xref: /freebsd/sys/contrib/dev/rtw88/main.c (revision a0ccc12f6882a886d89ae279c541b2c2b62c6aca)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #if defined(__FreeBSD__)
6 #define	LINUXKPI_PARAM_PREFIX	rtw88_
7 #endif
8 
9 #include <linux/devcoredump.h>
10 
11 #include "main.h"
12 #include "regd.h"
13 #include "fw.h"
14 #include "ps.h"
15 #include "sec.h"
16 #include "mac.h"
17 #include "coex.h"
18 #include "phy.h"
19 #include "reg.h"
20 #include "efuse.h"
21 #include "tx.h"
22 #include "debug.h"
23 #include "bf.h"
24 #include "sar.h"
25 #include "sdio.h"
26 #include "led.h"
27 
28 bool rtw_disable_lps_deep_mode;
29 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
30 bool rtw_bf_support = true;
31 unsigned int rtw_debug_mask;
32 EXPORT_SYMBOL(rtw_debug_mask);
33 /* EDCCA is enabled during normal behavior. For debugging purpose in
34  * a noisy environment, it can be disabled via edcca debugfs. Because
35  * all rtw88 devices will probably be affected if environment is noisy,
36  * rtw_edcca_enabled is just declared by driver instead of by device.
37  * So, turning it off will take effect for all rtw88 devices before
38  * there is a tough reason to maintain rtw_edcca_enabled by device.
39  */
40 bool rtw_edcca_enabled = true;
41 
42 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
43 module_param_named(support_bf, rtw_bf_support, bool, 0644);
44 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
45 
46 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
47 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
48 MODULE_PARM_DESC(debug_mask, "Debugging mask");
49 
50 #if defined(__FreeBSD__)
51 static bool rtw_ht_support = false;
52 module_param_named(support_ht, rtw_ht_support, bool, 0644);
53 MODULE_PARM_DESC(support_ht, "Set to Y to enable HT support");
54 
55 static bool rtw_vht_support = false;
56 module_param_named(support_vht, rtw_vht_support, bool, 0644);
57 MODULE_PARM_DESC(support_vht, "Set to Y to enable VHT support");
58 #endif
59 
60 static struct ieee80211_channel rtw_channeltable_2g[] = {
61 	{.center_freq = 2412, .hw_value = 1,},
62 	{.center_freq = 2417, .hw_value = 2,},
63 	{.center_freq = 2422, .hw_value = 3,},
64 	{.center_freq = 2427, .hw_value = 4,},
65 	{.center_freq = 2432, .hw_value = 5,},
66 	{.center_freq = 2437, .hw_value = 6,},
67 	{.center_freq = 2442, .hw_value = 7,},
68 	{.center_freq = 2447, .hw_value = 8,},
69 	{.center_freq = 2452, .hw_value = 9,},
70 	{.center_freq = 2457, .hw_value = 10,},
71 	{.center_freq = 2462, .hw_value = 11,},
72 	{.center_freq = 2467, .hw_value = 12,},
73 	{.center_freq = 2472, .hw_value = 13,},
74 	{.center_freq = 2484, .hw_value = 14,},
75 };
76 
77 static struct ieee80211_channel rtw_channeltable_5g[] = {
78 	{.center_freq = 5180, .hw_value = 36,},
79 	{.center_freq = 5200, .hw_value = 40,},
80 	{.center_freq = 5220, .hw_value = 44,},
81 	{.center_freq = 5240, .hw_value = 48,},
82 	{.center_freq = 5260, .hw_value = 52,},
83 	{.center_freq = 5280, .hw_value = 56,},
84 	{.center_freq = 5300, .hw_value = 60,},
85 	{.center_freq = 5320, .hw_value = 64,},
86 	{.center_freq = 5500, .hw_value = 100,},
87 	{.center_freq = 5520, .hw_value = 104,},
88 	{.center_freq = 5540, .hw_value = 108,},
89 	{.center_freq = 5560, .hw_value = 112,},
90 	{.center_freq = 5580, .hw_value = 116,},
91 	{.center_freq = 5600, .hw_value = 120,},
92 	{.center_freq = 5620, .hw_value = 124,},
93 	{.center_freq = 5640, .hw_value = 128,},
94 	{.center_freq = 5660, .hw_value = 132,},
95 	{.center_freq = 5680, .hw_value = 136,},
96 	{.center_freq = 5700, .hw_value = 140,},
97 	{.center_freq = 5720, .hw_value = 144,},
98 	{.center_freq = 5745, .hw_value = 149,},
99 	{.center_freq = 5765, .hw_value = 153,},
100 	{.center_freq = 5785, .hw_value = 157,},
101 	{.center_freq = 5805, .hw_value = 161,},
102 	{.center_freq = 5825, .hw_value = 165,
103 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
104 };
105 
106 static struct ieee80211_rate rtw_ratetable[] = {
107 	{.bitrate = 10, .hw_value = 0x00,},
108 	{.bitrate = 20, .hw_value = 0x01,},
109 	{.bitrate = 55, .hw_value = 0x02,},
110 	{.bitrate = 110, .hw_value = 0x03,},
111 	{.bitrate = 60, .hw_value = 0x04,},
112 	{.bitrate = 90, .hw_value = 0x05,},
113 	{.bitrate = 120, .hw_value = 0x06,},
114 	{.bitrate = 180, .hw_value = 0x07,},
115 	{.bitrate = 240, .hw_value = 0x08,},
116 	{.bitrate = 360, .hw_value = 0x09,},
117 	{.bitrate = 480, .hw_value = 0x0a,},
118 	{.bitrate = 540, .hw_value = 0x0b,},
119 };
120 
121 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
122 	{
123 		.max = 1,
124 		.types = BIT(NL80211_IFTYPE_STATION),
125 	},
126 	{
127 		.max = 1,
128 		.types = BIT(NL80211_IFTYPE_AP),
129 	}
130 };
131 
132 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
133 	{
134 		.limits = rtw_iface_limits,
135 		.n_limits = ARRAY_SIZE(rtw_iface_limits),
136 		.max_interfaces = 2,
137 		.num_different_channels = 1,
138 	}
139 };
140 
141 u16 rtw_desc_to_bitrate(u8 desc_rate)
142 {
143 	struct ieee80211_rate rate;
144 
145 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
146 		return 0;
147 
148 	rate = rtw_ratetable[desc_rate];
149 
150 	return rate.bitrate;
151 }
152 
153 static struct ieee80211_supported_band rtw_band_2ghz = {
154 	.band = NL80211_BAND_2GHZ,
155 
156 	.channels = rtw_channeltable_2g,
157 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
158 
159 	.bitrates = rtw_ratetable,
160 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
161 
162 	.ht_cap = {0},
163 	.vht_cap = {0},
164 };
165 
166 static struct ieee80211_supported_band rtw_band_5ghz = {
167 	.band = NL80211_BAND_5GHZ,
168 
169 	.channels = rtw_channeltable_5g,
170 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
171 
172 	/* 5G has no CCK rates */
173 	.bitrates = rtw_ratetable + 4,
174 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
175 
176 	.ht_cap = {0},
177 	.vht_cap = {0},
178 };
179 
180 struct rtw_watch_dog_iter_data {
181 	struct rtw_dev *rtwdev;
182 	struct rtw_vif *rtwvif;
183 };
184 
185 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
186 {
187 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
188 	u8 fix_rate_enable = 0;
189 	u8 new_csi_rate_idx;
190 
191 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
192 	    rtwvif->bfee.role != RTW_BFEE_MU)
193 		return;
194 
195 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
196 			      bf_info->cur_csi_rpt_rate,
197 			      fix_rate_enable, &new_csi_rate_idx);
198 
199 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
200 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
201 }
202 
203 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
204 {
205 	struct rtw_watch_dog_iter_data *iter_data = data;
206 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
207 
208 	if (vif->type == NL80211_IFTYPE_STATION)
209 		if (vif->cfg.assoc)
210 			iter_data->rtwvif = rtwvif;
211 
212 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
213 
214 	rtwvif->stats.tx_unicast = 0;
215 	rtwvif->stats.rx_unicast = 0;
216 	rtwvif->stats.tx_cnt = 0;
217 	rtwvif->stats.rx_cnt = 0;
218 }
219 
220 static void rtw_sw_beacon_loss_check(struct rtw_dev *rtwdev,
221 				     struct rtw_vif *rtwvif, int received_beacons)
222 {
223 	int watchdog_delay = 2000000 / 1024; /* TU */
224 	int beacon_int, expected_beacons;
225 
226 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_BCN_FILTER) || !rtwvif)
227 		return;
228 
229 	beacon_int = rtwvif_to_vif(rtwvif)->bss_conf.beacon_int;
230 	expected_beacons = DIV_ROUND_UP(watchdog_delay, beacon_int);
231 
232 	rtwdev->beacon_loss = received_beacons < expected_beacons / 2;
233 }
234 
235 /* process TX/RX statistics periodically for hardware,
236  * the information helps hardware to enhance performance
237  */
238 static void rtw_watch_dog_work(struct work_struct *work)
239 {
240 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
241 					      watch_dog_work.work);
242 	struct rtw_traffic_stats *stats = &rtwdev->stats;
243 	struct rtw_watch_dog_iter_data data = {};
244 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
245 	int received_beacons = rtwdev->dm_info.cur_pkt_count.num_bcn_pkt;
246 	u32 tx_unicast_mbps, rx_unicast_mbps;
247 	bool ps_active;
248 
249 	mutex_lock(&rtwdev->mutex);
250 
251 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
252 		goto unlock;
253 
254 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
255 				     RTW_WATCH_DOG_DELAY_TIME);
256 
257 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
258 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
259 	else
260 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
261 
262 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
263 		rtw_coex_wl_status_change_notify(rtwdev, 0);
264 
265 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
266 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
267 		ps_active = true;
268 	else
269 		ps_active = false;
270 
271 	tx_unicast_mbps = stats->tx_unicast >> RTW_TP_SHIFT;
272 	rx_unicast_mbps = stats->rx_unicast >> RTW_TP_SHIFT;
273 
274 	ewma_tp_add(&stats->tx_ewma_tp, tx_unicast_mbps);
275 	ewma_tp_add(&stats->rx_ewma_tp, rx_unicast_mbps);
276 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
277 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
278 
279 	/* reset tx/rx statictics */
280 	stats->tx_unicast = 0;
281 	stats->rx_unicast = 0;
282 	stats->tx_cnt = 0;
283 	stats->rx_cnt = 0;
284 
285 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
286 		goto unlock;
287 
288 	/* make sure BB/RF is working for dynamic mech */
289 	rtw_leave_lps(rtwdev);
290 	rtw_coex_wl_status_check(rtwdev);
291 	rtw_coex_query_bt_hid_list(rtwdev);
292 	rtw_coex_active_query_bt_info(rtwdev);
293 
294 	rtw_phy_dynamic_mechanism(rtwdev);
295 
296 	rtw_hci_dynamic_rx_agg(rtwdev,
297 			       tx_unicast_mbps >= 1 || rx_unicast_mbps >= 1);
298 
299 	data.rtwdev = rtwdev;
300 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
301 	 * to avoid taking local->iflist_mtx mutex
302 	 */
303 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
304 
305 	rtw_sw_beacon_loss_check(rtwdev, data.rtwvif, received_beacons);
306 
307 	/* fw supports only one station associated to enter lps, if there are
308 	 * more than two stations associated to the AP, then we can not enter
309 	 * lps, because fw does not handle the overlapped beacon interval
310 	 *
311 	 * rtw_recalc_lps() iterate vifs and determine if driver can enter
312 	 * ps by vif->type and vif->cfg.ps, all we need to do here is to
313 	 * get that vif and check if device is having traffic more than the
314 	 * threshold.
