xref: /freebsd/sys/dev/pci/pci.c (revision 680d34896c3672da439a1bc3ca5711339e6e5f01)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
5  * Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
6  * Copyright (c) 2000, BSDi
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice unmodified, this list of conditions, and the following
14  *    disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 #include "opt_acpi.h"
33 #include "opt_iommu.h"
34 #include "opt_bus.h"
35 
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/endian.h>
39 #include <sys/eventhandler.h>
40 #include <sys/fcntl.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/linker.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 #include <sys/taskqueue.h>
51 #include <sys/tree.h>
52 
53 #include <vm/vm.h>
54 #include <vm/pmap.h>
55 #include <vm/vm_extern.h>
56 
57 #include <sys/bus.h>
58 #include <machine/bus.h>
59 #include <sys/rman.h>
60 #include <machine/resource.h>
61 #include <machine/stdarg.h>
62 
63 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
64 #include <machine/intr_machdep.h>
65 #endif
66 
67 #include <sys/pciio.h>
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pci_private.h>
71 
72 #ifdef PCI_IOV
73 #include <sys/nv.h>
74 #include <dev/pci/pci_iov_private.h>
75 #endif
76 
77 #include <dev/usb/controller/xhcireg.h>
78 #include <dev/usb/controller/ehcireg.h>
79 #include <dev/usb/controller/ohcireg.h>
80 #include <dev/usb/controller/uhcireg.h>
81 
82 #include <dev/iommu/iommu.h>
83 
84 #include "pcib_if.h"
85 #include "pci_if.h"
86 
87 #define	PCIR_IS_BIOS(cfg, reg)						\
88 	(((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) ||	\
89 	 ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1))
90 
91 static device_probe_t	pci_probe;
92 
93 static bus_reset_post_t pci_reset_post;
94 static bus_reset_prepare_t pci_reset_prepare;
95 static bus_reset_child_t pci_reset_child;
96 static bus_hint_device_unit_t pci_hint_device_unit;
97 static bus_remap_intr_t pci_remap_intr_method;
98 
99 static pci_get_id_t	pci_get_id_method;
100 
101 static int		pci_has_quirk(uint32_t devid, int quirk);
102 static pci_addr_t	pci_mapbase(uint64_t mapreg);
103 static const char	*pci_maptype(uint64_t mapreg);
104 static int		pci_maprange(uint64_t mapreg);
105 static pci_addr_t	pci_rombase(uint64_t mapreg);
106 static int		pci_romsize(uint64_t testval);
107 static void		pci_fixancient(pcicfgregs *cfg);
108 static int		pci_printf(pcicfgregs *cfg, const char *fmt, ...);
109 
110 static int		pci_porten(device_t dev);
111 static int		pci_memen(device_t dev);
112 static void		pci_assign_interrupt(device_t bus, device_t dev,
113 			    int force_route);
114 static int		pci_add_map(device_t bus, device_t dev, int reg,
115 			    struct resource_list *rl, int force, int prefetch);
116 static void		pci_load_vendor_data(void);
117 static int		pci_describe_parse_line(char **ptr, int *vendor,
118 			    int *device, char **desc);
119 static char		*pci_describe_device(device_t dev);
120 static int		pci_modevent(module_t mod, int what, void *arg);
121 static void		pci_hdrtypedata(device_t pcib, int b, int s, int f,
122 			    pcicfgregs *cfg);
123 static void		pci_read_cap(device_t pcib, pcicfgregs *cfg);
124 static int		pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg,
125 			    int reg, uint32_t *data);
126 #if 0
127 static int		pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg,
128 			    int reg, uint32_t data);
129 #endif
130 static void		pci_read_vpd(device_t pcib, pcicfgregs *cfg);
131 static void		pci_mask_msix(device_t dev, u_int index);
132 static void		pci_unmask_msix(device_t dev, u_int index);
133 static int		pci_msi_blacklisted(void);
134 static int		pci_msix_blacklisted(void);
135 static void		pci_resume_msi(device_t dev);
136 static void		pci_resume_msix(device_t dev);
137 static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d,
138     int b, int s, int f, uint16_t vid, uint16_t did);
139 
140 static device_method_t pci_methods[] = {
141 	/* Device interface */
142 	DEVMETHOD(device_probe,		pci_probe),
143 	DEVMETHOD(device_attach,	pci_attach),
144 	DEVMETHOD(device_detach,	pci_detach),
145 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
146 	DEVMETHOD(device_suspend,	bus_generic_suspend),
147 	DEVMETHOD(device_resume,	pci_resume),
148 
149 	/* Bus interface */
150 	DEVMETHOD(bus_print_child,	pci_print_child),
151 	DEVMETHOD(bus_probe_nomatch,	pci_probe_nomatch),
152 	DEVMETHOD(bus_read_ivar,	pci_read_ivar),
153 	DEVMETHOD(bus_write_ivar,	pci_write_ivar),
154 	DEVMETHOD(bus_driver_added,	pci_driver_added),
155 	DEVMETHOD(bus_setup_intr,	pci_setup_intr),
156 	DEVMETHOD(bus_teardown_intr,	pci_teardown_intr),
157 	DEVMETHOD(bus_reset_prepare,	pci_reset_prepare),
158 	DEVMETHOD(bus_reset_post,	pci_reset_post),
159 	DEVMETHOD(bus_reset_child,	pci_reset_child),
160 
161 	DEVMETHOD(bus_get_dma_tag,	pci_get_dma_tag),
162 	DEVMETHOD(bus_get_resource_list,pci_get_resource_list),
163 	DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
164 	DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
165 	DEVMETHOD(bus_delete_resource,	pci_delete_resource),
166 	DEVMETHOD(bus_alloc_resource,	pci_alloc_resource),
167 	DEVMETHOD(bus_adjust_resource,	pci_adjust_resource),
168 	DEVMETHOD(bus_release_resource,	pci_release_resource),
169 	DEVMETHOD(bus_activate_resource, pci_activate_resource),
170 	DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
171 	DEVMETHOD(bus_map_resource,	pci_map_resource),
172 	DEVMETHOD(bus_unmap_resource,	pci_unmap_resource),
173 	DEVMETHOD(bus_child_deleted,	pci_child_deleted),
174 	DEVMETHOD(bus_child_detached,	pci_child_detached),
175 	DEVMETHOD(bus_child_pnpinfo,	pci_child_pnpinfo_method),
176 	DEVMETHOD(bus_child_location,	pci_child_location_method),
177 	DEVMETHOD(bus_get_device_path,	pci_get_device_path_method),
178 	DEVMETHOD(bus_hint_device_unit,	pci_hint_device_unit),
179 	DEVMETHOD(bus_remap_intr,	pci_remap_intr_method),
180 	DEVMETHOD(bus_suspend_child,	pci_suspend_child),
181 	DEVMETHOD(bus_resume_child,	pci_resume_child),
182 	DEVMETHOD(bus_rescan,		pci_rescan_method),
183 
184 	/* PCI interface */
185 	DEVMETHOD(pci_read_config,	pci_read_config_method),
186 	DEVMETHOD(pci_write_config,	pci_write_config_method),
187 	DEVMETHOD(pci_enable_busmaster,	pci_enable_busmaster_method),
188 	DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method),
189 	DEVMETHOD(pci_enable_io,	pci_enable_io_method),
190 	DEVMETHOD(pci_disable_io,	pci_disable_io_method),
191 	DEVMETHOD(pci_get_vpd_ident,	pci_get_vpd_ident_method),
192 	DEVMETHOD(pci_get_vpd_readonly,	pci_get_vpd_readonly_method),
193 	DEVMETHOD(pci_get_powerstate,	pci_get_powerstate_method),
194 	DEVMETHOD(pci_set_powerstate,	pci_set_powerstate_method),
195 	DEVMETHOD(pci_assign_interrupt,	pci_assign_interrupt_method),
196 	DEVMETHOD(pci_find_cap,		pci_find_cap_method),
197 	DEVMETHOD(pci_find_next_cap,	pci_find_next_cap_method),
198 	DEVMETHOD(pci_find_extcap,	pci_find_extcap_method),
199 	DEVMETHOD(pci_find_next_extcap,	pci_find_next_extcap_method),
200 	DEVMETHOD(pci_find_htcap,	pci_find_htcap_method),
201 	DEVMETHOD(pci_find_next_htcap,	pci_find_next_htcap_method),
202 	DEVMETHOD(pci_alloc_msi,	pci_alloc_msi_method),
203 	DEVMETHOD(pci_alloc_msix,	pci_alloc_msix_method),
204 	DEVMETHOD(pci_enable_msi,	pci_enable_msi_method),
205 	DEVMETHOD(pci_enable_msix,	pci_enable_msix_method),
206 	DEVMETHOD(pci_disable_msi,	pci_disable_msi_method),
207 	DEVMETHOD(pci_remap_msix,	pci_remap_msix_method),
208 	DEVMETHOD(pci_release_msi,	pci_release_msi_method),
209 	DEVMETHOD(pci_msi_count,	pci_msi_count_method),
210 	DEVMETHOD(pci_msix_count,	pci_msix_count_method),
211 	DEVMETHOD(pci_msix_pba_bar,	pci_msix_pba_bar_method),
212 	DEVMETHOD(pci_msix_table_bar,	pci_msix_table_bar_method),
213 	DEVMETHOD(pci_get_id,		pci_get_id_method),
214 	DEVMETHOD(pci_alloc_devinfo,	pci_alloc_devinfo_method),
215 	DEVMETHOD(pci_child_added,	pci_child_added_method),
216 #ifdef PCI_IOV
217 	DEVMETHOD(pci_iov_attach,	pci_iov_attach_method),
218 	DEVMETHOD(pci_iov_detach,	pci_iov_detach_method),
219 	DEVMETHOD(pci_create_iov_child,	pci_create_iov_child_method),
220 #endif
221 
222 	DEVMETHOD_END
223 };
224 
225 DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc));
226 
227 EARLY_DRIVER_MODULE(pci, pcib, pci_driver, pci_modevent, NULL, BUS_PASS_BUS);
228 MODULE_VERSION(pci, 1);
229 
230 static char	*pci_vendordata;
231 static size_t	pci_vendordata_size;
232 
233 struct pci_quirk {
234 	uint32_t devid;	/* Vendor/device of the card */
235 	int	type;
236 #define	PCI_QUIRK_MAP_REG	1 /* PCI map register in weird place */
237 #define	PCI_QUIRK_DISABLE_MSI	2 /* Neither MSI nor MSI-X work */
238 #define	PCI_QUIRK_ENABLE_MSI_VM	3 /* Older chipset in VM where MSI works */
239 #define	PCI_QUIRK_UNMAP_REG	4 /* Ignore PCI map register */
240 #define	PCI_QUIRK_DISABLE_MSIX	5 /* MSI-X doesn't work */
241 #define	PCI_QUIRK_MSI_INTX_BUG	6 /* PCIM_CMD_INTxDIS disables MSI */
242 #define	PCI_QUIRK_REALLOC_BAR	7 /* Can't allocate memory at the default address */
243 	int	arg1;
244 	int	arg2;
245 };
246 
247 static const struct pci_quirk pci_quirks[] = {
248 	/* The Intel 82371AB and 82443MX have a map register at offset 0x90. */
249 	{ 0x71138086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
250 	{ 0x719b8086, PCI_QUIRK_MAP_REG,	0x90,	 0 },
251 	/* As does the Serverworks OSB4 (the SMBus mapping register) */
252 	{ 0x02001166, PCI_QUIRK_MAP_REG,	0x90,	 0 },
253 
254 	/*
255 	 * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge
256 	 * or the CMIC-SL (AKA ServerWorks GC_LE).
257 	 */
258 	{ 0x00141166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
259 	{ 0x00171166, PCI_QUIRK_DISABLE_MSI,	0,	0 },
260 
261 	/*
262 	 * MSI doesn't work on earlier Intel chipsets including
263 	 * E7500, E7501, E7505, 845, 865, 875/E7210, and 855.
264 	 */
265 	{ 0x25408086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
266 	{ 0x254c8086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
267 	{ 0x25508086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
268 	{ 0x25608086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
269 	{ 0x25708086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
270 	{ 0x25788086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
271 	{ 0x35808086, PCI_QUIRK_DISABLE_MSI,	0,	0 },
272 
273 	/*
274 	 * MSI doesn't work with devices behind the AMD 8131 HT-PCIX
275 	 * bridge.
276 	 */
277 	{ 0x74501022, PCI_QUIRK_DISABLE_MSI,	0,	0 },
278 
279 	/*
280 	 * Some virtualization environments emulate an older chipset
281 	 * but support MSI just fine.  QEMU uses the Intel 82440.
282 	 */
283 	{ 0x12378086, PCI_QUIRK_ENABLE_MSI_VM,	0,	0 },
284 
285 	/*
286 	 * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus
287 	 * controller depending on SoftPciRst register (PM_IO 0x55 [7]).
288 	 * It prevents us from attaching hpet(4) when the bit is unset.
289 	 * Note this quirk only affects SB600 revision A13 and earlier.
290 	 * For SB600 A21 and later, firmware must set the bit to hide it.
291 	 * For SB700 and later, it is unused and hardcoded to zero.
292 	 */
293 	{ 0x43851002, PCI_QUIRK_UNMAP_REG,	0x14,	0 },
294 
295 	/*
296 	 * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have
297 	 * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit
298 	 * of the command register is set.
299 	 */
300 	{ 0x10911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
301 	{ 0xE0911969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
302 	{ 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
303 	{ 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
304 	{ 0x10901969, PCI_QUIRK_MSI_INTX_BUG,	0,	0 },
305 
306 	/*
307 	 * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't
308 	 * issue MSI interrupts with PCIM_CMD_INTxDIS set either.
309 	 */
310 	{ 0x166814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714 */
311 	{ 0x166914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5714S */
312 	{ 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780 */
313 	{ 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5780S */
314 	{ 0x167814e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715 */
315 	{ 0x167914e4, PCI_QUIRK_MSI_INTX_BUG,	0,	0 }, /* BCM5715S */
316 
317 	/*
318 	 * HPE Gen 10 VGA has a memory range that can't be allocated in the
319 	 * expected place.
320 	 */
321 	{ 0x98741002, PCI_QUIRK_REALLOC_BAR,	0, 	0 },
322 	{ 0 }
323 };
324 
325 /* map register information */
326 #define	PCI_MAPMEM	0x01	/* memory map */
327 #define	PCI_MAPMEMP	0x02	/* prefetchable memory map */
328 #define	PCI_MAPPORT	0x04	/* port map */
329 
330 struct devlist pci_devq;
331 uint32_t pci_generation;
332 uint32_t pci_numdevs = 0;
333 static int pcie_chipset, pcix_chipset;
334 
335 /* sysctl vars */
336 SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
337     "PCI bus tuning parameters");
338 
339 static int pci_enable_io_modes = 1;
340 SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN,
341     &pci_enable_io_modes, 1,
342     "Enable I/O and memory bits in the config register.  Some BIOSes do not"
343     " enable these bits correctly.  We'd like to do this all the time, but"
344     " there are some peripherals that this causes problems with.");
345 
346 static int pci_do_realloc_bars = 1;
347 SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN,
348     &pci_do_realloc_bars, 0,
349     "Attempt to allocate a new range for any BARs whose original "
350     "firmware-assigned ranges fail to allocate during the initial device scan.");
351 
352 static int pci_do_power_nodriver = 0;
353 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN,
354     &pci_do_power_nodriver, 0,
355     "Place a function into D3 state when no driver attaches to it.  0 means"
356     " disable.  1 means conservatively place function into D3 state.  2 means"
357     " aggressively place function into D3 state.  3 means put absolutely"
358     " everything in D3 state.");
359 
360 int pci_do_power_resume = 1;
361 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN,
362     &pci_do_power_resume, 1,
363   "Transition from D3 -> D0 on resume.");
364 
365 int pci_do_power_suspend = 1;
366 SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN,
367     &pci_do_power_suspend, 1,
368   "Transition from D0 -> D3 on suspend.");
369 
370 static int pci_do_msi = 1;
371 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1,
372     "Enable support for MSI interrupts");
373 
374 static int pci_do_msix = 1;
375 SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1,
376     "Enable support for MSI-X interrupts");
377 
378 static int pci_msix_rewrite_table = 0;
379 SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN,
380     &pci_msix_rewrite_table, 0,
381     "Rewrite entire MSI-X table when updating MSI-X entries");
382 
383 static int pci_honor_msi_blacklist = 1;
384 SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN,
385     &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X");
386 
387 #if defined(__i386__) || defined(__amd64__)
388 static int pci_usb_takeover = 1;
389 #else
390 static int pci_usb_takeover = 0;
391 #endif
392 SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN,
393     &pci_usb_takeover, 1,
394     "Enable early takeover of USB controllers. Disable this if you depend on"
395     " BIOS emulation of USB devices, that is you use USB devices (like"
396     " keyboard or mouse) but do not load USB drivers");
397 
398 static int pci_clear_bars;
399 SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0,
400     "Ignore firmware-assigned resources for BARs.");
401 
402 static int pci_clear_buses;
403 SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0,
404     "Ignore firmware-assigned bus numbers.");
405 
406 static int pci_enable_ari = 1;
407 SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari,
408     0, "Enable support for PCIe Alternative RID Interpretation");
409 
410 /*
411  * Some x86 firmware only enables PCIe hotplug if we claim to support aspm,
412  * however enabling it breaks some arm64 firmware as it powers off devices.
413  */
414 #if defined(__i386__) || defined(__amd64__)
415 int pci_enable_aspm = 1;
416 #else
417 int pci_enable_aspm = 0;
418 #endif
419 SYSCTL_INT(_hw_pci, OID_AUTO, enable_aspm, CTLFLAG_RDTUN, &pci_enable_aspm,
420     0, "Enable support for PCIe Active State Power Management");
421 
422 static int pci_clear_aer_on_attach = 0;
423 SYSCTL_INT(_hw_pci, OID_AUTO, clear_aer_on_attach, CTLFLAG_RWTUN,
424     &pci_clear_aer_on_attach, 0,
425     "Clear port and device AER state on driver attach");
426 
427 static bool pci_enable_mps_tune = true;
428 SYSCTL_BOOL(_hw_pci, OID_AUTO, enable_mps_tune, CTLFLAG_RWTUN,
429     &pci_enable_mps_tune, 1,
430     "Enable tuning of MPS(maximum payload size)." );
431 
432 static int
pci_has_quirk(uint32_t devid,int quirk)433 pci_has_quirk(uint32_t devid, int quirk)
434 {
435 	const struct pci_quirk *q;
436 
437 	for (q = &pci_quirks[0]; q->devid; q++) {
438 		if (q->devid == devid && q->type == quirk)
439 			return (1);
440 	}
441 	return (0);
442 }
443 
444 /* Find a device_t by bus/slot/function in domain 0 */
445 
446 device_t
pci_find_bsf(uint8_t bus,uint8_t slot,uint8_t func)447 pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func)
448 {
449 
450 	return (pci_find_dbsf(0, bus, slot, func));
451 }
452 
453 /* Find a device_t by domain/bus/slot/function */
454 
455 device_t
pci_find_dbsf(uint32_t domain,uint8_t bus,uint8_t slot,uint8_t func)456 pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func)
457 {
458 	struct pci_devinfo *dinfo = NULL;
459 
460 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
461 		if ((dinfo->cfg.domain == domain) &&
462 		    (dinfo->cfg.bus == bus) &&
463 		    (dinfo->cfg.slot == slot) &&
464 		    (dinfo->cfg.func == func)) {
465 			break;
466 		}
467 	}
468 
469 	return (dinfo != NULL ? dinfo->cfg.dev : NULL);
470 }
471 
472 /* Find a device_t by vendor/device ID */
473 
474 device_t
pci_find_device(uint16_t vendor,uint16_t device)475 pci_find_device(uint16_t vendor, uint16_t device)
476 {
477 	struct pci_devinfo *dinfo;
478 
479 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
480 		if ((dinfo->cfg.vendor == vendor) &&
481 		    (dinfo->cfg.device == device)) {
482 			return (dinfo->cfg.dev);
483 		}
484 	}
485 
486 	return (NULL);
487 }
488 
489 device_t
pci_find_class(uint8_t class,uint8_t subclass)490 pci_find_class(uint8_t class, uint8_t subclass)
491 {
492 	struct pci_devinfo *dinfo;
493 
494 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
495 		if (dinfo->cfg.baseclass == class &&
496 		    dinfo->cfg.subclass == subclass) {
497 			return (dinfo->cfg.dev);
498 		}
499 	}
500 
501 	return (NULL);
502 }
503 
504 device_t
pci_find_class_from(uint8_t class,uint8_t subclass,device_t from)505 pci_find_class_from(uint8_t class, uint8_t subclass, device_t from)
506 {
507 	struct pci_devinfo *dinfo;
508 	bool found = false;
509 
510 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
511 		if (from != NULL && found == false) {
512 			if (from != dinfo->cfg.dev)
513 				continue;
514 			found = true;
515 			continue;
516 		}
517 		if (dinfo->cfg.baseclass == class &&
518 		    dinfo->cfg.subclass == subclass) {
519 			return (dinfo->cfg.dev);
520 		}
521 	}
522 
523 	return (NULL);
524 }
525 
526 device_t
pci_find_base_class_from(uint8_t class,device_t from)527 pci_find_base_class_from(uint8_t class, device_t from)
528 {
529 	struct pci_devinfo *dinfo;
530 	bool found = false;
531 
532 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
533 		if (from != NULL && found == false) {
534 			if (from != dinfo->cfg.dev)
535 				continue;
536 			found = true;
537 			continue;
538 		}
539 		if (dinfo->cfg.baseclass == class) {
540 			return (dinfo->cfg.dev);
541 		}
542 	}
543 
544 	return (NULL);
545 }
546 
547 static int
pci_printf(pcicfgregs * cfg,const char * fmt,...)548 pci_printf(pcicfgregs *cfg, const char *fmt, ...)
549 {
550 	va_list ap;
551 	int retval;
552 
553 	retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot,
554 	    cfg->func);
555 	va_start(ap, fmt);
556 	retval += vprintf(fmt, ap);
557 	va_end(ap);
558 	return (retval);
559 }
560 
561 /* return base address of memory or port map */
562 
563 static pci_addr_t
pci_mapbase(uint64_t mapreg)564 pci_mapbase(uint64_t mapreg)
565 {
566 
567 	if (PCI_BAR_MEM(mapreg))
568 		return (mapreg & PCIM_BAR_MEM_BASE);
569 	else
570 		return (mapreg & PCIM_BAR_IO_BASE);
571 }
572 
573 /* return map type of memory or port map */
574 
575 static const char *
pci_maptype(uint64_t mapreg)576 pci_maptype(uint64_t mapreg)
577 {
578 
579 	if (PCI_BAR_IO(mapreg))
580 		return ("I/O Port");
581 	if (mapreg & PCIM_BAR_MEM_PREFETCH)
582 		return ("Prefetchable Memory");
583 	return ("Memory");
584 }
585 
586 /* return log2 of map size decoded for memory or port map */
587 
588 int
pci_mapsize(uint64_t testval)589 pci_mapsize(uint64_t testval)
590 {
591 	int ln2size;
592 
593 	testval = pci_mapbase(testval);
594 	ln2size = 0;
595 	if (testval != 0) {
596 		while ((testval & 1) == 0)
597 		{
598 			ln2size++;
599 			testval >>= 1;
600 		}
601 	}
602 	return (ln2size);
603 }
604 
605 /* return base address of device ROM */
606 
607 static pci_addr_t
pci_rombase(uint64_t mapreg)608 pci_rombase(uint64_t mapreg)
609 {
610 
611 	return (mapreg & PCIM_BIOS_ADDR_MASK);
612 }
613 
614 /* return log2 of map size decided for device ROM */
615 
616 static int
pci_romsize(uint64_t testval)617 pci_romsize(uint64_t testval)
618 {
619 	int ln2size;
620 
621 	testval = pci_rombase(testval);
622 	ln2size = 0;
623 	if (testval != 0) {
624 		while ((testval & 1) == 0)
625 		{
626 			ln2size++;
627 			testval >>= 1;
628 		}
629 	}
630 	return (ln2size);
631 }
632 
633 /* return log2 of address range supported by map register */
634 
635 static int
pci_maprange(uint64_t mapreg)636 pci_maprange(uint64_t mapreg)
637 {
638 	int ln2range = 0;
639 
640 	if (PCI_BAR_IO(mapreg))
641 		ln2range = 32;
642 	else
643 		switch (mapreg & PCIM_BAR_MEM_TYPE) {
644 		case PCIM_BAR_MEM_32:
645 			ln2range = 32;
646 			break;
647 		case PCIM_BAR_MEM_1MB:
648 			ln2range = 20;
649 			break;
650 		case PCIM_BAR_MEM_64:
651 			ln2range = 64;
652 			break;
653 		}
654 	return (ln2range);
655 }
656 
657 /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */
658 
659 static void
pci_fixancient(pcicfgregs * cfg)660 pci_fixancient(pcicfgregs *cfg)
661 {
662 	if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL)
663 		return;
664 
665 	/* PCI to PCI bridges use header type 1 */
666 	if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI)
667 		cfg->hdrtype = PCIM_HDRTYPE_BRIDGE;
668 }
669 
670 /* extract header type specific config data */
671 
672 static void
pci_hdrtypedata(device_t pcib,int b,int s,int f,pcicfgregs * cfg)673 pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg)
674 {
675 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
676 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
677 	case PCIM_HDRTYPE_NORMAL:
678 		cfg->subvendor      = REG(PCIR_SUBVEND_0, 2);
679 		cfg->subdevice      = REG(PCIR_SUBDEV_0, 2);
680 		cfg->mingnt         = REG(PCIR_MINGNT, 1);
681 		cfg->maxlat         = REG(PCIR_MAXLAT, 1);
682 		cfg->nummaps	    = PCI_MAXMAPS_0;
683 		break;
684 	case PCIM_HDRTYPE_BRIDGE:
685 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1);
686 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1);
687 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1);
688 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1);
689 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2);
690 		cfg->nummaps	    = PCI_MAXMAPS_1;
691 		break;
692 	case PCIM_HDRTYPE_CARDBUS:
693 		cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1);
694 		cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1);
695 		cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1);
696 		cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1);
697 		cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2);
698 		cfg->subvendor      = REG(PCIR_SUBVEND_2, 2);
699 		cfg->subdevice      = REG(PCIR_SUBDEV_2, 2);
700 		cfg->nummaps	    = PCI_MAXMAPS_2;
701 		break;
702 	}
703 #undef REG
704 }
705 
706 /* read configuration header into pcicfgregs structure */
707 struct pci_devinfo *
pci_read_device(device_t pcib,device_t bus,int d,int b,int s,int f)708 pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f)
709 {
710 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, b, s, f, n, w)
711 	uint16_t vid, did;
712 
713 	vid = REG(PCIR_VENDOR, 2);
714 	if (vid == PCIV_INVALID)
715 		return (NULL);
716 
717 	did = REG(PCIR_DEVICE, 2);
718 
719 	return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did));
720 }
721 
722 struct pci_devinfo *
pci_alloc_devinfo_method(device_t dev)723 pci_alloc_devinfo_method(device_t dev)
724 {
725 
726 	return (malloc(sizeof(struct pci_devinfo), M_DEVBUF,
727 	    M_WAITOK | M_ZERO));
728 }
729 
730 static struct pci_devinfo *
pci_fill_devinfo(device_t pcib,device_t bus,int d,int b,int s,int f,uint16_t vid,uint16_t did)731 pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f,
732     uint16_t vid, uint16_t did)
733 {
734 	struct pci_devinfo *devlist_entry;
735 	pcicfgregs *cfg;
736 
737 	devlist_entry = PCI_ALLOC_DEVINFO(bus);
738 
739 	cfg = &devlist_entry->cfg;
740 
741 	cfg->domain		= d;
742 	cfg->bus		= b;
743 	cfg->slot		= s;
744 	cfg->func		= f;
745 	cfg->vendor		= vid;
746 	cfg->device		= did;
747 	cfg->cmdreg		= REG(PCIR_COMMAND, 2);
748 	cfg->statreg		= REG(PCIR_STATUS, 2);
749 	cfg->baseclass		= REG(PCIR_CLASS, 1);
750 	cfg->subclass		= REG(PCIR_SUBCLASS, 1);
751 	cfg->progif		= REG(PCIR_PROGIF, 1);
752 	cfg->revid		= REG(PCIR_REVID, 1);
753 	cfg->hdrtype		= REG(PCIR_HDRTYPE, 1);
754 	cfg->cachelnsz		= REG(PCIR_CACHELNSZ, 1);
755 	cfg->lattimer		= REG(PCIR_LATTIMER, 1);
756 	cfg->intpin		= REG(PCIR_INTPIN, 1);
757 	cfg->intline		= REG(PCIR_INTLINE, 1);
758 
759 	cfg->mfdev		= (cfg->hdrtype & PCIM_MFDEV) != 0;
760 	cfg->hdrtype		&= ~PCIM_MFDEV;
761 	STAILQ_INIT(&cfg->maps);
762 
763 	cfg->iov		= NULL;
764 
765 	pci_fixancient(cfg);
766 	pci_hdrtypedata(pcib, b, s, f, cfg);
767 
768 	if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT)
769 		pci_read_cap(pcib, cfg);
770 
771 	STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links);
772 
773 	devlist_entry->conf.pc_sel.pc_domain = cfg->domain;
774 	devlist_entry->conf.pc_sel.pc_bus = cfg->bus;
775 	devlist_entry->conf.pc_sel.pc_dev = cfg->slot;
776 	devlist_entry->conf.pc_sel.pc_func = cfg->func;
777 	devlist_entry->conf.pc_hdr = cfg->hdrtype;
778 
779 	devlist_entry->conf.pc_subvendor = cfg->subvendor;
780 	devlist_entry->conf.pc_subdevice = cfg->subdevice;
781 	devlist_entry->conf.pc_vendor = cfg->vendor;
782 	devlist_entry->conf.pc_device = cfg->device;
783 
784 	devlist_entry->conf.pc_class = cfg->baseclass;
785 	devlist_entry->conf.pc_subclass = cfg->subclass;
786 	devlist_entry->conf.pc_progif = cfg->progif;
787 	devlist_entry->conf.pc_revid = cfg->revid;
788 
789 	pci_numdevs++;
790 	pci_generation++;
791 
792 	return (devlist_entry);
793 }
794 #undef REG
795 
796 static void
pci_ea_fill_info(device_t pcib,pcicfgregs * cfg)797 pci_ea_fill_info(device_t pcib, pcicfgregs *cfg)
798 {
799 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \
800     cfg->ea.ea_location + (n), w)
801 	int num_ent;
802 	int ptr;
803 	int a, b;
804 	uint32_t val;
805 	int ent_size;
806 	uint32_t dw[4];
807 	uint64_t base, max_offset;
808 	struct pci_ea_entry *eae;
809 
810 	if (cfg->ea.ea_location == 0)
811 		return;
812 
813 	STAILQ_INIT(&cfg->ea.ea_entries);
814 
815 	/* Determine the number of entries */
816 	num_ent = REG(PCIR_EA_NUM_ENT, 2);
817 	num_ent &= PCIM_EA_NUM_ENT_MASK;
818 
819 	/* Find the first entry to care of */
820 	ptr = PCIR_EA_FIRST_ENT;
821 
822 	/* Skip DWORD 2 for type 1 functions */
823 	if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE)
824 		ptr += 4;
825 
826 	for (a = 0; a < num_ent; a++) {
827 		eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO);
828 		eae->eae_cfg_offset = cfg->ea.ea_location + ptr;
829 
830 		/* Read a number of dwords in the entry */
831 		val = REG(ptr, 4);
832 		ptr += 4;
833 		ent_size = (val & PCIM_EA_ES);
834 
835 		for (b = 0; b < ent_size; b++) {
836 			dw[b] = REG(ptr, 4);
837 			ptr += 4;
838 		}
839 
840 		eae->eae_flags = val;
841 		eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET;
842 
843 		base = dw[0] & PCIM_EA_FIELD_MASK;
844 		max_offset = dw[1] | ~PCIM_EA_FIELD_MASK;
845 		b = 2;
846 		if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) {
847 			base |= (uint64_t)dw[b] << 32UL;
848 			b++;
849 		}
850 		if (((dw[1] & PCIM_EA_IS_64) != 0)
851 		    && (b < ent_size)) {
852 			max_offset |= (uint64_t)dw[b] << 32UL;
853 			b++;
854 		}
855 
856 		eae->eae_base = base;
857 		eae->eae_max_offset = max_offset;
858 
859 		STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link);
860 
861 		if (bootverbose) {
862 			printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n",
863 			    cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags,
864 			    (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset);
865 		}
866 	}
867 }
868 #undef REG
869 
870 static void
pci_read_cap(device_t pcib,pcicfgregs * cfg)871 pci_read_cap(device_t pcib, pcicfgregs *cfg)
872 {
873 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w)
874 #define	WREG(n, v, w)	PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w)
875 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
876 	uint64_t addr;
877 #endif
878 	uint32_t val;
879 	int	ptr, nextptr, ptrptr;
880 
881 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
882 	case PCIM_HDRTYPE_NORMAL:
883 	case PCIM_HDRTYPE_BRIDGE:
884 		ptrptr = PCIR_CAP_PTR;
885 		break;
886 	case PCIM_HDRTYPE_CARDBUS:
887 		ptrptr = PCIR_CAP_PTR_2;	/* cardbus capabilities ptr */
888 		break;
889 	default:
890 		return;		/* no extended capabilities support */
891 	}
892 	nextptr = REG(ptrptr, 1);	/* sanity check? */
893 
894 	/*
895 	 * Read capability entries.
