1 /*
2 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 /*
7 * Copyright (c) 2004 David Young. All rights reserved.
8 *
9 * This code was written by David Young.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
24 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
25 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
26 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
27 * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
31 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
34 * OF SUCH DAMAGE.
35 */
36 #include <sys/sysmacros.h>
37 #include <sys/pci.h>
38 #include <sys/stat.h>
39 #include <sys/strsubr.h>
40 #include <sys/strsun.h>
41 #include <sys/mac_provider.h>
42 #include <sys/mac_wifi.h>
43 #include <sys/net80211.h>
44 #include <sys/byteorder.h>
45 #include "rtwreg.h"
46 #include "rtwvar.h"
47 #include "smc93cx6var.h"
48 #include "rtwphy.h"
49 #include "rtwphyio.h"
50
51 /*
52 * PIO access attributes for registers
53 */
54 static ddi_device_acc_attr_t rtw_reg_accattr = {
55 DDI_DEVICE_ATTR_V0,
56 DDI_STRUCTURE_LE_ACC,
57 DDI_STRICTORDER_ACC,
58 DDI_DEFAULT_ACC
59 };
60
61 /*
62 * DMA access attributes for descriptors and bufs: NOT to be byte swapped.
63 */
64 static ddi_device_acc_attr_t rtw_desc_accattr = {
65 DDI_DEVICE_ATTR_V0,
66 DDI_NEVERSWAP_ACC,
67 DDI_STRICTORDER_ACC,
68 DDI_DEFAULT_ACC
69 };
70 static ddi_device_acc_attr_t rtw_buf_accattr = {
71 DDI_DEVICE_ATTR_V0,
72 DDI_NEVERSWAP_ACC,
73 DDI_STRICTORDER_ACC,
74 DDI_DEFAULT_ACC
75 };
76
77 /*
78 * Describes the chip's DMA engine
79 */
80 static ddi_dma_attr_t dma_attr_desc = {
81 DMA_ATTR_V0, /* dma_attr version */
82 0x0000000000000000ull, /* dma_attr_addr_lo */
83 0xFFFFFFFF, /* dma_attr_addr_hi */
84 0x00000000FFFFFFFFull, /* dma_attr_count_max */
85 0x100, /* dma_attr_align */
86 0xFFFFFFFF, /* dma_attr_burstsizes */
87 0x00000001, /* dma_attr_minxfer */
88 0x00000000FFFFull, /* dma_attr_maxxfer */
89 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */
90 1, /* dma_attr_sgllen */
91 1, /* dma_attr_granular */
92 0 /* dma_attr_flags */
93 };
94
95 static ddi_dma_attr_t dma_attr_rxbuf = {
96 DMA_ATTR_V0, /* dma_attr version */
97 0x0000000000000000ull, /* dma_attr_addr_lo */
98 0xFFFFFFFF, /* dma_attr_addr_hi */
99 0x00000000FFFFFFFFull, /* dma_attr_count_max */
100 (uint32_t)16, /* dma_attr_align */
101 0xFFFFFFFF, /* dma_attr_burstsizes */
102 0x00000001, /* dma_attr_minxfer */
103 0x00000000FFFFull, /* dma_attr_maxxfer */
104 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */
105 1, /* dma_attr_sgllen */
106 1, /* dma_attr_granular */
107 0 /* dma_attr_flags */
108 };
109
110 static ddi_dma_attr_t dma_attr_txbuf = {
111 DMA_ATTR_V0, /* dma_attr version */
112 0x0000000000000000ull, /* dma_attr_addr_lo */
113 0xFFFFFFFF, /* dma_attr_addr_hi */
114 0x00000000FFFFFFFFull, /* dma_attr_count_max */
115 (uint32_t)16, /* dma_attr_align */
116 0xFFFFFFFF, /* dma_attr_burstsizes */
117 0x00000001, /* dma_attr_minxfer */
118 0x00000000FFFFull, /* dma_attr_maxxfer */
119 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */
120 1, /* dma_attr_sgllen */
121 1, /* dma_attr_granular */
122 0 /* dma_attr_flags */
123 };
124
125
126 static void *rtw_soft_state_p = NULL;
127
128 static void rtw_stop(void *);
129 static int rtw_attach(dev_info_t *, ddi_attach_cmd_t);
130 static int rtw_detach(dev_info_t *, ddi_detach_cmd_t);
131 static int rtw_quiesce(dev_info_t *);
132 static int rtw_m_stat(void *, uint_t, uint64_t *);
133 static int rtw_m_start(void *);
134 static void rtw_m_stop(void *);
135 static int rtw_m_promisc(void *, boolean_t);
136 static int rtw_m_multicst(void *, boolean_t, const uint8_t *);
137 static int rtw_m_unicst(void *, const uint8_t *);
138 static mblk_t *rtw_m_tx(void *, mblk_t *);
139 static void rtw_m_ioctl(void *, queue_t *, mblk_t *);
140 static int rtw_m_setprop(void *, const char *, mac_prop_id_t,
141 uint_t, const void *);
142 static int rtw_m_getprop(void *, const char *, mac_prop_id_t,
143 uint_t, void *);
144 static void rtw_m_propinfo(void *, const char *, mac_prop_id_t,
145 mac_prop_info_handle_t);
146
147 static mac_callbacks_t rtw_m_callbacks = {
148 MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
149 rtw_m_stat,
150 rtw_m_start,
151 rtw_m_stop,
152 rtw_m_promisc,
153 rtw_m_multicst,
154 rtw_m_unicst,
155 rtw_m_tx,
156 NULL,
157 rtw_m_ioctl,
158 NULL, /* mc_getcapab */
159 NULL,
160 NULL,
161 rtw_m_setprop,
162 rtw_m_getprop,
163 rtw_m_propinfo
164 };
165
166 DDI_DEFINE_STREAM_OPS(rtw_dev_ops, nulldev, nulldev, rtw_attach, rtw_detach,
167 nodev, NULL, D_MP, NULL, rtw_quiesce);
168
169 static struct modldrv rtw_modldrv = {
170 &mod_driverops, /* Type of module. This one is a driver */
171 "realtek 8180L driver 1.7", /* short description */
172 &rtw_dev_ops /* driver specific ops */
173 };
174
175 static struct modlinkage modlinkage = {
176 MODREV_1, (void *)&rtw_modldrv, NULL
177 };
178
179 static uint32_t rtw_qlen[RTW_NTXPRI] = {
180 RTW_TXQLENLO,
181 RTW_TXQLENMD,
182 RTW_TXQLENHI,
183 RTW_TXQLENBCN
184 };
185
186 uint32_t rtw_dbg_flags = 0;
187 /*
188 * RTW_DEBUG_ATTACH | RTW_DEBUG_TUNE |
189 * RTW_DEBUG_ACCESS | RTW_DEBUG_INIT | RTW_DEBUG_PKTFILT |
190 * RTW_DEBUG_RECV | RTW_DEBUG_XMIT | RTW_DEBUG_80211 | RTW_DEBUG_INTR |
191 * RTW_DEBUG_PKTDUMP;
192 */
193
194 /*
195 * Supported rates for 802.11b modes (in 500Kbps unit).
196 */
197 static const struct ieee80211_rateset rtw_rateset_11b =
198 { 4, { 2, 4, 11, 22 } };
199
200 int
_info(struct modinfo * modinfop)201 _info(struct modinfo *modinfop)
202 {
203 return (mod_info(&modlinkage, modinfop));
204 }
205
206 int
_init(void)207 _init(void)
208 {
209 int status;
210
211 status = ddi_soft_state_init(&rtw_soft_state_p,
212 sizeof (rtw_softc_t), 1);
213 if (status != 0)
214 return (status);
215
216 mac_init_ops(&rtw_dev_ops, "rtw");
217 status = mod_install(&modlinkage);
218 if (status != 0) {
219 mac_fini_ops(&rtw_dev_ops);
220 ddi_soft_state_fini(&rtw_soft_state_p);
221 }
222 return (status);
223 }
224
225 int
_fini(void)226 _fini(void)
227 {
228 int status;
229
230 status = mod_remove(&modlinkage);
231 if (status == 0) {
232 mac_fini_ops(&rtw_dev_ops);
233 ddi_soft_state_fini(&rtw_soft_state_p);
234 }
235 return (status);
236 }
237
238 void
rtw_dbg(uint32_t dbg_flags,const int8_t * fmt,...)239 rtw_dbg(uint32_t dbg_flags, const int8_t *fmt, ...)
240 {
241 va_list args;
242
243 if (dbg_flags & rtw_dbg_flags) {
244 va_start(args, fmt);
245 vcmn_err(CE_CONT, fmt, args);
246 va_end(args);
247 }
248 }
249
250 #ifdef DEBUG
251 static void
rtw_print_regs(struct rtw_regs * regs,const char * dvname,const char * where)252 rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
253 {
254 #define PRINTREG32(sc, reg) \
255 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
256 "%s: reg[ " #reg " / %03x ] = %08x\n", \
257 dvname, reg, RTW_READ(regs, reg))
258
259 #define PRINTREG16(sc, reg) \
260 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
261 "%s: reg[ " #reg " / %03x ] = %04x\n", \
262 dvname, reg, RTW_READ16(regs, reg))
263
264 #define PRINTREG8(sc, reg) \
265 RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
266 "%s: reg[ " #reg " / %03x ] = %02x\n", \
267 dvname, reg, RTW_READ8(regs, reg))
268
269 RTW_DPRINTF(RTW_DEBUG_REGDUMP, "%s: %s\n", dvname, where);
270
271 PRINTREG32(regs, RTW_IDR0);
272 PRINTREG32(regs, RTW_IDR1);
273 PRINTREG32(regs, RTW_MAR0);
274 PRINTREG32(regs, RTW_MAR1);
275 PRINTREG32(regs, RTW_TSFTRL);
276 PRINTREG32(regs, RTW_TSFTRH);
277 PRINTREG32(regs, RTW_TLPDA);
278 PRINTREG32(regs, RTW_TNPDA);
279 PRINTREG32(regs, RTW_THPDA);
280 PRINTREG32(regs, RTW_TCR);
281 PRINTREG32(regs, RTW_RCR);
282 PRINTREG32(regs, RTW_TINT);
283 PRINTREG32(regs, RTW_TBDA);
284 PRINTREG32(regs, RTW_ANAPARM);
285 PRINTREG32(regs, RTW_BB);
286 PRINTREG32(regs, RTW_PHYCFG);
287 PRINTREG32(regs, RTW_WAKEUP0L);
288 PRINTREG32(regs, RTW_WAKEUP0H);
289 PRINTREG32(regs, RTW_WAKEUP1L);
290 PRINTREG32(regs, RTW_WAKEUP1H);
291 PRINTREG32(regs, RTW_WAKEUP2LL);
292 PRINTREG32(regs, RTW_WAKEUP2LH);
293 PRINTREG32(regs, RTW_WAKEUP2HL);
294 PRINTREG32(regs, RTW_WAKEUP2HH);
295 PRINTREG32(regs, RTW_WAKEUP3LL);
296 PRINTREG32(regs, RTW_WAKEUP3LH);
297 PRINTREG32(regs, RTW_WAKEUP3HL);
298 PRINTREG32(regs, RTW_WAKEUP3HH);
299 PRINTREG32(regs, RTW_WAKEUP4LL);
300 PRINTREG32(regs, RTW_WAKEUP4LH);
301 PRINTREG32(regs, RTW_WAKEUP4HL);
302 PRINTREG32(regs, RTW_WAKEUP4HH);
303 PRINTREG32(regs, RTW_DK0);
304 PRINTREG32(regs, RTW_DK1);
305 PRINTREG32(regs, RTW_DK2);
306 PRINTREG32(regs, RTW_DK3);
307 PRINTREG32(regs, RTW_RETRYCTR);
308 PRINTREG32(regs, RTW_RDSAR);
309 PRINTREG32(regs, RTW_FER);
310 PRINTREG32(regs, RTW_FEMR);
311 PRINTREG32(regs, RTW_FPSR);
312 PRINTREG32(regs, RTW_FFER);
313
314 /* 16-bit registers */
315 PRINTREG16(regs, RTW_BRSR);
316 PRINTREG16(regs, RTW_IMR);
317 PRINTREG16(regs, RTW_ISR);
318 PRINTREG16(regs, RTW_BCNITV);
319 PRINTREG16(regs, RTW_ATIMWND);
320 PRINTREG16(regs, RTW_BINTRITV);
321 PRINTREG16(regs, RTW_ATIMTRITV);
322 PRINTREG16(regs, RTW_CRC16ERR);
323 PRINTREG16(regs, RTW_CRC0);
324 PRINTREG16(regs, RTW_CRC1);
325 PRINTREG16(regs, RTW_CRC2);
326 PRINTREG16(regs, RTW_CRC3);
327 PRINTREG16(regs, RTW_CRC4);
328 PRINTREG16(regs, RTW_CWR);
329
330 /* 8-bit registers */
331 PRINTREG8(regs, RTW_CR);
332 PRINTREG8(regs, RTW_9346CR);
333 PRINTREG8(regs, RTW_CONFIG0);
334 PRINTREG8(regs, RTW_CONFIG1);
335 PRINTREG8(regs, RTW_CONFIG2);
336 PRINTREG8(regs, RTW_MSR);
337 PRINTREG8(regs, RTW_CONFIG3);
338 PRINTREG8(regs, RTW_CONFIG4);
339 PRINTREG8(regs, RTW_TESTR);
340 PRINTREG8(regs, RTW_PSR);
341 PRINTREG8(regs, RTW_SCR);
342 PRINTREG8(regs, RTW_PHYDELAY);
343 PRINTREG8(regs, RTW_CRCOUNT);
344 PRINTREG8(regs, RTW_PHYADDR);
345 PRINTREG8(regs, RTW_PHYDATAW);
346 PRINTREG8(regs, RTW_PHYDATAR);
347 PRINTREG8(regs, RTW_CONFIG5);
348 PRINTREG8(regs, RTW_TPPOLL);
349
350 PRINTREG16(regs, RTW_BSSID16);
351 PRINTREG32(regs, RTW_BSSID32);
352 #undef PRINTREG32
353 #undef PRINTREG16
354 #undef PRINTREG8
355 }
356
357 #endif /* DEBUG */
358 static const char *
rtw_access_string(enum rtw_access access)359 rtw_access_string(enum rtw_access access)
360 {
361 switch (access) {
362 case RTW_ACCESS_NONE:
363 return ("none");
364 case RTW_ACCESS_CONFIG:
365 return ("config");
366 case RTW_ACCESS_ANAPARM:
367 return ("anaparm");
368 default:
369 return ("unknown");
370 }
371 }
372
373 /*
374 * Enable registers, switch register banks.
