1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/atomic.h>
26 #include <sys/cmn_err.h>
27 #include <sys/id_space.h>
28 #include <sys/kmem.h>
29 #include <sys/kstat.h>
30 #include <sys/log.h>
31 #include <sys/modctl.h>
32 #include <sys/modhash.h>
33 #include <sys/mutex.h>
34 #include <sys/proc.h>
35 #include <sys/procset.h>
36 #include <sys/project.h>
37 #include <sys/resource.h>
38 #include <sys/rctl.h>
39 #include <sys/siginfo.h>
40 #include <sys/strlog.h>
41 #include <sys/systm.h>
42 #include <sys/task.h>
43 #include <sys/types.h>
44 #include <sys/policy.h>
45 #include <sys/zone.h>
46
47 /*
48 * Resource controls (rctls)
49 *
50 * The rctl subsystem provides a mechanism for kernel components to
51 * register their individual resource controls with the system as a whole,
52 * such that those controls can subscribe to specific actions while being
53 * associated with the various process-model entities provided by the kernel:
54 * the process, the task, the project, and the zone. (In principle, only
55 * minor modifications would be required to connect the resource control
56 * functionality to non-process-model entities associated with the system.)
57 *
58 * Subsystems register their rctls via rctl_register(). Subsystems
59 * also wishing to provide additional limits on a given rctl can modify
60 * them once they have the rctl handle. Each subsystem should store the
61 * handle to their rctl for direct access.
62 *
63 * A primary dictionary, rctl_dict, contains a hash of id to the default
64 * control definition for each controlled resource-entity pair on the system.
65 * A secondary dictionary, rctl_dict_by_name, contains a hash of name to
66 * resource control handles. The resource control handles are distributed by
67 * the rctl_ids ID space. The handles are private and not to be
68 * advertised to userland; all userland interactions are via the rctl
69 * names.
70 *
71 * Entities inherit their rctls from their predecessor. Since projects have
72 * no ancestor, they inherit their rctls from the rctl dict for project
73 * rctls. It is expected that project controls will be set to their
74 * appropriate values shortly after project creation, presumably from a
75 * policy source such as the project database.
76 *
77 * Data structures
78 * The rctl_set_t attached to each of the process model entities is a simple
79 * hash table keyed on the rctl handle assigned at registration. The entries
80 * in the hash table are rctl_t's, whose relationship with the active control
81 * values on that resource and with the global state of the resource we
82 * illustrate below:
83 *
84 * rctl_dict[key] --> rctl_dict_entry
85 * ^
86 * |
87 * +--+---+
88 * rctl_set[key] ---> | rctl | --> value <-> value <-> system value --> NULL
89 * +--+---+ ^
90 * | |
91 * +------- cursor ------+
92 *
93 * That is, the rctl contains a back pointer to the global resource control
94 * state for this resource, which is also available in the rctl_dict hash
95 * table mentioned earlier. The rctl contains two pointers to resource
96 * control values: one, values, indicates the entire sequence of control
97 * values; the other, cursor, indicates the currently active control
98 * value--the next value to be enforced. The value list itself is an open,
99 * doubly-linked list, the last non-NULL member of which is the system value
100 * for that resource (being the theoretical/conventional maximum allowable
101 * value for the resource on this OS instance).
102 *
103 * Ops Vector
104 * Subsystems publishing rctls need not provide instances of all of the
105 * functions specified by the ops vector. In particular, if general
106 * rctl_*() entry points are not being called, certain functions can be
107 * omitted. These align as follows:
108 *
109 * rctl_set()
110 * You may wish to provide a set callback if locking circumstances prevent
111 * it or if the performance cost of requesting the enforced value from the
112 * resource control is prohibitively expensive. For instance, the currently
113 * enforced file size limit is stored on the process in the p_fsz_ctl to
114 * maintain read()/write() performance.
115 *
116 * rctl_test()
117 * You must provide a test callback if you are using the rctl_test()
118 * interface. An action callback is optional.
119 *
120 * rctl_action()
121 * You may wish to provide an action callback.
122 *
123 * Registration
124 * New resource controls can be added to a running instance by loaded modules
125 * via registration. (The current implementation does not support unloadable
126 * modules; this functionality can be added if needed, via an
127 * activation/deactivation interface involving the manipulation of the
128 * ops vector for the resource control(s) needing to support unloading.)
129 *
130 * Control value ordering
131 * Because the rctl_val chain on each rctl must be navigable in a
132 * deterministic way, we have to define an ordering on the rctl_val_t's. The
133 * defined order is (flags & [maximal], value, flags & [deny-action],
134 * privilege).
135 *
136 * Locking
137 * rctl_dict_lock must be acquired prior to rctl_lists_lock. Since
138 * rctl_dict_lock or rctl_lists_lock can be called at the enforcement point
139 * of any subsystem, holding subsystem locks, it is at all times inappropriate
140 * to call kmem_alloc(., KM_SLEEP) while holding either of these locks.
141 * Traversing any of the various resource control entity lists requires
142 * holding rctl_lists_lock.
143 *
144 * Each individual resource control set associated with an entity must have
145 * its rcs_lock held for the duration of any operations that would add
146 * resource controls or control values to the set.
147 *
148 * The locking subsequence of interest is: p_lock, rctl_dict_lock,
149 * rctl_lists_lock, entity->rcs_lock.
150 *
151 * The project(5) database and project entity resource controls
152 * A special case is made for RCENTITY_PROJECT values set through the
153 * setproject(3PROJECT) interface. setproject() makes use of a private
154 * interface, setprojrctl(), which passes through an array of resource control
155 * blocks that need to be set while holding the entity->rcs_lock. This
156 * ensures that the act of modifying a project's resource controls is
157 * "atomic" within the kernel.
158 *
159 * Within the rctl sub-system, we provide two interfaces that are only used by
160 * the setprojrctl() code path - rctl_local_insert_all() and
161 * rctl_local_replace_all(). rctl_local_insert_all() will ensure that the
162 * resource values specified in *new_values are applied.
163 * rctl_local_replace_all() will purge the current rctl->rc_projdb and
164 * rctl->rc_values entries, and apply the *new_values.
165 *
166 * These functions modify not only the linked list of active resource controls
167 * (rctl->rc_values), but also a "cached" linked list (rctl->rc_projdb) of
168 * values set through these interfaces. To clarify:
169 *
170 * rctl->rc_values - a linked list of rctl_val_t. These are the active
171 * resource values associated with this rctl, and may have been set by
172 * setrctl() - via prctl(1), or by setprojrctl() - via
173 * setproject(3PROJECT).
174 *
175 * rctl->rc_projdb - a linked list of rctl_val_t. These reflect the
176 * resource values set by the setprojrctl() code path. rc_projdb is not
177 * referenced by any other component of the rctl sub-system.
178 *
179 * As various locks are held when calling these functions, we ensure that all
180 * the possible memory allocations are performed prior to calling the
181 * function. *alloc_values is a linked list of uninitialized rctl_val_t,
182 * which may be used to duplicate a new resource control value (passed in as
183 * one of the members of the *new_values linked list), in order to populate
184 * rctl->rc_values.
185 */
186
187 id_t max_rctl_hndl = 32768;
188 int rctl_dict_size = 64;
189 int rctl_set_size = 8;
190 kmutex_t rctl_dict_lock;
191 mod_hash_t *rctl_dict;
192 mod_hash_t *rctl_dict_by_name;
193 id_space_t *rctl_ids;
194 kmem_cache_t *rctl_cache; /* kmem cache for rctl structures */
195 kmem_cache_t *rctl_val_cache; /* kmem cache for rctl values */
196
197 kmutex_t rctl_lists_lock;
198 rctl_dict_entry_t *rctl_lists[RC_MAX_ENTITY + 1];
199
200 /*
201 * Default resource control operations and ops vector
202 * To be used if the particular rcontrol has no specific actions defined, or
203 * if the subsystem providing the control is quiescing (in preparation for
204 * unloading, presumably.)
205 *
206 * Resource controls with callbacks should fill the unused operations with the
207 * appropriate default impotent callback.
208 */
209 /*ARGSUSED*/
210 void
rcop_no_action(struct rctl * r,struct proc * p,rctl_entity_p_t * e)211 rcop_no_action(struct rctl *r, struct proc *p, rctl_entity_p_t *e)
212 {
213 }
214
215 /*ARGSUSED*/
216 rctl_qty_t
rcop_no_usage(struct rctl * r,struct proc * p)217 rcop_no_usage(struct rctl *r, struct proc *p)
218 {
219 return (0);
220 }
221
222 /*ARGSUSED*/
223 int
rcop_no_set(struct rctl * r,struct proc * p,rctl_entity_p_t * e,rctl_qty_t l)224 rcop_no_set(struct rctl *r, struct proc *p, rctl_entity_p_t *e, rctl_qty_t l)
225 {
226 return (0);
227 }
228
229 /*ARGSUSED*/
230 int
rcop_no_test(struct rctl * r,struct proc * p,rctl_entity_p_t * e,struct rctl_val * rv,rctl_qty_t i,uint_t f)231 rcop_no_test(struct rctl *r, struct proc *p, rctl_entity_p_t *e,
232 struct rctl_val *rv, rctl_qty_t i, uint_t f)
233 {
234 return (0);
235 }
236
237 rctl_ops_t rctl_default_ops = {
238 rcop_no_action,
239 rcop_no_usage,
240 rcop_no_set,
241 rcop_no_test
242 };
243
244 /*
245 * Default "absolute" resource control operation and ops vector
246 * Useful if there is no usage associated with the
247 * resource control.
248 */
249 /*ARGSUSED*/
250 int
rcop_absolute_test(struct rctl * r,struct proc * p,rctl_entity_p_t * e,struct rctl_val * rv,rctl_qty_t i,uint_t f)251 rcop_absolute_test(struct rctl *r, struct proc *p, rctl_entity_p_t *e,
252 struct rctl_val *rv, rctl_qty_t i, uint_t f)
253 {
254 return (i > rv->rcv_value);
255 }
256
257 rctl_ops_t rctl_absolute_ops = {
258 rcop_no_action,
259 rcop_no_usage,
260 rcop_no_set,
261 rcop_absolute_test
262 };
263
264 /*ARGSUSED*/
265 static uint_t
rctl_dict_hash_by_id(void * hash_data,mod_hash_key_t key)266 rctl_dict_hash_by_id(void *hash_data, mod_hash_key_t key)
267 {
268 return ((uint_t)(uintptr_t)key % rctl_dict_size);
269 }
270
271 static int
rctl_dict_id_cmp(mod_hash_key_t key1,mod_hash_key_t key2)272 rctl_dict_id_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
273 {
274 uint_t u1 = (uint_t)(uintptr_t)key1;
275 uint_t u2 = (uint_t)(uintptr_t)key2;
276
277 if (u1 > u2)
278 return (1);
279
280 if (u1 == u2)
281 return (0);
282
283 return (-1);
284 }
285
286 static void
rctl_dict_val_dtor(mod_hash_val_t val)287 rctl_dict_val_dtor(mod_hash_val_t val)
288 {
289 rctl_dict_entry_t *kr = (rctl_dict_entry_t *)val;
290
291 kmem_free(kr, sizeof (rctl_dict_entry_t));
292 }
293
294 /*
295 * size_t rctl_build_name_buf()
296 *
297 * Overview
298 * rctl_build_name_buf() walks all active resource controls in the dictionary,
299 * building a buffer of continguous NUL-terminated strings.
300 *
301 * Return values
302 * The size of the buffer is returned, the passed pointer's contents are
303 * modified to that of the location of the buffer.
304 *
305 * Caller's context
306 * Caller must be in a context suitable for KM_SLEEP allocations.
307 */
308 size_t
rctl_build_name_buf(char ** rbufp)309 rctl_build_name_buf(char **rbufp)
310 {
311 size_t req_size, cpy_size;
312 char *rbufloc;
313 int i;
314
315 rctl_rebuild_name_buf:
316 req_size = cpy_size = 0;
317
318 /*
319 * Calculate needed buffer length.
320 */
321 mutex_enter(&rctl_lists_lock);
322 for (i = 0; i < RC_MAX_ENTITY + 1; i++) {
323 rctl_dict_entry_t *rde;
324
325 for (rde = rctl_lists[i];
326 rde != NULL;
327 rde = rde->rcd_next)
328 req_size += strlen(rde->rcd_name) + 1;
329 }
330 mutex_exit(&rctl_lists_lock);
331
332 rbufloc = *rbufp = kmem_alloc(req_size, KM_SLEEP);
333
334 /*
335 * Copy rctl names into our buffer. If the copy length exceeds the
336 * allocate length (due to registration changes), stop copying, free the
337 * buffer, and start again.
338 */
339 mutex_enter(&rctl_lists_lock);
340 for (i = 0; i < RC_MAX_ENTITY + 1; i++) {
341 rctl_dict_entry_t *rde;
342
343 for (rde = rctl_lists[i];
344 rde != NULL;
345 rde = rde->rcd_next) {
346 size_t length = strlen(rde->rcd_name) + 1;
347
348 cpy_size += length;
349
350 if (cpy_size > req_size) {
351 kmem_free(*rbufp, req_size);
352 mutex_exit(&rctl_lists_lock);
353 goto rctl_rebuild_name_buf;
354 }
355
356 bcopy(rde->rcd_name, rbufloc, length);
357 rbufloc += length;
358 }
359 }
360 mutex_exit(&rctl_lists_lock);
361
362 return (req_size);
363 }
364
365 /*
366 * rctl_dict_entry_t *rctl_dict_lookup(const char *)
367 *
368 * Overview
369 * rctl_dict_lookup() returns the resource control dictionary entry for the
370 * named resource control.
371 *
372 * Return values
373 * A pointer to the appropriate resource control dictionary entry, or NULL if
374 * no such named entry exists.
375 *
376 * Caller's context
377 * Caller must not be holding rctl_dict_lock.
378 */
379 rctl_dict_entry_t *
rctl_dict_lookup(const char * name)380 rctl_dict_lookup(const char *name)
381 {
382 rctl_dict_entry_t *rde;
383
384 mutex_enter(&rctl_dict_lock);
385
386 if (mod_hash_find(rctl_dict_by_name, (mod_hash_key_t)name,
387 (mod_hash_val_t *)&rde) == MH_ERR_NOTFOUND) {
388 mutex_exit(&rctl_dict_lock);
389 return (NULL);
390 }
391
392 mutex_exit(&rctl_dict_lock);
393
394 return (rde);
395 }
396
397 /*
398 * rctl_hndl_t rctl_hndl_lookup(const char *)
399 *
400 * Overview
401 * rctl_hndl_lookup() returns the resource control id (the "handle") for the
402 * named resource control.
403 *
404 * Return values
405 * The appropriate id, or -1 if no such named entry exists.
406 *
407 * Caller's context
408 * Caller must not be holding rctl_dict_lock.