896 	 */
897 	while (nextptr != 0) {
898 		/* Sanity check */
899 		if (nextptr > 255) {
900 			printf("illegal PCI extended capability offset %d\n",
901 			    nextptr);
902 			return;
903 		}
904 		/* Find the next entry */
905 		ptr = nextptr;
906 		nextptr = REG(ptr + PCICAP_NEXTPTR, 1);
907 
908 		/* Process this entry */
909 		switch (REG(ptr + PCICAP_ID, 1)) {
910 		case PCIY_PMG:		/* PCI power management */
911 			cfg->pp.pp_location = ptr;
912 			cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2);
913 			break;
914 		case PCIY_HT:		/* HyperTransport */
915 			/* Determine HT-specific capability type. */
916 			val = REG(ptr + PCIR_HT_COMMAND, 2);
917 
918 			if ((val & 0xe000) == PCIM_HTCAP_SLAVE)
919 				cfg->ht.ht_slave = ptr;
920 
921 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__)
922 			switch (val & PCIM_HTCMD_CAP_MASK) {
923 			case PCIM_HTCAP_MSI_MAPPING:
924 				if (!(val & PCIM_HTCMD_MSI_FIXED)) {
925 					/* Sanity check the mapping window. */
926 					addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI,
927 					    4);
928 					addr <<= 32;
929 					addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO,
930 					    4);
931 					if (addr != MSI_INTEL_ADDR_BASE)
932 						device_printf(pcib,
933 	    "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n",
934 						    cfg->domain, cfg->bus,
935 						    cfg->slot, cfg->func,
936 						    (long long)addr);
937 				} else
938 					addr = MSI_INTEL_ADDR_BASE;
939 
940 				cfg->ht.ht_msimap = ptr;
941 				cfg->ht.ht_msictrl = val;
942 				cfg->ht.ht_msiaddr = addr;
943 				break;
944 			}
945 #endif
946 			break;
947 		case PCIY_MSI:		/* PCI MSI */
948 			cfg->msi.msi_location = ptr;
949 			cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2);
950 			break;
951 		case PCIY_MSIX:		/* PCI MSI-X */
952 			cfg->msix.msix_location = ptr;
953 			cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2);
954 			val = REG(ptr + PCIR_MSIX_TABLE, 4);
955 			cfg->msix.msix_table_bar = PCIR_BAR(val &
956 			    PCIM_MSIX_BIR_MASK);
957 			cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK;
958 			val = REG(ptr + PCIR_MSIX_PBA, 4);
959 			cfg->msix.msix_pba_bar = PCIR_BAR(val &
960 			    PCIM_MSIX_BIR_MASK);
961 			cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK;
962 			break;
963 		case PCIY_VPD:		/* PCI Vital Product Data */
964 			cfg->vpd.vpd_reg = ptr;
965 			break;
966 		case PCIY_SUBVENDOR:
967 			/* Should always be true. */
968 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
969 			    PCIM_HDRTYPE_BRIDGE) {
970 				val = REG(ptr + PCIR_SUBVENDCAP_ID, 4);
971 				cfg->subvendor = val & 0xffff;
972 				cfg->subdevice = val >> 16;
973 			}
974 			break;
975 		case PCIY_PCIX:		/* PCI-X */
976 			/*
977 			 * Assume we have a PCI-X chipset if we have
978 			 * at least one PCI-PCI bridge with a PCI-X
979 			 * capability.  Note that some systems with
980 			 * PCI-express or HT chipsets might match on
981 			 * this check as well.
982 			 */
983 			if ((cfg->hdrtype & PCIM_HDRTYPE) ==
984 			    PCIM_HDRTYPE_BRIDGE)
985 				pcix_chipset = 1;
986 			cfg->pcix.pcix_location = ptr;
987 			break;
988 		case PCIY_EXPRESS:	/* PCI-express */
989 			/*
990 			 * Assume we have a PCI-express chipset if we have
991 			 * at least one PCI-express device.
992 			 */
993 			pcie_chipset = 1;
994 			cfg->pcie.pcie_location = ptr;
995 			val = REG(ptr + PCIER_FLAGS, 2);
996 			cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE;
997 			break;
998 		case PCIY_EA:		/* Enhanced Allocation */
999 			cfg->ea.ea_location = ptr;
1000 			pci_ea_fill_info(pcib, cfg);
1001 			break;
1002 		default:
1003 			break;
1004 		}
1005 	}
1006 
1007 #if defined(__powerpc__)
1008 	/*
1009 	 * Enable the MSI mapping window for all HyperTransport
1010 	 * slaves.  PCI-PCI bridges have their windows enabled via
1011 	 * PCIB_MAP_MSI().
1012 	 */
1013 	if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 &&
1014 	    !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) {
1015 		device_printf(pcib,
1016 	    "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n",
1017 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
1018 		 cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
1019 		 WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl,
1020 		     2);
1021 	}
1022 #endif
1023 /* REG and WREG use carry through to next functions */
1024 }
1025 
1026 /*
1027  * PCI Vital Product Data
1028  */
1029 
1030 #define	PCI_VPD_TIMEOUT		1000000
1031 
1032 static int
pci_read_vpd_reg(device_t pcib,pcicfgregs * cfg,int reg,uint32_t * data)1033 pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data)
1034 {
1035 	int count = PCI_VPD_TIMEOUT;
1036 
1037 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1038 
1039 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2);
1040 
1041 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) {
1042 		if (--count < 0)
1043 			return (ENXIO);
1044 		DELAY(1);	/* limit looping */
1045 	}
1046 	*data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4));
1047 
1048 	return (0);
1049 }
1050 
1051 #if 0
1052 static int
1053 pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data)
1054 {
1055 	int count = PCI_VPD_TIMEOUT;
1056 
1057 	KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned"));
1058 
1059 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4);
1060 	WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2);
1061 	while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) {
1062 		if (--count < 0)
1063 			return (ENXIO);
1064 		DELAY(1);	/* limit looping */
1065 	}
1066 
1067 	return (0);
1068 }
1069 #endif
1070 
1071 #undef PCI_VPD_TIMEOUT
1072 
1073 struct vpd_readstate {
1074 	device_t	pcib;
1075 	pcicfgregs	*cfg;
1076 	uint32_t	val;
1077 	int		bytesinval;
1078 	int		off;
1079 	uint8_t		cksum;
1080 };
1081 
1082 /* return 0 and one byte in *data if no read error, -1 else */
1083 static int
vpd_nextbyte(struct vpd_readstate * vrs,uint8_t * data)1084 vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data)
1085 {
1086 	uint32_t reg;
1087 	uint8_t byte;
1088 
1089 	if (vrs->bytesinval == 0) {
1090 		if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, &reg))
1091 			return (-1);
1092 		vrs->val = le32toh(reg);
1093 		vrs->off += 4;
1094 		byte = vrs->val & 0xff;
1095 		vrs->bytesinval = 3;
1096 	} else {
1097 		vrs->val = vrs->val >> 8;
1098 		byte = vrs->val & 0xff;
1099 		vrs->bytesinval--;
1100 	}
1101 
1102 	vrs->cksum += byte;
1103 	*data = byte;
1104 	return (0);
1105 }
1106 
1107 /* return 0 on match, -1 and "unget" byte on no match */
1108 static int
vpd_expectbyte(struct vpd_readstate * vrs,uint8_t expected)1109 vpd_expectbyte(struct vpd_readstate *vrs, uint8_t expected)
1110 {
1111 	uint8_t data;
1112 
1113 	if (vpd_nextbyte(vrs, &data) != 0)
1114 		return (-1);
1115 
1116 	if (data == expected)
1117 		return (0);
1118 
1119 	vrs->cksum -= data;
1120 	vrs->val = (vrs->val << 8) + data;
1121 	vrs->bytesinval++;
1122 	return (-1);
1123 }
1124 
1125 /* return size if tag matches, -1 on no match, -2 on read error */
1126 static int
vpd_read_tag_size(struct vpd_readstate * vrs,uint8_t vpd_tag)1127 vpd_read_tag_size(struct vpd_readstate *vrs, uint8_t vpd_tag)
1128 {
1129 	uint8_t byte1, byte2;
1130 
1131 	if (vpd_expectbyte(vrs, vpd_tag) != 0)
1132 		return (-1);
1133 
1134 	if ((vpd_tag & 0x80) == 0)
1135 		return (vpd_tag & 0x07);
1136 
1137 	if (vpd_nextbyte(vrs, &byte1) != 0)
1138 		return (-2);
1139 	if (vpd_nextbyte(vrs, &byte2) != 0)
1140 		return (-2);
1141 
1142 	return ((byte2 << 8) + byte1);
1143 }
1144 
1145 /* (re)allocate buffer in multiples of 8 elements */
1146 static void*
alloc_buffer(void * buffer,size_t element_size,int needed)1147 alloc_buffer(void* buffer, size_t element_size, int needed)
1148 {
1149 	int alloc, new_alloc;
1150 
1151 	alloc = roundup2(needed, 8);
1152 	new_alloc = roundup2(needed + 1, 8);
1153 	if (alloc != new_alloc) {
1154 		buffer = reallocf(buffer,
1155 		    new_alloc * element_size, M_DEVBUF, M_WAITOK | M_ZERO);
1156 	}
1157 
1158 	return (buffer);
1159 }
1160 
1161 /* read VPD keyword and return element size, return -1 on read error */
1162 static int
vpd_read_elem_head(struct vpd_readstate * vrs,char keyword[2])1163 vpd_read_elem_head(struct vpd_readstate *vrs, char keyword[2])
1164 {
1165 	uint8_t data;
1166 
1167 	if (vpd_nextbyte(vrs, &keyword[0]) != 0)
1168 		return (-1);
1169 	if (vpd_nextbyte(vrs, &keyword[1]) != 0)
1170 		return (-1);
1171 	if (vpd_nextbyte(vrs, &data) != 0)
1172 		return (-1);
1173 
1174 	return (data);
1175 }
1176 
1177 /* read VPD data element of given size into allocated buffer */
1178 static char *
vpd_read_value(struct vpd_readstate * vrs,int size)1179 vpd_read_value(struct vpd_readstate *vrs, int size)
1180 {
1181 	int i;
1182 	char char1;
1183 	char *value;
1184 
1185 	value = malloc(size + 1, M_DEVBUF, M_WAITOK);
1186 	for (i = 0; i < size; i++) {
1187 		if (vpd_nextbyte(vrs, &char1) != 0) {
1188 			free(value, M_DEVBUF);
1189 			return (NULL);
1190 		}
1191 		value[i] = char1;
1192 	}
1193 	value[size] = '\0';
1194 
1195 	return (value);
1196 }
1197 
1198 /* read VPD into *keyword and *value, return length of data element */
1199 static int
vpd_read_elem_data(struct vpd_readstate * vrs,char keyword[2],char ** value,int maxlen)1200 vpd_read_elem_data(struct vpd_readstate *vrs, char keyword[2], char **value, int maxlen)
1201 {
1202 	int len;
1203 
1204 	len = vpd_read_elem_head(vrs, keyword);
1205 	if (len < 0 || len > maxlen)
1206 		return (-1);
1207 	*value = vpd_read_value(vrs, len);
1208 
1209 	return (len);
1210 }
1211 
1212 /* subtract all data following first byte from checksum of RV element */
1213 static void
vpd_fixup_cksum(struct vpd_readstate * vrs,char * rvstring,int len)1214 vpd_fixup_cksum(struct vpd_readstate *vrs, char *rvstring, int len)
1215 {
1216 	int i;
1217 	uint8_t fixup;
1218 
1219 	fixup = 0;
1220 	for (i = 1; i < len; i++)
1221 		fixup += rvstring[i];
1222 	vrs->cksum -= fixup;
1223 }
1224 
1225 /* fetch one read-only element and return size of heading + data */
1226 static int
next_vpd_ro_elem(struct vpd_readstate * vrs,int maxsize)1227 next_vpd_ro_elem(struct vpd_readstate *vrs, int maxsize)
1228 {
1229 	struct pcicfg_vpd *vpd;
1230 	pcicfgregs *cfg;
1231 	struct vpd_readonly *vpd_ros;
1232 	int len;
1233 
1234 	cfg = vrs->cfg;
1235 	vpd = &cfg->vpd;
1236 
1237 	if (maxsize < 3)
1238 		return (-1);
1239 	vpd->vpd_ros = alloc_buffer(vpd->vpd_ros, sizeof(*vpd->vpd_ros), vpd->vpd_rocnt);
1240 	vpd_ros = &vpd->vpd_ros[vpd->vpd_rocnt];
1241 	maxsize -= 3;
1242 	len = vpd_read_elem_data(vrs, vpd_ros->keyword, &vpd_ros->value, maxsize);
1243 	if (vpd_ros->value == NULL)
1244 		return (-1);
1245 	vpd_ros->len = len;
1246 	if (vpd_ros->keyword[0] == 'R' && vpd_ros->keyword[1] == 'V') {
1247 		vpd_fixup_cksum(vrs, vpd_ros->value, len);
1248 		if (vrs->cksum != 0) {
1249 			pci_printf(cfg,
1250 			    "invalid VPD checksum %#hhx\n", vrs->cksum);
1251 			return (-1);
1252 		}
1253 	}
1254 	vpd->vpd_rocnt++;
1255 
1256 	return (len + 3);
1257 }
1258 
1259 /* fetch one writable element and return size of heading + data */
1260 static int
next_vpd_rw_elem(struct vpd_readstate * vrs,int maxsize)1261 next_vpd_rw_elem(struct vpd_readstate *vrs, int maxsize)
1262 {
1263 	struct pcicfg_vpd *vpd;
1264 	pcicfgregs *cfg;
1265 	struct vpd_write *vpd_w;
1266 	int len;
1267 
1268 	cfg = vrs->cfg;
1269 	vpd = &cfg->vpd;
1270 
1271 	if (maxsize < 3)
1272 		return (-1);
1273 	vpd->vpd_w = alloc_buffer(vpd->vpd_w, sizeof(*vpd->vpd_w), vpd->vpd_wcnt);
1274 	if (vpd->vpd_w == NULL) {
1275 		pci_printf(cfg, "out of memory");
1276 		return (-1);
1277 	}
1278 	vpd_w = &vpd->vpd_w[vpd->vpd_wcnt];
1279 	maxsize -= 3;
1280 	vpd_w->start = vrs->off + 3 - vrs->bytesinval;
1281 	len = vpd_read_elem_data(vrs, vpd_w->keyword, &vpd_w->value, maxsize);
1282 	if (vpd_w->value == NULL)
1283 		return (-1);
1284 	vpd_w->len = len;
1285 	vpd->vpd_wcnt++;
1286 
1287 	return (len + 3);
1288 }
1289 
1290 /* free all memory allocated for VPD data */
1291 static void
vpd_free(struct pcicfg_vpd * vpd)1292 vpd_free(struct pcicfg_vpd *vpd)
1293 {
1294 	int i;
1295 
1296 	free(vpd->vpd_ident, M_DEVBUF);
1297 	for (i = 0; i < vpd->vpd_rocnt; i++)
1298 		free(vpd->vpd_ros[i].value, M_DEVBUF);
1299 	free(vpd->vpd_ros, M_DEVBUF);
1300 	vpd->vpd_rocnt = 0;
1301 	for (i = 0; i < vpd->vpd_wcnt; i++)
1302 		free(vpd->vpd_w[i].value, M_DEVBUF);
1303 	free(vpd->vpd_w, M_DEVBUF);
1304 	vpd->vpd_wcnt = 0;
1305 }
1306 
1307 #define VPD_TAG_END	((0x0f << 3) | 0)	/* small tag, len == 0 */
1308 #define VPD_TAG_IDENT	(0x02 | 0x80)		/* large tag */
1309 #define VPD_TAG_RO	(0x10 | 0x80)		/* large tag */
1310 #define VPD_TAG_RW	(0x11 | 0x80)		/* large tag */
1311 
1312 static int
pci_parse_vpd(device_t pcib,pcicfgregs * cfg)1313 pci_parse_vpd(device_t pcib, pcicfgregs *cfg)
1314 {
1315 	struct vpd_readstate vrs;
1316 	int cksumvalid;
1317 	int size, elem_size;
1318 
1319 	/* init vpd reader */
1320 	vrs.bytesinval = 0;
1321 	vrs.off = 0;
1322 	vrs.pcib = pcib;
1323 	vrs.cfg = cfg;
1324 	vrs.cksum = 0;
1325 
1326 	/* read VPD ident element - mandatory */
1327 	size = vpd_read_tag_size(&vrs, VPD_TAG_IDENT);
1328 	if (size <= 0) {
1329 		pci_printf(cfg, "no VPD ident found\n");
1330 		return (0);
1331 	}
1332 	cfg->vpd.vpd_ident = vpd_read_value(&vrs, size);
1333 	if (cfg->vpd.vpd_ident == NULL) {
1334 		pci_printf(cfg, "error accessing VPD ident data\n");
1335 		return (0);
1336 	}
1337 
1338 	/* read VPD RO elements - mandatory */
1339 	size = vpd_read_tag_size(&vrs, VPD_TAG_RO);
1340 	if (size <= 0) {
1341 		pci_printf(cfg, "no read-only VPD data found\n");
1342 		return (0);
1343 	}
1344 	while (size > 0) {
1345 		elem_size = next_vpd_ro_elem(&vrs, size);
1346 		if (elem_size < 0) {
1347 			pci_printf(cfg, "error accessing read-only VPD data\n");
1348 			return (-1);
1349 		}
1350 		size -= elem_size;
1351 	}
1352 	cksumvalid = (vrs.cksum == 0);
1353 	if (!cksumvalid)
1354 		return (-1);
1355 
1356 	/* read VPD RW elements - optional */
1357 	size = vpd_read_tag_size(&vrs, VPD_TAG_RW);
1358 	if (size == -2)
1359 		return (-1);
1360 	while (size > 0) {
1361 		elem_size = next_vpd_rw_elem(&vrs, size);
1362 		if (elem_size < 0) {
1363 			pci_printf(cfg, "error accessing writeable VPD data\n");
1364 			return (-1);
1365 		}
1366 		size -= elem_size;
1367 	}
1368 
1369 	/* read empty END tag - mandatory */
1370 	size = vpd_read_tag_size(&vrs, VPD_TAG_END);
1371 	if (size != 0) {
1372 		pci_printf(cfg, "No valid VPD end tag found\n");
1373 	}
1374 	return (0);
1375 }
1376 
1377 static void
pci_read_vpd(device_t pcib,pcicfgregs * cfg)1378 pci_read_vpd(device_t pcib, pcicfgregs *cfg)
1379 {
1380 	int status;
1381 
1382 	status = pci_parse_vpd(pcib, cfg);
1383 	if (status < 0)
1384 		vpd_free(&cfg->vpd);
1385 	cfg->vpd.vpd_cached = 1;
1386 #undef REG
1387 #undef WREG
1388 }
1389 
1390 int
pci_get_vpd_ident_method(device_t dev,device_t child,const char ** identptr)1391 pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr)
1392 {
1393 	struct pci_devinfo *dinfo = device_get_ivars(child);
1394 	pcicfgregs *cfg = &dinfo->cfg;
1395 
1396 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1397 		pci_read_vpd(device_get_parent(dev), cfg);
1398 
1399 	*identptr = cfg->vpd.vpd_ident;
1400 
1401 	if (*identptr == NULL)
1402 		return (ENXIO);
1403 
1404 	return (0);
1405 }
1406 
1407 int
pci_get_vpd_readonly_method(device_t dev,device_t child,const char * kw,const char ** vptr)1408 pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw,
1409 	const char **vptr)
1410 {
1411 	struct pci_devinfo *dinfo = device_get_ivars(child);
1412 	pcicfgregs *cfg = &dinfo->cfg;
1413 	int i;
1414 
1415 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1416 		pci_read_vpd(device_get_parent(dev), cfg);
1417 
1418 	for (i = 0; i < cfg->vpd.vpd_rocnt; i++)
1419 		if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword,
1420 		    sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) {
1421 			*vptr = cfg->vpd.vpd_ros[i].value;
1422 			return (0);
1423 		}
1424 
1425 	*vptr = NULL;
1426 	return (ENXIO);
1427 }
1428 
1429 struct pcicfg_vpd *
pci_fetch_vpd_list(device_t dev)1430 pci_fetch_vpd_list(device_t dev)
1431 {
1432 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1433 	pcicfgregs *cfg = &dinfo->cfg;
1434 
1435 	if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0)
1436 		pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg);
1437 	return (&cfg->vpd);
1438 }
1439 
1440 /*
1441  * Find the requested HyperTransport capability and return the offset
1442  * in configuration space via the pointer provided.  The function
1443  * returns 0 on success and an error code otherwise.
1444  */
1445 int
pci_find_htcap_method(device_t dev,device_t child,int capability,int * capreg)1446 pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg)
1447 {
1448 	int ptr, error;
1449 	uint16_t val;
1450 
1451 	error = pci_find_cap(child, PCIY_HT, &ptr);
1452 	if (error)
1453 		return (error);
1454 
1455 	/*
1456 	 * Traverse the capabilities list checking each HT capability
1457 	 * to see if it matches the requested HT capability.
1458 	 */
1459 	for (;;) {
1460 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1461 		if (capability == PCIM_HTCAP_SLAVE ||
1462 		    capability == PCIM_HTCAP_HOST)
1463 			val &= 0xe000;
1464 		else
1465 			val &= PCIM_HTCMD_CAP_MASK;
1466 		if (val == capability) {
1467 			if (capreg != NULL)
1468 				*capreg = ptr;
1469 			return (0);
1470 		}
1471 
1472 		/* Skip to the next HT capability. */
1473 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1474 			break;
1475 	}
1476 
1477 	return (ENOENT);
1478 }
1479 
1480 /*
1481  * Find the next requested HyperTransport capability after start and return
1482  * the offset in configuration space via the pointer provided.  The function
1483  * returns 0 on success and an error code otherwise.
1484  */
1485 int
pci_find_next_htcap_method(device_t dev,device_t child,int capability,int start,int * capreg)1486 pci_find_next_htcap_method(device_t dev, device_t child, int capability,
1487     int start, int *capreg)
1488 {
1489 	int ptr;
1490 	uint16_t val;
1491 
1492 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT,
1493 	    ("start capability is not HyperTransport capability"));
1494 	ptr = start;
1495 
1496 	/*
1497 	 * Traverse the capabilities list checking each HT capability
1498 	 * to see if it matches the requested HT capability.
1499 	 */
1500 	for (;;) {
1501 		/* Skip to the next HT capability. */
1502 		if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0)
1503 			break;
1504 
1505 		val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2);
1506 		if (capability == PCIM_HTCAP_SLAVE ||
1507 		    capability == PCIM_HTCAP_HOST)
1508 			val &= 0xe000;
1509 		else
1510 			val &= PCIM_HTCMD_CAP_MASK;
1511 		if (val == capability) {
1512 			if (capreg != NULL)
1513 				*capreg = ptr;
1514 			return (0);
1515 		}
1516 	}
1517 
1518 	return (ENOENT);
1519 }
1520 
1521 /*
1522  * Find the requested capability and return the offset in
1523  * configuration space via the pointer provided.  The function returns
1524  * 0 on success and an error code otherwise.
1525  */
1526 int
pci_find_cap_method(device_t dev,device_t child,int capability,int * capreg)1527 pci_find_cap_method(device_t dev, device_t child, int capability,
1528     int *capreg)
1529 {
1530 	struct pci_devinfo *dinfo = device_get_ivars(child);
1531 	pcicfgregs *cfg = &dinfo->cfg;
1532 	uint32_t status;
1533 	uint8_t ptr;
1534 	int cnt;
1535 
1536 	/*
1537 	 * Check the CAP_LIST bit of the PCI status register first.
1538 	 */
1539 	status = pci_read_config(child, PCIR_STATUS, 2);
1540 	if (!(status & PCIM_STATUS_CAPPRESENT))
1541 		return (ENXIO);
1542 
1543 	/*
1544 	 * Determine the start pointer of the capabilities list.
1545 	 */
1546 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
1547 	case PCIM_HDRTYPE_NORMAL:
1548 	case PCIM_HDRTYPE_BRIDGE:
1549 		ptr = PCIR_CAP_PTR;
1550 		break;
1551 	case PCIM_HDRTYPE_CARDBUS:
1552 		ptr = PCIR_CAP_PTR_2;
1553 		break;
1554 	default:
1555 		/* XXX: panic? */
1556 		return (ENXIO);		/* no extended capabilities support */
1557 	}
1558 	ptr = pci_read_config(child, ptr, 1);
1559 
1560 	/*
1561 	 * Traverse the capabilities list.  Limit by total theoretical
1562 	 * maximum number of caps: capability needs at least id and
1563 	 * next registers, and any type X header cannot contain caps.
1564 	 */
1565 	for (cnt = 0; ptr != 0 && cnt < (PCIE_REGMAX - 0x40) / 2; cnt++) {
1566 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1567 			if (capreg != NULL)
1568 				*capreg = ptr;
1569 			return (0);
1570 		}
1571 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1572 	}
1573 
1574 	return (ENOENT);
1575 }
1576 
1577 /*
1578  * Find the next requested capability after start and return the offset in
1579  * configuration space via the pointer provided.  The function returns
1580  * 0 on success and an error code otherwise.
1581  */
1582 int
pci_find_next_cap_method(device_t dev,device_t child,int capability,int start,int * capreg)1583 pci_find_next_cap_method(device_t dev, device_t child, int capability,
1584     int start, int *capreg)
1585 {
1586 	uint8_t ptr;
1587 
1588 	KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability,
1589 	    ("start capability is not expected capability"));
1590 
1591 	ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1);
1592 	while (ptr != 0) {
1593 		if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) {
1594 			if (capreg != NULL)
1595 				*capreg = ptr;
1596 			return (0);
1597 		}
1598 		ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1);
1599 	}
1600 
1601 	return (ENOENT);
1602 }
1603 
1604 /*
1605  * Find the requested extended capability and return the offset in
1606  * configuration space via the pointer provided.  The function returns
1607  * 0 on success and an error code otherwise.
1608  */
1609 int
pci_find_extcap_method(device_t dev,device_t child,int capability,int * capreg)1610 pci_find_extcap_method(device_t dev, device_t child, int capability,
1611     int *capreg)
1612 {
1613 	struct pci_devinfo *dinfo = device_get_ivars(child);
1614 	pcicfgregs *cfg = &dinfo->cfg;
1615 	uint32_t ecap;
1616 	uint16_t ptr;
1617 
1618 	/* Only supported for PCI-express devices. */
1619 	if (cfg->pcie.pcie_location == 0)
1620 		return (ENXIO);
1621 
1622 	ptr = PCIR_EXTCAP;
1623 	ecap = pci_read_config(child, ptr, 4);
1624 	if (ecap == 0xffffffff || ecap == 0)
1625 		return (ENOENT);
1626 	for (;;) {
1627 		if (PCI_EXTCAP_ID(ecap) == capability) {
1628 			if (capreg != NULL)
1629 				*capreg = ptr;
1630 			return (0);
1631 		}
1632 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1633 		if (ptr == 0)
1634 			break;
1635 		ecap = pci_read_config(child, ptr, 4);
1636 	}
1637 
1638 	return (ENOENT);
1639 }
1640 
1641 /*
1642  * Find the next requested extended capability after start and return the
1643  * offset in configuration space via the pointer provided.  The function
1644  * returns 0 on success and an error code otherwise.
1645  */
1646 int
pci_find_next_extcap_method(device_t dev,device_t child,int capability,int start,int * capreg)1647 pci_find_next_extcap_method(device_t dev, device_t child, int capability,
1648     int start, int *capreg)
1649 {
1650 	struct pci_devinfo *dinfo = device_get_ivars(child);
1651 	pcicfgregs *cfg = &dinfo->cfg;
1652 	uint32_t ecap;
1653 	uint16_t ptr;
1654 
1655 	/* Only supported for PCI-express devices. */
1656 	if (cfg->pcie.pcie_location == 0)
1657 		return (ENXIO);
1658 
1659 	ecap = pci_read_config(child, start, 4);
1660 	KASSERT(PCI_EXTCAP_ID(ecap) == capability,
1661 	    ("start extended capability is not expected capability"));
1662 	ptr = PCI_EXTCAP_NEXTPTR(ecap);
1663 	while (ptr != 0) {
1664 		ecap = pci_read_config(child, ptr, 4);
1665 		if (PCI_EXTCAP_ID(ecap) == capability) {
1666 			if (capreg != NULL)
1667 				*capreg = ptr;
1668 			return (0);
1669 		}
1670 		ptr = PCI_EXTCAP_NEXTPTR(ecap);
1671 	}
1672 
1673 	return (ENOENT);
1674 }
1675 
1676 /*
1677  * Support for MSI-X message interrupts.
1678  */
1679 static void
pci_write_msix_entry(device_t dev,u_int index,uint64_t address,uint32_t data)1680 pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data)
1681 {
1682 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1683 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1684 	uint32_t offset;
1685 
1686 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1687 	offset = msix->msix_table_offset + index * 16;
1688 	bus_write_4(msix->msix_table_res, offset, address & 0xffffffff);
1689 	bus_write_4(msix->msix_table_res, offset + 4, address >> 32);
1690 	bus_write_4(msix->msix_table_res, offset + 8, data);
1691 }
1692 
1693 void
pci_enable_msix_method(device_t dev,device_t child,u_int index,uint64_t address,uint32_t data)1694 pci_enable_msix_method(device_t dev, device_t child, u_int index,
1695     uint64_t address, uint32_t data)
1696 {
1697 
1698 	if (pci_msix_rewrite_table) {
1699 		struct pci_devinfo *dinfo = device_get_ivars(child);
1700 		struct pcicfg_msix *msix = &dinfo->cfg.msix;
1701 
1702 		/*
1703 		 * Some VM hosts require MSIX to be disabled in the
1704 		 * control register before updating the MSIX table
1705 		 * entries are allowed. It is not enough to only
1706 		 * disable MSIX while updating a single entry. MSIX
1707 		 * must be disabled while updating all entries in the
1708 		 * table.
1709 		 */
1710 		pci_write_config(child,
1711 		    msix->msix_location + PCIR_MSIX_CTRL,
1712 		    msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2);
1713 		pci_resume_msix(child);
1714 	} else
1715 		pci_write_msix_entry(child, index, address, data);
1716 
1717 	/* Enable MSI -> HT mapping. */
1718 	pci_ht_map_msi(child, address);
1719 }
1720 
1721 void
pci_mask_msix(device_t dev,u_int index)1722 pci_mask_msix(device_t dev, u_int index)
1723 {
1724 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1725 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1726 	uint32_t offset, val;
1727 
1728 	KASSERT(PCI_MSIX_MSGNUM(msix->msix_ctrl) > index, ("bogus index"));
1729 	offset = msix->msix_table_offset + index * 16 + 12;
1730 	val = bus_read_4(msix->msix_table_res, offset);
1731 	val |= PCIM_MSIX_VCTRL_MASK;
1732 
1733 	/*
1734 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1735 	 * register, so always write the new value.
1736 	 */
1737 	bus_write_4(msix->msix_table_res, offset, val);
1738 }
1739 
1740 void
pci_unmask_msix(device_t dev,u_int index)1741 pci_unmask_msix(device_t dev, u_int index)
1742 {
1743 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1744 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1745 	uint32_t offset, val;
1746 
1747 	KASSERT(PCI_MSIX_MSGNUM(msix->msix_ctrl) > index, ("bogus index"));
1748 	offset = msix->msix_table_offset + index * 16 + 12;
1749 	val = bus_read_4(msix->msix_table_res, offset);
1750 	val &= ~PCIM_MSIX_VCTRL_MASK;
1751 
1752 	/*
1753 	 * Some devices (e.g. Samsung PM961) do not support reads of this
1754 	 * register, so always write the new value.
1755 	 */
1756 	bus_write_4(msix->msix_table_res, offset, val);
1757 }
1758 
1759 int
pci_pending_msix(device_t dev,u_int index)1760 pci_pending_msix(device_t dev, u_int index)
1761 {
1762 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1763 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1764 	uint32_t offset, bit;
1765 
1766 	KASSERT(msix->msix_table_len > index, ("bogus index"));
1767 	offset = msix->msix_pba_offset + (index / 32) * 4;
1768 	bit = 1 << index % 32;
1769 	return (bus_read_4(msix->msix_pba_res, offset) & bit);
1770 }
1771 
1772 /*
1773  * Restore MSI-X registers and table during resume.  If MSI-X is
1774  * enabled then walk the virtual table to restore the actual MSI-X
1775  * table.