375 */
376 void
rtw_config0123_enable(struct rtw_regs * regs,int enable)377 rtw_config0123_enable(struct rtw_regs *regs, int enable)
378 {
379 uint8_t ecr;
380 ecr = RTW_READ8(regs, RTW_9346CR);
381 ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
382 if (enable)
383 ecr |= RTW_9346CR_EEM_CONFIG;
384 else {
385 RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
386 ecr |= RTW_9346CR_EEM_NORMAL;
387 }
388 RTW_WRITE8(regs, RTW_9346CR, ecr);
389 RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
390 }
391
392 /*
393 * requires rtw_config0123_enable(, 1)
394 */
395 void
rtw_anaparm_enable(struct rtw_regs * regs,int enable)396 rtw_anaparm_enable(struct rtw_regs *regs, int enable)
397 {
398 uint8_t cfg3;
399
400 cfg3 = RTW_READ8(regs, RTW_CONFIG3);
401 cfg3 |= RTW_CONFIG3_CLKRUNEN;
402 if (enable)
403 cfg3 |= RTW_CONFIG3_PARMEN;
404 else
405 cfg3 &= ~RTW_CONFIG3_PARMEN;
406 RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
407 RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
408 }
409
410 /*
411 * requires rtw_anaparm_enable(, 1)
412 */
413 void
rtw_txdac_enable(rtw_softc_t * rsc,int enable)414 rtw_txdac_enable(rtw_softc_t *rsc, int enable)
415 {
416 uint32_t anaparm;
417 struct rtw_regs *regs = &rsc->sc_regs;
418
419 anaparm = RTW_READ(regs, RTW_ANAPARM);
420 if (enable)
421 anaparm &= ~RTW_ANAPARM_TXDACOFF;
422 else
423 anaparm |= RTW_ANAPARM_TXDACOFF;
424 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
425 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
426 }
427
428 static void
rtw_set_access1(struct rtw_regs * regs,enum rtw_access naccess)429 rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
430 {
431 ASSERT(naccess >= RTW_ACCESS_NONE && naccess <= RTW_ACCESS_ANAPARM);
432 ASSERT(regs->r_access >= RTW_ACCESS_NONE &&
433 regs->r_access <= RTW_ACCESS_ANAPARM);
434
435 if (naccess == regs->r_access)
436 return;
437
438 switch (naccess) {
439 case RTW_ACCESS_NONE:
440 switch (regs->r_access) {
441 case RTW_ACCESS_ANAPARM:
442 rtw_anaparm_enable(regs, 0);
443 /*FALLTHROUGH*/
444 case RTW_ACCESS_CONFIG:
445 rtw_config0123_enable(regs, 0);
446 /*FALLTHROUGH*/
447 case RTW_ACCESS_NONE:
448 break;
449 }
450 break;
451 case RTW_ACCESS_CONFIG:
452 switch (regs->r_access) {
453 case RTW_ACCESS_NONE:
454 rtw_config0123_enable(regs, 1);
455 /*FALLTHROUGH*/
456 case RTW_ACCESS_CONFIG:
457 break;
458 case RTW_ACCESS_ANAPARM:
459 rtw_anaparm_enable(regs, 0);
460 break;
461 }
462 break;
463 case RTW_ACCESS_ANAPARM:
464 switch (regs->r_access) {
465 case RTW_ACCESS_NONE:
466 rtw_config0123_enable(regs, 1);
467 /*FALLTHROUGH*/
468 case RTW_ACCESS_CONFIG:
469 rtw_anaparm_enable(regs, 1);
470 /*FALLTHROUGH*/
471 case RTW_ACCESS_ANAPARM:
472 break;
473 }
474 break;
475 }
476 }
477
478 void
rtw_set_access(struct rtw_regs * regs,enum rtw_access access)479 rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
480 {
481 rtw_set_access1(regs, access);
482 RTW_DPRINTF(RTW_DEBUG_ACCESS,
483 "%s: access %s -> %s\n", __func__,
484 rtw_access_string(regs->r_access),
485 rtw_access_string(access));
486 regs->r_access = access;
487 }
488
489
490 void
rtw_continuous_tx_enable(rtw_softc_t * rsc,int enable)491 rtw_continuous_tx_enable(rtw_softc_t *rsc, int enable)
492 {
493 struct rtw_regs *regs = &rsc->sc_regs;
494
495 uint32_t tcr;
496 tcr = RTW_READ(regs, RTW_TCR);
497 tcr &= ~RTW_TCR_LBK_MASK;
498 if (enable)
499 tcr |= RTW_TCR_LBK_CONT;
500 else
501 tcr |= RTW_TCR_LBK_NORMAL;
502 RTW_WRITE(regs, RTW_TCR, tcr);
503 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
504 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
505 rtw_txdac_enable(rsc, !enable);
506 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
507 rtw_set_access(regs, RTW_ACCESS_NONE);
508 }
509
510 static int
rtw_chip_reset1(struct rtw_regs * regs,const char * dvname)511 rtw_chip_reset1(struct rtw_regs *regs, const char *dvname)
512 {
513 uint8_t cr;
514 int i;
515
516 RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
517
518 RTW_WBR(regs, RTW_CR, RTW_CR);
519
520 for (i = 0; i < 1000; i++) {
521 cr = RTW_READ8(regs, RTW_CR);
522 if ((cr & RTW_CR_RST) == 0) {
523 RTW_DPRINTF(RTW_DEBUG_RESET,
524 "%s: reset in %dus\n", dvname, i);
525 return (0);
526 }
527 RTW_RBR(regs, RTW_CR, RTW_CR);
528 DELAY(10); /* 10us */
529 }
530
531 cmn_err(CE_WARN, "%s: reset failed\n", dvname);
532 return (ETIMEDOUT);
533 }
534
535 static int
rtw_chip_reset(struct rtw_regs * regs,const char * dvname)536 rtw_chip_reset(struct rtw_regs *regs, const char *dvname)
537 {
538 RTW_WBW(regs, RTW_CR, RTW_TCR);
539 return (rtw_chip_reset1(regs, dvname));
540 }
541
542 static void
rtw_disable_interrupts(struct rtw_regs * regs)543 rtw_disable_interrupts(struct rtw_regs *regs)
544 {
545 RTW_WRITE16(regs, RTW_IMR, 0);
546 RTW_WRITE16(regs, RTW_ISR, 0xffff);
547 (void) RTW_READ16(regs, RTW_IMR);
548 }
549
550 static void
rtw_enable_interrupts(rtw_softc_t * rsc)551 rtw_enable_interrupts(rtw_softc_t *rsc)
552 {
553 struct rtw_regs *regs = &rsc->sc_regs;
554
555 rsc->sc_inten = RTW_INTR_RX | RTW_INTR_TX | RTW_INTR_IOERROR;
556
557 RTW_WRITE16(regs, RTW_IMR, rsc->sc_inten);
558 RTW_WRITE16(regs, RTW_ISR, 0xffff);
559
560 /* XXX necessary? */
561 if (rsc->sc_intr_ack != NULL)
562 (*rsc->sc_intr_ack)(regs);
563 }
564
565 static int
rtw_recall_eeprom(struct rtw_regs * regs,const char * dvname)566 rtw_recall_eeprom(struct rtw_regs *regs, const char *dvname)
567 {
568 int i;
569 uint8_t ecr;
570
571 ecr = RTW_READ8(regs, RTW_9346CR);
572 ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
573 RTW_WRITE8(regs, RTW_9346CR, ecr);
574
575 RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
576
577 /* wait 25ms for completion */
578 for (i = 0; i < 250; i++) {
579 ecr = RTW_READ8(regs, RTW_9346CR);
580 if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
581 RTW_DPRINTF(RTW_DEBUG_RESET,
582 "%s: recall EEPROM in %dus\n", dvname, i * 100);
583 return (0);
584 }
585 RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
586 DELAY(100);
587 }
588 cmn_err(CE_WARN, "%s: recall EEPROM failed\n", dvname);
589 return (ETIMEDOUT);
590 }
591
592 static int
rtw_reset(rtw_softc_t * rsc)593 rtw_reset(rtw_softc_t *rsc)
594 {
595 int rc;
596
597 rc = rtw_chip_reset(&rsc->sc_regs, "rtw");
598 if (rc != 0)
599 return (rc);
600
601 (void) rtw_recall_eeprom(&rsc->sc_regs, "rtw");
602 return (0);
603 }
604
605 void
rtw_set_mode(struct rtw_regs * regs,int mode)606 rtw_set_mode(struct rtw_regs *regs, int mode)
607 {
608 uint8_t command;
609 command = RTW_READ8(regs, RTW_9346CR);
610 command = command &~ RTW_EPROM_CMD_OPERATING_MODE_MASK;
611 command = command | (mode<<RTW_EPROM_CMD_OPERATING_MODE_SHIFT);
612 command = command &~ (1<<RTW_EPROM_CS_SHIFT);
613 command = command &~ (1<<RTW_EPROM_CK_SHIFT);
614 RTW_WRITE8(regs, RTW_9346CR, command);
615 }
616
617 void
rtw_dma_start(struct rtw_regs * regs,int priority)618 rtw_dma_start(struct rtw_regs *regs, int priority)
619 {
620 uint8_t check = 0;
621
622 check = RTW_READ8(regs, RTW_TPPOLL);
623 switch (priority) {
624 case (0):
625 RTW_WRITE8(regs, RTW_TPPOLL,
626 (1<< RTW_TX_DMA_POLLING_LOWPRIORITY_SHIFT) | check);
627 break;
628 case (1):
629 RTW_WRITE8(regs, RTW_TPPOLL,
630 (1<< RTW_TX_DMA_POLLING_NORMPRIORITY_SHIFT) | check);
631 break;
632 case (2):
633 RTW_WRITE8(regs, RTW_TPPOLL,
634 (1<< RTW_TX_DMA_POLLING_HIPRIORITY_SHIFT) | check);
635 break;
636 }
637 (void) RTW_READ8(regs, RTW_TPPOLL);
638 }
639
640 void
rtw_beacon_tx_disable(struct rtw_regs * regs)641 rtw_beacon_tx_disable(struct rtw_regs *regs)
642 {
643 uint8_t mask = 0;
644 mask |= (1 << RTW_TX_DMA_STOP_BEACON_SHIFT);
645 rtw_set_mode(regs, RTW_EPROM_CMD_CONFIG);
646 RTW_WRITE8(regs, RTW_TPPOLL, mask);
647 rtw_set_mode(regs, RTW_EPROM_CMD_NORMAL);
648 }
649
650 static void
651 rtw_io_enable(rtw_softc_t *rsc, uint8_t flags, int enable);
652
653 void
rtw_rtx_disable(rtw_softc_t * rsc)654 rtw_rtx_disable(rtw_softc_t *rsc)
655 {
656 struct rtw_regs *regs = &rsc->sc_regs;
657
658 rtw_io_enable(rsc, RTW_CR_RE|RTW_CR_TE, 0);
659 (void) RTW_READ8(regs, RTW_CR);
660 }
661
662 static void
rtw_srom_free(struct rtw_srom * sr)663 rtw_srom_free(struct rtw_srom *sr)
664 {
665 if (sr->sr_content == NULL)
666 return;
667 kmem_free(sr->sr_content, sr->sr_size);
668 sr->sr_size = 0;
669 sr->sr_content = NULL;
670 }
671
672 /*ARGSUSED*/
673 static void
rtw_srom_defaults(struct rtw_srom * sr,uint32_t * flags,uint8_t * cs_threshold,enum rtw_rfchipid * rfchipid,uint32_t * rcr)674 rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
675 enum rtw_rfchipid *rfchipid, uint32_t *rcr)
676 {
677 *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV);
678 *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
679 *rcr |= RTW_RCR_ENCS1;
680 *rfchipid = RTW_RFCHIPID_PHILIPS;
681 }
682
683 static int
rtw_srom_parse(struct rtw_srom * sr,uint32_t * flags,uint8_t * cs_threshold,enum rtw_rfchipid * rfchipid,uint32_t * rcr,enum rtw_locale * locale,const char * dvname)684 rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
685 enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
686 const char *dvname)
687 {
688 int i;
689 const char *rfname, *paname;
690 char scratch[sizeof ("unknown 0xXX")];
691 uint16_t version;
692 uint8_t mac[IEEE80211_ADDR_LEN];
693
694 *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV);
695 *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
696
697 version = RTW_SR_GET16(sr, RTW_SR_VERSION);
698 RTW_DPRINTF(RTW_DEBUG_IOSTATE, "%s: SROM version %d.%d", dvname,
699 version >> 8, version & 0xff);
700
701 if (version <= 0x0101) {
702 cmn_err(CE_NOTE, " is not understood, limping along "
703 "with defaults\n");
704 rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
705 return (0);
706 }
707
708 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
709 mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
710
711 RTW_DPRINTF(RTW_DEBUG_ATTACH,
712 "%s: EEPROM MAC %s\n", dvname, mac);
713
714 *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
715
716 if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
717 *flags |= RTW_F_ANTDIV;
718
719 /*
720 * Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
721 * to be reversed.
722 */
723 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
724 *flags |= RTW_F_DIGPHY;
725 if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
726 *flags |= RTW_F_DFLANTB;
727
728 *rcr |= LSHIFT(MASK_AND_RSHIFT(RTW_SR_GET(sr, RTW_SR_RFPARM),
729 RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
730
731 *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
732 switch (*rfchipid) {
733 case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
734 rfname = "GCT GRF5101";
735 paname = "Winspring WS9901";
736 break;
737 case RTW_RFCHIPID_MAXIM:
738 rfname = "Maxim MAX2820"; /* guess */
739 paname = "Maxim MAX2422"; /* guess */
740 break;
741 case RTW_RFCHIPID_INTERSIL:
742 rfname = "Intersil HFA3873"; /* guess */
743 paname = "Intersil <unknown>";
744 break;
745 case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
746 rfname = "Philips SA2400A";
747 paname = "Philips SA2411";
748 break;
749 case RTW_RFCHIPID_RFMD:
750 /*
751 * this is the same front-end as an atw(4)!
752 */
753 rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
754 "LNA: RFMD RF2494, " /* mentioned in Realtek docs */
755 "SYN: Silicon Labs Si4126";
756 paname = "RFMD RF2189"; /* mentioned in Realtek docs */
757 break;
758 case RTW_RFCHIPID_RESERVED:
759 rfname = paname = "reserved";
760 break;
761 default:
762 (void) snprintf(scratch, sizeof (scratch),
763 "unknown 0x%02x", *rfchipid);
764 rfname = paname = scratch;
765 }
766 RTW_DPRINTF(RTW_DEBUG_PHY, "%s: RF: %s, PA: %s\n",
767 dvname, rfname, paname);
768
769 switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
770 case RTW_CONFIG0_GL_USA:
771 *locale = RTW_LOCALE_USA;
772 break;
773 case RTW_CONFIG0_GL_EUROPE:
774 *locale = RTW_LOCALE_EUROPE;
775 break;
776 case RTW_CONFIG0_GL_JAPAN:
777 *locale = RTW_LOCALE_JAPAN;
778 break;
779 default:
780 *locale = RTW_LOCALE_UNKNOWN;
781 break;
782 }
783 return (0);
784 }
785
786 /*
787 * Returns -1 on failure.
788 */
789 static int
rtw_srom_read(struct rtw_regs * regs,uint32_t flags,struct rtw_srom * sr,const char * dvname)790 rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
791 const char *dvname)
792 {
793 int rc;
794 struct seeprom_descriptor sd;
795 uint8_t ecr;
796
797 (void) memset(&sd, 0, sizeof (sd));
798
799 ecr = RTW_READ8(regs, RTW_9346CR);
800
801 if ((flags & RTW_F_9356SROM) != 0) {
802 RTW_DPRINTF(RTW_DEBUG_ATTACH, "%s: 93c56 SROM\n", dvname);
803 sr->sr_size = 256;
804 sd.sd_chip = C56_66;
805 } else {
806 RTW_DPRINTF(RTW_DEBUG_ATTACH, "%s: 93c46 SROM\n", dvname);
807 sr->sr_size = 128;
808 sd.sd_chip = C46;
809 }
810
811 ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
812 RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
813 ecr |= RTW_9346CR_EEM_PROGRAM;
814
815 RTW_WRITE8(regs, RTW_9346CR, ecr);
816
817 sr->sr_content = kmem_zalloc(sr->sr_size, KM_SLEEP);
818
819 if (sr->sr_content == NULL) {
820 cmn_err(CE_WARN, "%s: unable to allocate SROM buffer\n",
821 dvname);
822 return (ENOMEM);
823 }
824
825 (void) memset(sr->sr_content, 0, sr->sr_size);
826
827 /*
828 * RTL8180 has a single 8-bit register for controlling the
829 * 93cx6 SROM. There is no "ready" bit. The RTL8180
830 * input/output sense is the reverse of read_seeprom's.