315 	 */
316 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
317 	    !rtwdev->beacon_loss && !rtwdev->ap_active)
318 		rtw_enter_lps(rtwdev, data.rtwvif->port);
319 
320 	rtwdev->watch_dog_cnt++;
321 
322 unlock:
323 	mutex_unlock(&rtwdev->mutex);
324 }
325 
326 static void rtw_c2h_work(struct work_struct *work)
327 {
328 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
329 	struct sk_buff *skb, *tmp;
330 
331 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
332 		skb_unlink(skb, &rtwdev->c2h_queue);
333 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
334 		dev_kfree_skb_any(skb);
335 	}
336 }
337 
338 static void rtw_ips_work(struct work_struct *work)
339 {
340 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
341 
342 	mutex_lock(&rtwdev->mutex);
343 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
344 		rtw_enter_ips(rtwdev);
345 	mutex_unlock(&rtwdev->mutex);
346 }
347 
348 static void rtw_sta_rc_work(struct work_struct *work)
349 {
350 	struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
351 					       rc_work);
352 	struct rtw_dev *rtwdev = si->rtwdev;
353 
354 	mutex_lock(&rtwdev->mutex);
355 	rtw_update_sta_info(rtwdev, si, true);
356 	mutex_unlock(&rtwdev->mutex);
357 }
358 
359 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
360 		struct ieee80211_vif *vif)
361 {
362 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
363 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
364 	int i;
365 
366 	if (vif->type == NL80211_IFTYPE_STATION) {
367 		si->mac_id = rtwvif->mac_id;
368 	} else {
369 		si->mac_id = rtw_acquire_macid(rtwdev);
370 		if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
371 			return -ENOSPC;
372 	}
373 
374 	si->rtwdev = rtwdev;
375 	si->sta = sta;
376 	si->vif = vif;
377 	si->init_ra_lv = 1;
378 	ewma_rssi_init(&si->avg_rssi);
379 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
380 		rtw_txq_init(rtwdev, sta->txq[i]);
381 	INIT_WORK(&si->rc_work, rtw_sta_rc_work);
382 
383 	rtw_update_sta_info(rtwdev, si, true);
384 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
385 
386 	rtwdev->sta_cnt++;
387 	rtwdev->beacon_loss = false;
388 #if defined(__linux__)
389 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
390 		sta->addr, si->mac_id);
391 #elif defined(__FreeBSD__)
392 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D joined with macid %d\n",
393 		sta->addr, ":", si->mac_id);
394 #endif
395 
396 	return 0;
397 }
398 
399 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
400 		    bool fw_exist)
401 {
402 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
403 	struct ieee80211_vif *vif = si->vif;
404 	int i;
405 
406 	cancel_work_sync(&si->rc_work);
407 
408 	if (vif->type != NL80211_IFTYPE_STATION)
409 		rtw_release_macid(rtwdev, si->mac_id);
410 	if (fw_exist)
411 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
412 
413 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
414 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
415 
416 	kfree(si->mask);
417 
418 	rtwdev->sta_cnt--;
419 #if defined(__linux__)
420 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
421 		sta->addr, si->mac_id);
422 #elif defined(__FreeBSD__)
423 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D with macid %d left\n",
424 		sta->addr, ":", si->mac_id);
425 #endif
426 }
427 
428 struct rtw_fwcd_hdr {
429 	u32 item;
430 	u32 size;
431 	u32 padding1;
432 	u32 padding2;
433 } __packed;
434 
435 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
436 {
437 	const struct rtw_chip_info *chip = rtwdev->chip;
438 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
439 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
440 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
441 	u8 i;
442 
443 	if (segs) {
444 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
445 
446 		for (i = 0; i < segs->num; i++)
447 			prep_size += segs->segs[i];
448 	}
449 
450 	desc->data = vmalloc(prep_size);
451 	if (!desc->data)
452 		return -ENOMEM;
453 
454 	desc->size = prep_size;
455 	desc->next = desc->data;
456 
457 	return 0;
458 }
459 
460 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
461 {
462 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
463 	struct rtw_fwcd_hdr *hdr;
464 	u8 *next;
465 
466 	if (!desc->data) {
467 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
468 		return NULL;
469 	}
470 
471 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
472 	if (next - desc->data + size > desc->size) {
473 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
474 		return NULL;
475 	}
476 
477 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
478 	hdr->item = item;
479 	hdr->size = size;
480 	hdr->padding1 = 0x01234567;
481 	hdr->padding2 = 0x89abcdef;
482 	desc->next = next + size;
483 
484 	return next;
485 }
486 
487 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
488 {
489 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
490 
491 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
492 
493 	/* Data will be freed after lifetime of device coredump. After calling
494 	 * dev_coredump, data is supposed to be handled by the device coredump
495 	 * framework. Note that a new dump will be discarded if a previous one
496 	 * hasn't been released yet.