1776  */
1777 static void
pci_resume_msix(device_t dev)1778 pci_resume_msix(device_t dev)
1779 {
1780 	struct pci_devinfo *dinfo = device_get_ivars(dev);
1781 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1782 	struct msix_table_entry *mte;
1783 	struct msix_vector *mv;
1784 	u_int i, msgnum;
1785 
1786 	if (msix->msix_alloc > 0) {
1787 		msgnum = PCI_MSIX_MSGNUM(msix->msix_ctrl);
1788 
1789 		/* First, mask all vectors. */
1790 		for (i = 0; i < msgnum; i++)
1791 			pci_mask_msix(dev, i);
1792 
1793 		/* Second, program any messages with at least one handler. */
1794 		for (i = 0; i < msix->msix_table_len; i++) {
1795 			mte = &msix->msix_table[i];
1796 			if (mte->mte_vector == 0 || mte->mte_handlers == 0)
1797 				continue;
1798 			mv = &msix->msix_vectors[mte->mte_vector - 1];
1799 			pci_write_msix_entry(dev, i, mv->mv_address,
1800 			    mv->mv_data);
1801 			pci_unmask_msix(dev, i);
1802 		}
1803 	}
1804 	pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL,
1805 	    msix->msix_ctrl, 2);
1806 }
1807 
1808 /*
1809  * Attempt to allocate *count MSI-X messages.  The actual number allocated is
1810  * returned in *count.  After this function returns, each message will be
1811  * available to the driver as SYS_RES_IRQ resources starting at rid 1.
1812  */
1813 int
pci_alloc_msix_method(device_t dev,device_t child,int * count)1814 pci_alloc_msix_method(device_t dev, device_t child, int *count)
1815 {
1816 	struct pci_devinfo *dinfo = device_get_ivars(child);
1817 	pcicfgregs *cfg = &dinfo->cfg;
1818 	struct resource_list_entry *rle;
1819 	u_int actual, i, max;
1820 	int error, irq;
1821 	uint16_t ctrl, msgnum;
1822 
1823 	/* Don't let count == 0 get us into trouble. */
1824 	if (*count < 1)
1825 		return (EINVAL);
1826 
1827 	/* If rid 0 is allocated, then fail. */
1828 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
1829 	if (rle != NULL && rle->res != NULL)
1830 		return (ENXIO);
1831 
1832 	/* Already have allocated messages? */
1833 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
1834 		return (ENXIO);
1835 
1836 	/* If MSI-X is blacklisted for this system, fail. */
1837 	if (pci_msix_blacklisted())
1838 		return (ENXIO);
1839 
1840 	/* MSI-X capability present? */
1841 	if (cfg->msix.msix_location == 0 || !pci_do_msix)
1842 		return (ENODEV);
1843 
1844 	/* Make sure the appropriate BARs are mapped. */
1845 	rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1846 	    cfg->msix.msix_table_bar);
1847 	if (rle == NULL || rle->res == NULL ||
1848 	    !(rman_get_flags(rle->res) & RF_ACTIVE))
1849 		return (ENXIO);
1850 	cfg->msix.msix_table_res = rle->res;
1851 	if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) {
1852 		rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY,
1853 		    cfg->msix.msix_pba_bar);
1854 		if (rle == NULL || rle->res == NULL ||
1855 		    !(rman_get_flags(rle->res) & RF_ACTIVE))
1856 			return (ENXIO);
1857 	}
1858 	cfg->msix.msix_pba_res = rle->res;
1859 
1860 	ctrl = pci_read_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1861 	    2);
1862 	msgnum = PCI_MSIX_MSGNUM(ctrl);
1863 	if (bootverbose)
1864 		device_printf(child,
1865 		    "attempting to allocate %d MSI-X vectors (%d supported)\n",
1866 		    *count, msgnum);
1867 	max = min(*count, msgnum);
1868 	for (i = 0; i < max; i++) {
1869 		/* Allocate a message. */
1870 		error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq);
1871 		if (error) {
1872 			if (i == 0)
1873 				return (error);
1874 			break;
1875 		}
1876 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
1877 		    irq, 1);
1878 	}
1879 	actual = i;
1880 
1881 	if (bootverbose) {
1882 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1);
1883 		if (actual == 1)
1884 			device_printf(child, "using IRQ %ju for MSI-X\n",
1885 			    rle->start);
1886 		else {
1887 			bool run;
1888 
1889 			/*
1890 			 * Be fancy and try to print contiguous runs of
1891 			 * IRQ values as ranges.  'irq' is the previous IRQ.
1892 			 * 'run' is true if we are in a range.
1893 			 */
1894 			device_printf(child, "using IRQs %ju", rle->start);
1895 			irq = rle->start;
1896 			run = false;
1897 			for (i = 1; i < actual; i++) {
1898 				rle = resource_list_find(&dinfo->resources,
1899 				    SYS_RES_IRQ, i + 1);
1900 
1901 				/* Still in a run? */
1902 				if (rle->start == irq + 1) {
1903 					run = true;
1904 					irq++;
1905 					continue;
1906 				}
1907 
1908 				/* Finish previous range. */
1909 				if (run) {
1910 					printf("-%d", irq);
1911 					run = false;
1912 				}
1913 
1914 				/* Start new range. */
1915 				printf(",%ju", rle->start);
1916 				irq = rle->start;
1917 			}
1918 
1919 			/* Unfinished range? */
1920 			if (run)
1921 				printf("-%d", irq);
1922 			printf(" for MSI-X\n");
1923 		}
1924 	}
1925 
1926 	/* Mask all vectors. */
1927 	for (i = 0; i < msgnum; i++)
1928 		pci_mask_msix(child, i);
1929 
1930 	/* Allocate and initialize vector data and virtual table. */
1931 	cfg->msix.msix_vectors = mallocarray(actual, sizeof(struct msix_vector),
1932 	    M_DEVBUF, M_WAITOK | M_ZERO);
1933 	cfg->msix.msix_table = mallocarray(actual,
1934 	    sizeof(struct msix_table_entry), M_DEVBUF, M_WAITOK | M_ZERO);
1935 	for (i = 0; i < actual; i++) {
1936 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
1937 		cfg->msix.msix_vectors[i].mv_irq = rle->start;
1938 		cfg->msix.msix_table[i].mte_vector = i + 1;
1939 	}
1940 
1941 	/* Update control register to enable MSI-X. */
1942 	ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE;
1943 	pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL,
1944 	    ctrl, 2);
1945 	cfg->msix.msix_ctrl = ctrl;
1946 
1947 	/* Update counts of alloc'd messages. */
1948 	cfg->msix.msix_alloc = actual;
1949 	cfg->msix.msix_table_len = actual;
1950 	*count = actual;
1951 	return (0);
1952 }
1953 
1954 /*
1955  * By default, pci_alloc_msix() will assign the allocated IRQ
1956  * resources consecutively to the first N messages in the MSI-X table.
1957  * However, device drivers may want to use different layouts if they
1958  * either receive fewer messages than they asked for, or they wish to
1959  * populate the MSI-X table sparsely.  This method allows the driver
1960  * to specify what layout it wants.  It must be called after a
1961  * successful pci_alloc_msix() but before any of the associated
1962  * SYS_RES_IRQ resources are allocated via bus_alloc_resource().
1963  *
1964  * The 'vectors' array contains 'count' message vectors.  The array
1965  * maps directly to the MSI-X table in that index 0 in the array
1966  * specifies the vector for the first message in the MSI-X table, etc.
1967  * The vector value in each array index can either be 0 to indicate
1968  * that no vector should be assigned to a message slot, or it can be a
1969  * number from 1 to N (where N is the count returned from a
1970  * succcessful call to pci_alloc_msix()) to indicate which message
1971  * vector (IRQ) to be used for the corresponding message.
1972  *
1973  * On successful return, each message with a non-zero vector will have
1974  * an associated SYS_RES_IRQ whose rid is equal to the array index +
1975  * 1.  Additionally, if any of the IRQs allocated via the previous
1976  * call to pci_alloc_msix() are not used in the mapping, those IRQs
1977  * will be freed back to the system automatically.
1978  *
1979  * For example, suppose a driver has a MSI-X table with 6 messages and
1980  * asks for 6 messages, but pci_alloc_msix() only returns a count of
1981  * 3.  Call the three vectors allocated by pci_alloc_msix() A, B, and
1982  * C.  After the call to pci_alloc_msix(), the device will be setup to
1983  * have an MSI-X table of ABC--- (where - means no vector assigned).
1984  * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 },
1985  * then the MSI-X table will look like A-AB-B, and the 'C' vector will
1986  * be freed back to the system.  This device will also have valid
1987  * SYS_RES_IRQ rids of 1, 3, 4, and 6.
1988  *
1989  * In any case, the SYS_RES_IRQ rid X will always map to the message
1990  * at MSI-X table index X - 1 and will only be valid if a vector is
1991  * assigned to that table entry.
1992  */
1993 int
pci_remap_msix_method(device_t dev,device_t child,int count,const u_int * vectors)1994 pci_remap_msix_method(device_t dev, device_t child, int count,
1995     const u_int *vectors)
1996 {
1997 	struct pci_devinfo *dinfo = device_get_ivars(child);
1998 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
1999 	struct resource_list_entry *rle;
2000 	u_int i, irq, j;
2001 	bool *used;
2002 
2003 	/*
2004 	 * Have to have at least one message in the table but the
2005 	 * table can't be bigger than the actual MSI-X table in the
2006 	 * device.
2007 	 */
2008 	if (count < 1 || count > PCI_MSIX_MSGNUM(msix->msix_ctrl))
2009 		return (EINVAL);
2010 
2011 	/* Sanity check the vectors. */
2012 	for (i = 0; i < count; i++)
2013 		if (vectors[i] > msix->msix_alloc)
2014 			return (EINVAL);
2015 
2016 	/*
2017 	 * Make sure there aren't any holes in the vectors to be used.
2018 	 * It's a big pain to support it, and it doesn't really make
2019 	 * sense anyway.  Also, at least one vector must be used.
2020 	 */
2021 	used = mallocarray(msix->msix_alloc, sizeof(*used), M_DEVBUF, M_WAITOK |
2022 	    M_ZERO);
2023 	for (i = 0; i < count; i++)
2024 		if (vectors[i] != 0)
2025 			used[vectors[i] - 1] = true;
2026 	for (i = 0; i < msix->msix_alloc - 1; i++)
2027 		if (!used[i] && used[i + 1]) {
2028 			free(used, M_DEVBUF);
2029 			return (EINVAL);
2030 		}
2031 	if (!used[0]) {
2032 		free(used, M_DEVBUF);
2033 		return (EINVAL);
2034 	}
2035 
2036 	/* Make sure none of the resources are allocated. */
2037 	for (i = 0; i < msix->msix_table_len; i++) {
2038 		if (msix->msix_table[i].mte_vector == 0)
2039 			continue;
2040 		if (msix->msix_table[i].mte_handlers > 0) {
2041 			free(used, M_DEVBUF);
2042 			return (EBUSY);
2043 		}
2044 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2045 		KASSERT(rle != NULL, ("missing resource"));
2046 		if (rle->res != NULL) {
2047 			free(used, M_DEVBUF);
2048 			return (EBUSY);
2049 		}
2050 	}
2051 
2052 	/* Free the existing resource list entries. */
2053 	for (i = 0; i < msix->msix_table_len; i++) {
2054 		if (msix->msix_table[i].mte_vector == 0)
2055 			continue;
2056 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2057 	}
2058 
2059 	/*
2060 	 * Build the new virtual table keeping track of which vectors are
2061 	 * used.
2062 	 */
2063 	free(msix->msix_table, M_DEVBUF);
2064 	msix->msix_table = mallocarray(count, sizeof(struct msix_table_entry),
2065 	    M_DEVBUF, M_WAITOK | M_ZERO);
2066 	for (i = 0; i < count; i++)
2067 		msix->msix_table[i].mte_vector = vectors[i];
2068 	msix->msix_table_len = count;
2069 
2070 	/* Free any unused IRQs and resize the vectors array if necessary. */
2071 	j = msix->msix_alloc - 1;
2072 	if (!used[j]) {
2073 		struct msix_vector *vec;
2074 
2075 		while (!used[j]) {
2076 			PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2077 			    msix->msix_vectors[j].mv_irq);
2078 			j--;
2079 		}
2080 		vec = mallocarray(j + 1, sizeof(struct msix_vector), M_DEVBUF,
2081 		    M_WAITOK);
2082 		bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) *
2083 		    (j + 1));
2084 		free(msix->msix_vectors, M_DEVBUF);
2085 		msix->msix_vectors = vec;
2086 		msix->msix_alloc = j + 1;
2087 	}
2088 	free(used, M_DEVBUF);
2089 
2090 	/* Map the IRQs onto the rids. */
2091 	for (i = 0; i < count; i++) {
2092 		if (vectors[i] == 0)
2093 			continue;
2094 		irq = msix->msix_vectors[vectors[i] - 1].mv_irq;
2095 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq,
2096 		    irq, 1);
2097 	}
2098 
2099 	if (bootverbose) {
2100 		device_printf(child, "Remapped MSI-X IRQs as: ");
2101 		for (i = 0; i < count; i++) {
2102 			if (i != 0)
2103 				printf(", ");
2104 			if (vectors[i] == 0)
2105 				printf("---");
2106 			else
2107 				printf("%d",
2108 				    msix->msix_vectors[vectors[i] - 1].mv_irq);
2109 		}
2110 		printf("\n");
2111 	}
2112 
2113 	return (0);
2114 }
2115 
2116 static int
pci_release_msix(device_t dev,device_t child)2117 pci_release_msix(device_t dev, device_t child)
2118 {
2119 	struct pci_devinfo *dinfo = device_get_ivars(child);
2120 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2121 	struct resource_list_entry *rle;
2122 	u_int i;
2123 
2124 	/* Do we have any messages to release? */
2125 	if (msix->msix_alloc == 0)
2126 		return (ENODEV);
2127 
2128 	/* Make sure none of the resources are allocated. */
2129 	for (i = 0; i < msix->msix_table_len; i++) {
2130 		if (msix->msix_table[i].mte_vector == 0)
2131 			continue;
2132 		if (msix->msix_table[i].mte_handlers > 0)
2133 			return (EBUSY);
2134 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2135 		KASSERT(rle != NULL, ("missing resource"));
2136 		if (rle->res != NULL)
2137 			return (EBUSY);
2138 	}
2139 
2140 	/* Update control register to disable MSI-X. */
2141 	msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE;
2142 	pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL,
2143 	    msix->msix_ctrl, 2);
2144 
2145 	/* Free the resource list entries. */
2146 	for (i = 0; i < msix->msix_table_len; i++) {
2147 		if (msix->msix_table[i].mte_vector == 0)
2148 			continue;
2149 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2150 	}
2151 	free(msix->msix_table, M_DEVBUF);
2152 	msix->msix_table_len = 0;
2153 
2154 	/* Release the IRQs. */
2155 	for (i = 0; i < msix->msix_alloc; i++)
2156 		PCIB_RELEASE_MSIX(device_get_parent(dev), child,
2157 		    msix->msix_vectors[i].mv_irq);
2158 	free(msix->msix_vectors, M_DEVBUF);
2159 	msix->msix_alloc = 0;
2160 	return (0);
2161 }
2162 
2163 /*
2164  * Return the max supported MSI-X messages this device supports.
2165  * Basically, assuming the MD code can alloc messages, this function
2166  * should return the maximum value that pci_alloc_msix() can return.
2167  * Thus, it is subject to the tunables, etc.
2168  */
2169 int
pci_msix_count_method(device_t dev,device_t child)2170 pci_msix_count_method(device_t dev, device_t child)
2171 {
2172 	struct pci_devinfo *dinfo = device_get_ivars(child);
2173 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2174 	uint16_t ctrl;
2175 
2176 	if (pci_do_msix && msix->msix_location != 0) {
2177 		ctrl = pci_read_config(child, msix->msix_location +
2178 		    PCIR_MSI_CTRL, 2);
2179 		return (PCI_MSIX_MSGNUM(ctrl));
2180 	}
2181 	return (0);
2182 }
2183 
2184 int
pci_msix_pba_bar_method(device_t dev,device_t child)2185 pci_msix_pba_bar_method(device_t dev, device_t child)
2186 {
2187 	struct pci_devinfo *dinfo = device_get_ivars(child);
2188 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2189 
2190 	if (pci_do_msix && msix->msix_location != 0)
2191 		return (msix->msix_pba_bar);
2192 	return (-1);
2193 }
2194 
2195 int
pci_msix_table_bar_method(device_t dev,device_t child)2196 pci_msix_table_bar_method(device_t dev, device_t child)
2197 {
2198 	struct pci_devinfo *dinfo = device_get_ivars(child);
2199 	struct pcicfg_msix *msix = &dinfo->cfg.msix;
2200 
2201 	if (pci_do_msix && msix->msix_location != 0)
2202 		return (msix->msix_table_bar);
2203 	return (-1);
2204 }
2205 
2206 /*
2207  * HyperTransport MSI mapping control
2208  */
2209 void
pci_ht_map_msi(device_t dev,uint64_t addr)2210 pci_ht_map_msi(device_t dev, uint64_t addr)
2211 {
2212 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2213 	struct pcicfg_ht *ht = &dinfo->cfg.ht;
2214 
2215 	if (!ht->ht_msimap)
2216 		return;
2217 
2218 	if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) &&
2219 	    ht->ht_msiaddr >> 20 == addr >> 20) {
2220 		/* Enable MSI -> HT mapping. */
2221 		ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE;
2222 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2223 		    ht->ht_msictrl, 2);
2224 	}
2225 
2226 	if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) {
2227 		/* Disable MSI -> HT mapping. */
2228 		ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE;
2229 		pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND,
2230 		    ht->ht_msictrl, 2);
2231 	}
2232 }
2233 
2234 int
pci_get_relaxed_ordering_enabled(device_t dev)2235 pci_get_relaxed_ordering_enabled(device_t dev)
2236 {
2237 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2238 	int cap;
2239 	uint16_t val;
2240 
2241 	cap = dinfo->cfg.pcie.pcie_location;
2242 	if (cap == 0)
2243 		return (0);
2244 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2245 	val &= PCIEM_CTL_RELAXED_ORD_ENABLE;
2246 	return (val != 0);
2247 }
2248 
2249 int
pci_get_max_payload(device_t dev)2250 pci_get_max_payload(device_t dev)
2251 {
2252 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2253 	int cap;
2254 	uint16_t val;
2255 
2256 	cap = dinfo->cfg.pcie.pcie_location;
2257 	if (cap == 0)
2258 		return (0);
2259 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2260 	val &= PCIEM_CTL_MAX_PAYLOAD;
2261 	val >>= 5;
2262 	return (1 << (val + 7));
2263 }
2264 
2265 int
pci_get_max_read_req(device_t dev)2266 pci_get_max_read_req(device_t dev)
2267 {
2268 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2269 	int cap;
2270 	uint16_t val;
2271 
2272 	cap = dinfo->cfg.pcie.pcie_location;
2273 	if (cap == 0)
2274 		return (0);
2275 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2276 	val &= PCIEM_CTL_MAX_READ_REQUEST;
2277 	val >>= 12;
2278 	return (1 << (val + 7));
2279 }
2280 
2281 int
pci_set_max_read_req(device_t dev,int size)2282 pci_set_max_read_req(device_t dev, int size)
2283 {
2284 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2285 	int cap;
2286 	uint16_t val;
2287 
2288 	cap = dinfo->cfg.pcie.pcie_location;
2289 	if (cap == 0)
2290 		return (0);
2291 	if (size < 128)
2292 		size = 128;
2293 	if (size > 4096)
2294 		size = 4096;
2295 	size = (1 << (fls(size) - 1));
2296 	val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
2297 	val &= ~PCIEM_CTL_MAX_READ_REQUEST;
2298 	val |= (fls(size) - 8) << 12;
2299 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2);
2300 	return (size);
2301 }
2302 
2303 uint32_t
pcie_read_config(device_t dev,int reg,int width)2304 pcie_read_config(device_t dev, int reg, int width)
2305 {
2306 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2307 	int cap;
2308 
2309 	cap = dinfo->cfg.pcie.pcie_location;
2310 	if (cap == 0) {
2311 		if (width == 2)
2312 			return (0xffff);
2313 		return (0xffffffff);
2314 	}
2315 
2316 	return (pci_read_config(dev, cap + reg, width));
2317 }
2318 
2319 void
pcie_write_config(device_t dev,int reg,uint32_t value,int width)2320 pcie_write_config(device_t dev, int reg, uint32_t value, int width)
2321 {
2322 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2323 	int cap;
2324 
2325 	cap = dinfo->cfg.pcie.pcie_location;
2326 	if (cap == 0)
2327 		return;
2328 	pci_write_config(dev, cap + reg, value, width);
2329 }
2330 
2331 /*
2332  * Adjusts a PCI-e capability register by clearing the bits in mask
2333  * and setting the bits in (value & mask).  Bits not set in mask are
2334  * not adjusted.
2335  *
2336  * Returns the old value on success or all ones on failure.
2337  */
2338 uint32_t
pcie_adjust_config(device_t dev,int reg,uint32_t mask,uint32_t value,int width)2339 pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value,
2340     int width)
2341 {
2342 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2343 	uint32_t old, new;
2344 	int cap;
2345 
2346 	cap = dinfo->cfg.pcie.pcie_location;
2347 	if (cap == 0) {
2348 		if (width == 2)
2349 			return (0xffff);
2350 		return (0xffffffff);
2351 	}
2352 
2353 	old = pci_read_config(dev, cap + reg, width);
2354 	new = old & ~mask;
2355 	new |= (value & mask);
2356 	pci_write_config(dev, cap + reg, new, width);
2357 	return (old);
2358 }
2359 
2360 /*
2361  * Support for MSI message signalled interrupts.
2362  */
2363 void
pci_enable_msi_method(device_t dev,device_t child,uint64_t address,uint16_t data)2364 pci_enable_msi_method(device_t dev, device_t child, uint64_t address,
2365     uint16_t data)
2366 {
2367 	struct pci_devinfo *dinfo = device_get_ivars(child);
2368 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2369 
2370 	/* Write data and address values. */
2371 	pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR,
2372 	    address & 0xffffffff, 4);
2373 	if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2374 		pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH,
2375 		    address >> 32, 4);
2376 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT,
2377 		    data, 2);
2378 	} else
2379 		pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data,
2380 		    2);
2381 
2382 	/* Enable MSI in the control register. */
2383 	msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE;
2384 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2385 	    msi->msi_ctrl, 2);
2386 
2387 	/* Enable MSI -> HT mapping. */
2388 	pci_ht_map_msi(child, address);
2389 }
2390 
2391 void
pci_disable_msi_method(device_t dev,device_t child)2392 pci_disable_msi_method(device_t dev, device_t child)
2393 {
2394 	struct pci_devinfo *dinfo = device_get_ivars(child);
2395 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2396 
2397 	/* Disable MSI -> HT mapping. */
2398 	pci_ht_map_msi(child, 0);
2399 
2400 	/* Disable MSI in the control register. */
2401 	msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE;
2402 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2403 	    msi->msi_ctrl, 2);
2404 }
2405 
2406 /*
2407  * Restore MSI registers during resume.  If MSI is enabled then
2408  * restore the data and address registers in addition to the control
2409  * register.
2410  */
2411 static void
pci_resume_msi(device_t dev)2412 pci_resume_msi(device_t dev)
2413 {
2414 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2415 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2416 	uint64_t address;
2417 	uint16_t data;
2418 
2419 	if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) {
2420 		address = msi->msi_addr;
2421 		data = msi->msi_data;
2422 		pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR,
2423 		    address & 0xffffffff, 4);
2424 		if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) {
2425 			pci_write_config(dev, msi->msi_location +
2426 			    PCIR_MSI_ADDR_HIGH, address >> 32, 4);
2427 			pci_write_config(dev, msi->msi_location +
2428 			    PCIR_MSI_DATA_64BIT, data, 2);
2429 		} else
2430 			pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA,
2431 			    data, 2);
2432 	}
2433 	pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl,
2434 	    2);
2435 }
2436 
2437 static int
pci_remap_intr_method(device_t bus,device_t dev,u_int irq)2438 pci_remap_intr_method(device_t bus, device_t dev, u_int irq)
2439 {
2440 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2441 	pcicfgregs *cfg = &dinfo->cfg;
2442 	struct resource_list_entry *rle;
2443 	struct msix_table_entry *mte;
2444 	struct msix_vector *mv;
2445 	uint64_t addr;
2446 	uint32_t data;
2447 	u_int i, j;
2448 	int error;
2449 
2450 	/*
2451 	 * Handle MSI first.  We try to find this IRQ among our list
2452 	 * of MSI IRQs.  If we find it, we request updated address and
2453 	 * data registers and apply the results.
2454 	 */
2455 	if (cfg->msi.msi_alloc > 0) {
2456 		/* If we don't have any active handlers, nothing to do. */
2457 		if (cfg->msi.msi_handlers == 0)
2458 			return (0);
2459 		for (i = 0; i < cfg->msi.msi_alloc; i++) {
2460 			rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ,
2461 			    i + 1);
2462 			if (rle->start == irq) {
2463 				error = PCIB_MAP_MSI(device_get_parent(bus),
2464 				    dev, irq, &addr, &data);
2465 				if (error)
2466 					return (error);
2467 				pci_disable_msi(dev);
2468 				dinfo->cfg.msi.msi_addr = addr;
2469 				dinfo->cfg.msi.msi_data = data;
2470 				pci_enable_msi(dev, addr, data);
2471 				return (0);
2472 			}
2473 		}
2474 		return (ENOENT);
2475 	}
2476 
2477 	/*
2478 	 * For MSI-X, we check to see if we have this IRQ.  If we do,
2479 	 * we request the updated mapping info.  If that works, we go
2480 	 * through all the slots that use this IRQ and update them.
2481 	 */
2482 	if (cfg->msix.msix_alloc > 0) {
2483 		bool found = false;
2484 
2485 		for (i = 0; i < cfg->msix.msix_alloc; i++) {
2486 			mv = &cfg->msix.msix_vectors[i];
2487 			if (mv->mv_irq == irq) {
2488 				error = PCIB_MAP_MSI(device_get_parent(bus),
2489 				    dev, irq, &addr, &data);
2490 				if (error)
2491 					return (error);
2492 				mv->mv_address = addr;
2493 				mv->mv_data = data;
2494 				for (j = 0; j < cfg->msix.msix_table_len; j++) {
2495 					mte = &cfg->msix.msix_table[j];
2496 					if (mte->mte_vector != i + 1)
2497 						continue;
2498 					if (mte->mte_handlers == 0)
2499 						continue;
2500 					pci_mask_msix(dev, j);
2501 					pci_enable_msix(dev, j, addr, data);
2502 					pci_unmask_msix(dev, j);
2503 				}
2504 				found = true;
2505 			}
2506 		}
2507 		return (found ? 0 : ENOENT);
2508 	}
2509 
2510 	return (ENOENT);
2511 }
2512 
2513 /*
2514  * Returns true if the specified device is blacklisted because MSI
2515  * doesn't work.
2516  */
2517 int
pci_msi_device_blacklisted(device_t dev)2518 pci_msi_device_blacklisted(device_t dev)
2519 {
2520 
2521 	if (!pci_honor_msi_blacklist)
2522 		return (0);
2523 
2524 	return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI));
2525 }
2526 
2527 /*
2528  * Determine if MSI is blacklisted globally on this system.  Currently,
2529  * we just check for blacklisted chipsets as represented by the
2530  * host-PCI bridge at device 0:0:0.  In the future, it may become
2531  * necessary to check other system attributes, such as the kenv values
2532  * that give the motherboard manufacturer and model number.
2533  */
2534 static int
pci_msi_blacklisted(void)2535 pci_msi_blacklisted(void)
2536 {
2537 	device_t dev;
2538 
2539 	if (!pci_honor_msi_blacklist)
2540 		return (0);
2541 
2542 	/* Blacklist all non-PCI-express and non-PCI-X chipsets. */
2543 	if (!(pcie_chipset || pcix_chipset)) {
2544 		if (vm_guest != VM_GUEST_NO) {
2545 			/*
2546 			 * Whitelist older chipsets in virtual
2547 			 * machines known to support MSI.
2548 			 */
2549 			dev = pci_find_bsf(0, 0, 0);
2550 			if (dev != NULL)
2551 				return (!pci_has_quirk(pci_get_devid(dev),
2552 					PCI_QUIRK_ENABLE_MSI_VM));
2553 		}
2554 		return (1);
2555 	}
2556 
2557 	dev = pci_find_bsf(0, 0, 0);
2558 	if (dev != NULL)
2559 		return (pci_msi_device_blacklisted(dev));
2560 	return (0);
2561 }
2562 
2563 /*
2564  * Returns true if the specified device is blacklisted because MSI-X
2565  * doesn't work.  Note that this assumes that if MSI doesn't work,
2566  * MSI-X doesn't either.
2567  */
2568 int
pci_msix_device_blacklisted(device_t dev)2569 pci_msix_device_blacklisted(device_t dev)
2570 {
2571 
2572 	if (!pci_honor_msi_blacklist)
2573 		return (0);
2574 
2575 	if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX))
2576 		return (1);
2577 
2578 	return (pci_msi_device_blacklisted(dev));
2579 }
2580 
2581 /*
2582  * Determine if MSI-X is blacklisted globally on this system.  If MSI
2583  * is blacklisted, assume that MSI-X is as well.  Check for additional
2584  * chipsets where MSI works but MSI-X does not.
2585  */
2586 static int
pci_msix_blacklisted(void)2587 pci_msix_blacklisted(void)
2588 {
2589 	device_t dev;
2590 
2591 	if (!pci_honor_msi_blacklist)
2592 		return (0);
2593 
2594 	dev = pci_find_bsf(0, 0, 0);
2595 	if (dev != NULL && pci_has_quirk(pci_get_devid(dev),
2596 	    PCI_QUIRK_DISABLE_MSIX))
2597 		return (1);
2598 
2599 	return (pci_msi_blacklisted());
2600 }
2601 
2602 /*
2603  * Attempt to allocate *count MSI messages.  The actual number allocated is
2604  * returned in *count.  After this function returns, each message will be
2605  * available to the driver as SYS_RES_IRQ resources starting at a rid 1.
2606  */
2607 int
pci_alloc_msi_method(device_t dev,device_t child,int * count)2608 pci_alloc_msi_method(device_t dev, device_t child, int *count)
2609 {
2610 	struct pci_devinfo *dinfo = device_get_ivars(child);
2611 	pcicfgregs *cfg = &dinfo->cfg;
2612 	struct resource_list_entry *rle;
2613 	u_int actual, i;
2614 	int error, irqs[32];
2615 	uint16_t ctrl, msgnum;
2616 
2617 	/* Don't let count == 0 get us into trouble. */
2618 	if (*count < 1)
2619 		return (EINVAL);
2620 
2621 	/* If rid 0 is allocated, then fail. */
2622 	rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
2623 	if (rle != NULL && rle->res != NULL)
2624 		return (ENXIO);
2625 
2626 	/* Already have allocated messages? */
2627 	if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0)
2628 		return (ENXIO);
2629 
2630 	/* If MSI is blacklisted for this system, fail. */
2631 	if (pci_msi_blacklisted())
2632 		return (ENXIO);
2633 
2634 	/* MSI capability present? */
2635 	if (cfg->msi.msi_location == 0 || !pci_do_msi)
2636 		return (ENODEV);
2637 
2638 	ctrl = pci_read_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, 2);
2639 	msgnum = PCI_MSI_MSGNUM(ctrl);
2640 	if (bootverbose)
2641 		device_printf(child,
2642 		    "attempting to allocate %d MSI vectors (%u supported)\n",
2643 		    *count, msgnum);
2644 
2645 	/* Don't ask for more than the device supports. */
2646 	actual = min(*count, msgnum);
2647 
2648 	/* Don't ask for more than 32 messages. */
2649 	actual = min(actual, 32);
2650 
2651 	/* MSI requires power of 2 number of messages. */
2652 	if (!powerof2(actual))
2653 		return (EINVAL);
2654 
2655 	for (;;) {
2656 		/* Try to allocate N messages. */
2657 		error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual,
2658 		    actual, irqs);
2659 		if (error == 0)
2660 			break;
2661 		if (actual == 1)
2662 			return (error);
2663 
2664 		/* Try N / 2. */
2665 		actual >>= 1;
2666 	}
2667 
2668 	/*
2669 	 * We now have N actual messages mapped onto SYS_RES_IRQ
2670 	 * resources in the irqs[] array, so add new resources
2671 	 * starting at rid 1.
2672 	 */
2673 	for (i = 0; i < actual; i++)
2674 		resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1,
2675 		    irqs[i], irqs[i], 1);
2676 
2677 	if (bootverbose) {
2678 		if (actual == 1)
2679 			device_printf(child, "using IRQ %d for MSI\n", irqs[0]);
2680 		else {
2681 			bool run;
2682 
2683 			/*
2684 			 * Be fancy and try to print contiguous runs
2685 			 * of IRQ values as ranges.  'run' is true if
2686 			 * we are in a range.