831 */
832 sd.sd_handle = regs->r_handle;
833 sd.sd_base = regs->r_base;
834 sd.sd_regsize = 1;
835 sd.sd_control_offset = RTW_9346CR;
836 sd.sd_status_offset = RTW_9346CR;
837 sd.sd_dataout_offset = RTW_9346CR;
838 sd.sd_CK = RTW_9346CR_EESK;
839 sd.sd_CS = RTW_9346CR_EECS;
840 sd.sd_DI = RTW_9346CR_EEDO;
841 sd.sd_DO = RTW_9346CR_EEDI;
842 /*
843 * make read_seeprom enter EEPROM read/write mode
844 */
845 sd.sd_MS = ecr;
846 sd.sd_RDY = 0;
847
848 /*
849 * TBD bus barriers
850 */
851 if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
852 cmn_err(CE_WARN, "%s: could not read SROM\n", dvname);
853 kmem_free(sr->sr_content, sr->sr_size);
854 sr->sr_content = NULL;
855 return (-1); /* XXX */
856 }
857
858 /*
859 * end EEPROM read/write mode
860 */
861 RTW_WRITE8(regs, RTW_9346CR,
862 (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
863 RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
864
865 if ((rc = rtw_recall_eeprom(regs, dvname)) != 0)
866 return (rc);
867
868 #ifdef SROM_DEBUG
869 {
870 int i;
871 RTW_DPRINTF(RTW_DEBUG_ATTACH,
872 "\n%s: serial ROM:\n\t", dvname);
873 for (i = 0; i < sr->sr_size/2; i++) {
874 RTW_DPRINTF(RTW_DEBUG_ATTACH,
875 "offset-0x%x: %04x", 2*i, sr->sr_content[i]);
876 }
877 }
878 #endif /* DEBUG */
879 return (0);
880 }
881
882 static void
rtw_set_rfprog(struct rtw_regs * regs,enum rtw_rfchipid rfchipid,const char * dvname)883 rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
884 const char *dvname)
885 {
886 uint8_t cfg4;
887 const char *method;
888
889 cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
890
891 switch (rfchipid) {
892 default:
893 cfg4 |= LSHIFT(0, RTW_CONFIG4_RFTYPE_MASK);
894 method = "fallback";
895 break;
896 case RTW_RFCHIPID_INTERSIL:
897 cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
898 method = "Intersil";
899 break;
900 case RTW_RFCHIPID_PHILIPS:
901 cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
902 method = "Philips";
903 break;
904 case RTW_RFCHIPID_GCT: /* XXX a guess */
905 case RTW_RFCHIPID_RFMD:
906 cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
907 method = "RFMD";
908 break;
909 }
910
911 RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
912
913 RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
914
915 RTW_DPRINTF(RTW_DEBUG_INIT,
916 "%s: %s RF programming method, %02x\n", dvname, method,
917 RTW_READ8(regs, RTW_CONFIG4));
918 }
919
920 static void
rtw_init_channels(enum rtw_locale locale,struct ieee80211_channel (* chans)[IEEE80211_CHAN_MAX+1],const char * dvname)921 rtw_init_channels(enum rtw_locale locale,
922 struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1],
923 const char *dvname)
924 {
925 int i;
926 const char *name = NULL;
927 #define ADD_CHANNEL(_chans, _chan) { \
928 (*_chans)[_chan].ich_flags = IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK;\
929 (*_chans)[_chan].ich_freq = \
930 ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ich_flags);\
931 }
932
933 switch (locale) {
934 case RTW_LOCALE_USA: /* 1-11 */
935 name = "USA";
936 for (i = 1; i <= 11; i++)
937 ADD_CHANNEL(chans, i);
938 break;
939 case RTW_LOCALE_JAPAN: /* 1-14 */
940 name = "Japan";
941 ADD_CHANNEL(chans, 14);
942 for (i = 1; i <= 14; i++)
943 ADD_CHANNEL(chans, i);
944 break;
945 case RTW_LOCALE_EUROPE: /* 1-13 */
946 name = "Europe";
947 for (i = 1; i <= 13; i++)
948 ADD_CHANNEL(chans, i);
949 break;
950 default: /* 10-11 allowed by most countries */
951 name = "<unknown>";
952 for (i = 10; i <= 11; i++)
953 ADD_CHANNEL(chans, i);
954 break;
955 }
956 RTW_DPRINTF(RTW_DEBUG_ATTACH, "%s: Geographic Location %s\n",
957 dvname, name);
958 #undef ADD_CHANNEL
959 }
960
961 static void
rtw_set80211props(struct ieee80211com * ic)962 rtw_set80211props(struct ieee80211com *ic)
963 {
964 ic->ic_phytype = IEEE80211_T_DS;
965 ic->ic_opmode = IEEE80211_M_STA;
966 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
967 IEEE80211_C_SHPREAMBLE;
968 /* IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP */
969
970 ic->ic_sup_rates[IEEE80211_MODE_11B] = rtw_rateset_11b;
971 }
972
973 /*ARGSUSED*/
974 static void
rtw_identify_country(struct rtw_regs * regs,enum rtw_locale * locale,const char * dvname)975 rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale,
976 const char *dvname)
977 {
978 uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
979
980 switch (cfg0 & RTW_CONFIG0_GL_MASK) {
981 case RTW_CONFIG0_GL_USA:
982 *locale = RTW_LOCALE_USA;
983 break;
984 case RTW_CONFIG0_GL_JAPAN:
985 *locale = RTW_LOCALE_JAPAN;
986 break;
987 case RTW_CONFIG0_GL_EUROPE:
988 *locale = RTW_LOCALE_EUROPE;
989 break;
990 default:
991 *locale = RTW_LOCALE_UNKNOWN;
992 break;
993 }
994 }
995
996 static int
rtw_identify_sta(struct rtw_regs * regs,uint8_t * addr,const char * dvname)997 rtw_identify_sta(struct rtw_regs *regs, uint8_t *addr,
998 const char *dvname)
999 {
1000 uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
1001 idr1 = RTW_READ(regs, RTW_IDR1);
1002
1003 *addr = MASK_AND_RSHIFT(idr0, BITS(0, 7));
1004 *(addr + 1) = MASK_AND_RSHIFT(idr0, BITS(8, 15));
1005 *(addr + 2) = MASK_AND_RSHIFT(idr0, BITS(16, 23));
1006 *(addr + 3) = MASK_AND_RSHIFT(idr0, BITS(24, 31));
1007
1008 *(addr + 4) = MASK_AND_RSHIFT(idr1, BITS(0, 7));
1009 *(addr + 5) = MASK_AND_RSHIFT(idr1, BITS(8, 15));
1010
1011 RTW_DPRINTF(RTW_DEBUG_ATTACH,
1012 "%s: 802.11mac address %x:%x:%x:%x:%x:%x\n", dvname,
1013 *addr, *(addr+1), *(addr+2), *(addr+3), *(addr+4), *(addr+5));
1014
1015 return (0);
1016 }
1017
1018 static uint8_t
rtw_chan2txpower(struct rtw_srom * sr,struct ieee80211com * ic,struct ieee80211_channel * chan)1019 rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
1020 struct ieee80211_channel *chan)
1021 {
1022 uint32_t idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
1023 return (RTW_SR_GET(sr, idx));
1024 }
1025
1026 static void
rtw_rxdesc_init(rtw_softc_t * rsc,struct rtw_rxbuf * rbf,int idx,int is_last)1027 rtw_rxdesc_init(rtw_softc_t *rsc, struct rtw_rxbuf *rbf, int idx, int is_last)
1028 {
1029 uint32_t ctl = 0;
1030 uint8_t *buf = (uint8_t *)rbf->bf_dma.mem_va;
1031
1032 ASSERT(rbf != NULL);
1033 rbf->rxdesc->rd_buf = (rbf->bf_dma.cookie.dmac_address);
1034 bzero(buf, rbf->bf_dma.alength);
1035 RTW_DMA_SYNC(rbf->bf_dma, DDI_DMA_SYNC_FORDEV);
1036
1037 ctl = (rbf->bf_dma.alength & 0xfff) | RTW_RXCTL_OWN;
1038
1039 if (is_last)
1040 ctl |= RTW_RXCTL_EOR;
1041
1042 rbf->rxdesc->rd_ctl = (ctl);
1043 /* sync the mbuf */
1044
1045 /* sync the descriptor */
1046 RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
1047 RTW_DESC_OFFSET(hd_rx, idx),
1048 sizeof (struct rtw_rxdesc),
1049 DDI_DMA_SYNC_FORDEV);
1050 }
1051
1052 static void
rtw_idle(struct rtw_regs * regs)1053 rtw_idle(struct rtw_regs *regs)
1054 {
1055 int active;
1056
1057 /* request stop DMA; wait for packets to stop transmitting. */
1058
1059 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
1060
1061 for (active = 0; active < 300 &&
1062 (RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ALL) != 0; active++)
1063 drv_usecwait(10);
1064 }
1065
1066 static void
rtw_io_enable(rtw_softc_t * rsc,uint8_t flags,int enable)1067 rtw_io_enable(rtw_softc_t *rsc, uint8_t flags, int enable)
1068 {
1069 uint8_t cr;
1070 struct rtw_regs *regs = &rsc->sc_regs;
1071
1072 RTW_DPRINTF(RTW_DEBUG_IOSTATE, "%s: %s 0x%02x\n", __func__,
1073 enable ? "enable" : "disable", flags);
1074
1075 cr = RTW_READ8(regs, RTW_CR);
1076
1077 /* The receive engine will always start at RDSAR. */
1078 if (enable && (flags & ~cr & RTW_CR_RE)) {
1079 RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
1080 RTW_DESC_OFFSET(hd_rx, 0),
1081 sizeof (struct rtw_rxdesc),
1082 DDI_DMA_SYNC_FORCPU);
1083 rsc->rx_next = 0;
1084 rtw_rxdesc_init(rsc, rsc->rxbuf_h, 0, 0);
1085 }
1086
1087 if (enable)
1088 cr |= flags;
1089 else
1090 cr &= ~flags;
1091 RTW_WRITE8(regs, RTW_CR, cr);
1092 (void) RTW_READ8(regs, RTW_CR);
1093 }
1094
1095 /*
1096 * Allocate an area of memory and a DMA handle for accessing it
1097 */
1098 static int
rtw_alloc_dma_mem(dev_info_t * devinfo,ddi_dma_attr_t * dma_attr,size_t memsize,ddi_device_acc_attr_t * attr_p,uint_t alloc_flags,uint_t bind_flags,dma_area_t * dma_p)1099 rtw_alloc_dma_mem(dev_info_t *devinfo, ddi_dma_attr_t *dma_attr,
1100 size_t memsize, ddi_device_acc_attr_t *attr_p, uint_t alloc_flags,
1101 uint_t bind_flags, dma_area_t *dma_p)
1102 {
1103 int err;
1104
1105 /*
1106 * Allocate handle
1107 */
1108 err = ddi_dma_alloc_handle(devinfo, dma_attr,
1109 DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
1110 if (err != DDI_SUCCESS)
1111 return (DDI_FAILURE);
1112
1113 /*
1114 * Allocate memory
1115 */
1116 err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
1117 alloc_flags, DDI_DMA_SLEEP, NULL, &dma_p->mem_va,
1118 &dma_p->alength, &dma_p->acc_hdl);
1119 if (err != DDI_SUCCESS)
1120 return (DDI_FAILURE);
1121
1122 /*
1123 * Bind the two together
1124 */
1125 err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
1126 dma_p->mem_va, dma_p->alength, bind_flags,
1127 DDI_DMA_SLEEP, NULL, &dma_p->cookie, &dma_p->ncookies);
1128 if ((dma_p->ncookies != 1) || (err != DDI_DMA_MAPPED))
1129 return (DDI_FAILURE);
1130
1131 dma_p->nslots = ~0U;
1132 dma_p->size = ~0U;
1133 dma_p->token = ~0U;
1134 dma_p->offset = 0;
1135 return (DDI_SUCCESS);
1136 }
1137
1138 /*
1139 * Free one allocated area of DMAable memory
1140 */
1141 static void
rtw_free_dma_mem(dma_area_t * dma_p)1142 rtw_free_dma_mem(dma_area_t *dma_p)
1143 {
1144 if (dma_p->dma_hdl != NULL) {
1145 (void) ddi_dma_unbind_handle(dma_p->dma_hdl);
1146 if (dma_p->acc_hdl != NULL) {
1147 ddi_dma_mem_free(&dma_p->acc_hdl);
1148 dma_p->acc_hdl = NULL;
1149 }
1150 ddi_dma_free_handle(&dma_p->dma_hdl);
1151 dma_p->ncookies = 0;
1152 dma_p->dma_hdl = NULL;
1153 }
1154 }
1155
1156 static void
rtw_dma_free(rtw_softc_t * rsc)1157 rtw_dma_free(rtw_softc_t *rsc)
1158 {
1159 struct rtw_txbuf *txbf;
1160 struct rtw_rxbuf *rxbf;
1161 int i, j;
1162
1163 /* Free TX DMA buffer */
1164 for (i = 0; i < RTW_NTXPRI; i++) {
1165 txbf = list_head(&rsc->sc_txq[i].tx_free_list);
1166 while (txbf != NULL) {
1167 rtw_free_dma_mem(&txbf->bf_dma);
1168 list_remove(&rsc->sc_txq[i].tx_free_list, txbf);
1169 txbf = list_head(&rsc->sc_txq[i].tx_free_list);
1170 }
1171 list_destroy(&rsc->sc_txq[i].tx_free_list);
1172 txbf = list_head(&rsc->sc_txq[i].tx_dirty_list);
1173 while (txbf != NULL) {
1174 rtw_free_dma_mem(&txbf->bf_dma);
1175 list_remove(&rsc->sc_txq[i].tx_dirty_list, txbf);
1176 txbf = list_head(&rsc->sc_txq[i].tx_dirty_list);
1177 }
1178 list_destroy(&rsc->sc_txq[i].tx_dirty_list);
1179
1180 if (rsc->sc_txq[i].txbuf_h != NULL) {
1181 kmem_free(rsc->sc_txq[i].txbuf_h,
1182 sizeof (struct rtw_txbuf) * rtw_qlen[i]);
1183 rsc->sc_txq[i].txbuf_h = NULL;
1184 }
1185 }
1186
1187 /* Free RX DMA buffer */
1188 rxbf = rsc->rxbuf_h;
1189 for (j = 0; j < RTW_RXQLEN; j++) {
1190 rtw_free_dma_mem(&rxbf->bf_dma);
1191 rxbf++;
1192 }
1193
1194 if (rsc->rxbuf_h != NULL) {
1195 kmem_free(rsc->rxbuf_h,
1196 sizeof (struct rtw_rxbuf) * RTW_RXQLEN);
1197 rsc->rxbuf_h = NULL;
1198 }
1199
1200 rtw_free_dma_mem(&rsc->sc_desc_dma);
1201 }
1202
1203 static int
rtw_dma_init(dev_info_t * devinfo,rtw_softc_t * rsc)1204 rtw_dma_init(dev_info_t *devinfo, rtw_softc_t *rsc)
1205 {
1206 int i, j, err;
1207 size_t size;
1208 uint32_t buflen;
1209 struct rtw_txdesc *txds;
1210 struct rtw_rxdesc *rxds;
1211 struct rtw_txbuf *txbf;
1212 struct rtw_rxbuf *rxbf;
1213 uint32_t phybaseaddr, ptx[RTW_NTXPRI], prx;
1214 caddr_t virbaseaddr, vtx[RTW_NTXPRI], vrx;
1215
1216 /* DMA buffer size for each TX/RX packet */
1217 rsc->sc_dmabuf_size = roundup(sizeof (struct ieee80211_frame) + 0x100 +
1218 IEEE80211_MTU + IEEE80211_CRC_LEN + sizeof (struct ieee80211_llc) +
1219 (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
1220 IEEE80211_WEP_CRCLEN), rsc->sc_cachelsz);
1221 size = sizeof (struct rtw_descs);
1222 err = rtw_alloc_dma_mem(devinfo, &dma_attr_desc, size,
1223 &rtw_desc_accattr,
1224 DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1225 &rsc->sc_desc_dma);
1226 if (err != DDI_SUCCESS)
1227 goto error;
1228 phybaseaddr = rsc->sc_desc_dma.cookie.dmac_address;
1229 virbaseaddr = rsc->sc_desc_dma.mem_va;
1230 ptx[0] = RTW_RING_BASE(phybaseaddr, hd_txlo);
1231 ptx[1] = RTW_RING_BASE(phybaseaddr, hd_txmd);
1232 ptx[2] = RTW_RING_BASE(phybaseaddr, hd_txhi);
1233 ptx[3] = RTW_RING_BASE(phybaseaddr, hd_bcn);
1234 vtx[0] = (caddr_t)(RTW_RING_BASE(virbaseaddr, hd_txlo));
1235 vtx[1] = (caddr_t)(RTW_RING_BASE(virbaseaddr, hd_txmd));
1236 vtx[2] = (caddr_t)(RTW_RING_BASE(virbaseaddr, hd_txhi));
1237 vtx[3] = (caddr_t)(RTW_RING_BASE(virbaseaddr, hd_bcn));
1238 for (i = 0; i < RTW_NTXPRI; i++) {
1239 RTW_DPRINTF(RTW_DEBUG_DMA, "p[%d]=%x, v[%d]=%x", i, ptx[i],
1240 i, vtx[i]);
1241 RTW_DPRINTF(RTW_DEBUG_DMA, "ring%d:", i);
1242 list_create(&rsc->sc_txq[i].tx_free_list,
1243 sizeof (struct rtw_txbuf),
1244 offsetof(struct rtw_txbuf, bf_node));
1245 list_create(&rsc->sc_txq[i].tx_dirty_list,
1246 sizeof (struct rtw_txbuf),
1247 offsetof(struct rtw_txbuf, bf_node));
