1 /*
2 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 /*
7 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
8 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
9 *
10 * Permission to use, copy, modify, and distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23 /*
24 * Ralink Technology RT2501USB/RT2601USB chipset driver
25 * http://www.ralinktech.com.tw/
26 */
27 #include <sys/types.h>
28 #include <sys/cmn_err.h>
29 #include <sys/strsubr.h>
30 #include <sys/modctl.h>
31 #include <sys/devops.h>
32 #include <sys/mac_provider.h>
33 #include <sys/mac_wifi.h>
34 #include <sys/net80211.h>
35 #include <sys/byteorder.h>
36
37 #define USBDRV_MAJOR_VER 2
38 #define USBDRV_MINOR_VER 0
39 #include <sys/usb/usba.h>
40 #include <sys/usb/usba/usba_types.h>
41
42 #include "rum_reg.h"
43 #include "rum_var.h"
44 #include "rt2573_ucode.h"
45
46 static void *rum_soft_state_p = NULL;
47
48 #define RAL_TXBUF_SIZE (IEEE80211_MAX_LEN)
49 #define RAL_RXBUF_SIZE (IEEE80211_MAX_LEN)
50
51 /* quickly determine if a given rate is CCK or OFDM */
52 #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
53 #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
54 #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
55
56 #define RUM_N(a) (sizeof (a) / sizeof ((a)[0]))
57
58 /*
59 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
60 */
61 static const struct ieee80211_rateset rum_rateset_11a =
62 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
63
64 static const struct ieee80211_rateset rum_rateset_11b =
65 { 4, { 2, 4, 11, 22 } };
66
67 static const struct ieee80211_rateset rum_rateset_11g =
68 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
69
70 static const struct {
71 uint32_t reg;
72 uint32_t val;
73 } rum_def_mac[] = {
74 { RT2573_TXRX_CSR0, 0x025fb032 },
75 { RT2573_TXRX_CSR1, 0x9eaa9eaf },
76 { RT2573_TXRX_CSR2, 0x8a8b8c8d },
77 { RT2573_TXRX_CSR3, 0x00858687 },
78 { RT2573_TXRX_CSR7, 0x2e31353b },
79 { RT2573_TXRX_CSR8, 0x2a2a2a2c },
80 { RT2573_TXRX_CSR15, 0x0000000f },
81 { RT2573_MAC_CSR6, 0x00000fff },
82 { RT2573_MAC_CSR8, 0x016c030a },
83 { RT2573_MAC_CSR10, 0x00000718 },
84 { RT2573_MAC_CSR12, 0x00000004 },
85 { RT2573_MAC_CSR13, 0x00007f00 },
86 { RT2573_SEC_CSR0, 0x00000000 },
87 { RT2573_SEC_CSR1, 0x00000000 },
88 { RT2573_SEC_CSR5, 0x00000000 },
89 { RT2573_PHY_CSR1, 0x000023b0 },
90 { RT2573_PHY_CSR5, 0x00040a06 },
91 { RT2573_PHY_CSR6, 0x00080606 },
92 { RT2573_PHY_CSR7, 0x00000408 },
93 { RT2573_AIFSN_CSR, 0x00002273 },
94 { RT2573_CWMIN_CSR, 0x00002344 },
95 { RT2573_CWMAX_CSR, 0x000034aa }
96 };
97
98 static const struct {
99 uint8_t reg;
100 uint8_t val;
101 } rum_def_bbp[] = {
102 { 3, 0x80 },
103 { 15, 0x30 },
104 { 17, 0x20 },
105 { 21, 0xc8 },
106 { 22, 0x38 },
107 { 23, 0x06 },
108 { 24, 0xfe },
109 { 25, 0x0a },
110 { 26, 0x0d },
111 { 32, 0x0b },
112 { 34, 0x12 },
113 { 37, 0x07 },
114 { 39, 0xf8 },
115 { 41, 0x60 },
116 { 53, 0x10 },
117 { 54, 0x18 },
118 { 60, 0x10 },
119 { 61, 0x04 },
120 { 62, 0x04 },
121 { 75, 0xfe },
122 { 86, 0xfe },
123 { 88, 0xfe },
124 { 90, 0x0f },
125 { 99, 0x00 },
126 { 102, 0x16 },
127 { 107, 0x04 }
128 };
129
130 static const struct rfprog {
131 uint8_t chan;
132 uint32_t r1, r2, r3, r4;
133 } rum_rf5226[] = {
134 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
135 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
136 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
137 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
138 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
139 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
140 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
141 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
142 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
143 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
144 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
145 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
146 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
147 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
148
149 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 },
150 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 },
151 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 },
152 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 },
153
154 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 },
155 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 },
156 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 },
157 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
158 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
159 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
160 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
161 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
162
163 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
164 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
165 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
166 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
167 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
168 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
169 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
170 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
171 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
172 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
173 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
174
175 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
176 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
177 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
178 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
179 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
180 }, rum_rf5225[] = {
181 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
182 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
183 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
184 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
185 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
186 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
187 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
188 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
189 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
190 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
191 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
192 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
193 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
194 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
195
196 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 },
197 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 },
198 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 },
199 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 },
200
201 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 },
202 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 },
203 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 },
204 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
205 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
206 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
207 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
208 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
209
210 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
211 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
212 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
213 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
214 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
215 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
216 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
217 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
218 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
219 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
220 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
221
222 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
223 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
224 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
225 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
226 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
227 };
228
229 /*
230 * device operations
231 */
232 static int rum_attach(dev_info_t *, ddi_attach_cmd_t);
233 static int rum_detach(dev_info_t *, ddi_detach_cmd_t);
234
235 /*
236 * Module Loading Data & Entry Points
237 */
238 DDI_DEFINE_STREAM_OPS(rum_dev_ops, nulldev, nulldev, rum_attach,
239 rum_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_needed);
240
241 static struct modldrv rum_modldrv = {
242 &mod_driverops, /* Type of module. This one is a driver */
243 "rum driver v1.2", /* short description */
244 &rum_dev_ops /* driver specific ops */
245 };
246
247 static struct modlinkage modlinkage = {
248 MODREV_1,
249 (void *)&rum_modldrv,
250 NULL
251 };
252
253 static int rum_m_stat(void *, uint_t, uint64_t *);
254 static int rum_m_start(void *);
255 static void rum_m_stop(void *);
256 static int rum_m_promisc(void *, boolean_t);
257 static int rum_m_multicst(void *, boolean_t, const uint8_t *);
258 static int rum_m_unicst(void *, const uint8_t *);
259 static mblk_t *rum_m_tx(void *, mblk_t *);
260 static void rum_m_ioctl(void *, queue_t *, mblk_t *);
261 static int rum_m_setprop(void *, const char *, mac_prop_id_t,
262 uint_t, const void *);
263 static int rum_m_getprop(void *, const char *, mac_prop_id_t,
264 uint_t, void *);
265 static void rum_m_propinfo(void *, const char *, mac_prop_id_t,
266 mac_prop_info_handle_t);
267
268 static mac_callbacks_t rum_m_callbacks = {
269 MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
270 rum_m_stat,
271 rum_m_start,
272 rum_m_stop,
273 rum_m_promisc,
274 rum_m_multicst,
275 rum_m_unicst,
276 rum_m_tx,
277 NULL,
278 rum_m_ioctl,
279 NULL, /* mc_getcapab */
280 NULL,
281 NULL,
282 rum_m_setprop,
283 rum_m_getprop,
284 rum_m_propinfo
285 };
286
287 static void rum_amrr_start(struct rum_softc *, struct ieee80211_node *);
288 static int rum_tx_trigger(struct rum_softc *, mblk_t *);
289 static int rum_rx_trigger(struct rum_softc *);
290
291 uint32_t rum_dbg_flags = 0;
292
293 void
ral_debug(uint32_t dbg_flags,const int8_t * fmt,...)294 ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...)