2687 			 */
2688 			device_printf(child, "using IRQs %d", irqs[0]);
2689 			run = false;
2690 			for (i = 1; i < actual; i++) {
2691 				/* Still in a run? */
2692 				if (irqs[i] == irqs[i - 1] + 1) {
2693 					run = true;
2694 					continue;
2695 				}
2696 
2697 				/* Finish previous range. */
2698 				if (run) {
2699 					printf("-%d", irqs[i - 1]);
2700 					run = false;
2701 				}
2702 
2703 				/* Start new range. */
2704 				printf(",%d", irqs[i]);
2705 			}
2706 
2707 			/* Unfinished range? */
2708 			if (run)
2709 				printf("-%d", irqs[actual - 1]);
2710 			printf(" for MSI\n");
2711 		}
2712 	}
2713 
2714 	/* Update control register with actual count. */
2715 	ctrl &= ~PCIM_MSICTRL_MME_MASK;
2716 	ctrl |= (ffs(actual) - 1) << 4;
2717 	cfg->msi.msi_ctrl = ctrl;
2718 	pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2);
2719 
2720 	/* Update counts of alloc'd messages. */
2721 	cfg->msi.msi_alloc = actual;
2722 	cfg->msi.msi_handlers = 0;
2723 	*count = actual;
2724 	return (0);
2725 }
2726 
2727 /* Release the MSI messages associated with this device. */
2728 int
pci_release_msi_method(device_t dev,device_t child)2729 pci_release_msi_method(device_t dev, device_t child)
2730 {
2731 	struct pci_devinfo *dinfo = device_get_ivars(child);
2732 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2733 	struct resource_list_entry *rle;
2734 	u_int i, irqs[32];
2735 	int error;
2736 
2737 	/* Try MSI-X first. */
2738 	error = pci_release_msix(dev, child);
2739 	if (error != ENODEV)
2740 		return (error);
2741 
2742 	/* Do we have any messages to release? */
2743 	if (msi->msi_alloc == 0)
2744 		return (ENODEV);
2745 	KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages"));
2746 
2747 	/* Make sure none of the resources are allocated. */
2748 	if (msi->msi_handlers > 0)
2749 		return (EBUSY);
2750 	for (i = 0; i < msi->msi_alloc; i++) {
2751 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1);
2752 		KASSERT(rle != NULL, ("missing MSI resource"));
2753 		if (rle->res != NULL)
2754 			return (EBUSY);
2755 		irqs[i] = rle->start;
2756 	}
2757 
2758 	/* Update control register with 0 count. */
2759 	KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE),
2760 	    ("%s: MSI still enabled", __func__));
2761 	msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK;
2762 	pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL,
2763 	    msi->msi_ctrl, 2);
2764 
2765 	/* Release the messages. */
2766 	PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs);
2767 	for (i = 0; i < msi->msi_alloc; i++)
2768 		resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1);
2769 
2770 	/* Update alloc count. */
2771 	msi->msi_alloc = 0;
2772 	msi->msi_addr = 0;
2773 	msi->msi_data = 0;
2774 	return (0);
2775 }
2776 
2777 /*
2778  * Return the max supported MSI messages this device supports.
2779  * Basically, assuming the MD code can alloc messages, this function
2780  * should return the maximum value that pci_alloc_msi() can return.
2781  * Thus, it is subject to the tunables, etc.
2782  */
2783 int
pci_msi_count_method(device_t dev,device_t child)2784 pci_msi_count_method(device_t dev, device_t child)
2785 {
2786 	struct pci_devinfo *dinfo = device_get_ivars(child);
2787 	struct pcicfg_msi *msi = &dinfo->cfg.msi;
2788 	uint16_t ctrl;
2789 
2790 	if (pci_do_msi && msi->msi_location != 0) {
2791 		ctrl = pci_read_config(child, msi->msi_location + PCIR_MSI_CTRL,
2792 		    2);
2793 		return (PCI_MSI_MSGNUM(ctrl));
2794 	}
2795 	return (0);
2796 }
2797 
2798 /* free pcicfgregs structure and all depending data structures */
2799 
2800 int
pci_freecfg(struct pci_devinfo * dinfo)2801 pci_freecfg(struct pci_devinfo *dinfo)
2802 {
2803 	struct devlist *devlist_head;
2804 	struct pci_map *pm, *next;
2805 
2806 	devlist_head = &pci_devq;
2807 
2808 	if (dinfo->cfg.vpd.vpd_reg)
2809 		vpd_free(&dinfo->cfg.vpd);
2810 
2811 	STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) {
2812 		free(pm, M_DEVBUF);
2813 	}
2814 	STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links);
2815 	free(dinfo, M_DEVBUF);
2816 
2817 	/* increment the generation count */
2818 	pci_generation++;
2819 
2820 	/* we're losing one device */
2821 	pci_numdevs--;
2822 	return (0);
2823 }
2824 
2825 /*
2826  * PCI power manangement
2827  */
2828 int
pci_set_powerstate_method(device_t dev,device_t child,int state)2829 pci_set_powerstate_method(device_t dev, device_t child, int state)
2830 {
2831 	struct pci_devinfo *dinfo = device_get_ivars(child);
2832 	pcicfgregs *cfg = &dinfo->cfg;
2833 	uint16_t status;
2834 	int oldstate, highest, delay;
2835 
2836 	if (cfg->pp.pp_location == 0)
2837 		return (EOPNOTSUPP);
2838 
2839 	/*
2840 	 * Optimize a no state change request away.  While it would be OK to
2841 	 * write to the hardware in theory, some devices have shown odd
2842 	 * behavior when going from D3 -> D3.
2843 	 */
2844 	oldstate = pci_get_powerstate(child);
2845 	if (oldstate == state)
2846 		return (0);
2847 
2848 	/*
2849 	 * The PCI power management specification states that after a state
2850 	 * transition between PCI power states, system software must
2851 	 * guarantee a minimal delay before the function accesses the device.
2852 	 * Compute the worst case delay that we need to guarantee before we
2853 	 * access the device.  Many devices will be responsive much more
2854 	 * quickly than this delay, but there are some that don't respond
2855 	 * instantly to state changes.  Transitions to/from D3 state require
2856 	 * 10ms, while D2 requires 200us, and D0/1 require none.  The delay
2857 	 * is done below with DELAY rather than a sleeper function because
2858 	 * this function can be called from contexts where we cannot sleep.
2859 	 */
2860 	highest = (oldstate > state) ? oldstate : state;
2861 	if (highest == PCI_POWERSTATE_D3)
2862 	    delay = 10000;
2863 	else if (highest == PCI_POWERSTATE_D2)
2864 	    delay = 200;
2865 	else
2866 	    delay = 0;
2867 	status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_location +
2868 	    PCIR_POWER_STATUS, 2) & ~PCIM_PSTAT_DMASK;
2869 	switch (state) {
2870 	case PCI_POWERSTATE_D0:
2871 		status |= PCIM_PSTAT_D0;
2872 		break;
2873 	case PCI_POWERSTATE_D1:
2874 		if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0)
2875 			return (EOPNOTSUPP);
2876 		status |= PCIM_PSTAT_D1;
2877 		break;
2878 	case PCI_POWERSTATE_D2:
2879 		if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0)
2880 			return (EOPNOTSUPP);
2881 		status |= PCIM_PSTAT_D2;
2882 		break;
2883 	case PCI_POWERSTATE_D3:
2884 		status |= PCIM_PSTAT_D3;
2885 		break;
2886 	default:
2887 		return (EINVAL);
2888 	}
2889 
2890 	if (bootverbose)
2891 		pci_printf(cfg, "Transition from D%d to D%d\n", oldstate,
2892 		    state);
2893 
2894 	PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_location + PCIR_POWER_STATUS,
2895 	    status, 2);
2896 	if (delay)
2897 		DELAY(delay);
2898 	return (0);
2899 }
2900 
2901 int
pci_get_powerstate_method(device_t dev,device_t child)2902 pci_get_powerstate_method(device_t dev, device_t child)
2903 {
2904 	struct pci_devinfo *dinfo = device_get_ivars(child);
2905 	pcicfgregs *cfg = &dinfo->cfg;
2906 	uint16_t status;
2907 	int result;
2908 
2909 	if (cfg->pp.pp_location != 0) {
2910 		status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_location +
2911 		    PCIR_POWER_STATUS, 2);
2912 		switch (status & PCIM_PSTAT_DMASK) {
2913 		case PCIM_PSTAT_D0:
2914 			result = PCI_POWERSTATE_D0;
2915 			break;
2916 		case PCIM_PSTAT_D1:
2917 			result = PCI_POWERSTATE_D1;
2918 			break;
2919 		case PCIM_PSTAT_D2:
2920 			result = PCI_POWERSTATE_D2;
2921 			break;
2922 		case PCIM_PSTAT_D3:
2923 			result = PCI_POWERSTATE_D3;
2924 			break;
2925 		default:
2926 			result = PCI_POWERSTATE_UNKNOWN;
2927 			break;
2928 		}
2929 	} else {
2930 		/* No support, device is always at D0 */
2931 		result = PCI_POWERSTATE_D0;
2932 	}
2933 	return (result);
2934 }
2935 
2936 /* Clear any active PME# and disable PME# generation. */
2937 void
pci_clear_pme(device_t dev)2938 pci_clear_pme(device_t dev)
2939 {
2940 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2941 	pcicfgregs *cfg = &dinfo->cfg;
2942 	uint16_t status;
2943 
2944 	if (cfg->pp.pp_location != 0) {
2945 		status = pci_read_config(dev, dinfo->cfg.pp.pp_location +
2946 		    PCIR_POWER_STATUS, 2);
2947 		status &= ~PCIM_PSTAT_PMEENABLE;
2948 		status |= PCIM_PSTAT_PME;
2949 		pci_write_config(dev, dinfo->cfg.pp.pp_location +
2950 		    PCIR_POWER_STATUS, status, 2);
2951 	}
2952 }
2953 
2954 /* Clear any active PME# and enable PME# generation. */
2955 void
pci_enable_pme(device_t dev)2956 pci_enable_pme(device_t dev)
2957 {
2958 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2959 	pcicfgregs *cfg = &dinfo->cfg;
2960 	uint16_t status;
2961 
2962 	if (cfg->pp.pp_location != 0) {
2963 		status = pci_read_config(dev, dinfo->cfg.pp.pp_location +
2964 		    PCIR_POWER_STATUS, 2);
2965 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2966 		pci_write_config(dev, dinfo->cfg.pp.pp_location +
2967 		    PCIR_POWER_STATUS, status, 2);
2968 	}
2969 }
2970 
2971 bool
pci_has_pm(device_t dev)2972 pci_has_pm(device_t dev)
2973 {
2974 	struct pci_devinfo *dinfo = device_get_ivars(dev);
2975 	pcicfgregs *cfg = &dinfo->cfg;
2976 
2977 	return (cfg->pp.pp_location != 0);
2978 }
2979 
2980 /*
2981  * Some convenience functions for PCI device drivers.
2982  */
2983 
2984 static __inline void
pci_set_command_bit(device_t dev,device_t child,uint16_t bit)2985 pci_set_command_bit(device_t dev, device_t child, uint16_t bit)
2986 {
2987 	uint16_t	command;
2988 
2989 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
2990 	command |= bit;
2991 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
2992 }
2993 
2994 static __inline void
pci_clear_command_bit(device_t dev,device_t child,uint16_t bit)2995 pci_clear_command_bit(device_t dev, device_t child, uint16_t bit)
2996 {
2997 	uint16_t	command;
2998 
2999 	command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2);
3000 	command &= ~bit;
3001 	PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2);
3002 }
3003 
3004 int
pci_enable_busmaster_method(device_t dev,device_t child)3005 pci_enable_busmaster_method(device_t dev, device_t child)
3006 {
3007 	pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
3008 	return (0);
3009 }
3010 
3011 int
pci_disable_busmaster_method(device_t dev,device_t child)3012 pci_disable_busmaster_method(device_t dev, device_t child)
3013 {
3014 	pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN);
3015 	return (0);
3016 }
3017 
3018 int
pci_enable_io_method(device_t dev,device_t child,int space)3019 pci_enable_io_method(device_t dev, device_t child, int space)
3020 {
3021 	uint16_t bit;
3022 
3023 	switch(space) {
3024 	case SYS_RES_IOPORT:
3025 		bit = PCIM_CMD_PORTEN;
3026 		break;
3027 	case SYS_RES_MEMORY:
3028 		bit = PCIM_CMD_MEMEN;
3029 		break;
3030 	default:
3031 		return (EINVAL);
3032 	}
3033 	pci_set_command_bit(dev, child, bit);
3034 	return (0);
3035 }
3036 
3037 int
pci_disable_io_method(device_t dev,device_t child,int space)3038 pci_disable_io_method(device_t dev, device_t child, int space)
3039 {
3040 	uint16_t bit;
3041 
3042 	switch(space) {
3043 	case SYS_RES_IOPORT:
3044 		bit = PCIM_CMD_PORTEN;
3045 		break;
3046 	case SYS_RES_MEMORY:
3047 		bit = PCIM_CMD_MEMEN;
3048 		break;
3049 	default:
3050 		return (EINVAL);
3051 	}
3052 	pci_clear_command_bit(dev, child, bit);
3053 	return (0);
3054 }
3055 
3056 /*
3057  * New style pci driver.  Parent device is either a pci-host-bridge or a
3058  * pci-pci-bridge.  Both kinds are represented by instances of pcib.
3059  */
3060 
3061 void
pci_print_verbose(struct pci_devinfo * dinfo)3062 pci_print_verbose(struct pci_devinfo *dinfo)
3063 {
3064 
3065 	if (bootverbose) {
3066 		pcicfgregs *cfg = &dinfo->cfg;
3067 
3068 		printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n",
3069 		    cfg->vendor, cfg->device, cfg->revid);
3070 		printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n",
3071 		    cfg->domain, cfg->bus, cfg->slot, cfg->func);
3072 		printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n",
3073 		    cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype,
3074 		    cfg->mfdev);
3075 		printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n",
3076 		    cfg->cmdreg, cfg->statreg, cfg->cachelnsz);
3077 		printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n",
3078 		    cfg->lattimer, cfg->lattimer * 30, cfg->mingnt,
3079 		    cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250);
3080 		if (cfg->intpin > 0)
3081 			printf("\tintpin=%c, irq=%d\n",
3082 			    cfg->intpin +'a' -1, cfg->intline);
3083 		if (cfg->pp.pp_location) {
3084 			uint16_t status;
3085 
3086 			status = pci_read_config(cfg->dev, cfg->pp.pp_location +
3087 			    PCIR_POWER_STATUS, 2);
3088 			printf("\tpowerspec %d  supports D0%s%s D3  current D%d\n",
3089 			    cfg->pp.pp_cap & PCIM_PCAP_SPEC,
3090 			    cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "",
3091 			    cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "",
3092 			    status & PCIM_PSTAT_DMASK);
3093 		}
3094 		if (cfg->msi.msi_location) {
3095 			uint16_t ctrl, msgnum;
3096 
3097 			ctrl = cfg->msi.msi_ctrl;
3098 			msgnum = PCI_MSI_MSGNUM(ctrl);
3099 			printf("\tMSI supports %d message%s%s%s\n",
3100 			    msgnum, (msgnum == 1) ? "" : "s",
3101 			    (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "",
3102 			    (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":"");
3103 		}
3104 		if (cfg->msix.msix_location) {
3105 			uint16_t msgnum;
3106 
3107 			msgnum = PCI_MSIX_MSGNUM(cfg->msix.msix_ctrl);
3108 			printf("\tMSI-X supports %d message%s ",
3109 			    msgnum, (msgnum == 1) ? "" : "s");
3110 			if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar)
3111 				printf("in map 0x%x\n",
3112 				    cfg->msix.msix_table_bar);
3113 			else
3114 				printf("in maps 0x%x and 0x%x\n",
3115 				    cfg->msix.msix_table_bar,
3116 				    cfg->msix.msix_pba_bar);
3117 		}
3118 	}
3119 }
3120 
3121 static int
pci_porten(device_t dev)3122 pci_porten(device_t dev)
3123 {
3124 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0;
3125 }
3126 
3127 static int
pci_memen(device_t dev)3128 pci_memen(device_t dev)
3129 {
3130 	return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0;
3131 }
3132 
3133 void
pci_read_bar(device_t dev,int reg,pci_addr_t * mapp,pci_addr_t * testvalp,int * bar64)3134 pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp,
3135     int *bar64)
3136 {
3137 	struct pci_devinfo *dinfo;
3138 	pci_addr_t map, testval;
3139 	int ln2range;
3140 	uint16_t cmd;
3141 
3142 	/*
3143 	 * The device ROM BAR is special.  It is always a 32-bit
3144 	 * memory BAR.  Bit 0 is special and should not be set when
3145 	 * sizing the BAR.
3146 	 */
3147 	dinfo = device_get_ivars(dev);
3148 	if (PCIR_IS_BIOS(&dinfo->cfg, reg)) {
3149 		map = pci_read_config(dev, reg, 4);
3150 		pci_write_config(dev, reg, 0xfffffffe, 4);
3151 		testval = pci_read_config(dev, reg, 4);
3152 		pci_write_config(dev, reg, map, 4);
3153 		*mapp = map;
3154 		*testvalp = testval;
3155 		if (bar64 != NULL)
3156 			*bar64 = 0;
3157 		return;
3158 	}
3159 
3160 	map = pci_read_config(dev, reg, 4);
3161 	ln2range = pci_maprange(map);
3162 	if (ln2range == 64)
3163 		map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3164 
3165 	/*
3166 	 * Disable decoding via the command register before
3167 	 * determining the BAR's length since we will be placing it in
3168 	 * a weird state.
3169 	 */
3170 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3171 	pci_write_config(dev, PCIR_COMMAND,
3172 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
3173 
3174 	/*
3175 	 * Determine the BAR's length by writing all 1's.  The bottom
3176 	 * log_2(size) bits of the BAR will stick as 0 when we read
3177 	 * the value back.
3178 	 *
3179 	 * NB: according to the PCI Local Bus Specification, rev. 3.0:
3180 	 * "Software writes 0FFFFFFFFh to both registers, reads them back,
3181 	 * and combines the result into a 64-bit value." (section 6.2.5.1)
3182 	 *
3183 	 * Writes to both registers must be performed before attempting to
3184 	 * read back the size value.
3185 	 */
3186 	testval = 0;
3187 	pci_write_config(dev, reg, 0xffffffff, 4);
3188 	if (ln2range == 64) {
3189 		pci_write_config(dev, reg + 4, 0xffffffff, 4);
3190 		testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32;
3191 	}
3192 	testval |= pci_read_config(dev, reg, 4);
3193 
3194 	/*
3195 	 * Restore the original value of the BAR.  We may have reprogrammed
3196 	 * the BAR of the low-level console device and when booting verbose,
3197 	 * we need the console device addressable.
3198 	 */
3199 	pci_write_config(dev, reg, map, 4);
3200 	if (ln2range == 64)
3201 		pci_write_config(dev, reg + 4, map >> 32, 4);
3202 	pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3203 
3204 	*mapp = map;
3205 	*testvalp = testval;
3206 	if (bar64 != NULL)
3207 		*bar64 = (ln2range == 64);
3208 }
3209 
3210 static void
pci_write_bar(device_t dev,struct pci_map * pm,pci_addr_t base)3211 pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base)
3212 {
3213 	struct pci_devinfo *dinfo;
3214 	int ln2range;
3215 
3216 	/* The device ROM BAR is always a 32-bit memory BAR. */
3217 	dinfo = device_get_ivars(dev);
3218 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3219 		ln2range = 32;
3220 	else
3221 		ln2range = pci_maprange(pm->pm_value);
3222 	pci_write_config(dev, pm->pm_reg, base, 4);
3223 	if (ln2range == 64)
3224 		pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4);
3225 	pm->pm_value = pci_read_config(dev, pm->pm_reg, 4);
3226 	if (ln2range == 64)
3227 		pm->pm_value |= (pci_addr_t)pci_read_config(dev,
3228 		    pm->pm_reg + 4, 4) << 32;
3229 }
3230 
3231 struct pci_map *
pci_find_bar(device_t dev,int reg)3232 pci_find_bar(device_t dev, int reg)
3233 {
3234 	struct pci_devinfo *dinfo;
3235 	struct pci_map *pm;
3236 
3237 	dinfo = device_get_ivars(dev);
3238 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3239 		if (pm->pm_reg == reg)
3240 			return (pm);
3241 	}
3242 	return (NULL);
3243 }
3244 
3245 struct pci_map *
pci_first_bar(device_t dev)3246 pci_first_bar(device_t dev)
3247 {
3248 	struct pci_devinfo *dinfo;
3249 
3250 	dinfo = device_get_ivars(dev);
3251 	return (STAILQ_FIRST(&dinfo->cfg.maps));
3252 }
3253 
3254 struct pci_map *
pci_next_bar(struct pci_map * pm)3255 pci_next_bar(struct pci_map *pm)
3256 {
3257 	return (STAILQ_NEXT(pm, pm_link));
3258 }
3259 
3260 int
pci_bar_enabled(device_t dev,struct pci_map * pm)3261 pci_bar_enabled(device_t dev, struct pci_map *pm)
3262 {
3263 	struct pci_devinfo *dinfo;
3264 	uint16_t cmd;
3265 
3266 	dinfo = device_get_ivars(dev);
3267 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) &&
3268 	    !(pm->pm_value & PCIM_BIOS_ENABLE))
3269 		return (0);
3270 #ifdef PCI_IOV
3271 	if ((dinfo->cfg.flags & PCICFG_VF) != 0) {
3272 		struct pcicfg_iov *iov;
3273 
3274 		iov = dinfo->cfg.iov;
3275 		cmd = pci_read_config(iov->iov_pf,
3276 		    iov->iov_pos + PCIR_SRIOV_CTL, 2);
3277 		return ((cmd & PCIM_SRIOV_VF_MSE) != 0);
3278 	}
3279 #endif
3280 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3281 	if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value))
3282 		return ((cmd & PCIM_CMD_MEMEN) != 0);
3283 	else
3284 		return ((cmd & PCIM_CMD_PORTEN) != 0);
3285 }
3286 
3287 struct pci_map *
pci_add_bar(device_t dev,int reg,pci_addr_t value,pci_addr_t size)3288 pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size)
3289 {
3290 	struct pci_devinfo *dinfo;
3291 	struct pci_map *pm, *prev;
3292 
3293 	dinfo = device_get_ivars(dev);
3294 	pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO);
3295 	pm->pm_reg = reg;
3296 	pm->pm_value = value;
3297 	pm->pm_size = size;
3298 	STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) {
3299 		KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x",
3300 		    reg));
3301 		if (STAILQ_NEXT(prev, pm_link) == NULL ||
3302 		    STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg)
3303 			break;
3304 	}
3305 	if (prev != NULL)
3306 		STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link);
3307 	else
3308 		STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link);
3309 	return (pm);
3310 }
3311 
3312 static void
pci_restore_bars(device_t dev)3313 pci_restore_bars(device_t dev)
3314 {
3315 	struct pci_devinfo *dinfo;
3316 	struct pci_map *pm;
3317 	int ln2range;
3318 
3319 	dinfo = device_get_ivars(dev);
3320 	STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) {
3321 		if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg))
3322 			ln2range = 32;
3323 		else
3324 			ln2range = pci_maprange(pm->pm_value);
3325 		pci_write_config(dev, pm->pm_reg, pm->pm_value, 4);
3326 		if (ln2range == 64)
3327 			pci_write_config(dev, pm->pm_reg + 4,
3328 			    pm->pm_value >> 32, 4);
3329 	}
3330 }
3331 
3332 /*
3333  * Add a resource based on a pci map register. Return 1 if the map
3334  * register is a 32bit map register or 2 if it is a 64bit register.
3335  */
3336 static int
pci_add_map(device_t bus,device_t dev,int reg,struct resource_list * rl,int force,int prefetch)3337 pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl,
3338     int force, int prefetch)
3339 {
3340 	struct pci_map *pm;
3341 	pci_addr_t base, map, testval;
3342 	pci_addr_t start, end, count;
3343 	int barlen, basezero, flags, maprange, mapsize, type;
3344 	uint16_t cmd;
3345 	struct resource *res;
3346 
3347 	/*
3348 	 * The BAR may already exist if the device is a CardBus card
3349 	 * whose CIS is stored in this BAR.
3350 	 */
3351 	pm = pci_find_bar(dev, reg);
3352 	if (pm != NULL) {
3353 		maprange = pci_maprange(pm->pm_value);
3354 		barlen = maprange == 64 ? 2 : 1;
3355 		return (barlen);
3356 	}
3357 
3358 	pci_read_bar(dev, reg, &map, &testval, NULL);
3359 	if (PCI_BAR_MEM(map)) {
3360 		type = SYS_RES_MEMORY;
3361 		if (map & PCIM_BAR_MEM_PREFETCH)
3362 			prefetch = 1;
3363 	} else
3364 		type = SYS_RES_IOPORT;
3365 	mapsize = pci_mapsize(testval);
3366 	base = pci_mapbase(map);
3367 #ifdef __PCI_BAR_ZERO_VALID
3368 	basezero = 0;
3369 #else
3370 	basezero = base == 0;
3371 #endif
3372 	maprange = pci_maprange(map);
3373 	barlen = maprange == 64 ? 2 : 1;
3374 
3375 	/*
3376 	 * For I/O registers, if bottom bit is set, and the next bit up
3377 	 * isn't clear, we know we have a BAR that doesn't conform to the
3378 	 * spec, so ignore it.  Also, sanity check the size of the data
3379 	 * areas to the type of memory involved.  Memory must be at least
3380 	 * 16 bytes in size, while I/O ranges must be at least 4.
3381 	 */
3382 	if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0)
3383 		return (barlen);
3384 	if ((type == SYS_RES_MEMORY && mapsize < 4) ||
3385 	    (type == SYS_RES_IOPORT && mapsize < 2))
3386 		return (barlen);
3387 
3388 	/* Save a record of this BAR. */
3389 	pm = pci_add_bar(dev, reg, map, mapsize);
3390 	if (bootverbose) {
3391 		printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d",
3392 		    reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize);
3393 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3394 			printf(", port disabled\n");
3395 		else if (type == SYS_RES_MEMORY && !pci_memen(dev))
3396 			printf(", memory disabled\n");
3397 		else
3398 			printf(", enabled\n");
3399 	}
3400 
3401 	/*
3402 	 * If base is 0, then we have problems if this architecture does
3403 	 * not allow that.  It is best to ignore such entries for the
3404 	 * moment.  These will be allocated later if the driver specifically
3405 	 * requests them.  However, some removable buses look better when
3406 	 * all resources are allocated, so allow '0' to be overridden.
3407 	 *
3408 	 * Similarly treat maps whose values is the same as the test value
3409 	 * read back.  These maps have had all f's written to them by the
3410 	 * BIOS in an attempt to disable the resources.
3411 	 */
3412 	if (!force && (basezero || map == testval))
3413 		return (barlen);
3414 	if ((u_long)base != base) {
3415 		device_printf(bus,
3416 		    "pci%d:%d:%d:%d bar %#x too many address bits",
3417 		    pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev),
3418 		    pci_get_function(dev), reg);
3419 		return (barlen);
3420 	}
3421 
3422 	/*
3423 	 * This code theoretically does the right thing, but has
3424 	 * undesirable side effects in some cases where peripherals
3425 	 * respond oddly to having these bits enabled.  Let the user
3426 	 * be able to turn them off (since pci_enable_io_modes is 1 by
3427 	 * default).
3428 	 */
3429 	if (pci_enable_io_modes) {
3430 		/* Turn on resources that have been left off by a lazy BIOS */
3431 		if (type == SYS_RES_IOPORT && !pci_porten(dev)) {
3432 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3433 			cmd |= PCIM_CMD_PORTEN;
3434 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3435 		}
3436 		if (type == SYS_RES_MEMORY && !pci_memen(dev)) {
3437 			cmd = pci_read_config(dev, PCIR_COMMAND, 2);
3438 			cmd |= PCIM_CMD_MEMEN;
3439 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
3440 		}
3441 	} else {
3442 		if (type == SYS_RES_IOPORT && !pci_porten(dev))
3443 			return (barlen);
3444 		if (type == SYS_RES_MEMORY && !pci_memen(dev))
3445 			return (barlen);
3446 	}
3447 
3448 	count = (pci_addr_t)1 << mapsize;
3449 	flags = RF_ALIGNMENT_LOG2(mapsize);
3450 	if (prefetch)
3451 		flags |= RF_PREFETCHABLE;
3452 	if (basezero || base == pci_mapbase(testval) || pci_clear_bars) {
3453 		start = 0;	/* Let the parent decide. */
3454 		end = ~0;
3455 	} else {
3456 		start = base;
3457 		end = base + count - 1;
3458 	}
3459 	resource_list_add(rl, type, reg, start, end, count);
3460 
3461 	/*
3462 	 * Try to allocate the resource for this BAR from our parent
3463 	 * so that this resource range is already reserved.  The
3464 	 * driver for this device will later inherit this resource in
3465 	 * pci_alloc_resource().
3466 	 */
3467 	res = resource_list_reserve(rl, bus, dev, type, &reg, start, end, count,
3468 	    flags);
3469 	if ((pci_do_realloc_bars
3470 		|| pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_REALLOC_BAR))
3471 	    && res == NULL && (start != 0 || end != ~0)) {
3472 		/*
3473 		 * If the allocation fails, try to allocate a resource for
3474 		 * this BAR using any available range.  The firmware felt
3475 		 * it was important enough to assign a resource, so don't
3476 		 * disable decoding if we can help it.
3477 		 */
3478 		resource_list_delete(rl, type, reg);
3479 		resource_list_add(rl, type, reg, 0, ~0, count);
3480 		res = resource_list_reserve(rl, bus, dev, type, &reg, 0, ~0,
3481 		    count, flags);
3482 	}
3483 	if (res == NULL) {
3484 		/*
3485 		 * If the allocation fails, delete the resource list entry
3486 		 * and disable decoding for this device.
3487 		 *
3488 		 * If the driver requests this resource in the future,
3489 		 * pci_reserve_map() will try to allocate a fresh
3490 		 * resource range.
3491 		 */
3492 		resource_list_delete(rl, type, reg);
3493 		pci_disable_io(dev, type);
3494 		if (bootverbose)
3495 			device_printf(bus,
3496 			    "pci%d:%d:%d:%d bar %#x failed to allocate\n",
3497 			    pci_get_domain(dev), pci_get_bus(dev),
3498 			    pci_get_slot(dev), pci_get_function(dev), reg);
3499 	} else {
3500 		start = rman_get_start(res);
3501 		pci_write_bar(dev, pm, start);
3502 	}
3503 	return (barlen);
3504 }
3505 
3506 /*
3507  * For ATA devices we need to decide early what addressing mode to use.
3508  * Legacy demands that the primary and secondary ATA ports sits on the
3509  * same addresses that old ISA hardware did. This dictates that we use
3510  * those addresses and ignore the BAR's if we cannot set PCI native
3511  * addressing mode.
3512  */
3513 static void
pci_ata_maps(device_t bus,device_t dev,struct resource_list * rl,int force,uint32_t prefetchmask)3514 pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force,
3515     uint32_t prefetchmask)
3516 {
3517 	int rid, type, progif;
3518 #if 0
3519 	/* if this device supports PCI native addressing use it */
3520 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3521 	if ((progif & 0x8a) == 0x8a) {
3522 		if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) &&
3523 		    pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) {
3524 			printf("Trying ATA native PCI addressing mode\n");
3525 			pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1);
3526 		}
3527 	}
3528 #endif
3529 	progif = pci_read_config(dev, PCIR_PROGIF, 1);
3530 	type = SYS_RES_IOPORT;
3531 	if (progif & PCIP_STORAGE_IDE_MODEPRIM) {
3532 		pci_add_map(bus, dev, PCIR_BAR(0), rl, force,
3533 		    prefetchmask & (1 << 0));
3534 		pci_add_map(bus, dev, PCIR_BAR(1), rl, force,
3535 		    prefetchmask & (1 << 1));
3536 	} else {
3537 		rid = PCIR_BAR(0);
3538 		resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8);
3539 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0,
3540 		    0x1f7, 8, 0);
3541 		rid = PCIR_BAR(1);
3542 		resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1);
3543 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6,
3544 		    0x3f6, 1, 0);
3545 	}
3546 	if (progif & PCIP_STORAGE_IDE_MODESEC) {
3547 		pci_add_map(bus, dev, PCIR_BAR(2), rl, force,
3548 		    prefetchmask & (1 << 2));
3549 		pci_add_map(bus, dev, PCIR_BAR(3), rl, force,
3550 		    prefetchmask & (1 << 3));
3551 	} else {
3552 		rid = PCIR_BAR(2);
3553 		resource_list_add(rl, type, rid, 0x170, 0x177, 8);
3554 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170,
3555 		    0x177, 8, 0);
3556 		rid = PCIR_BAR(3);
3557 		resource_list_add(rl, type, rid, 0x376, 0x376, 1);
3558 		(void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376,
3559 		    0x376, 1, 0);
3560 	}
3561 	pci_add_map(bus, dev, PCIR_BAR(4), rl, force,
3562 	    prefetchmask & (1 << 4));
3563 	pci_add_map(bus, dev, PCIR_BAR(5), rl, force,
3564 	    prefetchmask & (1 << 5));
3565 }
3566 
3567 static void
pci_assign_interrupt(device_t bus,device_t dev,int force_route)3568 pci_assign_interrupt(device_t bus, device_t dev, int force_route)
3569 {
3570 	struct pci_devinfo *dinfo = device_get_ivars(dev);
3571 	pcicfgregs *cfg = &dinfo->cfg;
3572 	char tunable_name[64];
3573 	int irq;
3574 
3575 	/* Has to have an intpin to have an interrupt. */
3576 	if (cfg->intpin == 0)
3577 		return;
3578 
3579 	/* Let the user override the IRQ with a tunable. */
3580 	irq = PCI_INVALID_IRQ;
3581 	snprintf(tunable_name, sizeof(tunable_name),
3582 	    "hw.pci%d.%d.%d.INT%c.irq",
3583 	    cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1);
3584 	if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0))
3585 		irq = PCI_INVALID_IRQ;
3586 
3587 	/*
3588 	 * If we didn't get an IRQ via the tunable, then we either use the
3589 	 * IRQ value in the intline register or we ask the bus to route an
3590 	 * interrupt for us.  If force_route is true, then we only use the
3591 	 * value in the intline register if the bus was unable to assign an
3592 	 * IRQ.
