xref: /freebsd/sys/contrib/dev/rtw88/main.c (revision 7a5b55e3b448744b099c274763992cba2e3ebce5)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #if defined(__FreeBSD__)
6 #define	LINUXKPI_PARAM_PREFIX	rtw88_
7 #endif
8 
9 #include <linux/devcoredump.h>
10 
11 #include "main.h"
12 #include "regd.h"
13 #include "fw.h"
14 #include "ps.h"
15 #include "sec.h"
16 #include "mac.h"
17 #include "coex.h"
18 #include "phy.h"
19 #include "reg.h"
20 #include "efuse.h"
21 #include "tx.h"
22 #include "debug.h"
23 #include "bf.h"
24 #include "sar.h"
25 #include "sdio.h"
26 
27 bool rtw_disable_lps_deep_mode;
28 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
29 bool rtw_bf_support = true;
30 unsigned int rtw_debug_mask;
31 EXPORT_SYMBOL(rtw_debug_mask);
32 /* EDCCA is enabled during normal behavior. For debugging purpose in
33  * a noisy environment, it can be disabled via edcca debugfs. Because
34  * all rtw88 devices will probably be affected if environment is noisy,
35  * rtw_edcca_enabled is just declared by driver instead of by device.
36  * So, turning it off will take effect for all rtw88 devices before
37  * there is a tough reason to maintain rtw_edcca_enabled by device.
38  */
39 bool rtw_edcca_enabled = true;
40 
41 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
42 module_param_named(support_bf, rtw_bf_support, bool, 0644);
43 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
44 
45 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
46 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
47 MODULE_PARM_DESC(debug_mask, "Debugging mask");
48 
49 #if defined(__FreeBSD__)
50 static bool rtw_ht_support = false;
51 module_param_named(support_ht, rtw_ht_support, bool, 0644);
52 MODULE_PARM_DESC(support_ht, "Set to Y to enable HT support");
53 
54 static bool rtw_vht_support = false;
55 module_param_named(support_vht, rtw_vht_support, bool, 0644);
56 MODULE_PARM_DESC(support_vht, "Set to Y to enable VHT support");
57 #endif
58 
59 static struct ieee80211_channel rtw_channeltable_2g[] = {
60 	{.center_freq = 2412, .hw_value = 1,},
61 	{.center_freq = 2417, .hw_value = 2,},
62 	{.center_freq = 2422, .hw_value = 3,},
63 	{.center_freq = 2427, .hw_value = 4,},
64 	{.center_freq = 2432, .hw_value = 5,},
65 	{.center_freq = 2437, .hw_value = 6,},
66 	{.center_freq = 2442, .hw_value = 7,},
67 	{.center_freq = 2447, .hw_value = 8,},
68 	{.center_freq = 2452, .hw_value = 9,},
69 	{.center_freq = 2457, .hw_value = 10,},
70 	{.center_freq = 2462, .hw_value = 11,},
71 	{.center_freq = 2467, .hw_value = 12,},
72 	{.center_freq = 2472, .hw_value = 13,},
73 	{.center_freq = 2484, .hw_value = 14,},
74 };
75 
76 static struct ieee80211_channel rtw_channeltable_5g[] = {
77 	{.center_freq = 5180, .hw_value = 36,},
78 	{.center_freq = 5200, .hw_value = 40,},
79 	{.center_freq = 5220, .hw_value = 44,},
80 	{.center_freq = 5240, .hw_value = 48,},
81 	{.center_freq = 5260, .hw_value = 52,},
82 	{.center_freq = 5280, .hw_value = 56,},
83 	{.center_freq = 5300, .hw_value = 60,},
84 	{.center_freq = 5320, .hw_value = 64,},
85 	{.center_freq = 5500, .hw_value = 100,},
86 	{.center_freq = 5520, .hw_value = 104,},
87 	{.center_freq = 5540, .hw_value = 108,},
88 	{.center_freq = 5560, .hw_value = 112,},
89 	{.center_freq = 5580, .hw_value = 116,},
90 	{.center_freq = 5600, .hw_value = 120,},
91 	{.center_freq = 5620, .hw_value = 124,},
92 	{.center_freq = 5640, .hw_value = 128,},
93 	{.center_freq = 5660, .hw_value = 132,},
94 	{.center_freq = 5680, .hw_value = 136,},
95 	{.center_freq = 5700, .hw_value = 140,},
96 	{.center_freq = 5720, .hw_value = 144,},
97 	{.center_freq = 5745, .hw_value = 149,},
98 	{.center_freq = 5765, .hw_value = 153,},
99 	{.center_freq = 5785, .hw_value = 157,},
100 	{.center_freq = 5805, .hw_value = 161,},
101 	{.center_freq = 5825, .hw_value = 165,
102 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
103 };
104 
105 static struct ieee80211_rate rtw_ratetable[] = {
106 	{.bitrate = 10, .hw_value = 0x00,},
107 	{.bitrate = 20, .hw_value = 0x01,},
108 	{.bitrate = 55, .hw_value = 0x02,},
109 	{.bitrate = 110, .hw_value = 0x03,},
110 	{.bitrate = 60, .hw_value = 0x04,},
111 	{.bitrate = 90, .hw_value = 0x05,},
112 	{.bitrate = 120, .hw_value = 0x06,},
113 	{.bitrate = 180, .hw_value = 0x07,},
114 	{.bitrate = 240, .hw_value = 0x08,},
115 	{.bitrate = 360, .hw_value = 0x09,},
116 	{.bitrate = 480, .hw_value = 0x0a,},
117 	{.bitrate = 540, .hw_value = 0x0b,},
118 };
119 
120 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
121 	{
122 		.max = 1,
123 		.types = BIT(NL80211_IFTYPE_STATION),
124 	},
125 	{
126 		.max = 1,
127 		.types = BIT(NL80211_IFTYPE_AP),
128 	}
129 };
130 
131 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
132 	{
133 		.limits = rtw_iface_limits,
134 		.n_limits = ARRAY_SIZE(rtw_iface_limits),