497 	 */
498 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
499 }
500 
501 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
502 {
503 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
504 
505 	if (free_self) {
506 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
507 		vfree(desc->data);
508 	}
509 
510 	desc->data = NULL;
511 	desc->next = NULL;
512 }
513 
514 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
515 {
516 	u32 size = rtwdev->chip->fw_rxff_size;
517 	u32 *buf;
518 	u8 seq;
519 
520 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
521 	if (!buf)
522 		return -ENOMEM;
523 
524 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
525 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
526 		return -EINVAL;
527 	}
528 
529 	if (GET_FW_DUMP_LEN(buf) == 0) {
530 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
531 		return -EINVAL;
532 	}
533 
534 	seq = GET_FW_DUMP_SEQ(buf);
535 	if (seq > 0) {
536 		rtw_dbg(rtwdev, RTW_DBG_FW,
537 			"fw crash dump's seq is wrong: %d\n", seq);
538 		return -EINVAL;
539 	}
540 
541 	return 0;
542 }
543 
544 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
545 		u32 fwcd_item)
546 {
547 	u32 rxff = rtwdev->chip->fw_rxff_size;
548 	u32 dump_size, done_size = 0;
549 	u8 *buf;
550 	int ret;
551 
552 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
553 	if (!buf)
554 		return -ENOMEM;
555 
556 	while (size) {
557 		dump_size = size > rxff ? rxff : size;
558 
559 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
560 					  dump_size);
561 		if (ret) {
562 			rtw_err(rtwdev,
563 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
564 				ocp_src, done_size);
565 			return ret;
566 		}
567 
568 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
569 				       dump_size, (u32 *)(buf + done_size));
570 		if (ret) {
571 			rtw_err(rtwdev,
572 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
573 				ocp_src, done_size);
574 			return ret;
575 		}
576 
577 		size -= dump_size;
578 		done_size += dump_size;
579 	}
580 
581 	return 0;
582 }
583 EXPORT_SYMBOL(rtw_dump_fw);
584 
585 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
586 {
587 	u8 *buf;
588 	u32 i;
589 
590 	if (addr & 0x3) {
591 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
592 		return -EINVAL;
593 	}
594 
595 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
596 	if (!buf)
597 		return -ENOMEM;
598 
599 	for (i = 0; i < size; i += 4)
600 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
601 
602 	return 0;
603 }
604 EXPORT_SYMBOL(rtw_dump_reg);
605 
606 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
607 			   struct ieee80211_bss_conf *conf)
608 {
609 	struct ieee80211_vif *vif = NULL;
610 
611 	if (conf)
612 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
613 
614 	if (conf && vif->cfg.assoc) {
615 		rtwvif->aid = vif->cfg.aid;
616 		rtwvif->net_type = RTW_NET_MGD_LINKED;
617 	} else {
618 		rtwvif->aid = 0;
619 		rtwvif->net_type = RTW_NET_NO_LINK;
620 	}
621 }
622 
623 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
624 			       struct ieee80211_vif *vif,
625 			       struct ieee80211_sta *sta,
626 			       struct ieee80211_key_conf *key,
627 			       void *data)
628 {
629 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
630 	struct rtw_sec_desc *sec = &rtwdev->sec;
631 
632 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
633 }
634 
635 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
636 {
637 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
638 
639 	if (rtwdev->sta_cnt == 0) {
640 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
641 		return;
642 	}
643 	rtw_sta_remove(rtwdev, sta, false);
644 }
645 
646 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
647 {
648 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
649 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
650 
651 	rtw_bf_disassoc(rtwdev, vif, NULL);
652 	rtw_vif_assoc_changed(rtwvif, NULL);
653 	rtw_txq_cleanup(rtwdev, vif->txq);
654 
655 	rtw_release_macid(rtwdev, rtwvif->mac_id);
656 }
657 
658 void rtw_fw_recovery(struct rtw_dev *rtwdev)
659 {
660 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
661 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
662 }
663 
664 static void __fw_recovery_work(struct rtw_dev *rtwdev)
665 {
666 	int ret = 0;
667 
668 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
669 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
670 
671 	ret = rtw_fwcd_prep(rtwdev);
672 	if (ret)
673 		goto free;
674 	ret = rtw_fw_dump_crash_log(rtwdev);
675 	if (ret)
676 		goto free;
677 	ret = rtw_chip_dump_fw_crash(rtwdev);
678 	if (ret)
679 		goto free;
680 
681 	rtw_fwcd_dump(rtwdev);
682 free:
683 	rtw_fwcd_free(rtwdev, !!ret);
684 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
685 
686 	WARN(1, "firmware crash, start reset and recover\n");
687 
688 	rcu_read_lock();
689 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
690 	rcu_read_unlock();
691 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
692 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
693 	bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
694 	rtw_enter_ips(rtwdev);
695 }
696 
697 static void rtw_fw_recovery_work(struct work_struct *work)
698 {
699 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
700 					      fw_recovery_work);
701 
702 	mutex_lock(&rtwdev->mutex);
703 	__fw_recovery_work(rtwdev);
704 	mutex_unlock(&rtwdev->mutex);
705 
706 	ieee80211_restart_hw(rtwdev->hw);
707 }
708 
709 struct rtw_txq_ba_iter_data {
710 };
711 
712 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
713 {
714 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
715 	int ret;
716 	u8 tid;
717 
718 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
719 	while (tid != IEEE80211_NUM_TIDS) {
720 		clear_bit(tid, si->tid_ba);
721 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
722 		if (ret == -EINVAL) {
723 			struct ieee80211_txq *txq;
724 			struct rtw_txq *rtwtxq;
725 
726 			txq = sta->txq[tid];
727 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
728 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
729 		}
730 
731 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
732 	}
733 }
734 
735 static void rtw_txq_ba_work(struct work_struct *work)
736 {
737 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
738 	struct rtw_txq_ba_iter_data data;
739 
740 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
741 }
742 
743 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
744 {
745 	if (IS_CH_2G_BAND(channel))
746 		pkt_stat->band = NL80211_BAND_2GHZ;
747 	else if (IS_CH_5G_BAND(channel))
748 		pkt_stat->band = NL80211_BAND_5GHZ;
749 	else
750 		return;
751 
752 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
753 }
754 EXPORT_SYMBOL(rtw_set_rx_freq_band);
755 
756 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
757 {
758 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
759 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
760 }
761 
762 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
763 			u8 primary_channel, enum rtw_supported_band band,
764 			enum rtw_bandwidth bandwidth)
765 {
766 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
767 	struct rtw_hal *hal = &rtwdev->hal;
768 	u8 *cch_by_bw = hal->cch_by_bw;
769 	u32 center_freq, primary_freq;
770 	enum rtw_sar_bands sar_band;
771 	u8 primary_channel_idx;
772 
773 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
774 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
775 
776 	/* assign the center channel used while 20M bw is selected */
777 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
778 
779 	/* assign the center channel used while current bw is selected */
780 	cch_by_bw[bandwidth] = center_channel;
781 
782 	switch (bandwidth) {
783 	case RTW_CHANNEL_WIDTH_20:
784 	default:
785 		primary_channel_idx = RTW_SC_DONT_CARE;
786 		break;
787 	case RTW_CHANNEL_WIDTH_40:
788 		if (primary_freq > center_freq)
789 			primary_channel_idx = RTW_SC_20_UPPER;
790 		else
791 			primary_channel_idx = RTW_SC_20_LOWER;
792 		break;
793 	case RTW_CHANNEL_WIDTH_80:
794 		if (primary_freq > center_freq) {
795 			if (primary_freq - center_freq == 10)
796 				primary_channel_idx = RTW_SC_20_UPPER;
797 			else
798 				primary_channel_idx = RTW_SC_20_UPMOST;
799 
800 			/* assign the center channel used
801 			 * while 40M bw is selected
802 			 */
803 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
804 		} else {
805 			if (center_freq - primary_freq == 10)
806 				primary_channel_idx = RTW_SC_20_LOWER;
807 			else
808 				primary_channel_idx = RTW_SC_20_LOWEST;
809 
810 			/* assign the center channel used
811 			 * while 40M bw is selected
812 			 */
813 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
814 		}
815 		break;
816 	}
817 
818 	switch (center_channel) {
819 	case 1 ... 14:
820 		sar_band = RTW_SAR_BAND_0;
821 		break;
822 	case 36 ... 64:
823 		sar_band = RTW_SAR_BAND_1;
824 		break;
825 	case 100 ... 144:
826 		sar_band = RTW_SAR_BAND_3;
827 		break;
828 	case 149 ... 177:
829 		sar_band = RTW_SAR_BAND_4;
830 		break;
831 	default:
832 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
833 		sar_band = RTW_SAR_BAND_0;
834 		break;
835 	}
836 
837 	hal->current_primary_channel_index = primary_channel_idx;
838 	hal->current_band_width = bandwidth;
839 	hal->primary_channel = primary_channel;
840 	hal->current_channel = center_channel;
841 	hal->current_band_type = band;
842 	hal->sar_band = sar_band;
843 }
844 
845 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
846 			    struct rtw_channel_params *chan_params)
847 {
848 	struct ieee80211_channel *channel = chandef->chan;
849 	enum nl80211_chan_width width = chandef->width;
850 	u32 primary_freq, center_freq;
851 	u8 center_chan;
852 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
853 
854 	center_chan = channel->hw_value;
855 	primary_freq = channel->center_freq;
856 	center_freq = chandef->center_freq1;
857 
858 	switch (width) {
859 	case NL80211_CHAN_WIDTH_20_NOHT:
860 	case NL80211_CHAN_WIDTH_20:
861 		bandwidth = RTW_CHANNEL_WIDTH_20;
862 		break;
863 	case NL80211_CHAN_WIDTH_40:
864 		bandwidth = RTW_CHANNEL_WIDTH_40;
865 		if (primary_freq > center_freq)
866 			center_chan -= 2;
867 		else
868 			center_chan += 2;
869 		break;
870 	case NL80211_CHAN_WIDTH_80:
871 		bandwidth = RTW_CHANNEL_WIDTH_80;
872 		if (primary_freq > center_freq) {
873 			if (primary_freq - center_freq == 10)
874 				center_chan -= 2;
875 			else
876 				center_chan -= 6;
877 		} else {
878 			if (center_freq - primary_freq == 10)
879 				center_chan += 2;
880 			else
881 				center_chan += 6;
882 		}
883 		break;
884 	default:
885 		center_chan = 0;
886 		break;
887 	}
888 
889 	chan_params->center_chan = center_chan;
890 	chan_params->bandwidth = bandwidth;
891 	chan_params->primary_chan = channel->hw_value;
892 }
893 
894 void rtw_set_channel(struct rtw_dev *rtwdev)
895 {
896 	const struct rtw_chip_info *chip = rtwdev->chip;
897 	struct ieee80211_hw *hw = rtwdev->hw;
898 	struct rtw_hal *hal = &rtwdev->hal;
899 	struct rtw_channel_params ch_param;
900 	u8 center_chan, primary_chan, bandwidth, band;
901 
902 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
903 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
904 		return;
905 
906 	center_chan = ch_param.center_chan;
907 	primary_chan = ch_param.primary_chan;
908 	bandwidth = ch_param.bandwidth;
909 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
910 
911 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
912 
913 	if (rtwdev->scan_info.op_chan)
914 		rtw_store_op_chan(rtwdev, true);
915 
916 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
917 			       hal->current_primary_channel_index);
918 
919 	if (hal->current_band_type == RTW_BAND_5G) {
920 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
921 	} else {
922 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
923 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
924 		else
925 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
926 	}
927 
928 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
929 
930 	/* if the channel isn't set for scanning, we will do RF calibration
931 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
932 	 * during scanning on each channel takes too long.
