xref: /freebsd/sys/contrib/dev/rtw88/main.c (revision a99462b0c9e4421d8d6b4e2f1ee9128284fced3f)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #if defined(__FreeBSD__)
6 #define	LINUXKPI_PARAM_PREFIX	rtw88_
7 #endif
8 
9 #include <linux/devcoredump.h>
10 
11 #include "main.h"
12 #include "regd.h"
13 #include "fw.h"
14 #include "ps.h"
15 #include "sec.h"
16 #include "mac.h"
17 #include "coex.h"
18 #include "phy.h"
19 #include "reg.h"
20 #include "efuse.h"
21 #include "tx.h"
22 #include "debug.h"
23 #include "bf.h"
24 #include "sar.h"
25 #include "sdio.h"
26 #include "led.h"
27 
28 bool rtw_disable_lps_deep_mode;
29 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
30 bool rtw_bf_support = true;
31 unsigned int rtw_debug_mask;
32 EXPORT_SYMBOL(rtw_debug_mask);
33 /* EDCCA is enabled during normal behavior. For debugging purpose in
34  * a noisy environment, it can be disabled via edcca debugfs. Because
35  * all rtw88 devices will probably be affected if environment is noisy,
36  * rtw_edcca_enabled is just declared by driver instead of by device.
37  * So, turning it off will take effect for all rtw88 devices before
38  * there is a tough reason to maintain rtw_edcca_enabled by device.
39  */
40 bool rtw_edcca_enabled = true;
41 
42 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
43 module_param_named(support_bf, rtw_bf_support, bool, 0644);
44 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
45 
46 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
47 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
48 MODULE_PARM_DESC(debug_mask, "Debugging mask");
49 
50 #if defined(__FreeBSD__)
51 static bool rtw_ht_support = false;
52 module_param_named(support_ht, rtw_ht_support, bool, 0644);
53 MODULE_PARM_DESC(support_ht, "Set to Y to enable HT support");
54 
55 static bool rtw_vht_support = false;
56 module_param_named(support_vht, rtw_vht_support, bool, 0644);
57 MODULE_PARM_DESC(support_vht, "Set to Y to enable VHT support");
58 #endif
59 
60 #if defined(__FreeBSD__)
61 /* Macros based on rtw89::core.c. */
62 #define	RTW88_DEF_CHAN(_freq, _hw_val, _flags, _band)		\
63 	{ .center_freq = _freq, .hw_value = _hw_val, .flags = _flags, .band = _band, }
64 #define	RTW88_DEF_CHAN_2G(_freq, _hw_val)			\
65         RTW88_DEF_CHAN(_freq, _hw_val, 0, NL80211_BAND_2GHZ)
66 #define	RTW88_DEF_CHAN_5G(_freq, _hw_val)			\
67         RTW88_DEF_CHAN(_freq, _hw_val, 0, NL80211_BAND_5GHZ)
68 #define	RTW88_DEF_CHAN_5G_NO_HT40MINUS(_freq, _hw_val)		\
69         RTW88_DEF_CHAN(_freq, _hw_val, IEEE80211_CHAN_NO_HT40MINUS, NL80211_BAND_5GHZ)
70 
71 static struct ieee80211_channel rtw_channeltable_2g[] = {
72 	RTW88_DEF_CHAN_2G(2412, 1),
73 	RTW88_DEF_CHAN_2G(2417, 2),
74 	RTW88_DEF_CHAN_2G(2422, 3),
75 	RTW88_DEF_CHAN_2G(2427, 4),
76 	RTW88_DEF_CHAN_2G(2432, 5),
77 	RTW88_DEF_CHAN_2G(2437, 6),
78 	RTW88_DEF_CHAN_2G(2442, 7),
79 	RTW88_DEF_CHAN_2G(2447, 8),
80 	RTW88_DEF_CHAN_2G(2452, 9),
81 	RTW88_DEF_CHAN_2G(2457, 10),
82 	RTW88_DEF_CHAN_2G(2462, 11),
83 	RTW88_DEF_CHAN_2G(2467, 12),
84 	RTW88_DEF_CHAN_2G(2472, 13),
85 	RTW88_DEF_CHAN_2G(2484, 14),
86 };
87 
88 static struct ieee80211_channel rtw_channeltable_5g[] = {
89 	RTW88_DEF_CHAN_5G(5180, 36),
90 	RTW88_DEF_CHAN_5G(5200, 40),
91 	RTW88_DEF_CHAN_5G(5220, 44),
92 	RTW88_DEF_CHAN_5G(5240, 48),
93 	RTW88_DEF_CHAN_5G(5260, 52),
94 	RTW88_DEF_CHAN_5G(5280, 56),
95 	RTW88_DEF_CHAN_5G(5300, 60),
96 	RTW88_DEF_CHAN_5G(5320, 64),
97 	RTW88_DEF_CHAN_5G(5500, 100),
98 	RTW88_DEF_CHAN_5G(5520, 104),
99 	RTW88_DEF_CHAN_5G(5540, 108),
100 	RTW88_DEF_CHAN_5G(5560, 112),
101 	RTW88_DEF_CHAN_5G(5580, 116),
102 	RTW88_DEF_CHAN_5G(5600, 120),
103 	RTW88_DEF_CHAN_5G(5620, 124),
104 	RTW88_DEF_CHAN_5G(5640, 128),
105 	RTW88_DEF_CHAN_5G(5660, 132),
106 	RTW88_DEF_CHAN_5G(5680, 136),
107 	RTW88_DEF_CHAN_5G(5700, 140),
108 	RTW88_DEF_CHAN_5G(5720, 144),
109 	RTW88_DEF_CHAN_5G(5745, 149),
110 	RTW88_DEF_CHAN_5G(5765, 153),
111 	RTW88_DEF_CHAN_5G(5785, 157),
112 	RTW88_DEF_CHAN_5G(5805, 161),
113 	RTW88_DEF_CHAN_5G_NO_HT40MINUS(5825, 165),
114 };
115 #elif deifned(__linux__)
116 static struct ieee80211_channel rtw_channeltable_2g[] = {
117 	{.center_freq = 2412, .hw_value = 1,},
118 	{.center_freq = 2417, .hw_value = 2,},
119 	{.center_freq = 2422, .hw_value = 3,},
120 	{.center_freq = 2427, .hw_value = 4,},
121 	{.center_freq = 2432, .hw_value = 5,},
122 	{.center_freq = 2437, .hw_value = 6,},
123 	{.center_freq = 2442, .hw_value = 7,},
124 	{.center_freq = 2447, .hw_value = 8,},
125 	{.center_freq = 2452, .hw_value = 9,},
126 	{.center_freq = 2457, .hw_value = 10,},
127 	{.center_freq = 2462, .hw_value = 11,},
128 	{.center_freq = 2467, .hw_value = 12,},
129 	{.center_freq = 2472, .hw_value = 13,},
130 	{.center_freq = 2484, .hw_value = 14,},
131 };
132 
133 static struct ieee80211_channel rtw_channeltable_5g[] = {
134 	{.center_freq = 5180, .hw_value = 36,},
135 	{.center_freq = 5200, .hw_value = 40,},
136 	{.center_freq = 5220, .hw_value = 44,},
137 	{.center_freq = 5240, .hw_value = 48,},
138 	{.center_freq = 5260, .hw_value = 52,},
139 	{.center_freq = 5280, .hw_value = 56,},
140 	{.center_freq = 5300, .hw_value = 60,},
141 	{.center_freq = 5320, .hw_value = 64,},
142 	{.center_freq = 5500, .hw_value = 100,},
143 	{.center_freq = 5520, .hw_value = 104,},
144 	{.center_freq = 5540, .hw_value = 108,},
145 	{.center_freq = 5560, .hw_value = 112,},
146 	{.center_freq = 5580, .hw_value = 116,},
147 	{.center_freq = 5600, .hw_value = 120,},
148 	{.center_freq = 5620, .hw_value = 124,},
149 	{.center_freq = 5640, .hw_value = 128,},
150 	{.center_freq = 5660, .hw_value = 132,},
151 	{.center_freq = 5680, .hw_value = 136,},
152 	{.center_freq = 5700, .hw_value = 140,},
153 	{.center_freq = 5720, .hw_value = 144,},
154 	{.center_freq = 5745, .hw_value = 149,},
155 	{.center_freq = 5765, .hw_value = 153,},
156 	{.center_freq = 5785, .hw_value = 157,},
157 	{.center_freq = 5805, .hw_value = 161,},
158 	{.center_freq = 5825, .hw_value = 165,
159 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
160 };
161 #endif
162 
163 static struct ieee80211_rate rtw_ratetable[] = {
164 	{.bitrate = 10, .hw_value = 0x00,},
165 	{.bitrate = 20, .hw_value = 0x01,},
166 	{.bitrate = 55, .hw_value = 0x02,},
167 	{.bitrate = 110, .hw_value = 0x03,},
168 	{.bitrate = 60, .hw_value = 0x04,},
169 	{.bitrate = 90, .hw_value = 0x05,},
170 	{.bitrate = 120, .hw_value = 0x06,},
171 	{.bitrate = 180, .hw_value = 0x07,},
172 	{.bitrate = 240, .hw_value = 0x08,},
173 	{.bitrate = 360, .hw_value = 0x09,},
174 	{.bitrate = 480, .hw_value = 0x0a,},
175 	{.bitrate = 540, .hw_value = 0x0b,},
176 };
177 
178 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
179 	{
180 		.max = 1,
181 		.types = BIT(NL80211_IFTYPE_STATION),
182 	},
183 	{
184 		.max = 1,
185 		.types = BIT(NL80211_IFTYPE_AP),
186 	}
187 };
188 
189 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
190 	{
191 		.limits = rtw_iface_limits,
192 		.n_limits = ARRAY_SIZE(rtw_iface_limits),
193 		.max_interfaces = 2,
194 		.num_different_channels = 1,
195 	}
196 };
197 
rtw_desc_to_bitrate(u8 desc_rate)198 u16 rtw_desc_to_bitrate(u8 desc_rate)
199 {
200 	struct ieee80211_rate rate;
201 
202 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
203 		return 0;
204 
205 	rate = rtw_ratetable[desc_rate];
206 
207 	return rate.bitrate;
208 }
209 
210 static struct ieee80211_supported_band rtw_band_2ghz = {
211 	.band = NL80211_BAND_2GHZ,
212 
213 	.channels = rtw_channeltable_2g,
214 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
215 
216 	.bitrates = rtw_ratetable,
217 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
218 
219 	.ht_cap = {0},
220 	.vht_cap = {0},
221 };
222 
223 static struct ieee80211_supported_band rtw_band_5ghz = {
224 	.band = NL80211_BAND_5GHZ,
225 
226 	.channels = rtw_channeltable_5g,
227 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
228 
229 	/* 5G has no CCK rates */
230 	.bitrates = rtw_ratetable + 4,
231 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
232 
233 	.ht_cap = {0},
234 	.vht_cap = {0},
235 };
236 
237 struct rtw_watch_dog_iter_data {
238 	struct rtw_dev *rtwdev;
239 	struct rtw_vif *rtwvif;
240 };
241 
rtw_dynamic_csi_rate(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif)242 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
243 {
244 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
245 	u8 fix_rate_enable = 0;
246 	u8 new_csi_rate_idx;
247 
248 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
249 	    rtwvif->bfee.role != RTW_BFEE_MU)
250 		return;
251 
252 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
253 			      bf_info->cur_csi_rpt_rate,
254 			      fix_rate_enable, &new_csi_rate_idx);
255 
256 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
257 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
258 }
259 
rtw_vif_watch_dog_iter(void * data,struct ieee80211_vif * vif)260 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
261 {
262 	struct rtw_watch_dog_iter_data *iter_data = data;
263 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
264 
265 	if (vif->type == NL80211_IFTYPE_STATION)
266 		if (vif->cfg.assoc)
267 			iter_data->rtwvif = rtwvif;
268 
269 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
270 
271 	rtwvif->stats.tx_unicast = 0;
272 	rtwvif->stats.rx_unicast = 0;
273 	rtwvif->stats.tx_cnt = 0;
274 	rtwvif->stats.rx_cnt = 0;