295 {
296 va_list args;
297
298 if (dbg_flags & rum_dbg_flags) {
299 va_start(args, fmt);
300 vcmn_err(CE_CONT, fmt, args);
301 va_end(args);
302 }
303 }
304
305 static void
rum_read_multi(struct rum_softc * sc,uint16_t reg,void * buf,int len)306 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
307 {
308 usb_ctrl_setup_t req;
309 usb_cr_t cr;
310 usb_cb_flags_t cf;
311 mblk_t *mp;
312 int err;
313
314 bzero(&req, sizeof (req));
315 req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
316 req.bRequest = RT2573_READ_MULTI_MAC;
317 req.wValue = 0;
318 req.wIndex = reg;
319 req.wLength = (uint16_t)len;
320 req.attrs = USB_ATTRS_AUTOCLEARING;
321
322 mp = NULL;
323 err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
324 &cr, &cf, 0);
325
326 if (err != USB_SUCCESS) {
327 ral_debug(RAL_DBG_ERR,
328 "rum_read_multi(): could not read MAC register:"
329 "cr:%s(%d), cf:(%x)\n",
330 usb_str_cr(cr), cr, cf);
331 return;
332 }
333
334 bcopy(mp->b_rptr, buf, len);
335 freemsg(mp);
336 }
337
338 static uint32_t
rum_read(struct rum_softc * sc,uint16_t reg)339 rum_read(struct rum_softc *sc, uint16_t reg)
340 {
341 uint32_t val;
342
343 rum_read_multi(sc, reg, &val, sizeof (val));
344
345 return (LE_32(val));
346 }
347
348 static void
rum_write_multi(struct rum_softc * sc,uint16_t reg,void * buf,size_t len)349 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
350 {
351 usb_ctrl_setup_t req;
352 usb_cr_t cr;
353 usb_cb_flags_t cf;
354 mblk_t *mp;
355 int err;
356
357 bzero(&req, sizeof (req));
358 req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
359 req.bRequest = RT2573_WRITE_MULTI_MAC;
360 req.wValue = 0;
361 req.wIndex = reg;
362 req.wLength = (uint16_t)len;
363 req.attrs = USB_ATTRS_NONE;
364
365 if ((mp = allocb(len, BPRI_HI)) == NULL) {
366 ral_debug(RAL_DBG_ERR, "rum_write_multi(): failed alloc mblk.");
367 return;
368 }
369
370 bcopy(buf, mp->b_wptr, len);
371 mp->b_wptr += len;
372
373 err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
374 &cr, &cf, 0);
375
376 if (err != USB_SUCCESS) {
377 ral_debug(RAL_DBG_USB,
378 "rum_write_multi(): could not write MAC register:"
379 "cr:%s(%d), cf:(%x)\n",
380 usb_str_cr(cr), cr, cf);
381 }
382
383 freemsg(mp);
384 }
385
386 static void
rum_write(struct rum_softc * sc,uint16_t reg,uint32_t val)387 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
388 {
389 uint32_t tmp = LE_32(val);
390
391 rum_write_multi(sc, reg, &tmp, sizeof (tmp));
392 }
393
394 #define UGETDW(w) ((w)[0] | ((w)[1] << 8) | ((w)[2] << 16) | ((w)[3] << 24))
395
396 static int
rum_load_microcode(struct rum_softc * sc)397 rum_load_microcode(struct rum_softc *sc)
398 {
399 usb_ctrl_setup_t req;
400 usb_cr_t cr;
401 usb_cb_flags_t cf;
402 int err;
403
404 const uint8_t *ucode;
405 int size;
406 uint16_t reg = RT2573_MCU_CODE_BASE;
407
408 ucode = rt2573_ucode;
409 size = sizeof (rt2573_ucode);
410
411 /* copy firmware image into NIC */
412 for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
413 rum_write(sc, reg, UGETDW(ucode));
414 /* rum_write(sc, reg, *(uint32_t *)(ucode)); */
415 }
416
417 bzero(&req, sizeof (req));
418 req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV;
419 req.bRequest = RT2573_MCU_CNTL;
420 req.wValue = RT2573_MCU_RUN;
421 req.wIndex = 0;
422 req.wLength = 0;
423 req.attrs = USB_ATTRS_NONE;
424
425 err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL,
426 &cr, &cf, 0);
427
428 if (err != USB_SUCCESS) {
429 ral_debug(RAL_DBG_ERR,
430 "rum_load_microcode(): could not run firmware: "
431 "cr:%s(%d), cf:(%x)\n",
432 usb_str_cr(cr), cr, cf);
433 }
434
435 ral_debug(RAL_DBG_MSG,
436 "rum_load_microcode(%d): done\n", sizeof (rt2573_ucode));
437
438 return (err);
439 }
440
441 static void
rum_eeprom_read(struct rum_softc * sc,uint16_t addr,void * buf,int len)442 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
443 {
444 usb_ctrl_setup_t req;
445 usb_cr_t cr;
446 usb_cb_flags_t cf;
447 mblk_t *mp;
448 int err;
449
450 bzero(&req, sizeof (req));
451 req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST;
452 req.bRequest = RT2573_READ_EEPROM;
453 req.wValue = 0;
454 req.wIndex = addr;
455 req.wLength = (uint16_t)len;
456
457 mp = NULL;
458 err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp,
459 &cr, &cf, 0);
460
461 if (err != USB_SUCCESS) {
462 ral_debug(RAL_DBG_USB,
463 "rum_eeprom_read(): could not read EEPROM:"
464 "cr:%s(%d), cf:(%x)\n",
465 usb_str_cr(cr), cr, cf);
466 return;
467 }
468
469 bcopy(mp->b_rptr, buf, len);
470 freemsg(mp);
471 }
472
473 /* ARGSUSED */
474 static void
rum_txeof(usb_pipe_handle_t pipe,usb_bulk_req_t * req)475 rum_txeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
476 {
477 struct rum_softc *sc = (struct rum_softc *)req->bulk_client_private;
478 struct ieee80211com *ic = &sc->sc_ic;
479
480 ral_debug(RAL_DBG_TX,
481 "rum_txeof(): cr:%s(%d), flags:0x%x, tx_queued:%d",
482 usb_str_cr(req->bulk_completion_reason),
483 req->bulk_completion_reason,
484 req->bulk_cb_flags,
485 sc->tx_queued);
486
487 if (req->bulk_completion_reason != USB_CR_OK)
488 sc->sc_tx_err++;
489
490 mutex_enter(&sc->tx_lock);
491
492 sc->tx_queued--;
493 sc->sc_tx_timer = 0;
494
495 if (sc->sc_need_sched) {
496 sc->sc_need_sched = 0;
497 mac_tx_update(ic->ic_mach);
498 }
499
500 mutex_exit(&sc->tx_lock);
501 usb_free_bulk_req(req);
502 }
503
504 /* ARGSUSED */
505 static void
rum_rxeof(usb_pipe_handle_t pipe,usb_bulk_req_t * req)506 rum_rxeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req)
507 {
508 struct rum_softc *sc = (struct rum_softc *)req->bulk_client_private;
509 struct ieee80211com *ic = &sc->sc_ic;
510
511 struct rum_rx_desc *desc;
512 struct ieee80211_frame *wh;
513 struct ieee80211_node *ni;
514
515 mblk_t *m, *mp;
516 int len, pktlen;
517 char *rxbuf;
518
519 mp = req->bulk_data;
520 req->bulk_data = NULL;
521
522 ral_debug(RAL_DBG_RX,
523 "rum_rxeof(): cr:%s(%d), flags:0x%x, rx_queued:%d",
524 usb_str_cr(req->bulk_completion_reason),
525 req->bulk_completion_reason,
526 req->bulk_cb_flags,
527 sc->rx_queued);
528
529 if (req->bulk_completion_reason != USB_CR_OK) {
530 sc->sc_rx_err++;
531 goto fail;
532 }
533
534 len = msgdsize(mp);
535 rxbuf = (char *)mp->b_rptr;
536
537
538 if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
539 ral_debug(RAL_DBG_ERR,
540 "rum_rxeof(): xfer too short %d\n", len);
541 sc->sc_rx_err++;
542 goto fail;
543 }
544
545 /* rx descriptor is located at the head, different from RT2500USB */
546 desc = (struct rum_rx_desc *)rxbuf;
547
548 if (LE_32(desc->flags) & RT2573_RX_CRC_ERROR) {
549 /*
550 * This should not happen since we did not request to receive
551 * those frames when we filled RT2573_TXRX_CSR0.
552 */
553 ral_debug(RAL_DBG_ERR, "CRC error\n");
554 sc->sc_rx_err++;
555 goto fail;
556 }
557
558 pktlen = (LE_32(desc->flags) >> 16) & 0xfff;
559
560 if (pktlen > (len - RT2573_RX_DESC_SIZE)) {
561 ral_debug(RAL_DBG_ERR,
562 "rum_rxeof(): pktlen mismatch <%d, %d>.\n", pktlen, len);
563 goto fail;
564 }
565
566 if ((m = allocb(pktlen, BPRI_MED)) == NULL) {
567 ral_debug(RAL_DBG_ERR,
568 "rum_rxeof(): allocate mblk failed.\n");
569 sc->sc_rx_nobuf++;
570 goto fail;
571 }
572
573 bcopy(rxbuf + RT2573_RX_DESC_SIZE, m->b_rptr, pktlen);
574 m->b_wptr += pktlen;
575
576 wh = (struct ieee80211_frame *)m->b_rptr;
577 ni = ieee80211_find_rxnode(ic, wh);
578
579 /* send the frame to the 802.11 layer */
580 (void) ieee80211_input(ic, m, ni, desc->rssi, 0);
581
582 /* node is no longer needed */
583 ieee80211_free_node(ni);
584
585 fail:
586 mutex_enter(&sc->rx_lock);
587 sc->rx_queued--;
588 mutex_exit(&sc->rx_lock);
589
590 freemsg(mp);
591 usb_free_bulk_req(req);
592
593 if (RAL_IS_RUNNING(sc))
594 (void) rum_rx_trigger(sc);
595 }
596
597 /*
598 * Return the expected ack rate for a frame transmitted at rate `rate'.
599 */
600 static int
rum_ack_rate(struct ieee80211com * ic,int rate)601 rum_ack_rate(struct ieee80211com *ic, int rate)
602 {
603 switch (rate) {
604 /* CCK rates */
605 case 2:
606 return (2);
607 case 4:
608 case 11:
609 case 22:
610 return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate);
611
612 /* OFDM rates */
613 case 12:
614 case 18:
615 return (12);
616 case 24:
617 case 36:
618 return (24);
619 case 48:
620 case 72:
621 case 96:
622 case 108:
623 return (48);
624 }
625
626 /* default to 1Mbps */
627 return (2);
628 }
629
630 /*
631 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
632 * The function automatically determines the operating mode depending on the
633 * given rate. `flags' indicates whether short preamble is in use or not.