409 */
410 rctl_hndl_t
rctl_hndl_lookup(const char * name)411 rctl_hndl_lookup(const char *name)
412 {
413 rctl_dict_entry_t *rde;
414
415 if ((rde = rctl_dict_lookup(name)) == NULL)
416 return (-1);
417
418 return (rde->rcd_id);
419 }
420
421 /*
422 * rctl_dict_entry_t * rctl_dict_lookup_hndl(rctl_hndl_t)
423 *
424 * Overview
425 * rctl_dict_lookup_hndl() completes the public lookup functions, by returning
426 * the resource control dictionary entry matching a given resource control id.
427 *
428 * Return values
429 * A pointer to the matching resource control dictionary entry, or NULL if the
430 * id does not match any existing entries.
431 *
432 * Caller's context
433 * Caller must not be holding rctl_lists_lock.
434 */
435 rctl_dict_entry_t *
rctl_dict_lookup_hndl(rctl_hndl_t hndl)436 rctl_dict_lookup_hndl(rctl_hndl_t hndl)
437 {
438 uint_t i;
439
440 mutex_enter(&rctl_lists_lock);
441 for (i = 0; i < RC_MAX_ENTITY + 1; i++) {
442 rctl_dict_entry_t *rde;
443
444 for (rde = rctl_lists[i];
445 rde != NULL;
446 rde = rde->rcd_next)
447 if (rde->rcd_id == hndl) {
448 mutex_exit(&rctl_lists_lock);
449 return (rde);
450 }
451 }
452 mutex_exit(&rctl_lists_lock);
453
454 return (NULL);
455 }
456
457 /*
458 * void rctl_add_default_limit(const char *name, rctl_qty_t value,
459 * rctl_priv_t privilege, uint_t action)
460 *
461 * Overview
462 * Create a default limit with specified value, privilege, and action.
463 *
464 * Return value
465 * No value returned.
466 */
467 void
rctl_add_default_limit(const char * name,rctl_qty_t value,rctl_priv_t privilege,uint_t action)468 rctl_add_default_limit(const char *name, rctl_qty_t value,
469 rctl_priv_t privilege, uint_t action)
470 {
471 rctl_val_t *dval;
472 rctl_dict_entry_t *rde;
473
474 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
475 bzero(dval, sizeof (rctl_val_t));
476 dval->rcv_value = value;
477 dval->rcv_privilege = privilege;
478 dval->rcv_flagaction = action;
479 dval->rcv_action_recip_pid = -1;
480
481 rde = rctl_dict_lookup(name);
482 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
483 }
484
485 /*
486 * void rctl_add_legacy_limit(const char *name, const char *mname,
487 * const char *lname, rctl_qty_t dflt)
488 *
489 * Overview
490 * Create a default privileged limit, using the value obtained from
491 * /etc/system if it exists and is greater than the specified default
492 * value. Exists primarily for System V IPC.
493 *
494 * Return value
495 * No value returned.
496 */
497 void
rctl_add_legacy_limit(const char * name,const char * mname,const char * lname,rctl_qty_t dflt,rctl_qty_t max)498 rctl_add_legacy_limit(const char *name, const char *mname, const char *lname,
499 rctl_qty_t dflt, rctl_qty_t max)
500 {
501 rctl_qty_t qty;
502
503 if (!mod_sysvar(mname, lname, &qty) || (qty < dflt))
504 qty = dflt;
505
506 if (qty > max)
507 qty = max;
508
509 rctl_add_default_limit(name, qty, RCPRIV_PRIVILEGED, RCTL_LOCAL_DENY);
510 }
511
512 rctl_set_t *
rctl_entity_obtain_rset(rctl_dict_entry_t * rcd,struct proc * p)513 rctl_entity_obtain_rset(rctl_dict_entry_t *rcd, struct proc *p)
514 {
515 rctl_set_t *rset = NULL;
516
517 if (rcd == NULL)
518 return (NULL);
519
520 switch (rcd->rcd_entity) {
521 case RCENTITY_PROCESS:
522 rset = p->p_rctls;
523 break;
524 case RCENTITY_TASK:
525 ASSERT(MUTEX_HELD(&p->p_lock));
526 if (p->p_task != NULL)
527 rset = p->p_task->tk_rctls;
528 break;
529 case RCENTITY_PROJECT:
530 ASSERT(MUTEX_HELD(&p->p_lock));
531 if (p->p_task != NULL &&
532 p->p_task->tk_proj != NULL)
533 rset = p->p_task->tk_proj->kpj_rctls;
534 break;
535 case RCENTITY_ZONE:
536 ASSERT(MUTEX_HELD(&p->p_lock));
537 if (p->p_zone != NULL)
538 rset = p->p_zone->zone_rctls;
539 break;
540 default:
541 panic("unknown rctl entity type %d seen", rcd->rcd_entity);
542 break;
543 }
544
545 return (rset);
546 }
547
548 static void
rctl_entity_obtain_entity_p(rctl_entity_t entity,struct proc * p,rctl_entity_p_t * e)549 rctl_entity_obtain_entity_p(rctl_entity_t entity, struct proc *p,
550 rctl_entity_p_t *e)
551 {
552 e->rcep_p.proc = NULL;
553 e->rcep_t = entity;
554
555 switch (entity) {
556 case RCENTITY_PROCESS:
557 e->rcep_p.proc = p;
558 break;
559 case RCENTITY_TASK:
560 ASSERT(MUTEX_HELD(&p->p_lock));
561 if (p->p_task != NULL)
562 e->rcep_p.task = p->p_task;
563 break;
564 case RCENTITY_PROJECT:
565 ASSERT(MUTEX_HELD(&p->p_lock));
566 if (p->p_task != NULL &&
567 p->p_task->tk_proj != NULL)
568 e->rcep_p.proj = p->p_task->tk_proj;
569 break;
570 case RCENTITY_ZONE:
571 ASSERT(MUTEX_HELD(&p->p_lock));
572 if (p->p_zone != NULL)
573 e->rcep_p.zone = p->p_zone;
574 break;
575 default:
576 panic("unknown rctl entity type %d seen", entity);
577 break;
578 }
579 }
580
581 static void
rctl_gp_alloc(rctl_alloc_gp_t * rcgp)582 rctl_gp_alloc(rctl_alloc_gp_t *rcgp)
583 {
584 uint_t i;
585
586 if (rcgp->rcag_nctls > 0) {
587 rctl_t *prev = kmem_cache_alloc(rctl_cache, KM_SLEEP);
588 rctl_t *rctl = prev;
589
590 rcgp->rcag_ctls = prev;
591
592 for (i = 1; i < rcgp->rcag_nctls; i++) {
593 rctl = kmem_cache_alloc(rctl_cache, KM_SLEEP);
594 prev->rc_next = rctl;
595 prev = rctl;
596 }
597
598 rctl->rc_next = NULL;
599 }
600
601 if (rcgp->rcag_nvals > 0) {
602 rctl_val_t *prev = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
603 rctl_val_t *rval = prev;
604
605 rcgp->rcag_vals = prev;
606
607 for (i = 1; i < rcgp->rcag_nvals; i++) {
608 rval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
609 prev->rcv_next = rval;
610 prev = rval;
611 }
612
613 rval->rcv_next = NULL;
614 }
615
616 }
617
618 static rctl_val_t *
rctl_gp_detach_val(rctl_alloc_gp_t * rcgp)619 rctl_gp_detach_val(rctl_alloc_gp_t *rcgp)
620 {
621 rctl_val_t *rval = rcgp->rcag_vals;
622
623 ASSERT(rcgp->rcag_nvals > 0);
624 rcgp->rcag_nvals--;
625 rcgp->rcag_vals = rval->rcv_next;
626
627 rval->rcv_next = NULL;
628
629 return (rval);
630 }
631
632 static rctl_t *
rctl_gp_detach_ctl(rctl_alloc_gp_t * rcgp)633 rctl_gp_detach_ctl(rctl_alloc_gp_t *rcgp)
634 {
635 rctl_t *rctl = rcgp->rcag_ctls;
636
637 ASSERT(rcgp->rcag_nctls > 0);
638 rcgp->rcag_nctls--;
639 rcgp->rcag_ctls = rctl->rc_next;
640
641 rctl->rc_next = NULL;
642
643 return (rctl);
644
645 }
646
647 static void
rctl_gp_free(rctl_alloc_gp_t * rcgp)648 rctl_gp_free(rctl_alloc_gp_t *rcgp)
649 {
650 rctl_val_t *rval = rcgp->rcag_vals;
651 rctl_t *rctl = rcgp->rcag_ctls;
652
653 while (rval != NULL) {
654 rctl_val_t *next = rval->rcv_next;
655
656 kmem_cache_free(rctl_val_cache, rval);
657 rval = next;
658 }
659
660 while (rctl != NULL) {
661 rctl_t *next = rctl->rc_next;
662
663 kmem_cache_free(rctl_cache, rctl);
664 rctl = next;
665 }
666 }
667
668 /*
669 * void rctl_prealloc_destroy(rctl_alloc_gp_t *)
670 *
671 * Overview
672 * Release all unused memory allocated via one of the "prealloc" functions:
673 * rctl_set_init_prealloc, rctl_set_dup_prealloc, or rctl_rlimit_set_prealloc.
674 *
675 * Return values
676 * None.
677 *
678 * Caller's context
679 * No restrictions on context.
680 */
681 void
rctl_prealloc_destroy(rctl_alloc_gp_t * gp)682 rctl_prealloc_destroy(rctl_alloc_gp_t *gp)
683 {
684 rctl_gp_free(gp);
685 kmem_free(gp, sizeof (rctl_alloc_gp_t));
686 }
687
688 /*
689 * int rctl_val_cmp(rctl_val_t *, rctl_val_t *, int)
690 *
691 * Overview
692 * This function defines an ordering to rctl_val_t's in order to allow
693 * for correct placement in value lists. When the imprecise flag is set,
694 * the action recipient is ignored. This is to facilitate insert,
695 * delete, and replace operations by rctlsys.
696 *
697 * Return values
698 * 0 if the val_t's are are considered identical
699 * -1 if a is ordered lower than b
700 * 1 if a is lowered higher than b
701 *
702 * Caller's context
703 * No restrictions on context.
704 */
705 int
rctl_val_cmp(rctl_val_t * a,rctl_val_t * b,int imprecise)706 rctl_val_cmp(rctl_val_t *a, rctl_val_t *b, int imprecise)
707 {
708 if ((a->rcv_flagaction & RCTL_LOCAL_MAXIMAL) <
709 (b->rcv_flagaction & RCTL_LOCAL_MAXIMAL))
710 return (-1);
711
712 if ((a->rcv_flagaction & RCTL_LOCAL_MAXIMAL) >
713 (b->rcv_flagaction & RCTL_LOCAL_MAXIMAL))
714 return (1);
715
716 if (a->rcv_value < b->rcv_value)
717 return (-1);
718
719 if (a->rcv_value > b->rcv_value)
720 return (1);
721
722 if ((a->rcv_flagaction & RCTL_LOCAL_DENY) <
723 (b->rcv_flagaction & RCTL_LOCAL_DENY))
724 return (-1);
725
726 if ((a->rcv_flagaction & RCTL_LOCAL_DENY) >
727 (b->rcv_flagaction & RCTL_LOCAL_DENY))
728 return (1);
729
730 if (a->rcv_privilege < b->rcv_privilege)
731 return (-1);
732
733 if (a->rcv_privilege > b->rcv_privilege)
734 return (1);
735
736 if (imprecise)
737 return (0);
738
739 if (a->rcv_action_recip_pid < b->rcv_action_recip_pid)
740 return (-1);
741
742 if (a->rcv_action_recip_pid > b->rcv_action_recip_pid)
743 return (1);
744
745 return (0);
746 }
747
748 static rctl_val_t *
rctl_val_list_find(rctl_val_t ** head,rctl_val_t * cval)749 rctl_val_list_find(rctl_val_t **head, rctl_val_t *cval)
750 {
751 rctl_val_t *rval = *head;
752
753 while (rval != NULL) {
754 if (rctl_val_cmp(cval, rval, 0) == 0)
755 return (rval);
756
757 rval = rval->rcv_next;
758 }
759
760 return (NULL);
761
762 }
763
764 /*
765 * int rctl_val_list_insert(rctl_val_t **, rctl_val_t *)
766 *
767 * Overview
768 * This function inserts the rctl_val_t into the value list provided.
769 * The insert is always successful unless if the value is a duplicate
770 * of one already in the list.
771 *
772 * Return values
773 * 1 if the value was a duplicate of an existing value in the list.
774 * 0 if the insert was successful.
775 */
776 int
rctl_val_list_insert(rctl_val_t ** root,rctl_val_t * rval)777 rctl_val_list_insert(rctl_val_t **root, rctl_val_t *rval)
778 {
779 rctl_val_t *prev;
780 int equiv;
781
782 rval->rcv_next = NULL;
783 rval->rcv_prev = NULL;
784
785 if (*root == NULL) {
786 *root = rval;
787 return (0);
788 }
789
790 equiv = rctl_val_cmp(rval, *root, 0);
791
792 if (equiv == 0)
793 return (1);
794
795 if (equiv < 0) {
796 rval->rcv_next = *root;
797 rval->rcv_next->rcv_prev = rval;
798 *root = rval;
799
800 return (0);
801 }
802
803 prev = *root;
804 while (prev->rcv_next != NULL &&
805 (equiv = rctl_val_cmp(rval, prev->rcv_next, 0)) > 0) {
806 prev = prev->rcv_next;
807 }
808
809 if (equiv == 0)
810 return (1);
811
812 rval->rcv_next = prev->rcv_next;
813 if (rval->rcv_next != NULL)
814 rval->rcv_next->rcv_prev = rval;
815 prev->rcv_next = rval;
816 rval->rcv_prev = prev;
817
818 return (0);
819 }
820
821 static int
rctl_val_list_delete(rctl_val_t ** root,rctl_val_t * rval)822 rctl_val_list_delete(rctl_val_t **root, rctl_val_t *rval)
823 {
824 rctl_val_t *prev;
825
826 if (*root == NULL)
827 return (-1);
828
829 prev = *root;
830 if (rctl_val_cmp(rval, prev, 0) == 0) {
831 *root = prev->rcv_next;
832 if (*root != NULL)
833 (*root)->rcv_prev = NULL;
834
835 kmem_cache_free(rctl_val_cache, prev);
836
837 return (0);
838 }
839
840 while (prev->rcv_next != NULL &&
841 rctl_val_cmp(rval, prev->rcv_next, 0) != 0) {
842 prev = prev->rcv_next;
843 }
844
845 if (prev->rcv_next == NULL) {
846 /*
847 * If we navigate the entire list and cannot find a match, then
848 * return failure.