275 }
276 
rtw_sw_beacon_loss_check(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,int received_beacons)277 static void rtw_sw_beacon_loss_check(struct rtw_dev *rtwdev,
278 				     struct rtw_vif *rtwvif, int received_beacons)
279 {
280 	int watchdog_delay = 2000000 / 1024; /* TU */
281 	int beacon_int, expected_beacons;
282 
283 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_BCN_FILTER) || !rtwvif)
284 		return;
285 
286 	beacon_int = rtwvif_to_vif(rtwvif)->bss_conf.beacon_int;
287 	expected_beacons = DIV_ROUND_UP(watchdog_delay, beacon_int);
288 
289 	rtwdev->beacon_loss = received_beacons < expected_beacons / 2;
290 }
291 
292 /* process TX/RX statistics periodically for hardware,
293  * the information helps hardware to enhance performance
294  */
rtw_watch_dog_work(struct work_struct * work)295 static void rtw_watch_dog_work(struct work_struct *work)
296 {
297 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
298 					      watch_dog_work.work);
299 	struct rtw_traffic_stats *stats = &rtwdev->stats;
300 	struct rtw_watch_dog_iter_data data = {};
301 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
302 	int received_beacons = rtwdev->dm_info.cur_pkt_count.num_bcn_pkt;
303 	u32 tx_unicast_mbps, rx_unicast_mbps;
304 	bool ps_active;
305 
306 	mutex_lock(&rtwdev->mutex);
307 
308 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
309 		goto unlock;
310 
311 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
312 				     RTW_WATCH_DOG_DELAY_TIME);
313 
314 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
315 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
316 	else
317 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
318 
319 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
320 		rtw_coex_wl_status_change_notify(rtwdev, 0);
321 
322 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
323 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
324 		ps_active = true;
325 	else
326 		ps_active = false;
327 
328 	tx_unicast_mbps = stats->tx_unicast >> RTW_TP_SHIFT;
329 	rx_unicast_mbps = stats->rx_unicast >> RTW_TP_SHIFT;
330 
331 	ewma_tp_add(&stats->tx_ewma_tp, tx_unicast_mbps);
332 	ewma_tp_add(&stats->rx_ewma_tp, rx_unicast_mbps);
333 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
334 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
335 
336 	/* reset tx/rx statictics */
337 	stats->tx_unicast = 0;
338 	stats->rx_unicast = 0;
339 	stats->tx_cnt = 0;
340 	stats->rx_cnt = 0;
341 
342 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
343 		goto unlock;
344 
345 	/* make sure BB/RF is working for dynamic mech */
346 	rtw_leave_lps(rtwdev);
347 	rtw_coex_wl_status_check(rtwdev);
348 	rtw_coex_query_bt_hid_list(rtwdev);
349 	rtw_coex_active_query_bt_info(rtwdev);
350 
351 	rtw_phy_dynamic_mechanism(rtwdev);
352 
353 	rtw_hci_dynamic_rx_agg(rtwdev,
354 			       tx_unicast_mbps >= 1 || rx_unicast_mbps >= 1);
355 
356 	data.rtwdev = rtwdev;
357 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
358 	 * to avoid taking local->iflist_mtx mutex
359 	 */
360 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
361 
362 	rtw_sw_beacon_loss_check(rtwdev, data.rtwvif, received_beacons);
363 
364 	/* fw supports only one station associated to enter lps, if there are
365 	 * more than two stations associated to the AP, then we can not enter
366 	 * lps, because fw does not handle the overlapped beacon interval
367 	 *
368 	 * rtw_recalc_lps() iterate vifs and determine if driver can enter
369 	 * ps by vif->type and vif->cfg.ps, all we need to do here is to
370 	 * get that vif and check if device is having traffic more than the
371 	 * threshold.
372 	 */
373 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
374 	    !rtwdev->beacon_loss && !rtwdev->ap_active)
375 		rtw_enter_lps(rtwdev, data.rtwvif->port);
376 
377 	rtwdev->watch_dog_cnt++;
378 
379 unlock:
380 	mutex_unlock(&rtwdev->mutex);
381 }
382 
rtw_c2h_work(struct work_struct * work)383 static void rtw_c2h_work(struct work_struct *work)
384 {
385 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
386 	struct sk_buff *skb, *tmp;
387 
388 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
389 		skb_unlink(skb, &rtwdev->c2h_queue);
390 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
391 		dev_kfree_skb_any(skb);
392 	}
393 }
394 
rtw_ips_work(struct work_struct * work)395 static void rtw_ips_work(struct work_struct *work)
396 {
397 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
398 
399 	mutex_lock(&rtwdev->mutex);
400 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
401 		rtw_enter_ips(rtwdev);
402 	mutex_unlock(&rtwdev->mutex);
403 }
404 
rtw_sta_rc_work(struct work_struct * work)405 static void rtw_sta_rc_work(struct work_struct *work)
406 {
407 	struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
408 					       rc_work);
409 	struct rtw_dev *rtwdev = si->rtwdev;
410 
411 	mutex_lock(&rtwdev->mutex);
412 	rtw_update_sta_info(rtwdev, si, true);
413 	mutex_unlock(&rtwdev->mutex);
414 }
415 
rtw_sta_add(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,struct ieee80211_vif * vif)416 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
417 		struct ieee80211_vif *vif)
418 {
419 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
420 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
421 	int i;
422 
423 	if (vif->type == NL80211_IFTYPE_STATION) {
424 		si->mac_id = rtwvif->mac_id;
425 	} else {
426 		si->mac_id = rtw_acquire_macid(rtwdev);
427 		if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
428 			return -ENOSPC;
429 	}
430 
431 	si->rtwdev = rtwdev;
432 	si->sta = sta;
433 	si->vif = vif;
434 	si->init_ra_lv = 1;
435 	ewma_rssi_init(&si->avg_rssi);
436 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
437 		rtw_txq_init(rtwdev, sta->txq[i]);
438 	INIT_WORK(&si->rc_work, rtw_sta_rc_work);
439 
440 	rtw_update_sta_info(rtwdev, si, true);
441 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
442 
443 	rtwdev->sta_cnt++;
444 	rtwdev->beacon_loss = false;
445 #if defined(__linux__)
446 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
447 		sta->addr, si->mac_id);
448 #elif defined(__FreeBSD__)
449 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D joined with macid %d\n",
450 		sta->addr, ":", si->mac_id);
451 #endif
452 
453 	return 0;
454 }
455 
rtw_sta_remove(struct rtw_dev * rtwdev,struct ieee80211_sta * sta,bool fw_exist)456 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
457 		    bool fw_exist)
458 {
459 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
460 	struct ieee80211_vif *vif = si->vif;
461 	int i;
462 
463 	cancel_work_sync(&si->rc_work);
464 
465 	if (vif->type != NL80211_IFTYPE_STATION)
466 		rtw_release_macid(rtwdev, si->mac_id);
467 	if (fw_exist)
468 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
469 
470 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
471 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
472 
473 	kfree(si->mask);
474 
475 	rtwdev->sta_cnt--;
476 #if defined(__linux__)
477 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
478 		sta->addr, si->mac_id);
479 #elif defined(__FreeBSD__)
480 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D with macid %d left\n",
481 		sta->addr, ":", si->mac_id);
482 #endif
483 }
484 
485 struct rtw_fwcd_hdr {
486 	u32 item;
487 	u32 size;
488 	u32 padding1;
489 	u32 padding2;
490 } __packed;
491 
rtw_fwcd_prep(struct rtw_dev * rtwdev)492 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
493 {
494 	const struct rtw_chip_info *chip = rtwdev->chip;
495 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
496 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
497 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
498 	u8 i;
499 
500 	if (segs) {
501 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
502 
503 		for (i = 0; i < segs->num; i++)
504 			prep_size += segs->segs[i];
505 	}
506 
507 	desc->data = vmalloc(prep_size);
508 	if (!desc->data)
509 		return -ENOMEM;
510 
511 	desc->size = prep_size;
512 	desc->next = desc->data;
513 
514 	return 0;
515 }
516 
rtw_fwcd_next(struct rtw_dev * rtwdev,u32 item,u32 size)517 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
518 {
519 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
520 	struct rtw_fwcd_hdr *hdr;
521 	u8 *next;
522 
523 	if (!desc->data) {
524 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
525 		return NULL;
526 	}
527 
528 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
529 	if (next - desc->data + size > desc->size) {
530 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
531 		return NULL;
532 	}
533 
534 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
535 	hdr->item = item;
536 	hdr->size = size;
537 	hdr->padding1 = 0x01234567;
538 	hdr->padding2 = 0x89abcdef;
539 	desc->next = next + size;
540 
541 	return next;
542 }
543 
rtw_fwcd_dump(struct rtw_dev * rtwdev)544 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
545 {
546 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
547 
548 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
549 
550 	/* Data will be freed after lifetime of device coredump. After calling
551 	 * dev_coredump, data is supposed to be handled by the device coredump
552 	 * framework. Note that a new dump will be discarded if a previous one
553 	 * hasn't been released yet.