634 */
635 static uint16_t
rum_txtime(int len,int rate,uint32_t flags)636 rum_txtime(int len, int rate, uint32_t flags)
637 {
638 uint16_t txtime;
639
640 if (RUM_RATE_IS_OFDM(rate)) {
641 /* IEEE Std 802.11a-1999, pp. 37 */
642 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
643 txtime = 16 + 4 + 4 * txtime + 6;
644 } else {
645 /* IEEE Std 802.11b-1999, pp. 28 */
646 txtime = (16 * len + rate - 1) / rate;
647 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
648 txtime += 72 + 24;
649 else
650 txtime += 144 + 48;
651 }
652 return (txtime);
653 }
654
655 static uint8_t
rum_plcp_signal(int rate)656 rum_plcp_signal(int rate)
657 {
658 switch (rate) {
659 /* CCK rates (returned values are device-dependent) */
660 case 2: return (0x0);
661 case 4: return (0x1);
662 case 11: return (0x2);
663 case 22: return (0x3);
664
665 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
666 case 12: return (0xb);
667 case 18: return (0xf);
668 case 24: return (0xa);
669 case 36: return (0xe);
670 case 48: return (0x9);
671 case 72: return (0xd);
672 case 96: return (0x8);
673 case 108: return (0xc);
674
675 /* unsupported rates (should not get there) */
676 default: return (0xff);
677 }
678 }
679
680 static void
rum_setup_tx_desc(struct rum_softc * sc,struct rum_tx_desc * desc,uint32_t flags,uint16_t xflags,int len,int rate)681 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
682 uint32_t flags, uint16_t xflags, int len, int rate)
683 {
684 struct ieee80211com *ic = &sc->sc_ic;
685 uint16_t plcp_length;
686 int remainder;
687
688 desc->flags = LE_32(flags);
689 desc->flags |= LE_32(RT2573_TX_VALID);
690 desc->flags |= LE_32(len << 16);
691
692 desc->xflags = LE_16(xflags);
693
694 desc->wme = LE_16(RT2573_QID(0) | RT2573_AIFSN(2) |
695 RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
696
697 /* setup PLCP fields */
698 desc->plcp_signal = rum_plcp_signal(rate);
699 desc->plcp_service = 4;
700
701 len += IEEE80211_CRC_LEN;
702 if (RUM_RATE_IS_OFDM(rate)) {
703 desc->flags |= LE_32(RT2573_TX_OFDM);
704
705 plcp_length = len & 0xfff;
706 desc->plcp_length_hi = plcp_length >> 6;
707 desc->plcp_length_lo = plcp_length & 0x3f;
708 } else {
709 plcp_length = (16 * len + rate - 1) / rate;
710 if (rate == 22) {
711 remainder = (16 * len) % 22;
712 if (remainder != 0 && remainder < 7)
713 desc->plcp_service |= RT2573_PLCP_LENGEXT;
714 }
715 desc->plcp_length_hi = plcp_length >> 8;
716 desc->plcp_length_lo = plcp_length & 0xff;
717
718 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
719 desc->plcp_signal |= 0x08;
720 }
721 }
722
723 #define RUM_TX_TIMEOUT 5
724
725 static int
rum_send(ieee80211com_t * ic,mblk_t * mp,uint8_t type)726 rum_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
727 {
728 struct rum_softc *sc = (struct rum_softc *)ic;
729 struct rum_tx_desc *desc;
730
731 struct ieee80211_frame *wh;
732 struct ieee80211_key *k;
733
734 uint16_t dur;
735 uint32_t flags = 0;
736 int rate, err = DDI_SUCCESS, rv;
737
738 struct ieee80211_node *ni = NULL;
739 mblk_t *m, *m0;
740 int off, mblen, pktlen, xferlen;
741
742 /* discard packets while suspending or not inited */
743 if (!RAL_IS_RUNNING(sc)) {
744 freemsg(mp);
745 return (ENXIO);
746 }
747
748 mutex_enter(&sc->tx_lock);
749
750 if (sc->tx_queued > RAL_TX_LIST_COUNT) {
751 ral_debug(RAL_DBG_TX, "rum_send(): "
752 "no TX buffer available!\n");
753 if ((type & IEEE80211_FC0_TYPE_MASK) ==
754 IEEE80211_FC0_TYPE_DATA) {
755 sc->sc_need_sched = 1;
756 }
757 sc->sc_tx_nobuf++;
758 err = ENOMEM;
759 goto fail;
760 }
761
762 m = allocb(RAL_TXBUF_SIZE + RT2573_TX_DESC_SIZE, BPRI_MED);
763 if (m == NULL) {
764 ral_debug(RAL_DBG_ERR, "rum_send(): can't alloc mblk.\n");
765 err = DDI_FAILURE;
766 goto fail;
767 }
768
769 m->b_rptr += RT2573_TX_DESC_SIZE; /* skip TX descriptor */
770 m->b_wptr += RT2573_TX_DESC_SIZE;
771
772 for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
773 mblen = (uintptr_t)m0->b_wptr - (uintptr_t)m0->b_rptr;
774 (void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
775 off += mblen;
776 }
777 m->b_wptr += off;
778
779 wh = (struct ieee80211_frame *)m->b_rptr;
780
781 ni = ieee80211_find_txnode(ic, wh->i_addr1);
782 if (ni == NULL) {
783 err = DDI_FAILURE;
784 sc->sc_tx_err++;
785 freemsg(m);
786 goto fail;
787 }
788
789 if ((type & IEEE80211_FC0_TYPE_MASK) ==
790 IEEE80211_FC0_TYPE_DATA) {
791 (void) ieee80211_encap(ic, m, ni);
792 }
793
794 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
795 k = ieee80211_crypto_encap(ic, m);
796 if (k == NULL) {
797 sc->sc_tx_err++;
798 err = DDI_FAILURE;
799 freemsg(m);
800 goto fail;
801 }
802 /* packet header may have moved, reset our local pointer */
803 wh = (struct ieee80211_frame *)m->b_rptr;
804 }
805
806 m->b_rptr -= RT2573_TX_DESC_SIZE; /* restore */
807 desc = (struct rum_tx_desc *)m->b_rptr;
808
809 if ((type & IEEE80211_FC0_TYPE_MASK) ==
810 IEEE80211_FC0_TYPE_DATA) { /* DATA */
811 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
812 rate = ic->ic_bss->in_rates.ir_rates[ic->ic_fixed_rate];
813 else
814 rate = ni->in_rates.ir_rates[ni->in_txrate];
815
816 rate &= IEEE80211_RATE_VAL;
817 if (rate <= 0) {
818 rate = 2; /* basic rate */
819 }
820
821
822 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
823 flags |= RT2573_TX_NEED_ACK;
824 flags |= RT2573_TX_MORE_FRAG;
825
826 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
827 ic->ic_flags) + sc->sifs;
828 *(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
829 }
830 } else { /* MGMT */
831 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
832
833 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
834 flags |= RT2573_TX_NEED_ACK;
835
836 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
837 ic->ic_flags) + sc->sifs;
838 *(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur);
839
840 /* tell hardware to add timestamp for probe responses */
841 if ((wh->i_fc[0] &
842 (IEEE80211_FC0_TYPE_MASK |
843 IEEE80211_FC0_SUBTYPE_MASK)) ==
844 (IEEE80211_FC0_TYPE_MGT |
845 IEEE80211_FC0_SUBTYPE_PROBE_RESP))
846 flags |= RT2573_TX_TIMESTAMP;
847 }
848 }
849
850 pktlen = msgdsize(m) - RT2573_TX_DESC_SIZE;
851 rum_setup_tx_desc(sc, desc, flags, 0, pktlen, rate);
852
853 /* align end on a 4-bytes boundary */
854 xferlen = (RT2573_TX_DESC_SIZE + pktlen + 3) & ~3;
855
856 /*
857 * No space left in the last URB to store the extra 4 bytes, force
858 * sending of another URB.
859 */
860 if ((xferlen % 64) == 0)
861 xferlen += 4;
862
863 m->b_wptr = m->b_rptr + xferlen;
864
865 ral_debug(RAL_DBG_TX, "sending data frame len=%u rate=%u xfer len=%u\n",
866 pktlen, rate, xferlen);
867
868 rv = rum_tx_trigger(sc, m);
869
870 if (rv == 0) {
871 ic->ic_stats.is_tx_frags++;
872 ic->ic_stats.is_tx_bytes += pktlen;
873 }
874
875 fail:
876 if (ni != NULL)
877 ieee80211_free_node(ni);
878
879 if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
880 err == 0) {
881 freemsg(mp);
882 }
883
884 mutex_exit(&sc->tx_lock);
885
886 return (err);
887 }
888
889 static mblk_t *
rum_m_tx(void * arg,mblk_t * mp)890 rum_m_tx(void *arg, mblk_t *mp)
891 {
892 struct rum_softc *sc = (struct rum_softc *)arg;
893 struct ieee80211com *ic = &sc->sc_ic;
894 mblk_t *next;
895
896 /*
897 * No data frames go out unless we're associated; this
898 * should not happen as the 802.11 layer does not enable
899 * the xmit queue until we enter the RUN state.
900 */
901 if (ic->ic_state != IEEE80211_S_RUN) {
902 ral_debug(RAL_DBG_ERR, "rum_m_tx(): "
903 "discard, state %u\n", ic->ic_state);
904 freemsgchain(mp);
905 return (NULL);
906 }
907
908 while (mp != NULL) {
909 next = mp->b_next;
910 mp->b_next = NULL;
911 if (rum_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != DDI_SUCCESS) {
912 mp->b_next = next;
913 freemsgchain(mp);
914 return (NULL);
915 }
916 mp = next;
917 }
918 return (mp);
919 }
920
921 static void
rum_bbp_write(struct rum_softc * sc,uint8_t reg,uint8_t val)922 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
923 {
924 uint32_t tmp;
925 int ntries;
926
927 for (ntries = 0; ntries < 5; ntries++) {
928 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
929 break;
930 }
931 if (ntries == 5) {
932 ral_debug(RAL_DBG_ERR,
933 "rum_bbp_write(): could not write to BBP\n");
934 return;
935 }
936
937 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
938 rum_write(sc, RT2573_PHY_CSR3, tmp);
939 }
940
941 static uint8_t
rum_bbp_read(struct rum_softc * sc,uint8_t reg)942 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
943 {
944 uint32_t val;
945 int ntries;
946
947 for (ntries = 0; ntries < 5; ntries++) {
948 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
949 break;
950 }
951 if (ntries == 5) {
952 ral_debug(RAL_DBG_ERR, "rum_bbp_read(): could not read BBP\n");
953 return (0);
954 }
955
956 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
957 rum_write(sc, RT2573_PHY_CSR3, val);
958
959 for (ntries = 0; ntries < 100; ntries++) {
960 val = rum_read(sc, RT2573_PHY_CSR3);
961 if (!(val & RT2573_BBP_BUSY))
962 return (val & 0xff);
963 drv_usecwait(1);
964 }
965
966 ral_debug(RAL_DBG_ERR, "rum_bbp_read(): could not read BBP\n");
967 return (0);
968 }
969
970 static void
rum_rf_write(struct rum_softc * sc,uint8_t reg,uint32_t val)971 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
972 {
973 uint32_t tmp;
974 int ntries;
975
976 for (ntries = 0; ntries < 5; ntries++) {
977 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
978 break;
979 }
980 if (ntries == 5) {
981 ral_debug(RAL_DBG_ERR,
982 "rum_rf_write(): could not write to RF\n");
983 return;
984 }
985
986 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
987 (reg & 3);
988 rum_write(sc, RT2573_PHY_CSR4, tmp);
989
990 /* remember last written value in sc */
991 sc->rf_regs[reg] = val;
992
993 ral_debug(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
994 }
995
996 static void
rum_select_antenna(struct rum_softc * sc)997 rum_select_antenna(struct rum_softc *sc)
998 {
999 uint8_t bbp4, bbp77;
1000 uint32_t tmp;
1001
1002 bbp4 = rum_bbp_read(sc, 4);
1003 bbp77 = rum_bbp_read(sc, 77);
1004
1005 /* make sure Rx is disabled before switching antenna */
1006 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1007 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1008
1009 rum_bbp_write(sc, 4, bbp4);
1010 rum_bbp_write(sc, 77, bbp77);
1011
1012 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1013 }
1014
1015 /*
1016 * Enable multi-rate retries for frames sent at OFDM rates.