849 */
850 return (-1);
851 }
852
853 prev = prev->rcv_next;
854 prev->rcv_prev->rcv_next = prev->rcv_next;
855 if (prev->rcv_next != NULL)
856 prev->rcv_next->rcv_prev = prev->rcv_prev;
857
858 kmem_cache_free(rctl_val_cache, prev);
859
860 return (0);
861 }
862
863 static rctl_val_t *
rctl_val_list_dup(rctl_val_t * rval,rctl_alloc_gp_t * ragp,struct proc * oldp,struct proc * newp)864 rctl_val_list_dup(rctl_val_t *rval, rctl_alloc_gp_t *ragp, struct proc *oldp,
865 struct proc *newp)
866 {
867 rctl_val_t *head = NULL;
868
869 for (; rval != NULL; rval = rval->rcv_next) {
870 rctl_val_t *dval = rctl_gp_detach_val(ragp);
871
872 bcopy(rval, dval, sizeof (rctl_val_t));
873 dval->rcv_prev = dval->rcv_next = NULL;
874
875 if (oldp == NULL ||
876 rval->rcv_action_recipient == NULL ||
877 rval->rcv_action_recipient == oldp) {
878 if (rval->rcv_privilege == RCPRIV_BASIC) {
879 dval->rcv_action_recipient = newp;
880 dval->rcv_action_recip_pid = newp->p_pid;
881 } else {
882 dval->rcv_action_recipient = NULL;
883 dval->rcv_action_recip_pid = -1;
884 }
885
886 (void) rctl_val_list_insert(&head, dval);
887 } else {
888 kmem_cache_free(rctl_val_cache, dval);
889 }
890 }
891
892 return (head);
893 }
894
895 static void
rctl_val_list_reset(rctl_val_t * rval)896 rctl_val_list_reset(rctl_val_t *rval)
897 {
898 for (; rval != NULL; rval = rval->rcv_next)
899 rval->rcv_firing_time = 0;
900 }
901
902 static uint_t
rctl_val_list_count(rctl_val_t * rval)903 rctl_val_list_count(rctl_val_t *rval)
904 {
905 uint_t n = 0;
906
907 for (; rval != NULL; rval = rval->rcv_next)
908 n++;
909
910 return (n);
911 }
912
913
914 static void
rctl_val_list_free(rctl_val_t * rval)915 rctl_val_list_free(rctl_val_t *rval)
916 {
917 while (rval != NULL) {
918 rctl_val_t *next = rval->rcv_next;
919
920 kmem_cache_free(rctl_val_cache, rval);
921
922 rval = next;
923 }
924 }
925
926 /*
927 * rctl_qty_t rctl_model_maximum(rctl_dict_entry_t *, struct proc *)
928 *
929 * Overview
930 * In cases where the operating system supports more than one process
931 * addressing model, the operating system capabilities will exceed those of
932 * one or more of these models. Processes in a less capable model must have
933 * their resources accurately controlled, without diluting those of their
934 * descendants reached via exec(). rctl_model_maximum() returns the governing
935 * value for the specified process with respect to a resource control, such
936 * that the value can used for the RCTLOP_SET callback or compatability
937 * support.
938 *
939 * Return values
940 * The maximum value for the given process for the specified resource control.
941 *
942 * Caller's context
943 * No restrictions on context.
944 */
945 rctl_qty_t
rctl_model_maximum(rctl_dict_entry_t * rde,struct proc * p)946 rctl_model_maximum(rctl_dict_entry_t *rde, struct proc *p)
947 {
948 if (p->p_model == DATAMODEL_NATIVE)
949 return (rde->rcd_max_native);
950
951 return (rde->rcd_max_ilp32);
952 }
953
954 /*
955 * rctl_qty_t rctl_model_value(rctl_dict_entry_t *, struct proc *, rctl_qty_t)
956 *
957 * Overview
958 * Convenience function wrapping the rctl_model_maximum() functionality.
959 *
960 * Return values
961 * The lesser of the process's maximum value and the given value for the
962 * specified resource control.
963 *
964 * Caller's context
965 * No restrictions on context.
966 */
967 rctl_qty_t
rctl_model_value(rctl_dict_entry_t * rde,struct proc * p,rctl_qty_t value)968 rctl_model_value(rctl_dict_entry_t *rde, struct proc *p, rctl_qty_t value)
969 {
970 rctl_qty_t max = rctl_model_maximum(rde, p);
971
972 return (value < max ? value : max);
973 }
974
975 static void
rctl_set_insert(rctl_set_t * set,rctl_hndl_t hndl,rctl_t * rctl)976 rctl_set_insert(rctl_set_t *set, rctl_hndl_t hndl, rctl_t *rctl)
977 {
978 uint_t index = hndl % rctl_set_size;
979 rctl_t *next_ctl, *prev_ctl;
980
981 ASSERT(MUTEX_HELD(&set->rcs_lock));
982
983 rctl->rc_next = NULL;
984
985 if (set->rcs_ctls[index] == NULL) {
986 set->rcs_ctls[index] = rctl;
987 return;
988 }
989
990 if (hndl < set->rcs_ctls[index]->rc_id) {
991 rctl->rc_next = set->rcs_ctls[index];
992 set->rcs_ctls[index] = rctl;
993
994 return;
995 }
996
997 for (next_ctl = set->rcs_ctls[index]->rc_next,
998 prev_ctl = set->rcs_ctls[index];
999 next_ctl != NULL;
1000 prev_ctl = next_ctl,
1001 next_ctl = next_ctl->rc_next) {
1002 if (next_ctl->rc_id > hndl) {
1003 rctl->rc_next = next_ctl;
1004 prev_ctl->rc_next = rctl;
1005
1006 return;
1007 }
1008 }
1009
1010 rctl->rc_next = next_ctl;
1011 prev_ctl->rc_next = rctl;
1012 }
1013
1014 /*
1015 * rctl_set_t *rctl_set_create()
1016 *
1017 * Overview
1018 * Create an empty resource control set, suitable for attaching to a
1019 * controlled entity.
1020 *
1021 * Return values
1022 * A pointer to the newly created set.
1023 *
1024 * Caller's context
1025 * Safe for KM_SLEEP allocations.
1026 */
1027 rctl_set_t *
rctl_set_create()1028 rctl_set_create()
1029 {
1030 rctl_set_t *rset = kmem_zalloc(sizeof (rctl_set_t), KM_SLEEP);
1031
1032 mutex_init(&rset->rcs_lock, NULL, MUTEX_DEFAULT, NULL);
1033 rset->rcs_ctls = kmem_zalloc(rctl_set_size * sizeof (rctl_t *),
1034 KM_SLEEP);
1035 rset->rcs_entity = -1;
1036
1037 return (rset);
1038 }
1039
1040 /*
1041 * rctl_gp_alloc_t *rctl_set_init_prealloc(rctl_entity_t)
1042 *
1043 * Overview
1044 * rctl_set_init_prealloc() examines the globally defined resource controls
1045 * and their default values and returns a resource control allocation group
1046 * populated with sufficient controls and values to form a representative
1047 * resource control set for the specified entity.
1048 *
1049 * Return values
1050 * A pointer to the newly created allocation group.
1051 *
1052 * Caller's context
1053 * Caller must be in a context suitable for KM_SLEEP allocations.
1054 */
1055 rctl_alloc_gp_t *
rctl_set_init_prealloc(rctl_entity_t entity)1056 rctl_set_init_prealloc(rctl_entity_t entity)
1057 {
1058 rctl_dict_entry_t *rde;
1059 rctl_alloc_gp_t *ragp = kmem_zalloc(sizeof (rctl_alloc_gp_t), KM_SLEEP);
1060
1061 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1062
1063 if (rctl_lists[entity] == NULL)
1064 return (ragp);
1065
1066 mutex_enter(&rctl_lists_lock);
1067
1068 for (rde = rctl_lists[entity]; rde != NULL; rde = rde->rcd_next) {
1069 ragp->rcag_nctls++;
1070 ragp->rcag_nvals += rctl_val_list_count(rde->rcd_default_value);
1071 }
1072
1073 mutex_exit(&rctl_lists_lock);
1074
1075 rctl_gp_alloc(ragp);
1076
1077 return (ragp);
1078 }
1079
1080 /*
1081 * rctl_set_t *rctl_set_init(rctl_entity_t)
1082 *
1083 * Overview
1084 * rctl_set_create() creates a resource control set, initialized with the
1085 * system infinite values on all registered controls, for attachment to a
1086 * system entity requiring resource controls, such as a process or a task.
1087 *
1088 * Return values
1089 * A pointer to the newly filled set.
1090 *
1091 * Caller's context
1092 * Caller must be holding p_lock on entry so that RCTLOP_SET() functions
1093 * may modify task and project members based on the proc structure
1094 * they are passed.
1095 */
1096 rctl_set_t *
rctl_set_init(rctl_entity_t entity,struct proc * p,rctl_entity_p_t * e,rctl_set_t * rset,rctl_alloc_gp_t * ragp)1097 rctl_set_init(rctl_entity_t entity, struct proc *p, rctl_entity_p_t *e,
1098 rctl_set_t *rset, rctl_alloc_gp_t *ragp)
1099 {
1100 rctl_dict_entry_t *rde;
1101
1102 ASSERT(MUTEX_HELD(&p->p_lock));
1103 ASSERT(e);
1104 rset->rcs_entity = entity;
1105
1106 if (rctl_lists[entity] == NULL)
1107 return (rset);
1108
1109 mutex_enter(&rctl_lists_lock);
1110 mutex_enter(&rset->rcs_lock);
1111
1112 for (rde = rctl_lists[entity]; rde != NULL; rde = rde->rcd_next) {
1113 rctl_t *rctl = rctl_gp_detach_ctl(ragp);
1114
1115 rctl->rc_dict_entry = rde;
1116 rctl->rc_id = rde->rcd_id;
1117 rctl->rc_projdb = NULL;
1118
1119 rctl->rc_values = rctl_val_list_dup(rde->rcd_default_value,
1120 ragp, NULL, p);
1121 rctl->rc_cursor = rctl->rc_values;
1122
1123 ASSERT(rctl->rc_cursor != NULL);
1124
1125 rctl_set_insert(rset, rde->rcd_id, rctl);
1126
1127 RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
1128 rctl->rc_cursor->rcv_value));
1129 }
1130
1131 mutex_exit(&rset->rcs_lock);
1132 mutex_exit(&rctl_lists_lock);
1133
1134 return (rset);
1135 }
1136
1137 static rctl_t *
rctl_dup(rctl_t * rctl,rctl_alloc_gp_t * ragp,struct proc * oldp,struct proc * newp)1138 rctl_dup(rctl_t *rctl, rctl_alloc_gp_t *ragp, struct proc *oldp,
1139 struct proc *newp)
1140 {
1141 rctl_t *dup = rctl_gp_detach_ctl(ragp);
1142 rctl_val_t *dval;
1143
1144 dup->rc_id = rctl->rc_id;
1145 dup->rc_dict_entry = rctl->rc_dict_entry;
1146 dup->rc_next = NULL;
1147 dup->rc_cursor = NULL;
1148 dup->rc_values = rctl_val_list_dup(rctl->rc_values, ragp, oldp, newp);
1149
1150 for (dval = dup->rc_values;
1151 dval != NULL; dval = dval->rcv_next) {
1152 if (rctl_val_cmp(rctl->rc_cursor, dval, 0) >= 0) {
1153 dup->rc_cursor = dval;
1154 break;
1155 }
1156 }
1157
1158 if (dup->rc_cursor == NULL)
1159 dup->rc_cursor = dup->rc_values;
1160
1161 return (dup);
1162 }
1163
1164 static void
rctl_set_fill_alloc_gp(rctl_set_t * set,rctl_alloc_gp_t * ragp)1165 rctl_set_fill_alloc_gp(rctl_set_t *set, rctl_alloc_gp_t *ragp)
1166 {
1167 uint_t i;
1168
1169 bzero(ragp, sizeof (rctl_alloc_gp_t));
1170
1171 for (i = 0; i < rctl_set_size; i++) {
1172 rctl_t *r = set->rcs_ctls[i];
1173
1174 while (r != NULL) {
1175 ragp->rcag_nctls++;
1176
1177 ragp->rcag_nvals += rctl_val_list_count(r->rc_values);
1178
1179 r = r->rc_next;
1180 }
1181 }
1182 }
1183
1184 /*
1185 * rctl_alloc_gp_t *rctl_set_dup_prealloc(rctl_set_t *)
1186 *
1187 * Overview
1188 * Given a resource control set, allocate a sufficiently large allocation
1189 * group to contain a duplicate of the set.
1190 *
1191 * Return value
1192 * A pointer to the newly created allocation group.
1193 *
1194 * Caller's context
1195 * Safe for KM_SLEEP allocations.
1196 */
1197 rctl_alloc_gp_t *
rctl_set_dup_prealloc(rctl_set_t * set)1198 rctl_set_dup_prealloc(rctl_set_t *set)
1199 {
1200 rctl_alloc_gp_t *ragp = kmem_zalloc(sizeof (rctl_alloc_gp_t), KM_SLEEP);
1201
1202 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1203
1204 mutex_enter(&set->rcs_lock);
1205 rctl_set_fill_alloc_gp(set, ragp);
1206 mutex_exit(&set->rcs_lock);
1207
1208 rctl_gp_alloc(ragp);
1209
1210 return (ragp);
1211 }
1212
1213 /*
1214 * int rctl_set_dup_ready(rctl_set_t *, rctl_alloc_gp_t *)
1215 *
1216 * Overview
1217 * Verify that the allocation group provided is large enough to allow a
1218 * duplicate of the given resource control set to be constructed from its
1219 * contents.
1220 *
1221 * Return values
1222 * 1 if the allocation group is sufficiently large, 0 otherwise.
1223 *
1224 * Caller's context
1225 * rcs_lock must be held prior to entry.
1226 */
1227 int
rctl_set_dup_ready(rctl_set_t * set,rctl_alloc_gp_t * ragp)1228 rctl_set_dup_ready(rctl_set_t *set, rctl_alloc_gp_t *ragp)
1229 {
1230 rctl_alloc_gp_t curr_gp;
1231
1232 ASSERT(MUTEX_HELD(&set->rcs_lock));
1233
1234 rctl_set_fill_alloc_gp(set, &curr_gp);
1235
1236 if (curr_gp.rcag_nctls <= ragp->rcag_nctls &&
1237 curr_gp.rcag_nvals <= ragp->rcag_nvals)
1238 return (1);
1239
1240 return (0);
1241 }
1242
1243 /*
1244 * rctl_set_t *rctl_set_dup(rctl_set_t *, struct proc *, struct proc *,
1245 * rctl_set_t *, rctl_alloc_gp_t *, int)
1246 *
1247 * Overview
1248 * Make a duplicate of the resource control set. The proc pointers are those
1249 * of the owning process and of the process associated with the entity
1250 * receiving the duplicate.
1251 *
1252 * Duplication is a 3 stage process. Stage 1 is memory allocation for
1253 * the duplicate set, which is taken care of by rctl_set_dup_prealloc().
1254 * Stage 2 consists of copying all rctls and values from the old set into
1255 * the new. Stage 3 completes the duplication by performing the appropriate
1256 * callbacks for each rctl in the new set.
1257 *
1258 * Stages 2 and 3 are handled by calling rctl_set_dup with the RCD_DUP and
1259 * RCD_CALLBACK functions, respectively. The RCD_CALLBACK flag may only
1260 * be supplied if the newp proc structure reflects the new task and
1261 * project linkage.
1262 *
1263 * Return value
1264 * A pointer to the duplicate set.
1265 *
1266 * Caller's context
1267 * The rcs_lock of the set to be duplicated must be held prior to entry.