135 		.max_interfaces = 2,
136 		.num_different_channels = 1,
137 	}
138 };
139 
140 u16 rtw_desc_to_bitrate(u8 desc_rate)
141 {
142 	struct ieee80211_rate rate;
143 
144 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
145 		return 0;
146 
147 	rate = rtw_ratetable[desc_rate];
148 
149 	return rate.bitrate;
150 }
151 
152 static struct ieee80211_supported_band rtw_band_2ghz = {
153 	.band = NL80211_BAND_2GHZ,
154 
155 	.channels = rtw_channeltable_2g,
156 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
157 
158 	.bitrates = rtw_ratetable,
159 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
160 
161 	.ht_cap = {0},
162 	.vht_cap = {0},
163 };
164 
165 static struct ieee80211_supported_band rtw_band_5ghz = {
166 	.band = NL80211_BAND_5GHZ,
167 
168 	.channels = rtw_channeltable_5g,
169 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
170 
171 	/* 5G has no CCK rates */
172 	.bitrates = rtw_ratetable + 4,
173 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
174 
175 	.ht_cap = {0},
176 	.vht_cap = {0},
177 };
178 
179 struct rtw_watch_dog_iter_data {
180 	struct rtw_dev *rtwdev;
181 	struct rtw_vif *rtwvif;
182 };
183 
184 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
185 {
186 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
187 	u8 fix_rate_enable = 0;
188 	u8 new_csi_rate_idx;
189 
190 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
191 	    rtwvif->bfee.role != RTW_BFEE_MU)
192 		return;
193 
194 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
195 			      bf_info->cur_csi_rpt_rate,
196 			      fix_rate_enable, &new_csi_rate_idx);
197 
198 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
199 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
200 }
201 
202 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
203 {
204 	struct rtw_watch_dog_iter_data *iter_data = data;
205 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
206 
207 	if (vif->type == NL80211_IFTYPE_STATION)
208 		if (vif->cfg.assoc)
209 			iter_data->rtwvif = rtwvif;
210 
211 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
212 
213 	rtwvif->stats.tx_unicast = 0;
214 	rtwvif->stats.rx_unicast = 0;
215 	rtwvif->stats.tx_cnt = 0;
216 	rtwvif->stats.rx_cnt = 0;
217 }
218 
219 /* process TX/RX statistics periodically for hardware,
220  * the information helps hardware to enhance performance
221  */
222 static void rtw_watch_dog_work(struct work_struct *work)
223 {
224 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
225 					      watch_dog_work.work);
226 	struct rtw_traffic_stats *stats = &rtwdev->stats;
227 	struct rtw_watch_dog_iter_data data = {};
228 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
229 	bool ps_active;
230 
231 	mutex_lock(&rtwdev->mutex);
232 
233 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
234 		goto unlock;
235 
236 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
237 				     RTW_WATCH_DOG_DELAY_TIME);
238 
239 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
240 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
241 	else
242 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
243 
244 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
245 		rtw_coex_wl_status_change_notify(rtwdev, 0);
246 
247 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
248 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
249 		ps_active = true;
250 	else
251 		ps_active = false;
252 
253 	ewma_tp_add(&stats->tx_ewma_tp,
254 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
255 	ewma_tp_add(&stats->rx_ewma_tp,
256 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
257 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
258 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
259 
260 	/* reset tx/rx statictics */
261 	stats->tx_unicast = 0;
262 	stats->rx_unicast = 0;
263 	stats->tx_cnt = 0;
264 	stats->rx_cnt = 0;
265 
266 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
267 		goto unlock;
268 
269 	/* make sure BB/RF is working for dynamic mech */
270 	rtw_leave_lps(rtwdev);
271 	rtw_coex_wl_status_check(rtwdev);
272 	rtw_coex_query_bt_hid_list(rtwdev);
273 
274 	rtw_phy_dynamic_mechanism(rtwdev);
275 
276 	data.rtwdev = rtwdev;
277 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
278 	 * to avoid taking local->iflist_mtx mutex
279 	 */
280 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
281 
282 	/* fw supports only one station associated to enter lps, if there are
283 	 * more than two stations associated to the AP, then we can not enter
284 	 * lps, because fw does not handle the overlapped beacon interval
285 	 *
286 	 * rtw_recalc_lps() iterate vifs and determine if driver can enter
287 	 * ps by vif->type and vif->cfg.ps, all we need to do here is to
288 	 * get that vif and check if device is having traffic more than the
289 	 * threshold.