3593 	 */
3594 	if (!PCI_INTERRUPT_VALID(irq)) {
3595 		if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route)
3596 			irq = PCI_ASSIGN_INTERRUPT(bus, dev);
3597 		if (!PCI_INTERRUPT_VALID(irq))
3598 			irq = cfg->intline;
3599 	}
3600 
3601 	/* If after all that we don't have an IRQ, just bail. */
3602 	if (!PCI_INTERRUPT_VALID(irq))
3603 		return;
3604 
3605 	/* Update the config register if it changed. */
3606 	if (irq != cfg->intline) {
3607 		cfg->intline = irq;
3608 		pci_write_config(dev, PCIR_INTLINE, irq, 1);
3609 	}
3610 
3611 	/* Add this IRQ as rid 0 interrupt resource. */
3612 	resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1);
3613 }
3614 
3615 /* Perform early OHCI takeover from SMM. */
3616 static void
ohci_early_takeover(device_t self)3617 ohci_early_takeover(device_t self)
3618 {
3619 	struct resource *res;
3620 	uint32_t ctl;
3621 	int rid;
3622 	int i;
3623 
3624 	rid = PCIR_BAR(0);
3625 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3626 	if (res == NULL)
3627 		return;
3628 
3629 	ctl = bus_read_4(res, OHCI_CONTROL);
3630 	if (ctl & OHCI_IR) {
3631 		if (bootverbose)
3632 			printf("ohci early: "
3633 			    "SMM active, request owner change\n");
3634 		bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR);
3635 		for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) {
3636 			DELAY(1000);
3637 			ctl = bus_read_4(res, OHCI_CONTROL);
3638 		}
3639 		if (ctl & OHCI_IR) {
3640 			if (bootverbose)
3641 				printf("ohci early: "
3642 				    "SMM does not respond, resetting\n");
3643 			bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET);
3644 		}
3645 		/* Disable interrupts */
3646 		bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS);
3647 	}
3648 
3649 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3650 }
3651 
3652 /* Perform early UHCI takeover from SMM. */
3653 static void
uhci_early_takeover(device_t self)3654 uhci_early_takeover(device_t self)
3655 {
3656 	struct resource *res;
3657 	int rid;
3658 
3659 	/*
3660 	 * Set the PIRQD enable bit and switch off all the others. We don't
3661 	 * want legacy support to interfere with us XXX Does this also mean
3662 	 * that the BIOS won't touch the keyboard anymore if it is connected
3663 	 * to the ports of the root hub?
3664 	 */
3665 	pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2);
3666 
3667 	/* Disable interrupts */
3668 	rid = PCI_UHCI_BASE_REG;
3669 	res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE);
3670 	if (res != NULL) {
3671 		bus_write_2(res, UHCI_INTR, 0);
3672 		bus_release_resource(self, SYS_RES_IOPORT, rid, res);
3673 	}
3674 }
3675 
3676 /* Perform early EHCI takeover from SMM. */
3677 static void
ehci_early_takeover(device_t self)3678 ehci_early_takeover(device_t self)
3679 {
3680 	struct resource *res;
3681 	uint32_t cparams;
3682 	uint32_t eec;
3683 	uint8_t eecp;
3684 	uint8_t bios_sem;
3685 	uint8_t offs;
3686 	int rid;
3687 	int i;
3688 
3689 	rid = PCIR_BAR(0);
3690 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3691 	if (res == NULL)
3692 		return;
3693 
3694 	cparams = bus_read_4(res, EHCI_HCCPARAMS);
3695 
3696 	/* Synchronise with the BIOS if it owns the controller. */
3697 	for (eecp = EHCI_HCC_EECP(cparams); eecp != 0;
3698 	    eecp = EHCI_EECP_NEXT(eec)) {
3699 		eec = pci_read_config(self, eecp, 4);
3700 		if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) {
3701 			continue;
3702 		}
3703 		bios_sem = pci_read_config(self, eecp +
3704 		    EHCI_LEGSUP_BIOS_SEM, 1);
3705 		if (bios_sem == 0) {
3706 			continue;
3707 		}
3708 		if (bootverbose)
3709 			printf("ehci early: "
3710 			    "SMM active, request owner change\n");
3711 
3712 		pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1);
3713 
3714 		for (i = 0; (i < 100) && (bios_sem != 0); i++) {
3715 			DELAY(1000);
3716 			bios_sem = pci_read_config(self, eecp +
3717 			    EHCI_LEGSUP_BIOS_SEM, 1);
3718 		}
3719 
3720 		if (bios_sem != 0) {
3721 			if (bootverbose)
3722 				printf("ehci early: "
3723 				    "SMM does not respond\n");
3724 		}
3725 		/* Disable interrupts */
3726 		offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION));
3727 		bus_write_4(res, offs + EHCI_USBINTR, 0);
3728 	}
3729 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3730 }
3731 
3732 /* Perform early XHCI takeover from SMM. */
3733 static void
xhci_early_takeover(device_t self)3734 xhci_early_takeover(device_t self)
3735 {
3736 	struct resource *res;
3737 	uint32_t cparams;
3738 	uint32_t eec;
3739 	uint8_t eecp;
3740 	uint8_t bios_sem;
3741 	uint8_t offs;
3742 	int rid;
3743 	int i;
3744 
3745 	rid = PCIR_BAR(0);
3746 	res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE);
3747 	if (res == NULL)
3748 		return;
3749 
3750 	cparams = bus_read_4(res, XHCI_HCSPARAMS0);
3751 
3752 	eec = -1;
3753 
3754 	/* Synchronise with the BIOS if it owns the controller. */
3755 	for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec);
3756 	    eecp += XHCI_XECP_NEXT(eec) << 2) {
3757 		eec = bus_read_4(res, eecp);
3758 
3759 		if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY)
3760 			continue;
3761 
3762 		bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM);
3763 		if (bios_sem == 0)
3764 			continue;
3765 
3766 		if (bootverbose)
3767 			printf("xhci early: "
3768 			    "SMM active, request owner change\n");
3769 
3770 		bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1);
3771 
3772 		/* wait a maximum of 5 second */
3773 
3774 		for (i = 0; (i < 5000) && (bios_sem != 0); i++) {
3775 			DELAY(1000);
3776 			bios_sem = bus_read_1(res, eecp +
3777 			    XHCI_XECP_BIOS_SEM);
3778 		}
3779 
3780 		if (bios_sem != 0) {
3781 			if (bootverbose)
3782 				printf("xhci early: "
3783 				    "SMM does not respond\n");
3784 		}
3785 
3786 		/* Disable interrupts */
3787 		offs = bus_read_1(res, XHCI_CAPLENGTH);
3788 		bus_write_4(res, offs + XHCI_USBCMD, 0);
3789 		bus_read_4(res, offs + XHCI_USBSTS);
3790 	}
3791 	bus_release_resource(self, SYS_RES_MEMORY, rid, res);
3792 }
3793 
3794 static void
pci_reserve_secbus(device_t bus,device_t dev,pcicfgregs * cfg,struct resource_list * rl)3795 pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg,
3796     struct resource_list *rl)
3797 {
3798 	struct resource *res;
3799 	char *cp;
3800 	rman_res_t start, end, count;
3801 	int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus;
3802 
3803 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3804 	case PCIM_HDRTYPE_BRIDGE:
3805 		sec_reg = PCIR_SECBUS_1;
3806 		sub_reg = PCIR_SUBBUS_1;
3807 		break;
3808 	case PCIM_HDRTYPE_CARDBUS:
3809 		sec_reg = PCIR_SECBUS_2;
3810 		sub_reg = PCIR_SUBBUS_2;
3811 		break;
3812 	default:
3813 		return;
3814 	}
3815 
3816 	/*
3817 	 * If the existing bus range is valid, attempt to reserve it
3818 	 * from our parent.  If this fails for any reason, clear the
3819 	 * secbus and subbus registers.
3820 	 *
3821 	 * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus?
3822 	 * This would at least preserve the existing sec_bus if it is
3823 	 * valid.
3824 	 */
3825 	sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1);
3826 	sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1);
3827 
3828 	/* Quirk handling. */
3829 	switch (pci_get_devid(dev)) {
3830 	case 0x12258086:		/* Intel 82454KX/GX (Orion) */
3831 		sup_bus = pci_read_config(dev, 0x41, 1);
3832 		if (sup_bus != 0xff) {
3833 			sec_bus = sup_bus + 1;
3834 			sub_bus = sup_bus + 1;
3835 			PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1);
3836 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3837 		}
3838 		break;
3839 
3840 	case 0x00dd10de:
3841 		/* Compaq R3000 BIOS sets wrong subordinate bus number. */
3842 		if ((cp = kern_getenv("smbios.planar.maker")) == NULL)
3843 			break;
3844 		if (strncmp(cp, "Compal", 6) != 0) {
3845 			freeenv(cp);
3846 			break;
3847 		}
3848 		freeenv(cp);
3849 		if ((cp = kern_getenv("smbios.planar.product")) == NULL)
3850 			break;
3851 		if (strncmp(cp, "08A0", 4) != 0) {
3852 			freeenv(cp);
3853 			break;
3854 		}
3855 		freeenv(cp);
3856 		if (sub_bus < 0xa) {
3857 			sub_bus = 0xa;
3858 			PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1);
3859 		}
3860 		break;
3861 	}
3862 
3863 	if (bootverbose)
3864 		printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus);
3865 	if (sec_bus > 0 && sub_bus >= sec_bus) {
3866 		start = sec_bus;
3867 		end = sub_bus;
3868 		count = end - start + 1;
3869 
3870 		resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count);
3871 
3872 		/*
3873 		 * If requested, clear secondary bus registers in
3874 		 * bridge devices to force a complete renumbering
3875 		 * rather than reserving the existing range.  However,
3876 		 * preserve the existing size.
3877 		 */
3878 		if (pci_clear_buses)
3879 			goto clear;
3880 
3881 		rid = 0;
3882 		res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid,
3883 		    start, end, count, 0);
3884 		if (res != NULL)
3885 			return;
3886 
3887 		if (bootverbose)
3888 			device_printf(bus,
3889 			    "pci%d:%d:%d:%d secbus failed to allocate\n",
3890 			    pci_get_domain(dev), pci_get_bus(dev),
3891 			    pci_get_slot(dev), pci_get_function(dev));
3892 	}
3893 
3894 clear:
3895 	PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1);
3896 	PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1);
3897 }
3898 
3899 static struct resource *
pci_alloc_secbus(device_t dev,device_t child,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3900 pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start,
3901     rman_res_t end, rman_res_t count, u_int flags)
3902 {
3903 	struct pci_devinfo *dinfo;
3904 	pcicfgregs *cfg;
3905 	struct resource_list *rl;
3906 	struct resource *res;
3907 	int sec_reg, sub_reg;
3908 
3909 	dinfo = device_get_ivars(child);
3910 	cfg = &dinfo->cfg;
3911 	rl = &dinfo->resources;
3912 	switch (cfg->hdrtype & PCIM_HDRTYPE) {
3913 	case PCIM_HDRTYPE_BRIDGE:
3914 		sec_reg = PCIR_SECBUS_1;
3915 		sub_reg = PCIR_SUBBUS_1;
3916 		break;
3917 	case PCIM_HDRTYPE_CARDBUS:
3918 		sec_reg = PCIR_SECBUS_2;
3919 		sub_reg = PCIR_SUBBUS_2;
3920 		break;
3921 	default:
3922 		return (NULL);
3923 	}
3924 
3925 	if (*rid != 0)
3926 		return (NULL);
3927 
3928 	if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL)
3929 		resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count);
3930 	if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) {
3931 		res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid,
3932 		    start, end, count, flags & ~RF_ACTIVE);
3933 		if (res == NULL) {
3934 			resource_list_delete(rl, PCI_RES_BUS, *rid);
3935 			device_printf(child, "allocating %ju bus%s failed\n",
3936 			    count, count == 1 ? "" : "es");
3937 			return (NULL);
3938 		}
3939 		if (bootverbose)
3940 			device_printf(child,
3941 			    "Lazy allocation of %ju bus%s at %ju\n", count,
3942 			    count == 1 ? "" : "es", rman_get_start(res));
3943 		PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1);
3944 		PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1);
3945 	}
3946 	return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start,
3947 	    end, count, flags));
3948 }
3949 
3950 static int
pci_ea_bei_to_rid(device_t dev,int bei)3951 pci_ea_bei_to_rid(device_t dev, int bei)
3952 {
3953 #ifdef PCI_IOV
3954 	struct pci_devinfo *dinfo;
3955 	int iov_pos;
3956 	struct pcicfg_iov *iov;
3957 
3958 	dinfo = device_get_ivars(dev);
3959 	iov = dinfo->cfg.iov;
3960 	if (iov != NULL)
3961 		iov_pos = iov->iov_pos;
3962 	else
3963 		iov_pos = 0;
3964 #endif
3965 
3966 	/* Check if matches BAR */
3967 	if ((bei >= PCIM_EA_BEI_BAR_0) &&
3968 	    (bei <= PCIM_EA_BEI_BAR_5))
3969 		return (PCIR_BAR(bei));
3970 
3971 	/* Check ROM */
3972 	if (bei == PCIM_EA_BEI_ROM)
3973 		return (PCIR_BIOS);
3974 
3975 #ifdef PCI_IOV
3976 	/* Check if matches VF_BAR */
3977 	if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) &&
3978 	    (bei <= PCIM_EA_BEI_VF_BAR_5))
3979 		return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) +
3980 		    iov_pos);
3981 #endif
3982 
3983 	return (-1);
3984 }
3985 
3986 int
pci_ea_is_enabled(device_t dev,int rid)3987 pci_ea_is_enabled(device_t dev, int rid)
3988 {
3989 	struct pci_ea_entry *ea;
3990 	struct pci_devinfo *dinfo;
3991 
3992 	dinfo = device_get_ivars(dev);
3993 
3994 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
3995 		if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid)
3996 			return ((ea->eae_flags & PCIM_EA_ENABLE) > 0);
3997 	}
3998 
3999 	return (0);
4000 }
4001 
4002 void
pci_add_resources_ea(device_t bus,device_t dev,int alloc_iov)4003 pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov)
4004 {
4005 	struct pci_ea_entry *ea;
4006 	struct pci_devinfo *dinfo;
4007 	pci_addr_t start, end, count;
4008 	struct resource_list *rl;
4009 	int type, flags, rid;
4010 	struct resource *res;
4011 	uint32_t tmp;
4012 #ifdef PCI_IOV
4013 	struct pcicfg_iov *iov;
4014 #endif
4015 
4016 	dinfo = device_get_ivars(dev);
4017 	rl = &dinfo->resources;
4018 	flags = 0;
4019 
4020 #ifdef PCI_IOV
4021 	iov = dinfo->cfg.iov;
4022 #endif
4023 
4024 	if (dinfo->cfg.ea.ea_location == 0)
4025 		return;
4026 
4027 	STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) {
4028 		/*
4029 		 * TODO: Ignore EA-BAR if is not enabled.
4030 		 *   Currently the EA implementation supports
4031 		 *   only situation, where EA structure contains
4032 		 *   predefined entries. In case they are not enabled
4033 		 *   leave them unallocated and proceed with
4034 		 *   a legacy-BAR mechanism.
4035 		 */
4036 		if ((ea->eae_flags & PCIM_EA_ENABLE) == 0)
4037 			continue;
4038 
4039 		switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) {
4040 		case PCIM_EA_P_MEM_PREFETCH:
4041 		case PCIM_EA_P_VF_MEM_PREFETCH:
4042 			flags = RF_PREFETCHABLE;
4043 			/* FALLTHROUGH */
4044 		case PCIM_EA_P_VF_MEM:
4045 		case PCIM_EA_P_MEM:
4046 			type = SYS_RES_MEMORY;
4047 			break;
4048 		case PCIM_EA_P_IO:
4049 			type = SYS_RES_IOPORT;
4050 			break;
4051 		default:
4052 			continue;
4053 		}
4054 
4055 		if (alloc_iov != 0) {
4056 #ifdef PCI_IOV
4057 			/* Allocating IOV, confirm BEI matches */
4058 			if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) ||
4059 			    (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5))
4060 				continue;
4061 #else
4062 			continue;
4063 #endif
4064 		} else {
4065 			/* Allocating BAR, confirm BEI matches */
4066 			if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) ||
4067 			    (ea->eae_bei > PCIM_EA_BEI_BAR_5)) &&
4068 			    (ea->eae_bei != PCIM_EA_BEI_ROM))
4069 				continue;
4070 		}
4071 
4072 		rid = pci_ea_bei_to_rid(dev, ea->eae_bei);
4073 		if (rid < 0)
4074 			continue;
4075 
4076 		/* Skip resources already allocated by EA */
4077 		if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) ||
4078 		    (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL))
4079 			continue;
4080 
4081 		start = ea->eae_base;
4082 		count = ea->eae_max_offset + 1;
4083 #ifdef PCI_IOV
4084 		if (iov != NULL)
4085 			count = count * iov->iov_num_vfs;
4086 #endif
4087 		end = start + count - 1;
4088 		if (count == 0)
4089 			continue;
4090 
4091 		resource_list_add(rl, type, rid, start, end, count);
4092 		res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count,
4093 		    flags);
4094 		if (res == NULL) {
4095 			resource_list_delete(rl, type, rid);
4096 
4097 			/*
4098 			 * Failed to allocate using EA, disable entry.
4099 			 * Another attempt to allocation will be performed
4100 			 * further, but this time using legacy BAR registers
4101 			 */
4102 			tmp = pci_read_config(dev, ea->eae_cfg_offset, 4);
4103 			tmp &= ~PCIM_EA_ENABLE;
4104 			pci_write_config(dev, ea->eae_cfg_offset, tmp, 4);
4105 
4106 			/*
4107 			 * Disabling entry might fail in case it is hardwired.
4108 			 * Read flags again to match current status.
4109 			 */
4110 			ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4);
4111 
4112 			continue;
4113 		}
4114 
4115 		/* As per specification, fill BAR with zeros */
4116 		pci_write_config(dev, rid, 0, 4);
4117 	}
4118 }
4119 
4120 void
pci_add_resources(device_t bus,device_t dev,int force,uint32_t prefetchmask)4121 pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask)
4122 {
4123 	struct pci_devinfo *dinfo;
4124 	pcicfgregs *cfg;
4125 	struct resource_list *rl;
4126 	const struct pci_quirk *q;
4127 	uint32_t devid;
4128 	int i;
4129 
4130 	dinfo = device_get_ivars(dev);
4131 	cfg = &dinfo->cfg;
4132 	rl = &dinfo->resources;
4133 	devid = (cfg->device << 16) | cfg->vendor;
4134 
4135 	/* Allocate resources using Enhanced Allocation */
4136 	pci_add_resources_ea(bus, dev, 0);
4137 
4138 	/* ATA devices needs special map treatment */
4139 	if ((pci_get_class(dev) == PCIC_STORAGE) &&
4140 	    (pci_get_subclass(dev) == PCIS_STORAGE_IDE) &&
4141 	    ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) ||
4142 	     (!pci_read_config(dev, PCIR_BAR(0), 4) &&
4143 	      !pci_read_config(dev, PCIR_BAR(2), 4))) )
4144 		pci_ata_maps(bus, dev, rl, force, prefetchmask);
4145 	else
4146 		for (i = 0; i < cfg->nummaps;) {
4147 			/* Skip resources already managed by EA */
4148 			if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) ||
4149 			    (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) ||
4150 			    pci_ea_is_enabled(dev, PCIR_BAR(i))) {
4151 				i++;
4152 				continue;
4153 			}
4154 
4155 			/*
4156 			 * Skip quirked resources.
4157 			 */
4158 			for (q = &pci_quirks[0]; q->devid != 0; q++)
4159 				if (q->devid == devid &&
4160 				    q->type == PCI_QUIRK_UNMAP_REG &&
4161 				    q->arg1 == PCIR_BAR(i))
4162 					break;
4163 			if (q->devid != 0) {
4164 				i++;
4165 				continue;
4166 			}
4167 			i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force,
4168 			    prefetchmask & (1 << i));
4169 		}
4170 
4171 	/*
4172 	 * Add additional, quirked resources.
4173 	 */
4174 	for (q = &pci_quirks[0]; q->devid != 0; q++)
4175 		if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG)
4176 			pci_add_map(bus, dev, q->arg1, rl, force, 0);
4177 
4178 	if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) {
4179 		/*
4180 		 * Try to re-route interrupts. Sometimes the BIOS or
4181 		 * firmware may leave bogus values in these registers.
4182 		 * If the re-route fails, then just stick with what we
4183 		 * have.
4184 		 */
4185 		pci_assign_interrupt(bus, dev, 1);
4186 	}
4187 
4188 	if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS &&
4189 	    pci_get_subclass(dev) == PCIS_SERIALBUS_USB) {
4190 		if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI)
4191 			xhci_early_takeover(dev);
4192 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI)
4193 			ehci_early_takeover(dev);
4194 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI)
4195 			ohci_early_takeover(dev);
4196 		else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI)
4197 			uhci_early_takeover(dev);
4198 	}
4199 
4200 	/*
4201 	 * Reserve resources for secondary bus ranges behind bridge
4202 	 * devices.
4203 	 */
4204 	pci_reserve_secbus(bus, dev, cfg, rl);
4205 }
4206 
4207 static struct pci_devinfo *
pci_identify_function(device_t pcib,device_t dev,int domain,int busno,int slot,int func)4208 pci_identify_function(device_t pcib, device_t dev, int domain, int busno,
4209     int slot, int func)
4210 {
4211 	struct pci_devinfo *dinfo;
4212 
4213 	dinfo = pci_read_device(pcib, dev, domain, busno, slot, func);
4214 	if (dinfo != NULL)
4215 		pci_add_child(dev, dinfo);
4216 
4217 	return (dinfo);
4218 }
4219 
4220 void
pci_add_children(device_t dev,int domain,int busno)4221 pci_add_children(device_t dev, int domain, int busno)
4222 {
4223 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4224 	device_t pcib = device_get_parent(dev);
4225 	struct pci_devinfo *dinfo;
4226 	int maxslots;
4227 	int s, f, pcifunchigh;
4228 	uint8_t hdrtype;
4229 	int first_func;
4230 
4231 	/*
4232 	 * Try to detect a device at slot 0, function 0.  If it exists, try to
4233 	 * enable ARI.  We must enable ARI before detecting the rest of the
4234 	 * functions on this bus as ARI changes the set of slots and functions
4235 	 * that are legal on this bus.
4236 	 */
4237 	dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0);
4238 	if (dinfo != NULL && pci_enable_ari)
4239 		PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev);
4240 
4241 	/*
4242 	 * Start looking for new devices on slot 0 at function 1 because we
4243 	 * just identified the device at slot 0, function 0.
4244 	 */
4245 	first_func = 1;
4246 
4247 	maxslots = PCIB_MAXSLOTS(pcib);
4248 	for (s = 0; s <= maxslots; s++, first_func = 0) {
4249 		pcifunchigh = 0;
4250 		f = 0;
4251 		DELAY(1);
4252 
4253 		/* If function 0 is not present, skip to the next slot. */
4254 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4255 			continue;
4256 		hdrtype = REG(PCIR_HDRTYPE, 1);
4257 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4258 			continue;
4259 		if (hdrtype & PCIM_MFDEV)
4260 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4261 		for (f = first_func; f <= pcifunchigh; f++)
4262 			pci_identify_function(pcib, dev, domain, busno, s, f);
4263 	}
4264 #undef REG
4265 }
4266 
4267 int
pci_rescan_method(device_t dev)4268 pci_rescan_method(device_t dev)
4269 {
4270 #define	REG(n, w)	PCIB_READ_CONFIG(pcib, busno, s, f, n, w)
4271 	device_t pcib = device_get_parent(dev);
4272 	device_t child, *devlist, *unchanged;
4273 	int devcount, error, i, j, maxslots, oldcount;
4274 	int busno, domain, s, f, pcifunchigh;
4275 	uint8_t hdrtype;
4276 
4277 	/* No need to check for ARI on a rescan. */
4278 	error = device_get_children(dev, &devlist, &devcount);
4279 	if (error)
4280 		return (error);
4281 	if (devcount != 0) {
4282 		unchanged = malloc(devcount * sizeof(device_t), M_TEMP,
4283 		    M_NOWAIT | M_ZERO);
4284 		if (unchanged == NULL) {
4285 			free(devlist, M_TEMP);
4286 			return (ENOMEM);
4287 		}
4288 	} else
4289 		unchanged = NULL;
4290 
4291 	domain = pcib_get_domain(dev);
4292 	busno = pcib_get_bus(dev);
4293 	maxslots = PCIB_MAXSLOTS(pcib);
4294 	for (s = 0; s <= maxslots; s++) {
4295 		/* If function 0 is not present, skip to the next slot. */
4296 		f = 0;
4297 		if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4298 			continue;
4299 		pcifunchigh = 0;
4300 		hdrtype = REG(PCIR_HDRTYPE, 1);
4301 		if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
4302 			continue;
4303 		if (hdrtype & PCIM_MFDEV)
4304 			pcifunchigh = PCIB_MAXFUNCS(pcib);
4305 		for (f = 0; f <= pcifunchigh; f++) {
4306 			if (REG(PCIR_VENDOR, 2) == PCIV_INVALID)
4307 				continue;
4308 
4309 			/*
4310 			 * Found a valid function.  Check if a
4311 			 * device_t for this device already exists.
4312 			 */
4313 			for (i = 0; i < devcount; i++) {
4314 				child = devlist[i];
4315 				if (child == NULL)
4316 					continue;
4317 				if (pci_get_slot(child) == s &&
4318 				    pci_get_function(child) == f) {
4319 					unchanged[i] = child;
4320 					goto next_func;
4321 				}
4322 			}
4323 
4324 			pci_identify_function(pcib, dev, domain, busno, s, f);
4325 		next_func:;
4326 		}
4327 	}
4328 
4329 	/* Remove devices that are no longer present. */
4330 	for (i = 0; i < devcount; i++) {
4331 		if (unchanged[i] != NULL)
4332 			continue;
4333 		device_delete_child(dev, devlist[i]);
4334 	}
4335 
4336 	free(devlist, M_TEMP);
4337 	oldcount = devcount;
4338 
4339 	/* Try to attach the devices just added. */
4340 	error = device_get_children(dev, &devlist, &devcount);
4341 	if (error) {
4342 		free(unchanged, M_TEMP);
4343 		return (error);
4344 	}
4345 
4346 	for (i = 0; i < devcount; i++) {
4347 		for (j = 0; j < oldcount; j++) {
4348 			if (devlist[i] == unchanged[j])
4349 				goto next_device;
4350 		}
4351 
4352 		device_probe_and_attach(devlist[i]);
4353 	next_device:;
4354 	}
4355 
4356 	free(unchanged, M_TEMP);
4357 	free(devlist, M_TEMP);
4358 	return (0);
4359 #undef REG
4360 }
4361 
4362 #ifdef PCI_IOV
4363 device_t
pci_add_iov_child(device_t bus,device_t pf,uint16_t rid,uint16_t vid,uint16_t did)4364 pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid,
4365     uint16_t did)
4366 {
4367 	struct pci_devinfo *vf_dinfo;
4368 	device_t pcib;
4369 	int busno, slot, func;
4370 
4371 	pcib = device_get_parent(bus);
4372 
4373 	PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func);
4374 
4375 	vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno,
4376 	    slot, func, vid, did);
4377 
4378 	vf_dinfo->cfg.flags |= PCICFG_VF;
4379 	pci_add_child(bus, vf_dinfo);
4380 
4381 	return (vf_dinfo->cfg.dev);
4382 }
4383 
4384 device_t
pci_create_iov_child_method(device_t bus,device_t pf,uint16_t rid,uint16_t vid,uint16_t did)4385 pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid,
4386     uint16_t vid, uint16_t did)
4387 {
4388 
4389 	return (pci_add_iov_child(bus, pf, rid, vid, did));
4390 }
4391 #endif
4392 
4393 /*
4394  * For PCIe device set Max_Payload_Size to match PCIe root's.
4395  */
4396 static void
pcie_setup_mps(device_t dev)4397 pcie_setup_mps(device_t dev)
4398 {
4399 	struct pci_devinfo *dinfo = device_get_ivars(dev);
4400 	device_t root;
4401 	uint16_t rmps, mmps, mps;
4402 
4403 	if (dinfo->cfg.pcie.pcie_location == 0)
4404 		return;
4405 	root = pci_find_pcie_root_port(dev);
4406 	if (root == NULL)
4407 		return;
4408 	/* Check whether the MPS is already configured. */
4409 	rmps = pcie_read_config(root, PCIER_DEVICE_CTL, 2) &
4410 	    PCIEM_CTL_MAX_PAYLOAD;
4411 	mps = pcie_read_config(dev, PCIER_DEVICE_CTL, 2) &
4412 	    PCIEM_CTL_MAX_PAYLOAD;
4413 	if (mps == rmps)
4414 		return;
4415 	/* Check whether the device is capable of the root's MPS. */
4416 	mmps = (pcie_read_config(dev, PCIER_DEVICE_CAP, 2) &
4417 	    PCIEM_CAP_MAX_PAYLOAD) << 5;
4418 	if (rmps > mmps) {
4419 		/*
4420 		 * The device is unable to handle root's MPS.  Limit root.
4421 		 * XXX: We should traverse through all the tree, applying
4422 		 * it to all the devices.