1248 /* virtual address of the first descriptor */
1249 rsc->sc_txq[i].txdesc_h =
1250 (struct rtw_txdesc *)(uintptr_t)vtx[i];
1251
1252 txds = rsc->sc_txq[i].txdesc_h;
1253 /* allocate data structures to describe TX DMA buffers */
1254 buflen = sizeof (struct rtw_txbuf) * rtw_qlen[i];
1255 txbf = (struct rtw_txbuf *)kmem_zalloc(buflen, KM_SLEEP);
1256 rsc->sc_txq[i].txbuf_h = txbf;
1257 for (j = 0; j < rtw_qlen[i]; j++, txbf++, txds++) {
1258 txbf->txdesc = txds;
1259 txbf->bf_daddr = ptx[i] + ((uintptr_t)txds -
1260 (uintptr_t)rsc->sc_txq[i].txdesc_h);
1261 list_insert_tail(&rsc->sc_txq[i].tx_free_list, txbf);
1262
1263 /* alloc DMA memory */
1264 err = rtw_alloc_dma_mem(devinfo, &dma_attr_txbuf,
1265 rsc->sc_dmabuf_size,
1266 &rtw_buf_accattr,
1267 DDI_DMA_STREAMING,
1268 DDI_DMA_WRITE | DDI_DMA_STREAMING,
1269 &txbf->bf_dma);
1270 if (err != DDI_SUCCESS)
1271 goto error;
1272 RTW_DPRINTF(RTW_DEBUG_DMA, "pbufaddr[%d]=%x",
1273 j, txbf->bf_dma.cookie.dmac_address);
1274 }
1275 }
1276 prx = RTW_RING_BASE(phybaseaddr, hd_rx);
1277 vrx = (caddr_t)(RTW_RING_BASE(virbaseaddr, hd_rx));
1278 /* virtual address of the first descriptor */
1279 rsc->rxdesc_h = (struct rtw_rxdesc *)(uintptr_t)vrx;
1280 rxds = rsc->rxdesc_h;
1281
1282 /* allocate data structures to describe RX DMA buffers */
1283 buflen = sizeof (struct rtw_rxbuf) * RTW_RXQLEN;
1284 rxbf = (struct rtw_rxbuf *)kmem_zalloc(buflen, KM_SLEEP);
1285 rsc->rxbuf_h = rxbf;
1286
1287 for (j = 0; j < RTW_RXQLEN; j++, rxbf++, rxds++) {
1288 rxbf->rxdesc = rxds;
1289 rxbf->bf_daddr =
1290 prx + ((uintptr_t)rxds - (uintptr_t)rsc->rxdesc_h);
1291
1292 /* alloc DMA memory */
1293 err = rtw_alloc_dma_mem(devinfo, &dma_attr_rxbuf,
1294 rsc->sc_dmabuf_size,
1295 &rtw_buf_accattr,
1296 DDI_DMA_STREAMING, DDI_DMA_READ | DDI_DMA_STREAMING,
1297 &rxbf->bf_dma);
1298 if (err != DDI_SUCCESS)
1299 goto error;
1300 }
1301
1302 return (DDI_SUCCESS);
1303 error:
1304 return (DDI_FAILURE);
1305 }
1306
1307 static void
rtw_hwring_setup(rtw_softc_t * rsc)1308 rtw_hwring_setup(rtw_softc_t *rsc)
1309 {
1310 struct rtw_regs *regs = &rsc->sc_regs;
1311 uint32_t phybaseaddr;
1312
1313 phybaseaddr = rsc->sc_desc_dma.cookie.dmac_address;
1314
1315 RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(phybaseaddr, hd_rx));
1316 RTW_WRITE(regs, RTW_TLPDA, RTW_RING_BASE(phybaseaddr, hd_txlo));
1317 RTW_WRITE(regs, RTW_TNPDA, RTW_RING_BASE(phybaseaddr, hd_txmd));
1318 RTW_WRITE(regs, RTW_THPDA, RTW_RING_BASE(phybaseaddr, hd_txhi));
1319 RTW_WRITE(regs, RTW_TBDA, RTW_RING_BASE(phybaseaddr, hd_bcn));
1320 rsc->hw_start = RTW_READ(regs, RTW_TNPDA);
1321 rsc->hw_go = RTW_READ(regs, RTW_TNPDA);
1322 }
1323
1324 static void
rtw_swring_setup(rtw_softc_t * rsc,int flag)1325 rtw_swring_setup(rtw_softc_t *rsc, int flag)
1326 {
1327 int i, j;
1328 int is_last;
1329 struct rtw_txbuf *txbf;
1330 struct rtw_rxbuf *rxbf;
1331 uint32_t phybaseaddr, ptx[RTW_NTXPRI], baddr_desc, taddr_desc;
1332
1333 phybaseaddr = rsc->sc_desc_dma.cookie.dmac_address;
1334 ptx[0] = RTW_RING_BASE(phybaseaddr, hd_txlo);
1335 ptx[1] = RTW_RING_BASE(phybaseaddr, hd_txmd);
1336 ptx[2] = RTW_RING_BASE(phybaseaddr, hd_txhi);
1337 ptx[3] = RTW_RING_BASE(phybaseaddr, hd_bcn);
1338 RTW_DMA_SYNC(rsc->sc_desc_dma, DDI_DMA_SYNC_FORDEV);
1339 /* sync tx desc and tx buf */
1340 for (i = 0; i < RTW_NTXPRI; i++) {
1341 rsc->sc_txq[i].tx_prod = rsc->sc_txq[i].tx_cons = 0;
1342 rsc->sc_txq[i].tx_nfree = rtw_qlen[i];
1343 txbf = list_head(&rsc->sc_txq[i].tx_free_list);
1344 while (txbf != NULL) {
1345 list_remove(&rsc->sc_txq[i].tx_free_list, txbf);
1346 txbf = list_head(&rsc->sc_txq[i].tx_free_list);
1347 }
1348 txbf = list_head(&rsc->sc_txq[i].tx_dirty_list);
1349 while (txbf != NULL) {
1350 list_remove(&rsc->sc_txq[i].tx_dirty_list, txbf);
1351 txbf = list_head(&rsc->sc_txq[i].tx_dirty_list);
1352 }
1353 txbf = rsc->sc_txq[i].txbuf_h;
1354 baddr_desc = ptx[i];
1355 taddr_desc = baddr_desc + sizeof (struct rtw_txdesc);
1356 for (j = 0; j < rtw_qlen[i]; j++) {
1357 list_insert_tail(&rsc->sc_txq[i].tx_free_list, txbf);
1358 if (j == (rtw_qlen[i] - 1)) {
1359 is_last = 1;
1360 } else {
1361 is_last = 0;
1362 }
1363
1364 if (is_last) {
1365 txbf->txdesc->td_next = baddr_desc;
1366 } else {
1367 txbf->txdesc->td_next = taddr_desc;
1368 }
1369 txbf->next_bf_daddr = txbf->txdesc->td_next;
1370 RTW_DMA_SYNC(txbf->bf_dma, DDI_DMA_SYNC_FORDEV);
1371 txbf->order = j;
1372 txbf++;
1373 taddr_desc += sizeof (struct rtw_txdesc);
1374 }
1375 }
1376 if (!flag)
1377 return;
1378
1379 /* sync rx desc and rx buf */
1380 rsc->rx_next = 0;
1381 rxbf = rsc->rxbuf_h;
1382 for (j = 0; j < RTW_RXQLEN; j++) {
1383 RTW_DMA_SYNC(rxbf->bf_dma, DDI_DMA_SYNC_FORCPU);
1384 if (j == (RTW_RXQLEN - 1))
1385 is_last = 1;
1386 else
1387 is_last = 0;
1388 rtw_rxdesc_init(rsc, rxbf, j, is_last);
1389 rxbf++;
1390 }
1391 }
1392
1393 static void
rtw_resume_ticks(rtw_softc_t * rsc)1394 rtw_resume_ticks(rtw_softc_t *rsc)
1395 {
1396 RTW_WRITE(&rsc->sc_regs, RTW_TINT, 0xffffffff);
1397 }
1398
1399 const char *
rtw_pwrstate_string(enum rtw_pwrstate power)1400 rtw_pwrstate_string(enum rtw_pwrstate power)
1401 {
1402 switch (power) {
1403 case RTW_ON:
1404 return ("on");
1405 case RTW_SLEEP:
1406 return ("sleep");
1407 case RTW_OFF:
1408 return ("off");
1409 default:
1410 return ("unknown");
1411 }
1412 }
1413
1414 /*
1415 * XXX For Maxim, I am using the RFMD settings gleaned from the
1416 * reference driver, plus a magic Maxim "ON" value that comes from
1417 * the Realtek document "Windows PG for Rtl8180."
1418 */
1419 /*ARGSUSED*/
1420 static void
rtw_maxim_pwrstate(struct rtw_regs * regs,enum rtw_pwrstate power,int before_rf,int digphy)1421 rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1422 int before_rf, int digphy)
1423 {
1424 uint32_t anaparm;
1425
1426 anaparm = RTW_READ(regs, RTW_ANAPARM);
1427 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
1428
1429 switch (power) {
1430 case RTW_OFF:
1431 if (before_rf)
1432 return;
1433 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
1434 anaparm |= RTW_ANAPARM_TXDACOFF;
1435 break;
1436 case RTW_SLEEP:
1437 if (!before_rf)
1438 return;
1439 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
1440 anaparm |= RTW_ANAPARM_TXDACOFF;
1441 break;
1442 case RTW_ON:
1443 if (!before_rf)
1444 return;
1445 anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
1446 break;
1447 }
1448 RTW_DPRINTF(RTW_DEBUG_PWR,
1449 "%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
1450 __func__, rtw_pwrstate_string(power),
1451 (before_rf) ? "before" : "after", anaparm);
1452
1453 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1454 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1455 }
1456
1457 /*
1458 * XXX I am using the RFMD settings gleaned from the reference
1459 * driver. They agree
1460 */
1461 /*ARGSUSED*/
1462 static void
rtw_rfmd_pwrstate(struct rtw_regs * regs,enum rtw_pwrstate power,int before_rf,int digphy)1463 rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1464 int before_rf, int digphy)
1465 {
1466 uint32_t anaparm;
1467
1468 anaparm = RTW_READ(regs, RTW_ANAPARM);
1469 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
1470
1471 switch (power) {
1472 case RTW_OFF:
1473 if (before_rf)
1474 return;
1475 anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
1476 anaparm |= RTW_ANAPARM_TXDACOFF;
1477 break;
1478 case RTW_SLEEP:
1479 if (!before_rf)
1480 return;
1481 anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
1482 anaparm |= RTW_ANAPARM_TXDACOFF;
1483 break;
1484 case RTW_ON:
1485 if (!before_rf)
1486 return;
1487 anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
1488 break;
1489 }
1490 RTW_DPRINTF(RTW_DEBUG_PWR,
1491 "%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
1492 __func__, rtw_pwrstate_string(power),
1493 (before_rf) ? "before" : "after", anaparm);
1494
1495 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1496 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1497 }
1498
1499 static void
rtw_philips_pwrstate(struct rtw_regs * regs,enum rtw_pwrstate power,int before_rf,int digphy)1500 rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
1501 int before_rf, int digphy)
1502 {
1503 uint32_t anaparm;
1504
1505 anaparm = RTW_READ(regs, RTW_ANAPARM);
1506 anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
1507
1508 switch (power) {
1509 case RTW_OFF:
1510 if (before_rf)
1511 return;
1512 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
1513 anaparm |= RTW_ANAPARM_TXDACOFF;
1514 break;
1515 case RTW_SLEEP:
1516 if (!before_rf)
1517 return;
1518 anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
1519 anaparm |= RTW_ANAPARM_TXDACOFF;
1520 break;
1521 case RTW_ON:
1522 if (!before_rf)
1523 return;
1524 if (digphy) {
1525 anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
1526 /* XXX guess */
1527 anaparm |= RTW_ANAPARM_TXDACOFF;
1528 } else
1529 anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
1530 break;
1531 }
1532 RTW_DPRINTF(RTW_DEBUG_PWR,
1533 "%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
1534 __func__, rtw_pwrstate_string(power),
1535 (before_rf) ? "before" : "after", anaparm);
1536
1537 RTW_WRITE(regs, RTW_ANAPARM, anaparm);
1538 RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
1539 }
1540
1541 static void
rtw_pwrstate0(rtw_softc_t * rsc,enum rtw_pwrstate power,int before_rf,int digphy)1542 rtw_pwrstate0(rtw_softc_t *rsc, enum rtw_pwrstate power, int before_rf,
1543 int digphy)
1544 {
1545 struct rtw_regs *regs = &rsc->sc_regs;
1546
1547 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
1548
1549 (*rsc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
1550
1551 rtw_set_access(regs, RTW_ACCESS_NONE);
1552 }
1553
1554 static void
rtw_rf_destroy(struct rtw_rf * rf)1555 rtw_rf_destroy(struct rtw_rf *rf)
1556 {
1557 (*rf->rf_destroy)(rf);
1558 }
1559
1560 static int
rtw_rf_pwrstate(struct rtw_rf * rf,enum rtw_pwrstate power)1561 rtw_rf_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
1562 {
1563 return (*rf->rf_pwrstate)(rf, power);
1564 }
1565
1566 static int
rtw_pwrstate(rtw_softc_t * rsc,enum rtw_pwrstate power)1567 rtw_pwrstate(rtw_softc_t *rsc, enum rtw_pwrstate power)
1568 {
1569 int rc;
1570
1571 RTW_DPRINTF(RTW_DEBUG_PWR,
1572 "%s: %s->%s\n", __func__,
1573 rtw_pwrstate_string(rsc->sc_pwrstate), rtw_pwrstate_string(power));
1574
1575 if (rsc->sc_pwrstate == power)
1576 return (0);
1577
1578 rtw_pwrstate0(rsc, power, 1, rsc->sc_flags & RTW_F_DIGPHY);
1579 rc = rtw_rf_pwrstate(rsc->sc_rf, power);
1580 rtw_pwrstate0(rsc, power, 0, rsc->sc_flags & RTW_F_DIGPHY);
1581
1582 switch (power) {
1583 case RTW_ON:
1584 /* TBD set LEDs */
1585 break;
1586 case RTW_SLEEP:
1587 /* TBD */
1588 break;
1589 case RTW_OFF:
1590 /* TBD */
1591 break;
1592 }
1593 if (rc == 0)
1594 rsc->sc_pwrstate = power;
1595 else
1596 rsc->sc_pwrstate = RTW_OFF;
1597 return (rc);
1598 }
1599
1600 void
rtw_disable(rtw_softc_t * rsc)1601 rtw_disable(rtw_softc_t *rsc)
1602 {
1603 int rc;
1604
1605 if ((rsc->sc_flags & RTW_F_ENABLED) == 0)
1606 return;
1607
1608 /* turn off PHY */
1609 if ((rsc->sc_flags & RTW_F_INVALID) == 0 &&
1610 (rc = rtw_pwrstate(rsc, RTW_OFF)) != 0) {
1611 cmn_err(CE_WARN, "failed to turn off PHY (%d)\n", rc);
1612 }
1613
1614 if (rsc->sc_disable != NULL)
1615 (*rsc->sc_disable)(rsc);
1616
1617 rsc->sc_flags &= ~RTW_F_ENABLED;
1618 }
1619
1620 int
rtw_enable(rtw_softc_t * rsc)1621 rtw_enable(rtw_softc_t *rsc)
1622 {
1623 if ((rsc->sc_flags & RTW_F_ENABLED) == 0) {
1624 if (rsc->sc_enable != NULL && (*rsc->sc_enable)(rsc) != 0) {
1625 cmn_err(CE_WARN, "device enable failed\n");
1626 return (EIO);
1627 }
1628 rsc->sc_flags |= RTW_F_ENABLED;
1629 if (rtw_pwrstate(rsc, RTW_ON) != 0)
1630 cmn_err(CE_WARN, "PHY turn on failed\n");
1631 }
1632 return (0);
1633 }
1634
1635 static void
rtw_set_nettype(rtw_softc_t * rsc,enum ieee80211_opmode opmode)1636 rtw_set_nettype(rtw_softc_t *rsc, enum ieee80211_opmode opmode)
1637 {
1638 uint8_t msr;
1639
1640 /* I'm guessing that MSR is protected as CONFIG[0123] are. */
1641 rtw_set_access(&rsc->sc_regs, RTW_ACCESS_CONFIG);
1642
1643 msr = RTW_READ8(&rsc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
1644
1645 switch (opmode) {
1646 case IEEE80211_M_AHDEMO:
1647 case IEEE80211_M_IBSS:
1648 msr |= RTW_MSR_NETYPE_ADHOC_OK;
1649 break;
1650 case IEEE80211_M_HOSTAP:
1651 msr |= RTW_MSR_NETYPE_AP_OK;
1652 break;
1653 case IEEE80211_M_STA:
1654 msr |= RTW_MSR_NETYPE_INFRA_OK;
1655 break;
1656 }
1657 RTW_WRITE8(&rsc->sc_regs, RTW_MSR, msr);
1658
1659 rtw_set_access(&rsc->sc_regs, RTW_ACCESS_NONE);
1660 }
1661
1662 static void
rtw_pktfilt_load(rtw_softc_t * rsc)1663 rtw_pktfilt_load(rtw_softc_t *rsc)
1664 {
1665 struct rtw_regs *regs = &rsc->sc_regs;
1666 struct ieee80211com *ic = &rsc->sc_ic;
1667
1668 /* XXX might be necessary to stop Rx/Tx engines while setting filters */
1669 rsc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
1670 rsc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
1671
1672 rsc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
1673 /* MAC auto-reset PHY (huh?) */
1674 rsc->sc_rcr |= RTW_RCR_ENMARP;