290 	 */
291 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
292 	    !rtwdev->beacon_loss && !rtwdev->ap_active)
293 		rtw_enter_lps(rtwdev, data.rtwvif->port);
294 
295 	rtwdev->watch_dog_cnt++;
296 
297 unlock:
298 	mutex_unlock(&rtwdev->mutex);
299 }
300 
301 static void rtw_c2h_work(struct work_struct *work)
302 {
303 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
304 	struct sk_buff *skb, *tmp;
305 
306 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
307 		skb_unlink(skb, &rtwdev->c2h_queue);
308 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
309 		dev_kfree_skb_any(skb);
310 	}
311 }
312 
313 static void rtw_ips_work(struct work_struct *work)
314 {
315 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
316 
317 	mutex_lock(&rtwdev->mutex);
318 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
319 		rtw_enter_ips(rtwdev);
320 	mutex_unlock(&rtwdev->mutex);
321 }
322 
323 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
324 {
325 	unsigned long mac_id;
326 
327 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
328 	if (mac_id < RTW_MAX_MAC_ID_NUM)
329 		set_bit(mac_id, rtwdev->mac_id_map);
330 
331 	return mac_id;
332 }
333 
334 static void rtw_sta_rc_work(struct work_struct *work)
335 {
336 	struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
337 					       rc_work);
338 	struct rtw_dev *rtwdev = si->rtwdev;
339 
340 	mutex_lock(&rtwdev->mutex);
341 	rtw_update_sta_info(rtwdev, si, true);
342 	mutex_unlock(&rtwdev->mutex);
343 }
344 
345 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
346 		struct ieee80211_vif *vif)
347 {
348 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
349 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
350 	int i;
351 
352 	si->mac_id = rtw_acquire_macid(rtwdev);
353 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
354 		return -ENOSPC;
355 
356 	if (vif->type == NL80211_IFTYPE_STATION && vif->cfg.assoc == 0)
357 		rtwvif->mac_id = si->mac_id;
358 	si->rtwdev = rtwdev;
359 	si->sta = sta;
360 	si->vif = vif;
361 	si->init_ra_lv = 1;
362 	ewma_rssi_init(&si->avg_rssi);
363 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
364 		rtw_txq_init(rtwdev, sta->txq[i]);
365 	INIT_WORK(&si->rc_work, rtw_sta_rc_work);
366 
367 	rtw_update_sta_info(rtwdev, si, true);
368 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
369 
370 	rtwdev->sta_cnt++;
371 	rtwdev->beacon_loss = false;
372 #if defined(__linux__)
373 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
374 		sta->addr, si->mac_id);
375 #elif defined(__FreeBSD__)
376 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D joined with macid %d\n",
377 		sta->addr, ":", si->mac_id);
378 #endif
379 
380 	return 0;
381 }
382 
383 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
384 		    bool fw_exist)
385 {
386 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
387 	int i;
388 
389 	cancel_work_sync(&si->rc_work);
390 
391 	rtw_release_macid(rtwdev, si->mac_id);
392 	if (fw_exist)
393 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
394 
395 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
396 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
397 
398 	kfree(si->mask);
399 
400 	rtwdev->sta_cnt--;
401 #if defined(__linux__)
402 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
403 		sta->addr, si->mac_id);
404 #elif defined(__FreeBSD__)
405 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D with macid %d left\n",
406 		sta->addr, ":", si->mac_id);
407 #endif
408 }
409 
410 struct rtw_fwcd_hdr {
411 	u32 item;
412 	u32 size;
413 	u32 padding1;
414 	u32 padding2;
415 } __packed;
416 
417 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
418 {
419 	const struct rtw_chip_info *chip = rtwdev->chip;
420 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
421 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
422 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
423 	u8 i;
424 
425 	if (segs) {
426 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
427 
428 		for (i = 0; i < segs->num; i++)
429 			prep_size += segs->segs[i];
430 	}
431 
432 	desc->data = vmalloc(prep_size);
433 	if (!desc->data)
434 		return -ENOMEM;
435 
436 	desc->size = prep_size;
437 	desc->next = desc->data;
438 
439 	return 0;
440 }
441 
442 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
443 {
444 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
445 	struct rtw_fwcd_hdr *hdr;
446 	u8 *next;
447 
448 	if (!desc->data) {
449 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
450 		return NULL;
451 	}
452 
453 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
454 	if (next - desc->data + size > desc->size) {
455 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
456 		return NULL;
457 	}
458 
459 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
460 	hdr->item = item;
461 	hdr->size = size;
462 	hdr->padding1 = 0x01234567;
463 	hdr->padding2 = 0x89abcdef;
464 	desc->next = next + size;
465 
466 	return next;
467 }
468 
469 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
470 {
471 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
472 
473 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
474 
475 	/* Data will be freed after lifetime of device coredump. After calling
476 	 * dev_coredump, data is supposed to be handled by the device coredump
477 	 * framework. Note that a new dump will be discarded if a previous one
478 	 * hasn't been released yet.