933 	 */
934 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
935 		rtwdev->need_rfk = true;
936 }
937 
938 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
939 {
940 	const struct rtw_chip_info *chip = rtwdev->chip;
941 
942 	if (rtwdev->need_rfk) {
943 		rtwdev->need_rfk = false;
944 		chip->ops->phy_calibration(rtwdev);
945 	}
946 }
947 
948 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
949 {
950 	int i;
951 
952 	for (i = 0; i < ETH_ALEN; i++)
953 		rtw_write8(rtwdev, start + i, addr[i]);
954 }
955 
956 void rtw_vif_port_config(struct rtw_dev *rtwdev,
957 			 struct rtw_vif *rtwvif,
958 			 u32 config)
959 {
960 	u32 addr, mask;
961 
962 	if (config & PORT_SET_MAC_ADDR) {
963 		addr = rtwvif->conf->mac_addr.addr;
964 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
965 	}
966 	if (config & PORT_SET_BSSID) {
967 		addr = rtwvif->conf->bssid.addr;
968 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
969 	}
970 	if (config & PORT_SET_NET_TYPE) {
971 		addr = rtwvif->conf->net_type.addr;
972 		mask = rtwvif->conf->net_type.mask;
973 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
974 	}
975 	if (config & PORT_SET_AID) {
976 		addr = rtwvif->conf->aid.addr;
977 		mask = rtwvif->conf->aid.mask;
978 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
979 	}
980 	if (config & PORT_SET_BCN_CTRL) {
981 		addr = rtwvif->conf->bcn_ctrl.addr;
982 		mask = rtwvif->conf->bcn_ctrl.mask;
983 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
984 	}
985 }
986 
987 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
988 {
989 	u8 bw = 0;
990 
991 	switch (bw_cap) {
992 	case EFUSE_HW_CAP_IGNORE:
993 	case EFUSE_HW_CAP_SUPP_BW80:
994 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
995 		fallthrough;
996 	case EFUSE_HW_CAP_SUPP_BW40:
997 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
998 		fallthrough;
999 	default:
1000 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
1001 		break;
1002 	}
1003 
1004 	return bw;
1005 }
1006 
1007 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
1008 {
1009 	const struct rtw_chip_info *chip = rtwdev->chip;
1010 	struct rtw_hal *hal = &rtwdev->hal;
1011 
1012 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
1013 	    hw_ant_num >= hal->rf_path_num)
1014 		return;
1015 
1016 	switch (hw_ant_num) {
1017 	case 1:
1018 		hal->rf_type = RF_1T1R;
1019 		hal->rf_path_num = 1;
1020 		if (!chip->fix_rf_phy_num)
1021 			hal->rf_phy_num = hal->rf_path_num;
1022 		hal->antenna_tx = BB_PATH_A;
1023 		hal->antenna_rx = BB_PATH_A;
1024 		break;
1025 	default:
1026 		WARN(1, "invalid hw configuration from efuse\n");
1027 		break;
1028 	}
1029 }
1030 
1031 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
1032 {
1033 	u64 ra_mask = 0;
1034 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
1035 	u8 vht_mcs_cap;
1036 	int i, nss;
1037 
1038 	/* 4SS, every two bits for MCS7/8/9 */
1039 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
1040 		vht_mcs_cap = mcs_map & 0x3;
1041 		switch (vht_mcs_cap) {
1042 		case 2: /* MCS9 */
1043 			ra_mask |= 0x3ffULL << nss;
1044 			break;
1045 		case 1: /* MCS8 */
1046 			ra_mask |= 0x1ffULL << nss;
1047 			break;
1048 		case 0: /* MCS7 */
1049 			ra_mask |= 0x0ffULL << nss;
1050 			break;
1051 		default:
1052 			break;
1053 		}
1054 	}
1055 
1056 	return ra_mask;
1057 }
1058 
1059 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1060 {
1061 	u8 rate_id = 0;
1062 
1063 	switch (wireless_set) {
1064 	case WIRELESS_CCK:
1065 		rate_id = RTW_RATEID_B_20M;
1066 		break;
1067 	case WIRELESS_OFDM:
1068 		rate_id = RTW_RATEID_G;
1069 		break;
1070 	case WIRELESS_CCK | WIRELESS_OFDM:
1071 		rate_id = RTW_RATEID_BG;
1072 		break;
1073 	case WIRELESS_OFDM | WIRELESS_HT:
1074 		if (tx_num == 1)
1075 			rate_id = RTW_RATEID_GN_N1SS;
1076 		else if (tx_num == 2)
1077 			rate_id = RTW_RATEID_GN_N2SS;
1078 		else if (tx_num == 3)
1079 			rate_id = RTW_RATEID_ARFR5_N_3SS;
1080 		break;
1081 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1082 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1083 			if (tx_num == 1)
1084 				rate_id = RTW_RATEID_BGN_40M_1SS;
1085 			else if (tx_num == 2)
1086 				rate_id = RTW_RATEID_BGN_40M_2SS;
1087 			else if (tx_num == 3)
1088 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1089 			else if (tx_num == 4)
1090 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1091 		} else {
1092 			if (tx_num == 1)
1093 				rate_id = RTW_RATEID_BGN_20M_1SS;
1094 			else if (tx_num == 2)
1095 				rate_id = RTW_RATEID_BGN_20M_2SS;
1096 			else if (tx_num == 3)
1097 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1098 			else if (tx_num == 4)
1099 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1100 		}
1101 		break;
1102 	case WIRELESS_OFDM | WIRELESS_VHT:
1103 		if (tx_num == 1)
1104 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1105 		else if (tx_num == 2)
1106 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1107 		else if (tx_num == 3)
1108 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1109 		else if (tx_num == 4)
1110 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1111 		break;
1112 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1113 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1114 			if (tx_num == 1)
1115 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1116 			else if (tx_num == 2)
1117 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1118 			else if (tx_num == 3)
1119 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1120 			else if (tx_num == 4)
1121 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1122 		} else {
1123 			if (tx_num == 1)
1124 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1125 			else if (tx_num == 2)
1126 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1127 			else if (tx_num == 3)
1128 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1129 			else if (tx_num == 4)
1130 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1131 		}
1132 		break;
1133 	default:
1134 		break;
1135 	}
1136 
1137 	return rate_id;
1138 }
1139 
1140 #define RA_MASK_CCK_RATES	0x0000f
1141 #define RA_MASK_OFDM_RATES	0x00ff0
1142 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1143 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1144 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1145 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1146 				 RA_MASK_HT_RATES_2SS | \
1147 				 RA_MASK_HT_RATES_3SS)
1148 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1149 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1150 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1151 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1152 				 RA_MASK_VHT_RATES_2SS | \
1153 				 RA_MASK_VHT_RATES_3SS)
1154 #define RA_MASK_CCK_IN_BG	0x00005
1155 #define RA_MASK_CCK_IN_HT	0x00005
1156 #define RA_MASK_CCK_IN_VHT	0x00005
1157 #define RA_MASK_OFDM_IN_VHT	0x00010
1158 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1159 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1160 
1161 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1162 {
1163 	u8 rssi_level = si->rssi_level;
1164 
1165 	if (wireless_set == WIRELESS_CCK)
1166 		return 0xffffffffffffffffULL;
1167 
1168 	if (rssi_level == 0)
1169 		return 0xffffffffffffffffULL;
1170 	else if (rssi_level == 1)
1171 		return 0xfffffffffffffff0ULL;
1172 	else if (rssi_level == 2)
1173 		return 0xffffffffffffefe0ULL;
1174 	else if (rssi_level == 3)
1175 		return 0xffffffffffffcfc0ULL;
1176 	else if (rssi_level == 4)
1177 		return 0xffffffffffff8f80ULL;
1178 	else
1179 		return 0xffffffffffff0f00ULL;
1180 }
1181 
1182 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1183 {
1184 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1185 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1186 
1187 	if (ra_mask == 0)
1188 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1189 
1190 	return ra_mask;
1191 }
1192 
1193 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1194 			     u64 ra_mask, bool is_vht_enable)
1195 {
1196 	struct rtw_hal *hal = &rtwdev->hal;
1197 	const struct cfg80211_bitrate_mask *mask = si->mask;
1198 	u64 cfg_mask = GENMASK_ULL(63, 0);
1199 	u8 band;
1200 
1201 	if (!si->use_cfg_mask)
1202 		return ra_mask;
1203 
1204 	band = hal->current_band_type;
1205 	if (band == RTW_BAND_2G) {
1206 		band = NL80211_BAND_2GHZ;
1207 		cfg_mask = mask->control[band].legacy;
1208 	} else if (band == RTW_BAND_5G) {
1209 		band = NL80211_BAND_5GHZ;
1210 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1211 					   RA_MASK_OFDM_RATES);
1212 	}
1213 
1214 	if (!is_vht_enable) {
1215 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1216 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1217 						    RA_MASK_HT_RATES_1SS);
1218 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1219 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1220 						    RA_MASK_HT_RATES_2SS);
1221 	} else {
1222 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1223 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1224 						    RA_MASK_VHT_RATES_1SS);
1225 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1226 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1227 						    RA_MASK_VHT_RATES_2SS);
1228 	}
1229 
1230 	ra_mask &= cfg_mask;
1231 
1232 	return ra_mask;
1233 }
1234 
1235 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1236 			 bool reset_ra_mask)
1237 {
1238 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1239 	struct ieee80211_sta *sta = si->sta;
1240 	struct rtw_efuse *efuse = &rtwdev->efuse;
1241 	struct rtw_hal *hal = &rtwdev->hal;
1242 	u8 wireless_set;
1243 	u8 bw_mode;
1244 	u8 rate_id;
1245 	u8 stbc_en = 0;
1246 	u8 ldpc_en = 0;
1247 	u8 tx_num = 1;
1248 	u64 ra_mask = 0;
1249 	u64 ra_mask_bak = 0;
1250 	bool is_vht_enable = false;
1251 	bool is_support_sgi = false;
1252 
1253 	if (sta->deflink.vht_cap.vht_supported) {
1254 		is_vht_enable = true;
