1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28 #include <libintl.h>
29 #include <libuutil.h>
30 #include <stddef.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <strings.h>
34
35 #include <libzfs.h>
36
37 #include "zfs_util.h"
38 #include "zfs_iter.h"
39
40 /*
41 * This is a private interface used to gather up all the datasets specified on
42 * the command line so that we can iterate over them in order.
43 *
44 * First, we iterate over all filesystems, gathering them together into an
45 * AVL tree. We report errors for any explicitly specified datasets
46 * that we couldn't open.
47 *
48 * When finished, we have an AVL tree of ZFS handles. We go through and execute
49 * the provided callback for each one, passing whatever data the user supplied.
50 */
51
52 typedef struct zfs_node {
53 zfs_handle_t *zn_handle;
54 uu_avl_node_t zn_avlnode;
55 } zfs_node_t;
56
57 typedef struct callback_data {
58 uu_avl_t *cb_avl;
59 int cb_flags;
60 zfs_type_t cb_types;
61 zfs_sort_column_t *cb_sortcol;
62 zprop_list_t **cb_proplist;
63 int cb_depth_limit;
64 int cb_depth;
65 uint8_t cb_props_table[ZFS_NUM_PROPS];
66 } callback_data_t;
67
68 uu_avl_pool_t *avl_pool;
69
70 /*
71 * Include snaps if they were requested or if this a zfs list where types
72 * were not specified and the "listsnapshots" property is set on this pool.
73 */
74 static boolean_t
zfs_include_snapshots(zfs_handle_t * zhp,callback_data_t * cb)75 zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb)
76 {
77 zpool_handle_t *zph;
78
79 if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0)
80 return (cb->cb_types & ZFS_TYPE_SNAPSHOT);
81
82 zph = zfs_get_pool_handle(zhp);
83 return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL));
84 }
85
86 /*
87 * Called for each dataset. If the object is of an appropriate type,
88 * add it to the avl tree and recurse over any children as necessary.
89 */
90 static int
zfs_callback(zfs_handle_t * zhp,void * data)91 zfs_callback(zfs_handle_t *zhp, void *data)
92 {
93 callback_data_t *cb = data;
94 boolean_t dontclose = B_FALSE;
95 boolean_t include_snaps = zfs_include_snapshots(zhp, cb);
96 boolean_t include_bmarks = (cb->cb_types & ZFS_TYPE_BOOKMARK);
97
98 if ((zfs_get_type(zhp) & cb->cb_types) ||
99 ((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) {
100 uu_avl_index_t idx;
101 zfs_node_t *node = safe_malloc(sizeof (zfs_node_t));
102
103 node->zn_handle = zhp;
104 uu_avl_node_init(node, &node->zn_avlnode, avl_pool);
105 if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol,
106 &idx) == NULL) {
107 if (cb->cb_proplist) {
108 if ((*cb->cb_proplist) &&
109 !(*cb->cb_proplist)->pl_all)
110 zfs_prune_proplist(zhp,
111 cb->cb_props_table);
112
113 if (zfs_expand_proplist(zhp, cb->cb_proplist,
114 (cb->cb_flags & ZFS_ITER_RECVD_PROPS),
115 (cb->cb_flags & ZFS_ITER_LITERAL_PROPS))
116 != 0) {
117 free(node);
118 return (-1);
119 }
120 }
121 uu_avl_insert(cb->cb_avl, node, idx);
122 dontclose = B_TRUE;
123 } else {
124 free(node);
125 }
126 }
127
128 /*
129 * Recurse if necessary.
130 */
131 if (cb->cb_flags & ZFS_ITER_RECURSE &&
132 ((cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 ||
133 cb->cb_depth < cb->cb_depth_limit)) {
134 cb->cb_depth++;
135 if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM)
136 (void) zfs_iter_filesystems(zhp, zfs_callback, data);
137 if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT |
138 ZFS_TYPE_BOOKMARK)) == 0) && include_snaps)
139 (void) zfs_iter_snapshots(zhp, zfs_callback, data);
140 if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT |
141 ZFS_TYPE_BOOKMARK)) == 0) && include_bmarks)
142 (void) zfs_iter_bookmarks(zhp, zfs_callback, data);
143 cb->cb_depth--;
144 }
145
146 if (!dontclose)
147 zfs_close(zhp);
148
149 return (0);
150 }
151
152 int
zfs_add_sort_column(zfs_sort_column_t ** sc,const char * name,boolean_t reverse)153 zfs_add_sort_column(zfs_sort_column_t **sc, const char *name,
154 boolean_t reverse)
155 {
156 zfs_sort_column_t *col;
157 zfs_prop_t prop;
158
159 if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL &&
160 !zfs_prop_user(name))
161 return (-1);
162
163 col = safe_malloc(sizeof (zfs_sort_column_t));
164
165 col->sc_prop = prop;
166 col->sc_reverse = reverse;
167 if (prop == ZPROP_INVAL) {
168 col->sc_user_prop = safe_malloc(strlen(name) + 1);
169 (void) strcpy(col->sc_user_prop, name);
170 }
171
172 if (*sc == NULL) {
173 col->sc_last = col;
174 *sc = col;
175 } else {
176 (*sc)->sc_last->sc_next = col;
177 (*sc)->sc_last = col;
178 }
179
180 return (0);
181 }
182
183 void
zfs_free_sort_columns(zfs_sort_column_t * sc)184 zfs_free_sort_columns(zfs_sort_column_t *sc)
185 {
186 zfs_sort_column_t *col;
187
188 while (sc != NULL) {
189 col = sc->sc_next;
190 free(sc->sc_user_prop);
191 free(sc);
192 sc = col;
193 }
194 }
195
196 /* ARGSUSED */
197 static int
zfs_compare(const void * larg,const void * rarg,void * unused)198 zfs_compare(const void *larg, const void *rarg, void *unused)
199 {
200 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
201 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
202 const char *lname = zfs_get_name(l);
203 const char *rname = zfs_get_name(r);
204 char *lat, *rat;
205 uint64_t lcreate, rcreate;
206 int ret;
207
208 lat = (char *)strchr(lname, '@');
209 rat = (char *)strchr(rname, '@');
210
211 if (lat != NULL)
212 *lat = '\0';
213 if (rat != NULL)
214 *rat = '\0';
215
216 ret = strcmp(lname, rname);
217 if (ret == 0) {
218 /*
219 * If we're comparing a dataset to one of its snapshots, we
220 * always make the full dataset first.