479 	 */
480 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
481 }
482 
483 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
484 {
485 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
486 
487 	if (free_self) {
488 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
489 		vfree(desc->data);
490 	}
491 
492 	desc->data = NULL;
493 	desc->next = NULL;
494 }
495 
496 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
497 {
498 	u32 size = rtwdev->chip->fw_rxff_size;
499 	u32 *buf;
500 	u8 seq;
501 
502 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
503 	if (!buf)
504 		return -ENOMEM;
505 
506 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
507 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
508 		return -EINVAL;
509 	}
510 
511 	if (GET_FW_DUMP_LEN(buf) == 0) {
512 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
513 		return -EINVAL;
514 	}
515 
516 	seq = GET_FW_DUMP_SEQ(buf);
517 	if (seq > 0) {
518 		rtw_dbg(rtwdev, RTW_DBG_FW,
519 			"fw crash dump's seq is wrong: %d\n", seq);
520 		return -EINVAL;
521 	}
522 
523 	return 0;
524 }
525 
526 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
527 		u32 fwcd_item)
528 {
529 	u32 rxff = rtwdev->chip->fw_rxff_size;
530 	u32 dump_size, done_size = 0;
531 	u8 *buf;
532 	int ret;
533 
534 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
535 	if (!buf)
536 		return -ENOMEM;
537 
538 	while (size) {
539 		dump_size = size > rxff ? rxff : size;
540 
541 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
542 					  dump_size);
543 		if (ret) {
544 			rtw_err(rtwdev,
545 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
546 				ocp_src, done_size);
547 			return ret;
548 		}
549 
550 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
551 				       dump_size, (u32 *)(buf + done_size));
552 		if (ret) {
553 			rtw_err(rtwdev,
554 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
555 				ocp_src, done_size);
556 			return ret;
557 		}
558 
559 		size -= dump_size;
560 		done_size += dump_size;
561 	}
562 
563 	return 0;
564 }
565 EXPORT_SYMBOL(rtw_dump_fw);
566 
567 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
568 {
569 	u8 *buf;
570 	u32 i;
571 
572 	if (addr & 0x3) {
573 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
574 		return -EINVAL;
575 	}
576 
577 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
578 	if (!buf)
579 		return -ENOMEM;
580 
581 	for (i = 0; i < size; i += 4)
582 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
583 
584 	return 0;
585 }
586 EXPORT_SYMBOL(rtw_dump_reg);
587 
588 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
589 			   struct ieee80211_bss_conf *conf)
590 {
591 	struct ieee80211_vif *vif = NULL;
592 
593 	if (conf)
594 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
595 
596 	if (conf && vif->cfg.assoc) {
597 		rtwvif->aid = vif->cfg.aid;
598 		rtwvif->net_type = RTW_NET_MGD_LINKED;
599 	} else {
600 		rtwvif->aid = 0;
601 		rtwvif->net_type = RTW_NET_NO_LINK;
602 	}
603 }
604 
605 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
606 			       struct ieee80211_vif *vif,
607 			       struct ieee80211_sta *sta,
608 			       struct ieee80211_key_conf *key,
609 			       void *data)
610 {
611 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
612 	struct rtw_sec_desc *sec = &rtwdev->sec;
613 
614 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
615 }
616 
617 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
618 {
619 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
620 
621 	if (rtwdev->sta_cnt == 0) {
622 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
623 		return;
624 	}
625 	rtw_sta_remove(rtwdev, sta, false);
626 }
627 
628 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
629 {
630 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
631 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
632 
633 	rtw_bf_disassoc(rtwdev, vif, NULL);
634 	rtw_vif_assoc_changed(rtwvif, NULL);
635 	rtw_txq_cleanup(rtwdev, vif->txq);
636 }
637 
638 void rtw_fw_recovery(struct rtw_dev *rtwdev)
639 {
640 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
641 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
642 }
643 
644 static void __fw_recovery_work(struct rtw_dev *rtwdev)
645 {
646 	int ret = 0;
647 
648 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
649 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
650 
651 	ret = rtw_fwcd_prep(rtwdev);
652 	if (ret)
653 		goto free;
654 	ret = rtw_fw_dump_crash_log(rtwdev);
655 	if (ret)
656 		goto free;
657 	ret = rtw_chip_dump_fw_crash(rtwdev);
658 	if (ret)
659 		goto free;
660 
661 	rtw_fwcd_dump(rtwdev);
662 free:
663 	rtw_fwcd_free(rtwdev, !!ret);