1017 * In 802.11b/g mode, allow fallback to CCK rates.
1018 */
1019 static void
rum_enable_mrr(struct rum_softc * sc)1020 rum_enable_mrr(struct rum_softc *sc)
1021 {
1022 struct ieee80211com *ic = &sc->sc_ic;
1023 uint32_t tmp;
1024
1025 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1026
1027 tmp &= ~RT2573_MRR_CCK_FALLBACK;
1028 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1029 tmp |= RT2573_MRR_CCK_FALLBACK;
1030 tmp |= RT2573_MRR_ENABLED;
1031
1032 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1033 }
1034
1035 static void
rum_set_txpreamble(struct rum_softc * sc)1036 rum_set_txpreamble(struct rum_softc *sc)
1037 {
1038 uint32_t tmp;
1039
1040 tmp = rum_read(sc, RT2573_TXRX_CSR4);
1041
1042 tmp &= ~RT2573_SHORT_PREAMBLE;
1043 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1044 tmp |= RT2573_SHORT_PREAMBLE;
1045
1046 rum_write(sc, RT2573_TXRX_CSR4, tmp);
1047 }
1048
1049 static void
rum_set_basicrates(struct rum_softc * sc)1050 rum_set_basicrates(struct rum_softc *sc)
1051 {
1052 struct ieee80211com *ic = &sc->sc_ic;
1053
1054 /* update basic rate set */
1055 if (ic->ic_curmode == IEEE80211_MODE_11B) {
1056 /* 11b basic rates: 1, 2Mbps */
1057 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1058 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->in_chan)) {
1059 /* 11a basic rates: 6, 12, 24Mbps */
1060 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1061 } else {
1062 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
1063 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
1064 }
1065 }
1066
1067 /*
1068 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
1069 * driver.
1070 */
1071 static void
rum_select_band(struct rum_softc * sc,struct ieee80211_channel * c)1072 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1073 {
1074 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1075 uint32_t tmp;
1076
1077 /* update all BBP registers that depend on the band */
1078 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1079 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
1080 if (IEEE80211_IS_CHAN_5GHZ(c)) {
1081 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1082 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
1083 }
1084 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1085 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1086 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1087 }
1088
1089 sc->bbp17 = bbp17;
1090 rum_bbp_write(sc, 17, bbp17);
1091 rum_bbp_write(sc, 96, bbp96);
1092 rum_bbp_write(sc, 104, bbp104);
1093
1094 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1095 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1096 rum_bbp_write(sc, 75, 0x80);
1097 rum_bbp_write(sc, 86, 0x80);
1098 rum_bbp_write(sc, 88, 0x80);
1099 }
1100
1101 rum_bbp_write(sc, 35, bbp35);
1102 rum_bbp_write(sc, 97, bbp97);
1103 rum_bbp_write(sc, 98, bbp98);
1104
1105 tmp = rum_read(sc, RT2573_PHY_CSR0);
1106 tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1107 if (IEEE80211_IS_CHAN_2GHZ(c))
1108 tmp |= RT2573_PA_PE_2GHZ;
1109 else
1110 tmp |= RT2573_PA_PE_5GHZ;
1111 rum_write(sc, RT2573_PHY_CSR0, tmp);
1112
1113 /* 802.11a uses a 16 microseconds short interframe space */
1114 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1115 }
1116
1117 static void
rum_set_chan(struct rum_softc * sc,struct ieee80211_channel * c)1118 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1119 {
1120 struct ieee80211com *ic = &sc->sc_ic;
1121 const struct rfprog *rfprog;
1122 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1123 int8_t power;
1124 uint_t i, chan;
1125
1126 chan = ieee80211_chan2ieee(ic, c);
1127 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1128 return;
1129
1130 /* select the appropriate RF settings based on what EEPROM says */
1131 rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1132 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1133
1134 /* find the settings for this channel (we know it exists) */
1135 for (i = 0; rfprog[i].chan != chan; i++) {
1136 }
1137
1138 power = sc->txpow[i];
1139 if (power < 0) {
1140 bbp94 += power;
1141 power = 0;
1142 } else if (power > 31) {
1143 bbp94 += power - 31;
1144 power = 31;
1145 }
1146
1147 /*
1148 * If we are switching from the 2GHz band to the 5GHz band or
1149 * vice-versa, BBP registers need to be reprogrammed.
1150 */
1151 if (c->ich_flags != ic->ic_curchan->ich_flags) {
1152 rum_select_band(sc, c);
1153 rum_select_antenna(sc);
1154 }
1155 ic->ic_curchan = c;
1156
1157 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1158 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1159 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1160 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1161
1162 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1163 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1164 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1165 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1166
1167 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1168 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1169 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1170 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1171
1172 drv_usecwait(10);
1173
1174 /* enable smart mode for MIMO-capable RFs */
1175 bbp3 = rum_bbp_read(sc, 3);
1176
1177 bbp3 &= ~RT2573_SMART_MODE;
1178 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1179 bbp3 |= RT2573_SMART_MODE;
1180
1181 rum_bbp_write(sc, 3, bbp3);
1182
1183 if (bbp94 != RT2573_BBPR94_DEFAULT)
1184 rum_bbp_write(sc, 94, bbp94);
1185 }
1186
1187 /*
1188 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1189 * and HostAP operating modes.
1190 */
1191 static void
rum_enable_tsf_sync(struct rum_softc * sc)1192 rum_enable_tsf_sync(struct rum_softc *sc)
1193 {
1194 struct ieee80211com *ic = &sc->sc_ic;
1195 uint32_t tmp;
1196
1197 if (ic->ic_opmode != IEEE80211_M_STA) {
1198 /*
1199 * Change default 16ms TBTT adjustment to 8ms.
1200 * Must be done before enabling beacon generation.
1201 */
1202 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1203 }
1204
1205 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1206
1207 /* set beacon interval (in 1/16ms unit) */
1208 tmp |= ic->ic_bss->in_intval * 16;
1209
1210 tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1211 if (ic->ic_opmode == IEEE80211_M_STA)
1212 tmp |= RT2573_TSF_MODE(1);
1213 else
1214 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1215
1216 rum_write(sc, RT2573_TXRX_CSR9, tmp);
1217 }
1218
1219 /* ARGSUSED */
1220 static void
rum_update_slot(struct ieee80211com * ic,int onoff)1221 rum_update_slot(struct ieee80211com *ic, int onoff)
1222 {
1223 struct rum_softc *sc = (struct rum_softc *)ic;
1224 uint8_t slottime;
1225 uint32_t tmp;
1226
1227 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1228
1229 tmp = rum_read(sc, RT2573_MAC_CSR9);
1230 tmp = (tmp & ~0xff) | slottime;
1231 rum_write(sc, RT2573_MAC_CSR9, tmp);
1232
1233 ral_debug(RAL_DBG_HW, "setting slot time to %uus\n", slottime);
1234 }
1235
1236 static void
rum_set_bssid(struct rum_softc * sc,const uint8_t * bssid)1237 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1238 {
1239 uint32_t tmp;
1240
1241 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1242 rum_write(sc, RT2573_MAC_CSR4, tmp);
1243
1244 tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1245 rum_write(sc, RT2573_MAC_CSR5, tmp);
1246 }
1247
1248 static void
rum_set_macaddr(struct rum_softc * sc,const uint8_t * addr)1249 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1250 {
1251 uint32_t tmp;
1252
1253 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1254 rum_write(sc, RT2573_MAC_CSR2, tmp);
1255
1256 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1257 rum_write(sc, RT2573_MAC_CSR3, tmp);
1258
1259 ral_debug(RAL_DBG_HW,
1260 "setting MAC address to " MACSTR "\n", MAC2STR(addr));
1261 }
1262
1263 static void
rum_update_promisc(struct rum_softc * sc)1264 rum_update_promisc(struct rum_softc *sc)
1265 {
1266 uint32_t tmp;
1267
1268 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1269
1270 tmp &= ~RT2573_DROP_NOT_TO_ME;
1271 if (!(sc->sc_rcr & RAL_RCR_PROMISC))
1272 tmp |= RT2573_DROP_NOT_TO_ME;
1273
1274 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1275
1276 ral_debug(RAL_DBG_HW, "%s promiscuous mode\n",
1277 (sc->sc_rcr & RAL_RCR_PROMISC) ? "entering" : "leaving");
1278 }
1279
1280 static const char *
rum_get_rf(int rev)1281 rum_get_rf(int rev)
1282 {
1283 switch (rev) {
1284 case RT2573_RF_2527: return ("RT2527 (MIMO XR)");
1285 case RT2573_RF_2528: return ("RT2528");
1286 case RT2573_RF_5225: return ("RT5225 (MIMO XR)");
1287 case RT2573_RF_5226: return ("RT5226");
1288 default: return ("unknown");
1289 }
1290 }
1291
1292 static void
rum_read_eeprom(struct rum_softc * sc)1293 rum_read_eeprom(struct rum_softc *sc)
1294 {
1295 struct ieee80211com *ic = &sc->sc_ic;
1296 uint16_t val;
1297
1298 /* read MAC address */
1299 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_macaddr, 6);
1300
1301 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1302 val = LE_16(val);
1303 sc->rf_rev = (val >> 11) & 0x1f;
1304 sc->hw_radio = (val >> 10) & 0x1;
1305 sc->rx_ant = (val >> 4) & 0x3;
1306 sc->tx_ant = (val >> 2) & 0x3;
1307 sc->nb_ant = val & 0x3;
1308
1309 ral_debug(RAL_DBG_HW, "RF revision=%d\n", sc->rf_rev);
1310
1311 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1312 val = LE_16(val);
1313 sc->ext_5ghz_lna = (val >> 6) & 0x1;
1314 sc->ext_2ghz_lna = (val >> 4) & 0x1;
1315
1316 ral_debug(RAL_DBG_HW, "External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1317 sc->ext_2ghz_lna, sc->ext_5ghz_lna);
1318
1319 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1320 val = LE_16(val);
1321 if ((val & 0xff) != 0xff)
1322 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
1323
1324 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1325 val = LE_16(val);
1326 if ((val & 0xff) != 0xff)
1327 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
1328
1329 ral_debug(RAL_DBG_HW, "RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1330 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
1331
1332 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1333 val = LE_16(val);
1334 if ((val & 0xff) != 0xff)
1335 sc->rffreq = val & 0xff;
1336
1337 ral_debug(RAL_DBG_HW, "RF freq=%d\n", sc->rffreq);
1338
1339 /* read Tx power for all a/b/g channels */
1340 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1341 /* default Tx power for 802.11a channels */
1342 (void) memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1343
1344 /* read default values for BBP registers */
1345 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1346 }
1347
1348 static int
rum_bbp_init(struct rum_softc * sc)1349 rum_bbp_init(struct rum_softc *sc)
1350 {
1351 int i, ntries;
1352
1353 /* wait for BBP to be ready */
1354 for (ntries = 0; ntries < 100; ntries++) {
1355 const uint8_t val = rum_bbp_read(sc, 0);
1356 if (val != 0 && val != 0xff)
1357 break;
1358 drv_usecwait(1000);
1359 }
1360 if (ntries == 100) {
1361 ral_debug(RAL_DBG_ERR, "timeout waiting for BBP\n");
1362 return (EIO);
1363 }
1364
1365 /* initialize BBP registers to default values */
1366 for (i = 0; i < RUM_N(rum_def_bbp); i++)
1367 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1368
1369 /* write vendor-specific BBP values (from EEPROM) */
1370 for (i = 0; i < 16; i++) {
1371 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1372 continue;
1373 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1374 }
1375
1376 return (0);
1377 }
1378
1379 /*
1380 * This function is called periodically (every 200ms) during scanning to
1381 * switch from one channel to another.