1255 		ra_mask |= get_vht_ra_mask(sta);
1256 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1257 			stbc_en = VHT_STBC_EN;
1258 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1259 			ldpc_en = VHT_LDPC_EN;
1260 	} else if (sta->deflink.ht_cap.ht_supported) {
1261 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1262 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1263 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1264 			stbc_en = HT_STBC_EN;
1265 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1266 			ldpc_en = HT_LDPC_EN;
1267 	}
1268 
1269 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1270 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1271 
1272 	if (hal->current_band_type == RTW_BAND_5G) {
1273 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1274 		ra_mask_bak = ra_mask;
1275 		if (sta->deflink.vht_cap.vht_supported) {
1276 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1277 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1278 		} else if (sta->deflink.ht_cap.ht_supported) {
1279 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1280 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1281 		} else {
1282 			wireless_set = WIRELESS_OFDM;
1283 		}
1284 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1285 	} else if (hal->current_band_type == RTW_BAND_2G) {
1286 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1287 		ra_mask_bak = ra_mask;
1288 		if (sta->deflink.vht_cap.vht_supported) {
1289 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1290 				   RA_MASK_OFDM_IN_VHT;
1291 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1292 				       WIRELESS_HT | WIRELESS_VHT;
1293 		} else if (sta->deflink.ht_cap.ht_supported) {
1294 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1295 				   RA_MASK_OFDM_IN_HT_2G;
1296 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1297 				       WIRELESS_HT;
1298 #if defined(__linux__)
1299 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1300 #elif defined(__FreeBSD__)
1301 		} else if (sta->deflink.supp_rates[NL80211_BAND_2GHZ] <= 0xf) {
1302 #endif
1303 			wireless_set = WIRELESS_CCK;
1304 		} else {
1305 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1306 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1307 		}
1308 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1309 	} else {
1310 		rtw_err(rtwdev, "Unknown band type\n");
1311 		ra_mask_bak = ra_mask;
1312 		wireless_set = 0;
1313 	}
1314 
1315 	switch (sta->deflink.bandwidth) {
1316 	case IEEE80211_STA_RX_BW_80:
1317 		bw_mode = RTW_CHANNEL_WIDTH_80;
1318 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1319 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1320 		break;
1321 	case IEEE80211_STA_RX_BW_40:
1322 		bw_mode = RTW_CHANNEL_WIDTH_40;
1323 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1324 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1325 		break;
1326 	default:
1327 		bw_mode = RTW_CHANNEL_WIDTH_20;
1328 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1329 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1330 		break;
1331 	}
1332 
1333 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000)
1334 		tx_num = 2;
1335 	else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000)
1336 		tx_num = 2;
1337 
1338 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1339 
1340 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1341 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1342 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1343 
1344 	si->bw_mode = bw_mode;
1345 	si->stbc_en = stbc_en;
1346 	si->ldpc_en = ldpc_en;
1347 	si->sgi_enable = is_support_sgi;
1348 	si->vht_enable = is_vht_enable;
1349 	si->ra_mask = ra_mask;
1350 	si->rate_id = rate_id;
1351 
1352 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1353 }
1354 
1355 int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1356 {
1357 	const struct rtw_chip_info *chip = rtwdev->chip;
1358 	struct rtw_fw_state *fw;
1359 	int ret = 0;
1360 
1361 	fw = &rtwdev->fw;
1362 	wait_for_completion(&fw->completion);
1363 	if (!fw->firmware)
1364 		ret = -EINVAL;
1365 
1366 	if (chip->wow_fw_name) {
1367 		fw = &rtwdev->wow_fw;
1368 		wait_for_completion(&fw->completion);
1369 		if (!fw->firmware)
1370 			ret = -EINVAL;
1371 	}
1372 
1373 	return ret;
1374 }
1375 EXPORT_SYMBOL(rtw_wait_firmware_completion);
1376 
1377 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1378 						       struct rtw_fw_state *fw)
1379 {
1380 	const struct rtw_chip_info *chip = rtwdev->chip;
1381 
1382 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1383 	    !fw->feature)
1384 		return LPS_DEEP_MODE_NONE;
1385 
1386 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1387 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1388 		return LPS_DEEP_MODE_PG;
1389 
1390 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1391 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1392 		return LPS_DEEP_MODE_LCLK;
1393 
1394 	return LPS_DEEP_MODE_NONE;
1395 }
1396 
1397 int rtw_power_on(struct rtw_dev *rtwdev)
1398 {
1399 	const struct rtw_chip_info *chip = rtwdev->chip;
1400 	struct rtw_fw_state *fw = &rtwdev->fw;
1401 	bool wifi_only;
1402 	int ret;
1403 
1404 	ret = rtw_hci_setup(rtwdev);
1405 	if (ret) {
1406 		rtw_err(rtwdev, "failed to setup hci\n");
1407 		goto err;
1408 	}
1409 
1410 	/* power on MAC before firmware downloaded */
1411 	ret = rtw_mac_power_on(rtwdev);
1412 	if (ret) {
1413 		rtw_err(rtwdev, "failed to power on mac\n");
1414 		goto err;
1415 	}
1416 
1417 	ret = rtw_wait_firmware_completion(rtwdev);
1418 	if (ret) {
1419 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1420 		goto err_off;
1421 	}
1422 
1423 	ret = rtw_download_firmware(rtwdev, fw);
1424 	if (ret) {
1425 		rtw_err(rtwdev, "failed to download firmware\n");
1426 		goto err_off;
1427 	}
1428 
1429 	/* config mac after firmware downloaded */
1430 	ret = rtw_mac_init(rtwdev);
1431 	if (ret) {
1432 		rtw_err(rtwdev, "failed to configure mac\n");
1433 		goto err_off;
1434 	}
1435 
1436 	chip->ops->phy_set_param(rtwdev);
1437 
1438 	ret = rtw_hci_start(rtwdev);
1439 	if (ret) {
1440 		rtw_err(rtwdev, "failed to start hci\n");
1441 		goto err_off;
1442 	}
1443 
1444 	/* send H2C after HCI has started */
1445 	rtw_fw_send_general_info(rtwdev);
1446 	rtw_fw_send_phydm_info(rtwdev);
1447 
1448 	wifi_only = !rtwdev->efuse.btcoex;
1449 	rtw_coex_power_on_setting(rtwdev);
1450 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1451 
1452 	return 0;
1453 
1454 err_off:
1455 	rtw_mac_power_off(rtwdev);
1456 
1457 err:
1458 	return ret;
1459 }
1460 EXPORT_SYMBOL(rtw_power_on);
1461 
1462 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1463 {
1464 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1465 		return;
1466 
1467 	if (start) {
1468 		rtw_fw_scan_notify(rtwdev, true);
1469 	} else {
1470 		reinit_completion(&rtwdev->fw_scan_density);
1471 		rtw_fw_scan_notify(rtwdev, false);
1472 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1473 						 SCAN_NOTIFY_TIMEOUT))
1474 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1475 	}
1476 }
1477 
1478 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1479 			 const u8 *mac_addr, bool hw_scan)
1480 {
1481 	u32 config = 0;
1482 	int ret = 0;
1483 
1484 	rtw_leave_lps(rtwdev);
1485 
1486 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1487 		ret = rtw_leave_ips(rtwdev);
1488 		if (ret) {
1489 			rtw_err(rtwdev, "failed to leave idle state\n");
1490 			return;
1491 		}
1492 	}
1493 
1494 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1495 	config |= PORT_SET_MAC_ADDR;
1496 	rtw_vif_port_config(rtwdev, rtwvif, config);
1497 
1498 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1499 	rtw_core_fw_scan_notify(rtwdev, true);
1500 
1501 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1502 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1503 }
1504 
1505 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1506 			    bool hw_scan)
1507 {
1508 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1509 	u32 config = 0;
1510 
1511 	if (!rtwvif)
1512 		return;
1513 
1514 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1515 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1516 
1517 	rtw_core_fw_scan_notify(rtwdev, false);
1518 
1519 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1520 	config |= PORT_SET_MAC_ADDR;
1521 	rtw_vif_port_config(rtwdev, rtwvif, config);
1522 
1523 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1524 
1525 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1526 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1527 }
1528 
1529 int rtw_core_start(struct rtw_dev *rtwdev)
1530 {
1531 	int ret;
1532 
1533 	ret = rtwdev->chip->ops->power_on(rtwdev);
1534 	if (ret)
1535 		return ret;
1536 
1537 	rtw_sec_enable_sec_engine(rtwdev);
1538 
1539 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1540 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1541 
1542 	/* rcr reset after powered on */
1543 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1544 
1545 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1546 				     RTW_WATCH_DOG_DELAY_TIME);
1547 
1548 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1549 
1550 	return 0;
1551 }
1552 
1553 void rtw_power_off(struct rtw_dev *rtwdev)
1554 {
1555 	rtw_hci_stop(rtwdev);
1556 	rtw_coex_power_off_setting(rtwdev);
1557 	rtw_mac_power_off(rtwdev);
1558 }
1559 EXPORT_SYMBOL(rtw_power_off);
1560 
1561 void rtw_core_stop(struct rtw_dev *rtwdev)
1562 {
1563 	struct rtw_coex *coex = &rtwdev->coex;
1564 
1565 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1566 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1567 
1568 	mutex_unlock(&rtwdev->mutex);
1569 
1570 	cancel_work_sync(&rtwdev->c2h_work);
1571 	cancel_work_sync(&rtwdev->update_beacon_work);
1572 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1573 	cancel_delayed_work_sync(&coex->bt_relink_work);