1268 */
1269 rctl_set_t *
rctl_set_dup(rctl_set_t * set,struct proc * oldp,struct proc * newp,rctl_entity_p_t * e,rctl_set_t * dup,rctl_alloc_gp_t * ragp,int flag)1270 rctl_set_dup(rctl_set_t *set, struct proc *oldp, struct proc *newp,
1271 rctl_entity_p_t *e, rctl_set_t *dup, rctl_alloc_gp_t *ragp, int flag)
1272 {
1273 uint_t i;
1274 rctl_set_t *iter;
1275
1276 ASSERT((flag & RCD_DUP) || (flag & RCD_CALLBACK));
1277 ASSERT(e);
1278 /*
1279 * When copying the old set, iterate over that. Otherwise, when
1280 * only callbacks have been requested, iterate over the dup set.
1281 */
1282 if (flag & RCD_DUP) {
1283 ASSERT(MUTEX_HELD(&set->rcs_lock));
1284 iter = set;
1285 dup->rcs_entity = set->rcs_entity;
1286 } else {
1287 iter = dup;
1288 }
1289
1290 mutex_enter(&dup->rcs_lock);
1291
1292 for (i = 0; i < rctl_set_size; i++) {
1293 rctl_t *r = iter->rcs_ctls[i];
1294 rctl_t *d;
1295
1296 while (r != NULL) {
1297 if (flag & RCD_DUP) {
1298 d = rctl_dup(r, ragp, oldp, newp);
1299 rctl_set_insert(dup, r->rc_id, d);
1300 } else {
1301 d = r;
1302 }
1303
1304 if (flag & RCD_CALLBACK)
1305 RCTLOP_SET(d, newp, e,
1306 rctl_model_value(d->rc_dict_entry, newp,
1307 d->rc_cursor->rcv_value));
1308
1309 r = r->rc_next;
1310 }
1311 }
1312
1313 mutex_exit(&dup->rcs_lock);
1314
1315 return (dup);
1316 }
1317
1318 /*
1319 * void rctl_set_free(rctl_set_t *)
1320 *
1321 * Overview
1322 * Delete resource control set and all attached values.
1323 *
1324 * Return values
1325 * No value returned.
1326 *
1327 * Caller's context
1328 * No restrictions on context.
1329 */
1330 void
rctl_set_free(rctl_set_t * set)1331 rctl_set_free(rctl_set_t *set)
1332 {
1333 uint_t i;
1334
1335 mutex_enter(&set->rcs_lock);
1336 for (i = 0; i < rctl_set_size; i++) {
1337 rctl_t *r = set->rcs_ctls[i];
1338
1339 while (r != NULL) {
1340 rctl_val_t *v = r->rc_values;
1341 rctl_t *n = r->rc_next;
1342
1343 kmem_cache_free(rctl_cache, r);
1344
1345 rctl_val_list_free(v);
1346
1347 r = n;
1348 }
1349 }
1350 mutex_exit(&set->rcs_lock);
1351
1352 kmem_free(set->rcs_ctls, sizeof (rctl_t *) * rctl_set_size);
1353 kmem_free(set, sizeof (rctl_set_t));
1354 }
1355
1356 /*
1357 * void rctl_set_reset(rctl_set_t *)
1358 *
1359 * Overview
1360 * Resets all rctls within the set such that the lowest value becomes active.
1361 *
1362 * Return values
1363 * No value returned.
1364 *
1365 * Caller's context
1366 * No restrictions on context.
1367 */
1368 void
rctl_set_reset(rctl_set_t * set,struct proc * p,rctl_entity_p_t * e)1369 rctl_set_reset(rctl_set_t *set, struct proc *p, rctl_entity_p_t *e)
1370 {
1371 uint_t i;
1372
1373 ASSERT(e);
1374
1375 mutex_enter(&set->rcs_lock);
1376 for (i = 0; i < rctl_set_size; i++) {
1377 rctl_t *r = set->rcs_ctls[i];
1378
1379 while (r != NULL) {
1380 r->rc_cursor = r->rc_values;
1381 rctl_val_list_reset(r->rc_cursor);
1382 RCTLOP_SET(r, p, e, rctl_model_value(r->rc_dict_entry,
1383 p, r->rc_cursor->rcv_value));
1384
1385 ASSERT(r->rc_cursor != NULL);
1386
1387 r = r->rc_next;
1388 }
1389 }
1390
1391 mutex_exit(&set->rcs_lock);
1392 }
1393
1394 /*
1395 * void rctl_set_tearoff(rctl_set *, struct proc *)
1396 *
1397 * Overview
1398 * Tear off any resource control values on this set with an action recipient
1399 * equal to the specified process (as they are becoming invalid with the
1400 * process's departure from this set as an observer).
1401 *
1402 * Return values
1403 * No value returned.
1404 *
1405 * Caller's context
1406 * No restrictions on context
1407 */
1408 void
rctl_set_tearoff(rctl_set_t * set,struct proc * p)1409 rctl_set_tearoff(rctl_set_t *set, struct proc *p)
1410 {
1411 uint_t i;
1412
1413 mutex_enter(&set->rcs_lock);
1414 for (i = 0; i < rctl_set_size; i++) {
1415 rctl_t *r = set->rcs_ctls[i];
1416
1417 while (r != NULL) {
1418 rctl_val_t *rval;
1419
1420 tearoff_rewalk_list:
1421 rval = r->rc_values;
1422
1423 while (rval != NULL) {
1424 if (rval->rcv_privilege == RCPRIV_BASIC &&
1425 rval->rcv_action_recipient == p) {
1426 if (r->rc_cursor == rval)
1427 r->rc_cursor = rval->rcv_next;
1428
1429 (void) rctl_val_list_delete(
1430 &r->rc_values, rval);
1431
1432 goto tearoff_rewalk_list;
1433 }
1434
1435 rval = rval->rcv_next;
1436 }
1437
1438 ASSERT(r->rc_cursor != NULL);
1439
1440 r = r->rc_next;
1441 }
1442 }
1443
1444 mutex_exit(&set->rcs_lock);
1445 }
1446
1447 int
rctl_set_find(rctl_set_t * set,rctl_hndl_t hndl,rctl_t ** rctl)1448 rctl_set_find(rctl_set_t *set, rctl_hndl_t hndl, rctl_t **rctl)
1449 {
1450 uint_t index = hndl % rctl_set_size;
1451 rctl_t *curr_ctl;
1452
1453 ASSERT(MUTEX_HELD(&set->rcs_lock));
1454
1455 for (curr_ctl = set->rcs_ctls[index]; curr_ctl != NULL;
1456 curr_ctl = curr_ctl->rc_next) {
1457 if (curr_ctl->rc_id == hndl) {
1458 *rctl = curr_ctl;
1459
1460 return (0);
1461 }
1462 }
1463
1464 return (-1);
1465 }
1466
1467 /*
1468 * rlim64_t rctl_enforced_value(rctl_hndl_t, rctl_set_t *, struct proc *)
1469 *
1470 * Overview
1471 * Given a process, get the next enforced value on the rctl of the specified
1472 * handle.
1473 *
1474 * Return value
1475 * The enforced value.
1476 *
1477 * Caller's context
1478 * For controls on process collectives, p->p_lock must be held across the
1479 * operation.
1480 */
1481 /*ARGSUSED*/
1482 rctl_qty_t
rctl_enforced_value(rctl_hndl_t hndl,rctl_set_t * rset,struct proc * p)1483 rctl_enforced_value(rctl_hndl_t hndl, rctl_set_t *rset, struct proc *p)
1484 {
1485 rctl_t *rctl;
1486 rlim64_t ret;
1487
1488 mutex_enter(&rset->rcs_lock);
1489
1490 if (rctl_set_find(rset, hndl, &rctl) == -1)
1491 panic("unknown resource control handle %d requested", hndl);
1492 else
1493 ret = rctl_model_value(rctl->rc_dict_entry, p,
1494 rctl->rc_cursor->rcv_value);
1495
1496 mutex_exit(&rset->rcs_lock);
1497
1498 return (ret);
1499 }
1500
1501 /*
1502 * int rctl_global_get(const char *, rctl_dict_entry_t *)
1503 *
1504 * Overview
1505 * Copy a sanitized version of the global rctl for a given resource control
1506 * name. (By sanitization, we mean that the unsafe data pointers have been
1507 * zeroed.)
1508 *
1509 * Return value
1510 * -1 if name not defined, 0 otherwise.
1511 *
1512 * Caller's context
1513 * No restrictions on context. rctl_dict_lock must not be held.
1514 */
1515 int
rctl_global_get(const char * name,rctl_dict_entry_t * drde)1516 rctl_global_get(const char *name, rctl_dict_entry_t *drde)
1517 {
1518 rctl_dict_entry_t *rde = rctl_dict_lookup(name);
1519
1520 if (rde == NULL)
1521 return (-1);
1522
1523 bcopy(rde, drde, sizeof (rctl_dict_entry_t));
1524
1525 drde->rcd_next = NULL;
1526 drde->rcd_ops = NULL;
1527
1528 return (0);
1529 }
1530
1531 /*
1532 * int rctl_global_set(const char *, rctl_dict_entry_t *)
1533 *
1534 * Overview
1535 * Transfer the settable fields of the named rctl to the global rctl matching
1536 * the given resource control name.
1537 *
1538 * Return value
1539 * -1 if name not defined, 0 otherwise.
1540 *
1541 * Caller's context
1542 * No restrictions on context. rctl_dict_lock must not be held.
1543 */
1544 int
rctl_global_set(const char * name,rctl_dict_entry_t * drde)1545 rctl_global_set(const char *name, rctl_dict_entry_t *drde)
1546 {
1547 rctl_dict_entry_t *rde = rctl_dict_lookup(name);
1548
1549 if (rde == NULL)
1550 return (-1);
1551
1552 rde->rcd_flagaction = drde->rcd_flagaction;
1553 rde->rcd_syslog_level = drde->rcd_syslog_level;
1554 rde->rcd_strlog_flags = drde->rcd_strlog_flags;
1555
1556 return (0);
1557 }
1558
1559 static int
rctl_local_op(rctl_hndl_t hndl,rctl_val_t * oval,rctl_val_t * nval,int (* cbop)(rctl_hndl_t,struct proc * p,rctl_entity_p_t * e,rctl_t *,rctl_val_t *,rctl_val_t *),struct proc * p)1560 rctl_local_op(rctl_hndl_t hndl, rctl_val_t *oval, rctl_val_t *nval,
1561 int (*cbop)(rctl_hndl_t, struct proc *p, rctl_entity_p_t *e, rctl_t *,
1562 rctl_val_t *, rctl_val_t *), struct proc *p)
1563 {
1564 rctl_t *rctl;
1565 rctl_set_t *rset;
1566 rctl_entity_p_t e;
1567 int ret = 0;
1568 rctl_dict_entry_t *rde = rctl_dict_lookup_hndl(hndl);
1569
1570 ASSERT(MUTEX_HELD(&p->p_lock));
1571
1572 rset = rctl_entity_obtain_rset(rde, p);
1573
1574 if (rset == NULL) {
1575 return (-1);
1576 }
1577 rctl_entity_obtain_entity_p(rset->rcs_entity, p, &e);
1578
1579 mutex_enter(&rset->rcs_lock);
1580
1581 /* using rctl's hndl, get rctl from local set */
1582 if (rctl_set_find(rset, hndl, &rctl) == -1) {
1583 mutex_exit(&rset->rcs_lock);
1584 return (-1);
1585 }
1586
1587 ret = cbop(hndl, p, &e, rctl, oval, nval);
1588
1589 mutex_exit(&rset->rcs_lock);
1590 return (ret);
1591 }
1592
1593 /*ARGSUSED*/
1594 static int
rctl_local_get_cb(rctl_hndl_t hndl,struct proc * p,rctl_entity_p_t * e,rctl_t * rctl,rctl_val_t * oval,rctl_val_t * nval)1595 rctl_local_get_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1596 rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
1597 {
1598 if (oval == NULL) {
1599 /*
1600 * RCTL_FIRST
1601 */
1602 bcopy(rctl->rc_values, nval, sizeof (rctl_val_t));
1603 } else {
1604 /*
1605 * RCTL_NEXT
1606 */
1607 rctl_val_t *tval = rctl_val_list_find(&rctl->rc_values, oval);
1608
1609 if (tval == NULL)
1610 return (ESRCH);
1611 else if (tval->rcv_next == NULL)
1612 return (ENOENT);
1613 else
1614 bcopy(tval->rcv_next, nval, sizeof (rctl_val_t));
1615 }
1616
1617 return (0);
1618 }
1619
1620 /*
1621 * int rctl_local_get(rctl_hndl_t, rctl_val_t *)
1622 *
1623 * Overview
1624 * Get the rctl value for the given flags.
1625 *
1626 * Return values
1627 * 0 for successful get, errno otherwise.
1628 */
1629 int
rctl_local_get(rctl_hndl_t hndl,rctl_val_t * oval,rctl_val_t * nval,struct proc * p)1630 rctl_local_get(rctl_hndl_t hndl, rctl_val_t *oval, rctl_val_t *nval,
1631 struct proc *p)
1632 {
1633 return (rctl_local_op(hndl, oval, nval, rctl_local_get_cb, p));
1634 }
1635
1636 /*ARGSUSED*/
1637 static int
rctl_local_delete_cb(rctl_hndl_t hndl,struct proc * p,rctl_entity_p_t * e,rctl_t * rctl,rctl_val_t * oval,rctl_val_t * nval)1638 rctl_local_delete_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1639 rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
1640 {
1641 if ((oval = rctl_val_list_find(&rctl->rc_values, nval)) == NULL)
1642 return (ESRCH);
1643
1644 if (rctl->rc_cursor == oval) {
1645 rctl->rc_cursor = oval->rcv_next;
1646 rctl_val_list_reset(rctl->rc_cursor);
1647 RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
1648 rctl->rc_cursor->rcv_value));
1649
1650 ASSERT(rctl->rc_cursor != NULL);
1651 }
1652
1653 (void) rctl_val_list_delete(&rctl->rc_values, oval);
1654
1655 return (0);
1656 }
1657
1658 /*
1659 * int rctl_local_delete(rctl_hndl_t, rctl_val_t *)
1660 *
1661 * Overview
1662 * Delete the rctl value for the given flags.
1663 *
1664 * Return values
1665 * 0 for successful delete, errno otherwise.
1666 */
1667 int
rctl_local_delete(rctl_hndl_t hndl,rctl_val_t * val,struct proc * p)1668 rctl_local_delete(rctl_hndl_t hndl, rctl_val_t *val, struct proc *p)
1669 {
1670 return (rctl_local_op(hndl, NULL, val, rctl_local_delete_cb, p));
1671 }
1672
1673 /*
1674 * rctl_local_insert_cb()
1675 *
1676 * Overview
1677 * Insert a new value into the rctl's val list. If an error occurs,
1678 * the val list must be left in the same state as when the function
1679 * was entered.
1680 *
1681 * Return Values
1682 * 0 for successful insert, EINVAL if the value is duplicated in the
1683 * existing list.