1382 */
1383 static void
rum_next_scan(void * arg)1384 rum_next_scan(void *arg)
1385 {
1386 struct rum_softc *sc = arg;
1387 struct ieee80211com *ic = &sc->sc_ic;
1388
1389 if (ic->ic_state == IEEE80211_S_SCAN)
1390 ieee80211_next_scan(ic);
1391 }
1392
1393 static int
rum_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)1394 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1395 {
1396 struct rum_softc *sc = (struct rum_softc *)ic;
1397 enum ieee80211_state ostate;
1398 struct ieee80211_node *ni;
1399 int err;
1400 uint32_t tmp;
1401
1402 RAL_LOCK(sc);
1403
1404 ostate = ic->ic_state;
1405
1406 if (sc->sc_scan_id != 0) {
1407 (void) untimeout(sc->sc_scan_id);
1408 sc->sc_scan_id = 0;
1409 }
1410
1411 if (sc->sc_amrr_id != 0) {
1412 (void) untimeout(sc->sc_amrr_id);
1413 sc->sc_amrr_id = 0;
1414 }
1415
1416 switch (nstate) {
1417 case IEEE80211_S_INIT:
1418 if (ostate == IEEE80211_S_RUN) {
1419 /* abort TSF synchronization */
1420 tmp = rum_read(sc, RT2573_TXRX_CSR9);
1421 rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
1422 }
1423 break;
1424
1425 case IEEE80211_S_SCAN:
1426 rum_set_chan(sc, ic->ic_curchan);
1427 sc->sc_scan_id = timeout(rum_next_scan, (void *)sc,
1428 drv_usectohz(sc->dwelltime * 1000));
1429 break;
1430
1431 case IEEE80211_S_AUTH:
1432 rum_set_chan(sc, ic->ic_curchan);
1433 break;
1434
1435 case IEEE80211_S_ASSOC:
1436 rum_set_chan(sc, ic->ic_curchan);
1437 break;
1438
1439 case IEEE80211_S_RUN:
1440 rum_set_chan(sc, ic->ic_curchan);
1441
1442 ni = ic->ic_bss;
1443
1444 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1445 rum_update_slot(ic, 1);
1446 rum_enable_mrr(sc);
1447 rum_set_txpreamble(sc);
1448 rum_set_basicrates(sc);
1449 rum_set_bssid(sc, ni->in_bssid);
1450 }
1451
1452 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1453 rum_enable_tsf_sync(sc);
1454
1455 /* enable automatic rate adaptation in STA mode */
1456 if (ic->ic_opmode == IEEE80211_M_STA &&
1457 ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
1458 rum_amrr_start(sc, ni);
1459 break;
1460 }
1461
1462 RAL_UNLOCK(sc);
1463
1464 err = sc->sc_newstate(ic, nstate, arg);
1465 /*
1466 * Finally, start any timers.
1467 */
1468 if (nstate == IEEE80211_S_RUN)
1469 ieee80211_start_watchdog(ic, 1);
1470
1471 return (err);
1472 }
1473
1474 static void
rum_close_pipes(struct rum_softc * sc)1475 rum_close_pipes(struct rum_softc *sc)
1476 {
1477 usb_flags_t flags = USB_FLAGS_SLEEP;
1478
1479 if (sc->sc_rx_pipeh != NULL) {
1480 usb_pipe_reset(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
1481 usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0);
1482 sc->sc_rx_pipeh = NULL;
1483 }
1484
1485 if (sc->sc_tx_pipeh != NULL) {
1486 usb_pipe_reset(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
1487 usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0);
1488 sc->sc_tx_pipeh = NULL;
1489 }
1490 }
1491
1492 static int
rum_open_pipes(struct rum_softc * sc)1493 rum_open_pipes(struct rum_softc *sc)
1494 {
1495 usb_ep_data_t *ep_node;
1496 usb_pipe_policy_t policy;
1497 int err;
1498
1499 ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
1500 USB_EP_ATTR_BULK, USB_EP_DIR_OUT);
1501
1502 bzero(&policy, sizeof (usb_pipe_policy_t));
1503 policy.pp_max_async_reqs = RAL_TX_LIST_COUNT;
1504
1505 if ((err = usb_pipe_open(sc->sc_dev,
1506 &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
1507 &sc->sc_tx_pipeh)) != USB_SUCCESS) {
1508 ral_debug(RAL_DBG_ERR,
1509 "rum_open_pipes(): %x failed to open tx pipe\n", err);
1510 goto fail;
1511 }
1512
1513 ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0,
1514 USB_EP_ATTR_BULK, USB_EP_DIR_IN);
1515
1516 bzero(&policy, sizeof (usb_pipe_policy_t));
1517 policy.pp_max_async_reqs = RAL_RX_LIST_COUNT + 32;
1518
1519 if ((err = usb_pipe_open(sc->sc_dev,
1520 &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP,
1521 &sc->sc_rx_pipeh)) != USB_SUCCESS) {
1522 ral_debug(RAL_DBG_ERR,
1523 "rum_open_pipes(): %x failed to open rx pipe\n", err);
1524 goto fail;
1525 }
1526
1527 return (USB_SUCCESS);
1528
1529 fail:
1530 if (sc->sc_rx_pipeh != NULL) {
1531 usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh,
1532 USB_FLAGS_SLEEP, NULL, 0);
1533 sc->sc_rx_pipeh = NULL;
1534 }
1535
1536 if (sc->sc_tx_pipeh != NULL) {
1537 usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh,
1538 USB_FLAGS_SLEEP, NULL, 0);
1539 sc->sc_tx_pipeh = NULL;
1540 }
1541
1542 return (USB_FAILURE);
1543 }
1544
1545 static int
rum_tx_trigger(struct rum_softc * sc,mblk_t * mp)1546 rum_tx_trigger(struct rum_softc *sc, mblk_t *mp)
1547 {
1548 usb_bulk_req_t *req;
1549 int err;
1550
1551 sc->sc_tx_timer = RUM_TX_TIMEOUT;
1552
1553 req = usb_alloc_bulk_req(sc->sc_dev, 0, USB_FLAGS_SLEEP);
1554 if (req == NULL) {
1555 ral_debug(RAL_DBG_ERR,
1556 "rum_tx_trigger(): failed to allocate req");
1557 freemsg(mp);
1558 return (-1);
1559 }
1560
1561 req->bulk_len = msgdsize(mp);
1562 req->bulk_data = mp;
1563 req->bulk_client_private = (usb_opaque_t)sc;
1564 req->bulk_timeout = RUM_TX_TIMEOUT;
1565 req->bulk_attributes = USB_ATTRS_AUTOCLEARING;
1566 req->bulk_cb = rum_txeof;
1567 req->bulk_exc_cb = rum_txeof;
1568 req->bulk_completion_reason = 0;
1569 req->bulk_cb_flags = 0;
1570
1571 if ((err = usb_pipe_bulk_xfer(sc->sc_tx_pipeh, req, 0))
1572 != USB_SUCCESS) {
1573
1574 ral_debug(RAL_DBG_ERR, "rum_tx_trigger(): "
1575 "failed to do tx xfer, %d", err);
1576 usb_free_bulk_req(req);
1577 return (-1);
1578 }
1579
1580 sc->tx_queued++;
1581
1582 return (0);
1583 }
1584
1585 static int
rum_rx_trigger(struct rum_softc * sc)1586 rum_rx_trigger(struct rum_softc *sc)
1587 {
1588 usb_bulk_req_t *req;
1589 int err;
1590
1591 req = usb_alloc_bulk_req(sc->sc_dev, RAL_RXBUF_SIZE, USB_FLAGS_SLEEP);
1592 if (req == NULL) {
1593 ral_debug(RAL_DBG_ERR,
1594 "rum_rx_trigger(): failed to allocate req");
1595 return (-1);
1596 }
1597
1598 req->bulk_len = RAL_RXBUF_SIZE;
1599 req->bulk_client_private = (usb_opaque_t)sc;
1600 req->bulk_timeout = 0;
1601 req->bulk_attributes = USB_ATTRS_SHORT_XFER_OK
1602 | USB_ATTRS_AUTOCLEARING;
1603 req->bulk_cb = rum_rxeof;
1604 req->bulk_exc_cb = rum_rxeof;
1605 req->bulk_completion_reason = 0;
1606 req->bulk_cb_flags = 0;
1607
1608 err = usb_pipe_bulk_xfer(sc->sc_rx_pipeh, req, 0);
1609
1610 if (err != USB_SUCCESS) {
1611 ral_debug(RAL_DBG_ERR, "rum_rx_trigger(): "
1612 "failed to do rx xfer, %d", err);
1613 usb_free_bulk_req(req);
1614