1574 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1575 	cancel_delayed_work_sync(&coex->defreeze_work);
1576 	cancel_delayed_work_sync(&coex->wl_remain_work);
1577 	cancel_delayed_work_sync(&coex->bt_remain_work);
1578 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1579 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1580 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1581 
1582 	mutex_lock(&rtwdev->mutex);
1583 
1584 	rtwdev->chip->ops->power_off(rtwdev);
1585 }
1586 
1587 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1588 			    struct ieee80211_sta_ht_cap *ht_cap)
1589 {
1590 	const struct rtw_chip_info *chip = rtwdev->chip;
1591 	struct rtw_efuse *efuse = &rtwdev->efuse;
1592 
1593 	ht_cap->ht_supported = true;
1594 	ht_cap->cap = 0;
1595 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1596 			IEEE80211_HT_CAP_MAX_AMSDU |
1597 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1598 
1599 	if (rtw_chip_has_rx_ldpc(rtwdev))
1600 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1601 	if (rtw_chip_has_tx_stbc(rtwdev))
1602 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1603 
1604 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1605 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1606 				IEEE80211_HT_CAP_DSSSCCK40 |
1607 				IEEE80211_HT_CAP_SGI_40;
1608 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1609 	ht_cap->ampdu_density = chip->ampdu_density;
1610 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1611 	if (efuse->hw_cap.nss > 1) {
1612 		ht_cap->mcs.rx_mask[0] = 0xFF;
1613 		ht_cap->mcs.rx_mask[1] = 0xFF;
1614 		ht_cap->mcs.rx_mask[4] = 0x01;
1615 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1616 	} else {
1617 		ht_cap->mcs.rx_mask[0] = 0xFF;
1618 		ht_cap->mcs.rx_mask[1] = 0x00;
1619 		ht_cap->mcs.rx_mask[4] = 0x01;
1620 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1621 	}
1622 }
1623 
1624 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1625 			     struct ieee80211_sta_vht_cap *vht_cap)
1626 {
1627 	struct rtw_efuse *efuse = &rtwdev->efuse;
1628 	u16 mcs_map;
1629 	__le16 highest;
1630 
1631 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1632 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1633 		return;
1634 
1635 	vht_cap->vht_supported = true;
1636 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1637 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1638 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1639 		       IEEE80211_VHT_CAP_HTC_VHT |
1640 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1641 		       0;
1642 	if (rtwdev->hal.rf_path_num > 1)
1643 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1644 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1645 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1646 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1647 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1648 
1649 	if (rtw_chip_has_rx_ldpc(rtwdev))
1650 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1651 
1652 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1653 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1654 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1655 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1656 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1657 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1658 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1659 	if (efuse->hw_cap.nss > 1) {
1660 		highest = cpu_to_le16(780);
1661 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1662 	} else {
1663 		highest = cpu_to_le16(390);
1664 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1665 	}
1666 
1667 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1668 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1669 	vht_cap->vht_mcs.rx_highest = highest;
1670 	vht_cap->vht_mcs.tx_highest = highest;
1671 }
1672 
1673 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1674 {
1675 	u16 len;
1676 
1677 	len = rtwdev->chip->max_scan_ie_len;
1678 
1679 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1680 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1681 		len = IEEE80211_MAX_DATA_LEN;
1682 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1683 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1684 
1685 	return len;
1686 }
1687 
1688 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1689 				   const struct rtw_chip_info *chip)
1690 {
1691 	struct rtw_dev *rtwdev = hw->priv;
1692 	struct ieee80211_supported_band *sband;
1693 
1694 	if (chip->band & RTW_BAND_2G) {
1695 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1696 		if (!sband)
1697 			goto err_out;
1698 #if defined(__linux__)
1699 		if (chip->ht_supported)
1700 #elif defined(__FreeBSD__)
1701 		if (rtw_ht_support && chip->ht_supported)
1702 #endif
1703 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1704 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1705 	}
1706 
1707 	if (chip->band & RTW_BAND_5G) {
1708 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1709 		if (!sband)
1710 			goto err_out;
1711 #if defined(__linux__)
1712 		if (chip->ht_supported)
1713 #elif defined(__FreeBSD__)
1714 		if (rtw_ht_support && chip->ht_supported)
1715 #endif
1716 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1717 #if defined(__linux__)
1718 		if (chip->vht_supported)
1719 #elif defined(__FreeBSD__)
1720 		if (rtw_vht_support && chip->vht_supported)
1721 #endif
1722 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1723 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1724 	}
1725 
1726 	return;
1727 
1728 err_out:
1729 	rtw_err(rtwdev, "failed to set supported band\n");
1730 }
1731 
1732 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1733 				     const struct rtw_chip_info *chip)
1734 {
1735 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1736 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1737 }
1738 
1739 static void rtw_vif_smps_iter(void *data, u8 *mac,
1740 			      struct ieee80211_vif *vif)
1741 {
1742 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1743 
1744 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1745 		return;
1746 
1747 	if (rtwdev->hal.txrx_1ss)
1748 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1749 	else
1750 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1751 }
1752 
1753 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1754 {
1755 	const struct rtw_chip_info *chip = rtwdev->chip;
1756 	struct rtw_hal *hal = &rtwdev->hal;
1757 
1758 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1759 		return;
1760 
1761 	rtwdev->hal.txrx_1ss = txrx_1ss;
1762 	if (txrx_1ss)
1763 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1764 	else
1765 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1766 					    hal->antenna_rx, false);
1767 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1768 }
1769 
1770 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1771 				      struct rtw_fw_state *fw)
1772 {
1773 	u32 feature;
1774 	const struct rtw_fw_hdr *fw_hdr =
1775 				(const struct rtw_fw_hdr *)fw->firmware->data;
1776 
1777 	feature = le32_to_cpu(fw_hdr->feature);
1778 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1779 
1780 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1781 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1782 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1783 }
1784 
1785 static void __update_firmware_info(struct rtw_dev *rtwdev,
1786 				   struct rtw_fw_state *fw)
1787 {
1788 	const struct rtw_fw_hdr *fw_hdr =
1789 				(const struct rtw_fw_hdr *)fw->firmware->data;
1790 
1791 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1792 	fw->version = le16_to_cpu(fw_hdr->version);
1793 	fw->sub_version = fw_hdr->subversion;
1794 	fw->sub_index = fw_hdr->subindex;
1795 
1796 	__update_firmware_feature(rtwdev, fw);
1797 }
1798 
1799 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1800 					  struct rtw_fw_state *fw)
1801 {
1802 	struct rtw_fw_hdr_legacy *legacy =
1803 #if defined(__linux__)
1804 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1805 #elif defined(__FreeBSD__)
1806 	    __DECONST(struct rtw_fw_hdr_legacy *, fw->firmware->data);
1807 #endif
1808 
1809 	fw->h2c_version = 0;
1810 	fw->version = le16_to_cpu(legacy->version);
1811 	fw->sub_version = legacy->subversion1;
1812 	fw->sub_index = legacy->subversion2;
1813 }
1814 
1815 static void update_firmware_info(struct rtw_dev *rtwdev,
1816 				 struct rtw_fw_state *fw)
1817 {
1818 	if (rtw_chip_wcpu_11n(rtwdev))
1819 		__update_firmware_info_legacy(rtwdev, fw);
1820 	else
1821 		__update_firmware_info(rtwdev, fw);
1822 }
1823 
1824 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1825 {
1826 	struct rtw_fw_state *fw = context;
1827 	struct rtw_dev *rtwdev = fw->rtwdev;
1828 
1829 	if (!firmware || !firmware->data) {
1830 		rtw_err(rtwdev, "failed to request firmware\n");
1831 		complete_all(&fw->completion);
1832 		return;
1833 	}
1834 
1835 	fw->firmware = firmware;
1836 	update_firmware_info(rtwdev, fw);
1837 	complete_all(&fw->completion);
1838 
1839 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1840 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1841 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1842 }
1843 
1844 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1845 {
1846 	const char *fw_name;
1847 	struct rtw_fw_state *fw;
1848 	int ret;
1849 
1850 	switch (type) {
1851 	case RTW_WOWLAN_FW:
1852 		fw = &rtwdev->wow_fw;
1853 		fw_name = rtwdev->chip->wow_fw_name;
1854 		break;
1855 
1856 	case RTW_NORMAL_FW:
1857 		fw = &rtwdev->fw;
1858 		fw_name = rtwdev->chip->fw_name;
1859 		break;
1860 
1861 	default:
1862 		rtw_warn(rtwdev, "unsupported firmware type\n");
1863 		return -ENOENT;
1864 	}
1865 
1866 	fw->type = type;
1867 	fw->rtwdev = rtwdev;
1868 	init_completion(&fw->completion);
1869 