1684 */
1685 /*ARGSUSED*/
1686 static int
rctl_local_insert_cb(rctl_hndl_t hndl,struct proc * p,rctl_entity_p_t * e,rctl_t * rctl,rctl_val_t * oval,rctl_val_t * nval)1687 rctl_local_insert_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1688 rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
1689 {
1690 /*
1691 * Before inserting, confirm there are no duplicates of this value
1692 * and flag level. If there is a duplicate, flag an error and do
1693 * nothing.
1694 */
1695 if (rctl_val_list_insert(&rctl->rc_values, nval) != 0)
1696 return (EINVAL);
1697
1698 if (rctl_val_cmp(nval, rctl->rc_cursor, 0) < 0) {
1699 rctl->rc_cursor = nval;
1700 rctl_val_list_reset(rctl->rc_cursor);
1701 RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
1702 rctl->rc_cursor->rcv_value));
1703
1704 ASSERT(rctl->rc_cursor != NULL);
1705 }
1706
1707 return (0);
1708 }
1709
1710 /*
1711 * int rctl_local_insert(rctl_hndl_t, rctl_val_t *)
1712 *
1713 * Overview
1714 * Insert the rctl value into the appropriate rctl set for the calling
1715 * process, given the handle.
1716 */
1717 int
rctl_local_insert(rctl_hndl_t hndl,rctl_val_t * val,struct proc * p)1718 rctl_local_insert(rctl_hndl_t hndl, rctl_val_t *val, struct proc *p)
1719 {
1720 return (rctl_local_op(hndl, NULL, val, rctl_local_insert_cb, p));
1721 }
1722
1723 /*
1724 * rctl_local_insert_all_cb()
1725 *
1726 * Overview
1727 * Called for RCENTITY_PROJECT rctls only, via rctlsys_projset().
1728 *
1729 * Inserts new values from the project database (new_values). alloc_values
1730 * should be a linked list of pre-allocated rctl_val_t, which are used to
1731 * populate (rc_projdb).
1732 *
1733 * Should the *new_values linked list match the contents of the rctl's
1734 * rp_projdb then we do nothing.
1735 *
1736 * Return Values
1737 * 0 is always returned.
1738 */
1739 /*ARGSUSED*/
1740 static int
rctl_local_insert_all_cb(rctl_hndl_t hndl,struct proc * p,rctl_entity_p_t * e,rctl_t * rctl,rctl_val_t * new_values,rctl_val_t * alloc_values)1741 rctl_local_insert_all_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1742 rctl_t *rctl, rctl_val_t *new_values, rctl_val_t *alloc_values)
1743 {
1744 rctl_val_t *val;
1745 rctl_val_t *tmp_val;
1746 rctl_val_t *next;
1747 int modified = 0;
1748
1749 /*
1750 * If this the first time we've set this project rctl, then we delete
1751 * all the privilege values. These privilege values have been set by
1752 * rctl_add_default_limit().
1753 *
1754 * We save some cycles here by not calling rctl_val_list_delete().
1755 */
1756 if (rctl->rc_projdb == NULL) {
1757 val = rctl->rc_values;
1758
1759 while (val != NULL) {
1760 if (val->rcv_privilege == RCPRIV_PRIVILEGED) {
1761 if (val->rcv_prev != NULL)
1762 val->rcv_prev->rcv_next = val->rcv_next;
1763 else
1764 rctl->rc_values = val->rcv_next;
1765
1766 if (val->rcv_next != NULL)
1767 val->rcv_next->rcv_prev = val->rcv_prev;
1768
1769 tmp_val = val;
1770 val = val->rcv_next;
1771 kmem_cache_free(rctl_val_cache, tmp_val);
1772 } else {
1773 val = val->rcv_next;
1774 }
1775 }
1776 modified = 1;
1777 }
1778
1779 /*
1780 * Delete active values previously set through the project database.
1781 */
1782 val = rctl->rc_projdb;
1783
1784 while (val != NULL) {
1785
1786 /* Is the old value found in the new values? */
1787 if (rctl_val_list_find(&new_values, val) == NULL) {
1788
1789 /*
1790 * Delete from the active values if it originated from
1791 * the project database.
1792 */
1793 if (((tmp_val = rctl_val_list_find(&rctl->rc_values,
1794 val)) != NULL) &&
1795 (tmp_val->rcv_flagaction & RCTL_LOCAL_PROJDB)) {
1796 (void) rctl_val_list_delete(&rctl->rc_values,
1797 tmp_val);
1798 }
1799
1800 tmp_val = val->rcv_next;
1801 (void) rctl_val_list_delete(&rctl->rc_projdb, val);
1802 val = tmp_val;
1803 modified = 1;
1804
1805 } else
1806 val = val->rcv_next;
1807 }
1808
1809 /*
1810 * Insert new values from the project database.
1811 */
1812 while (new_values != NULL) {
1813 next = new_values->rcv_next;
1814
1815 /*
1816 * Insert this new value into the rc_projdb, and duplicate this
1817 * entry to the active list.
1818 */
1819 if (rctl_val_list_insert(&rctl->rc_projdb, new_values) == 0) {
1820
1821 tmp_val = alloc_values->rcv_next;
1822 bcopy(new_values, alloc_values, sizeof (rctl_val_t));
1823 alloc_values->rcv_next = tmp_val;
1824
1825 if (rctl_val_list_insert(&rctl->rc_values,
1826 alloc_values) == 0) {
1827 /* inserted move alloc_values on */
1828 alloc_values = tmp_val;
1829 modified = 1;
1830 }
1831 } else {
1832 /*
1833 * Unlike setrctl() we don't want to return an error on
1834 * a duplicate entry; we are concerned solely with
1835 * ensuring that all the values specified are set.
1836 */
1837 kmem_cache_free(rctl_val_cache, new_values);
1838 }
1839 new_values = next;
1840 }
1841
1842 /* Teardown any unused rctl_val_t */
1843 while (alloc_values != NULL) {
1844 tmp_val = alloc_values;
1845 alloc_values = alloc_values->rcv_next;
1846 kmem_cache_free(rctl_val_cache, tmp_val);
1847 }
1848
1849 /* Reset the cursor if rctl values have been modified */
1850 if (modified) {
1851 rctl->rc_cursor = rctl->rc_values;
1852 rctl_val_list_reset(rctl->rc_cursor);
1853 RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
1854 rctl->rc_cursor->rcv_value));
1855 }
1856
1857 return (0);
1858 }
1859
1860 int
rctl_local_insert_all(rctl_hndl_t hndl,rctl_val_t * new_values,rctl_val_t * alloc_values,struct proc * p)1861 rctl_local_insert_all(rctl_hndl_t hndl, rctl_val_t *new_values,
1862 rctl_val_t *alloc_values, struct proc *p)
1863 {
1864 return (rctl_local_op(hndl, new_values, alloc_values,
1865 rctl_local_insert_all_cb, p));
1866 }
1867
1868 /*
1869 * rctl_local_replace_all_cb()
1870 *
1871 * Overview
1872 * Called for RCENTITY_PROJECT rctls only, via rctlsys_projset().
1873 *
1874 * Clears the active rctl values (rc_values), and stored values from the
1875 * previous insertions from the project database (rc_projdb).
1876 *
1877 * Inserts new values from the project database (new_values). alloc_values
1878 * should be a linked list of pre-allocated rctl_val_t, which are used to
1879 * populate (rc_projdb).
1880 *
1881 * Return Values
1882 * 0 is always returned.
1883 */
1884 /*ARGSUSED*/
1885 static int
rctl_local_replace_all_cb(rctl_hndl_t hndl,struct proc * p,rctl_entity_p_t * e,rctl_t * rctl,rctl_val_t * new_values,rctl_val_t * alloc_values)1886 rctl_local_replace_all_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1887 rctl_t *rctl, rctl_val_t *new_values, rctl_val_t *alloc_values)
1888 {
1889 rctl_val_t *val;
1890 rctl_val_t *next;
1891 rctl_val_t *tmp_val;
1892
1893 /* Delete all the privilege vaules */
1894 val = rctl->rc_values;
1895
1896 while (val != NULL) {
1897 if (val->rcv_privilege == RCPRIV_PRIVILEGED) {
1898 if (val->rcv_prev != NULL)
1899 val->rcv_prev->rcv_next = val->rcv_next;
1900 else
1901 rctl->rc_values = val->rcv_next;
1902
1903 if (val->rcv_next != NULL)
1904 val->rcv_next->rcv_prev = val->rcv_prev;
1905
1906 tmp_val = val;
1907 val = val->rcv_next;
1908 kmem_cache_free(rctl_val_cache, tmp_val);
1909 } else {
1910 val = val->rcv_next;
1911 }
1912 }
1913
1914 /* Delete the contents of rc_projdb */
1915 val = rctl->rc_projdb;
1916 while (val != NULL) {
1917
1918 tmp_val = val;
1919 val = val->rcv_next;
1920 kmem_cache_free(rctl_val_cache, tmp_val);
1921 }
1922 rctl->rc_projdb = NULL;
1923
1924 /*
1925 * Insert new values from the project database.
1926 */
1927 while (new_values != NULL) {
1928 next = new_values->rcv_next;
1929
1930 if (rctl_val_list_insert(&rctl->rc_projdb, new_values) == 0) {
1931 tmp_val = alloc_values->rcv_next;
1932 bcopy(new_values, alloc_values, sizeof (rctl_val_t));
1933 alloc_values->rcv_next = tmp_val;
1934
1935 if (rctl_val_list_insert(&rctl->rc_values,
1936 alloc_values) == 0) {
1937 /* inserted, so move alloc_values on */
1938 alloc_values = tmp_val;
1939 }
1940 } else {
1941 /*
1942 * Unlike setrctl() we don't want to return an error on
1943 * a duplicate entry; we are concerned solely with
1944 * ensuring that all the values specified are set.
1945 */
1946 kmem_cache_free(rctl_val_cache, new_values);
1947 }
1948
1949 new_values = next;
1950 }
1951
1952 /* Teardown any unused rctl_val_t */
1953 while (alloc_values != NULL) {
1954 tmp_val = alloc_values;
1955 alloc_values = alloc_values->rcv_next;
1956 kmem_cache_free(rctl_val_cache, tmp_val);
1957 }
1958
1959 /* Always reset the cursor */
1960 rctl->rc_cursor = rctl->rc_values;
1961 rctl_val_list_reset(rctl->rc_cursor);
1962 RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
1963 rctl->rc_cursor->rcv_value));
1964
1965 return (0);
1966 }
1967
1968 int
rctl_local_replace_all(rctl_hndl_t hndl,rctl_val_t * new_values,rctl_val_t * alloc_values,struct proc * p)1969 rctl_local_replace_all(rctl_hndl_t hndl, rctl_val_t *new_values,
1970 rctl_val_t *alloc_values, struct proc *p)
1971 {
1972 return (rctl_local_op(hndl, new_values, alloc_values,
1973 rctl_local_replace_all_cb, p));
1974 }
1975
1976 static int
rctl_local_replace_cb(rctl_hndl_t hndl,struct proc * p,rctl_entity_p_t * e,rctl_t * rctl,rctl_val_t * oval,rctl_val_t * nval)1977 rctl_local_replace_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1978 rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
1979 {
1980 int ret;
1981 rctl_val_t *tmp;
1982
1983 /* Verify that old will be delete-able */
1984 tmp = rctl_val_list_find(&rctl->rc_values, oval);
1985 if (tmp == NULL)
1986 return (ESRCH);
1987 /*
1988 * Caller should verify that value being deleted is not the
1989 * system value.
1990 */
1991 ASSERT(tmp->rcv_privilege != RCPRIV_SYSTEM);
1992
1993 /*
1994 * rctl_local_insert_cb() does the job of flagging an error
1995 * for any duplicate values. So, call rctl_local_insert_cb()
1996 * for the new value first, then do deletion of the old value.
1997 * Since this is a callback function to rctl_local_op, we can
1998 * count on rcs_lock being held at this point. This guarantees
1999 * that there is at no point a visible list which contains both
2000 * new and old values.
2001 */
2002 if (ret = rctl_local_insert_cb(hndl, p, e, rctl, NULL, nval))
2003 return (ret);
2004
2005 ret = rctl_local_delete_cb(hndl, p, e, rctl, NULL, oval);
2006 ASSERT(ret == 0);
2007 return (0);
2008 }
2009
2010 /*
2011 * int rctl_local_replace(rctl_hndl_t, void *, int, uint64_t *)
2012 *
2013 * Overview
2014 * Replace the rctl value with a new one.
2015 *
2016 * Return values
2017 * 0 for successful replace, errno otherwise.
2018 */
2019 int
rctl_local_replace(rctl_hndl_t hndl,rctl_val_t * oval,rctl_val_t * nval,struct proc * p)2020 rctl_local_replace(rctl_hndl_t hndl, rctl_val_t *oval, rctl_val_t *nval,
2021 struct proc *p)
2022 {
2023 return (rctl_local_op(hndl, oval, nval, rctl_local_replace_cb, p));
2024 }
2025
2026 /*
2027 * int rctl_rlimit_get(rctl_hndl_t, struct proc *, struct rlimit64 *)
2028 *
2029 * Overview
2030 * To support rlimit compatibility, we need a function which takes a 64-bit
2031 * rlimit and encodes it as appropriate rcontrol values on the given rcontrol.
2032 * This operation is only intended for legacy rlimits.
2033 */
2034 int
rctl_rlimit_get(rctl_hndl_t rc,struct proc * p,struct rlimit64 * rlp64)2035 rctl_rlimit_get(rctl_hndl_t rc, struct proc *p, struct rlimit64 *rlp64)
2036 {
2037 rctl_t *rctl;
2038 rctl_val_t *rval;
2039 rctl_set_t *rset = p->p_rctls;
2040 int soft_limit_seen = 0;
2041 int test_for_deny = 1;
2042
2043 mutex_enter(&rset->rcs_lock);
2044 if (rctl_set_find(rset, rc, &rctl) == -1) {
2045 mutex_exit(&rset->rcs_lock);
2046 return (-1);
2047 }
2048
2049 rval = rctl->rc_values;
2050
2051 if (rctl->rc_dict_entry->rcd_flagaction & (RCTL_GLOBAL_DENY_NEVER |
2052 RCTL_GLOBAL_DENY_ALWAYS))
2053 test_for_deny = 0;
2054
2055 /*
2056 * 1. Find the first control value with the RCTL_LOCAL_DENY bit set.
2057 */
2058 while (rval != NULL && rval->rcv_privilege != RCPRIV_SYSTEM) {
2059 if (test_for_deny &&
2060 (rval->rcv_flagaction & RCTL_LOCAL_DENY) == 0) {
2061 rval = rval->rcv_next;
2062 continue;
2063 }
2064
2065 /*
2066 * 2. If this is an RCPRIV_BASIC value, then we've found the
2067 * effective soft limit and should set rlim_cur. We should then
2068 * continue looking for another control value with the DENY bit
2069 * set.