554 	 */
555 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
556 }
557 
rtw_fwcd_free(struct rtw_dev * rtwdev,bool free_self)558 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
559 {
560 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
561 
562 	if (free_self) {
563 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
564 		vfree(desc->data);
565 	}
566 
567 	desc->data = NULL;
568 	desc->next = NULL;
569 }
570 
rtw_fw_dump_crash_log(struct rtw_dev * rtwdev)571 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
572 {
573 	u32 size = rtwdev->chip->fw_rxff_size;
574 	u32 *buf;
575 	u8 seq;
576 
577 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
578 	if (!buf)
579 		return -ENOMEM;
580 
581 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
582 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
583 		return -EINVAL;
584 	}
585 
586 	if (GET_FW_DUMP_LEN(buf) == 0) {
587 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
588 		return -EINVAL;
589 	}
590 
591 	seq = GET_FW_DUMP_SEQ(buf);
592 	if (seq > 0) {
593 		rtw_dbg(rtwdev, RTW_DBG_FW,
594 			"fw crash dump's seq is wrong: %d\n", seq);
595 		return -EINVAL;
596 	}
597 
598 	return 0;
599 }
600 
rtw_dump_fw(struct rtw_dev * rtwdev,const u32 ocp_src,u32 size,u32 fwcd_item)601 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
602 		u32 fwcd_item)
603 {
604 	u32 rxff = rtwdev->chip->fw_rxff_size;
605 	u32 dump_size, done_size = 0;
606 	u8 *buf;
607 	int ret;
608 
609 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
610 	if (!buf)
611 		return -ENOMEM;
612 
613 	while (size) {
614 		dump_size = size > rxff ? rxff : size;
615 
616 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
617 					  dump_size);
618 		if (ret) {
619 			rtw_err(rtwdev,
620 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
621 				ocp_src, done_size);
622 			return ret;
623 		}
624 
625 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
626 				       dump_size, (u32 *)(buf + done_size));
627 		if (ret) {
628 			rtw_err(rtwdev,
629 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
630 				ocp_src, done_size);
631 			return ret;
632 		}
633 
634 		size -= dump_size;
635 		done_size += dump_size;
636 	}
637 
638 	return 0;
639 }
640 EXPORT_SYMBOL(rtw_dump_fw);
641 
rtw_dump_reg(struct rtw_dev * rtwdev,const u32 addr,const u32 size)642 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
643 {
644 	u8 *buf;
645 	u32 i;
646 
647 	if (addr & 0x3) {
648 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
649 		return -EINVAL;
650 	}
651 
652 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
653 	if (!buf)
654 		return -ENOMEM;
655 
656 	for (i = 0; i < size; i += 4)
657 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
658 
659 	return 0;
660 }
661 EXPORT_SYMBOL(rtw_dump_reg);
662 
rtw_vif_assoc_changed(struct rtw_vif * rtwvif,struct ieee80211_bss_conf * conf)663 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
664 			   struct ieee80211_bss_conf *conf)
665 {
666 	struct ieee80211_vif *vif = NULL;
667 
668 	if (conf)
669 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
670 
671 	if (conf && vif->cfg.assoc) {
672 		rtwvif->aid = vif->cfg.aid;
673 		rtwvif->net_type = RTW_NET_MGD_LINKED;
674 	} else {
675 		rtwvif->aid = 0;
676 		rtwvif->net_type = RTW_NET_NO_LINK;
677 	}
678 }
679 
rtw_reset_key_iter(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ieee80211_key_conf * key,void * data)680 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
681 			       struct ieee80211_vif *vif,
682 			       struct ieee80211_sta *sta,
683 			       struct ieee80211_key_conf *key,
684 			       void *data)
685 {
686 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
687 	struct rtw_sec_desc *sec = &rtwdev->sec;
688 
689 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
690 }
691 
rtw_reset_sta_iter(void * data,struct ieee80211_sta * sta)692 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
693 {
694 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
695 
696 	if (rtwdev->sta_cnt == 0) {
697 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
698 		return;
699 	}
700 	rtw_sta_remove(rtwdev, sta, false);
701 }
702 
rtw_reset_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)703 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
704 {
705 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
706 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
707 
708 	rtw_bf_disassoc(rtwdev, vif, NULL);
709 	rtw_vif_assoc_changed(rtwvif, NULL);
710 	rtw_txq_cleanup(rtwdev, vif->txq);
711 
712 	rtw_release_macid(rtwdev, rtwvif->mac_id);
713 }
714 
rtw_fw_recovery(struct rtw_dev * rtwdev)715 void rtw_fw_recovery(struct rtw_dev *rtwdev)
716 {
717 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
718 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
719 }
720 
__fw_recovery_work(struct rtw_dev * rtwdev)721 static void __fw_recovery_work(struct rtw_dev *rtwdev)
722 {
723 	int ret = 0;
724 
725 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
726 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
727 
728 	ret = rtw_fwcd_prep(rtwdev);
729 	if (ret)
730 		goto free;
731 	ret = rtw_fw_dump_crash_log(rtwdev);
732 	if (ret)
733 		goto free;
734 	ret = rtw_chip_dump_fw_crash(rtwdev);
735 	if (ret)
736 		goto free;
737 
738 	rtw_fwcd_dump(rtwdev);
739 free:
740 	rtw_fwcd_free(rtwdev, !!ret);
741 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
742 
743 	WARN(1, "firmware crash, start reset and recover\n");
744 
745 	rcu_read_lock();
746 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
747 	rcu_read_unlock();
748 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
749 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
750 	bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
751 	rtw_enter_ips(rtwdev);
752 }
753 
rtw_fw_recovery_work(struct work_struct * work)754 static void rtw_fw_recovery_work(struct work_struct *work)
755 {
756 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
757 					      fw_recovery_work);
758 
759 	mutex_lock(&rtwdev->mutex);
760 	__fw_recovery_work(rtwdev);
761 	mutex_unlock(&rtwdev->mutex);
762 
763 	ieee80211_restart_hw(rtwdev->hw);
764 }
765 
766 struct rtw_txq_ba_iter_data {
767 };
768 
rtw_txq_ba_iter(void * data,struct ieee80211_sta * sta)769 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
770 {
771 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
772 	int ret;
773 	u8 tid;
774 
775 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
776 	while (tid != IEEE80211_NUM_TIDS) {
777 		clear_bit(tid, si->tid_ba);
778 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
779 		if (ret == -EINVAL) {
780 			struct ieee80211_txq *txq;
781 			struct rtw_txq *rtwtxq;
782 
783 			txq = sta->txq[tid];
784 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
785 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
786 		}
787 
788 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
789 	}
790 }
791 
rtw_txq_ba_work(struct work_struct * work)792 static void rtw_txq_ba_work(struct work_struct *work)
793 {
794 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
795 	struct rtw_txq_ba_iter_data data;
796 
797 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
798 }
799 
rtw_set_rx_freq_band(struct rtw_rx_pkt_stat * pkt_stat,u8 channel)800 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
801 {
802 	if (IS_CH_2G_BAND(channel))
803 		pkt_stat->band = NL80211_BAND_2GHZ;
804 	else if (IS_CH_5G_BAND(channel))
805 		pkt_stat->band = NL80211_BAND_5GHZ;
806 	else
807 		return;
808 
809 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
810 }
811 EXPORT_SYMBOL(rtw_set_rx_freq_band);
812 
rtw_set_dtim_period(struct rtw_dev * rtwdev,int dtim_period)813 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
814 {
815 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
816 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
817 }
818 
rtw_update_channel(struct rtw_dev * rtwdev,u8 center_channel,u8 primary_channel,enum rtw_supported_band band,enum rtw_bandwidth bandwidth)819 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
820 			u8 primary_channel, enum rtw_supported_band band,
821 			enum rtw_bandwidth bandwidth)
822 {
823 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
824 	struct rtw_hal *hal = &rtwdev->hal;
825 	u8 *cch_by_bw = hal->cch_by_bw;
826 	u32 center_freq, primary_freq;
827 	enum rtw_sar_bands sar_band;
828 	u8 primary_channel_idx;
829 
830 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
831 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
832 
833 	/* assign the center channel used while 20M bw is selected */
834 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
835 
836 	/* assign the center channel used while current bw is selected */
837 	cch_by_bw[bandwidth] = center_channel;
838 
839 	switch (bandwidth) {
840 	case RTW_CHANNEL_WIDTH_20:
841 	default:
842 		primary_channel_idx = RTW_SC_DONT_CARE;
843 		break;
844 	case RTW_CHANNEL_WIDTH_40:
845 		if (primary_freq > center_freq)
846 			primary_channel_idx = RTW_SC_20_UPPER;
847 		else
848 			primary_channel_idx = RTW_SC_20_LOWER;
849 		break;
850 	case RTW_CHANNEL_WIDTH_80:
851 		if (primary_freq > center_freq) {
852 			if (primary_freq - center_freq == 10)
853 				primary_channel_idx = RTW_SC_20_UPPER;
854 			else
855 				primary_channel_idx = RTW_SC_20_UPMOST;
856 
857 			/* assign the center channel used
858 			 * while 40M bw is selected
859 			 */
860 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
861 		} else {
862 			if (center_freq - primary_freq == 10)
863 				primary_channel_idx = RTW_SC_20_LOWER;
864 			else
865 				primary_channel_idx = RTW_SC_20_LOWEST;
866 
867 			/* assign the center channel used
868 			 * while 40M bw is selected
869 			 */
870 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
871 		}
872 		break;
873 	}
874 
875 	switch (center_channel) {
876 	case 1 ... 14:
877 		sar_band = RTW_SAR_BAND_0;
878 		break;
879 	case 36 ... 64:
880 		sar_band = RTW_SAR_BAND_1;
881 		break;
882 	case 100 ... 144:
883 		sar_band = RTW_SAR_BAND_3;
884 		break;
885 	case 149 ... 177:
886 		sar_band = RTW_SAR_BAND_4;
887 		break;
888 	default:
889 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
890 		sar_band = RTW_SAR_BAND_0;
891 		break;
892 	}
893 
894 	hal->current_primary_channel_index = primary_channel_idx;
895 	hal->current_band_width = bandwidth;
896 	hal->primary_channel = primary_channel;
897 	hal->current_channel = center_channel;
898 	hal->current_band_type = band;
899 	hal->sar_band = sar_band;
900 }
901 
rtw_get_channel_params(struct cfg80211_chan_def * chandef,struct rtw_channel_params * chan_params)902 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
903 			    struct rtw_channel_params *chan_params)
904 {
905 	struct ieee80211_channel *channel = chandef->chan;
906 	enum nl80211_chan_width width = chandef->width;
907 	u32 primary_freq, center_freq;
908 	u8 center_chan;
909 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
910 
911 	center_chan = channel->hw_value;
912 	primary_freq = channel->center_freq;
913 	center_freq = chandef->center_freq1;
914 
915 	switch (width) {
916 	case NL80211_CHAN_WIDTH_20_NOHT:
917 	case NL80211_CHAN_WIDTH_20:
918 		bandwidth = RTW_CHANNEL_WIDTH_20;
919 		break;
920 	case NL80211_CHAN_WIDTH_40:
921 		bandwidth = RTW_CHANNEL_WIDTH_40;
922 		if (primary_freq > center_freq)
923 			center_chan -= 2;
924 		else
925 			center_chan += 2;
926 		break;
927 	case NL80211_CHAN_WIDTH_80:
928 		bandwidth = RTW_CHANNEL_WIDTH_80;
929 		if (primary_freq > center_freq) {
930 			if (primary_freq - center_freq == 10)
931 				center_chan -= 2;
932 			else
933 				center_chan -= 6;
934 		} else {
935 			if (center_freq - primary_freq == 10)
936 				center_chan += 2;
937 			else
938 				center_chan += 6;
939 		}
940 		break;
941 	default:
942 		center_chan = 0;
943 		break;
944 	}
945 
946 	chan_params->center_chan = center_chan;
947 	chan_params->bandwidth = bandwidth;
948 	chan_params->primary_chan = channel->hw_value;
949 }
950 
rtw_set_channel(struct rtw_dev * rtwdev)951 void rtw_set_channel(struct rtw_dev *rtwdev)
952 {
953 	const struct rtw_chip_info *chip = rtwdev->chip;
954 	struct ieee80211_hw *hw = rtwdev->hw;
955 	struct rtw_hal *hal = &rtwdev->hal;
956 	struct rtw_channel_params ch_param;
957 	u8 center_chan, primary_chan, bandwidth, band;
958 
959 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
960 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
961 		return;
962 
963 	center_chan = ch_param.center_chan;
964 	primary_chan = ch_param.primary_chan;
965 	bandwidth = ch_param.bandwidth;
966 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
967 
968 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
969 
970 	if (rtwdev->scan_info.op_chan)
971 		rtw_store_op_chan(rtwdev, true);
972 
973 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
974 			       hal->current_primary_channel_index);
975 
976 	if (hal->current_band_type == RTW_BAND_5G) {
977 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
978 	} else {
979 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
980 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
981 		else
982 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
983 	}
984 
985 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
986 
987 	/* if the channel isn't set for scanning, we will do RF calibration
988 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
989 	 * during scanning on each channel takes too long.