1675 /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
1676 rsc->sc_rcr |= RTW_RCR_RXFTH_WHOLE |RTW_RCR_MXDMA_1024;
1677
1678 switch (ic->ic_opmode) {
1679 case IEEE80211_M_AHDEMO:
1680 case IEEE80211_M_IBSS:
1681 /* receive broadcasts in our BSS */
1682 rsc->sc_rcr |= RTW_RCR_ADD3;
1683 break;
1684 default:
1685 break;
1686 }
1687 #if 0
1688 /* XXX accept all broadcast if scanning */
1689 rsc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
1690 #endif
1691 RTW_WRITE(regs, RTW_MAR0, 0xffffffff);
1692 RTW_WRITE(regs, RTW_MAR1, 0xffffffff);
1693 rsc->sc_rcr |= RTW_RCR_AM;
1694 RTW_WRITE(regs, RTW_RCR, rsc->sc_rcr);
1695 RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
1696
1697 RTW_DPRINTF(RTW_DEBUG_PKTFILT,
1698 "RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
1699 RTW_READ(regs, RTW_MAR0),
1700 RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR));
1701 RTW_WRITE(regs, RTW_RCR, rsc->sc_rcr);
1702 }
1703
1704 static void
rtw_transmit_config(struct rtw_regs * regs)1705 rtw_transmit_config(struct rtw_regs *regs)
1706 {
1707 uint32_t tcr;
1708
1709 tcr = RTW_READ(regs, RTW_TCR);
1710
1711 tcr |= RTW_TCR_CWMIN;
1712 tcr &= ~RTW_TCR_MXDMA_MASK;
1713 tcr |= RTW_TCR_MXDMA_1024;
1714 tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
1715 tcr &= ~RTW_TCR_LBK_MASK;
1716 tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
1717
1718 /* set short/long retry limits */
1719 tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK);
1720 tcr |= LSHIFT(0x4, RTW_TCR_SRL_MASK) | LSHIFT(0x4, RTW_TCR_LRL_MASK);
1721
1722 tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
1723 RTW_WRITE(regs, RTW_TCR, tcr);
1724 RTW_SYNC(regs, RTW_TCR, RTW_TCR);
1725 }
1726
1727 int
rtw_refine_setting(rtw_softc_t * rsc)1728 rtw_refine_setting(rtw_softc_t *rsc)
1729 {
1730 struct rtw_regs *regs;
1731 int rc = 0;
1732
1733 regs = &rsc->sc_regs;
1734 rc = rtw_reset(rsc);
1735 if (rc != 0)
1736 return (-1);
1737
1738 rtw_beacon_tx_disable(regs);
1739 rtw_io_enable(rsc, RTW_CR_RE|RTW_CR_TE, 1);
1740 rtw_set_mode(regs, RTW_EPROM_CMD_CONFIG);
1741
1742 rtw_transmit_config(regs);
1743 rtw_pktfilt_load(rsc);
1744 rtw_set_access(regs, RTW_ACCESS_CONFIG);
1745 RTW_WRITE(regs, RTW_TINT, 0xffffffff);
1746 RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
1747 RTW_WRITE16(regs, RTW_BRSR, 0);
1748
1749 rtw_set_access(regs, RTW_ACCESS_ANAPARM);
1750 rtw_set_access(regs, RTW_ACCESS_NONE);
1751 RTW_WRITE(regs, RTW_FEMR, 0xffff);
1752 RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
1753 rtw_set_rfprog(regs, rsc->sc_rfchipid, "rtw");
1754
1755 RTW_WRITE8(regs, RTW_PHYDELAY, rsc->sc_phydelay);
1756 RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
1757 rtw_set_mode(regs, RTW_EPROM_CMD_NORMAL);
1758 return (0);
1759 }
1760
1761 static int
rtw_tune(rtw_softc_t * rsc)1762 rtw_tune(rtw_softc_t *rsc)
1763 {
1764 struct ieee80211com *ic = &rsc->sc_ic;
1765 uint32_t chan;
1766 int rc;
1767 int antdiv = rsc->sc_flags & RTW_F_ANTDIV,
1768 dflantb = rsc->sc_flags & RTW_F_DFLANTB;
1769
1770 ASSERT(ic->ic_curchan != NULL);
1771
1772 chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1773 RTW_DPRINTF(RTW_DEBUG_TUNE, "rtw: chan no = %x", chan);
1774
1775 if (chan == IEEE80211_CHAN_ANY) {
1776 cmn_err(CE_WARN, "%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1777 return (-1);
1778 }
1779
1780 if (chan == rsc->sc_cur_chan) {
1781 RTW_DPRINTF(RTW_DEBUG_TUNE,
1782 "%s: already tuned chan %d\n", __func__, chan);
1783 return (0);
1784 }
1785 rtw_idle(&rsc->sc_regs);
1786 rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 0);
1787 ASSERT((rsc->sc_flags & RTW_F_ENABLED) != 0);
1788
1789 if ((rc = rtw_phy_init(&rsc->sc_regs, rsc->sc_rf,
1790 rtw_chan2txpower(&rsc->sc_srom, ic, ic->ic_curchan),
1791 rsc->sc_csthr, ic->ic_curchan->ich_freq, antdiv,
1792 dflantb, RTW_ON)) != 0) {
1793 /* XXX condition on powersaving */
1794 cmn_err(CE_NOTE, "phy init failed\n");
1795 }
1796 rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 1);
1797 rtw_resume_ticks(rsc);
1798 rsc->sc_cur_chan = chan;
1799 return (rc);
1800 }
1801
1802 static int
rtw_init(rtw_softc_t * rsc)1803 rtw_init(rtw_softc_t *rsc)
1804 {
1805 struct ieee80211com *ic = &rsc->sc_ic;
1806 int rc = 0;
1807
1808 rtw_stop(rsc);
1809 mutex_enter(&rsc->sc_genlock);
1810 if ((rc = rtw_enable(rsc)) != 0)
1811 goto out;
1812 rc = rtw_refine_setting(rsc);
1813 if (rc != 0) {
1814 mutex_exit(&rsc->sc_genlock);
1815 return (rc);
1816 }
1817 rtw_swring_setup(rsc, 1);
1818 rtw_hwring_setup(rsc);
1819 RTW_WRITE16(&rsc->sc_regs, RTW_BSSID16, 0x0);
1820 RTW_WRITE(&rsc->sc_regs, RTW_BSSID32, 0x0);
1821 rtw_enable_interrupts(rsc);
1822
1823 ic->ic_ibss_chan = &ic->ic_sup_channels[1];
1824 ic->ic_curchan = ic->ic_ibss_chan;
1825 RTW_DPRINTF(RTW_DEBUG_TUNE, "%s: channel %d freq %d flags 0x%04x\n",
1826 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1827 ic->ic_curchan->ich_freq, ic->ic_curchan->ich_flags);
1828 rsc->sc_invalid = 0;
1829 out:
1830 mutex_exit(&rsc->sc_genlock);
1831 return (rc);
1832 }
1833
1834 static struct rtw_rf *
rtw_rf_attach(rtw_softc_t * rsc,enum rtw_rfchipid rfchipid,int digphy)1835 rtw_rf_attach(rtw_softc_t *rsc, enum rtw_rfchipid rfchipid, int digphy)
1836 {
1837 rtw_rf_write_t rf_write;
1838 struct rtw_rf *rf;
1839 int rtw_host_rfio;
1840
1841 switch (rfchipid) {
1842 default:
1843 rf_write = rtw_rf_hostwrite;
1844 break;
1845 case RTW_RFCHIPID_INTERSIL:
1846 case RTW_RFCHIPID_PHILIPS:
1847 case RTW_RFCHIPID_GCT: /* XXX a guess */
1848 case RTW_RFCHIPID_RFMD:
1849 rtw_host_rfio = 1;
1850 rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
1851 break;
1852 }
1853
1854 switch (rfchipid) {
1855 case RTW_RFCHIPID_MAXIM:
1856 rf = rtw_max2820_create(&rsc->sc_regs, rf_write, 0);
1857 rsc->sc_pwrstate_cb = rtw_maxim_pwrstate;
1858 break;
1859 case RTW_RFCHIPID_PHILIPS:
1860 rf = rtw_sa2400_create(&rsc->sc_regs, rf_write, digphy);
1861 rsc->sc_pwrstate_cb = rtw_philips_pwrstate;
1862 break;
1863 case RTW_RFCHIPID_RFMD:
1864 /* XXX RFMD has no RF constructor */
1865 rsc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
1866 /*FALLTHROUGH*/
1867 default:
1868 return (NULL);
1869 }
1870 if (rf != NULL) {
1871 rf->rf_continuous_tx_cb =
1872 (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
1873 rf->rf_continuous_tx_arg = (void *)rsc;
1874 }
1875 return (rf);
1876 }
1877
1878 /*
1879 * Revision C and later use a different PHY delay setting than
1880 * revisions A and B.
1881 */
1882 static uint8_t
rtw_check_phydelay(struct rtw_regs * regs,uint32_t rcr0)1883 rtw_check_phydelay(struct rtw_regs *regs, uint32_t rcr0)
1884 {
1885 #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
1886 #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
1887
1888 uint8_t phydelay = LSHIFT(0x6, RTW_PHYDELAY_PHYDELAY);
1889
1890 RTW_WRITE(regs, RTW_RCR, REVAB);
1891 RTW_WBW(regs, RTW_RCR, RTW_RCR);
1892 RTW_WRITE(regs, RTW_RCR, REVC);
1893
1894 RTW_WBR(regs, RTW_RCR, RTW_RCR);
1895 if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
1896 phydelay |= RTW_PHYDELAY_REVC_MAGIC;
1897
1898 RTW_WRITE(regs, RTW_RCR, rcr0); /* restore RCR */
1899 RTW_SYNC(regs, RTW_RCR, RTW_RCR);
1900
1901 return (phydelay);
1902 #undef REVC
1903 }
1904
1905 static void rtw_intr_rx(rtw_softc_t *rsc);
1906 static void rtw_ring_recycling(rtw_softc_t *rsc, uint16_t isr, uint32_t pri);
1907
1908 static int
rtw_get_rate(struct ieee80211com * ic)1909 rtw_get_rate(struct ieee80211com *ic)
1910 {
1911 uint8_t (*rates)[IEEE80211_RATE_MAXSIZE];
1912 int rate;
1913
1914 rates = &ic->ic_bss->in_rates.ir_rates;
1915
1916 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1917 rate = ic->ic_fixed_rate;
1918 else if (ic->ic_state == IEEE80211_S_RUN)
1919 rate = (*rates)[ic->ic_bss->in_txrate];
1920 else
1921 rate = 0;
1922 return (rate & IEEE80211_RATE_VAL);
1923 }
1924
1925 /*
1926 * Arguments in:
1927 *
1928 * paylen: payload length (no FCS, no WEP header)
1929 *
1930 * hdrlen: header length
1931 *
1932 * rate: MSDU speed, units 500kb/s
1933 *
1934 * flags: IEEE80211_F_SHPREAMBLE (use short preamble),
1935 * IEEE80211_F_SHSLOT (use short slot length)
1936 *
1937 * Arguments out:
1938 *
1939 * d: 802.11 Duration field for RTS,
1940 * 802.11 Duration field for data frame,
1941 * PLCP Length for data frame,
1942 * residual octets at end of data slot
1943 */
1944 static int
rtw_compute_duration1(int len,int use_ack,uint32_t flags,int rate,struct rtw_ieee80211_duration * d)1945 rtw_compute_duration1(int len, int use_ack, uint32_t flags, int rate,
1946 struct rtw_ieee80211_duration *d)
1947 {
1948 int pre, ctsrate;
1949 uint16_t ack, bitlen, data_dur, remainder;
1950
1951 /*
1952 * RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
1953 * DATA reserves medium for SIFS | ACK
1954 *
1955 * XXXMYC: no ACK on multicast/broadcast or control packets
1956 */
1957
1958 bitlen = len * 8;
1959
1960 pre = IEEE80211_DUR_DS_SIFS;
1961 if ((flags & IEEE80211_F_SHPREAMBLE) != 0)
1962 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE +
1963 IEEE80211_DUR_DS_FAST_PLCPHDR;
1964 else
1965 pre += IEEE80211_DUR_DS_LONG_PREAMBLE +
1966 IEEE80211_DUR_DS_SLOW_PLCPHDR;
1967
1968 d->d_residue = 0;
1969 data_dur = (bitlen * 2) / rate;
1970 remainder = (bitlen * 2) % rate;
1971 if (remainder != 0) {
1972 if (rate == 22)
1973 d->d_residue = (rate - remainder) / 16;
1974 data_dur++;
1975 }
1976
1977 switch (rate) {
1978 case 2: /* 1 Mb/s */
1979 case 4: /* 2 Mb/s */
1980 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
1981 ctsrate = 2;
1982 break;
1983 case 11: /* 5.5 Mb/s */
1984 case 22: /* 11 Mb/s */
1985 case 44: /* 22 Mb/s */
1986 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
1987 ctsrate = 4;
1988 break;
1989 default:
1990 /* TBD */
1991 return (-1);
1992 }
1993
1994 d->d_plcp_len = data_dur;
1995
1996 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
1997
1998 d->d_rts_dur =
1999 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
2000 pre + data_dur +
2001 ack;
2002
2003 d->d_data_dur = ack;
2004
2005 return (0);
2006 }
2007
2008 /*
2009 * Arguments in:
2010 *
2011 * wh: 802.11 header
2012 *
2013 * paylen: payload length (no FCS, no WEP header)
2014 *
2015 * rate: MSDU speed, units 500kb/s
2016 *
2017 * fraglen: fragment length, set to maximum (or higher) for no
2018 * fragmentation
2019 *
2020 * flags: IEEE80211_F_PRIVACY (hardware adds WEP),
2021 * IEEE80211_F_SHPREAMBLE (use short preamble),
2022 * IEEE80211_F_SHSLOT (use short slot length)
2023 *
2024 * Arguments out:
2025 *
2026 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
2027 * of first/only fragment
2028 *
2029 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
2030 * of first/only fragment
2031 */
2032 static int
rtw_compute_duration(struct ieee80211_frame * wh,int len,uint32_t flags,int fraglen,int rate,struct rtw_ieee80211_duration * d0,struct rtw_ieee80211_duration * dn,int * npktp)2033 rtw_compute_duration(struct ieee80211_frame *wh, int len,
2034 uint32_t flags, int fraglen, int rate, struct rtw_ieee80211_duration *d0,
2035 struct rtw_ieee80211_duration *dn, int *npktp)
2036 {
2037 int ack, rc;
2038 int firstlen, hdrlen, lastlen, lastlen0, npkt, overlen, paylen;
2039
2040 /* don't think about addr4 here */
2041 hdrlen = sizeof (struct ieee80211_frame);
2042
2043 paylen = len - hdrlen;
2044
2045 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) {
2046 overlen = 8 + IEEE80211_CRC_LEN;
2047 paylen -= 8;
2048 } else
2049 overlen = IEEE80211_CRC_LEN;
2050
2051 npkt = paylen / fraglen;
2052 lastlen0 = paylen % fraglen;
2053
2054 if (npkt == 0) /* no fragments */
2055 lastlen = paylen + overlen;
2056 else if (lastlen0 != 0) { /* a short "tail" fragment */
2057 lastlen = lastlen0 + overlen;
2058 npkt++;
2059 } else /* full-length "tail" fragment */
2060 lastlen = fraglen + overlen;
2061
2062 if (npktp != NULL)
2063 *npktp = npkt;
2064
2065 if (npkt > 1)
2066 firstlen = fraglen + overlen;
2067 else
2068 firstlen = paylen + overlen;
2069
2070 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2071 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) !=
2072 IEEE80211_FC0_TYPE_CTL;
2073
2074 rc = rtw_compute_duration1(firstlen + hdrlen,
2075 ack, flags, rate, d0);
2076 if (rc == -1)
2077 return (rc);
2078
2079 if (npkt <= 1) {
2080 *dn = *d0;
2081 return (0);
2082 }
2083 return (rtw_compute_duration1(lastlen + hdrlen, ack, flags,
2084 rate, dn));
2085 }
2086
2087 static int
rtw_assembly_80211(rtw_softc_t * rsc,struct rtw_txbuf * bf,mblk_t * mp)2088 rtw_assembly_80211(rtw_softc_t *rsc, struct rtw_txbuf *bf,
2089 mblk_t *mp)
2090 {
2091 ieee80211com_t *ic;
2092 struct rtw_txdesc *ds;
2093 struct ieee80211_frame *wh;
2094 uint8_t *buf;
2095 uint32_t ctl0 = 0, ctl1 = 0;
2096 int npkt, rate;
2097 struct rtw_ieee80211_duration d0, dn;
2098 int32_t iswep, pktlen, mblen;
2099 mblk_t *mp0;
2100
2101 ic = &rsc->sc_ic;
2102 ds = bf->txdesc;
2103 buf = (uint8_t *)bf->bf_dma.mem_va;
2104 bzero(buf, bf->bf_dma.alength);
2105 bzero((uint8_t *)ds, sizeof (struct rtw_txdesc));
2106 wh = (struct ieee80211_frame *)mp->b_rptr;
2107 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2108