664 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
665 
666 	WARN(1, "firmware crash, start reset and recover\n");
667 
668 	rcu_read_lock();
669 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
670 	rcu_read_unlock();
671 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
672 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
673 	bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
674 	rtw_enter_ips(rtwdev);
675 }
676 
677 static void rtw_fw_recovery_work(struct work_struct *work)
678 {
679 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
680 					      fw_recovery_work);
681 
682 	mutex_lock(&rtwdev->mutex);
683 	__fw_recovery_work(rtwdev);
684 	mutex_unlock(&rtwdev->mutex);
685 
686 	ieee80211_restart_hw(rtwdev->hw);
687 }
688 
689 struct rtw_txq_ba_iter_data {
690 };
691 
692 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
693 {
694 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
695 	int ret;
696 	u8 tid;
697 
698 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
699 	while (tid != IEEE80211_NUM_TIDS) {
700 		clear_bit(tid, si->tid_ba);
701 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
702 		if (ret == -EINVAL) {
703 			struct ieee80211_txq *txq;
704 			struct rtw_txq *rtwtxq;
705 
706 			txq = sta->txq[tid];
707 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
708 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
709 		}
710 
711 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
712 	}
713 }
714 
715 static void rtw_txq_ba_work(struct work_struct *work)
716 {
717 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
718 	struct rtw_txq_ba_iter_data data;
719 
720 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
721 }
722 
723 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
724 {
725 	if (IS_CH_2G_BAND(channel))
726 		pkt_stat->band = NL80211_BAND_2GHZ;
727 	else if (IS_CH_5G_BAND(channel))
728 		pkt_stat->band = NL80211_BAND_5GHZ;
729 	else
730 		return;
731 
732 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
733 }
734 EXPORT_SYMBOL(rtw_set_rx_freq_band);
735 
736 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
737 {
738 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
739 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
740 }
741 
742 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
743 			u8 primary_channel, enum rtw_supported_band band,
744 			enum rtw_bandwidth bandwidth)
745 {
746 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
747 	struct rtw_hal *hal = &rtwdev->hal;
748 	u8 *cch_by_bw = hal->cch_by_bw;
749 	u32 center_freq, primary_freq;
750 	enum rtw_sar_bands sar_band;
751 	u8 primary_channel_idx;
752 
753 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
754 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
755 
756 	/* assign the center channel used while 20M bw is selected */
757 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
758 
759 	/* assign the center channel used while current bw is selected */
760 	cch_by_bw[bandwidth] = center_channel;
761 
762 	switch (bandwidth) {
763 	case RTW_CHANNEL_WIDTH_20:
764 	default:
765 		primary_channel_idx = RTW_SC_DONT_CARE;
766 		break;
767 	case RTW_CHANNEL_WIDTH_40:
768 		if (primary_freq > center_freq)
769 			primary_channel_idx = RTW_SC_20_UPPER;
770 		else
771 			primary_channel_idx = RTW_SC_20_LOWER;
772 		break;
773 	case RTW_CHANNEL_WIDTH_80:
774 		if (primary_freq > center_freq) {
775 			if (primary_freq - center_freq == 10)
776 				primary_channel_idx = RTW_SC_20_UPPER;
777 			else
778 				primary_channel_idx = RTW_SC_20_UPMOST;
779 
780 			/* assign the center channel used
781 			 * while 40M bw is selected
782 			 */
783 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
784 		} else {
785 			if (center_freq - primary_freq == 10)
786 				primary_channel_idx = RTW_SC_20_LOWER;
787 			else
788 				primary_channel_idx = RTW_SC_20_LOWEST;
789 
790 			/* assign the center channel used
791 			 * while 40M bw is selected
792 			 */
793 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
794 		}
795 		break;
796 	}
797 
798 	switch (center_channel) {
799 	case 1 ... 14:
800 		sar_band = RTW_SAR_BAND_0;
801 		break;
802 	case 36 ... 64:
803 		sar_band = RTW_SAR_BAND_1;
804 		break;
805 	case 100 ... 144:
806 		sar_band = RTW_SAR_BAND_3;
807 		break;
808 	case 149 ... 177:
809 		sar_band = RTW_SAR_BAND_4;
810 		break;
811 	default:
812 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
813 		sar_band = RTW_SAR_BAND_0;
814 		break;
815 	}
816 
817 	hal->current_primary_channel_index = primary_channel_idx;
818 	hal->current_band_width = bandwidth;
819 	hal->primary_channel = primary_channel;