2070 */
2071 if (rval->rcv_privilege == RCPRIV_BASIC) {
2072 if (soft_limit_seen) {
2073 rval = rval->rcv_next;
2074 continue;
2075 }
2076
2077 if ((rval->rcv_flagaction & RCTL_LOCAL_MAXIMAL) == 0 &&
2078 rval->rcv_value < rctl_model_maximum(
2079 rctl->rc_dict_entry, p))
2080 rlp64->rlim_cur = rval->rcv_value;
2081 else
2082 rlp64->rlim_cur = RLIM64_INFINITY;
2083 soft_limit_seen = 1;
2084
2085 rval = rval->rcv_next;
2086 continue;
2087 }
2088
2089 /*
2090 * 3. This is an RCPRIV_PRIVILEGED value. If we haven't found
2091 * a soft limit candidate, then we've found the effective hard
2092 * and soft limits and should set both If we had found a soft
2093 * limit, then this is only the hard limit and we need only set
2094 * rlim_max.
2095 */
2096 if ((rval->rcv_flagaction & RCTL_LOCAL_MAXIMAL) == 0 &&
2097 rval->rcv_value < rctl_model_maximum(rctl->rc_dict_entry,
2098 p))
2099 rlp64->rlim_max = rval->rcv_value;
2100 else
2101 rlp64->rlim_max = RLIM64_INFINITY;
2102 if (!soft_limit_seen)
2103 rlp64->rlim_cur = rlp64->rlim_max;
2104
2105 mutex_exit(&rset->rcs_lock);
2106 return (0);
2107 }
2108
2109 if (rval == NULL) {
2110 /*
2111 * This control sequence is corrupt, as it is not terminated by
2112 * a system privileged control value.
2113 */
2114 mutex_exit(&rset->rcs_lock);
2115 return (-1);
2116 }
2117
2118 /*
2119 * 4. If we run into a RCPRIV_SYSTEM value, then the hard limit (and
2120 * the soft, if we haven't a soft candidate) should be the value of the
2121 * system control value.
2122 */
2123 if ((rval->rcv_flagaction & RCTL_LOCAL_MAXIMAL) == 0 &&
2124 rval->rcv_value < rctl_model_maximum(rctl->rc_dict_entry, p))
2125 rlp64->rlim_max = rval->rcv_value;
2126 else
2127 rlp64->rlim_max = RLIM64_INFINITY;
2128
2129 if (!soft_limit_seen)
2130 rlp64->rlim_cur = rlp64->rlim_max;
2131
2132 mutex_exit(&rset->rcs_lock);
2133 return (0);
2134 }
2135
2136 /*
2137 * rctl_alloc_gp_t *rctl_rlimit_set_prealloc(uint_t)
2138 *
2139 * Overview
2140 * Before making a series of calls to rctl_rlimit_set(), we must have a
2141 * preallocated batch of resource control values, as rctl_rlimit_set() can
2142 * potentially consume two resource control values per call.
2143 *
2144 * Return values
2145 * A populated resource control allocation group with 2n resource control
2146 * values.
2147 *
2148 * Caller's context
2149 * Must be safe for KM_SLEEP allocations.
2150 */
2151 rctl_alloc_gp_t *
rctl_rlimit_set_prealloc(uint_t n)2152 rctl_rlimit_set_prealloc(uint_t n)
2153 {
2154 rctl_alloc_gp_t *gp = kmem_zalloc(sizeof (rctl_alloc_gp_t), KM_SLEEP);
2155
2156 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
2157
2158 gp->rcag_nvals = 2 * n;
2159
2160 rctl_gp_alloc(gp);
2161
2162 return (gp);
2163 }
2164
2165 /*
2166 * int rctl_rlimit_set(rctl_hndl_t, struct proc *, struct rlimit64 *, int,
2167 * int)
2168 *
2169 * Overview
2170 * To support rlimit compatibility, we need a function which takes a 64-bit
2171 * rlimit and encodes it as appropriate rcontrol values on the given rcontrol.
2172 * This operation is only intended for legacy rlimits.
2173 *
2174 * The implementation of rctl_rlimit_set() is a bit clever, as it tries to
2175 * minimize the number of values placed on the value sequence in various
2176 * cases. Furthermore, we don't allow multiple identical privilege-action
2177 * values on the same sequence. (That is, we don't want a sequence like
2178 * "while (1) { rlim.rlim_cur++; setrlimit(..., rlim); }" to exhaust kernel
2179 * memory.) So we want to delete any values with the same privilege value and
2180 * action.
2181 *
2182 * Return values
2183 * 0 for successful set, errno otherwise. Errno will be either EINVAL
2184 * or EPERM, in keeping with defined errnos for ulimit() and setrlimit()
2185 * system calls.
2186 */
2187 /*ARGSUSED*/
2188 int
rctl_rlimit_set(rctl_hndl_t rc,struct proc * p,struct rlimit64 * rlp64,rctl_alloc_gp_t * ragp,int flagaction,int signal,const cred_t * cr)2189 rctl_rlimit_set(rctl_hndl_t rc, struct proc *p, struct rlimit64 *rlp64,
2190 rctl_alloc_gp_t *ragp, int flagaction, int signal, const cred_t *cr)
2191 {
2192 rctl_t *rctl;
2193 rctl_val_t *rval, *rval_priv, *rval_basic;
2194 rctl_set_t *rset = p->p_rctls;
2195 rctl_qty_t max;
2196 rctl_entity_p_t e;
2197 struct rlimit64 cur_rl;
2198
2199 e.rcep_t = RCENTITY_PROCESS;
2200 e.rcep_p.proc = p;
2201
2202 if (rlp64->rlim_cur > rlp64->rlim_max)
2203 return (EINVAL);
2204
2205 if (rctl_rlimit_get(rc, p, &cur_rl) == -1)
2206 return (EINVAL);
2207
2208 /*
2209 * If we are not privileged, we can only lower the hard limit.
2210 */
2211 if ((rlp64->rlim_max > cur_rl.rlim_max) &&
2212 cur_rl.rlim_max != RLIM64_INFINITY &&
2213 secpolicy_resource(cr) != 0)
2214 return (EPERM);
2215
2216 mutex_enter(&rset->rcs_lock);
2217
2218 if (rctl_set_find(rset, rc, &rctl) == -1) {
2219 mutex_exit(&rset->rcs_lock);
2220 return (EINVAL);
2221 }
2222
2223 rval_priv = rctl_gp_detach_val(ragp);
2224
2225 rval = rctl->rc_values;
2226
2227 while (rval != NULL) {
2228 rctl_val_t *next = rval->rcv_next;
2229
2230 if (rval->rcv_privilege == RCPRIV_SYSTEM)
2231 break;
2232
2233 if ((rval->rcv_privilege == RCPRIV_BASIC) ||
2234 (rval->rcv_flagaction & ~RCTL_LOCAL_ACTION_MASK) ==
2235 (flagaction & ~RCTL_LOCAL_ACTION_MASK)) {
2236 if (rctl->rc_cursor == rval) {
2237 rctl->rc_cursor = rval->rcv_next;
2238 rctl_val_list_reset(rctl->rc_cursor);
2239 RCTLOP_SET(rctl, p, &e, rctl_model_value(
2240 rctl->rc_dict_entry, p,
2241 rctl->rc_cursor->rcv_value));
2242 }
2243 (void) rctl_val_list_delete(&rctl->rc_values, rval);
2244 }
2245
2246 rval = next;
2247 }
2248
2249 rval_priv->rcv_privilege = RCPRIV_PRIVILEGED;
2250 rval_priv->rcv_flagaction = flagaction;
2251 if (rlp64->rlim_max == RLIM64_INFINITY) {
2252 rval_priv->rcv_flagaction |= RCTL_LOCAL_MAXIMAL;
2253 max = rctl->rc_dict_entry->rcd_max_native;
2254 } else {
2255 max = rlp64->rlim_max;
2256 }
2257 rval_priv->rcv_value = max;
2258 rval_priv->rcv_action_signal = signal;
2259 rval_priv->rcv_action_recipient = NULL;
2260 rval_priv->rcv_action_recip_pid = -1;
2261 rval_priv->rcv_firing_time = 0;
2262 rval_priv->rcv_prev = rval_priv->rcv_next = NULL;
2263
2264 (void) rctl_val_list_insert(&rctl->rc_values, rval_priv);
2265 rctl->rc_cursor = rval_priv;
2266 rctl_val_list_reset(rctl->rc_cursor);
2267 RCTLOP_SET(rctl, p, &e, rctl_model_value(rctl->rc_dict_entry, p,
2268 rctl->rc_cursor->rcv_value));
2269
2270 if (rlp64->rlim_cur != RLIM64_INFINITY && rlp64->rlim_cur < max) {
2271 rval_basic = rctl_gp_detach_val(ragp);
2272
2273 rval_basic->rcv_privilege = RCPRIV_BASIC;
2274 rval_basic->rcv_value = rlp64->rlim_cur;
2275 rval_basic->rcv_flagaction = flagaction;
2276 rval_basic->rcv_action_signal = signal;
2277 rval_basic->rcv_action_recipient = p;
2278 rval_basic->rcv_action_recip_pid = p->p_pid;
2279 rval_basic->rcv_firing_time = 0;
2280 rval_basic->rcv_prev = rval_basic->rcv_next = NULL;
2281
2282 (void) rctl_val_list_insert(&rctl->rc_values, rval_basic);
2283 rctl->rc_cursor = rval_basic;
2284 rctl_val_list_reset(rctl->rc_cursor);
2285 RCTLOP_SET(rctl, p, &e, rctl_model_value(rctl->rc_dict_entry, p,
2286 rctl->rc_cursor->rcv_value));
2287 }
2288
2289 ASSERT(rctl->rc_cursor != NULL);
2290
2291 mutex_exit(&rset->rcs_lock);
2292 return (0);
2293 }
2294
2295
2296 /*
2297 * rctl_hndl_t rctl_register(const char *, rctl_entity_t, int, rlim64_t,
2298 * rlim64_t, rctl_ops_t *)
2299 *
2300 * Overview
2301 * rctl_register() performs a look-up in the dictionary of rctls
2302 * active on the system; if a rctl of that name is absent, an entry is
2303 * made into the dictionary. The rctl is returned with its reference
2304 * count incremented by one. If the rctl name already exists, we panic.
2305 * (Were the resource control system to support dynamic loading and unloading,
2306 * which it is structured for, duplicate registration should lead to load
2307 * failure instead of panicking.)
2308 *
2309 * Each registered rctl has a requirement that a RCPRIV_SYSTEM limit be
2310 * defined. This limit contains the highest possible value for this quantity
2311 * on the system. Furthermore, the registered control must provide infinite
2312 * values for all applicable address space models supported by the operating
2313 * system. Attempts to set resource control values beyond the system limit
2314 * will fail.
2315 *
2316 * Return values
2317 * The rctl's ID.
2318 *
2319 * Caller's context
2320 * Caller must be in a context suitable for KM_SLEEP allocations.
2321 */
2322 rctl_hndl_t
rctl_register(const char * name,rctl_entity_t entity,int global_flags,rlim64_t max_native,rlim64_t max_ilp32,rctl_ops_t * ops)2323 rctl_register(
2324 const char *name,
2325 rctl_entity_t entity,
2326 int global_flags,
2327 rlim64_t max_native,
2328 rlim64_t max_ilp32,
2329 rctl_ops_t *ops)
2330 {
2331 rctl_t *rctl = kmem_cache_alloc(rctl_cache, KM_SLEEP);
2332 rctl_val_t *rctl_val = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2333 rctl_dict_entry_t *rctl_de = kmem_zalloc(sizeof (rctl_dict_entry_t),
2334 KM_SLEEP);
2335 rctl_t *old_rctl;
2336 rctl_hndl_t rhndl;
2337 int localflags;
2338
2339 ASSERT(ops != NULL);
2340
2341 bzero(rctl, sizeof (rctl_t));
2342 bzero(rctl_val, sizeof (rctl_val_t));
2343
2344 if (global_flags & RCTL_GLOBAL_DENY_NEVER)
2345 localflags = RCTL_LOCAL_MAXIMAL;
2346 else
2347 localflags = RCTL_LOCAL_MAXIMAL | RCTL_LOCAL_DENY;
2348
2349 rctl_val->rcv_privilege = RCPRIV_SYSTEM;
2350 rctl_val->rcv_value = max_native;
2351 rctl_val->rcv_flagaction = localflags;
2352 rctl_val->rcv_action_signal = 0;
2353 rctl_val->rcv_action_recipient = NULL;
2354 rctl_val->rcv_action_recip_pid = -1;
2355 rctl_val->rcv_firing_time = 0;
2356 rctl_val->rcv_next = NULL;
2357 rctl_val->rcv_prev = NULL;
2358
2359 rctl_de->rcd_name = (char *)name;
2360 rctl_de->rcd_default_value = rctl_val;
2361 rctl_de->rcd_max_native = max_native;
2362 rctl_de->rcd_max_ilp32 = max_ilp32;
2363 rctl_de->rcd_entity = entity;
2364 rctl_de->rcd_ops = ops;
2365 rctl_de->rcd_flagaction = global_flags;
2366
2367 rctl->rc_dict_entry = rctl_de;
2368 rctl->rc_values = rctl_val;
2369
2370 /*
2371 * 1. Take global lock, validate nonexistence of name, get ID.
2372 */
2373 mutex_enter(&rctl_dict_lock);
2374
2375 if (mod_hash_find(rctl_dict_by_name, (mod_hash_key_t)name,
2376 (mod_hash_val_t *)&rhndl) != MH_ERR_NOTFOUND)
2377 panic("duplicate registration of rctl %s", name);
2378
2379 rhndl = rctl_de->rcd_id = rctl->rc_id =
2380 (rctl_hndl_t)id_alloc(rctl_ids);
2381
2382 /*
2383 * 2. Insert name-entry pair in rctl_dict_by_name.
2384 */
2385 if (mod_hash_insert(rctl_dict_by_name, (mod_hash_key_t)name,
2386 (mod_hash_val_t)rctl_de))
2387 panic("unable to insert rctl dict entry for %s (%u)", name,
2388 (uint_t)rctl->rc_id);
2389
2390 /*
2391 * 3. Insert ID-rctl_t * pair in rctl_dict.
2392 */
2393 if (mod_hash_find(rctl_dict, (mod_hash_key_t)(uintptr_t)rctl->rc_id,
2394 (mod_hash_val_t *)&old_rctl) != MH_ERR_NOTFOUND)
2395 panic("duplicate rctl ID %u registered", rctl->rc_id);
2396
2397 if (mod_hash_insert(rctl_dict, (mod_hash_key_t)(uintptr_t)rctl->rc_id,
2398 (mod_hash_val_t)rctl))
2399 panic("unable to insert rctl %s/%u (%p)", name,
2400 (uint_t)rctl->rc_id, (void *)rctl);
2401
2402 /*
2403 * 3a. Insert rctl_dict_entry_t * in appropriate entity list.
2404 */
2405
2406 mutex_enter(&rctl_lists_lock);
2407
2408 switch (entity) {
2409 case RCENTITY_ZONE:
2410 case RCENTITY_PROJECT:
2411 case RCENTITY_TASK:
2412 case RCENTITY_PROCESS:
2413 rctl_de->rcd_next = rctl_lists[entity];
2414 rctl_lists[entity] = rctl_de;
2415 break;
2416 default:
2417 panic("registering unknown rctl entity %d (%s)", entity,
2418 name);
2419 break;
2420 }
2421
2422 mutex_exit(&rctl_lists_lock);
2423
2424 /*
2425 * 4. Drop lock.