990 	 */
991 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
992 		rtwdev->need_rfk = true;
993 }
994 
rtw_chip_prepare_tx(struct rtw_dev * rtwdev)995 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
996 {
997 	const struct rtw_chip_info *chip = rtwdev->chip;
998 
999 	if (rtwdev->need_rfk) {
1000 		rtwdev->need_rfk = false;
1001 		chip->ops->phy_calibration(rtwdev);
1002 	}
1003 }
1004 
rtw_vif_write_addr(struct rtw_dev * rtwdev,u32 start,u8 * addr)1005 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
1006 {
1007 	int i;
1008 
1009 	for (i = 0; i < ETH_ALEN; i++)
1010 		rtw_write8(rtwdev, start + i, addr[i]);
1011 }
1012 
rtw_vif_port_config(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,u32 config)1013 void rtw_vif_port_config(struct rtw_dev *rtwdev,
1014 			 struct rtw_vif *rtwvif,
1015 			 u32 config)
1016 {
1017 	u32 addr, mask;
1018 
1019 	if (config & PORT_SET_MAC_ADDR) {
1020 		addr = rtwvif->conf->mac_addr.addr;
1021 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
1022 	}
1023 	if (config & PORT_SET_BSSID) {
1024 		addr = rtwvif->conf->bssid.addr;
1025 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
1026 	}
1027 	if (config & PORT_SET_NET_TYPE) {
1028 		addr = rtwvif->conf->net_type.addr;
1029 		mask = rtwvif->conf->net_type.mask;
1030 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
1031 	}
1032 	if (config & PORT_SET_AID) {
1033 		addr = rtwvif->conf->aid.addr;
1034 		mask = rtwvif->conf->aid.mask;
1035 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
1036 	}
1037 	if (config & PORT_SET_BCN_CTRL) {
1038 		addr = rtwvif->conf->bcn_ctrl.addr;
1039 		mask = rtwvif->conf->bcn_ctrl.mask;
1040 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
1041 	}
1042 }
1043 
hw_bw_cap_to_bitamp(u8 bw_cap)1044 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
1045 {
1046 	u8 bw = 0;
1047 
1048 	switch (bw_cap) {
1049 	case EFUSE_HW_CAP_IGNORE:
1050 	case EFUSE_HW_CAP_SUPP_BW80:
1051 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
1052 		fallthrough;
1053 	case EFUSE_HW_CAP_SUPP_BW40:
1054 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
1055 		fallthrough;
1056 	default:
1057 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
1058 		break;
1059 	}
1060 
1061 	return bw;
1062 }
1063 
rtw_hw_config_rf_ant_num(struct rtw_dev * rtwdev,u8 hw_ant_num)1064 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
1065 {
1066 	const struct rtw_chip_info *chip = rtwdev->chip;
1067 	struct rtw_hal *hal = &rtwdev->hal;
1068 
1069 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
1070 	    hw_ant_num >= hal->rf_path_num)
1071 		return;
1072 
1073 	switch (hw_ant_num) {
1074 	case 1:
1075 		hal->rf_type = RF_1T1R;
1076 		hal->rf_path_num = 1;
1077 		if (!chip->fix_rf_phy_num)
1078 			hal->rf_phy_num = hal->rf_path_num;
1079 		hal->antenna_tx = BB_PATH_A;
1080 		hal->antenna_rx = BB_PATH_A;
1081 		break;
1082 	default:
1083 		WARN(1, "invalid hw configuration from efuse\n");
1084 		break;
1085 	}
1086 }
1087 
get_vht_ra_mask(struct ieee80211_sta * sta)1088 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
1089 {
1090 	u64 ra_mask = 0;
1091 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
1092 	u8 vht_mcs_cap;
1093 	int i, nss;
1094 
1095 	/* 4SS, every two bits for MCS7/8/9 */
1096 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
1097 		vht_mcs_cap = mcs_map & 0x3;
1098 		switch (vht_mcs_cap) {
1099 		case 2: /* MCS9 */
1100 			ra_mask |= 0x3ffULL << nss;
1101 			break;
1102 		case 1: /* MCS8 */
1103 			ra_mask |= 0x1ffULL << nss;
1104 			break;
1105 		case 0: /* MCS7 */
1106 			ra_mask |= 0x0ffULL << nss;
1107 			break;
1108 		default:
1109 			break;
1110 		}
1111 	}
1112 
1113 	return ra_mask;
1114 }
1115 
get_rate_id(u8 wireless_set,enum rtw_bandwidth bw_mode,u8 tx_num)1116 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1117 {
1118 	u8 rate_id = 0;
1119 
1120 	switch (wireless_set) {
1121 	case WIRELESS_CCK:
1122 		rate_id = RTW_RATEID_B_20M;
1123 		break;
1124 	case WIRELESS_OFDM:
1125 		rate_id = RTW_RATEID_G;
1126 		break;
1127 	case WIRELESS_CCK | WIRELESS_OFDM:
1128 		rate_id = RTW_RATEID_BG;
1129 		break;
1130 	case WIRELESS_OFDM | WIRELESS_HT:
1131 		if (tx_num == 1)
1132 			rate_id = RTW_RATEID_GN_N1SS;
1133 		else if (tx_num == 2)
1134 			rate_id = RTW_RATEID_GN_N2SS;
1135 		else if (tx_num == 3)
1136 			rate_id = RTW_RATEID_ARFR5_N_3SS;
1137 		break;
1138 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1139 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1140 			if (tx_num == 1)
1141 				rate_id = RTW_RATEID_BGN_40M_1SS;
1142 			else if (tx_num == 2)
1143 				rate_id = RTW_RATEID_BGN_40M_2SS;
1144 			else if (tx_num == 3)
1145 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1146 			else if (tx_num == 4)
1147 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1148 		} else {
1149 			if (tx_num == 1)
1150 				rate_id = RTW_RATEID_BGN_20M_1SS;
1151 			else if (tx_num == 2)
1152 				rate_id = RTW_RATEID_BGN_20M_2SS;
1153 			else if (tx_num == 3)
1154 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1155 			else if (tx_num == 4)
1156 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1157 		}
1158 		break;
1159 	case WIRELESS_OFDM | WIRELESS_VHT:
1160 		if (tx_num == 1)
1161 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1162 		else if (tx_num == 2)
1163 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1164 		else if (tx_num == 3)
1165 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1166 		else if (tx_num == 4)
1167 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1168 		break;
1169 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1170 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1171 			if (tx_num == 1)
1172 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1173 			else if (tx_num == 2)
1174 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1175 			else if (tx_num == 3)
1176 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1177 			else if (tx_num == 4)
1178 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1179 		} else {
1180 			if (tx_num == 1)
1181 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1182 			else if (tx_num == 2)
1183 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1184 			else if (tx_num == 3)
1185 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1186 			else if (tx_num == 4)
1187 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1188 		}
1189 		break;
1190 	default:
1191 		break;
1192 	}
1193 
1194 	return rate_id;
1195 }
1196 
1197 #define RA_MASK_CCK_RATES	0x0000f
1198 #define RA_MASK_OFDM_RATES	0x00ff0
1199 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1200 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1201 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1202 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1203 				 RA_MASK_HT_RATES_2SS | \
1204 				 RA_MASK_HT_RATES_3SS)
1205 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1206 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1207 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1208 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1209 				 RA_MASK_VHT_RATES_2SS | \
1210 				 RA_MASK_VHT_RATES_3SS)
1211 #define RA_MASK_CCK_IN_BG	0x00005
1212 #define RA_MASK_CCK_IN_HT	0x00005
1213 #define RA_MASK_CCK_IN_VHT	0x00005
1214 #define RA_MASK_OFDM_IN_VHT	0x00010
1215 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1216 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1217 
rtw_rate_mask_rssi(struct rtw_sta_info * si,u8 wireless_set)1218 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1219 {
1220 	u8 rssi_level = si->rssi_level;
1221 
1222 	if (wireless_set == WIRELESS_CCK)
1223 		return 0xffffffffffffffffULL;
1224 
1225 	if (rssi_level == 0)
1226 		return 0xffffffffffffffffULL;
1227 	else if (rssi_level == 1)
1228 		return 0xfffffffffffffff0ULL;
1229 	else if (rssi_level == 2)
1230 		return 0xffffffffffffefe0ULL;
1231 	else if (rssi_level == 3)
1232 		return 0xffffffffffffcfc0ULL;
1233 	else if (rssi_level == 4)
1234 		return 0xffffffffffff8f80ULL;
1235 	else
1236 		return 0xffffffffffff0f00ULL;
1237 }
1238 
rtw_rate_mask_recover(u64 ra_mask,u64 ra_mask_bak)1239 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1240 {
1241 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1242 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1243 
1244 	if (ra_mask == 0)
1245 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1246 
1247 	return ra_mask;
1248 }
1249 
rtw_rate_mask_cfg(struct rtw_dev * rtwdev,struct rtw_sta_info * si,u64 ra_mask,bool is_vht_enable)1250 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1251 			     u64 ra_mask, bool is_vht_enable)
1252 {
1253 	struct rtw_hal *hal = &rtwdev->hal;
1254 	const struct cfg80211_bitrate_mask *mask = si->mask;
1255 	u64 cfg_mask = GENMASK_ULL(63, 0);
1256 	u8 band;
1257 
1258 	if (!si->use_cfg_mask)
1259 		return ra_mask;
1260 
1261 	band = hal->current_band_type;
1262 	if (band == RTW_BAND_2G) {
1263 		band = NL80211_BAND_2GHZ;
1264 		cfg_mask = mask->control[band].legacy;
1265 	} else if (band == RTW_BAND_5G) {
1266 		band = NL80211_BAND_5GHZ;
1267 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1268 					   RA_MASK_OFDM_RATES);
1269 	}
1270 
1271 	if (!is_vht_enable) {
1272 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1273 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1274 						    RA_MASK_HT_RATES_1SS);
1275 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1276 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1277 						    RA_MASK_HT_RATES_2SS);
1278 	} else {
1279 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1280 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1281 						    RA_MASK_VHT_RATES_1SS);
1282 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1283 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1284 						    RA_MASK_VHT_RATES_2SS);
1285 	}
1286 
1287 	ra_mask &= cfg_mask;
1288 
1289 	return ra_mask;
1290 }
1291 
rtw_update_sta_info(struct rtw_dev * rtwdev,struct rtw_sta_info * si,bool reset_ra_mask)1292 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1293 			 bool reset_ra_mask)
1294 {
1295 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1296 	struct ieee80211_sta *sta = si->sta;
1297 	struct rtw_efuse *efuse = &rtwdev->efuse;
1298 	struct rtw_hal *hal = &rtwdev->hal;
1299 	u8 wireless_set;
1300 	u8 bw_mode;
1301 	u8 rate_id;
1302 	u8 stbc_en = 0;
1303 	u8 ldpc_en = 0;
1304 	u8 tx_num = 1;
1305 	u64 ra_mask = 0;
1306 	u64 ra_mask_bak = 0;
1307 	bool is_vht_enable = false;