1615 return (-1);
1616 }
1617
1618 mutex_enter(&sc->rx_lock);
1619 sc->rx_queued++;
1620 mutex_exit(&sc->rx_lock);
1621
1622 return (0);
1623 }
1624
1625 static void
rum_init_tx_queue(struct rum_softc * sc)1626 rum_init_tx_queue(struct rum_softc *sc)
1627 {
1628 sc->tx_queued = 0;
1629 }
1630
1631 static int
rum_init_rx_queue(struct rum_softc * sc)1632 rum_init_rx_queue(struct rum_softc *sc)
1633 {
1634 int i;
1635
1636 sc->rx_queued = 0;
1637
1638 for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
1639 if (rum_rx_trigger(sc) != 0) {
1640 return (USB_FAILURE);
1641 }
1642 }
1643
1644 return (USB_SUCCESS);
1645 }
1646
1647 static void
rum_stop(struct rum_softc * sc)1648 rum_stop(struct rum_softc *sc)
1649 {
1650 struct ieee80211com *ic = &sc->sc_ic;
1651 uint32_t tmp;
1652
1653 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1654 ieee80211_stop_watchdog(ic); /* stop the watchdog */
1655
1656 RAL_LOCK(sc);
1657
1658 sc->sc_tx_timer = 0;
1659 sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */
1660
1661 /* disable Rx */
1662 tmp = rum_read(sc, RT2573_TXRX_CSR0);
1663 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1664
1665 /* reset ASIC */
1666 rum_write(sc, RT2573_MAC_CSR1, 3);
1667 rum_write(sc, RT2573_MAC_CSR1, 0);
1668
1669 rum_close_pipes(sc);
1670
1671 RAL_UNLOCK(sc);
1672 }
1673
1674 static int
rum_init(struct rum_softc * sc)1675 rum_init(struct rum_softc *sc)
1676 {
1677 struct ieee80211com *ic = &sc->sc_ic;
1678 uint32_t tmp;
1679 int i, ntries;
1680
1681 rum_stop(sc);
1682
1683 /* initialize MAC registers to default values */
1684 for (i = 0; i < RUM_N(rum_def_mac); i++)
1685 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1686
1687 /* set host ready */
1688 rum_write(sc, RT2573_MAC_CSR1, 3);
1689 rum_write(sc, RT2573_MAC_CSR1, 0);
1690
1691 /* wait for BBP/RF to wakeup */
1692 for (ntries = 0; ntries < 1000; ntries++) {
1693 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1694 break;
1695 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
1696 drv_usecwait(1000);
1697 }
1698 if (ntries == 1000) {
1699 ral_debug(RAL_DBG_ERR,
1700 "rum_init(): timeout waiting for BBP/RF to wakeup\n");
1701 goto fail;
1702 }
1703
1704 if (rum_bbp_init(sc) != 0)
1705 goto fail;
1706
1707 /* select default channel */
1708 rum_select_band(sc, ic->ic_curchan);
1709 rum_select_antenna(sc);
1710 rum_set_chan(sc, ic->ic_curchan);
1711
1712 /* clear STA registers */
1713 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta));
1714
1715 rum_set_macaddr(sc, ic->ic_macaddr);
1716
1717 /* initialize ASIC */
1718 rum_write(sc, RT2573_MAC_CSR1, 4);
1719
1720 if (rum_open_pipes(sc) != USB_SUCCESS) {
1721 ral_debug(RAL_DBG_ERR, "rum_init(): "
1722 "could not open pipes.\n");
1723 goto fail;
1724 }
1725
1726 rum_init_tx_queue(sc);
1727
1728 if (rum_init_rx_queue(sc) != USB_SUCCESS)
1729 goto fail;
1730
1731 /* update Rx filter */
1732 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
1733 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
1734 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1735 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
1736 RT2573_DROP_ACKCTS;
1737 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
1738 tmp |= RT2573_DROP_TODS;
1739 if (!(sc->sc_rcr & RAL_RCR_PROMISC))
1740 tmp |= RT2573_DROP_NOT_TO_ME;
1741 }
1742
1743 rum_write(sc, RT2573_TXRX_CSR0, tmp);
1744 sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */
1745
1746 return (DDI_SUCCESS);
1747 fail:
1748 rum_stop(sc);
1749 return (DDI_FAILURE);
1750 }
1751
1752 static int
rum_disconnect(dev_info_t * devinfo)1753 rum_disconnect(dev_info_t *devinfo)
1754 {
1755 struct rum_softc *sc;
1756 struct ieee80211com *ic;
1757
1758 /*
1759 * We can't call rum_stop() here, since the hardware is removed,
1760 * we can't access the register anymore.
1761 */
1762 sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo));
1763 ASSERT(sc != NULL);
1764
1765 if (!RAL_IS_RUNNING(sc)) /* different device or not inited */
1766 return (DDI_SUCCESS);
1767
1768 ic = &sc->sc_ic;
1769 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1770 ieee80211_stop_watchdog(ic); /* stop the watchdog */
1771
1772 RAL_LOCK(sc);
1773
1774 sc->sc_tx_timer = 0;
1775 sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */
1776
1777 rum_close_pipes(sc);
1778
1779 RAL_UNLOCK(sc);
1780
1781 return (DDI_SUCCESS);
1782 }
1783
1784 static int
rum_reconnect(dev_info_t * devinfo)1785 rum_reconnect(dev_info_t *devinfo)
1786 {
1787 struct rum_softc *sc;
1788 int err;
1789
1790 sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo));
1791 ASSERT(sc != NULL);
1792
1793 /* check device changes after disconnect */
1794 if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1,
1795 USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) {
1796 ral_debug(RAL_DBG_ERR, "different device connected\n");
1797 return (DDI_FAILURE);
1798 }
1799
1800 err = rum_load_microcode(sc);
1801 if (err != USB_SUCCESS) {
1802 ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n");
1803 goto fail;
1804 }
1805
1806 err = rum_init(sc);
1807 fail:
1808 return (err);
1809 }
1810
1811 static void
rum_resume(struct rum_softc * sc)1812 rum_resume(struct rum_softc *sc)
1813 {
1814 int err;
1815
1816 /* check device changes after suspend */
1817 if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1,
1818 USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) {
1819 ral_debug(RAL_DBG_ERR, "no or different device connected\n");
1820 return;
1821 }
1822
1823 err = rum_load_microcode(sc);
1824 if (err != USB_SUCCESS) {
1825 ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n");
1826 return;
1827 }
1828
1829 (void) rum_init(sc);
1830 }
1831
1832 #define RUM_AMRR_MIN_SUCCESS_THRESHOLD 1
1833 #define RUM_AMRR_MAX_SUCCESS_THRESHOLD 10
1834
1835 /*
1836 * Naive implementation of the Adaptive Multi Rate Retry algorithm:
1837 * "IEEE 802.11 Rate Adaptation: A Practical Approach"
1838 * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
1839 * INRIA Sophia - Projet Planete
1840 * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
1841 *
1842 * This algorithm is particularly well suited for rum since it does not
1843 * require per-frame retry statistics. Note however that since h/w does
1844 * not provide per-frame stats, we can't do per-node rate adaptation and
1845 * thus automatic rate adaptation is only enabled in STA operating mode.