2109 /* ieee80211_crypto_encap() needs a single mblk */
2110 mp0 = allocb(bf->bf_dma.alength, BPRI_MED);
2111 if (mp0 == NULL) {
2112 cmn_err(CE_WARN, "%s: allocb(mp) error", __func__);
2113 return (-1);
2114 }
2115 for (; mp != NULL; mp = mp->b_cont) {
2116 mblen = (uintptr_t)mp->b_wptr - (uintptr_t)mp->b_rptr;
2117 bcopy(mp->b_rptr, mp0->b_wptr, mblen);
2118 mp0->b_wptr += mblen;
2119 }
2120
2121 if (iswep) {
2122 struct ieee80211_key *k;
2123
2124 k = ieee80211_crypto_encap(ic, mp0);
2125 if (k == NULL) {
2126 cmn_err(CE_WARN, "%s: ieee80211_crypto_encap() error",
2127 __func__);
2128 freemsg(mp0);
2129 return (-1);
2130 }
2131 }
2132 pktlen = msgdsize(mp0);
2133
2134 #if 0
2135 RTW_DPRINTF(RTW_DEBUG_XMIT, "-----------send------begin--------");
2136 ieee80211_dump_pkt((uint8_t *)(mp0->b_rptr), pktlen, 0, 0);
2137 RTW_DPRINTF(RTW_DEBUG_XMIT, "-----------send------end--------");
2138 #endif
2139 /* RTW_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORDEV); */
2140 if (pktlen > bf->bf_dma.alength) {
2141 cmn_err(CE_WARN, "%s: overlength packet pktlen = %d\n",
2142 __func__, pktlen);
2143 freemsg(mp0);
2144 return (-1);
2145 }
2146 bcopy(mp0->b_rptr, buf, pktlen);
2147 RTW_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORDEV);
2148
2149 /* setup descriptor */
2150 ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
2151
2152 if (((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0) &&
2153 (ic->ic_bss->in_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2154 ctl0 |= RTW_TXCTL0_SPLCP;
2155 }
2156 /* XXX do real rate control */
2157 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2158 IEEE80211_FC0_TYPE_MGT)
2159 rate = 2;
2160 else {
2161 rate = MAX(2, rtw_get_rate(ic));
2162 }
2163 ctl0 = ctl0 |
2164 LSHIFT(pktlen, RTW_TXCTL0_TPKTSIZE_MASK);
2165
2166 RTW_DPRINTF(RTW_DEBUG_XMIT, "%s: rate = %d", __func__, rate);
2167
2168 switch (rate) {
2169 default:
2170 case 2:
2171 ctl0 |= RTW_TXCTL0_RATE_1MBPS;
2172 break;
2173 case 4:
2174 ctl0 |= RTW_TXCTL0_RATE_2MBPS;
2175 break;
2176 case 11:
2177 ctl0 |= RTW_TXCTL0_RATE_5MBPS;
2178 break;
2179 case 22:
2180 ctl0 |= RTW_TXCTL0_RATE_11MBPS;
2181 break;
2182 }
2183
2184 /* XXX >= ? Compare after fragmentation? */
2185 if (pktlen > ic->ic_rtsthreshold) {
2186 ctl0 |= RTW_TXCTL0_RTSEN;
2187 cmn_err(CE_NOTE, "%s: fragmentation: pktlen = %d",
2188 __func__, pktlen);
2189 }
2190
2191 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2192 IEEE80211_FC0_TYPE_MGT) {
2193 ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
2194 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2195 IEEE80211_FC0_SUBTYPE_BEACON)
2196 ctl0 |= RTW_TXCTL0_BEACON;
2197 }
2198
2199 if (rtw_compute_duration(wh, pktlen,
2200 ic->ic_flags, ic->ic_fragthreshold,
2201 rate, &d0, &dn, &npkt) == -1) {
2202 RTW_DPRINTF(RTW_DEBUG_XMIT,
2203 "%s: fail compute duration\n", __func__);
2204 freemsg(mp0);
2205 return (-1);
2206 }
2207 *(uint16_t *)(uintptr_t)wh->i_dur = (d0.d_data_dur);
2208
2209 ctl1 = LSHIFT(d0.d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
2210 LSHIFT(d0.d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
2211
2212 if (d0.d_residue)
2213 ctl1 |= RTW_TXCTL1_LENGEXT;
2214
2215 RTW_DPRINTF(RTW_DEBUG_XMIT, "%s: duration=%x, ctl1=%x", __func__,
2216 *(uint16_t *)(uintptr_t)wh->i_dur, ctl1);
2217
2218 if (bf->bf_dma.alength > RTW_TXLEN_LENGTH_MASK) {
2219 RTW_DPRINTF(RTW_DEBUG_XMIT,
2220 "%s: seg too long\n", __func__);
2221 freemsg(mp0);
2222 return (-1);
2223 }
2224 ds->td_ctl0 = ctl0;
2225 ds->td_ctl0 |= RTW_TXCTL0_OWN | RTW_TXCTL0_LS | RTW_TXCTL0_FS;
2226 ds->td_ctl1 = ctl1;
2227 ds->td_buf = bf->bf_dma.cookie.dmac_address;
2228 ds->td_len = pktlen & 0xfff;
2229 ds->td_next = bf->next_bf_daddr;
2230
2231 RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
2232 RTW_DESC_OFFSET(hd_txmd, bf->order),
2233 sizeof (struct rtw_txdesc),
2234 DDI_DMA_SYNC_FORDEV);
2235
2236 RTW_DPRINTF(RTW_DEBUG_XMIT,
2237 "descriptor: order = %d, phy_addr=%x, ctl0=%x,"
2238 " ctl1=%x, buf=%x, len=%x, next=%x", bf->order,
2239 bf->bf_daddr, ds->td_ctl0, ds->td_ctl1,
2240 ds->td_buf, ds->td_len, ds->td_next);
2241 rsc->sc_pktxmt64++;
2242 rsc->sc_bytexmt64 += pktlen;
2243
2244 freemsg(mp0);
2245 return (0);
2246 }
2247
2248 static int
rtw_send(ieee80211com_t * ic,mblk_t * mp,uint8_t type)2249 rtw_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2250 {
2251 rtw_softc_t *rsc = (rtw_softc_t *)ic;
2252 struct ieee80211_node *in = ic->ic_bss;
2253 struct rtw_txbuf *bf = NULL;
2254 int ret, i = RTW_TXPRIMD;
2255
2256 mutex_enter(&rsc->sc_txlock);
2257 mutex_enter(&rsc->sc_txq[i].txbuf_lock);
2258 bf = list_head(&rsc->sc_txq[i].tx_free_list);
2259
2260 if ((bf == NULL) || (rsc->sc_txq[i].tx_nfree <= 4)) {
2261 RTW_DPRINTF(RTW_DEBUG_XMIT, "%s: no tx buf\n", __func__);
2262 rsc->sc_noxmtbuf++;
2263 if ((type & IEEE80211_FC0_TYPE_MASK) ==
2264 IEEE80211_FC0_TYPE_DATA) {
2265 RTW_DPRINTF(RTW_DEBUG_XMIT, "%s: need reschedule\n",
2266 __func__);
2267 rsc->sc_need_reschedule = 1;
2268 } else {
2269 freemsg(mp);
2270 }
2271 mutex_exit(&rsc->sc_txq[i].txbuf_lock);
2272 mutex_exit(&rsc->sc_txlock);
2273 return (1);
2274 }
2275 list_remove(&rsc->sc_txq[i].tx_free_list, bf);
2276 rsc->sc_txq[i].tx_nfree--;
2277
2278 /* assemble 802.11 frame here */
2279 ret = rtw_assembly_80211(rsc, bf, mp);
2280 if (ret != 0) {
2281 cmn_err(CE_WARN, "%s assembly frame error\n", __func__);
2282 mutex_exit(&rsc->sc_txq[i].txbuf_lock);
2283 mutex_exit(&rsc->sc_txlock);
2284 if ((type & IEEE80211_FC0_TYPE_MASK) !=
2285 IEEE80211_FC0_TYPE_DATA) {
2286 freemsg(mp);
2287 }
2288 return (1);
2289 }
2290 list_insert_tail(&rsc->sc_txq[i].tx_dirty_list, bf);
2291 bf->bf_in = in;
2292 rtw_dma_start(&rsc->sc_regs, i);
2293
2294 mutex_exit(&rsc->sc_txq[i].txbuf_lock);
2295 mutex_exit(&rsc->sc_txlock);
2296
2297 freemsg(mp);
2298 return (0);
2299 }
2300
2301 static mblk_t *
rtw_m_tx(void * arg,mblk_t * mp)2302 rtw_m_tx(void *arg, mblk_t *mp)
2303 {
2304 rtw_softc_t *rsc = arg;
2305 ieee80211com_t *ic = (ieee80211com_t *)rsc;
2306 mblk_t *next;
2307
2308 if (ic->ic_state != IEEE80211_S_RUN) {
2309 freemsgchain(mp);
2310 return (NULL);
2311 }
2312
2313 while (mp != NULL) {
2314 next = mp->b_next;
2315 mp->b_next = NULL;
2316
2317 if (rtw_send(ic, mp, IEEE80211_FC0_TYPE_DATA)) {
2318 mp->b_next = next;
2319 break;
2320 }
2321 mp = next;
2322 }
2323
2324 return (mp);
2325
2326 }
2327
2328 static void
rtw_next_scan(void * arg)2329 rtw_next_scan(void *arg)
2330 {
2331 ieee80211com_t *ic = arg;
2332 rtw_softc_t *rsc = (rtw_softc_t *)arg;
2333
2334 rsc->sc_scan_id = 0;
2335 if (ic->ic_state == IEEE80211_S_SCAN) {
2336 RTW_DPRINTF(RTW_DEBUG_TUNE, "rtw_next_scan\n");
2337 (void) ieee80211_next_scan(ic);
2338 }
2339
2340 }
2341
2342 static void
rtw_join_bss(rtw_softc_t * rsc,uint8_t * bssid,uint16_t intval0)2343 rtw_join_bss(rtw_softc_t *rsc, uint8_t *bssid, uint16_t intval0)
2344 {
2345 uint16_t bcnitv, intval;
2346 int i;
2347 struct rtw_regs *regs = &rsc->sc_regs;
2348
2349 for (i = 0; i < IEEE80211_ADDR_LEN; i++)
2350 RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
2351
2352 RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
2353 rtw_set_access(regs, RTW_ACCESS_CONFIG);
2354
2355 RTW_WRITE8(regs, RTW_MSR, 0x8); /* sta mode link ok */
2356 intval = MIN(intval0, PRESHIFT(RTW_BCNITV_BCNITV_MASK));
2357
2358 bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
2359 bcnitv |= LSHIFT(intval, RTW_BCNITV_BCNITV_MASK);
2360 RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
2361 RTW_WRITE16(regs, RTW_ATIMWND, LSHIFT(1, RTW_ATIMWND_ATIMWND));
2362 RTW_WRITE16(regs, RTW_ATIMTRITV, LSHIFT(2, RTW_ATIMTRITV_ATIMTRITV));
2363
2364 rtw_set_access(regs, RTW_ACCESS_NONE);
2365
2366 /* TBD WEP */
2367 /* RTW_WRITE8(regs, RTW_SCR, 0); */
2368
2369 rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 1);
2370 }
2371
2372 /*
2373 * Set the starting transmit rate for a node.
2374 */
2375 static void
rtw_rate_ctl_start(rtw_softc_t * rsc,struct ieee80211_node * in)2376 rtw_rate_ctl_start(rtw_softc_t *rsc, struct ieee80211_node *in)
2377 {
2378 ieee80211com_t *ic = (ieee80211com_t *)rsc;
2379 int32_t srate;
2380
2381 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2382 /*
2383 * No fixed rate is requested. For 11b start with
2384 * the highest negotiated rate; otherwise, for 11g
2385 * and 11a, we start "in the middle" at 24Mb or 36Mb.
2386 */
2387 srate = in->in_rates.ir_nrates - 1;
2388 if (ic->ic_curmode != IEEE80211_MODE_11B) {
2389 /*
2390 * Scan the negotiated rate set to find the
2391 * closest rate.
2392 */
2393 /* NB: the rate set is assumed sorted */
2394 for (; srate >= 0 && IEEE80211_RATE(srate) > 72;
2395 srate--)
2396 ;
2397 }
2398 } else {
2399 /*
2400 * A fixed rate is to be used; We know the rate is
2401 * there because the rate set is checked when the
2402 * station associates.
2403 */
2404 /* NB: the rate set is assumed sorted */
2405 srate = in->in_rates.ir_nrates - 1;
2406 for (; srate >= 0 && IEEE80211_RATE(srate) != ic->ic_fixed_rate;
2407 srate--)
2408 ;
2409 }
2410 in->in_txrate = srate;
2411 }
2412
2413
2414 /*
2415 * Reset the rate control state for each 802.11 state transition.
2416 */
2417 static void
rtw_rate_ctl_reset(rtw_softc_t * rsc,enum ieee80211_state state)2418 rtw_rate_ctl_reset(rtw_softc_t *rsc, enum ieee80211_state state)
2419 {
2420 ieee80211com_t *ic = &rsc->sc_ic;
2421 ieee80211_node_t *in;
2422
2423 if (ic->ic_opmode == IEEE80211_M_STA) {
2424 /*
2425 * Reset local xmit state; this is really only
2426 * meaningful when operating in station mode.
2427 */
2428 in = (struct ieee80211_node *)ic->ic_bss;
2429
2430 if (state == IEEE80211_S_RUN) {
2431 rtw_rate_ctl_start(rsc, in);
2432 } else {
2433 in->in_txrate = 0;
2434 }
2435 }
2436 }
2437
2438 /*
2439 * Examine and potentially adjust the transmit rate.
2440 */
2441 static void
rtw_rate_ctl(void * arg)2442 rtw_rate_ctl(void *arg)
2443 {
2444 ieee80211com_t *ic = (ieee80211com_t *)arg;
2445 rtw_softc_t *rsc = (rtw_softc_t *)ic;
2446 struct ieee80211_node *in = ic->ic_bss;
2447 struct ieee80211_rateset *rs = &in->in_rates;
2448 int32_t mod = 1, nrate, enough;
2449
2450 mutex_enter(&rsc->sc_genlock);
2451 enough = (rsc->sc_tx_ok + rsc->sc_tx_err) >= 600? 1 : 0;
2452
2453 /* err ratio is high -> down */
2454 if (enough && rsc->sc_tx_ok < rsc->sc_tx_err)
2455 mod = -1;
2456
2457 nrate = in->in_txrate;
2458 switch (mod) {
2459 case -1:
2460 if (nrate > 0) {
2461 nrate--;
2462 }
2463 break;
2464 case 1:
2465 if (nrate + 1 < rs->ir_nrates) {
2466 nrate++;
2467 }
2468 break;
2469 }
2470
2471 if (nrate != in->in_txrate)
2472 in->in_txrate = nrate;
2473 rsc->sc_tx_ok = rsc->sc_tx_err = rsc->sc_tx_retr = 0;
2474 mutex_exit(&rsc->sc_genlock);
2475 if (ic->ic_state == IEEE80211_S_RUN)
2476 rsc->sc_ratectl_id = timeout(rtw_rate_ctl, ic,
2477 drv_usectohz(1000000));
2478 }
2479
2480 static int32_t
rtw_new_state(ieee80211com_t * ic,enum ieee80211_state nstate,int arg)2481 rtw_new_state(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
2482 {
2483 rtw_softc_t *rsc = (rtw_softc_t *)ic;
2484 int error;
2485 enum ieee80211_state ostate;
2486
2487 ostate = ic->ic_state;
2488
2489 RTW_DPRINTF(RTW_DEBUG_ATTACH,
2490 "rtw_new_state: ostate:0x%x, nstate:0x%x, opmode:0x%x\n",
2491 ostate, nstate, ic->ic_opmode);
2492
2493
2494 mutex_enter(&rsc->sc_genlock);
2495 if (rsc->sc_scan_id != 0) {
2496 (void) untimeout(rsc->sc_scan_id);
2497 rsc->sc_scan_id = 0;
2498 }
2499 if (rsc->sc_ratectl_id != 0) {
2500 (void) untimeout(rsc->sc_ratectl_id);
2501 rsc->sc_ratectl_id = 0;
2502 }
2503 rtw_rate_ctl_reset(rsc, nstate);
2504 if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
2505 (void) rtw_pwrstate(rsc, RTW_ON);
2506 if (nstate != IEEE80211_S_INIT) {
2507 if ((error = rtw_tune(rsc)) != 0) {
2508 mutex_exit(&rsc->sc_genlock);
2509 return (error);
2510 }
2511 }
2512 switch (nstate) {
2513 case IEEE80211_S_INIT:
2514 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw_new_state: S_INIT\n");
2515 break;
2516 case IEEE80211_S_SCAN:
2517 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw_new_state: S_SCAN\n");
2518 rsc->sc_scan_id = timeout(rtw_next_scan, ic,
2519 drv_usectohz(200000));
2520 rtw_set_nettype(rsc, IEEE80211_M_MONITOR);
2521 break;
2522 case IEEE80211_S_RUN:
2523 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw_new_state: S_RUN\n");
2524 switch (ic->ic_opmode) {
2525 case IEEE80211_M_HOSTAP:
2526 case IEEE80211_M_IBSS:
2527 rtw_set_nettype(rsc, IEEE80211_M_MONITOR);
2528 /* TBD */
2529 /*FALLTHROUGH*/
2530 case IEEE80211_M_AHDEMO:
2531 case IEEE80211_M_STA:
2532 RTW_DPRINTF(RTW_DEBUG_ATTACH,
2533 "rtw_new_state: sta\n");
2534 rtw_join_bss(rsc, ic->ic_bss->in_bssid, 0);
2535 rsc->sc_ratectl_id = timeout(rtw_rate_ctl, ic,
2536 drv_usectohz(1000000));
2537 break;
2538 case IEEE80211_M_MONITOR:
2539 break;
2540 }
2541 rtw_set_nettype(rsc, ic->ic_opmode);
2542 break;
2543 case IEEE80211_S_ASSOC:
2544 case IEEE80211_S_AUTH:
2545 break;
2546 }
2547
2548 mutex_exit(&rsc->sc_genlock);
2549 /*
2550 * Invoke the parent method to complete the work.