1308 	bool is_support_sgi = false;
1309 
1310 	if (sta->deflink.vht_cap.vht_supported) {
1311 		is_vht_enable = true;
1312 		ra_mask |= get_vht_ra_mask(sta);
1313 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1314 			stbc_en = VHT_STBC_EN;
1315 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1316 			ldpc_en = VHT_LDPC_EN;
1317 	} else if (sta->deflink.ht_cap.ht_supported) {
1318 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1319 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1320 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1321 			stbc_en = HT_STBC_EN;
1322 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1323 			ldpc_en = HT_LDPC_EN;
1324 	}
1325 
1326 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1327 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1328 
1329 	if (hal->current_band_type == RTW_BAND_5G) {
1330 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1331 		ra_mask_bak = ra_mask;
1332 		if (sta->deflink.vht_cap.vht_supported) {
1333 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1334 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1335 		} else if (sta->deflink.ht_cap.ht_supported) {
1336 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1337 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1338 		} else {
1339 			wireless_set = WIRELESS_OFDM;
1340 		}
1341 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1342 	} else if (hal->current_band_type == RTW_BAND_2G) {
1343 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1344 		ra_mask_bak = ra_mask;
1345 		if (sta->deflink.vht_cap.vht_supported) {
1346 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1347 				   RA_MASK_OFDM_IN_VHT;
1348 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1349 				       WIRELESS_HT | WIRELESS_VHT;
1350 		} else if (sta->deflink.ht_cap.ht_supported) {
1351 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1352 				   RA_MASK_OFDM_IN_HT_2G;
1353 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1354 				       WIRELESS_HT;
1355 #if defined(__linux__)
1356 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1357 #elif defined(__FreeBSD__)
1358 		} else if (sta->deflink.supp_rates[NL80211_BAND_2GHZ] <= 0xf) {
1359 #endif
1360 			wireless_set = WIRELESS_CCK;
1361 		} else {
1362 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1363 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1364 		}
1365 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1366 	} else {
1367 		rtw_err(rtwdev, "Unknown band type\n");
1368 		ra_mask_bak = ra_mask;
1369 		wireless_set = 0;
1370 	}
1371 
1372 	switch (sta->deflink.bandwidth) {
1373 	case IEEE80211_STA_RX_BW_80:
1374 		bw_mode = RTW_CHANNEL_WIDTH_80;
1375 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1376 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1377 		break;
1378 	case IEEE80211_STA_RX_BW_40:
1379 		bw_mode = RTW_CHANNEL_WIDTH_40;
1380 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1381 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1382 		break;
1383 	default:
1384 		bw_mode = RTW_CHANNEL_WIDTH_20;
1385 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1386 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1387 		break;
1388 	}
1389 
1390 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000)
1391 		tx_num = 2;
1392 	else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000)
1393 		tx_num = 2;
1394 
1395 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1396 
1397 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1398 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1399 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1400 
1401 	si->bw_mode = bw_mode;
1402 	si->stbc_en = stbc_en;
1403 	si->ldpc_en = ldpc_en;
1404 	si->sgi_enable = is_support_sgi;
1405 	si->vht_enable = is_vht_enable;
1406 	si->ra_mask = ra_mask;
1407 	si->rate_id = rate_id;
1408 
1409 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1410 }
1411 
rtw_wait_firmware_completion(struct rtw_dev * rtwdev)1412 int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1413 {
1414 	const struct rtw_chip_info *chip = rtwdev->chip;
1415 	struct rtw_fw_state *fw;
1416 	int ret = 0;
1417 
1418 	fw = &rtwdev->fw;
1419 	wait_for_completion(&fw->completion);
1420 	if (!fw->firmware)
1421 		ret = -EINVAL;
1422 
1423 	if (chip->wow_fw_name) {
1424 		fw = &rtwdev->wow_fw;
1425 		wait_for_completion(&fw->completion);
1426 		if (!fw->firmware)
1427 			ret = -EINVAL;
1428 	}
1429 
1430 	return ret;
1431 }
1432 EXPORT_SYMBOL(rtw_wait_firmware_completion);
1433 
rtw_update_lps_deep_mode(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1434 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1435 						       struct rtw_fw_state *fw)
1436 {
1437 	const struct rtw_chip_info *chip = rtwdev->chip;
1438 
1439 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1440 	    !fw->feature)
1441 		return LPS_DEEP_MODE_NONE;
1442 
1443 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1444 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1445 		return LPS_DEEP_MODE_PG;
1446 
1447 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1448 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1449 		return LPS_DEEP_MODE_LCLK;
1450 
1451 	return LPS_DEEP_MODE_NONE;
1452 }
1453 
rtw_power_on(struct rtw_dev * rtwdev)1454 int rtw_power_on(struct rtw_dev *rtwdev)
1455 {
1456 	const struct rtw_chip_info *chip = rtwdev->chip;
1457 	struct rtw_fw_state *fw = &rtwdev->fw;
1458 	bool wifi_only;
1459 	int ret;
1460 
1461 	ret = rtw_hci_setup(rtwdev);
1462 	if (ret) {
1463 		rtw_err(rtwdev, "failed to setup hci\n");
1464 		goto err;
1465 	}
1466 
1467 	/* power on MAC before firmware downloaded */
1468 	ret = rtw_mac_power_on(rtwdev);
1469 	if (ret) {
1470 		rtw_err(rtwdev, "failed to power on mac\n");
1471 		goto err;
1472 	}
1473 
1474 	ret = rtw_wait_firmware_completion(rtwdev);
1475 	if (ret) {
1476 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1477 		goto err_off;
1478 	}
1479 
1480 	ret = rtw_download_firmware(rtwdev, fw);
1481 	if (ret) {
1482 		rtw_err(rtwdev, "failed to download firmware\n");
1483 		goto err_off;
1484 	}
1485 
1486 	/* config mac after firmware downloaded */
1487 	ret = rtw_mac_init(rtwdev);
1488 	if (ret) {
1489 		rtw_err(rtwdev, "failed to configure mac\n");
1490 		goto err_off;
1491 	}
1492 
1493 	chip->ops->phy_set_param(rtwdev);
1494 
1495 	ret = rtw_hci_start(rtwdev);
1496 	if (ret) {
1497 		rtw_err(rtwdev, "failed to start hci\n");
1498 		goto err_off;
1499 	}
1500 
1501 	/* send H2C after HCI has started */
1502 	rtw_fw_send_general_info(rtwdev);
1503 	rtw_fw_send_phydm_info(rtwdev);
1504 
1505 	wifi_only = !rtwdev->efuse.btcoex;
1506 	rtw_coex_power_on_setting(rtwdev);
1507 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1508 
1509 	return 0;
1510 
1511 err_off:
1512 	rtw_mac_power_off(rtwdev);
1513 
1514 err:
1515 	return ret;
1516 }
1517 EXPORT_SYMBOL(rtw_power_on);
1518 
rtw_core_fw_scan_notify(struct rtw_dev * rtwdev,bool start)1519 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1520 {
1521 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1522 		return;
1523 
1524 	if (start) {
1525 		rtw_fw_scan_notify(rtwdev, true);
1526 	} else {
1527 		reinit_completion(&rtwdev->fw_scan_density);
1528 		rtw_fw_scan_notify(rtwdev, false);
1529 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1530 						 SCAN_NOTIFY_TIMEOUT))
1531 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1532 	}
1533 }
1534 
rtw_core_scan_start(struct rtw_dev * rtwdev,struct rtw_vif * rtwvif,const u8 * mac_addr,bool hw_scan)1535 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1536 			 const u8 *mac_addr, bool hw_scan)
1537 {
1538 	u32 config = 0;
1539 	int ret = 0;
1540 
1541 	rtw_leave_lps(rtwdev);
1542 
1543 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1544 		ret = rtw_leave_ips(rtwdev);
1545 		if (ret) {
1546 			rtw_err(rtwdev, "failed to leave idle state\n");
1547 			return;
1548 		}
1549 	}
1550 
1551 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1552 	config |= PORT_SET_MAC_ADDR;
1553 	rtw_vif_port_config(rtwdev, rtwvif, config);
1554 
1555 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1556 	rtw_core_fw_scan_notify(rtwdev, true);
1557 
1558 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1559 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1560 }
1561 
rtw_core_scan_complete(struct rtw_dev * rtwdev,struct ieee80211_vif * vif,bool hw_scan)1562 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1563 			    bool hw_scan)
1564 {
1565 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1566 	u32 config = 0;
1567 
1568 	if (!rtwvif)
1569 		return;
1570 
1571 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1572 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1573 
1574 	rtw_core_fw_scan_notify(rtwdev, false);
1575 
1576 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1577 	config |= PORT_SET_MAC_ADDR;
1578 	rtw_vif_port_config(rtwdev, rtwvif, config);
1579 
1580 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1581 
1582 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1583 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1584 }
1585 
rtw_core_start(struct rtw_dev * rtwdev)1586 int rtw_core_start(struct rtw_dev *rtwdev)
1587 {
1588 	int ret;
1589 
1590 	ret = rtwdev->chip->ops->power_on(rtwdev);
1591 	if (ret)
1592 		return ret;
1593 
1594 	rtw_sec_enable_sec_engine(rtwdev);
1595 
1596 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1597 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1598 
1599 	/* rcr reset after powered on */
1600 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1601 
1602 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1603 				     RTW_WATCH_DOG_DELAY_TIME);
1604 
1605 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1606 
1607 	return 0;
1608 }
1609 
rtw_power_off(struct rtw_dev * rtwdev)1610 void rtw_power_off(struct rtw_dev *rtwdev)
1611 {
1612 	rtw_hci_stop(rtwdev);
1613 	rtw_coex_power_off_setting(rtwdev);
1614 	rtw_mac_power_off(rtwdev);
1615 }
1616 EXPORT_SYMBOL(rtw_power_off);
1617 
rtw_core_stop(struct rtw_dev * rtwdev)1618 void rtw_core_stop(struct rtw_dev *rtwdev)
1619 {
1620 	struct rtw_coex *coex = &rtwdev->coex;
1621 
1622 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1623 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1624 
1625 	mutex_unlock(&rtwdev->mutex);
1626 
1627 	cancel_work_sync(&rtwdev->c2h_work);
1628 	cancel_work_sync(&rtwdev->update_beacon_work);
1629 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1630 	cancel_delayed_work_sync(&coex->bt_relink_work);