2426 */
2427 mutex_exit(&rctl_dict_lock);
2428
2429 return (rhndl);
2430 }
2431
2432 /*
2433 * static int rctl_global_action(rctl_t *r, rctl_set_t *rset, struct proc *p,
2434 * rctl_val_t *v)
2435 *
2436 * Overview
2437 * rctl_global_action() takes, in according with the flags on the rctl_dict
2438 * entry for the given control, the appropriate actions on the exceeded
2439 * control value. Additionally, rctl_global_action() updates the firing time
2440 * on the exceeded value.
2441 *
2442 * Return values
2443 * A bitmask reflecting the actions actually taken.
2444 *
2445 * Caller's context
2446 * No restrictions on context.
2447 */
2448 /*ARGSUSED*/
2449 static int
rctl_global_action(rctl_t * r,rctl_set_t * rset,struct proc * p,rctl_val_t * v)2450 rctl_global_action(rctl_t *r, rctl_set_t *rset, struct proc *p, rctl_val_t *v)
2451 {
2452 rctl_dict_entry_t *rde = r->rc_dict_entry;
2453 const char *pr, *en, *idstr;
2454 id_t id;
2455 enum {
2456 SUFFIX_NONE, /* id consumed directly */
2457 SUFFIX_NUMERIC, /* id consumed in suffix */
2458 SUFFIX_STRING /* idstr consumed in suffix */
2459 } suffix = SUFFIX_NONE;
2460 int ret = 0;
2461
2462 v->rcv_firing_time = gethrtime();
2463
2464 switch (v->rcv_privilege) {
2465 case RCPRIV_BASIC:
2466 pr = "basic";
2467 break;
2468 case RCPRIV_PRIVILEGED:
2469 pr = "privileged";
2470 break;
2471 case RCPRIV_SYSTEM:
2472 pr = "system";
2473 break;
2474 default:
2475 pr = "unknown";
2476 break;
2477 }
2478
2479 switch (rde->rcd_entity) {
2480 case RCENTITY_PROCESS:
2481 en = "process";
2482 id = p->p_pid;
2483 suffix = SUFFIX_NONE;
2484 break;
2485 case RCENTITY_TASK:
2486 en = "task";
2487 id = p->p_task->tk_tkid;
2488 suffix = SUFFIX_NUMERIC;
2489 break;
2490 case RCENTITY_PROJECT:
2491 en = "project";
2492 id = p->p_task->tk_proj->kpj_id;
2493 suffix = SUFFIX_NUMERIC;
2494 break;
2495 case RCENTITY_ZONE:
2496 en = "zone";
2497 idstr = p->p_zone->zone_name;
2498 suffix = SUFFIX_STRING;
2499 break;
2500 default:
2501 en = "unknown entity associated with process";
2502 id = p->p_pid;
2503 suffix = SUFFIX_NONE;
2504 break;
2505 }
2506
2507 if (rde->rcd_flagaction & RCTL_GLOBAL_SYSLOG) {
2508 switch (suffix) {
2509 default:
2510 case SUFFIX_NONE:
2511 (void) strlog(0, 0, 0,
2512 rde->rcd_strlog_flags | log_global.lz_active,
2513 "%s rctl %s (value %llu) exceeded by %s %d.",
2514 pr, rde->rcd_name, v->rcv_value, en, id);
2515 break;
2516 case SUFFIX_NUMERIC:
2517 (void) strlog(0, 0, 0,
2518 rde->rcd_strlog_flags | log_global.lz_active,
2519 "%s rctl %s (value %llu) exceeded by process %d"
2520 " in %s %d.",
2521 pr, rde->rcd_name, v->rcv_value, p->p_pid,
2522 en, id);
2523 break;
2524 case SUFFIX_STRING:
2525 (void) strlog(0, 0, 0,
2526 rde->rcd_strlog_flags | log_global.lz_active,
2527 "%s rctl %s (value %llu) exceeded by process %d"
2528 " in %s %s.",
2529 pr, rde->rcd_name, v->rcv_value, p->p_pid,
2530 en, idstr);
2531 break;
2532 }
2533 }
2534
2535 if (rde->rcd_flagaction & RCTL_GLOBAL_DENY_ALWAYS)
2536 ret |= RCT_DENY;
2537
2538 return (ret);
2539 }
2540
2541 static int
rctl_local_action(rctl_t * r,rctl_set_t * rset,struct proc * p,rctl_val_t * v,uint_t safety)2542 rctl_local_action(rctl_t *r, rctl_set_t *rset, struct proc *p, rctl_val_t *v,
2543 uint_t safety)
2544 {
2545 int ret = 0;
2546 sigqueue_t *sqp = NULL;
2547 rctl_dict_entry_t *rde = r->rc_dict_entry;
2548 int unobservable = (rde->rcd_flagaction & RCTL_GLOBAL_UNOBSERVABLE);
2549
2550 proc_t *recipient = v->rcv_action_recipient;
2551 id_t recip_pid = v->rcv_action_recip_pid;
2552 int recip_signal = v->rcv_action_signal;
2553 uint_t flagaction = v->rcv_flagaction;
2554
2555 if (safety == RCA_UNSAFE_ALL) {
2556 if (flagaction & RCTL_LOCAL_DENY) {
2557 ret |= RCT_DENY;
2558 }
2559 return (ret);
2560 }
2561
2562 if (flagaction & RCTL_LOCAL_SIGNAL) {
2563 /*
2564 * We can build a siginfo only in the case that it is
2565 * safe for us to drop p_lock. (For asynchronous
2566 * checks this is currently not true.)
2567 */
2568 if (safety == RCA_SAFE) {
2569 mutex_exit(&rset->rcs_lock);
2570 mutex_exit(&p->p_lock);
2571 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2572 mutex_enter(&p->p_lock);
2573 mutex_enter(&rset->rcs_lock);
2574
2575 sqp->sq_info.si_signo = recip_signal;
2576 sqp->sq_info.si_code = SI_RCTL;
2577 sqp->sq_info.si_errno = 0;
2578 sqp->sq_info.si_entity = (int)rde->rcd_entity;
2579 }
2580
2581 if (recipient == NULL || recipient == p) {
2582 ret |= RCT_SIGNAL;
2583
2584 if (sqp == NULL) {
2585 sigtoproc(p, NULL, recip_signal);
2586 } else if (p == curproc) {
2587 /*
2588 * Then this is a synchronous test and we can
2589 * direct the signal at the violating thread.
2590 */
2591 sigaddqa(curproc, curthread, sqp);
2592 } else {
2593 sigaddqa(p, NULL, sqp);
2594 }
2595 } else if (!unobservable) {
2596 proc_t *rp;
2597
2598 mutex_exit(&rset->rcs_lock);
2599 mutex_exit(&p->p_lock);
2600
2601 mutex_enter(&pidlock);
2602 if ((rp = prfind(recip_pid)) == recipient) {
2603 /*
2604 * Recipient process is still alive, but may not
2605 * be in this task or project any longer. In
2606 * this case, the recipient's resource control
2607 * set pertinent to this control will have
2608 * changed--and we will not deliver the signal,
2609 * as the recipient process is trying to tear
2610 * itself off of its former set.
2611 */
2612 mutex_enter(&rp->p_lock);
2613 mutex_exit(&pidlock);
2614
2615 if (rctl_entity_obtain_rset(rde, rp) == rset) {
2616 ret |= RCT_SIGNAL;
2617
2618 if (sqp == NULL)
2619 sigtoproc(rp, NULL,
2620 recip_signal);
2621 else
2622 sigaddqa(rp, NULL, sqp);
2623 } else if (sqp) {
2624 kmem_free(sqp, sizeof (sigqueue_t));
2625 }
2626 mutex_exit(&rp->p_lock);
2627 } else {
2628 mutex_exit(&pidlock);
2629 if (sqp)
2630 kmem_free(sqp, sizeof (sigqueue_t));
2631 }
2632
2633 mutex_enter(&p->p_lock);
2634 /*
2635 * Since we dropped p_lock, we may no longer be in the
2636 * same task or project as we were at entry. It is thus
2637 * unsafe for us to reacquire the set lock at this
2638 * point; callers of rctl_local_action() must handle
2639 * this possibility.
2640 */
2641 ret |= RCT_LK_ABANDONED;
2642 } else if (sqp) {
2643 kmem_free(sqp, sizeof (sigqueue_t));
2644 }
2645 }
2646
2647 if ((flagaction & RCTL_LOCAL_DENY) &&
2648 (recipient == NULL || recipient == p)) {
2649 ret |= RCT_DENY;
2650 }
2651
2652 return (ret);
2653 }
2654
2655 /*
2656 * int rctl_action(rctl_hndl_t, rctl_set_t *, struct proc *, uint_t)
2657 *
2658 * Overview
2659 * Take the action associated with the enforced value (as defined by
2660 * rctl_get_enforced_value()) being exceeded or encountered. Possibly perform
2661 * a restricted subset of the available actions, if circumstances dictate that
2662 * we cannot safely allocate memory (for a sigqueue_t) or guarantee process
2663 * persistence across the duration of the function (an asynchronous action).
2664 *
2665 * Return values
2666 * Actions taken, according to the rctl_test bitmask.
2667 *
2668 * Caller's context
2669 * Safe to acquire rcs_lock.
2670 */
2671 int
rctl_action(rctl_hndl_t hndl,rctl_set_t * rset,struct proc * p,uint_t safety)2672 rctl_action(rctl_hndl_t hndl, rctl_set_t *rset, struct proc *p, uint_t safety)
2673 {
2674 return (rctl_action_entity(hndl, rset, p, NULL, safety));
2675 }
2676
2677 int
rctl_action_entity(rctl_hndl_t hndl,rctl_set_t * rset,struct proc * p,rctl_entity_p_t * e,uint_t safety)2678 rctl_action_entity(rctl_hndl_t hndl, rctl_set_t *rset, struct proc *p,
2679 rctl_entity_p_t *e, uint_t safety)
2680 {
2681 int ret = RCT_NONE;
2682 rctl_t *lrctl;
2683 rctl_entity_p_t e_tmp;
2684
2685 rctl_action_acquire:
2686 mutex_enter(&rset->rcs_lock);
2687 if (rctl_set_find(rset, hndl, &lrctl) == -1) {
2688 mutex_exit(&rset->rcs_lock);
2689 return (ret);
2690 }
2691
2692 if (e == NULL) {
2693 rctl_entity_obtain_entity_p(lrctl->rc_dict_entry->rcd_entity,
2694 p, &e_tmp);
2695 e = &e_tmp;
2696 }
2697
2698 if ((ret & RCT_LK_ABANDONED) == 0) {
2699 ret |= rctl_global_action(lrctl, rset, p, lrctl->rc_cursor);
2700
2701 RCTLOP_ACTION(lrctl, p, e);
2702
2703 ret |= rctl_local_action(lrctl, rset, p,
2704 lrctl->rc_cursor, safety);
2705
2706 if (ret & RCT_LK_ABANDONED)
2707 goto rctl_action_acquire;
2708 }
2709
2710 ret &= ~RCT_LK_ABANDONED;
2711
2712 if (!(ret & RCT_DENY) &&
2713 lrctl->rc_cursor->rcv_next != NULL) {
2714 lrctl->rc_cursor = lrctl->rc_cursor->rcv_next;
2715
2716 RCTLOP_SET(lrctl, p, e, rctl_model_value(lrctl->rc_dict_entry,
2717 p, lrctl->rc_cursor->rcv_value));
2718
2719 }
2720 mutex_exit(&rset->rcs_lock);
2721
2722 return (ret);
2723 }
2724
2725 /*
2726 * int rctl_test(rctl_hndl_t, rctl_set_t *, struct proc *, rctl_qty_t, uint_t)
2727 *
2728 * Overview
2729 * Increment the resource associated with the given handle, returning zero if
2730 * the incremented value does not exceed the threshold for the current limit
2731 * on the resource.
2732 *
2733 * Return values
2734 * Actions taken, according to the rctl_test bitmask.
2735 *
2736 * Caller's context
2737 * p_lock held by caller.
2738 */
2739 /*ARGSUSED*/
2740 int
rctl_test(rctl_hndl_t rhndl,rctl_set_t * rset,struct proc * p,rctl_qty_t incr,uint_t flags)2741 rctl_test(rctl_hndl_t rhndl, rctl_set_t *rset, struct proc *p,
2742 rctl_qty_t incr, uint_t flags)
2743 {
2744 return (rctl_test_entity(rhndl, rset, p, NULL, incr, flags));
2745 }
2746
2747 int
rctl_test_entity(rctl_hndl_t rhndl,rctl_set_t * rset,struct proc * p,rctl_entity_p_t * e,rctl_qty_t incr,uint_t flags)2748 rctl_test_entity(rctl_hndl_t rhndl, rctl_set_t *rset, struct proc *p,
2749 rctl_entity_p_t *e, rctl_qty_t incr, uint_t flags)
2750 {
2751 rctl_t *lrctl;
2752 int ret = RCT_NONE;
2753 rctl_entity_p_t e_tmp;
2754 if (p == &p0) {
2755 /*
2756 * We don't enforce rctls on the kernel itself.
2757 */
2758 return (ret);
2759 }
2760
2761 rctl_test_acquire:
2762 ASSERT(MUTEX_HELD(&p->p_lock));
2763
2764 mutex_enter(&rset->rcs_lock);
2765
2766 /*
2767 * Dereference from rctl_set. We don't enforce newly loaded controls
2768 * that haven't been set on this entity (since the only valid value is
2769 * the infinite system value).
2770 */
2771 if (rctl_set_find(rset, rhndl, &lrctl) == -1) {
2772 mutex_exit(&rset->rcs_lock);
2773 return (ret);
2774 }
2775
2776 /*
2777 * This control is currently unenforced: maximal value on control
2778 * supporting infinitely available resource.
2779 */
2780 if ((lrctl->rc_dict_entry->rcd_flagaction & RCTL_GLOBAL_INFINITE) &&
2781 (lrctl->rc_cursor->rcv_flagaction & RCTL_LOCAL_MAXIMAL)) {
2782
2783 mutex_exit(&rset->rcs_lock);
2784 return (ret);
2785 }
2786
2787 /*
2788 * If we have been called by rctl_test, look up the entity pointer
2789 * from the proc pointer.
2790 */
2791 if (e == NULL) {
2792 rctl_entity_obtain_entity_p(lrctl->rc_dict_entry->rcd_entity,
2793 p, &e_tmp);
2794 e = &e_tmp;
2795 }
2796
2797 /*
2798 * Get enforced rctl value and current usage. Test the increment
2799 * with the current usage against the enforced value--take action as
2800 * necessary.