4423 		 */
4424 		pcie_adjust_config(root, PCIER_DEVICE_CTL,
4425 		    PCIEM_CTL_MAX_PAYLOAD, mmps, 2);
4426 	} else {
4427 		pcie_adjust_config(dev, PCIER_DEVICE_CTL,
4428 		    PCIEM_CTL_MAX_PAYLOAD, rmps, 2);
4429 	}
4430 }
4431 
4432 static void
pci_add_child_clear_aer(device_t dev,struct pci_devinfo * dinfo)4433 pci_add_child_clear_aer(device_t dev, struct pci_devinfo *dinfo)
4434 {
4435 	int aer;
4436 	uint32_t r;
4437 	uint16_t r2;
4438 
4439 	if (dinfo->cfg.pcie.pcie_location != 0 &&
4440 	    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) {
4441 		r2 = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4442 		    PCIER_ROOT_CTL, 2);
4443 		r2 &= ~(PCIEM_ROOT_CTL_SERR_CORR |
4444 		    PCIEM_ROOT_CTL_SERR_NONFATAL | PCIEM_ROOT_CTL_SERR_FATAL);
4445 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4446 		    PCIER_ROOT_CTL, r2, 2);
4447 	}
4448 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
4449 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
4450 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
4451 		if (r != 0 && bootverbose) {
4452 			pci_printf(&dinfo->cfg,
4453 			    "clearing AER UC 0x%08x -> 0x%08x\n",
4454 			    r, pci_read_config(dev, aer + PCIR_AER_UC_STATUS,
4455 			    4));
4456 		}
4457 
4458 		r = pci_read_config(dev, aer + PCIR_AER_UC_MASK, 4);
4459 		r &= ~(PCIM_AER_UC_TRAINING_ERROR |
4460 		    PCIM_AER_UC_DL_PROTOCOL_ERROR |
4461 		    PCIM_AER_UC_SURPRISE_LINK_DOWN |
4462 		    PCIM_AER_UC_POISONED_TLP |
4463 		    PCIM_AER_UC_FC_PROTOCOL_ERROR |
4464 		    PCIM_AER_UC_COMPLETION_TIMEOUT |
4465 		    PCIM_AER_UC_COMPLETER_ABORT |
4466 		    PCIM_AER_UC_UNEXPECTED_COMPLETION |
4467 		    PCIM_AER_UC_RECEIVER_OVERFLOW |
4468 		    PCIM_AER_UC_MALFORMED_TLP |
4469 		    PCIM_AER_UC_ECRC_ERROR |
4470 		    PCIM_AER_UC_UNSUPPORTED_REQUEST |
4471 		    PCIM_AER_UC_ACS_VIOLATION |
4472 		    PCIM_AER_UC_INTERNAL_ERROR |
4473 		    PCIM_AER_UC_MC_BLOCKED_TLP |
4474 		    PCIM_AER_UC_ATOMIC_EGRESS_BLK |
4475 		    PCIM_AER_UC_TLP_PREFIX_BLOCKED);
4476 		pci_write_config(dev, aer + PCIR_AER_UC_MASK, r, 4);
4477 
4478 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
4479 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
4480 		if (r != 0 && bootverbose) {
4481 			pci_printf(&dinfo->cfg,
4482 			    "clearing AER COR 0x%08x -> 0x%08x\n",
4483 			    r, pci_read_config(dev, aer + PCIR_AER_COR_STATUS,
4484 			    4));
4485 		}
4486 
4487 		r = pci_read_config(dev, aer + PCIR_AER_COR_MASK, 4);
4488 		r &= ~(PCIM_AER_COR_RECEIVER_ERROR |
4489 		    PCIM_AER_COR_BAD_TLP |
4490 		    PCIM_AER_COR_BAD_DLLP |
4491 		    PCIM_AER_COR_REPLAY_ROLLOVER |
4492 		    PCIM_AER_COR_REPLAY_TIMEOUT |
4493 		    PCIM_AER_COR_ADVISORY_NF_ERROR |
4494 		    PCIM_AER_COR_INTERNAL_ERROR |
4495 		    PCIM_AER_COR_HEADER_LOG_OVFLOW);
4496 		pci_write_config(dev, aer + PCIR_AER_COR_MASK, r, 4);
4497 
4498 		r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
4499 		    PCIER_DEVICE_CTL, 2);
4500 		r |=  PCIEM_CTL_COR_ENABLE | PCIEM_CTL_NFER_ENABLE |
4501 		    PCIEM_CTL_FER_ENABLE | PCIEM_CTL_URR_ENABLE;
4502 		pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
4503 		    PCIER_DEVICE_CTL, r, 2);
4504 	}
4505 }
4506 
4507 void
pci_add_child(device_t bus,struct pci_devinfo * dinfo)4508 pci_add_child(device_t bus, struct pci_devinfo *dinfo)
4509 {
4510 	device_t dev;
4511 
4512 	dinfo->cfg.dev = dev = device_add_child(bus, NULL, DEVICE_UNIT_ANY);
4513 	device_set_ivars(dev, dinfo);
4514 	resource_list_init(&dinfo->resources);
4515 	pci_cfg_save(dev, dinfo, 0);
4516 	pci_cfg_restore(dev, dinfo);
4517 	pci_clear_pme(dev);
4518 	pci_print_verbose(dinfo);
4519 	pci_add_resources(bus, dev, 0, 0);
4520 	if (pci_enable_mps_tune)
4521 		pcie_setup_mps(dev);
4522 	pci_child_added(dinfo->cfg.dev);
4523 
4524 	if (pci_clear_aer_on_attach)
4525 		pci_add_child_clear_aer(dev, dinfo);
4526 
4527 	EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev);
4528 }
4529 
4530 void
pci_child_added_method(device_t dev,device_t child)4531 pci_child_added_method(device_t dev, device_t child)
4532 {
4533 
4534 }
4535 
4536 static int
pci_probe(device_t dev)4537 pci_probe(device_t dev)
4538 {
4539 
4540 	device_set_desc(dev, "PCI bus");
4541 
4542 	/* Allow other subclasses to override this driver. */
4543 	return (BUS_PROBE_GENERIC);
4544 }
4545 
4546 int
pci_attach_common(device_t dev)4547 pci_attach_common(device_t dev)
4548 {
4549 	struct pci_softc *sc;
4550 	int busno, domain;
4551 	int rid;
4552 
4553 	sc = device_get_softc(dev);
4554 	domain = pcib_get_domain(dev);
4555 	busno = pcib_get_bus(dev);
4556 	rid = 0;
4557 	sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno,
4558 	    1, 0);
4559 	if (sc->sc_bus == NULL) {
4560 		device_printf(dev, "failed to allocate bus number\n");
4561 		return (ENXIO);
4562 	}
4563 	if (bootverbose)
4564 		device_printf(dev, "domain=%d, physical bus=%d\n",
4565 		    domain, busno);
4566 	sc->sc_dma_tag = bus_get_dma_tag(dev);
4567 	return (0);
4568 }
4569 
4570 int
pci_attach(device_t dev)4571 pci_attach(device_t dev)
4572 {
4573 	int busno, domain, error;
4574 
4575 	error = pci_attach_common(dev);
4576 	if (error)
4577 		return (error);
4578 
4579 	/*
4580 	 * Since there can be multiple independently numbered PCI
4581 	 * buses on systems with multiple PCI domains, we can't use
4582 	 * the unit number to decide which bus we are probing. We ask
4583 	 * the parent pcib what our domain and bus numbers are.
4584 	 */
4585 	domain = pcib_get_domain(dev);
4586 	busno = pcib_get_bus(dev);
4587 	pci_add_children(dev, domain, busno);
4588 	bus_attach_children(dev);
4589 	return (0);
4590 }
4591 
4592 int
pci_detach(device_t dev)4593 pci_detach(device_t dev)
4594 {
4595 	struct pci_softc *sc;
4596 	int error;
4597 
4598 	error = bus_generic_detach(dev);
4599 	if (error)
4600 		return (error);
4601 	sc = device_get_softc(dev);
4602 	error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus);
4603 	return (error);
4604 }
4605 
4606 static void
pci_hint_device_unit(device_t dev,device_t child,const char * name,int * unitp)4607 pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp)
4608 {
4609 	int line, unit;
4610 	const char *at;
4611 	char me1[24], me2[32];
4612 	uint8_t b, s, f;
4613 	uint32_t d;
4614 	device_location_cache_t *cache;
4615 
4616 	d = pci_get_domain(child);
4617 	b = pci_get_bus(child);
4618 	s = pci_get_slot(child);
4619 	f = pci_get_function(child);
4620 	snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f);
4621 	snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f);
4622 	line = 0;
4623 	cache = dev_wired_cache_init();
4624 	while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
4625 		resource_string_value(name, unit, "at", &at);
4626 		if (strcmp(at, me1) == 0 || strcmp(at, me2) == 0) {
4627 			*unitp = unit;
4628 			break;
4629 		}
4630 		if (dev_wired_cache_match(cache, child, at)) {
4631 			*unitp = unit;
4632 			break;
4633 		}
4634 	}
4635 	dev_wired_cache_fini(cache);
4636 }
4637 
4638 static void
pci_set_power_child(device_t dev,device_t child,int state)4639 pci_set_power_child(device_t dev, device_t child, int state)
4640 {
4641 	device_t pcib;
4642 	int dstate;
4643 
4644 	/*
4645 	 * Set the device to the given state.  If the firmware suggests
4646 	 * a different power state, use it instead.  If power management
4647 	 * is not present, the firmware is responsible for managing
4648 	 * device power.  Skip children who aren't attached since they
4649 	 * are handled separately.
4650 	 */
4651 	pcib = device_get_parent(dev);
4652 	dstate = state;
4653 	if (device_is_attached(child) &&
4654 	    PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0)
4655 		pci_set_powerstate(child, dstate);
4656 }
4657 
4658 int
pci_suspend_child(device_t dev,device_t child)4659 pci_suspend_child(device_t dev, device_t child)
4660 {
4661 	struct pci_devinfo *dinfo;
4662 	struct resource_list_entry *rle;
4663 	int error;
4664 
4665 	dinfo = device_get_ivars(child);
4666 
4667 	/*
4668 	 * Save the PCI configuration space for the child and set the
4669 	 * device in the appropriate power state for this sleep state.
4670 	 */
4671 	pci_cfg_save(child, dinfo, 0);
4672 
4673 	/* Suspend devices before potentially powering them down. */
4674 	error = bus_generic_suspend_child(dev, child);
4675 
4676 	if (error)
4677 		return (error);
4678 
4679 	if (pci_do_power_suspend) {
4680 		/*
4681 		 * Make sure this device's interrupt handler is not invoked
4682 		 * in the case the device uses a shared interrupt that can
4683 		 * be raised by some other device.
4684 		 * This is applicable only to regular (legacy) PCI interrupts
4685 		 * as MSI/MSI-X interrupts are never shared.
4686 		 */
4687 		rle = resource_list_find(&dinfo->resources,
4688 		    SYS_RES_IRQ, 0);
4689 		if (rle != NULL && rle->res != NULL)
4690 			(void)bus_suspend_intr(child, rle->res);
4691 		pci_set_power_child(dev, child, PCI_POWERSTATE_D3);
4692 	}
4693 
4694 	return (0);
4695 }
4696 
4697 int
pci_resume_child(device_t dev,device_t child)4698 pci_resume_child(device_t dev, device_t child)
4699 {
4700 	struct pci_devinfo *dinfo;
4701 	struct resource_list_entry *rle;
4702 
4703 	if (pci_do_power_resume)
4704 		pci_set_power_child(dev, child, PCI_POWERSTATE_D0);
4705 
4706 	dinfo = device_get_ivars(child);
4707 	pci_cfg_restore(child, dinfo);
4708 	pci_clear_pme(child);
4709 	if (!device_is_attached(child))
4710 		pci_cfg_save(child, dinfo, 1);
4711 
4712 	bus_generic_resume_child(dev, child);
4713 
4714 	/*
4715 	 * Allow interrupts only after fully resuming the driver and hardware.
4716 	 */
4717 	if (pci_do_power_suspend) {
4718 		/* See pci_suspend_child for details. */
4719 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0);
4720 		if (rle != NULL && rle->res != NULL)
4721 			(void)bus_resume_intr(child, rle->res);
4722 	}
4723 
4724 	return (0);
4725 }
4726 
4727 int
pci_resume(device_t dev)4728 pci_resume(device_t dev)
4729 {
4730 	device_t child, *devlist;
4731 	int error, i, numdevs;
4732 
4733 	if ((error = device_get_children(dev, &devlist, &numdevs)) != 0)
4734 		return (error);
4735 
4736 	/*
4737 	 * Resume critical devices first, then everything else later.
4738 	 */
4739 	for (i = 0; i < numdevs; i++) {
4740 		child = devlist[i];
4741 		switch (pci_get_class(child)) {
4742 		case PCIC_DISPLAY:
4743 		case PCIC_MEMORY:
4744 		case PCIC_BRIDGE:
4745 		case PCIC_BASEPERIPH:
4746 			BUS_RESUME_CHILD(dev, child);
4747 			break;
4748 		}
4749 	}
4750 	for (i = 0; i < numdevs; i++) {
4751 		child = devlist[i];
4752 		switch (pci_get_class(child)) {
4753 		case PCIC_DISPLAY:
4754 		case PCIC_MEMORY:
4755 		case PCIC_BRIDGE:
4756 		case PCIC_BASEPERIPH:
4757 			break;
4758 		default:
4759 			BUS_RESUME_CHILD(dev, child);
4760 		}
4761 	}
4762 	free(devlist, M_TEMP);
4763 	return (0);
4764 }
4765 
4766 static void
pci_load_vendor_data(void)4767 pci_load_vendor_data(void)
4768 {
4769 	caddr_t data;
4770 	void *ptr;
4771 	size_t sz;
4772 
4773 	data = preload_search_by_type("pci_vendor_data");
4774 	if (data != NULL) {
4775 		ptr = preload_fetch_addr(data);
4776 		sz = preload_fetch_size(data);
4777 		if (ptr != NULL && sz != 0) {
4778 			pci_vendordata = ptr;
4779 			pci_vendordata_size = sz;
4780 			/* terminate the database */
4781 			pci_vendordata[pci_vendordata_size] = '\n';
4782 		}
4783 	}
4784 }
4785 
4786 void
pci_driver_added(device_t dev,driver_t * driver)4787 pci_driver_added(device_t dev, driver_t *driver)
4788 {
4789 	int numdevs;
4790 	device_t *devlist;
4791 	device_t child;
4792 	struct pci_devinfo *dinfo;
4793 	int i;
4794 
4795 	if (bootverbose)
4796 		device_printf(dev, "driver added\n");
4797 	DEVICE_IDENTIFY(driver, dev);
4798 	if (device_get_children(dev, &devlist, &numdevs) != 0)
4799 		return;
4800 	for (i = 0; i < numdevs; i++) {
4801 		child = devlist[i];
4802 		if (device_get_state(child) != DS_NOTPRESENT)
4803 			continue;
4804 		dinfo = device_get_ivars(child);
4805 		pci_print_verbose(dinfo);
4806 		if (bootverbose)
4807 			pci_printf(&dinfo->cfg, "reprobing on driver added\n");
4808 		pci_cfg_restore(child, dinfo);
4809 		if (device_probe_and_attach(child) != 0)
4810 			pci_child_detached(dev, child);
4811 	}
4812 	free(devlist, M_TEMP);
4813 }
4814 
4815 int
pci_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)4816 pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
4817     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
4818 {
4819 	struct pci_devinfo *dinfo;
4820 	struct msix_table_entry *mte;
4821 	struct msix_vector *mv;
4822 	uint64_t addr;
4823 	uint32_t data;
4824 	void *cookie;
4825 	int error, rid;
4826 
4827 	error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr,
4828 	    arg, &cookie);
4829 	if (error)
4830 		return (error);
4831 
4832 	/* If this is not a direct child, just bail out. */
4833 	if (device_get_parent(child) != dev) {
4834 		*cookiep = cookie;
4835 		return(0);
4836 	}
4837 
4838 	rid = rman_get_rid(irq);
4839 	if (rid == 0) {
4840 		/* Make sure that INTx is enabled */
4841 		pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4842 	} else {
4843 		/*
4844 		 * Check to see if the interrupt is MSI or MSI-X.
4845 		 * Ask our parent to map the MSI and give
4846 		 * us the address and data register values.
4847 		 * If we fail for some reason, teardown the
4848 		 * interrupt handler.
4849 		 */
4850 		dinfo = device_get_ivars(child);
4851 		if (dinfo->cfg.msi.msi_alloc > 0) {
4852 			if (dinfo->cfg.msi.msi_addr == 0) {
4853 				KASSERT(dinfo->cfg.msi.msi_handlers == 0,
4854 			    ("MSI has handlers, but vectors not mapped"));
4855 				error = PCIB_MAP_MSI(device_get_parent(dev),
4856 				    child, rman_get_start(irq), &addr, &data);
4857 				if (error)
4858 					goto bad;
4859 				dinfo->cfg.msi.msi_addr = addr;
4860 				dinfo->cfg.msi.msi_data = data;
4861 			}
4862 			if (dinfo->cfg.msi.msi_handlers == 0)
4863 				pci_enable_msi(child, dinfo->cfg.msi.msi_addr,
4864 				    dinfo->cfg.msi.msi_data);
4865 			dinfo->cfg.msi.msi_handlers++;
4866 		} else {
4867 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4868 			    ("No MSI or MSI-X interrupts allocated"));
4869 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4870 			    ("MSI-X index too high"));
4871 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4872 			KASSERT(mte->mte_vector != 0, ("no message vector"));
4873 			mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1];
4874 			KASSERT(mv->mv_irq == rman_get_start(irq),
4875 			    ("IRQ mismatch"));
4876 			if (mv->mv_address == 0) {
4877 				KASSERT(mte->mte_handlers == 0,
4878 		    ("MSI-X table entry has handlers, but vector not mapped"));
4879 				error = PCIB_MAP_MSI(device_get_parent(dev),
4880 				    child, rman_get_start(irq), &addr, &data);
4881 				if (error)
4882 					goto bad;
4883 				mv->mv_address = addr;
4884 				mv->mv_data = data;
4885 			}
4886 
4887 			/*
4888 			 * The MSIX table entry must be made valid by
4889 			 * incrementing the mte_handlers before
4890 			 * calling pci_enable_msix() and
4891 			 * pci_resume_msix(). Else the MSIX rewrite
4892 			 * table quirk will not work as expected.
4893 			 */
4894 			mte->mte_handlers++;
4895 			if (mte->mte_handlers == 1) {
4896 				pci_enable_msix(child, rid - 1, mv->mv_address,
4897 				    mv->mv_data);
4898 				pci_unmask_msix(child, rid - 1);
4899 			}
4900 		}
4901 
4902 		/*
4903 		 * Make sure that INTx is disabled if we are using MSI/MSI-X,
4904 		 * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG,
4905 		 * in which case we "enable" INTx so MSI/MSI-X actually works.
4906 		 */
4907 		if (!pci_has_quirk(pci_get_devid(child),
4908 		    PCI_QUIRK_MSI_INTX_BUG))
4909 			pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4910 		else
4911 			pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS);
4912 	bad:
4913 		if (error) {
4914 			(void)bus_generic_teardown_intr(dev, child, irq,
4915 			    cookie);
4916 			return (error);
4917 		}
4918 	}
4919 	*cookiep = cookie;
4920 	return (0);
4921 }
4922 
4923 int
pci_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)4924 pci_teardown_intr(device_t dev, device_t child, struct resource *irq,
4925     void *cookie)
4926 {
4927 	struct msix_table_entry *mte;
4928 	struct resource_list_entry *rle;
4929 	struct pci_devinfo *dinfo;
4930 	int error, rid;
4931 
4932 	if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE))
4933 		return (EINVAL);
4934 
4935 	/* If this isn't a direct child, just bail out */
4936 	if (device_get_parent(child) != dev)
4937 		return(bus_generic_teardown_intr(dev, child, irq, cookie));
4938 
4939 	rid = rman_get_rid(irq);
4940 	if (rid == 0) {
4941 		/* Mask INTx */
4942 		pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS);
4943 	} else {
4944 		/*
4945 		 * Check to see if the interrupt is MSI or MSI-X.  If so,
4946 		 * decrement the appropriate handlers count and mask the
4947 		 * MSI-X message, or disable MSI messages if the count
4948 		 * drops to 0.
4949 		 */
4950 		dinfo = device_get_ivars(child);
4951 		rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid);
4952 		if (rle->res != irq)
4953 			return (EINVAL);
4954 		if (dinfo->cfg.msi.msi_alloc > 0) {
4955 			KASSERT(rid <= dinfo->cfg.msi.msi_alloc,
4956 			    ("MSI-X index too high"));
4957 			if (dinfo->cfg.msi.msi_handlers == 0)
4958 				return (EINVAL);
4959 			dinfo->cfg.msi.msi_handlers--;
4960 			if (dinfo->cfg.msi.msi_handlers == 0)
4961 				pci_disable_msi(child);
4962 		} else {
4963 			KASSERT(dinfo->cfg.msix.msix_alloc > 0,
4964 			    ("No MSI or MSI-X interrupts allocated"));
4965 			KASSERT(rid <= dinfo->cfg.msix.msix_table_len,
4966 			    ("MSI-X index too high"));
4967 			mte = &dinfo->cfg.msix.msix_table[rid - 1];
4968 			if (mte->mte_handlers == 0)
4969 				return (EINVAL);
4970 			mte->mte_handlers--;
4971 			if (mte->mte_handlers == 0)
4972 				pci_mask_msix(child, rid - 1);
4973 		}
4974 	}
4975 	error = bus_generic_teardown_intr(dev, child, irq, cookie);
4976 	if (rid > 0)
4977 		KASSERT(error == 0,
4978 		    ("%s: generic teardown failed for MSI/MSI-X", __func__));
4979 	return (error);
4980 }
4981 
4982 int
pci_print_child(device_t dev,device_t child)4983 pci_print_child(device_t dev, device_t child)
4984 {
4985 	struct pci_devinfo *dinfo;
4986 	struct resource_list *rl;
4987 	int retval = 0;
4988 
4989 	dinfo = device_get_ivars(child);
4990 	rl = &dinfo->resources;
4991 
4992 	retval += bus_print_child_header(dev, child);
4993 
4994 	retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
4995 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
4996 	retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
4997 	if (device_get_flags(dev))
4998 		retval += printf(" flags %#x", device_get_flags(dev));
4999 
5000 	retval += printf(" at device %d.%d", pci_get_slot(child),
5001 	    pci_get_function(child));
5002 
5003 	retval += bus_print_child_domain(dev, child);
5004 	retval += bus_print_child_footer(dev, child);
5005 
5006 	return (retval);
5007 }
5008 
5009 static const struct
5010 {
5011 	int		class;
5012 	int		subclass;
5013 	int		report; /* 0 = bootverbose, 1 = always */
5014 	const char	*desc;
5015 } pci_nomatch_tab[] = {
5016 	{PCIC_OLD,		-1,			1, "old"},
5017 	{PCIC_OLD,		PCIS_OLD_NONVGA,	1, "non-VGA display device"},
5018 	{PCIC_OLD,		PCIS_OLD_VGA,		1, "VGA-compatible display device"},
5019 	{PCIC_STORAGE,		-1,			1, "mass storage"},
5020 	{PCIC_STORAGE,		PCIS_STORAGE_SCSI,	1, "SCSI"},
5021 	{PCIC_STORAGE,		PCIS_STORAGE_IDE,	1, "ATA"},
5022 	{PCIC_STORAGE,		PCIS_STORAGE_FLOPPY,	1, "floppy disk"},
5023 	{PCIC_STORAGE,		PCIS_STORAGE_IPI,	1, "IPI"},
5024 	{PCIC_STORAGE,		PCIS_STORAGE_RAID,	1, "RAID"},
5025 	{PCIC_STORAGE,		PCIS_STORAGE_ATA_ADMA,	1, "ATA (ADMA)"},
5026 	{PCIC_STORAGE,		PCIS_STORAGE_SATA,	1, "SATA"},
5027 	{PCIC_STORAGE,		PCIS_STORAGE_SAS,	1, "SAS"},
5028 	{PCIC_STORAGE,		PCIS_STORAGE_NVM,	1, "NVM"},
5029 	{PCIC_NETWORK,		-1,			1, "network"},
5030 	{PCIC_NETWORK,		PCIS_NETWORK_ETHERNET,	1, "ethernet"},
5031 	{PCIC_NETWORK,		PCIS_NETWORK_TOKENRING,	1, "token ring"},
5032 	{PCIC_NETWORK,		PCIS_NETWORK_FDDI,	1, "fddi"},
5033 	{PCIC_NETWORK,		PCIS_NETWORK_ATM,	1, "ATM"},
5034 	{PCIC_NETWORK,		PCIS_NETWORK_ISDN,	1, "ISDN"},
5035 	{PCIC_DISPLAY,		-1,			1, "display"},
5036 	{PCIC_DISPLAY,		PCIS_DISPLAY_VGA,	1, "VGA"},
5037 	{PCIC_DISPLAY,		PCIS_DISPLAY_XGA,	1, "XGA"},
5038 	{PCIC_DISPLAY,		PCIS_DISPLAY_3D,	1, "3D"},
5039 	{PCIC_MULTIMEDIA,	-1,			1, "multimedia"},
5040 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_VIDEO,	1, "video"},
5041 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_AUDIO,	1, "audio"},
5042 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_TELE,	1, "telephony"},
5043 	{PCIC_MULTIMEDIA,	PCIS_MULTIMEDIA_HDA,	1, "HDA"},
5044 	{PCIC_MEMORY,		-1,			1, "memory"},
5045 	{PCIC_MEMORY,		PCIS_MEMORY_RAM,	1, "RAM"},
5046 	{PCIC_MEMORY,		PCIS_MEMORY_FLASH,	1, "flash"},
5047 	{PCIC_BRIDGE,		-1,			1, "bridge"},
5048 	{PCIC_BRIDGE,		PCIS_BRIDGE_HOST,	1, "HOST-PCI"},
5049 	{PCIC_BRIDGE,		PCIS_BRIDGE_ISA,	1, "PCI-ISA"},
5050 	{PCIC_BRIDGE,		PCIS_BRIDGE_EISA,	1, "PCI-EISA"},
5051 	{PCIC_BRIDGE,		PCIS_BRIDGE_MCA,	1, "PCI-MCA"},
5052 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCI,	1, "PCI-PCI"},
5053 	{PCIC_BRIDGE,		PCIS_BRIDGE_PCMCIA,	1, "PCI-PCMCIA"},
5054 	{PCIC_BRIDGE,		PCIS_BRIDGE_NUBUS,	1, "PCI-NuBus"},
5055 	{PCIC_BRIDGE,		PCIS_BRIDGE_CARDBUS,	1, "PCI-CardBus"},
5056 	{PCIC_BRIDGE,		PCIS_BRIDGE_RACEWAY,	1, "PCI-RACEway"},
5057 	{PCIC_SIMPLECOMM,	-1,			1, "simple comms"},
5058 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_UART,	1, "UART"},	/* could detect 16550 */
5059 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_PAR,	1, "parallel port"},
5060 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MULSER,	1, "multiport serial"},
5061 	{PCIC_SIMPLECOMM,	PCIS_SIMPLECOMM_MODEM,	1, "generic modem"},
5062 	{PCIC_BASEPERIPH,	-1,			0, "base peripheral"},
5063 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PIC,	1, "interrupt controller"},
5064 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_DMA,	1, "DMA controller"},
5065 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_TIMER,	1, "timer"},
5066 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_RTC,	1, "realtime clock"},
5067 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_PCIHOT,	1, "PCI hot-plug controller"},
5068 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_SDHC,	1, "SD host controller"},
5069 	{PCIC_BASEPERIPH,	PCIS_BASEPERIPH_IOMMU,	1, "IOMMU"},
5070 	{PCIC_INPUTDEV,		-1,			1, "input device"},
5071 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_KEYBOARD,	1, "keyboard"},
5072 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_DIGITIZER,1, "digitizer"},
5073 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_MOUSE,	1, "mouse"},
5074 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_SCANNER,	1, "scanner"},
5075 	{PCIC_INPUTDEV,		PCIS_INPUTDEV_GAMEPORT,	1, "gameport"},
5076 	{PCIC_DOCKING,		-1,			1, "docking station"},
5077 	{PCIC_PROCESSOR,	-1,			1, "processor"},
5078 	{PCIC_SERIALBUS,	-1,			1, "serial bus"},
5079 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FW,	1, "FireWire"},
5080 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_ACCESS,	1, "AccessBus"},
5081 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SSA,	1, "SSA"},
5082 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_USB,	1, "USB"},
5083 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_FC,	1, "Fibre Channel"},
5084 	{PCIC_SERIALBUS,	PCIS_SERIALBUS_SMBUS,	0, "SMBus"},
5085 	{PCIC_WIRELESS,		-1,			1, "wireless controller"},
5086 	{PCIC_WIRELESS,		PCIS_WIRELESS_IRDA,	1, "iRDA"},
5087 	{PCIC_WIRELESS,		PCIS_WIRELESS_IR,	1, "IR"},
5088 	{PCIC_WIRELESS,		PCIS_WIRELESS_RF,	1, "RF"},
5089 	{PCIC_INTELLIIO,	-1,			1, "intelligent I/O controller"},
5090 	{PCIC_INTELLIIO,	PCIS_INTELLIIO_I2O,	1, "I2O"},
5091 	{PCIC_SATCOM,		-1,			1, "satellite communication"},
5092 	{PCIC_SATCOM,		PCIS_SATCOM_TV,		1, "sat TV"},
5093 	{PCIC_SATCOM,		PCIS_SATCOM_AUDIO,	1, "sat audio"},
5094 	{PCIC_SATCOM,		PCIS_SATCOM_VOICE,	1, "sat voice"},
5095 	{PCIC_SATCOM,		PCIS_SATCOM_DATA,	1, "sat data"},
5096 	{PCIC_CRYPTO,		-1,			1, "encrypt/decrypt"},
5097 	{PCIC_CRYPTO,		PCIS_CRYPTO_NETCOMP,	1, "network/computer crypto"},
5098 	{PCIC_CRYPTO,		PCIS_CRYPTO_ENTERTAIN,	1, "entertainment crypto"},
5099 	{PCIC_DASP,		-1,			0, "dasp"},
5100 	{PCIC_DASP,		PCIS_DASP_DPIO,		1, "DPIO module"},
5101 	{PCIC_DASP,		PCIS_DASP_PERFCNTRS,	1, "performance counters"},
5102 	{PCIC_DASP,		PCIS_DASP_COMM_SYNC,	1, "communication synchronizer"},
5103 	{PCIC_DASP,		PCIS_DASP_MGMT_CARD,	1, "signal processing management"},
5104 	{PCIC_INSTRUMENT,	-1,			0, "non-essential instrumentation"},
5105 	{0, 0, 0,		NULL}
5106 };
5107 
5108 void
pci_probe_nomatch(device_t dev,device_t child)5109 pci_probe_nomatch(device_t dev, device_t child)
5110 {
5111 	int i, report;
5112 	const char *cp, *scp;
5113 	char *device;
5114 
5115 	/*
5116 	 * Look for a listing for this device in a loaded device database.
5117 	 */
5118 	report = 1;
5119 	if ((device = pci_describe_device(child)) != NULL) {
5120 		device_printf(dev, "<%s>", device);
5121 		free(device, M_DEVBUF);
5122 	} else {
5123 		/*
5124 		 * Scan the class/subclass descriptions for a general
5125 		 * description.
5126 		 */
5127 		cp = "unknown";
5128 		scp = NULL;
5129 		for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) {
5130 			if (pci_nomatch_tab[i].class == pci_get_class(child)) {
5131 				if (pci_nomatch_tab[i].subclass == -1) {
5132 					cp = pci_nomatch_tab[i].desc;
5133 					report = pci_nomatch_tab[i].report;
5134 				} else if (pci_nomatch_tab[i].subclass ==
5135 				    pci_get_subclass(child)) {
5136 					scp = pci_nomatch_tab[i].desc;
5137 					report = pci_nomatch_tab[i].report;
5138 				}
5139 			}
5140 		}
5141 		if (report || bootverbose) {
5142 			device_printf(dev, "<%s%s%s>",
5143 			    cp ? cp : "",
5144 			    ((cp != NULL) && (scp != NULL)) ? ", " : "",
5145 			    scp ? scp : "");
5146 		}
5147 	}
5148 	if (report || bootverbose) {
5149 		printf(" at device %d.%d (no driver attached)\n",
5150 		    pci_get_slot(child), pci_get_function(child));
5151 	}
5152 	pci_cfg_save(child, device_get_ivars(child), 1);
5153 }
5154 
5155 void
pci_child_detached(device_t dev,device_t child)5156 pci_child_detached(device_t dev, device_t child)
5157 {
5158 	struct pci_devinfo *dinfo;
5159 	struct resource_list *rl;
5160 
5161 	dinfo = device_get_ivars(child);
5162 	rl = &dinfo->resources;
5163 
5164 	/*
5165 	 * Have to deallocate IRQs before releasing any MSI messages and
5166 	 * have to release MSI messages before deallocating any memory
5167 	 * BARs.
5168 	 */
5169 	if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0)
5170 		pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n");
5171 	if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) {
5172 		if (dinfo->cfg.msi.msi_alloc != 0)
5173 			pci_printf(&dinfo->cfg, "Device leaked %d MSI "
5174 			    "vectors\n", dinfo->cfg.msi.msi_alloc);
5175 		else
5176 			pci_printf(&dinfo->cfg, "Device leaked %d MSI-X "
5177 			    "vectors\n", dinfo->cfg.msix.msix_alloc);
5178 		(void)pci_release_msi(child);
5179 	}
5180 	if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0)
5181 		pci_printf(&dinfo->cfg, "Device leaked memory resources\n");
5182 	if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0)
5183 		pci_printf(&dinfo->cfg, "Device leaked I/O resources\n");
5184 	if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0)
5185 		pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n");
5186 
5187 	pci_cfg_save(child, dinfo, 1);
5188 }
5189 
5190 /*
5191  * Parse the PCI device database, if loaded, and return a pointer to a
5192  * description of the device.
5193  *
5194  * The database is flat text formatted as follows:
5195  *
5196  * Any line not in a valid format is ignored.
5197  * Lines are terminated with newline '\n' characters.
5198  *
5199  * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then
5200  * the vendor name.
5201  *
5202  * A DEVICE line is entered immediately below the corresponding VENDOR ID.
5203  * - devices cannot be listed without a corresponding VENDOR line.
5204  * A DEVICE line consists of a TAB, the 4 digit (hex) device code,
5205  * another TAB, then the device name.
5206  */
5207 
5208 /*
5209  * Assuming (ptr) points to the beginning of a line in the database,
5210  * return the vendor or device and description of the next entry.
5211  * The value of (vendor) or (device) inappropriate for the entry type
5212  * is set to -1.  Returns nonzero at the end of the database.
5213  *
5214  * Note that this is slightly unrobust in the face of corrupt data;
5215  * we attempt to safeguard against this by spamming the end of the
5216  * database with a newline when we initialise.
5217  */
5218 static int
pci_describe_parse_line(char ** ptr,int * vendor,int * device,char ** desc)5219 pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc)
5220 {
5221 	char	*cp = *ptr;
5222 	int	left;
5223 
5224 	*device = -1;
5225 	*vendor = -1;
5226 	**desc = '\0';
5227 	for (;;) {
5228 		left = pci_vendordata_size - (cp - pci_vendordata);
5229 		if (left <= 0) {
5230 			*ptr = cp;
5231 			return(1);
5232 		}
5233 
5234 		/* vendor entry? */
5235 		if (*cp != '\t' &&
5236 		    sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2)
5237 			break;
5238 		/* device entry? */
5239 		if (*cp == '\t' &&
5240 		    sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2)
5241 			break;
5242 
5243 		/* skip to next line */
5244 		while (*cp != '\n' && left > 0) {
5245 			cp++;
5246 			left--;
5247 		}
5248 		if (*cp == '\n') {
5249 			cp++;
5250 			left--;
5251 		}
5252 	}
5253 	/* skip to next line */
5254 	while (*cp != '\n' && left > 0) {
5255 		cp++;
5256 		left--;
5257 	}
5258 	if (*cp == '\n' && left > 0)
5259 		cp++;
5260 	*ptr = cp;
5261 	return(0);
5262 }
5263 
5264 static char *
pci_describe_device(device_t dev)5265 pci_describe_device(device_t dev)
5266 {
5267 	int	vendor, device;
5268 	char	*desc, *vp, *dp, *line;
5269 
5270 	desc = vp = dp = NULL;
5271 
5272 	/*
5273 	 * If we have no vendor data, we can't do anything.