1631 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1632 	cancel_delayed_work_sync(&coex->defreeze_work);
1633 	cancel_delayed_work_sync(&coex->wl_remain_work);
1634 	cancel_delayed_work_sync(&coex->bt_remain_work);
1635 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1636 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1637 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1638 
1639 	mutex_lock(&rtwdev->mutex);
1640 
1641 	rtwdev->chip->ops->power_off(rtwdev);
1642 }
1643 
rtw_init_ht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_ht_cap * ht_cap)1644 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1645 			    struct ieee80211_sta_ht_cap *ht_cap)
1646 {
1647 	const struct rtw_chip_info *chip = rtwdev->chip;
1648 	struct rtw_efuse *efuse = &rtwdev->efuse;
1649 
1650 	ht_cap->ht_supported = true;
1651 	ht_cap->cap = 0;
1652 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1653 			IEEE80211_HT_CAP_MAX_AMSDU |
1654 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1655 
1656 	if (rtw_chip_has_rx_ldpc(rtwdev))
1657 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1658 	if (rtw_chip_has_tx_stbc(rtwdev))
1659 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1660 
1661 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1662 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1663 				IEEE80211_HT_CAP_DSSSCCK40 |
1664 				IEEE80211_HT_CAP_SGI_40;
1665 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1666 	ht_cap->ampdu_density = chip->ampdu_density;
1667 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1668 	if (efuse->hw_cap.nss > 1) {
1669 		ht_cap->mcs.rx_mask[0] = 0xFF;
1670 		ht_cap->mcs.rx_mask[1] = 0xFF;
1671 		ht_cap->mcs.rx_mask[4] = 0x01;
1672 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1673 	} else {
1674 		ht_cap->mcs.rx_mask[0] = 0xFF;
1675 		ht_cap->mcs.rx_mask[1] = 0x00;
1676 		ht_cap->mcs.rx_mask[4] = 0x01;
1677 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1678 	}
1679 }
1680 
rtw_init_vht_cap(struct rtw_dev * rtwdev,struct ieee80211_sta_vht_cap * vht_cap)1681 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1682 			     struct ieee80211_sta_vht_cap *vht_cap)
1683 {
1684 	struct rtw_efuse *efuse = &rtwdev->efuse;
1685 	u16 mcs_map;
1686 	__le16 highest;
1687 
1688 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1689 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1690 		return;
1691 
1692 	vht_cap->vht_supported = true;
1693 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1694 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1695 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1696 		       IEEE80211_VHT_CAP_HTC_VHT |
1697 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1698 		       0;
1699 	if (rtwdev->hal.rf_path_num > 1)
1700 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1701 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1702 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1703 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1704 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1705 
1706 	if (rtw_chip_has_rx_ldpc(rtwdev))
1707 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1708 
1709 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1710 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1711 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1712 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1713 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1714 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1715 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1716 	if (efuse->hw_cap.nss > 1) {
1717 		highest = cpu_to_le16(780);
1718 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1719 	} else {
1720 		highest = cpu_to_le16(390);
1721 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1722 	}
1723 
1724 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1725 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1726 	vht_cap->vht_mcs.rx_highest = highest;
1727 	vht_cap->vht_mcs.tx_highest = highest;
1728 }
1729 
rtw_get_max_scan_ie_len(struct rtw_dev * rtwdev)1730 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1731 {
1732 	u16 len;
1733 
1734 	len = rtwdev->chip->max_scan_ie_len;
1735 
1736 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1737 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1738 		len = IEEE80211_MAX_DATA_LEN;
1739 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1740 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1741 
1742 	return len;
1743 }
1744 
rtw_set_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1745 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1746 				   const struct rtw_chip_info *chip)
1747 {
1748 	struct rtw_dev *rtwdev = hw->priv;
1749 	struct ieee80211_supported_band *sband;
1750 
1751 	if (chip->band & RTW_BAND_2G) {
1752 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1753 		if (!sband)
1754 			goto err_out;
1755 #if defined(__linux__)
1756 		if (chip->ht_supported)
1757 #elif defined(__FreeBSD__)
1758 		if (rtw_ht_support && chip->ht_supported)
1759 #endif
1760 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1761 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1762 	}
1763 
1764 	if (chip->band & RTW_BAND_5G) {
1765 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1766 		if (!sband)
1767 			goto err_out;
1768 #if defined(__linux__)
1769 		if (chip->ht_supported)
1770 #elif defined(__FreeBSD__)
1771 		if (rtw_ht_support && chip->ht_supported)
1772 #endif
1773 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1774 #if defined(__linux__)
1775 		if (chip->vht_supported)
1776 #elif defined(__FreeBSD__)
1777 		if (rtw_vht_support && chip->vht_supported)
1778 #endif
1779 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1780 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1781 	}
1782 
1783 	return;
1784 
1785 err_out:
1786 	rtw_err(rtwdev, "failed to set supported band\n");
1787 }
1788 
rtw_unset_supported_band(struct ieee80211_hw * hw,const struct rtw_chip_info * chip)1789 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1790 				     const struct rtw_chip_info *chip)
1791 {
1792 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1793 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1794 }
1795 
rtw_vif_smps_iter(void * data,u8 * mac,struct ieee80211_vif * vif)1796 static void rtw_vif_smps_iter(void *data, u8 *mac,
1797 			      struct ieee80211_vif *vif)
1798 {
1799 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1800 
1801 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1802 		return;
1803 
1804 	if (rtwdev->hal.txrx_1ss)
1805 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1806 	else
1807 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1808 }
1809 
rtw_set_txrx_1ss(struct rtw_dev * rtwdev,bool txrx_1ss)1810 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1811 {
1812 	const struct rtw_chip_info *chip = rtwdev->chip;
1813 	struct rtw_hal *hal = &rtwdev->hal;
1814 
1815 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1816 		return;
1817 
1818 	rtwdev->hal.txrx_1ss = txrx_1ss;
1819 	if (txrx_1ss)
1820 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1821 	else
1822 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1823 					    hal->antenna_rx, false);
1824 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1825 }
1826 
__update_firmware_feature(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1827 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1828 				      struct rtw_fw_state *fw)
1829 {
1830 	u32 feature;
1831 	const struct rtw_fw_hdr *fw_hdr =
1832 				(const struct rtw_fw_hdr *)fw->firmware->data;
1833 
1834 	feature = le32_to_cpu(fw_hdr->feature);
1835 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1836 
1837 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1838 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1839 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1840 }
1841 
__update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1842 static void __update_firmware_info(struct rtw_dev *rtwdev,
1843 				   struct rtw_fw_state *fw)
1844 {
1845 	const struct rtw_fw_hdr *fw_hdr =
1846 				(const struct rtw_fw_hdr *)fw->firmware->data;
1847 
1848 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1849 	fw->version = le16_to_cpu(fw_hdr->version);
1850 	fw->sub_version = fw_hdr->subversion;
1851 	fw->sub_index = fw_hdr->subindex;
1852 
1853 	__update_firmware_feature(rtwdev, fw);
1854 }
1855 
__update_firmware_info_legacy(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1856 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1857 					  struct rtw_fw_state *fw)
1858 {
1859 	struct rtw_fw_hdr_legacy *legacy =
1860 #if defined(__linux__)
1861 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1862 #elif defined(__FreeBSD__)
1863 	    __DECONST(struct rtw_fw_hdr_legacy *, fw->firmware->data);
1864 #endif
1865 
1866 	fw->h2c_version = 0;
1867 	fw->version = le16_to_cpu(legacy->version);
1868 	fw->sub_version = legacy->subversion1;
1869 	fw->sub_index = legacy->subversion2;
1870 }
1871 
update_firmware_info(struct rtw_dev * rtwdev,struct rtw_fw_state * fw)1872 static void update_firmware_info(struct rtw_dev *rtwdev,
1873 				 struct rtw_fw_state *fw)
1874 {
1875 	if (rtw_chip_wcpu_11n(rtwdev))
1876 		__update_firmware_info_legacy(rtwdev, fw);
1877 	else
1878 		__update_firmware_info(rtwdev, fw);
1879 }
1880 
rtw_load_firmware_cb(const struct firmware * firmware,void * context)1881 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1882 {
1883 	struct rtw_fw_state *fw = context;
1884 	struct rtw_dev *rtwdev = fw->rtwdev;
1885 
1886 	if (!firmware || !firmware->data) {
1887 		rtw_err(rtwdev, "failed to request firmware\n");
1888 		complete_all(&fw->completion);
1889 		return;
1890 	}
1891 
1892 	fw->firmware = firmware;
1893 	update_firmware_info(rtwdev, fw);
1894 	complete_all(&fw->completion);
1895 
1896 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1897 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1898 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1899 }
1900 
rtw_load_firmware(struct rtw_dev * rtwdev,enum rtw_fw_type type)1901 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1902 {
1903 	const char *fw_name;
1904 	struct rtw_fw_state *fw;
1905 	int ret;
1906 
1907 	switch (type) {
1908 	case RTW_WOWLAN_FW:
1909 		fw = &rtwdev->wow_fw;
1910 		fw_name = rtwdev->chip->wow_fw_name;
1911 		break;
1912 
1913 	case RTW_NORMAL_FW:
1914 		fw = &rtwdev->fw;
1915 		fw_name = rtwdev->chip->fw_name;