2551 */
2552 error = rsc->sc_newstate(ic, nstate, arg);
2553
2554 return (error);
2555 }
2556
2557 static void
rtw_intr_rx(rtw_softc_t * rsc)2558 rtw_intr_rx(rtw_softc_t *rsc)
2559 {
2560 #define IS_BEACON(__fc0) \
2561 ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
2562 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
2563 /*
2564 * ratetbl[4] = {2, 4, 11, 22};
2565 */
2566 struct rtw_rxbuf *bf;
2567 struct rtw_rxdesc *ds;
2568 int hwrate, len, rssi;
2569 uint32_t hstat, hrssi, htsftl;
2570 int is_last, next, n = 0, i;
2571 struct ieee80211_frame *wh;
2572 ieee80211com_t *ic = (ieee80211com_t *)rsc;
2573 mblk_t *mp;
2574
2575 RTW_DPRINTF(RTW_DEBUG_RECV, "%s rtw_intr_rx: enter ic_state=%x\n",
2576 __func__, rsc->sc_ic.ic_state);
2577 mutex_enter(&rsc->rxbuf_lock);
2578 next = rsc->rx_next;
2579 mutex_exit(&rsc->rxbuf_lock);
2580 for (i = 0; i < RTW_RXQLEN; i++) {
2581 RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
2582 RTW_DESC_OFFSET(hd_rx, next),
2583 sizeof (struct rtw_rxdesc),
2584 DDI_DMA_SYNC_FORKERNEL);
2585 n++;
2586 bf = rsc->rxbuf_h + next;
2587 ds = bf->rxdesc;
2588 hstat = (ds->rd_stat);
2589 hrssi = ds->rd_rssi;
2590 htsftl = ds->rd_tsftl;
2591 /* htsfth = ds->rd_tsfth; */
2592 RTW_DPRINTF(RTW_DEBUG_RECV, "%s: stat=%x\n", __func__, hstat);
2593 /* still belongs to NIC */
2594 if ((hstat & RTW_RXSTAT_OWN) != 0) {
2595 if (n > 1) {
2596 RTW_DPRINTF(RTW_DEBUG_RECV,
2597 "%s: n > 1\n", __func__);
2598 break;
2599 }
2600 RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
2601 RTW_DESC_OFFSET(hd_rx, 0),
2602 sizeof (struct rtw_rxdesc),
2603 DDI_DMA_SYNC_FORCPU);
2604 bf = rsc->rxbuf_h;
2605 ds = bf->rxdesc;
2606 hstat = (ds->rd_stat);
2607 if ((hstat & RTW_RXSTAT_OWN) != 0)
2608 break;
2609 next = 0 /* RTW_RXQLEN - 1 */;
2610 continue;
2611 }
2612
2613 rsc->sc_pktrcv64++;
2614 if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
2615 RTW_DPRINTF(RTW_DEBUG_RECV,
2616 "rtw: DMA error/FIFO overflow %08x, "
2617 "rx descriptor %d\n",
2618 hstat & RTW_RXSTAT_IOERROR, next);
2619 goto next;
2620 }
2621
2622 len = MASK_AND_RSHIFT(hstat, RTW_RXSTAT_LENGTH_MASK);
2623 rsc->sc_bytercv64 += len;
2624
2625 /* CRC is included with the packet; trim it off. */
2626 /* len -= IEEE80211_CRC_LEN; */
2627
2628 hwrate = MASK_AND_RSHIFT(hstat, RTW_RXSTAT_RATE_MASK);
2629 if (hwrate >= 4) {
2630 goto next;
2631 }
2632
2633 if ((hstat & RTW_RXSTAT_RES) != 0 &&
2634 rsc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) {
2635 goto next;
2636 }
2637
2638 /* if bad flags, skip descriptor */
2639 if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
2640 RTW_DPRINTF(RTW_DEBUG_RECV,
2641 "rtw too many rx segments\n");
2642 goto next;
2643 }
2644
2645 if (rsc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
2646 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_RSSI);
2647 else {
2648 rssi = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_IMR_RSSI);
2649 /*
2650 * TBD find out each front-end's LNA gain in the
2651 * front-end's units
2652 */
2653 if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
2654 rssi |= 0x80;
2655 }
2656 /* sq = MASK_AND_RSHIFT(hrssi, RTW_RXRSSI_SQ); */
2657
2658
2659 /* deal with the frame itself here */
2660 mp = allocb(rsc->sc_dmabuf_size, BPRI_MED);
2661 if (mp == NULL) {
2662 cmn_err(CE_WARN, "rtw: alloc mblk error");
2663 rsc->sc_norcvbuf++;
2664 return;
2665 }
2666 len -= IEEE80211_CRC_LEN;
2667 RTW_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORKERNEL);
2668 bcopy(bf->bf_dma.mem_va, mp->b_rptr, len);
2669 mp->b_wptr += len;
2670 wh = (struct ieee80211_frame *)mp->b_rptr;
2671 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2672 IEEE80211_FC0_TYPE_CTL) {
2673 cmn_err(CE_WARN, "TYPE CTL !!\n");
2674 freemsg(mp);
2675 goto next;
2676 }
2677 (void) ieee80211_input(ic, mp, ic->ic_bss, rssi, htsftl);
2678 next:
2679 if (next == 63)
2680 is_last = 1;
2681 else
2682 is_last = 0;
2683 rtw_rxdesc_init(rsc, bf, next, is_last);
2684
2685 next = (next + 1)%RTW_RXQLEN;
2686 RTW_DPRINTF(RTW_DEBUG_RECV, "%s: next = %d\n", __func__, next);
2687 }
2688 mutex_enter(&rsc->rxbuf_lock);
2689 rsc->rx_next = next;
2690 mutex_exit(&rsc->rxbuf_lock);
2691 }
2692
2693 static void
rtw_ring_recycling(rtw_softc_t * rsc,uint16_t isr,uint32_t pri)2694 rtw_ring_recycling(rtw_softc_t *rsc, uint16_t isr, uint32_t pri)
2695 {
2696 struct rtw_txbuf *bf;
2697 struct rtw_txdesc *ds;
2698 uint32_t hstat;
2699 uint32_t head = 0;
2700 uint32_t cnt = 0, idx = 0;
2701
2702 mutex_enter(&rsc->sc_txq[pri].txbuf_lock);
2703 head = RTW_READ(&rsc->sc_regs, RTW_TNPDA);
2704 if (head == rsc->hw_go) {
2705 mutex_exit(&rsc->sc_txq[pri].txbuf_lock);
2706 return;
2707 }
2708 RTW_DPRINTF(RTW_DEBUG_XMIT, "rtw_ring_recycling: enter ic_state=%x\n",
2709 rsc->sc_ic.ic_state);
2710
2711 bf = list_head(&rsc->sc_txq[pri].tx_dirty_list);
2712 if (bf == NULL) {
2713 RTW_DPRINTF(RTW_DEBUG_XMIT,
2714 "rtw_ring_recycling: dirty bf[%d] NULL\n", pri);
2715 mutex_exit(&rsc->sc_txq[pri].txbuf_lock);
2716 return;
2717 }
2718
2719 while ((bf != NULL) && (rsc->hw_go != head)) {
2720 cnt++;
2721 idx = (rsc->hw_go - rsc->hw_start) / sizeof (struct rtw_txdesc);
2722 if (idx == 63)
2723 rsc->hw_go = rsc->hw_start;
2724 else
2725 rsc->hw_go += sizeof (struct rtw_txdesc);
2726 RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
2727 RTW_DESC_OFFSET(hd_txmd, idx),
2728 sizeof (struct rtw_txdesc),
2729 DDI_DMA_SYNC_FORCPU);
2730
2731 RTW_DPRINTF(RTW_DEBUG_XMIT, "Head = 0x%x\n", head);
2732 ds = bf->txdesc;
2733 hstat = (ds->td_stat);
2734 ds->td_len = ds->td_len & 0xfff;
2735 RTW_DPRINTF(RTW_DEBUG_XMIT,
2736 "%s rtw_ring_recycling: stat=%x, pri=%x\n",
2737 __func__, hstat, pri);
2738 if (hstat & RTW_TXSTAT_TOK)
2739 rsc->sc_tx_ok++;
2740 else {
2741 RTW_DPRINTF(RTW_DEBUG_XMIT,
2742 "TX err @%d, o %d, retry[%d], isr[0x%x], cnt %d\n",
2743 idx, (hstat & RTW_TXSTAT_OWN)?1:0,
2744 (hstat & RTW_TXSTAT_DRC_MASK), isr, cnt);
2745 if ((hstat & RTW_TXSTAT_DRC_MASK) <= 4) {
2746 rsc->sc_tx_ok++;
2747 } else {
2748 rsc->sc_tx_err++;
2749 }
2750 }
2751 rsc->sc_tx_retr +=
2752 (hstat & RTW_TXSTAT_DRC_MASK);
2753 rsc->sc_xmtretry +=
2754 (hstat & RTW_TXSTAT_DRC_MASK);
2755 list_remove(&rsc->sc_txq[pri].tx_dirty_list, bf);
2756 list_insert_tail(&rsc->sc_txq[pri].tx_free_list,
2757 bf);
2758 (rsc->sc_txq[pri].tx_nfree)++;
2759 if (rsc->sc_need_reschedule == 1) {
2760 mac_tx_update(rsc->sc_ic.ic_mach);
2761 rsc->sc_need_reschedule = 0;
2762 }
2763 RTW_DPRINTF(RTW_DEBUG_XMIT,
2764 "rtw_ring_recycling: nfree[%d]=%d\n",
2765 pri, rsc->sc_txq[pri].tx_nfree);
2766 bzero((uint8_t *)ds, sizeof (struct rtw_txdesc));
2767 RTW_DMA_SYNC_DESC(rsc->sc_desc_dma,
2768 RTW_DESC_OFFSET(hd_txmd, idx),
2769 sizeof (struct rtw_txdesc),
2770 DDI_DMA_SYNC_FORDEV);
2771 bf = list_head(&rsc->sc_txq[pri].tx_dirty_list);
2772 }
2773 mutex_exit(&rsc->sc_txq[pri].txbuf_lock);
2774 }
2775
2776 static void
rtw_intr_timeout(rtw_softc_t * rsc)2777 rtw_intr_timeout(rtw_softc_t *rsc)
2778 {
2779 rtw_resume_ticks(rsc);
2780 }
2781
2782 static uint_t
rtw_intr(caddr_t arg)2783 rtw_intr(caddr_t arg)
2784 {
2785 /* LINTED E_BAD_PTR_CAST_ALIGN */
2786 rtw_softc_t *rsc = (rtw_softc_t *)arg;
2787 struct rtw_regs *regs = &rsc->sc_regs;
2788 uint16_t isr = 0;
2789
2790 mutex_enter(&rsc->sc_genlock);
2791 isr = RTW_READ16(regs, RTW_ISR);
2792 RTW_WRITE16(regs, RTW_ISR, isr);
2793
2794 if (isr == 0) {
2795 mutex_exit(&rsc->sc_genlock);
2796 return (DDI_INTR_UNCLAIMED);
2797 }
2798
2799 #ifdef DEBUG
2800 #define PRINTINTR(flag) { \
2801 if ((isr & flag) != 0) { \
2802 RTW_DPRINTF(RTW_DEBUG_INTR, "|" #flag); \
2803 } \
2804 }
2805
2806 if ((rtw_dbg_flags & RTW_DEBUG_INTR) != 0 && isr != 0) {
2807
2808 RTW_DPRINTF(RTW_DEBUG_INTR, "rtw: reg[ISR] = %x", isr);
2809
2810 PRINTINTR(RTW_INTR_TXFOVW);
2811 PRINTINTR(RTW_INTR_TIMEOUT);
2812 PRINTINTR(RTW_INTR_BCNINT);
2813 PRINTINTR(RTW_INTR_ATIMINT);
2814 PRINTINTR(RTW_INTR_TBDER);
2815 PRINTINTR(RTW_INTR_TBDOK);
2816 PRINTINTR(RTW_INTR_THPDER);
2817 PRINTINTR(RTW_INTR_THPDOK);
2818 PRINTINTR(RTW_INTR_TNPDER);
2819 PRINTINTR(RTW_INTR_TNPDOK);
2820 PRINTINTR(RTW_INTR_RXFOVW);
2821 PRINTINTR(RTW_INTR_RDU);
2822 PRINTINTR(RTW_INTR_TLPDER);
2823 PRINTINTR(RTW_INTR_TLPDOK);
2824 PRINTINTR(RTW_INTR_RER);
2825 PRINTINTR(RTW_INTR_ROK);
2826 }
2827 #undef PRINTINTR
2828 #endif /* DEBUG */
2829
2830 rsc->sc_intr++;
2831
2832 if ((isr & RTW_INTR_RX) != 0) {
2833 mutex_exit(&rsc->sc_genlock);
2834 rtw_intr_rx(rsc);
2835 mutex_enter(&rsc->sc_genlock);
2836 }
2837 if ((isr & RTW_INTR_TIMEOUT) != 0)
2838 rtw_intr_timeout(rsc);
2839
2840 if ((isr & RTW_INTR_TX) != 0)
2841 rtw_ring_recycling(rsc, isr, 1);
2842 mutex_exit(&rsc->sc_genlock);
2843 return (DDI_INTR_CLAIMED);
2844 }
2845
2846 static void
rtw_stop(void * arg)2847 rtw_stop(void *arg)
2848 {
2849 rtw_softc_t *rsc = (rtw_softc_t *)arg;
2850 struct rtw_regs *regs = &rsc->sc_regs;
2851
2852 mutex_enter(&rsc->sc_genlock);
2853 rtw_disable_interrupts(regs);
2854 rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 0);
2855 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2856 rsc->sc_invalid = 1;
2857 mutex_exit(&rsc->sc_genlock);
2858 }
2859
2860 static void
rtw_m_stop(void * arg)2861 rtw_m_stop(void *arg)
2862 {
2863 rtw_softc_t *rsc = (rtw_softc_t *)arg;
2864
2865 (void) ieee80211_new_state(&rsc->sc_ic, IEEE80211_S_INIT, -1);
2866 rtw_stop(rsc);
2867 }
2868
2869 /*
2870 * quiesce(9E) entry point.
2871 *
2872 * This function is called when the system is single-threaded at high
2873 * PIL with preemption disabled. Therefore, this function must not be
2874 * blocked.
2875 *
2876 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
2877 * DDI_FAILURE indicates an error condition and should almost never happen.
2878 */
2879 int
rtw_quiesce(dev_info_t * dip)2880 rtw_quiesce(dev_info_t *dip)
2881 {
2882 rtw_softc_t *rsc = NULL;
2883 struct rtw_regs *regs;
2884
2885 rsc = ddi_get_soft_state(rtw_soft_state_p, ddi_get_instance(dip));
2886 ASSERT(rsc != NULL);
2887 regs = &rsc->sc_regs;
2888
2889 rtw_dbg_flags = 0;
2890 rtw_disable_interrupts(regs);
2891 rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 0);
2892 RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
2893
2894 return (DDI_SUCCESS);
2895 }
2896
2897 /*
2898 * callback functions for /get/set properties
2899 */
2900 static int
rtw_m_setprop(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,uint_t wldp_length,const void * wldp_buf)2901 rtw_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2902 uint_t wldp_length, const void *wldp_buf)
2903 {
2904 rtw_softc_t *rsc = (rtw_softc_t *)arg;
2905 struct ieee80211com *ic = &rsc->sc_ic;
2906 int err;
2907
2908 err = ieee80211_setprop(ic, pr_name, wldp_pr_num,
2909 wldp_length, wldp_buf);
2910 if (err == ENETRESET) {
2911 if (ic->ic_des_esslen && (rsc->sc_invalid == 0)) {
2912 (void) rtw_init(rsc);
2913 (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2914 }
2915 err = 0;
2916 }
2917 return (err);
2918 }
2919
2920 static int
rtw_m_getprop(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,uint_t wldp_length,void * wldp_buf)2921 rtw_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2922 uint_t wldp_length, void *wldp_buf)
2923 {
2924 rtw_softc_t *rsc = arg;
2925 int err;
2926
2927 err = ieee80211_getprop(&rsc->sc_ic, pr_name, wldp_pr_num,
2928 wldp_length, wldp_buf);
2929
2930 return (err);
2931 }
2932
2933 static void
rtw_m_propinfo(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,mac_prop_info_handle_t prh)2934 rtw_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
2935 mac_prop_info_handle_t prh)
2936 {
2937 rtw_softc_t *rsc = arg;
2938
2939 ieee80211_propinfo(&rsc->sc_ic, pr_name, wldp_pr_num, prh);
2940 }
2941
2942 static int
rtw_m_start(void * arg)2943 rtw_m_start(void *arg)
2944 {
2945 rtw_softc_t *rsc = (rtw_softc_t *)arg;
2946 ieee80211com_t *ic = (ieee80211com_t *)rsc;
2947 int ret;
2948 #ifdef DEBUG
2949 rtw_print_regs(&rsc->sc_regs, "rtw", "rtw_start");
2950 #endif
2951
2952 ret = rtw_init(rsc);
2953 if (ret) {
2954 cmn_err(CE_WARN, "rtw: failed to do rtw_init\n");
2955 return (EIO);
2956 }
2957 (void) ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2958 return (0);
2959 }
2960
2961
2962 static int
rtw_m_unicst(void * arg,const uint8_t * macaddr)2963 rtw_m_unicst(void *arg, const uint8_t *macaddr)
2964 {
2965 rtw_softc_t *rsc = (rtw_softc_t *)arg;
2966 ieee80211com_t *ic = (ieee80211com_t *)rsc;
2967 struct rtw_regs *regs = &rsc->sc_regs;
2968 uint32_t t;
2969
2970 mutex_enter(&rsc->sc_genlock);
2971 bcopy(macaddr, ic->ic_macaddr, 6);
2972 t = ((*macaddr)<<24) | ((*(macaddr + 1))<<16) |
2973 ((*(macaddr + 2))<<8) | (*(macaddr + 3));
2974 RTW_WRITE(regs, RTW_IDR0, ntohl(t));
2975 t = ((*(macaddr + 4))<<24) | ((*(macaddr + 5))<<16);
2976 RTW_WRITE(regs, RTW_IDR1, ntohl(t));
2977 mutex_exit(&rsc->sc_genlock);
2978 return (0);
2979 }
2980
2981 static int
rtw_m_promisc(void * arg,boolean_t on)2982 rtw_m_promisc(void *arg, boolean_t on)
2983 {
2984 rtw_softc_t *rsc = (rtw_softc_t *)arg;
2985 struct rtw_regs *regs = &rsc->sc_regs;
2986
2987 mutex_enter(&rsc->sc_genlock);
2988
2989 if (on)
2990 rsc->sc_rcr |= RTW_RCR_PROMIC;
2991 else
2992 rsc->sc_rcr &= ~RTW_RCR_PROMIC;
2993
2994 RTW_WRITE(regs, RTW_RCR, rsc->sc_rcr);
2995
2996 mutex_exit(&rsc->sc_genlock);
2997 return (0);
2998 }
2999
3000 static int