5274 	 */
5275 	if (pci_vendordata == NULL)
5276 		goto out;
5277 
5278 	/*
5279 	 * Scan the vendor data looking for this device
5280 	 */
5281 	line = pci_vendordata;
5282 	if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5283 		goto out;
5284 	for (;;) {
5285 		if (pci_describe_parse_line(&line, &vendor, &device, &vp))
5286 			goto out;
5287 		if (vendor == pci_get_vendor(dev))
5288 			break;
5289 	}
5290 	if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL)
5291 		goto out;
5292 	for (;;) {
5293 		if (pci_describe_parse_line(&line, &vendor, &device, &dp)) {
5294 			*dp = 0;
5295 			break;
5296 		}
5297 		if (vendor != -1) {
5298 			*dp = 0;
5299 			break;
5300 		}
5301 		if (device == pci_get_device(dev))
5302 			break;
5303 	}
5304 	if (dp[0] == '\0')
5305 		snprintf(dp, 80, "0x%x", pci_get_device(dev));
5306 	if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) !=
5307 	    NULL)
5308 		sprintf(desc, "%s, %s", vp, dp);
5309 out:
5310 	if (vp != NULL)
5311 		free(vp, M_DEVBUF);
5312 	if (dp != NULL)
5313 		free(dp, M_DEVBUF);
5314 	return(desc);
5315 }
5316 
5317 int
pci_read_ivar(device_t dev,device_t child,int which,uintptr_t * result)5318 pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
5319 {
5320 	struct pci_devinfo *dinfo;
5321 	pcicfgregs *cfg;
5322 
5323 	dinfo = device_get_ivars(child);
5324 	cfg = &dinfo->cfg;
5325 
5326 	switch (which) {
5327 	case PCI_IVAR_ETHADDR:
5328 		/*
5329 		 * The generic accessor doesn't deal with failure, so
5330 		 * we set the return value, then return an error.
5331 		 */
5332 		*((uint8_t **) result) = NULL;
5333 		return (EINVAL);
5334 	case PCI_IVAR_SUBVENDOR:
5335 		*result = cfg->subvendor;
5336 		break;
5337 	case PCI_IVAR_SUBDEVICE:
5338 		*result = cfg->subdevice;
5339 		break;
5340 	case PCI_IVAR_VENDOR:
5341 		*result = cfg->vendor;
5342 		break;
5343 	case PCI_IVAR_DEVICE:
5344 		*result = cfg->device;
5345 		break;
5346 	case PCI_IVAR_DEVID:
5347 		*result = (cfg->device << 16) | cfg->vendor;
5348 		break;
5349 	case PCI_IVAR_CLASS:
5350 		*result = cfg->baseclass;
5351 		break;
5352 	case PCI_IVAR_SUBCLASS:
5353 		*result = cfg->subclass;
5354 		break;
5355 	case PCI_IVAR_PROGIF:
5356 		*result = cfg->progif;
5357 		break;
5358 	case PCI_IVAR_REVID:
5359 		*result = cfg->revid;
5360 		break;
5361 	case PCI_IVAR_INTPIN:
5362 		*result = cfg->intpin;
5363 		break;
5364 	case PCI_IVAR_IRQ:
5365 		*result = cfg->intline;
5366 		break;
5367 	case PCI_IVAR_DOMAIN:
5368 		*result = cfg->domain;
5369 		break;
5370 	case PCI_IVAR_BUS:
5371 		*result = cfg->bus;
5372 		break;
5373 	case PCI_IVAR_SLOT:
5374 		*result = cfg->slot;
5375 		break;
5376 	case PCI_IVAR_FUNCTION:
5377 		*result = cfg->func;
5378 		break;
5379 	case PCI_IVAR_CMDREG:
5380 		*result = cfg->cmdreg;
5381 		break;
5382 	case PCI_IVAR_CACHELNSZ:
5383 		*result = cfg->cachelnsz;
5384 		break;
5385 	case PCI_IVAR_MINGNT:
5386 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5387 			*result = -1;
5388 			return (EINVAL);
5389 		}
5390 		*result = cfg->mingnt;
5391 		break;
5392 	case PCI_IVAR_MAXLAT:
5393 		if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) {
5394 			*result = -1;
5395 			return (EINVAL);
5396 		}
5397 		*result = cfg->maxlat;
5398 		break;
5399 	case PCI_IVAR_LATTIMER:
5400 		*result = cfg->lattimer;
5401 		break;
5402 	default:
5403 		return (ENOENT);
5404 	}
5405 	return (0);
5406 }
5407 
5408 int
pci_write_ivar(device_t dev,device_t child,int which,uintptr_t value)5409 pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
5410 {
5411 	struct pci_devinfo *dinfo;
5412 
5413 	dinfo = device_get_ivars(child);
5414 
5415 	switch (which) {
5416 	case PCI_IVAR_INTPIN:
5417 		dinfo->cfg.intpin = value;
5418 		return (0);
5419 	case PCI_IVAR_ETHADDR:
5420 	case PCI_IVAR_SUBVENDOR:
5421 	case PCI_IVAR_SUBDEVICE:
5422 	case PCI_IVAR_VENDOR:
5423 	case PCI_IVAR_DEVICE:
5424 	case PCI_IVAR_DEVID:
5425 	case PCI_IVAR_CLASS:
5426 	case PCI_IVAR_SUBCLASS:
5427 	case PCI_IVAR_PROGIF:
5428 	case PCI_IVAR_REVID:
5429 	case PCI_IVAR_IRQ:
5430 	case PCI_IVAR_DOMAIN:
5431 	case PCI_IVAR_BUS:
5432 	case PCI_IVAR_SLOT:
5433 	case PCI_IVAR_FUNCTION:
5434 		return (EINVAL);	/* disallow for now */
5435 
5436 	default:
5437 		return (ENOENT);
5438 	}
5439 }
5440 
5441 #include "opt_ddb.h"
5442 #ifdef DDB
5443 #include <ddb/ddb.h>
5444 #include <sys/cons.h>
5445 
5446 /*
5447  * List resources based on pci map registers, used for within ddb
5448  */
5449 
DB_SHOW_COMMAND_FLAGS(pciregs,db_pci_dump,DB_CMD_MEMSAFE)5450 DB_SHOW_COMMAND_FLAGS(pciregs, db_pci_dump, DB_CMD_MEMSAFE)
5451 {
5452 	struct pci_devinfo *dinfo;
5453 	struct devlist *devlist_head;
5454 	struct pci_conf *p;
5455 	const char *name;
5456 	int i, error, none_count;
5457 
5458 	none_count = 0;
5459 	/* get the head of the device queue */
5460 	devlist_head = &pci_devq;
5461 
5462 	/*
5463 	 * Go through the list of devices and print out devices
5464 	 */
5465 	for (error = 0, i = 0,
5466 	     dinfo = STAILQ_FIRST(devlist_head);
5467 	     (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit;
5468 	     dinfo = STAILQ_NEXT(dinfo, pci_links), i++) {
5469 		/* Populate pd_name and pd_unit */
5470 		name = NULL;
5471 		if (dinfo->cfg.dev)
5472 			name = device_get_name(dinfo->cfg.dev);
5473 
5474 		p = &dinfo->conf;
5475 		db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x "
5476 			"chip=0x%08x rev=0x%02x hdr=0x%02x\n",
5477 			(name && *name) ? name : "none",
5478 			(name && *name) ? (int)device_get_unit(dinfo->cfg.dev) :
5479 			none_count++,
5480 			p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev,
5481 			p->pc_sel.pc_func, (p->pc_class << 16) |
5482 			(p->pc_subclass << 8) | p->pc_progif,
5483 			(p->pc_subdevice << 16) | p->pc_subvendor,
5484 			(p->pc_device << 16) | p->pc_vendor,
5485 			p->pc_revid, p->pc_hdr);
5486 	}
5487 }
5488 #endif /* DDB */
5489 
5490 struct resource *
pci_reserve_map(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int num,u_int flags)5491 pci_reserve_map(device_t dev, device_t child, int type, int *rid,
5492     rman_res_t start, rman_res_t end, rman_res_t count, u_int num,
5493     u_int flags)
5494 {
5495 	struct pci_devinfo *dinfo = device_get_ivars(child);
5496 	struct resource_list *rl = &dinfo->resources;
5497 	struct resource *res;
5498 	struct pci_map *pm;
5499 	uint16_t cmd;
5500 	pci_addr_t map, testval;
5501 	int mapsize;
5502 
5503 	res = NULL;
5504 
5505 	/* If rid is managed by EA, ignore it */
5506 	if (pci_ea_is_enabled(child, *rid))
5507 		goto out;
5508 
5509 	pm = pci_find_bar(child, *rid);
5510 	if (pm != NULL) {
5511 		/* This is a BAR that we failed to allocate earlier. */
5512 		mapsize = pm->pm_size;
5513 		map = pm->pm_value;
5514 	} else {
5515 		/*
5516 		 * Weed out the bogons, and figure out how large the
5517 		 * BAR/map is.  BARs that read back 0 here are bogus
5518 		 * and unimplemented.  Note: atapci in legacy mode are
5519 		 * special and handled elsewhere in the code.  If you
5520 		 * have a atapci device in legacy mode and it fails
5521 		 * here, that other code is broken.
5522 		 */
5523 		pci_read_bar(child, *rid, &map, &testval, NULL);
5524 
5525 		/*
5526 		 * Determine the size of the BAR and ignore BARs with a size
5527 		 * of 0.  Device ROM BARs use a different mask value.
5528 		 */
5529 		if (PCIR_IS_BIOS(&dinfo->cfg, *rid))
5530 			mapsize = pci_romsize(testval);
5531 		else
5532 			mapsize = pci_mapsize(testval);
5533 		if (mapsize == 0)
5534 			goto out;
5535 		pm = pci_add_bar(child, *rid, map, mapsize);
5536 	}
5537 
5538 	if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) {
5539 		if (type != SYS_RES_MEMORY) {
5540 			if (bootverbose)
5541 				device_printf(dev,
5542 				    "child %s requested type %d for rid %#x,"
5543 				    " but the BAR says it is an memio\n",
5544 				    device_get_nameunit(child), type, *rid);
5545 			goto out;
5546 		}
5547 	} else {
5548 		if (type != SYS_RES_IOPORT) {
5549 			if (bootverbose)
5550 				device_printf(dev,
5551 				    "child %s requested type %d for rid %#x,"
5552 				    " but the BAR says it is an ioport\n",
5553 				    device_get_nameunit(child), type, *rid);
5554 			goto out;
5555 		}
5556 	}
5557 
5558 	/*
5559 	 * For real BARs, we need to override the size that
5560 	 * the driver requests, because that's what the BAR
5561 	 * actually uses and we would otherwise have a
5562 	 * situation where we might allocate the excess to
5563 	 * another driver, which won't work.
5564 	 */
5565 	count = ((pci_addr_t)1 << mapsize) * num;
5566 	if (RF_ALIGNMENT(flags) < mapsize)
5567 		flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize);
5568 	if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH))
5569 		flags |= RF_PREFETCHABLE;
5570 
5571 	/*
5572 	 * Allocate enough resource, and then write back the
5573 	 * appropriate BAR for that resource.
5574 	 */
5575 	resource_list_add(rl, type, *rid, start, end, count);
5576 	res = resource_list_reserve(rl, dev, child, type, rid, start, end,
5577 	    count, flags & ~RF_ACTIVE);
5578 	if (res == NULL) {
5579 		resource_list_delete(rl, type, *rid);
5580 		device_printf(child,
5581 		    "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n",
5582 		    count, *rid, type, start, end);
5583 		goto out;
5584 	}
5585 	if (bootverbose)
5586 		device_printf(child,
5587 		    "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n",
5588 		    count, *rid, type, rman_get_start(res));
5589 
5590 	/* Disable decoding via the CMD register before updating the BAR */
5591 	cmd = pci_read_config(child, PCIR_COMMAND, 2);
5592 	pci_write_config(child, PCIR_COMMAND,
5593 	    cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2);
5594 
5595 	map = rman_get_start(res);
5596 	pci_write_bar(child, pm, map);
5597 
5598 	/* Restore the original value of the CMD register */
5599 	pci_write_config(child, PCIR_COMMAND, cmd, 2);
5600 out:
5601 	return (res);
5602 }
5603 
5604 struct resource *
pci_alloc_multi_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_long num,u_int flags)5605 pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid,
5606     rman_res_t start, rman_res_t end, rman_res_t count, u_long num,
5607     u_int flags)
5608 {
5609 	struct pci_devinfo *dinfo;
5610 	struct resource_list *rl;
5611 	struct resource_list_entry *rle;
5612 	struct resource *res;
5613 	pcicfgregs *cfg;
5614 
5615 	/*
5616 	 * Perform lazy resource allocation
5617 	 */
5618 	dinfo = device_get_ivars(child);
5619 	rl = &dinfo->resources;
5620 	cfg = &dinfo->cfg;
5621 	switch (type) {
5622 	case PCI_RES_BUS:
5623 		return (pci_alloc_secbus(dev, child, rid, start, end, count,
5624 		    flags));
5625 	case SYS_RES_IRQ:
5626 		/*
5627 		 * Can't alloc legacy interrupt once MSI messages have
5628 		 * been allocated.
5629 		 */
5630 		if (*rid == 0 && (cfg->msi.msi_alloc > 0 ||
5631 		    cfg->msix.msix_alloc > 0))
5632 			return (NULL);
5633 
5634 		/*
5635 		 * If the child device doesn't have an interrupt
5636 		 * routed and is deserving of an interrupt, try to
5637 		 * assign it one.
5638 		 */
5639 		if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) &&
5640 		    (cfg->intpin != 0))
5641 			pci_assign_interrupt(dev, child, 0);
5642 		break;
5643 	case SYS_RES_IOPORT:
5644 	case SYS_RES_MEMORY:
5645 		/*
5646 		 * PCI-PCI bridge I/O window resources are not BARs.
5647 		 * For those allocations just pass the request up the
5648 		 * tree.
5649 		 */
5650 		if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) {
5651 			switch (*rid) {
5652 			case PCIR_IOBASEL_1:
5653 			case PCIR_MEMBASE_1:
5654 			case PCIR_PMBASEL_1:
5655 				/*
5656 				 * XXX: Should we bother creating a resource
5657 				 * list entry?
5658 				 */
5659 				return (bus_generic_alloc_resource(dev, child,
5660 				    type, rid, start, end, count, flags));
5661 			}
5662 		}
5663 		/* Reserve resources for this BAR if needed. */
5664 		rle = resource_list_find(rl, type, *rid);
5665 		if (rle == NULL) {
5666 			res = pci_reserve_map(dev, child, type, rid, start, end,
5667 			    count, num, flags);
5668 			if (res == NULL)
5669 				return (NULL);
5670 		}
5671 	}
5672 	return (resource_list_alloc(rl, dev, child, type, rid,
5673 	    start, end, count, flags));
5674 }
5675 
5676 struct resource *
pci_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)5677 pci_alloc_resource(device_t dev, device_t child, int type, int *rid,
5678     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
5679 {
5680 #ifdef PCI_IOV
5681 	struct pci_devinfo *dinfo;
5682 #endif
5683 
5684 	if (device_get_parent(child) != dev)
5685 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
5686 		    type, rid, start, end, count, flags));
5687 
5688 #ifdef PCI_IOV
5689 	dinfo = device_get_ivars(child);
5690 	if (dinfo->cfg.flags & PCICFG_VF) {
5691 		switch (type) {
5692 		/* VFs can't have I/O BARs. */
5693 		case SYS_RES_IOPORT:
5694 			return (NULL);
5695 		case SYS_RES_MEMORY:
5696 			return (pci_vf_alloc_mem_resource(dev, child, rid,
5697 			    start, end, count, flags));
5698 		}
5699 
5700 		/* Fall through for other types of resource allocations. */
5701 	}
5702 #endif
5703 
5704 	return (pci_alloc_multi_resource(dev, child, type, rid, start, end,
5705 	    count, 1, flags));
5706 }
5707 
5708 int
pci_release_resource(device_t dev,device_t child,struct resource * r)5709 pci_release_resource(device_t dev, device_t child, struct resource *r)
5710 {
5711 	struct pci_devinfo *dinfo;
5712 	struct resource_list *rl;
5713 	pcicfgregs *cfg __unused;
5714 
5715 	if (device_get_parent(child) != dev)
5716 		return (bus_generic_release_resource(dev, child, r));
5717 
5718 	dinfo = device_get_ivars(child);
5719 	cfg = &dinfo->cfg;
5720 
5721 #ifdef PCI_IOV
5722 	if (cfg->flags & PCICFG_VF) {
5723 		switch (rman_get_type(r)) {
5724 		/* VFs can't have I/O BARs. */
5725 		case SYS_RES_IOPORT:
5726 			return (EDOOFUS);
5727 		case SYS_RES_MEMORY:
5728 			return (pci_vf_release_mem_resource(dev, child, r));
5729 		}
5730 
5731 		/* Fall through for other types of resource allocations. */
5732 	}
5733 #endif
5734 
5735 	/*
5736 	 * PCI-PCI bridge I/O window resources are not BARs.  For
5737 	 * those allocations just pass the request up the tree.
5738 	 */
5739 	if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE &&
5740 	    (rman_get_type(r) == SYS_RES_IOPORT ||
5741 	    rman_get_type(r) == SYS_RES_MEMORY)) {
5742 		switch (rman_get_rid(r)) {
5743 		case PCIR_IOBASEL_1:
5744 		case PCIR_MEMBASE_1:
5745 		case PCIR_PMBASEL_1:
5746 			return (bus_generic_release_resource(dev, child, r));
5747 		}
5748 	}
5749 
5750 	rl = &dinfo->resources;
5751 	return (resource_list_release(rl, dev, child, r));
5752 }
5753 
5754 int
pci_activate_resource(device_t dev,device_t child,struct resource * r)5755 pci_activate_resource(device_t dev, device_t child, struct resource *r)
5756 {
5757 	struct pci_devinfo *dinfo;
5758 	int error, rid, type;
5759 
5760 	if (device_get_parent(child) != dev)
5761 		return (bus_generic_activate_resource(dev, child, r));
5762 
5763 	dinfo = device_get_ivars(child);
5764 #ifdef PCI_IOV
5765 	if (dinfo->cfg.flags & PCICFG_VF) {
5766 		switch (rman_get_type(r)) {
5767 		/* VFs can't have I/O BARs. */
5768 		case SYS_RES_IOPORT:
5769 			error = EINVAL;
5770 			break;
5771 		case SYS_RES_MEMORY:
5772 			error = pci_vf_activate_mem_resource(dev, child, r);
5773 			break;
5774 		default:
5775 			error = bus_generic_activate_resource(dev, child, r);
5776 			break;
5777 		}
5778 	} else
5779 #endif
5780 		error = bus_generic_activate_resource(dev, child, r);
5781 	if (error)
5782 		return (error);
5783 
5784 	rid = rman_get_rid(r);
5785 	type = rman_get_type(r);
5786 
5787 	/* Device ROMs need their decoding explicitly enabled. */
5788 	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5789 		pci_write_bar(child, pci_find_bar(child, rid),
5790 		    rman_get_start(r) | PCIM_BIOS_ENABLE);
5791 
5792 	/* Enable decoding in the command register when activating BARs. */
5793 	switch (type) {
5794 	case SYS_RES_IOPORT:
5795 	case SYS_RES_MEMORY:
5796 		error = PCI_ENABLE_IO(dev, child, type);
5797 		break;
5798 	}
5799 	return (error);
5800 }
5801 
5802 int
pci_deactivate_resource(device_t dev,device_t child,struct resource * r)5803 pci_deactivate_resource(device_t dev, device_t child, struct resource *r)
5804 {
5805 	struct pci_devinfo *dinfo;
5806 	int error, rid, type;
5807 
5808 	if (device_get_parent(child) != dev)
5809 		return (bus_generic_deactivate_resource(dev, child, r));
5810 
5811 	dinfo = device_get_ivars(child);
5812 #ifdef PCI_IOV
5813 	if (dinfo->cfg.flags & PCICFG_VF) {
5814 		switch (rman_get_type(r)) {
5815 		/* VFs can't have I/O BARs. */
5816 		case SYS_RES_IOPORT:
5817 			error = EINVAL;
5818 			break;
5819 		case SYS_RES_MEMORY:
5820 			error = pci_vf_deactivate_mem_resource(dev, child, r);
5821 			break;
5822 		default:
5823 			error = bus_generic_deactivate_resource(dev, child, r);
5824 			break;
5825 		}
5826 	} else
5827 #endif
5828 		error = bus_generic_deactivate_resource(dev, child, r);
5829 	if (error)
5830 		return (error);
5831 
5832 	/* Disable decoding for device ROMs. */
5833 	rid = rman_get_rid(r);
5834 	type = rman_get_type(r);
5835 	if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid))
5836 		pci_write_bar(child, pci_find_bar(child, rid),
5837 		    rman_get_start(r));
5838 	return (0);
5839 }
5840 
5841 int
pci_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)5842 pci_adjust_resource(device_t dev, device_t child, struct resource *r,
5843     rman_res_t start, rman_res_t end)
5844 {
5845 #ifdef PCI_IOV
5846 	struct pci_devinfo *dinfo;
5847 
5848 	if (device_get_parent(child) != dev)
5849 		return (bus_generic_adjust_resource(dev, child, r, start,
5850 		    end));
5851 
5852 	dinfo = device_get_ivars(child);
5853 	if (dinfo->cfg.flags & PCICFG_VF) {
5854 		switch (rman_get_type(r)) {
5855 		/* VFs can't have I/O BARs. */
5856 		case SYS_RES_IOPORT:
5857 			return (EINVAL);
5858 		case SYS_RES_MEMORY:
5859 			return (pci_vf_adjust_mem_resource(dev, child, r,
5860 			    start, end));
5861 		}
5862 
5863 		/* Fall through for other types of resource allocations. */
5864 	}
5865 #endif
5866 
5867 	return (bus_generic_adjust_resource(dev, child, r, start, end));
5868 }
5869 
5870 int
pci_map_resource(device_t dev,device_t child,struct resource * r,struct resource_map_request * argsp,struct resource_map * map)5871 pci_map_resource(device_t dev, device_t child, struct resource *r,
5872     struct resource_map_request *argsp, struct resource_map *map)
5873 {
5874 #ifdef PCI_IOV
5875 	struct pci_devinfo *dinfo;
5876 
5877 	if (device_get_parent(child) != dev)
5878 		return (bus_generic_map_resource(dev, child, r, argsp,
5879 		    map));
5880 
5881 	dinfo = device_get_ivars(child);
5882 	if (dinfo->cfg.flags & PCICFG_VF) {
5883 		switch (rman_get_type(r)) {
5884 		/* VFs can't have I/O BARs. */
5885 		case SYS_RES_IOPORT:
5886 			return (EINVAL);
5887 		case SYS_RES_MEMORY:
5888 			return (pci_vf_map_mem_resource(dev, child, r, argsp,
5889 			    map));
5890 		}
5891 
5892 		/* Fall through for other types of resource allocations. */
5893 	}
5894 #endif
5895 
5896 	return (bus_generic_map_resource(dev, child, r, argsp, map));
5897 }
5898 
5899 int
pci_unmap_resource(device_t dev,device_t child,struct resource * r,struct resource_map * map)5900 pci_unmap_resource(device_t dev, device_t child, struct resource *r,
5901     struct resource_map *map)
5902 {
5903 #ifdef PCI_IOV
5904 	struct pci_devinfo *dinfo;
5905 
5906 	if (device_get_parent(child) != dev)
5907 		return (bus_generic_unmap_resource(dev, child, r, map));
5908 
5909 	dinfo = device_get_ivars(child);
5910 	if (dinfo->cfg.flags & PCICFG_VF) {
5911 		switch (rman_get_type(r)) {
5912 		/* VFs can't have I/O BARs. */
5913 		case SYS_RES_IOPORT:
5914 			return (EINVAL);
5915 		case SYS_RES_MEMORY:
5916 			return (pci_vf_unmap_mem_resource(dev, child, r, map));
5917 		}
5918 
5919 		/* Fall through for other types of resource allocations. */
5920 	}
5921 #endif
5922 
5923 	return (bus_generic_unmap_resource(dev, child, r, map));
5924 }
5925 
5926 void
pci_child_deleted(device_t dev,device_t child)5927 pci_child_deleted(device_t dev, device_t child)
5928 {
5929 	struct resource_list_entry *rle;
5930 	struct resource_list *rl;
5931 	struct pci_devinfo *dinfo;
5932 
5933 	dinfo = device_get_ivars(child);
5934 	rl = &dinfo->resources;
5935 
5936 	EVENTHANDLER_INVOKE(pci_delete_device, child);
5937 
5938 	/* Turn off access to resources we're about to free */
5939 	if (bus_child_present(child) != 0) {
5940 		pci_write_config(child, PCIR_COMMAND, pci_read_config(child,
5941 		    PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2);
5942 
5943 		pci_disable_busmaster(child);
5944 	}
5945 
5946 	/* Free all allocated resources */
5947 	STAILQ_FOREACH(rle, rl, link) {
5948 		if (rle->res) {
5949 			if (rman_get_flags(rle->res) & RF_ACTIVE ||
5950 			    resource_list_busy(rl, rle->type, rle->rid)) {
5951 				pci_printf(&dinfo->cfg,
5952 				    "Resource still owned, oops. "
5953 				    "(type=%d, rid=%d, addr=%lx)\n",
5954 				    rle->type, rle->rid,
5955 				    rman_get_start(rle->res));
5956 				bus_release_resource(child, rle->type, rle->rid,
5957 				    rle->res);
5958 			}
5959 			resource_list_unreserve(rl, dev, child, rle->type,
5960 			    rle->rid);
5961 		}
5962 	}
5963 	resource_list_free(rl);
5964 
5965 	pci_freecfg(dinfo);
5966 }
5967 
5968 void
pci_delete_resource(device_t dev,device_t child,int type,int rid)5969 pci_delete_resource(device_t dev, device_t child, int type, int rid)
5970 {
5971 	struct pci_devinfo *dinfo;
5972 	struct resource_list *rl;
5973 	struct resource_list_entry *rle;
5974 
5975 	if (device_get_parent(child) != dev)
5976 		return;
5977 
5978 	dinfo = device_get_ivars(child);
5979 	rl = &dinfo->resources;
5980 	rle = resource_list_find(rl, type, rid);
5981 	if (rle == NULL)
5982 		return;
5983 
5984 	if (rle->res) {
5985 		if (rman_get_flags(rle->res) & RF_ACTIVE ||
5986 		    resource_list_busy(rl, type, rid)) {
5987 			device_printf(dev, "delete_resource: "
5988 			    "Resource still owned by child, oops. "
5989 			    "(type=%d, rid=%d, addr=%jx)\n",
5990 			    type, rid, rman_get_start(rle->res));
5991 			return;
5992 		}
5993 		resource_list_unreserve(rl, dev, child, type, rid);
5994 	}
5995 	resource_list_delete(rl, type, rid);
5996 }
5997 
5998 struct resource_list *
pci_get_resource_list(device_t dev,device_t child)5999 pci_get_resource_list (device_t dev, device_t child)
6000 {
6001 	struct pci_devinfo *dinfo = device_get_ivars(child);
6002 
6003 	return (&dinfo->resources);
6004 }
6005 
6006 #ifdef IOMMU
6007 bus_dma_tag_t
pci_get_dma_tag(device_t bus,device_t dev)6008 pci_get_dma_tag(device_t bus, device_t dev)
6009 {
6010 	bus_dma_tag_t tag;
6011 	struct pci_softc *sc;
6012 
6013 	if (device_get_parent(dev) == bus) {
6014 		/* try iommu and return if it works */
6015 		tag = iommu_get_dma_tag(bus, dev);
6016 	} else
6017 		tag = NULL;
6018 	if (tag == NULL) {
6019 		sc = device_get_softc(bus);
6020 		tag = sc->sc_dma_tag;
6021 	}
6022 	return (tag);
6023 }
6024 #else
6025 bus_dma_tag_t
pci_get_dma_tag(device_t bus,device_t dev)6026 pci_get_dma_tag(device_t bus, device_t dev)
6027 {
6028 	struct pci_softc *sc = device_get_softc(bus);
6029 
6030 	return (sc->sc_dma_tag);
6031 }
6032 #endif
6033 
6034 uint32_t
pci_read_config_method(device_t dev,device_t child,int reg,int width)6035 pci_read_config_method(device_t dev, device_t child, int reg, int width)
6036 {
6037 	struct pci_devinfo *dinfo = device_get_ivars(child);
6038 	pcicfgregs *cfg = &dinfo->cfg;
6039 
6040 #ifdef PCI_IOV
6041 	/*
6042 	 * SR-IOV VFs don't implement the VID or DID registers, so we have to
6043 	 * emulate them here.
6044 	 */
6045 	if (cfg->flags & PCICFG_VF) {
6046 		if (reg == PCIR_VENDOR) {
6047 			switch (width) {
6048 			case 4:
6049 				return (cfg->device << 16 | cfg->vendor);
6050 			case 2:
6051 				return (cfg->vendor);
6052 			case 1:
6053 				return (cfg->vendor & 0xff);
6054 			default:
6055 				return (0xffffffff);
6056 			}
6057 		} else if (reg == PCIR_DEVICE) {
6058 			switch (width) {
6059 			/* Note that an unaligned 4-byte read is an error. */
6060 			case 2:
6061 				return (cfg->device);
6062 			case 1:
6063 				return (cfg->device & 0xff);
6064 			default:
6065 				return (0xffffffff);
6066 			}
6067 		}
6068 	}
6069 #endif
6070 
6071 	return (PCIB_READ_CONFIG(device_get_parent(dev),
6072 	    cfg->bus, cfg->slot, cfg->func, reg, width));
6073 }
6074 
6075 void
pci_write_config_method(device_t dev,device_t child,int reg,uint32_t val,int width)6076 pci_write_config_method(device_t dev, device_t child, int reg,
6077     uint32_t val, int width)
6078 {
6079 	struct pci_devinfo *dinfo = device_get_ivars(child);
6080 	pcicfgregs *cfg = &dinfo->cfg;
6081 
6082 	PCIB_WRITE_CONFIG(device_get_parent(dev),
6083 	    cfg->bus, cfg->slot, cfg->func, reg, val, width);
6084 }
6085 
6086 int
pci_child_location_method(device_t dev,device_t child,struct sbuf * sb)6087 pci_child_location_method(device_t dev, device_t child, struct sbuf *sb)
6088 {
6089 
6090 	sbuf_printf(sb, "slot=%d function=%d dbsf=pci%d:%d:%d:%d",
6091 	    pci_get_slot(child), pci_get_function(child), pci_get_domain(child),
6092 	    pci_get_bus(child), pci_get_slot(child), pci_get_function(child));
6093 	return (0);
6094 }
6095 
6096 int
pci_child_pnpinfo_method(device_t dev,device_t child,struct sbuf * sb)6097 pci_child_pnpinfo_method(device_t dev, device_t child, struct sbuf *sb)
6098 {
6099 	struct pci_devinfo *dinfo;
6100 	pcicfgregs *cfg;
6101 
6102 	dinfo = device_get_ivars(child);
6103 	cfg = &dinfo->cfg;
6104 	sbuf_printf(sb, "vendor=0x%04x device=0x%04x subvendor=0x%04x "
6105 	    "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device,
6106 	    cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass,
6107 	    cfg->progif);
6108 	return (0);
6109 }
6110 
6111 int
pci_get_device_path_method(device_t bus,device_t child,const char * locator,struct sbuf * sb)6112 pci_get_device_path_method(device_t bus, device_t child, const char *locator,
6113     struct sbuf *sb)
6114 {
6115 	device_t parent = device_get_parent(bus);
6116 	int rv;
6117 
6118 	if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
6119 		rv = bus_generic_get_device_path(parent, bus, locator, sb);
6120 		if (rv == 0) {
6121 			sbuf_printf(sb, "/Pci(0x%x,0x%x)", pci_get_slot(child),
6122 			    pci_get_function(child));
6123 		}
6124 		return (0);
6125 	}
6126 	return (bus_generic_get_device_path(bus, child, locator, sb));
6127 }
6128 
6129 int
pci_assign_interrupt_method(device_t dev,device_t child)6130 pci_assign_interrupt_method(device_t dev, device_t child)
6131 {
6132 	struct pci_devinfo *dinfo = device_get_ivars(child);
6133 	pcicfgregs *cfg = &dinfo->cfg;
6134 
6135 	return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child,
6136 	    cfg->intpin));
6137 }
6138 
6139 static void
pci_lookup(void * arg,const char * name,device_t * dev)6140 pci_lookup(void *arg, const char *name, device_t *dev)
6141 {
6142 	long val;
6143 	char *end;
6144 	int domain, bus, slot, func;
6145 
6146 	if (*dev != NULL)
6147 		return;
6148 
6149 	/*
6150 	 * Accept pciconf-style selectors of either pciD:B:S:F or
6151 	 * pciB:S:F.  In the latter case, the domain is assumed to
6152 	 * be zero.