820 	hal->current_channel = center_channel;
821 	hal->current_band_type = band;
822 	hal->sar_band = sar_band;
823 }
824 
825 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
826 			    struct rtw_channel_params *chan_params)
827 {
828 	struct ieee80211_channel *channel = chandef->chan;
829 	enum nl80211_chan_width width = chandef->width;
830 	u32 primary_freq, center_freq;
831 	u8 center_chan;
832 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
833 
834 	center_chan = channel->hw_value;
835 	primary_freq = channel->center_freq;
836 	center_freq = chandef->center_freq1;
837 
838 	switch (width) {
839 	case NL80211_CHAN_WIDTH_20_NOHT:
840 	case NL80211_CHAN_WIDTH_20:
841 		bandwidth = RTW_CHANNEL_WIDTH_20;
842 		break;
843 	case NL80211_CHAN_WIDTH_40:
844 		bandwidth = RTW_CHANNEL_WIDTH_40;
845 		if (primary_freq > center_freq)
846 			center_chan -= 2;
847 		else
848 			center_chan += 2;
849 		break;
850 	case NL80211_CHAN_WIDTH_80:
851 		bandwidth = RTW_CHANNEL_WIDTH_80;
852 		if (primary_freq > center_freq) {
853 			if (primary_freq - center_freq == 10)
854 				center_chan -= 2;
855 			else
856 				center_chan -= 6;
857 		} else {
858 			if (center_freq - primary_freq == 10)
859 				center_chan += 2;
860 			else
861 				center_chan += 6;
862 		}
863 		break;
864 	default:
865 		center_chan = 0;
866 		break;
867 	}
868 
869 	chan_params->center_chan = center_chan;
870 	chan_params->bandwidth = bandwidth;
871 	chan_params->primary_chan = channel->hw_value;
872 }
873 
874 void rtw_set_channel(struct rtw_dev *rtwdev)
875 {
876 	const struct rtw_chip_info *chip = rtwdev->chip;
877 	struct ieee80211_hw *hw = rtwdev->hw;
878 	struct rtw_hal *hal = &rtwdev->hal;
879 	struct rtw_channel_params ch_param;
880 	u8 center_chan, primary_chan, bandwidth, band;
881 
882 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
883 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
884 		return;
885 
886 	center_chan = ch_param.center_chan;
887 	primary_chan = ch_param.primary_chan;
888 	bandwidth = ch_param.bandwidth;
889 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
890 
891 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
892 
893 	if (rtwdev->scan_info.op_chan)
894 		rtw_store_op_chan(rtwdev, true);
895 
896 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
897 			       hal->current_primary_channel_index);
898 
899 	if (hal->current_band_type == RTW_BAND_5G) {
900 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
901 	} else {
902 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
903 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
904 		else
905 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
906 	}
907 
908 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
909 
910 	/* if the channel isn't set for scanning, we will do RF calibration
911 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
912 	 * during scanning on each channel takes too long.
913 	 */
914 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
915 		rtwdev->need_rfk = true;
916 }
917 
918 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
919 {
920 	const struct rtw_chip_info *chip = rtwdev->chip;
921 
922 	if (rtwdev->need_rfk) {
923 		rtwdev->need_rfk = false;
924 		chip->ops->phy_calibration(rtwdev);
925 	}
926 }
927 
928 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
929 {
930 	int i;
931 
932 	for (i = 0; i < ETH_ALEN; i++)
933 		rtw_write8(rtwdev, start + i, addr[i]);
934 }
935 
936 void rtw_vif_port_config(struct rtw_dev *rtwdev,
937 			 struct rtw_vif *rtwvif,
938 			 u32 config)
939 {
940 	u32 addr, mask;
941 
942 	if (config & PORT_SET_MAC_ADDR) {
943 		addr = rtwvif->conf->mac_addr.addr;
944 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
945 	}
946 	if (config & PORT_SET_BSSID) {
947 		addr = rtwvif->conf->bssid.addr;
948 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
949 	}
950 	if (config & PORT_SET_NET_TYPE) {
951 		addr = rtwvif->conf->net_type.addr;
952 		mask = rtwvif->conf->net_type.mask;
953 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
954 	}
955 	if (config & PORT_SET_AID) {
956 		addr = rtwvif->conf->aid.addr;
957 		mask = rtwvif->conf->aid.mask;
958 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
959 	}
960 	if (config & PORT_SET_BCN_CTRL) {
961 		addr = rtwvif->conf->bcn_ctrl.addr;
962 		mask = rtwvif->conf->bcn_ctrl.mask;
963 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
964 	}
965 }
966 
967 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
968 {
969 	u8 bw = 0;
970 
971 	switch (bw_cap) {
972 	case EFUSE_HW_CAP_IGNORE:
973 	case EFUSE_HW_CAP_SUPP_BW80:
974 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
975 		fallthrough;