221 */
222 if (lat == NULL) {
223 ret = -1;
224 } else if (rat == NULL) {
225 ret = 1;
226 } else {
227 /*
228 * If we have two snapshots from the same dataset, then
229 * we want to sort them according to creation time. We
230 * use the hidden CREATETXG property to get an absolute
231 * ordering of snapshots.
232 */
233 lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG);
234 rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG);
235
236 if (lcreate < rcreate)
237 ret = -1;
238 else if (lcreate > rcreate)
239 ret = 1;
240 }
241 }
242
243 if (lat != NULL)
244 *lat = '@';
245 if (rat != NULL)
246 *rat = '@';
247
248 return (ret);
249 }
250
251 /*
252 * Sort datasets by specified columns.
253 *
254 * o Numeric types sort in ascending order.
255 * o String types sort in alphabetical order.
256 * o Types inappropriate for a row sort that row to the literal
257 * bottom, regardless of the specified ordering.
258 *
259 * If no sort columns are specified, or two datasets compare equally
260 * across all specified columns, they are sorted alphabetically by name
261 * with snapshots grouped under their parents.
262 */
263 static int
zfs_sort(const void * larg,const void * rarg,void * data)264 zfs_sort(const void *larg, const void *rarg, void *data)
265 {
266 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
267 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
268 zfs_sort_column_t *sc = (zfs_sort_column_t *)data;
269 zfs_sort_column_t *psc;
270
271 for (psc = sc; psc != NULL; psc = psc->sc_next) {
272 char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN];
273 char *lstr, *rstr;
274 uint64_t lnum, rnum;
275 boolean_t lvalid, rvalid;
276 int ret = 0;
277
278 /*
279 * We group the checks below the generic code. If 'lstr' and
280 * 'rstr' are non-NULL, then we do a string based comparison.
281 * Otherwise, we compare 'lnum' and 'rnum'.
282 */
283 lstr = rstr = NULL;
284 if (psc->sc_prop == ZPROP_INVAL) {
285 nvlist_t *luser, *ruser;
286 nvlist_t *lval, *rval;
287
288 luser = zfs_get_user_props(l);
289 ruser = zfs_get_user_props(r);
290
291 lvalid = (nvlist_lookup_nvlist(luser,
292 psc->sc_user_prop, &lval) == 0);
293 rvalid = (nvlist_lookup_nvlist(ruser,
294 psc->sc_user_prop, &rval) == 0);
295
296 if (lvalid)
297 verify(nvlist_lookup_string(lval,
298 ZPROP_VALUE, &lstr) == 0);
299 if (rvalid)
300 verify(nvlist_lookup_string(rval,
301 ZPROP_VALUE, &rstr) == 0);
302
303 } else if (zfs_prop_is_string(psc->sc_prop)) {
304 lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf,
305 sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0);
306 rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf,
307 sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0);
308
309 lstr = lbuf;
310 rstr = rbuf;
311 } else {
312 lvalid = zfs_prop_valid_for_type(psc->sc_prop,
313 zfs_get_type(l));
314 rvalid = zfs_prop_valid_for_type(psc->sc_prop,
315 zfs_get_type(r));
316
317 if (lvalid)
318 (void) zfs_prop_get_numeric(l, psc->sc_prop,
319 &lnum, NULL, NULL, 0);
320 if (rvalid)
321 (void) zfs_prop_get_numeric(r, psc->sc_prop,
322 &rnum, NULL, NULL, 0);
323 }
324
325 if (!lvalid && !rvalid)
326 continue;
327 else if (!lvalid)
328 return (1);
329 else if (!rvalid)
330 return (-1);
331
332 if (lstr)
333 ret = strcmp(lstr, rstr);
334 else if (lnum < rnum)
335 ret = -1;
336 else if (lnum > rnum)
337 ret = 1;
338
339 if (ret != 0) {
340 if (psc->sc_reverse == B_TRUE)
341 ret = (ret < 0) ? 1 : -1;
342 return (ret);
343 }
344 }
345
346 return (zfs_compare(larg, rarg, NULL));
347 }
348
349 int