1870 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1871 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1872 	if (ret) {
1873 		rtw_err(rtwdev, "failed to async firmware request\n");
1874 		return ret;
1875 	}
1876 
1877 	return 0;
1878 }
1879 
1880 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1881 {
1882 	const struct rtw_chip_info *chip = rtwdev->chip;
1883 	struct rtw_hal *hal = &rtwdev->hal;
1884 	struct rtw_efuse *efuse = &rtwdev->efuse;
1885 
1886 	switch (rtw_hci_type(rtwdev)) {
1887 	case RTW_HCI_TYPE_PCIE:
1888 		rtwdev->hci.rpwm_addr = 0x03d9;
1889 		rtwdev->hci.cpwm_addr = 0x03da;
1890 		break;
1891 	case RTW_HCI_TYPE_SDIO:
1892 		rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1893 		rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1894 		break;
1895 	case RTW_HCI_TYPE_USB:
1896 		rtwdev->hci.rpwm_addr = 0xfe58;
1897 		rtwdev->hci.cpwm_addr = 0xfe57;
1898 		break;
1899 	default:
1900 		rtw_err(rtwdev, "unsupported hci type\n");
1901 		return -EINVAL;
1902 	}
1903 
1904 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1905 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1906 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1907 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1908 		hal->rf_type = RF_2T2R;
1909 		hal->rf_path_num = 2;
1910 		hal->antenna_tx = BB_PATH_AB;
1911 		hal->antenna_rx = BB_PATH_AB;
1912 	} else {
1913 		hal->rf_type = RF_1T1R;
1914 		hal->rf_path_num = 1;
1915 		hal->antenna_tx = BB_PATH_A;
1916 		hal->antenna_rx = BB_PATH_A;
1917 	}
1918 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1919 			  hal->rf_path_num;
1920 
1921 	efuse->physical_size = chip->phy_efuse_size;
1922 	efuse->logical_size = chip->log_efuse_size;
1923 	efuse->protect_size = chip->ptct_efuse_size;
1924 
1925 	/* default use ack */
1926 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1927 
1928 	hal->bfee_sts_cap = 3;
1929 
1930 	return 0;
1931 }
1932 
1933 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1934 {
1935 	struct rtw_fw_state *fw = &rtwdev->fw;
1936 	int ret;
1937 
1938 	ret = rtw_hci_setup(rtwdev);
1939 	if (ret) {
1940 		rtw_err(rtwdev, "failed to setup hci\n");
1941 		goto err;
1942 	}
1943 
1944 	ret = rtw_mac_power_on(rtwdev);
1945 	if (ret) {
1946 		rtw_err(rtwdev, "failed to power on mac\n");
1947 		goto err;
1948 	}
1949 
1950 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1951 
1952 	wait_for_completion(&fw->completion);
1953 	if (!fw->firmware) {
1954 		ret = -EINVAL;
1955 		rtw_err(rtwdev, "failed to load firmware\n");
1956 		goto err;
1957 	}
1958 
1959 	ret = rtw_download_firmware(rtwdev, fw);
1960 	if (ret) {
1961 		rtw_err(rtwdev, "failed to download firmware\n");
1962 		goto err_off;
1963 	}
1964 
1965 	return 0;
1966 
1967 err_off:
1968 	rtw_mac_power_off(rtwdev);
1969 
1970 err:
1971 	return ret;
1972 }
1973 
1974 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1975 {
1976 	struct rtw_efuse *efuse = &rtwdev->efuse;
1977 	u8 hw_feature[HW_FEATURE_LEN];
1978 	u8 id;
1979 	u8 bw;
1980 	int i;
1981 
1982 	if (!rtwdev->chip->hw_feature_report)
1983 		return 0;
1984 
1985 	id = rtw_read8(rtwdev, REG_C2HEVT);
1986 	if (id != C2H_HW_FEATURE_REPORT) {
1987 		rtw_err(rtwdev, "failed to read hw feature report\n");
1988 		return -EBUSY;
1989 	}
1990 
1991 	for (i = 0; i < HW_FEATURE_LEN; i++)
1992 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1993 
1994 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1995 
1996 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1997 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1998 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1999 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
2000 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
2001 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
2002 
2003 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
2004 
2005 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
2006 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
2007 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
2008 
2009 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
2010 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
2011 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
2012 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
2013 
2014 	return 0;
2015 }
2016 
2017 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
2018 {
2019 	rtw_hci_stop(rtwdev);
2020 	rtw_mac_power_off(rtwdev);
2021 }
2022 
2023 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
2024 {
2025 	struct rtw_efuse *efuse = &rtwdev->efuse;
2026 	int ret;
2027 
2028 	mutex_lock(&rtwdev->mutex);
2029 
2030 	/* power on mac to read efuse */
2031 	ret = rtw_chip_efuse_enable(rtwdev);
2032 	if (ret)
2033 		goto out_unlock;
2034 
2035 	ret = rtw_parse_efuse_map(rtwdev);
2036 	if (ret)
2037 		goto out_disable;
2038 
2039 	ret = rtw_dump_hw_feature(rtwdev);
2040 	if (ret)
2041 		goto out_disable;
2042 
2043 	ret = rtw_check_supported_rfe(rtwdev);
2044 	if (ret)
2045 		goto out_disable;
2046 
2047 	if (efuse->crystal_cap == 0xff)
2048 		efuse->crystal_cap = 0;
2049 	if (efuse->pa_type_2g == 0xff)
2050 		efuse->pa_type_2g = 0;
2051 	if (efuse->pa_type_5g == 0xff)
2052 		efuse->pa_type_5g = 0;
2053 	if (efuse->lna_type_2g == 0xff)
2054 		efuse->lna_type_2g = 0;
2055 	if (efuse->lna_type_5g == 0xff)
2056 		efuse->lna_type_5g = 0;
2057 	if (efuse->channel_plan == 0xff)
2058 		efuse->channel_plan = 0x7f;
2059 	if (efuse->rf_board_option == 0xff)
2060 		efuse->rf_board_option = 0;
2061 	if (efuse->bt_setting & BIT(0))
2062 		efuse->share_ant = true;
2063 	if (efuse->regd == 0xff)
2064 		efuse->regd = 0;
2065 	if (efuse->tx_bb_swing_setting_2g == 0xff)
2066 		efuse->tx_bb_swing_setting_2g = 0;
2067 	if (efuse->tx_bb_swing_setting_5g == 0xff)
2068 		efuse->tx_bb_swing_setting_5g = 0;
2069 
2070 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2071 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2072 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2073 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2074 	efuse->ext_lna_5g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2075 
2076 	if (!is_valid_ether_addr(efuse->addr)) {
2077 		eth_random_addr(efuse->addr);
2078 		dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2079 	}
2080 
2081 out_disable:
2082 	rtw_chip_efuse_disable(rtwdev);
2083 
2084 out_unlock:
2085 	mutex_unlock(&rtwdev->mutex);
2086 	return ret;
2087 }
2088 
2089 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2090 {
2091 	struct rtw_hal *hal = &rtwdev->hal;
2092 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2093 
2094 	if (!rfe_def)
2095 		return -ENODEV;
2096 
2097 	rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2098 
2099 	rtw_phy_init_tx_power(rtwdev);
2100 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2101 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2102 	rtw_phy_tx_power_by_rate_config(hal);
2103 	rtw_phy_tx_power_limit_config(hal);
2104 
2105 	return 0;
2106 }
2107 
2108 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2109 {
2110 	int ret;
2111 
2112 	ret = rtw_chip_parameter_setup(rtwdev);
2113 	if (ret) {
2114 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2115 		goto err_out;
2116 	}
2117 
2118 	ret = rtw_chip_efuse_info_setup(rtwdev);
2119 	if (ret) {
2120 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2121 		goto err_out;
2122 	}
2123 
2124 	ret = rtw_chip_board_info_setup(rtwdev);
2125 	if (ret) {
2126 		rtw_err(rtwdev, "failed to setup chip board info\n");
2127 		goto err_out;
2128 	}
2129 
2130 	return 0;
2131 
2132 err_out:
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL(rtw_chip_info_setup);
2136 
2137 static void rtw_stats_init(struct rtw_dev *rtwdev)
2138 {
2139 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2140 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2141 	int i;
2142 
2143 	ewma_tp_init(&stats->tx_ewma_tp);
2144 	ewma_tp_init(&stats->rx_ewma_tp);
2145 
2146 	for (i = 0; i < RTW_EVM_NUM; i++)
2147 		ewma_evm_init(&dm_info->ewma_evm[i]);
2148 	for (i = 0; i < RTW_SNR_NUM; i++)
2149 		ewma_snr_init(&dm_info->ewma_snr[i]);
2150 }
2151 
2152 int rtw_core_init(struct rtw_dev *rtwdev)
2153 {
2154 	const struct rtw_chip_info *chip = rtwdev->chip;
2155 	struct rtw_coex *coex = &rtwdev->coex;
2156 	int ret;
2157 
2158 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2159 	INIT_LIST_HEAD(&rtwdev->txqs);
2160 
2161 	timer_setup(&rtwdev->tx_report.purge_timer,
2162 		    rtw_tx_report_purge_timer, 0);
2163 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2164 	if (!rtwdev->tx_wq) {
2165 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2166 		return -ENOMEM;
2167 	}
2168 
2169 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2170 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2171 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2172 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2173 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2174 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2175 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2176 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2177 			  rtw_coex_bt_multi_link_remain_work);
2178 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2179 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2180 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2181 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2182 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2183 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2184 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2185 	skb_queue_head_init(&rtwdev->c2h_queue);
2186 	skb_queue_head_init(&rtwdev->coex.queue);
2187 	skb_queue_head_init(&rtwdev->tx_report.queue);
2188 
2189 	spin_lock_init(&rtwdev->txq_lock);
2190 	spin_lock_init(&rtwdev->tx_report.q_lock);
2191 
2192 	mutex_init(&rtwdev->mutex);