1846 */
1847 #define is_success(amrr) \
1848 ((amrr)->retrycnt < (amrr)->txcnt / 10)
1849 #define is_failure(amrr) \
1850 ((amrr)->retrycnt > (amrr)->txcnt / 3)
1851 #define is_enough(amrr) \
1852 ((amrr)->txcnt > 10)
1853 #define is_min_rate(ni) \
1854 ((ni)->in_txrate == 0)
1855 #define is_max_rate(ni) \
1856 ((ni)->in_txrate == (ni)->in_rates.ir_nrates - 1)
1857 #define increase_rate(ni) \
1858 ((ni)->in_txrate++)
1859 #define decrease_rate(ni) \
1860 ((ni)->in_txrate--)
1861 #define reset_cnt(amrr) do { \
1862 (amrr)->txcnt = (amrr)->retrycnt = 0; \
1863 _NOTE(CONSTCOND) \
1864 } while (/* CONSTCOND */0)
1865
1866 static void
rum_ratectl(struct rum_amrr * amrr,struct ieee80211_node * ni)1867 rum_ratectl(struct rum_amrr *amrr, struct ieee80211_node *ni)
1868 {
1869 int need_change = 0;
1870
1871 if (is_success(amrr) && is_enough(amrr)) {
1872 amrr->success++;
1873 if (amrr->success >= amrr->success_threshold &&
1874 !is_max_rate(ni)) {
1875 amrr->recovery = 1;
1876 amrr->success = 0;
1877 increase_rate(ni);
1878 need_change = 1;
1879 } else {
1880 amrr->recovery = 0;
1881 }
1882 } else if (is_failure(amrr)) {
1883 amrr->success = 0;
1884 if (!is_min_rate(ni)) {
1885 if (amrr->recovery) {
1886 amrr->success_threshold *= 2;
1887 if (amrr->success_threshold >
1888 RUM_AMRR_MAX_SUCCESS_THRESHOLD)
1889 amrr->success_threshold =
1890 RUM_AMRR_MAX_SUCCESS_THRESHOLD;
1891 } else {
1892 amrr->success_threshold =
1893 RUM_AMRR_MIN_SUCCESS_THRESHOLD;
1894 }
1895 decrease_rate(ni);
1896 need_change = 1;
1897 }
1898 amrr->recovery = 0; /* original paper was incorrect */
1899 }
1900
1901 if (is_enough(amrr) || need_change)
1902 reset_cnt(amrr);
1903 }
1904
1905 static void
rum_amrr_timeout(void * arg)1906 rum_amrr_timeout(void *arg)
1907 {
1908 struct rum_softc *sc = (struct rum_softc *)arg;
1909 struct rum_amrr *amrr = &sc->amrr;
1910
1911 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta));
1912
1913 /* count TX retry-fail as Tx errors */
1914 sc->sc_tx_err += LE_32(sc->sta[5]) >> 16;
1915 sc->sc_tx_retries += ((LE_32(sc->sta[4]) >> 16) +
1916 (LE_32(sc->sta[5]) & 0xffff));
1917
1918 amrr->retrycnt =
1919 (LE_32(sc->sta[4]) >> 16) + /* TX one-retry ok count */
1920 (LE_32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
1921 (LE_32(sc->sta[5]) >> 16); /* TX retry-fail count */
1922
1923 amrr->txcnt =
1924 amrr->retrycnt +
1925 (LE_32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
1926
1927 rum_ratectl(amrr, sc->sc_ic.ic_bss);
1928
1929 sc->sc_amrr_id = timeout(rum_amrr_timeout, (void *)sc,
1930 drv_usectohz(1000 * 1000)); /* 1 second */
1931 }
1932
1933 static void
rum_amrr_start(struct rum_softc * sc,struct ieee80211_node * ni)1934 rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
1935 {
1936 struct rum_amrr *amrr = &sc->amrr;
1937 int i;
1938
1939 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
1940 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta));
1941
1942 amrr->success = 0;
1943 amrr->recovery = 0;
1944 amrr->txcnt = amrr->retrycnt = 0;
1945 amrr->success_threshold = RUM_AMRR_MIN_SUCCESS_THRESHOLD;
1946
1947 /* set rate to some reasonable initial value */
1948 for (i = ni->in_rates.ir_nrates - 1;
1949 i > 0 && (ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL) > 72;
1950 i--) {
1951 }
1952
1953 ni->in_txrate = i;
1954
1955 sc->sc_amrr_id = timeout(rum_amrr_timeout, (void *)sc,
1956 drv_usectohz(1000 * 1000)); /* 1 second */
1957 }
1958
1959 void
rum_watchdog(void * arg)1960 rum_watchdog(void *arg)
1961 {
1962 struct rum_softc *sc = arg;
1963 struct ieee80211com *ic = &sc->sc_ic;
1964 int ntimer = 0;
1965
1966 RAL_LOCK(sc);
1967 ic->ic_watchdog_timer = 0;
1968
1969 if (!RAL_IS_RUNNING(sc)) {
1970 RAL_UNLOCK(sc);
1971 return;
1972 }
1973
1974 if (sc->sc_tx_timer > 0) {
1975 if (--sc->sc_tx_timer == 0) {
1976 ral_debug(RAL_DBG_ERR, "tx timer timeout\n");
1977 RAL_UNLOCK(sc);
1978 (void) rum_init(sc);
1979 (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1980 return;
1981 }
1982 }
1983
1984 if (ic->ic_state == IEEE80211_S_RUN)
1985 ntimer = 1;
1986
1987 RAL_UNLOCK(sc);
1988
1989 ieee80211_watchdog(ic);
1990
1991 if (ntimer)
1992 ieee80211_start_watchdog(ic, ntimer);
1993 }
1994
1995 static int
rum_m_start(void * arg)1996 rum_m_start(void *arg)
1997 {
1998 struct rum_softc *sc = (struct rum_softc *)arg;
1999 int err;
2000
2001 /*
2002 * initialize RT2501USB hardware
2003 */
2004 err = rum_init(sc);
2005 if (err != DDI_SUCCESS) {
2006 ral_debug(RAL_DBG_ERR, "device configuration failed\n");
2007 goto fail;
2008 }
2009 sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */
2010 return (err);
2011
2012 fail:
2013 rum_stop(sc);
2014 return (err);
2015 }
2016
2017 static void
rum_m_stop(void * arg)2018 rum_m_stop(void *arg)
2019 {
2020 struct rum_softc *sc = (struct rum_softc *)arg;
2021
2022 (void) rum_stop(sc);
2023 sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */
2024 }
2025
2026 static int
rum_m_unicst(void * arg,const uint8_t * macaddr)2027 rum_m_unicst(void *arg, const uint8_t *macaddr)
2028 {
2029 struct rum_softc *sc = (struct rum_softc *)arg;
2030 struct ieee80211com *ic = &sc->sc_ic;
2031
2032 ral_debug(RAL_DBG_MSG, "rum_m_unicst(): " MACSTR "\n",
2033 MAC2STR(macaddr));
2034
2035 IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2036 (void) rum_set_macaddr(sc, (uint8_t *)macaddr);
2037 (void) rum_init(sc);
2038
2039 return (0);
2040 }
2041
2042 /*ARGSUSED*/
2043 static int
rum_m_multicst(void * arg,boolean_t add,const uint8_t * mca)2044 rum_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
2045 {
2046 return (0);
2047 }
2048
2049 static int
rum_m_promisc(void * arg,boolean_t on)2050 rum_m_promisc(void *arg, boolean_t on)
2051 {
2052 struct rum_softc *sc = (struct rum_softc *)arg;
2053
2054 if (on) {
2055 sc->sc_rcr |= RAL_RCR_PROMISC;
2056 sc->sc_rcr |= RAL_RCR_MULTI;
2057 } else {
2058 sc->sc_rcr &= ~RAL_RCR_PROMISC;
2059 sc->sc_rcr &= ~RAL_RCR_MULTI;
2060 }
2061
2062 rum_update_promisc(sc);
2063 return (0);
2064 }
2065
2066 /*
2067 * callback functions for /get/set properties
2068 */
2069 static int
rum_m_setprop(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,uint_t wldp_length,const void * wldp_buf)2070 rum_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2071 uint_t wldp_length, const void *wldp_buf)
2072 {
2073 struct rum_softc *sc = (struct rum_softc *)arg;
2074 struct ieee80211com *ic = &sc->sc_ic;
2075 int err;
2076
2077 err = ieee80211_setprop(ic, pr_name, wldp_pr_num,
2078 wldp_length, wldp_buf);
2079 RAL_LOCK(sc);
2080 if (err == ENETRESET) {
2081 if (RAL_IS_RUNNING(sc)) {
2082 RAL_UNLOCK(sc);
2083 (void) rum_init(sc);
2084 (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2085 RAL_LOCK(sc);
2086 }
2087 err = 0;
2088 }
2089 RAL_UNLOCK(sc);
2090
2091 return (err);
2092 }
2093
2094 static int
rum_m_getprop(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,uint_t wldp_length,void * wldp_buf)2095 rum_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2096 uint_t wldp_length, void *wldp_buf)
2097 {
2098 struct rum_softc *sc = (struct rum_softc *)arg;
2099 int err;
2100
2101 err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num,
2102 wldp_length, wldp_buf);
2103
2104 return (err);
2105 }
2106
2107 static void
rum_m_propinfo(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,mac_prop_info_handle_t prh)2108 rum_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2109 mac_prop_info_handle_t prh)
2110 {
2111 struct rum_softc *sc = (struct rum_softc *)arg;
2112
2113 ieee80211_propinfo(&sc->sc_ic, pr_name, wldp_pr_num, prh);
2114 }
2115
2116 static void
rum_m_ioctl(void * arg,queue_t * wq,mblk_t * mp)2117 rum_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2118 {
2119 struct rum_softc *sc = (struct rum_softc *)arg;
2120 struct ieee80211com *ic = &sc->sc_ic;
2121 int err;
2122
2123 err = ieee80211_ioctl(ic, wq, mp);
2124 RAL_LOCK(sc);
2125 if (err == ENETRESET) {
2126 if (RAL_IS_RUNNING(sc)) {
2127 RAL_UNLOCK(sc);
2128 (void) rum_init(sc);
2129 (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2130 RAL_LOCK(sc);
2131 }
2132 }
2133 RAL_UNLOCK(sc);
2134 }
2135
2136 static int
rum_m_stat(void * arg,uint_t stat,uint64_t * val)2137 rum_m_stat(void *arg, uint_t stat, uint64_t *val)
2138 {
2139 struct rum_softc *sc = (struct rum_softc *)arg;
2140 ieee80211com_t *ic = &sc->sc_ic;
2141 ieee80211_node_t *ni;
2142 struct ieee80211_rateset *rs;
2143
2144 RAL_LOCK(sc);
2145
2146 ni = ic->ic_bss;
2147 rs = &ni->in_rates;
2148
2149 switch (stat) {
2150 case MAC_STAT_IFSPEED:
2151 *val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2152 (rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL)
2153 : ic->ic_fixed_rate) * 500000ull;
2154 break;
2155 case MAC_STAT_NOXMTBUF:
2156 *val = sc->sc_tx_nobuf;
2157 break;
2158 case MAC_STAT_NORCVBUF:
2159 *val = sc->sc_rx_nobuf;
2160 break;
2161 case MAC_STAT_IERRORS:
2162 *val = sc->sc_rx_err;
2163 break;
2164 case MAC_STAT_RBYTES:
2165 *val = ic->ic_stats.is_rx_bytes;
2166 break;
2167 case MAC_STAT_IPACKETS:
2168 *val = ic->ic_stats.is_rx_frags;
2169 break;
2170 case MAC_STAT_OBYTES:
2171 *val = ic->ic_stats.is_tx_bytes;
2172 break;
2173 case MAC_STAT_OPACKETS:
2174 *val = ic->ic_stats.is_tx_frags;
2175 break;
2176 case MAC_STAT_OERRORS:
2177 case WIFI_STAT_TX_FAILED:
2178 *val = sc->sc_tx_err;
2179 break;
2180 case WIFI_STAT_TX_RETRANS:
2181 *val = sc->sc_tx_retries;
2182 break;