1916 		break;
1917 
1918 	default:
1919 		rtw_warn(rtwdev, "unsupported firmware type\n");
1920 		return -ENOENT;
1921 	}
1922 
1923 	fw->type = type;
1924 	fw->rtwdev = rtwdev;
1925 	init_completion(&fw->completion);
1926 
1927 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1928 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1929 	if (ret) {
1930 		rtw_err(rtwdev, "failed to async firmware request\n");
1931 		return ret;
1932 	}
1933 
1934 	return 0;
1935 }
1936 
rtw_chip_parameter_setup(struct rtw_dev * rtwdev)1937 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1938 {
1939 	const struct rtw_chip_info *chip = rtwdev->chip;
1940 	struct rtw_hal *hal = &rtwdev->hal;
1941 	struct rtw_efuse *efuse = &rtwdev->efuse;
1942 
1943 	switch (rtw_hci_type(rtwdev)) {
1944 	case RTW_HCI_TYPE_PCIE:
1945 		rtwdev->hci.rpwm_addr = 0x03d9;
1946 		rtwdev->hci.cpwm_addr = 0x03da;
1947 		break;
1948 	case RTW_HCI_TYPE_SDIO:
1949 		rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1950 		rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1951 		break;
1952 	case RTW_HCI_TYPE_USB:
1953 		rtwdev->hci.rpwm_addr = 0xfe58;
1954 		rtwdev->hci.cpwm_addr = 0xfe57;
1955 		break;
1956 	default:
1957 		rtw_err(rtwdev, "unsupported hci type\n");
1958 		return -EINVAL;
1959 	}
1960 
1961 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1962 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1963 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1964 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1965 		hal->rf_type = RF_2T2R;
1966 		hal->rf_path_num = 2;
1967 		hal->antenna_tx = BB_PATH_AB;
1968 		hal->antenna_rx = BB_PATH_AB;
1969 	} else {
1970 		hal->rf_type = RF_1T1R;
1971 		hal->rf_path_num = 1;
1972 		hal->antenna_tx = BB_PATH_A;
1973 		hal->antenna_rx = BB_PATH_A;
1974 	}
1975 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1976 			  hal->rf_path_num;
1977 
1978 	efuse->physical_size = chip->phy_efuse_size;
1979 	efuse->logical_size = chip->log_efuse_size;
1980 	efuse->protect_size = chip->ptct_efuse_size;
1981 
1982 	/* default use ack */
1983 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1984 
1985 	hal->bfee_sts_cap = 3;
1986 
1987 	return 0;
1988 }
1989 
rtw_chip_efuse_enable(struct rtw_dev * rtwdev)1990 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1991 {
1992 	struct rtw_fw_state *fw = &rtwdev->fw;
1993 	int ret;
1994 
1995 	ret = rtw_hci_setup(rtwdev);
1996 	if (ret) {
1997 		rtw_err(rtwdev, "failed to setup hci\n");
1998 		goto err;
1999 	}
2000 
2001 	ret = rtw_mac_power_on(rtwdev);
2002 	if (ret) {
2003 		rtw_err(rtwdev, "failed to power on mac\n");
2004 		goto err;
2005 	}
2006 
2007 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
2008 
2009 	wait_for_completion(&fw->completion);
2010 	if (!fw->firmware) {
2011 		ret = -EINVAL;
2012 		rtw_err(rtwdev, "failed to load firmware\n");
2013 		goto err;
2014 	}
2015 
2016 	ret = rtw_download_firmware(rtwdev, fw);
2017 	if (ret) {
2018 		rtw_err(rtwdev, "failed to download firmware\n");
2019 		goto err_off;
2020 	}
2021 
2022 	return 0;
2023 
2024 err_off:
2025 	rtw_mac_power_off(rtwdev);
2026 
2027 err:
2028 	return ret;
2029 }
2030 
rtw_dump_hw_feature(struct rtw_dev * rtwdev)2031 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
2032 {
2033 	struct rtw_efuse *efuse = &rtwdev->efuse;
2034 	u8 hw_feature[HW_FEATURE_LEN];
2035 	u8 id;
2036 	u8 bw;
2037 	int i;
2038 
2039 	if (!rtwdev->chip->hw_feature_report)
2040 		return 0;
2041 
2042 	id = rtw_read8(rtwdev, REG_C2HEVT);
2043 	if (id != C2H_HW_FEATURE_REPORT) {
2044 		rtw_err(rtwdev, "failed to read hw feature report\n");
2045 		return -EBUSY;
2046 	}
2047 
2048 	for (i = 0; i < HW_FEATURE_LEN; i++)
2049 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
2050 
2051 	rtw_write8(rtwdev, REG_C2HEVT, 0);
2052 
2053 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
2054 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
2055 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
2056 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
2057 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
2058 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
2059 
2060 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
2061 
2062 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
2063 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
2064 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
2065 
2066 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
2067 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
2068 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
2069 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
2070 
2071 	return 0;
2072 }
2073 
rtw_chip_efuse_disable(struct rtw_dev * rtwdev)2074 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
2075 {
2076 	rtw_hci_stop(rtwdev);
2077 	rtw_mac_power_off(rtwdev);
2078 }
2079 
rtw_chip_efuse_info_setup(struct rtw_dev * rtwdev)2080 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
2081 {
2082 	struct rtw_efuse *efuse = &rtwdev->efuse;
2083 	int ret;
2084 
2085 	mutex_lock(&rtwdev->mutex);
2086 
2087 	/* power on mac to read efuse */
2088 	ret = rtw_chip_efuse_enable(rtwdev);
2089 	if (ret)
2090 		goto out_unlock;
2091 
2092 	ret = rtw_parse_efuse_map(rtwdev);
2093 	if (ret)
2094 		goto out_disable;
2095 
2096 	ret = rtw_dump_hw_feature(rtwdev);
2097 	if (ret)
2098 		goto out_disable;
2099 
2100 	ret = rtw_check_supported_rfe(rtwdev);
2101 	if (ret)
2102 		goto out_disable;
2103 
2104 	if (efuse->crystal_cap == 0xff)
2105 		efuse->crystal_cap = 0;
2106 	if (efuse->pa_type_2g == 0xff)
2107 		efuse->pa_type_2g = 0;
2108 	if (efuse->pa_type_5g == 0xff)
2109 		efuse->pa_type_5g = 0;
2110 	if (efuse->lna_type_2g == 0xff)
2111 		efuse->lna_type_2g = 0;
2112 	if (efuse->lna_type_5g == 0xff)
2113 		efuse->lna_type_5g = 0;
2114 	if (efuse->channel_plan == 0xff)
2115 		efuse->channel_plan = 0x7f;
2116 	if (efuse->rf_board_option == 0xff)
2117 		efuse->rf_board_option = 0;
2118 	if (efuse->bt_setting & BIT(0))
2119 		efuse->share_ant = true;
2120 	if (efuse->regd == 0xff)
2121 		efuse->regd = 0;
2122 	if (efuse->tx_bb_swing_setting_2g == 0xff)
2123 		efuse->tx_bb_swing_setting_2g = 0;
2124 	if (efuse->tx_bb_swing_setting_5g == 0xff)
2125 		efuse->tx_bb_swing_setting_5g = 0;
2126 
2127 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2128 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2129 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2130 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2131 	efuse->ext_lna_5g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2132 
2133 	if (!is_valid_ether_addr(efuse->addr)) {
2134 		eth_random_addr(efuse->addr);
2135 		dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2136 	}
2137 
2138 out_disable:
2139 	rtw_chip_efuse_disable(rtwdev);
2140 
2141 out_unlock:
2142 	mutex_unlock(&rtwdev->mutex);
2143 	return ret;
2144 }
2145 
rtw_chip_board_info_setup(struct rtw_dev * rtwdev)2146 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2147 {
2148 	struct rtw_hal *hal = &rtwdev->hal;
2149 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2150 
2151 	if (!rfe_def)
2152 		return -ENODEV;
2153 
2154 	rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2155 
2156 	rtw_phy_init_tx_power(rtwdev);
2157 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2158 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2159 	rtw_phy_tx_power_by_rate_config(hal);
2160 	rtw_phy_tx_power_limit_config(hal);
2161 
2162 	return 0;
2163 }
2164 
rtw_chip_info_setup(struct rtw_dev * rtwdev)2165 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2166 {
2167 	int ret;
2168 
2169 	ret = rtw_chip_parameter_setup(rtwdev);
2170 	if (ret) {
2171 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2172 		goto err_out;
2173 	}
2174 
2175 	ret = rtw_chip_efuse_info_setup(rtwdev);
2176 	if (ret) {
2177 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2178 		goto err_out;
2179 	}
2180 
2181 	ret = rtw_chip_board_info_setup(rtwdev);
2182 	if (ret) {
2183 		rtw_err(rtwdev, "failed to setup chip board info\n");
2184 		goto err_out;
2185 	}
2186 
2187 	return 0;
2188 
2189 err_out:
2190 	return ret;
2191 }
2192 EXPORT_SYMBOL(rtw_chip_info_setup);
2193 
rtw_stats_init(struct rtw_dev * rtwdev)2194 static void rtw_stats_init(struct rtw_dev *rtwdev)
2195 {
2196 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2197 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2198 	int i;
2199 
2200 	ewma_tp_init(&stats->tx_ewma_tp);
2201 	ewma_tp_init(&stats->rx_ewma_tp);
2202 
2203 	for (i = 0; i < RTW_EVM_NUM; i++)
2204 		ewma_evm_init(&dm_info->ewma_evm[i]);
2205 	for (i = 0; i < RTW_SNR_NUM; i++)
2206 		ewma_snr_init(&dm_info->ewma_snr[i]);
2207 }
2208 
rtw_core_init(struct rtw_dev * rtwdev)2209 int rtw_core_init(struct rtw_dev *rtwdev)
2210 {
2211 	const struct rtw_chip_info *chip = rtwdev->chip;
2212 	struct rtw_coex *coex = &rtwdev->coex;
2213 	int ret;
2214 
2215 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2216 	INIT_LIST_HEAD(&rtwdev->txqs);
2217 
2218 	timer_setup(&rtwdev->tx_report.purge_timer,
2219 		    rtw_tx_report_purge_timer, 0);
2220 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2221 	if (!rtwdev->tx_wq) {
2222 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2223 		return -ENOMEM;
2224 	}
2225 
2226 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2227 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2228 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2229 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2230 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2231 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2232 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2233 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2234 			  rtw_coex_bt_multi_link_remain_work);
2235 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2236 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2237 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2238 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2239 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2240 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2241 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2242 	skb_queue_head_init(&rtwdev->c2h_queue);
2243 	skb_queue_head_init(&rtwdev->coex.queue);
2244 	skb_queue_head_init(&rtwdev->tx_report.queue);
2245 
2246 	spin_lock_init(&rtwdev->txq_lock);
2247 	spin_lock_init(&rtwdev->tx_report.q_lock);
2248 
2249 	mutex_init(&rtwdev->mutex);
2250 	mutex_init(&rtwdev->hal.tx_power_mutex);