976 	case EFUSE_HW_CAP_SUPP_BW40:
977 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
978 		fallthrough;
979 	default:
980 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
981 		break;
982 	}
983 
984 	return bw;
985 }
986 
987 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
988 {
989 	const struct rtw_chip_info *chip = rtwdev->chip;
990 	struct rtw_hal *hal = &rtwdev->hal;
991 
992 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
993 	    hw_ant_num >= hal->rf_path_num)
994 		return;
995 
996 	switch (hw_ant_num) {
997 	case 1:
998 		hal->rf_type = RF_1T1R;
999 		hal->rf_path_num = 1;
1000 		if (!chip->fix_rf_phy_num)
1001 			hal->rf_phy_num = hal->rf_path_num;
1002 		hal->antenna_tx = BB_PATH_A;
1003 		hal->antenna_rx = BB_PATH_A;
1004 		break;
1005 	default:
1006 		WARN(1, "invalid hw configuration from efuse\n");
1007 		break;
1008 	}
1009 }
1010 
1011 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
1012 {
1013 	u64 ra_mask = 0;
1014 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
1015 	u8 vht_mcs_cap;
1016 	int i, nss;
1017 
1018 	/* 4SS, every two bits for MCS7/8/9 */
1019 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
1020 		vht_mcs_cap = mcs_map & 0x3;
1021 		switch (vht_mcs_cap) {
1022 		case 2: /* MCS9 */
1023 			ra_mask |= 0x3ffULL << nss;
1024 			break;
1025 		case 1: /* MCS8 */
1026 			ra_mask |= 0x1ffULL << nss;
1027 			break;
1028 		case 0: /* MCS7 */
1029 			ra_mask |= 0x0ffULL << nss;
1030 			break;
1031 		default:
1032 			break;
1033 		}
1034 	}
1035 
1036 	return ra_mask;
1037 }
1038 
1039 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1040 {
1041 	u8 rate_id = 0;
1042 
1043 	switch (wireless_set) {
1044 	case WIRELESS_CCK:
1045 		rate_id = RTW_RATEID_B_20M;
1046 		break;
1047 	case WIRELESS_OFDM:
1048 		rate_id = RTW_RATEID_G;
1049 		break;
1050 	case WIRELESS_CCK | WIRELESS_OFDM:
1051 		rate_id = RTW_RATEID_BG;
1052 		break;
1053 	case WIRELESS_OFDM | WIRELESS_HT:
1054 		if (tx_num == 1)
1055 			rate_id = RTW_RATEID_GN_N1SS;
1056 		else if (tx_num == 2)
1057 			rate_id = RTW_RATEID_GN_N2SS;
1058 		else if (tx_num == 3)
1059 			rate_id = RTW_RATEID_ARFR5_N_3SS;
1060 		break;
1061 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1062 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1063 			if (tx_num == 1)
1064 				rate_id = RTW_RATEID_BGN_40M_1SS;
1065 			else if (tx_num == 2)
1066 				rate_id = RTW_RATEID_BGN_40M_2SS;
1067 			else if (tx_num == 3)
1068 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1069 			else if (tx_num == 4)
1070 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1071 		} else {
1072 			if (tx_num == 1)
1073 				rate_id = RTW_RATEID_BGN_20M_1SS;
1074 			else if (tx_num == 2)
1075 				rate_id = RTW_RATEID_BGN_20M_2SS;
1076 			else if (tx_num == 3)
1077 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1078 			else if (tx_num == 4)
1079 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1080 		}
1081 		break;
1082 	case WIRELESS_OFDM | WIRELESS_VHT:
1083 		if (tx_num == 1)
1084 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1085 		else if (tx_num == 2)
1086 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1087 		else if (tx_num == 3)
1088 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1089 		else if (tx_num == 4)
1090 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1091 		break;
1092 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1093 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1094 			if (tx_num == 1)
1095 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1096 			else if (tx_num == 2)
1097 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1098 			else if (tx_num == 3)
1099 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1100 			else if (tx_num == 4)
1101 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1102 		} else {
1103 			if (tx_num == 1)
1104 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1105 			else if (tx_num == 2)
1106 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1107 			else if (tx_num == 3)
1108 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1109 			else if (tx_num == 4)
1110 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1111 		}
1112 		break;
1113 	default:
1114 		break;
1115 	}
1116 
1117 	return rate_id;
1118 }
1119 
1120 #define RA_MASK_CCK_RATES	0x0000f
1121 #define RA_MASK_OFDM_RATES	0x00ff0
1122 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1123 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1124 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1125 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1126 				 RA_MASK_HT_RATES_2SS | \
1127 				 RA_MASK_HT_RATES_3SS)