zfs_for_each(int argc,char ** argv,int flags,zfs_type_t types,zfs_sort_column_t * sortcol,zprop_list_t ** proplist,int limit,zfs_iter_f callback,void * data)350 zfs_for_each(int argc, char **argv, int flags, zfs_type_t types,
351 zfs_sort_column_t *sortcol, zprop_list_t **proplist, int limit,
352 zfs_iter_f callback, void *data)
353 {
354 callback_data_t cb = {0};
355 int ret = 0;
356 zfs_node_t *node;
357 uu_avl_walk_t *walk;
358
359 avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t),
360 offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT);
361
362 if (avl_pool == NULL)
363 nomem();
364
365 cb.cb_sortcol = sortcol;
366 cb.cb_flags = flags;
367 cb.cb_proplist = proplist;
368 cb.cb_types = types;
369 cb.cb_depth_limit = limit;
370 /*
371 * If cb_proplist is provided then in the zfs_handles created we
372 * retain only those properties listed in cb_proplist and sortcol.
373 * The rest are pruned. So, the caller should make sure that no other
374 * properties other than those listed in cb_proplist/sortcol are
375 * accessed.
376 *
377 * If cb_proplist is NULL then we retain all the properties. We
378 * always retain the zoned property, which some other properties
379 * need (userquota & friends), and the createtxg property, which
380 * we need to sort snapshots.
381 */
382 if (cb.cb_proplist && *cb.cb_proplist) {
383 zprop_list_t *p = *cb.cb_proplist;
384
385 while (p) {
386 if (p->pl_prop >= ZFS_PROP_TYPE &&
387 p->pl_prop < ZFS_NUM_PROPS) {
388 cb.cb_props_table[p->pl_prop] = B_TRUE;
389 }
390 p = p->pl_next;
391 }
392
393 while (sortcol) {
394 if (sortcol->sc_prop >= ZFS_PROP_TYPE &&
395 sortcol->sc_prop < ZFS_NUM_PROPS) {
396 cb.cb_props_table[sortcol->sc_prop] = B_TRUE;
397 }
398 sortcol = sortcol->sc_next;
399 }
400
401 cb.cb_props_table[ZFS_PROP_ZONED] = B_TRUE;
402 cb.cb_props_table[ZFS_PROP_CREATETXG] = B_TRUE;
403 } else {
404 (void) memset(cb.cb_props_table, B_TRUE,
405 sizeof (cb.cb_props_table));
406 }
407
408 if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL)
409 nomem();
410
411 if (argc == 0) {
412 /*
413 * If given no arguments, iterate over all datasets.
414 */
415 cb.cb_flags |= ZFS_ITER_RECURSE;
416 ret = zfs_iter_root(g_zfs, zfs_callback, &cb);
417 } else {
418 int i;
419 zfs_handle_t *zhp;
420 zfs_type_t argtype;
421
422 /*
423 * If we're recursive, then we always allow filesystems as
424 * arguments. If we also are interested in snapshots, then we
425 * can take volumes as well.
426 */
427 argtype = types;
428 if (flags & ZFS_ITER_RECURSE) {
429 argtype |= ZFS_TYPE_FILESYSTEM;
430 if (types & ZFS_TYPE_SNAPSHOT)
431 argtype |= ZFS_TYPE_VOLUME;
432 }
433
434 for (i = 0; i < argc; i++) {
435 if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) {
436 zhp = zfs_path_to_zhandle(g_zfs, argv[i],
437 argtype);
438 } else {
439 zhp = zfs_open(g_zfs, argv[i], argtype);
440 }
441 if (zhp != NULL)
442 ret |= zfs_callback(zhp, &cb);
443 else
444 ret = 1;
445 }
446 }
447
448 /*
449 * At this point we've got our AVL tree full of zfs handles, so iterate
450 * over each one and execute the real user callback.
451 */
452 for (node = uu_avl_first(cb.cb_avl); node != NULL;
453 node = uu_avl_next(cb.cb_avl, node))
454 ret |= callback(node->zn_handle, data);
455
456 /*
457 * Finally, clean up the AVL tree.
458 */
459 if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL)
460 nomem();
461
462 while ((node = uu_avl_walk_next(walk)) != NULL) {
463 uu_avl_remove(cb.cb_avl, node);
464 zfs_close(node->zn_handle);
465 free(node);
466 }
467
468 uu_avl_walk_end(walk);
469 uu_avl_destroy(cb.cb_avl);
470 uu_avl_pool_destroy(avl_pool);
471
472 return (ret);
473 }
474