6153 	 */
6154 	if (strncmp(name, "pci", 3) != 0)
6155 		return;
6156 	val = strtol(name + 3, &end, 10);
6157 	if (val < 0 || val > INT_MAX || *end != ':')
6158 		return;
6159 	domain = val;
6160 	val = strtol(end + 1, &end, 10);
6161 	if (val < 0 || val > INT_MAX || *end != ':')
6162 		return;
6163 	bus = val;
6164 	val = strtol(end + 1, &end, 10);
6165 	if (val < 0 || val > INT_MAX)
6166 		return;
6167 	slot = val;
6168 	if (*end == ':') {
6169 		val = strtol(end + 1, &end, 10);
6170 		if (val < 0 || val > INT_MAX || *end != '\0')
6171 			return;
6172 		func = val;
6173 	} else if (*end == '\0') {
6174 		func = slot;
6175 		slot = bus;
6176 		bus = domain;
6177 		domain = 0;
6178 	} else
6179 		return;
6180 
6181 	if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX ||
6182 	    func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX))
6183 		return;
6184 
6185 	*dev = pci_find_dbsf(domain, bus, slot, func);
6186 }
6187 
6188 static int
pci_modevent(module_t mod,int what,void * arg)6189 pci_modevent(module_t mod, int what, void *arg)
6190 {
6191 	static struct cdev *pci_cdev;
6192 	static eventhandler_tag tag;
6193 
6194 	switch (what) {
6195 	case MOD_LOAD:
6196 		STAILQ_INIT(&pci_devq);
6197 		pci_generation = 0;
6198 		pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644,
6199 		    "pci");
6200 		pci_load_vendor_data();
6201 		tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL,
6202 		    1000);
6203 		break;
6204 
6205 	case MOD_UNLOAD:
6206 		if (tag != NULL)
6207 			EVENTHANDLER_DEREGISTER(dev_lookup, tag);
6208 		destroy_dev(pci_cdev);
6209 		break;
6210 	}
6211 
6212 	return (0);
6213 }
6214 
6215 static void
pci_cfg_restore_pcie(device_t dev,struct pci_devinfo * dinfo)6216 pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo)
6217 {
6218 #define	WREG(n, v)	pci_write_config(dev, pos + (n), (v), 2)
6219 	struct pcicfg_pcie *cfg;
6220 	int version, pos;
6221 
6222 	cfg = &dinfo->cfg.pcie;
6223 	pos = cfg->pcie_location;
6224 
6225 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6226 
6227 	WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl);
6228 
6229 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6230 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6231 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6232 		WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl);
6233 
6234 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6235 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6236 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6237 		WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl);
6238 
6239 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6240 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6241 		WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl);
6242 
6243 	if (version > 1) {
6244 		WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2);
6245 		WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2);
6246 		WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2);
6247 	}
6248 #undef WREG
6249 }
6250 
6251 static void
pci_cfg_restore_pcix(device_t dev,struct pci_devinfo * dinfo)6252 pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo)
6253 {
6254 	pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND,
6255 	    dinfo->cfg.pcix.pcix_command,  2);
6256 }
6257 
6258 void
pci_cfg_restore(device_t dev,struct pci_devinfo * dinfo)6259 pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo)
6260 {
6261 
6262 	/*
6263 	 * Restore the device to full power mode.  We must do this
6264 	 * before we restore the registers because moving from D3 to
6265 	 * D0 will cause the chip's BARs and some other registers to
6266 	 * be reset to some unknown power on reset values.  Cut down
6267 	 * the noise on boot by doing nothing if we are already in
6268 	 * state D0.
6269 	 */
6270 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0)
6271 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6272 	pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1);
6273 	pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1);
6274 	pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1);
6275 	pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1);
6276 	pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1);
6277 	pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1);
6278 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6279 	case PCIM_HDRTYPE_NORMAL:
6280 		pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1);
6281 		pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1);
6282 		break;
6283 	case PCIM_HDRTYPE_BRIDGE:
6284 		pci_write_config(dev, PCIR_SECLAT_1,
6285 		    dinfo->cfg.bridge.br_seclat, 1);
6286 		pci_write_config(dev, PCIR_SUBBUS_1,
6287 		    dinfo->cfg.bridge.br_subbus, 1);
6288 		pci_write_config(dev, PCIR_SECBUS_1,
6289 		    dinfo->cfg.bridge.br_secbus, 1);
6290 		pci_write_config(dev, PCIR_PRIBUS_1,
6291 		    dinfo->cfg.bridge.br_pribus, 1);
6292 		pci_write_config(dev, PCIR_BRIDGECTL_1,
6293 		    dinfo->cfg.bridge.br_control, 2);
6294 		break;
6295 	case PCIM_HDRTYPE_CARDBUS:
6296 		pci_write_config(dev, PCIR_SECLAT_2,
6297 		    dinfo->cfg.bridge.br_seclat, 1);
6298 		pci_write_config(dev, PCIR_SUBBUS_2,
6299 		    dinfo->cfg.bridge.br_subbus, 1);
6300 		pci_write_config(dev, PCIR_SECBUS_2,
6301 		    dinfo->cfg.bridge.br_secbus, 1);
6302 		pci_write_config(dev, PCIR_PRIBUS_2,
6303 		    dinfo->cfg.bridge.br_pribus, 1);
6304 		pci_write_config(dev, PCIR_BRIDGECTL_2,
6305 		    dinfo->cfg.bridge.br_control, 2);
6306 		break;
6307 	}
6308 	pci_restore_bars(dev);
6309 
6310 	if ((dinfo->cfg.hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_BRIDGE)
6311 		pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2);
6312 
6313 	/*
6314 	 * Restore extended capabilities for PCI-Express and PCI-X
6315 	 */
6316 	if (dinfo->cfg.pcie.pcie_location != 0)
6317 		pci_cfg_restore_pcie(dev, dinfo);
6318 	if (dinfo->cfg.pcix.pcix_location != 0)
6319 		pci_cfg_restore_pcix(dev, dinfo);
6320 
6321 	/* Restore MSI and MSI-X configurations if they are present. */
6322 	if (dinfo->cfg.msi.msi_location != 0)
6323 		pci_resume_msi(dev);
6324 	if (dinfo->cfg.msix.msix_location != 0)
6325 		pci_resume_msix(dev);
6326 
6327 #ifdef PCI_IOV
6328 	if (dinfo->cfg.iov != NULL)
6329 		pci_iov_cfg_restore(dev, dinfo);
6330 #endif
6331 }
6332 
6333 static void
pci_cfg_save_pcie(device_t dev,struct pci_devinfo * dinfo)6334 pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo)
6335 {
6336 #define	RREG(n)	pci_read_config(dev, pos + (n), 2)
6337 	struct pcicfg_pcie *cfg;
6338 	int version, pos;
6339 
6340 	cfg = &dinfo->cfg.pcie;
6341 	pos = cfg->pcie_location;
6342 
6343 	cfg->pcie_flags = RREG(PCIER_FLAGS);
6344 
6345 	version = cfg->pcie_flags & PCIEM_FLAGS_VERSION;
6346 
6347 	cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL);
6348 
6349 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6350 	    cfg->pcie_type == PCIEM_TYPE_ENDPOINT ||
6351 	    cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT)
6352 		cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL);
6353 
6354 	if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6355 	    (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT &&
6356 	     (cfg->pcie_flags & PCIEM_FLAGS_SLOT))))
6357 		cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL);
6358 
6359 	if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT ||
6360 	    cfg->pcie_type == PCIEM_TYPE_ROOT_EC)
6361 		cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL);
6362 
6363 	if (version > 1) {
6364 		cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2);
6365 		cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2);
6366 		cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2);
6367 	}
6368 #undef RREG
6369 }
6370 
6371 static void
pci_cfg_save_pcix(device_t dev,struct pci_devinfo * dinfo)6372 pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo)
6373 {
6374 	dinfo->cfg.pcix.pcix_command = pci_read_config(dev,
6375 	    dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2);
6376 }
6377 
6378 void
pci_cfg_save(device_t dev,struct pci_devinfo * dinfo,int setstate)6379 pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate)
6380 {
6381 	uint32_t cls;
6382 	int ps;
6383 
6384 	/*
6385 	 * Some drivers apparently write to these registers w/o updating our
6386 	 * cached copy.  No harm happens if we update the copy, so do so here
6387 	 * so we can restore them.  The COMMAND register is modified by the
6388 	 * bus w/o updating the cache.  This should represent the normally
6389 	 * writable portion of the 'defined' part of type 0/1/2 headers.
6390 	 */
6391 	dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2);
6392 	dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2);
6393 	dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2);
6394 	dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1);
6395 	dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1);
6396 	dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
6397 	dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
6398 	dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1);
6399 	dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1);
6400 	dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1);
6401 	dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1);
6402 	switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) {
6403 	case PCIM_HDRTYPE_NORMAL:
6404 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2);
6405 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2);
6406 		dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1);
6407 		dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1);
6408 		break;
6409 	case PCIM_HDRTYPE_BRIDGE:
6410 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6411 		    PCIR_SECLAT_1, 1);
6412 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6413 		    PCIR_SUBBUS_1, 1);
6414 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6415 		    PCIR_SECBUS_1, 1);
6416 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6417 		    PCIR_PRIBUS_1, 1);
6418 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6419 		    PCIR_BRIDGECTL_1, 2);
6420 		break;
6421 	case PCIM_HDRTYPE_CARDBUS:
6422 		dinfo->cfg.bridge.br_seclat = pci_read_config(dev,
6423 		    PCIR_SECLAT_2, 1);
6424 		dinfo->cfg.bridge.br_subbus = pci_read_config(dev,
6425 		    PCIR_SUBBUS_2, 1);
6426 		dinfo->cfg.bridge.br_secbus = pci_read_config(dev,
6427 		    PCIR_SECBUS_2, 1);
6428 		dinfo->cfg.bridge.br_pribus = pci_read_config(dev,
6429 		    PCIR_PRIBUS_2, 1);
6430 		dinfo->cfg.bridge.br_control = pci_read_config(dev,
6431 		    PCIR_BRIDGECTL_2, 2);
6432 		dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2);
6433 		dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2);
6434 		break;
6435 	}
6436 
6437 	if (dinfo->cfg.pcie.pcie_location != 0)
6438 		pci_cfg_save_pcie(dev, dinfo);
6439 
6440 	if (dinfo->cfg.pcix.pcix_location != 0)
6441 		pci_cfg_save_pcix(dev, dinfo);
6442 
6443 #ifdef PCI_IOV
6444 	if (dinfo->cfg.iov != NULL)
6445 		pci_iov_cfg_save(dev, dinfo);
6446 #endif
6447 
6448 	/*
6449 	 * don't set the state for display devices, base peripherals and
6450 	 * memory devices since bad things happen when they are powered down.
6451 	 * We should (a) have drivers that can easily detach and (b) use
6452 	 * generic drivers for these devices so that some device actually
6453 	 * attaches.  We need to make sure that when we implement (a) we don't
6454 	 * power the device down on a reattach.
6455 	 */
6456 	cls = pci_get_class(dev);
6457 	if (!setstate)
6458 		return;
6459 	switch (pci_do_power_nodriver)
6460 	{
6461 		case 0:		/* NO powerdown at all */
6462 			return;
6463 		case 1:		/* Conservative about what to power down */
6464 			if (cls == PCIC_STORAGE)
6465 				return;
6466 			/*FALLTHROUGH*/
6467 		case 2:		/* Aggressive about what to power down */
6468 			if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY ||
6469 			    cls == PCIC_BASEPERIPH)
6470 				return;
6471 			/*FALLTHROUGH*/
6472 		case 3:		/* Power down everything */
6473 			break;
6474 	}
6475 	/*
6476 	 * PCI spec says we can only go into D3 state from D0 state.
6477 	 * Transition from D[12] into D0 before going to D3 state.
6478 	 */
6479 	ps = pci_get_powerstate(dev);
6480 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6481 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6482 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3)
6483 		pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6484 }
6485 
6486 /* Wrapper APIs suitable for device driver use. */
6487 void
pci_save_state(device_t dev)6488 pci_save_state(device_t dev)
6489 {
6490 	struct pci_devinfo *dinfo;
6491 
6492 	dinfo = device_get_ivars(dev);
6493 	pci_cfg_save(dev, dinfo, 0);
6494 }
6495 
6496 void
pci_restore_state(device_t dev)6497 pci_restore_state(device_t dev)
6498 {
6499 	struct pci_devinfo *dinfo;
6500 
6501 	dinfo = device_get_ivars(dev);
6502 	pci_cfg_restore(dev, dinfo);
6503 }
6504 
6505 static int
pci_get_id_method(device_t dev,device_t child,enum pci_id_type type,uintptr_t * id)6506 pci_get_id_method(device_t dev, device_t child, enum pci_id_type type,
6507     uintptr_t *id)
6508 {
6509 
6510 	return (PCIB_GET_ID(device_get_parent(dev), child, type, id));
6511 }
6512 
6513 /* Find the upstream port of a given PCI device in a root complex. */
6514 device_t
pci_find_pcie_root_port(device_t dev)6515 pci_find_pcie_root_port(device_t dev)
6516 {
6517 	struct pci_devinfo *dinfo;
6518 	devclass_t pci_class;
6519 	device_t pcib, bus;
6520 
6521 	pci_class = devclass_find("pci");
6522 	KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class,
6523 	    ("%s: non-pci device %s", __func__, device_get_nameunit(dev)));
6524 
6525 	/*
6526 	 * Walk the bridge hierarchy until we find a PCI-e root
6527 	 * port or a non-PCI device.
6528 	 */
6529 	for (;;) {
6530 		bus = device_get_parent(dev);
6531 		KASSERT(bus != NULL, ("%s: null parent of %s", __func__,
6532 		    device_get_nameunit(dev)));
6533 
6534 		pcib = device_get_parent(bus);
6535 		KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__,
6536 		    device_get_nameunit(bus)));
6537 
6538 		/*
6539 		 * pcib's parent must be a PCI bus for this to be a
6540 		 * PCI-PCI bridge.
6541 		 */
6542 		if (device_get_devclass(device_get_parent(pcib)) != pci_class)
6543 			return (NULL);
6544 
6545 		dinfo = device_get_ivars(pcib);
6546 		if (dinfo->cfg.pcie.pcie_location != 0 &&
6547 		    dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT)
6548 			return (pcib);
6549 
6550 		dev = pcib;
6551 	}
6552 }
6553 
6554 /*
6555  * Wait for pending transactions to complete on a PCI-express function.
6556  *
6557  * The maximum delay is specified in milliseconds in max_delay.  Note
6558  * that this function may sleep.
6559  *
6560  * Returns true if the function is idle and false if the timeout is
6561  * exceeded.  If dev is not a PCI-express function, this returns true.
6562  */
6563 bool
pcie_wait_for_pending_transactions(device_t dev,u_int max_delay)6564 pcie_wait_for_pending_transactions(device_t dev, u_int max_delay)
6565 {
6566 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6567 	uint16_t sta;
6568 	int cap;
6569 
6570 	cap = dinfo->cfg.pcie.pcie_location;
6571 	if (cap == 0)
6572 		return (true);
6573 
6574 	sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6575 	while (sta & PCIEM_STA_TRANSACTION_PND) {
6576 		if (max_delay == 0)
6577 			return (false);
6578 
6579 		/* Poll once every 100 milliseconds up to the timeout. */
6580 		if (max_delay > 100) {
6581 			pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK);
6582 			max_delay -= 100;
6583 		} else {
6584 			pause_sbt("pcietp", max_delay * SBT_1MS, 0,
6585 			    C_HARDCLOCK);
6586 			max_delay = 0;
6587 		}
6588 		sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2);
6589 	}
6590 
6591 	return (true);
6592 }
6593 
6594 /*
6595  * Determine the maximum Completion Timeout in microseconds.
6596  *
6597  * For non-PCI-express functions this returns 0.
6598  */
6599 int
pcie_get_max_completion_timeout(device_t dev)6600 pcie_get_max_completion_timeout(device_t dev)
6601 {
6602 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6603 	int cap;
6604 
6605 	cap = dinfo->cfg.pcie.pcie_location;
6606 	if (cap == 0)
6607 		return (0);
6608 
6609 	/*
6610 	 * Functions using the 1.x spec use the default timeout range of
6611 	 * 50 microseconds to 50 milliseconds.  Functions that do not
6612 	 * support programmable timeouts also use this range.
6613 	 */
6614 	if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 ||
6615 	    (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) &
6616 	    PCIEM_CAP2_COMP_TIMO_RANGES) == 0)
6617 		return (50 * 1000);
6618 
6619 	switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) &
6620 	    PCIEM_CTL2_COMP_TIMO_VAL) {
6621 	case PCIEM_CTL2_COMP_TIMO_100US:
6622 		return (100);
6623 	case PCIEM_CTL2_COMP_TIMO_10MS:
6624 		return (10 * 1000);
6625 	case PCIEM_CTL2_COMP_TIMO_55MS:
6626 		return (55 * 1000);
6627 	case PCIEM_CTL2_COMP_TIMO_210MS:
6628 		return (210 * 1000);
6629 	case PCIEM_CTL2_COMP_TIMO_900MS:
6630 		return (900 * 1000);
6631 	case PCIEM_CTL2_COMP_TIMO_3500MS:
6632 		return (3500 * 1000);
6633 	case PCIEM_CTL2_COMP_TIMO_13S:
6634 		return (13 * 1000 * 1000);
6635 	case PCIEM_CTL2_COMP_TIMO_64S:
6636 		return (64 * 1000 * 1000);
6637 	default:
6638 		return (50 * 1000);
6639 	}
6640 }
6641 
6642 void
pcie_apei_error(device_t dev,int sev,uint8_t * aerp)6643 pcie_apei_error(device_t dev, int sev, uint8_t *aerp)
6644 {
6645 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6646 	const char *s;
6647 	int aer;
6648 	uint32_t r, r1;
6649 	uint16_t rs;
6650 
6651 	if (sev == PCIEM_STA_CORRECTABLE_ERROR)
6652 		s = "Correctable";
6653 	else if (sev == PCIEM_STA_NON_FATAL_ERROR)
6654 		s = "Uncorrectable (Non-Fatal)";
6655 	else
6656 		s = "Uncorrectable (Fatal)";
6657 	device_printf(dev, "%s PCIe error reported by APEI\n", s);
6658 	if (aerp) {
6659 		if (sev == PCIEM_STA_CORRECTABLE_ERROR) {
6660 			r = le32dec(aerp + PCIR_AER_COR_STATUS);
6661 			r1 = le32dec(aerp + PCIR_AER_COR_MASK);
6662 		} else {
6663 			r = le32dec(aerp + PCIR_AER_UC_STATUS);
6664 			r1 = le32dec(aerp + PCIR_AER_UC_MASK);
6665 		}
6666 		device_printf(dev, "status 0x%08x mask 0x%08x", r, r1);
6667 		if (sev != PCIEM_STA_CORRECTABLE_ERROR) {
6668 			r = le32dec(aerp + PCIR_AER_UC_SEVERITY);
6669 			rs = le16dec(aerp + PCIR_AER_CAP_CONTROL);
6670 			printf(" severity 0x%08x first %d\n",
6671 			    r, rs & 0x1f);
6672 		} else
6673 			printf("\n");
6674 	}
6675 
6676 	/* As kind of recovery just report and clear the error statuses. */
6677 	if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6678 		r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6679 		if (r != 0) {
6680 			pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6681 			device_printf(dev, "Clearing UC AER errors 0x%08x\n", r);
6682 		}
6683 
6684 		r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6685 		if (r != 0) {
6686 			pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
6687 			device_printf(dev, "Clearing COR AER errors 0x%08x\n", r);
6688 		}
6689 	}
6690 	if (dinfo->cfg.pcie.pcie_location != 0) {
6691 		rs = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6692 		    PCIER_DEVICE_STA, 2);
6693 		if ((rs & (PCIEM_STA_CORRECTABLE_ERROR |
6694 		    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6695 		    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6696 			pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6697 			    PCIER_DEVICE_STA, rs, 2);
6698 			device_printf(dev, "Clearing PCIe errors 0x%04x\n", rs);
6699 		}
6700 	}
6701 }
6702 
6703 /*
6704  * Perform a Function Level Reset (FLR) on a device.
6705  *
6706  * This function first waits for any pending transactions to complete
6707  * within the timeout specified by max_delay.  If transactions are
6708  * still pending, the function will return false without attempting a
6709  * reset.
6710  *
6711  * If dev is not a PCI-express function or does not support FLR, this
6712  * function returns false.
6713  *
6714  * Note that no registers are saved or restored.  The caller is
6715  * responsible for saving and restoring any registers including
6716  * PCI-standard registers via pci_save_state() and
6717  * pci_restore_state().
6718  */
6719 bool
pcie_flr(device_t dev,u_int max_delay,bool force)6720 pcie_flr(device_t dev, u_int max_delay, bool force)
6721 {
6722 	struct pci_devinfo *dinfo = device_get_ivars(dev);
6723 	uint16_t cmd, ctl;
6724 	int compl_delay;
6725 	int cap;
6726 
6727 	cap = dinfo->cfg.pcie.pcie_location;
6728 	if (cap == 0)
6729 		return (false);
6730 
6731 	if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR))
6732 		return (false);
6733 
6734 	/*
6735 	 * Disable busmastering to prevent generation of new
6736 	 * transactions while waiting for the device to go idle.  If
6737 	 * the idle timeout fails, the command register is restored
6738 	 * which will re-enable busmastering.
6739 	 */
6740 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
6741 	pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2);
6742 	if (!pcie_wait_for_pending_transactions(dev, max_delay)) {
6743 		if (!force) {
6744 			pci_write_config(dev, PCIR_COMMAND, cmd, 2);
6745 			return (false);
6746 		}
6747 		pci_printf(&dinfo->cfg,
6748 		    "Resetting with transactions pending after %d ms\n",
6749 		    max_delay);
6750 
6751 		/*
6752 		 * Extend the post-FLR delay to cover the maximum
6753 		 * Completion Timeout delay of anything in flight
6754 		 * during the FLR delay.  Enforce a minimum delay of
6755 		 * at least 10ms.
6756 		 */
6757 		compl_delay = pcie_get_max_completion_timeout(dev) / 1000;
6758 		if (compl_delay < 10)
6759 			compl_delay = 10;
6760 	} else
6761 		compl_delay = 0;
6762 
6763 	/* Initiate the reset. */
6764 	ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2);
6765 	pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl |
6766 	    PCIEM_CTL_INITIATE_FLR, 2);
6767 
6768 	/* Wait for 100ms. */
6769 	pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK);
6770 
6771 	if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) &
6772 	    PCIEM_STA_TRANSACTION_PND)
6773 		pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n");
6774 	return (true);
6775 }
6776 
6777 /*
6778  * Attempt a power-management reset by cycling the device in/out of D3
6779  * state.  PCI spec says we can only go into D3 state from D0 state.
6780  * Transition from D[12] into D0 before going to D3 state.
6781  */
6782 int
pci_power_reset(device_t dev)6783 pci_power_reset(device_t dev)
6784 {
6785 	int ps;
6786 
6787 	ps = pci_get_powerstate(dev);
6788 	if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3)
6789 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
6790 	pci_set_powerstate(dev, PCI_POWERSTATE_D3);
6791 	pci_set_powerstate(dev, ps);
6792 	return (0);
6793 }
6794 
6795 /*
6796  * Try link drop and retrain of the downstream port of upstream
6797  * switch, for PCIe.  According to the PCIe 3.0 spec 6.6.1, this must
6798  * cause Conventional Hot reset of the device in the slot.
6799  * Alternative, for PCIe, could be the secondary bus reset initiatied
6800  * on the upstream switch PCIR_BRIDGECTL_1, bit 6.
6801  */
6802 int
pcie_link_reset(device_t port,int pcie_location)6803 pcie_link_reset(device_t port, int pcie_location)
6804 {
6805 	uint16_t v;
6806 
6807 	v = pci_read_config(port, pcie_location + PCIER_LINK_CTL, 2);
6808 	v |= PCIEM_LINK_CTL_LINK_DIS;
6809 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6810 	pause_sbt("pcier1", mstosbt(20), 0, 0);
6811 	v &= ~PCIEM_LINK_CTL_LINK_DIS;
6812 	v |= PCIEM_LINK_CTL_RETRAIN_LINK;
6813 	pci_write_config(port, pcie_location + PCIER_LINK_CTL, v, 2);
6814 	pause_sbt("pcier2", mstosbt(100), 0, 0); /* 100 ms */
6815 	v = pci_read_config(port, pcie_location + PCIER_LINK_STA, 2);
6816 	return ((v & PCIEM_LINK_STA_TRAINING) != 0 ? ETIMEDOUT : 0);
6817 }
6818 
6819 static int
pci_reset_post(device_t dev,device_t child)6820 pci_reset_post(device_t dev, device_t child)
6821 {
6822 
6823 	if (dev == device_get_parent(child))
6824 		pci_restore_state(child);
6825 	return (0);
6826 }
6827 
6828 static int
pci_reset_prepare(device_t dev,device_t child)6829 pci_reset_prepare(device_t dev, device_t child)
6830 {
6831 
6832 	if (dev == device_get_parent(child))
6833 		pci_save_state(child);
6834 	return (0);
6835 }
6836 
6837 static int
pci_reset_child(device_t dev,device_t child,int flags)6838 pci_reset_child(device_t dev, device_t child, int flags)
6839 {
6840 	int error;
6841 
6842 	if (dev == NULL || device_get_parent(child) != dev)
6843 		return (0);
6844 	if ((flags & DEVF_RESET_DETACH) != 0) {
6845 		error = device_get_state(child) == DS_ATTACHED ?
6846 		    device_detach(child) : 0;
6847 	} else {
6848 		error = BUS_SUSPEND_CHILD(dev, child);
6849 	}
6850 	if (error == 0) {
6851 		if (!pcie_flr(child, 1000, false)) {
6852 			error = BUS_RESET_PREPARE(dev, child);
6853 			if (error == 0)
6854 				pci_power_reset(child);
6855 			BUS_RESET_POST(dev, child);
6856 		}
6857 		if ((flags & DEVF_RESET_DETACH) != 0)
6858 			device_probe_and_attach(child);
6859 		else
6860 			BUS_RESUME_CHILD(dev, child);
6861 	}
6862 	return (error);
6863 }
6864 
6865 const struct pci_device_table *
pci_match_device(device_t child,const struct pci_device_table * id,size_t nelt)6866 pci_match_device(device_t child, const struct pci_device_table *id, size_t nelt)
6867 {
6868 	bool match;
6869 	uint16_t vendor, device, subvendor, subdevice, class, subclass, revid;
6870 
6871 	vendor = pci_get_vendor(child);
6872 	device = pci_get_device(child);
6873 	subvendor = pci_get_subvendor(child);
6874 	subdevice = pci_get_subdevice(child);
6875 	class = pci_get_class(child);
6876 	subclass = pci_get_subclass(child);
6877 	revid = pci_get_revid(child);
6878 	while (nelt-- > 0) {
6879 		match = true;
6880 		if (id->match_flag_vendor)
6881 			match &= vendor == id->vendor;
6882 		if (id->match_flag_device)
6883 			match &= device == id->device;
6884 		if (id->match_flag_subvendor)
6885 			match &= subvendor == id->subvendor;
6886 		if (id->match_flag_subdevice)
6887 			match &= subdevice == id->subdevice;
6888 		if (id->match_flag_class)
6889 			match &= class == id->class_id;
6890 		if (id->match_flag_subclass)
6891 			match &= subclass == id->subclass;
6892 		if (id->match_flag_revid)
6893 			match &= revid == id->revid;
6894 		if (match)
6895 			return (id);
6896 		id++;
6897 	}
6898 	return (NULL);
6899 }
6900 
6901 static void
pci_print_faulted_dev_name(const struct pci_devinfo * dinfo)6902 pci_print_faulted_dev_name(const struct pci_devinfo *dinfo)
6903 {
6904 	const char *dev_name;
6905 	device_t dev;
6906 
6907 	dev = dinfo->cfg.dev;
6908 	printf("pci%d:%d:%d:%d", dinfo->cfg.domain, dinfo->cfg.bus,
6909 	    dinfo->cfg.slot, dinfo->cfg.func);
6910 	dev_name = device_get_name(dev);
6911 	if (dev_name != NULL)
6912 		printf(" (%s%d)", dev_name, device_get_unit(dev));
6913 }
6914 
6915 void
pci_print_faulted_dev(void)6916 pci_print_faulted_dev(void)
6917 {
6918 	struct pci_devinfo *dinfo;
6919 	device_t dev;
6920 	int aer, i;
6921 	uint32_t r1, r2;
6922 	uint16_t status;
6923 
6924 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
6925 		dev = dinfo->cfg.dev;
6926 		status = pci_read_config(dev, PCIR_STATUS, 2);
6927 		status &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
6928 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
6929 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
6930 		if (status != 0) {
6931 			pci_print_faulted_dev_name(dinfo);
6932 			printf(" error 0x%04x\n", status);
6933 		}
6934 		if (dinfo->cfg.pcie.pcie_location != 0) {
6935 			status = pci_read_config(dev,
6936 			    dinfo->cfg.pcie.pcie_location +
6937 			    PCIER_DEVICE_STA, 2);
6938 			if ((status & (PCIEM_STA_CORRECTABLE_ERROR |
6939 			    PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
6940 			    PCIEM_STA_UNSUPPORTED_REQ)) != 0) {
6941 				pci_print_faulted_dev_name(dinfo);
6942 				printf(" PCIe DEVCTL 0x%04x DEVSTA 0x%04x\n",
6943 				    pci_read_config(dev,
6944 				    dinfo->cfg.pcie.pcie_location +
6945 				    PCIER_DEVICE_CTL, 2),
6946 				    status);
6947 			}
6948 		}
6949 		if (pci_find_extcap(dev, PCIZ_AER, &aer) == 0) {
6950 			r1 = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6951 			r2 = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
6952 			if (r1 != 0 || r2 != 0) {
6953 				pci_print_faulted_dev_name(dinfo);
6954 				printf(" AER UC 0x%08x Mask 0x%08x Svr 0x%08x\n"
6955 				    "  COR 0x%08x Mask 0x%08x Ctl 0x%08x\n",
6956 				    r1, pci_read_config(dev, aer +
6957 				    PCIR_AER_UC_MASK, 4),
6958 				    pci_read_config(dev, aer +
6959 				    PCIR_AER_UC_SEVERITY, 4),
6960 				    r2, pci_read_config(dev, aer +
6961 				    PCIR_AER_COR_MASK, 4),
6962 				    pci_read_config(dev, aer +
6963 				    PCIR_AER_CAP_CONTROL, 4));
6964 				for (i = 0; i < 4; i++) {
6965 					r1 = pci_read_config(dev, aer +
6966 					    PCIR_AER_HEADER_LOG + i * 4, 4);
6967 					printf("    HL%d: 0x%08x\n", i, r1);
6968 				}
6969 			}
6970 		}
6971 	}
6972 }
6973 
6974 #ifdef DDB
DB_SHOW_COMMAND_FLAGS(pcierr,pci_print_faulted_dev_db,DB_CMD_MEMSAFE)6975 DB_SHOW_COMMAND_FLAGS(pcierr, pci_print_faulted_dev_db, DB_CMD_MEMSAFE)
6976 {
6977 
6978 	pci_print_faulted_dev();
6979 }
6980 
6981 static void
db_clear_pcie_errors(const struct pci_devinfo * dinfo)6982 db_clear_pcie_errors(const struct pci_devinfo *dinfo)
6983 {
6984 	device_t dev;
6985 	int aer;
6986 	uint32_t r;
6987 
6988 	dev = dinfo->cfg.dev;
6989 	r = pci_read_config(dev, dinfo->cfg.pcie.pcie_location +
6990 	    PCIER_DEVICE_STA, 2);
6991 	pci_write_config(dev, dinfo->cfg.pcie.pcie_location +
6992 	    PCIER_DEVICE_STA, r, 2);
6993 
6994 	if (pci_find_extcap(dev, PCIZ_AER, &aer) != 0)
6995 		return;
6996 	r = pci_read_config(dev, aer + PCIR_AER_UC_STATUS, 4);
6997 	if (r != 0)
6998 		pci_write_config(dev, aer + PCIR_AER_UC_STATUS, r, 4);
6999 	r = pci_read_config(dev, aer + PCIR_AER_COR_STATUS, 4);
7000 	if (r != 0)
7001 		pci_write_config(dev, aer + PCIR_AER_COR_STATUS, r, 4);
7002 }
7003 
DB_COMMAND_FLAGS(pci_clearerr,db_pci_clearerr,DB_CMD_MEMSAFE)7004 DB_COMMAND_FLAGS(pci_clearerr, db_pci_clearerr, DB_CMD_MEMSAFE)
7005 {
7006 	struct pci_devinfo *dinfo;
7007 	device_t dev;
7008 	uint16_t status, status1;
7009 
7010 	STAILQ_FOREACH(dinfo, &pci_devq, pci_links) {
7011 		dev = dinfo->cfg.dev;
7012 		status1 = status = pci_read_config(dev, PCIR_STATUS, 2);
7013 		status1 &= PCIM_STATUS_MDPERR | PCIM_STATUS_STABORT |
7014 		    PCIM_STATUS_RTABORT | PCIM_STATUS_RMABORT |
7015 		    PCIM_STATUS_SERR | PCIM_STATUS_PERR;
7016 		if (status1 != 0) {
7017 			status &= ~status1;
7018 			pci_write_config(dev, PCIR_STATUS, status, 2);
7019 		}
7020 		if (dinfo->cfg.pcie.pcie_location != 0)
7021 			db_clear_pcie_errors(dinfo);
7022 	}
7023 }
7024 #endif
7025