2193 	mutex_init(&rtwdev->hal.tx_power_mutex);
2194 
2195 	init_waitqueue_head(&rtwdev->coex.wait);
2196 	init_completion(&rtwdev->lps_leave_check);
2197 	init_completion(&rtwdev->fw_scan_density);
2198 
2199 	rtwdev->sec.total_cam_num = 32;
2200 	rtwdev->hal.current_channel = 1;
2201 	rtwdev->dm_info.fix_rate = U8_MAX;
2202 
2203 	rtw_stats_init(rtwdev);
2204 
2205 	/* default rx filter setting */
2206 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2207 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2208 			  BIT_AB | BIT_AM | BIT_APM;
2209 
2210 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2211 	if (ret) {
2212 		rtw_warn(rtwdev, "no firmware loaded\n");
2213 		goto out;
2214 	}
2215 
2216 	if (chip->wow_fw_name) {
2217 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2218 		if (ret) {
2219 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2220 			wait_for_completion(&rtwdev->fw.completion);
2221 			if (rtwdev->fw.firmware)
2222 				release_firmware(rtwdev->fw.firmware);
2223 			goto out;
2224 		}
2225 	}
2226 
2227 #if defined(__FreeBSD__)
2228 	rtw_wait_firmware_completion(rtwdev);
2229 #endif
2230 
2231 	return 0;
2232 
2233 out:
2234 	destroy_workqueue(rtwdev->tx_wq);
2235 	return ret;
2236 }
2237 EXPORT_SYMBOL(rtw_core_init);
2238 
2239 void rtw_core_deinit(struct rtw_dev *rtwdev)
2240 {
2241 	struct rtw_fw_state *fw = &rtwdev->fw;
2242 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2243 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2244 	unsigned long flags;
2245 
2246 	rtw_wait_firmware_completion(rtwdev);
2247 
2248 	if (fw->firmware)
2249 		release_firmware(fw->firmware);
2250 
2251 	if (wow_fw->firmware)
2252 		release_firmware(wow_fw->firmware);
2253 
2254 	destroy_workqueue(rtwdev->tx_wq);
2255 	timer_delete_sync(&rtwdev->tx_report.purge_timer);
2256 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2257 	skb_queue_purge(&rtwdev->tx_report.queue);
2258 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2259 	skb_queue_purge(&rtwdev->coex.queue);
2260 	skb_queue_purge(&rtwdev->c2h_queue);
2261 
2262 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2263 				 build_list) {
2264 		list_del(&rsvd_pkt->build_list);
2265 		kfree(rsvd_pkt);
2266 	}
2267 
2268 	mutex_destroy(&rtwdev->mutex);
2269 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2270 }
2271 EXPORT_SYMBOL(rtw_core_deinit);
2272 
2273 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2274 {
2275 	bool sta_mode_only = rtwdev->hci.type == RTW_HCI_TYPE_SDIO;
2276 	struct rtw_hal *hal = &rtwdev->hal;
2277 	int max_tx_headroom = 0;
2278 	int ret;
2279 
2280 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2281 
2282 	if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2283 		max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2284 
2285 	hw->extra_tx_headroom = max_tx_headroom;
2286 	hw->queues = IEEE80211_NUM_ACS;
2287 	hw->txq_data_size = sizeof(struct rtw_txq);
2288 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2289 	hw->vif_data_size = sizeof(struct rtw_vif);
2290 
2291 	ieee80211_hw_set(hw, SIGNAL_DBM);
2292 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2293 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2294 	ieee80211_hw_set(hw, MFP_CAPABLE);
2295 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2296 	ieee80211_hw_set(hw, SUPPORTS_PS);
2297 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2298 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2299 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2300 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2301 	ieee80211_hw_set(hw, TX_AMSDU);
2302 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2303 
2304 	if (sta_mode_only)
2305 		hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
2306 	else
2307 		hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2308 					     BIT(NL80211_IFTYPE_AP) |
2309 					     BIT(NL80211_IFTYPE_ADHOC);
2310 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2311 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2312 
2313 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2314 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2315 
2316 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2317 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2318 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2319 
2320 	if (!sta_mode_only && rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2321 		hw->wiphy->iface_combinations = rtw_iface_combs;
2322 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2323 	}
2324 
2325 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2326 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2327 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2328 
2329 #ifdef CONFIG_PM
2330 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2331 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2332 #endif
2333 	rtw_set_supported_band(hw, rtwdev->chip);
2334 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2335 
2336 	hw->wiphy->sar_capa = &rtw_sar_capa;
2337 
2338 	ret = rtw_regd_init(rtwdev);
2339 	if (ret) {
2340 		rtw_err(rtwdev, "failed to init regd\n");
2341 		return ret;
2342 	}
2343 
2344 	rtw_led_init(rtwdev);
2345 
2346 	ret = ieee80211_register_hw(hw);
2347 	if (ret) {
2348 		rtw_err(rtwdev, "failed to register hw\n");
2349 		goto led_deinit;
2350 	}
2351 
2352 	ret = rtw_regd_hint(rtwdev);
2353 	if (ret) {
2354 		rtw_err(rtwdev, "failed to hint regd\n");
2355 		goto led_deinit;
2356 	}
2357 
2358 	rtw_debugfs_init(rtwdev);
2359 
2360 	rtwdev->bf_info.bfer_mu_cnt = 0;
2361 	rtwdev->bf_info.bfer_su_cnt = 0;
2362 
2363 	return 0;
2364 
2365 led_deinit:
2366 	rtw_led_deinit(rtwdev);
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL(rtw_register_hw);
2370 
2371 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2372 {
2373 	const struct rtw_chip_info *chip = rtwdev->chip;
2374 
2375 	ieee80211_unregister_hw(hw);
2376 	rtw_unset_supported_band(hw, chip);
2377 	rtw_debugfs_deinit(rtwdev);
2378 	rtw_led_deinit(rtwdev);
2379 }
2380 EXPORT_SYMBOL(rtw_unregister_hw);
2381 
2382 static
2383 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2384 			 const struct rtw_hw_reg *reg2, u8 nbytes)
2385 {
2386 	u8 i;
2387 
2388 	for (i = 0; i < nbytes; i++) {
2389 		u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2390 		u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2391 
2392 		rtw_write8(rtwdev, reg1->addr + i, v2);
2393 		rtw_write8(rtwdev, reg2->addr + i, v1);
2394 	}
2395 }
2396 
2397 static
2398 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2399 		       const struct rtw_hw_reg *reg2)
2400 {
2401 	u32 v1, v2;
2402 
2403 	v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2404 	v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2405 	rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2406 	rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2407 }
2408 
2409 struct rtw_iter_port_switch_data {
2410 	struct rtw_dev *rtwdev;
2411 	struct rtw_vif *rtwvif_ap;
2412 };
2413 
2414 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2415 {
2416 	struct rtw_iter_port_switch_data *iter_data = data;
2417 	struct rtw_dev *rtwdev = iter_data->rtwdev;
2418 	struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2419 	struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2420 	const struct rtw_hw_reg *reg1, *reg2;
2421 
2422 	if (rtwvif_target->port != RTW_PORT_0)
2423 		return;
2424 
2425 	rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2426 		rtwvif_ap->port, rtwvif_target->port);
2427 
2428 	/* Leave LPS so the value swapped are not in PS mode */
2429 	rtw_leave_lps(rtwdev);
2430 
2431 	reg1 = &rtwvif_ap->conf->net_type;
2432 	reg2 = &rtwvif_target->conf->net_type;
2433 	rtw_swap_reg_mask(rtwdev, reg1, reg2);
2434 
2435 	reg1 = &rtwvif_ap->conf->mac_addr;
2436 	reg2 = &rtwvif_target->conf->mac_addr;
2437 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2438 
2439 	reg1 = &rtwvif_ap->conf->bssid;
2440 	reg2 = &rtwvif_target->conf->bssid;
2441 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2442 
2443 	reg1 = &rtwvif_ap->conf->bcn_ctrl;
2444 	reg2 = &rtwvif_target->conf->bcn_ctrl;
2445 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2446 
2447 	swap(rtwvif_target->port, rtwvif_ap->port);
2448 	swap(rtwvif_target->conf, rtwvif_ap->conf);
2449 
2450 	rtw_fw_default_port(rtwdev, rtwvif_target);
2451 }
2452 
2453 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2454 {
2455 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2456 	struct rtw_iter_port_switch_data iter_data;
2457 
2458 	if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2459 		return;
2460 
2461 	iter_data.rtwdev = rtwdev;
2462 	iter_data.rtwvif_ap = rtwvif;
2463 	rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2464 }
2465 
2466 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2467 {
2468 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2469 	bool *active = data;
2470 
2471 	if (*active)
2472 		return;
2473 
2474 	if (vif->type != NL80211_IFTYPE_STATION)
2475 		return;
2476 
2477 	if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2478 		*active = true;
2479 }
2480 
2481 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2482 {
2483 	bool sta_active = false;
2484 
2485 	rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2486 
2487 	return rtwdev->ap_active || sta_active;
2488 }
2489 
2490 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2491 {
2492 	if (!rtwdev->ap_active)
2493 		return;
2494 
2495 	if (enable) {
2496 		rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2497 		rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2498 	} else {
2499 		rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2500 		rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2501 	}
2502 }
2503 
2504 MODULE_AUTHOR("Realtek Corporation");
2505 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2506 MODULE_LICENSE("Dual BSD/GPL");
2507