2183 case WIFI_STAT_FCS_ERRORS:
2184 case WIFI_STAT_WEP_ERRORS:
2185 case WIFI_STAT_TX_FRAGS:
2186 case WIFI_STAT_MCAST_TX:
2187 case WIFI_STAT_RTS_SUCCESS:
2188 case WIFI_STAT_RTS_FAILURE:
2189 case WIFI_STAT_ACK_FAILURE:
2190 case WIFI_STAT_RX_FRAGS:
2191 case WIFI_STAT_MCAST_RX:
2192 case WIFI_STAT_RX_DUPS:
2193 RAL_UNLOCK(sc);
2194 return (ieee80211_stat(ic, stat, val));
2195 default:
2196 RAL_UNLOCK(sc);
2197 return (ENOTSUP);
2198 }
2199 RAL_UNLOCK(sc);
2200
2201 return (0);
2202 }
2203
2204 static int
rum_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)2205 rum_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2206 {
2207 struct rum_softc *sc;
2208 struct ieee80211com *ic;
2209 int err, i, ntries;
2210 uint32_t tmp;
2211 int instance;
2212
2213 char strbuf[32];
2214
2215 wifi_data_t wd = { 0 };
2216 mac_register_t *macp;
2217
2218 switch (cmd) {
2219 case DDI_ATTACH:
2220 break;
2221 case DDI_RESUME:
2222 sc = ddi_get_soft_state(rum_soft_state_p,
2223 ddi_get_instance(devinfo));
2224 ASSERT(sc != NULL);
2225 rum_resume(sc);
2226 return (DDI_SUCCESS);
2227 default:
2228 return (DDI_FAILURE);
2229 }
2230
2231 instance = ddi_get_instance(devinfo);
2232
2233 if (ddi_soft_state_zalloc(rum_soft_state_p, instance) != DDI_SUCCESS) {
2234 ral_debug(RAL_DBG_MSG, "rum_attach(): "
2235 "unable to alloc soft_state_p\n");
2236 return (DDI_FAILURE);
2237 }
2238
2239 sc = ddi_get_soft_state(rum_soft_state_p, instance);
2240 ic = (ieee80211com_t *)&sc->sc_ic;
2241 sc->sc_dev = devinfo;
2242
2243 if (usb_client_attach(devinfo, USBDRV_VERSION, 0) != USB_SUCCESS) {
2244 ral_debug(RAL_DBG_ERR,
2245 "rum_attach(): usb_client_attach failed\n");
2246 goto fail1;
2247 }
2248
2249 if (usb_get_dev_data(devinfo, &sc->sc_udev,
2250 USB_PARSE_LVL_ALL, 0) != USB_SUCCESS) {
2251 sc->sc_udev = NULL;
2252 goto fail2;
2253 }
2254
2255 mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL);
2256 mutex_init(&sc->tx_lock, NULL, MUTEX_DRIVER, NULL);
2257 mutex_init(&sc->rx_lock, NULL, MUTEX_DRIVER, NULL);
2258
2259 /* retrieve RT2573 rev. no */
2260 for (ntries = 0; ntries < 1000; ntries++) {
2261 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
2262 break;
2263 drv_usecwait(1000);
2264 }
2265 if (ntries == 1000) {
2266 ral_debug(RAL_DBG_ERR,
2267 "rum_attach(): timeout waiting for chip to settle\n");
2268 goto fail3;
2269 }
2270
2271 /* retrieve MAC address and various other things from EEPROM */
2272 rum_read_eeprom(sc);
2273
2274 ral_debug(RAL_DBG_MSG, "rum: MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
2275 tmp, rum_get_rf(sc->rf_rev));
2276
2277 err = rum_load_microcode(sc);
2278 if (err != USB_SUCCESS) {
2279 ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n");
2280 goto fail3;
2281 }
2282
2283 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
2284 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
2285 ic->ic_state = IEEE80211_S_INIT;
2286
2287 ic->ic_maxrssi = 63;
2288 ic->ic_set_shortslot = rum_update_slot;
2289 ic->ic_xmit = rum_send;
2290
2291 /* set device capabilities */
2292 ic->ic_caps =
2293 IEEE80211_C_TXPMGT | /* tx power management */
2294 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
2295 IEEE80211_C_SHSLOT; /* short slot time supported */
2296
2297 ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
2298
2299 #define IEEE80211_CHAN_A \
2300 (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
2301
2302 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
2303 /* set supported .11a rates */
2304 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
2305
2306 /* set supported .11a channels */
2307 for (i = 34; i <= 46; i += 4) {
2308 ic->ic_sup_channels[i].ich_freq =
2309 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2310 ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2311 }
2312 for (i = 36; i <= 64; i += 4) {
2313 ic->ic_sup_channels[i].ich_freq =
2314 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2315 ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2316 }
2317 for (i = 100; i <= 140; i += 4) {
2318 ic->ic_sup_channels[i].ich_freq =
2319 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2320 ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2321 }
2322 for (i = 149; i <= 165; i += 4) {
2323 ic->ic_sup_channels[i].ich_freq =
2324 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
2325 ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A;
2326 }
2327 }
2328
2329 /* set supported .11b and .11g rates */
2330 ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
2331 ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
2332
2333 /* set supported .11b and .11g channels (1 through 14) */
2334 for (i = 1; i <= 14; i++) {
2335 ic->ic_sup_channels[i].ich_freq =
2336 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
2337 ic->ic_sup_channels[i].ich_flags =
2338 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2339 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2340 }
2341
2342 ieee80211_attach(ic);
2343
2344 /* register WPA door */
2345 ieee80211_register_door(ic, ddi_driver_name(devinfo),
2346 ddi_get_instance(devinfo));
2347
2348 /* override state transition machine */
2349 sc->sc_newstate = ic->ic_newstate;
2350 ic->ic_newstate = rum_newstate;
2351 ic->ic_watchdog = rum_watchdog;
2352 ieee80211_media_init(ic);
2353 ic->ic_def_txkey = 0;
2354
2355 sc->sc_rcr = 0;
2356 sc->dwelltime = 300;
2357 sc->sc_flags = 0;
2358
2359 /*
2360 * Provide initial settings for the WiFi plugin; whenever this
2361 * information changes, we need to call mac_plugindata_update()
2362 */
2363 wd.wd_opmode = ic->ic_opmode;
2364 wd.wd_secalloc = WIFI_SEC_NONE;
2365 IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
2366
2367 if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
2368 ral_debug(RAL_DBG_ERR, "rum_attach(): "
2369 "MAC version mismatch\n");
2370 goto fail3;
2371 }
2372
2373 macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI;
2374 macp->m_driver = sc;
2375 macp->m_dip = devinfo;
2376 macp->m_src_addr = ic->ic_macaddr;
2377 macp->m_callbacks = &rum_m_callbacks;
2378 macp->m_min_sdu = 0;
2379 macp->m_max_sdu = IEEE80211_MTU;
2380 macp->m_pdata = &wd;
2381 macp->m_pdata_size = sizeof (wd);
2382
2383 err = mac_register(macp, &ic->ic_mach);
2384 mac_free(macp);
2385 if (err != 0) {
2386 ral_debug(RAL_DBG_ERR, "rum_attach(): "
2387 "mac_register() err %x\n", err);
2388 goto fail3;
2389 }
2390
2391 if (usb_register_hotplug_cbs(devinfo, rum_disconnect,
2392 rum_reconnect) != USB_SUCCESS) {
2393 ral_debug(RAL_DBG_ERR,
2394 "rum_attach() failed to register events");
2395 goto fail4;
2396 }
2397
2398 /*
2399 * Create minor node of type DDI_NT_NET_WIFI
2400 */
2401 (void) snprintf(strbuf, sizeof (strbuf), "%s%d",
2402 "rum", instance);
2403 err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
2404 instance + 1, DDI_NT_NET_WIFI, 0);
2405
2406 if (err != DDI_SUCCESS)
2407 ral_debug(RAL_DBG_ERR, "ddi_create_minor_node() failed\n");
2408
2409 /*
2410 * Notify link is down now
2411 */
2412 mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
2413 return (DDI_SUCCESS);
2414
2415 fail4:
2416 (void) mac_unregister(ic->ic_mach);
2417 fail3:
2418 mutex_destroy(&sc->sc_genlock);
2419 mutex_destroy(&sc->tx_lock);
2420 mutex_destroy(&sc->rx_lock);
2421 fail2:
2422 usb_client_detach(sc->sc_dev, sc->sc_udev);
2423 fail1:
2424 ddi_soft_state_free(rum_soft_state_p, ddi_get_instance(devinfo));
2425
2426 return (DDI_FAILURE);
2427 }
2428
2429 static int
rum_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)2430 rum_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2431 {
2432 struct rum_softc *sc;
2433
2434 sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo));
2435 ASSERT(sc != NULL);
2436
2437 switch (cmd) {
2438 case DDI_DETACH:
2439 break;
2440 case DDI_SUSPEND:
2441 if (RAL_IS_RUNNING(sc))
2442 (void) rum_stop(sc);
2443 return (DDI_SUCCESS);
2444 default:
2445 return (DDI_FAILURE);
2446 }
2447
2448 rum_stop(sc);
2449 usb_unregister_hotplug_cbs(devinfo);
2450
2451 /*
2452 * Unregister from the MAC layer subsystem
2453 */
2454 if (mac_unregister(sc->sc_ic.ic_mach) != 0)
2455 return (DDI_FAILURE);
2456
2457 /*
2458 * detach ieee80211 layer
2459 */
2460 ieee80211_detach(&sc->sc_ic);
2461
2462 mutex_destroy(&sc->sc_genlock);
2463 mutex_destroy(&sc->tx_lock);
2464 mutex_destroy(&sc->rx_lock);
2465
2466 /* pipes will be closed in rum_stop() */
2467 usb_client_detach(devinfo, sc->sc_udev);
2468 sc->sc_udev = NULL;
2469
2470 ddi_remove_minor_node(devinfo, NULL);
2471 ddi_soft_state_free(rum_soft_state_p, ddi_get_instance(devinfo));
2472
2473 return (DDI_SUCCESS);
2474 }
2475
2476 int
_info(struct modinfo * modinfop)2477 _info(struct modinfo *modinfop)
2478 {
2479 return (mod_info(&modlinkage, modinfop));
2480 }
2481
2482 int
_init(void)2483 _init(void)
2484 {
2485 int status;
2486
2487 status = ddi_soft_state_init(&rum_soft_state_p,
2488 sizeof (struct rum_softc), 1);
2489 if (status != 0)
2490 return (status);
2491
2492 mac_init_ops(&rum_dev_ops, "rum");
2493 status = mod_install(&modlinkage);
2494 if (status != 0) {
2495 mac_fini_ops(&rum_dev_ops);
2496 ddi_soft_state_fini(&rum_soft_state_p);
2497 }
2498 return (status);
2499 }
2500
2501 int
_fini(void)2502 _fini(void)
2503 {
2504 int status;
2505
2506 status = mod_remove(&modlinkage);
2507 if (status == 0) {
2508 mac_fini_ops(&rum_dev_ops);
2509 ddi_soft_state_fini(&rum_soft_state_p);
2510 }
2511 return (status);
2512 }
2513