2251 
2252 	init_waitqueue_head(&rtwdev->coex.wait);
2253 	init_completion(&rtwdev->lps_leave_check);
2254 	init_completion(&rtwdev->fw_scan_density);
2255 
2256 	rtwdev->sec.total_cam_num = 32;
2257 	rtwdev->hal.current_channel = 1;
2258 	rtwdev->dm_info.fix_rate = U8_MAX;
2259 
2260 	rtw_stats_init(rtwdev);
2261 
2262 	/* default rx filter setting */
2263 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2264 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2265 			  BIT_AB | BIT_AM | BIT_APM;
2266 
2267 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2268 	if (ret) {
2269 		rtw_warn(rtwdev, "no firmware loaded\n");
2270 		goto out;
2271 	}
2272 
2273 	if (chip->wow_fw_name) {
2274 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2275 		if (ret) {
2276 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2277 			wait_for_completion(&rtwdev->fw.completion);
2278 			if (rtwdev->fw.firmware)
2279 				release_firmware(rtwdev->fw.firmware);
2280 			goto out;
2281 		}
2282 	}
2283 
2284 #if defined(__FreeBSD__)
2285 	rtw_wait_firmware_completion(rtwdev);
2286 #endif
2287 
2288 	return 0;
2289 
2290 out:
2291 	destroy_workqueue(rtwdev->tx_wq);
2292 	return ret;
2293 }
2294 EXPORT_SYMBOL(rtw_core_init);
2295 
rtw_core_deinit(struct rtw_dev * rtwdev)2296 void rtw_core_deinit(struct rtw_dev *rtwdev)
2297 {
2298 	struct rtw_fw_state *fw = &rtwdev->fw;
2299 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2300 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2301 	unsigned long flags;
2302 
2303 	rtw_wait_firmware_completion(rtwdev);
2304 
2305 	if (fw->firmware)
2306 		release_firmware(fw->firmware);
2307 
2308 	if (wow_fw->firmware)
2309 		release_firmware(wow_fw->firmware);
2310 
2311 	destroy_workqueue(rtwdev->tx_wq);
2312 	timer_delete_sync(&rtwdev->tx_report.purge_timer);
2313 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2314 	skb_queue_purge(&rtwdev->tx_report.queue);
2315 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2316 	skb_queue_purge(&rtwdev->coex.queue);
2317 	skb_queue_purge(&rtwdev->c2h_queue);
2318 
2319 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2320 				 build_list) {
2321 		list_del(&rsvd_pkt->build_list);
2322 		kfree(rsvd_pkt);
2323 	}
2324 
2325 	mutex_destroy(&rtwdev->mutex);
2326 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2327 }
2328 EXPORT_SYMBOL(rtw_core_deinit);
2329 
rtw_register_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2330 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2331 {
2332 	bool sta_mode_only = rtwdev->hci.type == RTW_HCI_TYPE_SDIO;
2333 	struct rtw_hal *hal = &rtwdev->hal;
2334 	int max_tx_headroom = 0;
2335 	int ret;
2336 
2337 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2338 
2339 	if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2340 		max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2341 
2342 	hw->extra_tx_headroom = max_tx_headroom;
2343 	hw->queues = IEEE80211_NUM_ACS;
2344 	hw->txq_data_size = sizeof(struct rtw_txq);
2345 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2346 	hw->vif_data_size = sizeof(struct rtw_vif);
2347 
2348 	ieee80211_hw_set(hw, SIGNAL_DBM);
2349 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2350 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2351 	ieee80211_hw_set(hw, MFP_CAPABLE);
2352 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2353 	ieee80211_hw_set(hw, SUPPORTS_PS);
2354 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2355 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2356 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2357 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2358 	ieee80211_hw_set(hw, TX_AMSDU);
2359 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2360 
2361 	if (sta_mode_only)
2362 		hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
2363 	else
2364 		hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2365 					     BIT(NL80211_IFTYPE_AP) |
2366 					     BIT(NL80211_IFTYPE_ADHOC);
2367 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2368 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2369 
2370 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2371 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2372 
2373 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2374 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2375 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2376 
2377 	if (!sta_mode_only && rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2378 		hw->wiphy->iface_combinations = rtw_iface_combs;
2379 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2380 	}
2381 
2382 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2383 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2384 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2385 
2386 #ifdef CONFIG_PM
2387 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2388 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2389 #endif
2390 	rtw_set_supported_band(hw, rtwdev->chip);
2391 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2392 
2393 	hw->wiphy->sar_capa = &rtw_sar_capa;
2394 
2395 	ret = rtw_regd_init(rtwdev);
2396 	if (ret) {
2397 		rtw_err(rtwdev, "failed to init regd\n");
2398 		return ret;
2399 	}
2400 
2401 	rtw_led_init(rtwdev);
2402 
2403 	ret = ieee80211_register_hw(hw);
2404 	if (ret) {
2405 		rtw_err(rtwdev, "failed to register hw\n");
2406 		goto led_deinit;
2407 	}
2408 
2409 	ret = rtw_regd_hint(rtwdev);
2410 	if (ret) {
2411 		rtw_err(rtwdev, "failed to hint regd\n");
2412 		goto led_deinit;
2413 	}
2414 
2415 	rtw_debugfs_init(rtwdev);
2416 
2417 	rtwdev->bf_info.bfer_mu_cnt = 0;
2418 	rtwdev->bf_info.bfer_su_cnt = 0;
2419 
2420 	return 0;
2421 
2422 led_deinit:
2423 	rtw_led_deinit(rtwdev);
2424 	return ret;
2425 }
2426 EXPORT_SYMBOL(rtw_register_hw);
2427 
rtw_unregister_hw(struct rtw_dev * rtwdev,struct ieee80211_hw * hw)2428 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2429 {
2430 	const struct rtw_chip_info *chip = rtwdev->chip;
2431 
2432 	ieee80211_unregister_hw(hw);
2433 	rtw_unset_supported_band(hw, chip);
2434 	rtw_debugfs_deinit(rtwdev);
2435 	rtw_led_deinit(rtwdev);
2436 }
2437 EXPORT_SYMBOL(rtw_unregister_hw);
2438 
2439 static
rtw_swap_reg_nbytes(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2,u8 nbytes)2440 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2441 			 const struct rtw_hw_reg *reg2, u8 nbytes)
2442 {
2443 	u8 i;
2444 
2445 	for (i = 0; i < nbytes; i++) {
2446 		u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2447 		u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2448 
2449 		rtw_write8(rtwdev, reg1->addr + i, v2);
2450 		rtw_write8(rtwdev, reg2->addr + i, v1);
2451 	}
2452 }
2453 
2454 static
rtw_swap_reg_mask(struct rtw_dev * rtwdev,const struct rtw_hw_reg * reg1,const struct rtw_hw_reg * reg2)2455 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2456 		       const struct rtw_hw_reg *reg2)
2457 {
2458 	u32 v1, v2;
2459 
2460 	v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2461 	v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2462 	rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2463 	rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2464 }
2465 
2466 struct rtw_iter_port_switch_data {
2467 	struct rtw_dev *rtwdev;
2468 	struct rtw_vif *rtwvif_ap;
2469 };
2470 
rtw_port_switch_iter(void * data,struct ieee80211_vif * vif)2471 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2472 {
2473 	struct rtw_iter_port_switch_data *iter_data = data;
2474 	struct rtw_dev *rtwdev = iter_data->rtwdev;
2475 	struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2476 	struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2477 	const struct rtw_hw_reg *reg1, *reg2;
2478 
2479 	if (rtwvif_target->port != RTW_PORT_0)
2480 		return;
2481 
2482 	rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2483 		rtwvif_ap->port, rtwvif_target->port);
2484 
2485 	/* Leave LPS so the value swapped are not in PS mode */
2486 	rtw_leave_lps(rtwdev);
2487 
2488 	reg1 = &rtwvif_ap->conf->net_type;
2489 	reg2 = &rtwvif_target->conf->net_type;
2490 	rtw_swap_reg_mask(rtwdev, reg1, reg2);
2491 
2492 	reg1 = &rtwvif_ap->conf->mac_addr;
2493 	reg2 = &rtwvif_target->conf->mac_addr;
2494 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2495 
2496 	reg1 = &rtwvif_ap->conf->bssid;
2497 	reg2 = &rtwvif_target->conf->bssid;
2498 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2499 
2500 	reg1 = &rtwvif_ap->conf->bcn_ctrl;
2501 	reg2 = &rtwvif_target->conf->bcn_ctrl;
2502 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2503 
2504 	swap(rtwvif_target->port, rtwvif_ap->port);
2505 	swap(rtwvif_target->conf, rtwvif_ap->conf);
2506 
2507 	rtw_fw_default_port(rtwdev, rtwvif_target);
2508 }
2509 
rtw_core_port_switch(struct rtw_dev * rtwdev,struct ieee80211_vif * vif)2510 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2511 {
2512 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2513 	struct rtw_iter_port_switch_data iter_data;
2514 
2515 	if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2516 		return;
2517 
2518 	iter_data.rtwdev = rtwdev;
2519 	iter_data.rtwvif_ap = rtwvif;
2520 	rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2521 }
2522 
rtw_check_sta_active_iter(void * data,struct ieee80211_vif * vif)2523 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2524 {
2525 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2526 	bool *active = data;
2527 
2528 	if (*active)
2529 		return;
2530 
2531 	if (vif->type != NL80211_IFTYPE_STATION)
2532 		return;
2533 
2534 	if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2535 		*active = true;
2536 }
2537 
rtw_core_check_sta_active(struct rtw_dev * rtwdev)2538 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2539 {
2540 	bool sta_active = false;
2541 
2542 	rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2543 
2544 	return rtwdev->ap_active || sta_active;
2545 }
2546 
rtw_core_enable_beacon(struct rtw_dev * rtwdev,bool enable)2547 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2548 {
2549 	if (!rtwdev->ap_active)
2550 		return;
2551 
2552 	if (enable) {
2553 		rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2554 		rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2555 	} else {
2556 		rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2557 		rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2558 	}
2559 }
2560 
2561 MODULE_AUTHOR("Realtek Corporation");
2562 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2563 MODULE_LICENSE("Dual BSD/GPL");
2564