2801 */
2802 while (RCTLOP_TEST(lrctl, p, e, lrctl->rc_cursor, incr, flags)) {
2803 if ((ret & RCT_LK_ABANDONED) == 0) {
2804 ret |= rctl_global_action(lrctl, rset, p,
2805 lrctl->rc_cursor);
2806
2807 RCTLOP_ACTION(lrctl, p, e);
2808
2809 ret |= rctl_local_action(lrctl, rset, p,
2810 lrctl->rc_cursor, flags);
2811
2812 if (ret & RCT_LK_ABANDONED)
2813 goto rctl_test_acquire;
2814 }
2815
2816 ret &= ~RCT_LK_ABANDONED;
2817
2818 if ((ret & RCT_DENY) == RCT_DENY ||
2819 lrctl->rc_cursor->rcv_next == NULL) {
2820 ret |= RCT_DENY;
2821 break;
2822 }
2823
2824 lrctl->rc_cursor = lrctl->rc_cursor->rcv_next;
2825 RCTLOP_SET(lrctl, p, e, rctl_model_value(lrctl->rc_dict_entry,
2826 p, lrctl->rc_cursor->rcv_value));
2827 }
2828
2829 mutex_exit(&rset->rcs_lock);
2830
2831 return (ret);
2832 }
2833
2834 /*
2835 * void rctl_init(void)
2836 *
2837 * Overview
2838 * Initialize the rctl subsystem, including the primoridal rctls
2839 * provided by the system. New subsystem-specific rctls should _not_ be
2840 * initialized here. (Do it in your own file.)
2841 *
2842 * Return values
2843 * None.
2844 *
2845 * Caller's context
2846 * Safe for KM_SLEEP allocations. Must be called prior to any process model
2847 * initialization.
2848 */
2849 void
rctl_init(void)2850 rctl_init(void)
2851 {
2852 rctl_cache = kmem_cache_create("rctl_cache", sizeof (rctl_t),
2853 0, NULL, NULL, NULL, NULL, NULL, 0);
2854 rctl_val_cache = kmem_cache_create("rctl_val_cache",
2855 sizeof (rctl_val_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2856
2857 rctl_dict = mod_hash_create_extended("rctl_dict",
2858 rctl_dict_size, mod_hash_null_keydtor, rctl_dict_val_dtor,
2859 rctl_dict_hash_by_id, NULL, rctl_dict_id_cmp, KM_SLEEP);
2860 rctl_dict_by_name = mod_hash_create_strhash(
2861 "rctl_handles_by_name", rctl_dict_size,
2862 mod_hash_null_valdtor);
2863 rctl_ids = id_space_create("rctl_ids", 1, max_rctl_hndl);
2864 bzero(rctl_lists, (RC_MAX_ENTITY + 1) * sizeof (rctl_dict_entry_t *));
2865
2866 rctlproc_init();
2867 }
2868
2869 /*
2870 * rctl_incr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
2871 * int chargeproc)
2872 *
2873 * Increments the amount of locked memory on a project, and
2874 * zone. If proj is non-NULL the project must be held by the
2875 * caller; if it is NULL the proj and zone of proc_t p are used.
2876 * If chargeproc is non-zero, then the charged amount is cached
2877 * on p->p_locked_mem so that the charge can be migrated when a
2878 * process changes projects.
2879 *
2880 * Return values
2881 * 0 - success
2882 * EAGAIN - attempting to increment locked memory is denied by one
2883 * or more resource entities.
2884 */
2885 int
rctl_incr_locked_mem(proc_t * p,kproject_t * proj,rctl_qty_t inc,int chargeproc)2886 rctl_incr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
2887 int chargeproc)
2888 {
2889 kproject_t *projp;
2890 zone_t *zonep;
2891 rctl_entity_p_t e;
2892 int ret = 0;
2893
2894 ASSERT(p != NULL);
2895 ASSERT(MUTEX_HELD(&p->p_lock));
2896 if (proj != NULL) {
2897 projp = proj;
2898 zonep = proj->kpj_zone;
2899 } else {
2900 projp = p->p_task->tk_proj;
2901 zonep = p->p_zone;
2902 }
2903
2904 mutex_enter(&zonep->zone_mem_lock);
2905
2906 e.rcep_p.proj = projp;
2907 e.rcep_t = RCENTITY_PROJECT;
2908
2909 /* check for overflow */
2910 if ((projp->kpj_data.kpd_locked_mem + inc) <
2911 projp->kpj_data.kpd_locked_mem) {
2912 ret = EAGAIN;
2913 goto out;
2914 }
2915 if (projp->kpj_data.kpd_locked_mem + inc >
2916 projp->kpj_data.kpd_locked_mem_ctl) {
2917 if (rctl_test_entity(rc_project_locked_mem, projp->kpj_rctls,
2918 p, &e, inc, 0) & RCT_DENY) {
2919 ret = EAGAIN;
2920 goto out;
2921 }
2922 }
2923 e.rcep_p.zone = zonep;
2924 e.rcep_t = RCENTITY_ZONE;
2925
2926 /* Check for overflow */
2927 if ((zonep->zone_locked_mem + inc) < zonep->zone_locked_mem) {
2928 ret = EAGAIN;
2929 goto out;
2930 }
2931 if (zonep->zone_locked_mem + inc > zonep->zone_locked_mem_ctl) {
2932 if (rctl_test_entity(rc_zone_locked_mem, zonep->zone_rctls,
2933 p, &e, inc, 0) & RCT_DENY) {
2934 ret = EAGAIN;
2935 goto out;
2936 }
2937 }
2938
2939 zonep->zone_locked_mem += inc;
2940 projp->kpj_data.kpd_locked_mem += inc;
2941 if (chargeproc != 0) {
2942 p->p_locked_mem += inc;
2943 }
2944 out:
2945 mutex_exit(&zonep->zone_mem_lock);
2946 return (ret);
2947 }
2948
2949 /*
2950 * rctl_decr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
2951 * int creditproc)
2952 *
2953 * Decrements the amount of locked memory on a project and
2954 * zone. If proj is non-NULL the project must be held by the
2955 * caller; if it is NULL the proj and zone of proc_t p are used.
2956 * If creditproc is non-zero, then the quantity of locked memory
2957 * is subtracted from p->p_locked_mem.
2958 *
2959 * Return values
2960 * none
2961 */
2962 void
rctl_decr_locked_mem(proc_t * p,kproject_t * proj,rctl_qty_t inc,int creditproc)2963 rctl_decr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
2964 int creditproc)
2965 {
2966 kproject_t *projp;
2967 zone_t *zonep;
2968
2969 if (proj != NULL) {
2970 projp = proj;
2971 zonep = proj->kpj_zone;
2972 } else {
2973 ASSERT(p != NULL);
2974 ASSERT(MUTEX_HELD(&p->p_lock));
2975 projp = p->p_task->tk_proj;
2976 zonep = p->p_zone;
2977 }
2978
2979 mutex_enter(&zonep->zone_mem_lock);
2980 zonep->zone_locked_mem -= inc;
2981 projp->kpj_data.kpd_locked_mem -= inc;
2982 if (creditproc != 0) {
2983 ASSERT(p != NULL);
2984 ASSERT(MUTEX_HELD(&p->p_lock));
2985 p->p_locked_mem -= inc;
2986 }
2987 mutex_exit(&zonep->zone_mem_lock);
2988 }
2989
2990 /*
2991 * rctl_incr_swap(proc_t *, zone_t *, size_t)
2992 *
2993 * Overview
2994 * Increments the swap charge on the specified zone.
2995 *
2996 * Return values
2997 * 0 on success. EAGAIN if swap increment fails due an rctl value
2998 * on the zone.
2999 *
3000 * Callers context
3001 * p_lock held on specified proc.
3002 * swap must be even multiple of PAGESIZE
3003 */
3004 int
rctl_incr_swap(proc_t * proc,zone_t * zone,size_t swap)3005 rctl_incr_swap(proc_t *proc, zone_t *zone, size_t swap)
3006 {
3007 rctl_entity_p_t e;
3008
3009 ASSERT(MUTEX_HELD(&proc->p_lock));
3010 ASSERT((swap & PAGEOFFSET) == 0);
3011 e.rcep_p.zone = zone;
3012 e.rcep_t = RCENTITY_ZONE;
3013
3014 mutex_enter(&zone->zone_mem_lock);
3015
3016 /* Check for overflow */
3017 if ((zone->zone_max_swap + swap) < zone->zone_max_swap) {
3018 mutex_exit(&zone->zone_mem_lock);
3019 return (EAGAIN);
3020 }
3021 if ((zone->zone_max_swap + swap) >
3022 zone->zone_max_swap_ctl) {
3023
3024 if (rctl_test_entity(rc_zone_max_swap, zone->zone_rctls,
3025 proc, &e, swap, 0) & RCT_DENY) {
3026 mutex_exit(&zone->zone_mem_lock);
3027 return (EAGAIN);
3028 }
3029 }
3030 zone->zone_max_swap += swap;
3031 mutex_exit(&zone->zone_mem_lock);
3032 return (0);
3033 }
3034
3035 /*
3036 * rctl_decr_swap(zone_t *, size_t)
3037 *
3038 * Overview
3039 * Decrements the swap charge on the specified zone.
3040 *
3041 * Return values
3042 * None
3043 *
3044 * Callers context
3045 * swap must be even multiple of PAGESIZE
3046 */
3047 void
rctl_decr_swap(zone_t * zone,size_t swap)3048 rctl_decr_swap(zone_t *zone, size_t swap)
3049 {
3050 ASSERT((swap & PAGEOFFSET) == 0);
3051 mutex_enter(&zone->zone_mem_lock);
3052 ASSERT(zone->zone_max_swap >= swap);
3053 zone->zone_max_swap -= swap;
3054 mutex_exit(&zone->zone_mem_lock);
3055 }
3056
3057 /*
3058 * rctl_incr_lofi(proc_t *, zone_t *, size_t)
3059 *
3060 * Overview
3061 * Increments the number of lofi devices for the zone.
3062 *
3063 * Return values
3064 * 0 on success. EAGAIN if increment fails due an rctl value
3065 * on the zone.
3066 *
3067 * Callers context
3068 * p_lock held on specified proc.
3069 */
3070 int
rctl_incr_lofi(proc_t * proc,zone_t * zone,size_t incr)3071 rctl_incr_lofi(proc_t *proc, zone_t *zone, size_t incr)
3072 {
3073 rctl_entity_p_t e;
3074
3075 ASSERT(MUTEX_HELD(&proc->p_lock));
3076 ASSERT(incr > 0);
3077
3078 e.rcep_p.zone = zone;
3079 e.rcep_t = RCENTITY_ZONE;
3080
3081 mutex_enter(&zone->zone_rctl_lock);
3082
3083 /* Check for overflow */
3084 if ((zone->zone_max_lofi + incr) < zone->zone_max_lofi) {
3085 mutex_exit(&zone->zone_rctl_lock);
3086 return (EAGAIN);
3087 }
3088 if ((zone->zone_max_lofi + incr) > zone->zone_max_lofi_ctl) {
3089 if (rctl_test_entity(rc_zone_max_lofi, zone->zone_rctls,
3090 proc, &e, incr, 0) & RCT_DENY) {
3091 mutex_exit(&zone->zone_rctl_lock);
3092 return (EAGAIN);
3093 }
3094 }
3095 zone->zone_max_lofi += incr;
3096 mutex_exit(&zone->zone_rctl_lock);
3097 return (0);
3098 }
3099
3100 /*
3101 * rctl_decr_lofi(zone_t *, size_t)
3102 *
3103 * Overview
3104 * Decrements the number of lofi devices for the zone.
3105 */
3106 void
rctl_decr_lofi(zone_t * zone,size_t decr)3107 rctl_decr_lofi(zone_t *zone, size_t decr)
3108 {
3109 mutex_enter(&zone->zone_rctl_lock);
3110 ASSERT(zone->zone_max_lofi >= decr);
3111 zone->zone_max_lofi -= decr;
3112 mutex_exit(&zone->zone_rctl_lock);
3113 }
3114
3115 /*
3116 * Create resource kstat
3117 */
3118 static kstat_t *
rctl_kstat_create_common(char * ks_name,int ks_instance,char * ks_class,uchar_t ks_type,uint_t ks_ndata,uchar_t ks_flags,int ks_zoneid)3119 rctl_kstat_create_common(char *ks_name, int ks_instance, char *ks_class,
3120 uchar_t ks_type, uint_t ks_ndata, uchar_t ks_flags, int ks_zoneid)
3121 {
3122 kstat_t *ksp = NULL;
3123 char name[KSTAT_STRLEN];
3124
3125 (void) snprintf(name, KSTAT_STRLEN, "%s_%d", ks_name, ks_instance);
3126
3127 if ((ksp = kstat_create_zone("caps", ks_zoneid,
3128 name, ks_class, ks_type,
3129 ks_ndata, ks_flags, ks_zoneid)) != NULL) {
3130 if (ks_zoneid != GLOBAL_ZONEID)
3131 kstat_zone_add(ksp, GLOBAL_ZONEID);
3132 }
3133 return (ksp);
3134 }
3135
3136 /*
3137 * Create zone-specific resource kstat
3138 */
3139 kstat_t *
rctl_kstat_create_zone(zone_t * zone,char * ks_name,uchar_t ks_type,uint_t ks_ndata,uchar_t ks_flags)3140 rctl_kstat_create_zone(zone_t *zone, char *ks_name, uchar_t ks_type,
3141 uint_t ks_ndata, uchar_t ks_flags)
3142 {
3143 char name[KSTAT_STRLEN];
3144
3145 (void) snprintf(name, KSTAT_STRLEN, "%s_zone", ks_name);
3146
3147 return (rctl_kstat_create_common(name, zone->zone_id, "zone_caps",
3148 ks_type, ks_ndata, ks_flags, zone->zone_id));
3149 }
3150
3151 /*
3152 * Create project-specific resource kstat
3153 */
3154 kstat_t *
rctl_kstat_create_project(kproject_t * kpj,char * ks_name,uchar_t ks_type,uint_t ks_ndata,uchar_t ks_flags)3155 rctl_kstat_create_project(kproject_t *kpj, char *ks_name, uchar_t ks_type,
3156 uint_t ks_ndata, uchar_t ks_flags)
3157 {
3158 char name[KSTAT_STRLEN];
3159
3160 (void) snprintf(name, KSTAT_STRLEN, "%s_project", ks_name);
3161
3162 return (rctl_kstat_create_common(name, kpj->kpj_id, "project_caps",
3163 ks_type, ks_ndata, ks_flags, kpj->kpj_zoneid));
3164 }
3165
3166 /*
3167 * Create task-specific resource kstat
3168 */
3169 kstat_t *
rctl_kstat_create_task(task_t * tk,char * ks_name,uchar_t ks_type,uint_t ks_ndata,uchar_t ks_flags)3170 rctl_kstat_create_task(task_t *tk, char *ks_name, uchar_t ks_type,
3171 uint_t ks_ndata, uchar_t ks_flags)
3172 {
3173 char name[KSTAT_STRLEN];
3174
3175 (void) snprintf(name, KSTAT_STRLEN, "%s_task", ks_name);
3176
3177 return (rctl_kstat_create_common(name, tk->tk_tkid, "task_caps",
3178 ks_type, ks_ndata, ks_flags, tk->tk_proj->kpj_zoneid));
3179 }
3180