rtw_m_multicst(void * arg,boolean_t add,const uint8_t * macaddr)3001 rtw_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr)
3002 {
3003 rtw_softc_t *rsc = (rtw_softc_t *)arg;
3004 struct rtw_regs *regs = &rsc->sc_regs;
3005 uint32_t t;
3006
3007 mutex_enter(&rsc->sc_genlock);
3008 if (add) {
3009 rsc->sc_rcr |= RTW_RCR_AM;
3010 t = ((*macaddr)<<24) | ((*(macaddr + 1))<<16) |
3011 ((*(macaddr + 2))<<8) | (*(macaddr + 3));
3012 RTW_WRITE(regs, RTW_MAR0, ntohl(t));
3013 t = ((*(macaddr + 4))<<24) | ((*(macaddr + 5))<<16);
3014 RTW_WRITE(regs, RTW_MAR1, ntohl(t));
3015 RTW_WRITE(regs, RTW_RCR, rsc->sc_rcr);
3016 RTW_SYNC(regs, RTW_MAR0, RTW_RCR);
3017 } else {
3018 rsc->sc_rcr &= ~RTW_RCR_AM;
3019 RTW_WRITE(regs, RTW_MAR0, 0);
3020 RTW_WRITE(regs, RTW_MAR1, 0);
3021 RTW_WRITE(regs, RTW_RCR, rsc->sc_rcr);
3022 RTW_SYNC(regs, RTW_MAR0, RTW_RCR);
3023 }
3024 mutex_exit(&rsc->sc_genlock);
3025 return (0);
3026 }
3027
3028 static void
rtw_m_ioctl(void * arg,queue_t * wq,mblk_t * mp)3029 rtw_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
3030 {
3031 rtw_softc_t *rsc = arg;
3032 struct ieee80211com *ic = &rsc->sc_ic;
3033 int err;
3034
3035 err = ieee80211_ioctl(ic, wq, mp);
3036 if (err == ENETRESET) {
3037 if (ic->ic_des_esslen && (rsc->sc_invalid == 0)) {
3038 (void) rtw_init(rsc);
3039 (void) ieee80211_new_state(ic,
3040 IEEE80211_S_SCAN, -1);
3041 }
3042 }
3043 }
3044
3045 static int
rtw_m_stat(void * arg,uint_t stat,uint64_t * val)3046 rtw_m_stat(void *arg, uint_t stat, uint64_t *val)
3047 {
3048 rtw_softc_t *rsc = (rtw_softc_t *)arg;
3049 ieee80211com_t *ic = &rsc->sc_ic;
3050 struct ieee80211_node *in = 0;
3051 struct ieee80211_rateset *rs = 0;
3052
3053 mutex_enter(&rsc->sc_genlock);
3054 switch (stat) {
3055 case MAC_STAT_IFSPEED:
3056 in = ic->ic_bss;
3057 rs = &in->in_rates;
3058 *val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
3059 (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL)
3060 : ic->ic_fixed_rate) / 2 * 1000000;
3061 break;
3062 case MAC_STAT_NOXMTBUF:
3063 *val = rsc->sc_noxmtbuf;
3064 break;
3065 case MAC_STAT_NORCVBUF:
3066 *val = rsc->sc_norcvbuf;
3067 break;
3068 case MAC_STAT_RBYTES:
3069 *val = rsc->sc_bytercv64;
3070 break;
3071 case MAC_STAT_IPACKETS:
3072 *val = rsc->sc_pktrcv64;
3073 break;
3074 case MAC_STAT_OBYTES:
3075 *val = rsc->sc_bytexmt64;
3076 break;
3077 case MAC_STAT_OPACKETS:
3078 *val = rsc->sc_pktxmt64;
3079 break;
3080 case WIFI_STAT_TX_RETRANS:
3081 *val = rsc->sc_xmtretry;
3082 break;
3083 case WIFI_STAT_TX_FRAGS:
3084 case WIFI_STAT_MCAST_TX:
3085 case WIFI_STAT_RTS_SUCCESS:
3086 case WIFI_STAT_RTS_FAILURE:
3087 case WIFI_STAT_ACK_FAILURE:
3088 case WIFI_STAT_RX_FRAGS:
3089 case WIFI_STAT_MCAST_RX:
3090 case WIFI_STAT_RX_DUPS:
3091 mutex_exit(&rsc->sc_genlock);
3092 return (ieee80211_stat(ic, stat, val));
3093 default:
3094 *val = 0;
3095 break;
3096 }
3097 mutex_exit(&rsc->sc_genlock);
3098
3099 return (0);
3100 }
3101
3102
3103 static void
rtw_mutex_destroy(rtw_softc_t * rsc)3104 rtw_mutex_destroy(rtw_softc_t *rsc)
3105 {
3106 int i;
3107
3108 mutex_destroy(&rsc->rxbuf_lock);
3109 mutex_destroy(&rsc->sc_txlock);
3110 for (i = 0; i < RTW_NTXPRI; i++) {
3111 mutex_destroy(&rsc->sc_txq[RTW_NTXPRI - 1 - i].txbuf_lock);
3112 }
3113 mutex_destroy(&rsc->sc_genlock);
3114 }
3115
3116 static int
rtw_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)3117 rtw_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
3118 {
3119 rtw_softc_t *rsc;
3120 ieee80211com_t *ic;
3121 uint8_t csz;
3122 uint32_t i;
3123 uint16_t vendor_id, device_id, command;
3124 int32_t err;
3125 char strbuf[32];
3126 wifi_data_t wd = { 0 };
3127 mac_register_t *macp;
3128 int instance = ddi_get_instance(devinfo);
3129
3130 switch (cmd) {
3131 case DDI_ATTACH:
3132 break;
3133 case DDI_RESUME:
3134 rsc = ddi_get_soft_state(rtw_soft_state_p,
3135 ddi_get_instance(devinfo));
3136 ASSERT(rsc != NULL);
3137 mutex_enter(&rsc->sc_genlock);
3138 rsc->sc_flags &= ~RTW_F_SUSPEND;
3139 mutex_exit(&rsc->sc_genlock);
3140 if ((rsc->sc_flags & RTW_F_PLUMBED)) {
3141 err = rtw_init(rsc);
3142 if (err == 0) {
3143 mutex_enter(&rsc->sc_genlock);
3144 rsc->sc_flags &= ~RTW_F_PLUMBED;
3145 mutex_exit(&rsc->sc_genlock);
3146 }
3147 }
3148 return (DDI_SUCCESS);
3149 default:
3150 return (DDI_FAILURE);
3151 }
3152
3153 if (ddi_soft_state_zalloc(rtw_soft_state_p,
3154 ddi_get_instance(devinfo)) != DDI_SUCCESS) {
3155 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3156 "Unable to alloc softstate\n");
3157 return (DDI_FAILURE);
3158 }
3159
3160 rsc = ddi_get_soft_state(rtw_soft_state_p, ddi_get_instance(devinfo));
3161 ic = &rsc->sc_ic;
3162 rsc->sc_dev = devinfo;
3163
3164 err = ddi_regs_map_setup(devinfo, 0, (caddr_t *)&rsc->sc_cfg_base, 0, 0,
3165 &rtw_reg_accattr, &rsc->sc_cfg_handle);
3166 if (err != DDI_SUCCESS) {
3167 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3168 "ddi_regs_map_setup() failed");
3169 goto attach_fail0;
3170 }
3171 csz = ddi_get8(rsc->sc_cfg_handle,
3172 (uint8_t *)(rsc->sc_cfg_base + PCI_CONF_CACHE_LINESZ));
3173 if (!csz)
3174 csz = 16;
3175 rsc->sc_cachelsz = csz << 2;
3176 vendor_id = ddi_get16(rsc->sc_cfg_handle,
3177 (uint16_t *)((uintptr_t)rsc->sc_cfg_base + PCI_CONF_VENID));
3178 device_id = ddi_get16(rsc->sc_cfg_handle,
3179 (uint16_t *)((uintptr_t)rsc->sc_cfg_base + PCI_CONF_DEVID));
3180 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): vendor 0x%x, "
3181 "device id 0x%x, cache size %d\n", vendor_id, device_id, csz);
3182
3183 /*
3184 * Enable response to memory space accesses,
3185 * and enabe bus master.
3186 */
3187 command = PCI_COMM_MAE | PCI_COMM_ME;
3188 ddi_put16(rsc->sc_cfg_handle,
3189 (uint16_t *)((uintptr_t)rsc->sc_cfg_base + PCI_CONF_COMM), command);
3190 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3191 "set command reg to 0x%x \n", command);
3192
3193 ddi_put8(rsc->sc_cfg_handle,
3194 (uint8_t *)(rsc->sc_cfg_base + PCI_CONF_LATENCY_TIMER), 0xa8);
3195
3196 ddi_regs_map_free(&rsc->sc_cfg_handle);
3197
3198 err = ddi_regs_map_setup(devinfo, 2, (caddr_t *)&rsc->sc_regs.r_base,
3199 0, 0, &rtw_reg_accattr, &rsc->sc_regs.r_handle);
3200 if (err != DDI_SUCCESS) {
3201 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3202 "ddi_regs_map_setup() failed");
3203 goto attach_fail0;
3204 }
3205 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: r_base=%x, r_handle=%x\n",
3206 rsc->sc_regs.r_base, rsc->sc_regs.r_handle);
3207
3208 err = rtw_dma_init(devinfo, rsc);
3209 if (err != DDI_SUCCESS) {
3210 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3211 "failed to init dma: %d\n", err);
3212 goto attach_fail1;
3213 }
3214
3215 /*
3216 * Stop the transmit and receive processes. First stop DMA,
3217 * then disable receiver and transmitter.
3218 */
3219 RTW_WRITE8(&rsc->sc_regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
3220 rtw_io_enable(rsc, RTW_CR_RE | RTW_CR_TE, 0);
3221
3222 /* Reset the chip to a known state. */
3223 if (rtw_reset(rsc) != 0) {
3224 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3225 "failed to reset\n");
3226 goto attach_fail2;
3227 }
3228 rsc->sc_rcr = RTW_READ(&rsc->sc_regs, RTW_RCR);
3229
3230 if ((rsc->sc_rcr & RTW_RCR_9356SEL) != 0)
3231 rsc->sc_flags |= RTW_F_9356SROM;
3232
3233 if (rtw_srom_read(&rsc->sc_regs, rsc->sc_flags, &rsc->sc_srom,
3234 "rtw") != 0) {
3235 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3236 "failed to read srom\n");
3237 goto attach_fail2;
3238 }
3239
3240 if (rtw_srom_parse(&rsc->sc_srom, &rsc->sc_flags, &rsc->sc_csthr,
3241 &rsc->sc_rfchipid, &rsc->sc_rcr, &rsc->sc_locale,
3242 "rtw") != 0) {
3243 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw_attach():"
3244 " malformed serial ROM\n");
3245 goto attach_fail3;
3246 }
3247
3248 RTW_DPRINTF(RTW_DEBUG_PHY, "rtw: %s PHY\n",
3249 ((rsc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
3250
3251
3252 rsc->sc_rf = rtw_rf_attach(rsc, rsc->sc_rfchipid,
3253 rsc->sc_flags & RTW_F_DIGPHY);
3254
3255 if (rsc->sc_rf == NULL) {
3256 cmn_err(CE_WARN, "rtw: rtw_attach(): could not attach RF\n");
3257 goto attach_fail3;
3258 }
3259 rsc->sc_phydelay = rtw_check_phydelay(&rsc->sc_regs, rsc->sc_rcr);
3260
3261 RTW_DPRINTF(RTW_DEBUG_ATTACH,
3262 "rtw: PHY delay %d\n", rsc->sc_phydelay);
3263
3264 if (rsc->sc_locale == RTW_LOCALE_UNKNOWN)
3265 rtw_identify_country(&rsc->sc_regs, &rsc->sc_locale,
3266 "rtw");
3267
3268 rtw_init_channels(rsc->sc_locale, &rsc->sc_ic.ic_sup_channels,
3269 "rtw");
3270
3271 rtw_set80211props(ic);
3272
3273 if (rtw_identify_sta(&rsc->sc_regs, ic->ic_macaddr,
3274 "rtw") != 0)
3275 goto attach_fail4;
3276
3277 ic->ic_xmit = rtw_send;
3278 ieee80211_attach(ic);
3279
3280 rsc->sc_newstate = ic->ic_newstate;
3281 ic->ic_newstate = rtw_new_state;
3282 ieee80211_media_init(ic);
3283 ic->ic_def_txkey = 0;
3284
3285 if (ddi_get_iblock_cookie(devinfo, 0, &(rsc->sc_iblock))
3286 != DDI_SUCCESS) {
3287 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3288 "Can not get iblock cookie for INT\n");
3289 goto attach_fail5;
3290 }
3291
3292 mutex_init(&rsc->sc_genlock, NULL, MUTEX_DRIVER, rsc->sc_iblock);
3293 for (i = 0; i < RTW_NTXPRI; i++) {
3294 mutex_init(&rsc->sc_txq[i].txbuf_lock, NULL, MUTEX_DRIVER,
3295 rsc->sc_iblock);
3296 }
3297 mutex_init(&rsc->rxbuf_lock, NULL, MUTEX_DRIVER, rsc->sc_iblock);
3298 mutex_init(&rsc->sc_txlock, NULL, MUTEX_DRIVER, rsc->sc_iblock);
3299
3300 if (ddi_add_intr(devinfo, 0, &rsc->sc_iblock, NULL, rtw_intr,
3301 (caddr_t)(rsc)) != DDI_SUCCESS) {
3302 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3303 "Can not add intr for rtw driver\n");
3304 goto attach_fail7;
3305 }
3306
3307 /*
3308 * Provide initial settings for the WiFi plugin; whenever this
3309 * information changes, we need to call mac_plugindata_update()
3310 */
3311 wd.wd_opmode = ic->ic_opmode;
3312 wd.wd_secalloc = WIFI_SEC_NONE;
3313 IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
3314
3315 if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
3316 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3317 "MAC version mismatch\n");
3318 goto attach_fail8;
3319 }
3320
3321 macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI;
3322 macp->m_driver = rsc;
3323 macp->m_dip = devinfo;
3324 macp->m_src_addr = ic->ic_macaddr;
3325 macp->m_callbacks = &rtw_m_callbacks;
3326 macp->m_min_sdu = 0;
3327 macp->m_max_sdu = IEEE80211_MTU;
3328 macp->m_pdata = &wd;
3329 macp->m_pdata_size = sizeof (wd);
3330
3331 err = mac_register(macp, &ic->ic_mach);
3332 mac_free(macp);
3333 if (err != 0) {
3334 RTW_DPRINTF(RTW_DEBUG_ATTACH, "rtw: rtw_attach(): "
3335 "mac_register err %x\n", err);
3336 goto attach_fail8;
3337 }
3338
3339 /* Create minor node of type DDI_NT_NET_WIFI */
3340 (void) snprintf(strbuf, sizeof (strbuf), "%s%d",
3341 "rtw", instance);
3342 err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
3343 instance + 1, DDI_NT_NET_WIFI, 0);
3344 if (err != DDI_SUCCESS) {
3345 RTW_DPRINTF(RTW_DEBUG_ATTACH, "WARN: rtw: rtw_attach(): "
3346 "Create minor node failed - %d\n", err);
3347 goto attach_fail9;
3348 }
3349 mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
3350 rsc->sc_flags |= RTW_F_ATTACHED;
3351 rsc->sc_need_reschedule = 0;
3352 rsc->sc_invalid = 1;
3353 return (DDI_SUCCESS);
3354 attach_fail9:
3355 (void) mac_disable(ic->ic_mach);
3356 (void) mac_unregister(ic->ic_mach);
3357 attach_fail8:
3358 ddi_remove_intr(devinfo, 0, rsc->sc_iblock);
3359 attach_fail7:
3360 attach_fail6:
3361 rtw_mutex_destroy(rsc);
3362 attach_fail5:
3363 ieee80211_detach(ic);
3364 attach_fail4:
3365 rtw_rf_destroy(rsc->sc_rf);
3366 attach_fail3:
3367 rtw_srom_free(&rsc->sc_srom);
3368 attach_fail2:
3369 rtw_dma_free(rsc);
3370 attach_fail1:
3371 ddi_regs_map_free(&rsc->sc_regs.r_handle);
3372 attach_fail0:
3373 ddi_soft_state_free(rtw_soft_state_p, ddi_get_instance(devinfo));
3374 return (DDI_FAILURE);
3375 }
3376
3377 static int32_t
rtw_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)3378 rtw_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
3379 {
3380 rtw_softc_t *rsc;
3381
3382 rsc = ddi_get_soft_state(rtw_soft_state_p, ddi_get_instance(devinfo));
3383 ASSERT(rsc != NULL);
3384
3385 switch (cmd) {
3386 case DDI_DETACH:
3387 break;
3388 case DDI_SUSPEND:
3389 ieee80211_new_state(&rsc->sc_ic, IEEE80211_S_INIT, -1);
3390 mutex_enter(&rsc->sc_genlock);
3391 rsc->sc_flags |= RTW_F_SUSPEND;
3392 mutex_exit(&rsc->sc_genlock);
3393 if (rsc->sc_invalid == 0) {
3394 rtw_stop(rsc);
3395 mutex_enter(&rsc->sc_genlock);
3396 rsc->sc_flags |= RTW_F_PLUMBED;
3397 mutex_exit(&rsc->sc_genlock);
3398 }
3399 return (DDI_SUCCESS);
3400 default:
3401 return (DDI_FAILURE);
3402 }
3403 if (!(rsc->sc_flags & RTW_F_ATTACHED))
3404 return (DDI_FAILURE);
3405
3406 if (mac_disable(rsc->sc_ic.ic_mach) != 0)
3407 return (DDI_FAILURE);
3408
3409 /* free intterrupt resources */
3410 ddi_remove_intr(devinfo, 0, rsc->sc_iblock);
3411
3412 rtw_mutex_destroy(rsc);
3413 ieee80211_detach((ieee80211com_t *)rsc);
3414 /*
3415 * Unregister from the MAC layer subsystem
3416 */
3417 (void) mac_unregister(rsc->sc_ic.ic_mach);
3418
3419 rtw_rf_destroy(rsc->sc_rf);
3420 rtw_srom_free(&rsc->sc_srom);
3421 rtw_dma_free(rsc);
3422 ddi_remove_minor_node(devinfo, NULL);
3423 ddi_regs_map_free(&rsc->sc_regs.r_handle);
3424
3425 ddi_soft_state_free(rtw_soft_state_p, ddi_get_instance(devinfo));
3426
3427 return (DDI_SUCCESS);
3428 }
3429