3124 	wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3125 	wc.port_num = 1;
3126 	/* Signal completion event if the solicited bit is set. */
3127 	rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3128 
3129 send_comp:
3130 	spin_unlock_irqrestore(&qp->r_lock, flags);
3131 	spin_lock_irqsave(&sqp->s_lock, flags);
3132 	rvp->n_loop_pkts++;
3133 flush_send:
3134 	sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3135 	spin_lock(&sqp->r_lock);
3136 	rvt_send_complete(sqp, wqe, send_status);
3137 	spin_unlock(&sqp->r_lock);
3138 	if (local_ops) {
3139 		atomic_dec(&sqp->local_ops_pending);
3140 		local_ops = 0;
3141 	}
3142 	goto again;
3143 
3144 rnr_nak:
3145 	/* Handle RNR NAK */
3146 	if (qp->ibqp.qp_type == IB_QPT_UC)
3147 		goto send_comp;
3148 	rvp->n_rnr_naks++;
3149 	/*
3150 	 * Note: we don't need the s_lock held since the BUSY flag
3151 	 * makes this single threaded.
3152 	 */
3153 	if (sqp->s_rnr_retry == 0) {
3154 		send_status = IB_WC_RNR_RETRY_EXC_ERR;
3155 		goto serr;
3156 	}
3157 	if (sqp->s_rnr_retry_cnt < 7)
3158 		sqp->s_rnr_retry--;
3159 	spin_unlock_irqrestore(&qp->r_lock, flags);
3160 	spin_lock_irqsave(&sqp->s_lock, flags);
3161 	if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3162 		goto clr_busy;
3163 	rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3164 				IB_AETH_CREDIT_SHIFT);
3165 	goto clr_busy;
3166 
3167 op_err:
3168 	send_status = IB_WC_REM_OP_ERR;
3169 	wc.status = IB_WC_LOC_QP_OP_ERR;
3170 	goto err;
3171 
3172 inv_err:
3173 	send_status =
3174 		sqp->ibqp.qp_type == IB_QPT_RC ?
3175 			IB_WC_REM_INV_REQ_ERR :
3176 			IB_WC_SUCCESS;
3177 	wc.status = IB_WC_LOC_QP_OP_ERR;
3178 	goto err;
3179 
3180 acc_err:
3181 	send_status = IB_WC_REM_ACCESS_ERR;
3182 	wc.status = IB_WC_LOC_PROT_ERR;
3183 err:
3184 	/* responder goes to error state */
3185 	rvt_rc_error(qp, wc.status);
3186 
3187 serr:
3188 	spin_unlock_irqrestore(&qp->r_lock, flags);
3189 serr_no_r_lock:
3190 	spin_lock_irqsave(&sqp->s_lock, flags);
3191 	spin_lock(&sqp->r_lock);
3192 	rvt_send_complete(sqp, wqe, send_status);
3193 	spin_unlock(&sqp->r_lock);
3194 	if (sqp->ibqp.qp_type == IB_QPT_RC) {
3195 		int lastwqe;
3196 
3197 		spin_lock(&sqp->r_lock);
3198 		lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3199 		spin_unlock(&sqp->r_lock);
3200 
3201 		sqp->s_flags &= ~RVT_S_BUSY;
3202 		spin_unlock_irqrestore(&sqp->s_lock, flags);
3203 		if (lastwqe) {
3204 			struct ib_event ev;
3205 
3206 			ev.device = sqp->ibqp.device;
3207 			ev.element.qp = &sqp->ibqp;
3208 			ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3209 			sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3210 		}
3211 		goto done;
3212 	}
3213 clr_busy:
3214 	sqp->s_flags &= ~RVT_S_BUSY;
3215 unlock:
3216 	spin_unlock_irqrestore(&sqp->s_lock, flags);
3217 done:
3218 	rcu_read_unlock();
3219 }
3220 EXPORT_SYMBOL(rvt_ruc_loopback);
3221