1128 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1129 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1130 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1131 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1132 				 RA_MASK_VHT_RATES_2SS | \
1133 				 RA_MASK_VHT_RATES_3SS)
1134 #define RA_MASK_CCK_IN_BG	0x00005
1135 #define RA_MASK_CCK_IN_HT	0x00005
1136 #define RA_MASK_CCK_IN_VHT	0x00005
1137 #define RA_MASK_OFDM_IN_VHT	0x00010
1138 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1139 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1140 
1141 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1142 {
1143 	u8 rssi_level = si->rssi_level;
1144 
1145 	if (wireless_set == WIRELESS_CCK)
1146 		return 0xffffffffffffffffULL;
1147 
1148 	if (rssi_level == 0)
1149 		return 0xffffffffffffffffULL;
1150 	else if (rssi_level == 1)
1151 		return 0xfffffffffffffff0ULL;
1152 	else if (rssi_level == 2)
1153 		return 0xffffffffffffefe0ULL;
1154 	else if (rssi_level == 3)
1155 		return 0xffffffffffffcfc0ULL;
1156 	else if (rssi_level == 4)
1157 		return 0xffffffffffff8f80ULL;
1158 	else
1159 		return 0xffffffffffff0f00ULL;
1160 }
1161 
1162 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1163 {
1164 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1165 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1166 
1167 	if (ra_mask == 0)
1168 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1169 
1170 	return ra_mask;
1171 }
1172 
1173 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1174 			     u64 ra_mask, bool is_vht_enable)
1175 {
1176 	struct rtw_hal *hal = &rtwdev->hal;
1177 	const struct cfg80211_bitrate_mask *mask = si->mask;
1178 	u64 cfg_mask = GENMASK_ULL(63, 0);
1179 	u8 band;
1180 
1181 	if (!si->use_cfg_mask)
1182 		return ra_mask;
1183 
1184 	band = hal->current_band_type;
1185 	if (band == RTW_BAND_2G) {
1186 		band = NL80211_BAND_2GHZ;
1187 		cfg_mask = mask->control[band].legacy;
1188 	} else if (band == RTW_BAND_5G) {
1189 		band = NL80211_BAND_5GHZ;
1190 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1191 					   RA_MASK_OFDM_RATES);
1192 	}
1193 
1194 	if (!is_vht_enable) {
1195 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1196 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1197 						    RA_MASK_HT_RATES_1SS);
1198 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1199 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1200 						    RA_MASK_HT_RATES_2SS);
1201 	} else {
1202 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1203 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1204 						    RA_MASK_VHT_RATES_1SS);
1205 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1206 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1207 						    RA_MASK_VHT_RATES_2SS);
1208 	}
1209 
1210 	ra_mask &= cfg_mask;
1211 
1212 	return ra_mask;
1213 }
1214 
1215 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1216 			 bool reset_ra_mask)
1217 {
1218 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1219 	struct ieee80211_sta *sta = si->sta;
1220 	struct rtw_efuse *efuse = &rtwdev->efuse;
1221 	struct rtw_hal *hal = &rtwdev->hal;
1222 	u8 wireless_set;
1223 	u8 bw_mode;
1224 	u8 rate_id;
1225 	u8 rf_type = RF_1T1R;
1226 	u8 stbc_en = 0;
1227 	u8 ldpc_en = 0;
1228 	u8 tx_num = 1;
1229 	u64 ra_mask = 0;
1230 	u64 ra_mask_bak = 0;
1231 	bool is_vht_enable = false;
1232 	bool is_support_sgi = false;
1233 
1234 	if (sta->deflink.vht_cap.vht_supported) {
1235 		is_vht_enable = true;
1236 		ra_mask |= get_vht_ra_mask(sta);
1237 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1238 			stbc_en = VHT_STBC_EN;
1239 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1240 			ldpc_en = VHT_LDPC_EN;
1241 	} else if (sta->deflink.ht_cap.ht_supported) {
1242 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1243 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1244 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1245 			stbc_en = HT_STBC_EN;
1246 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1247 			ldpc_en = HT_LDPC_EN;
1248 	}
1249 
1250 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1251 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1252 
1253 	if (hal->current_band_type == RTW_BAND_5G) {
1254 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1255 		ra_mask_bak = ra_mask;
1256 		if (sta->deflink.vht_cap.vht_supported) {
1257 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1258 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1259 		} else if (sta->deflink.ht_cap.ht_supported) {
1260 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1261 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1262 		} else {
1263 			wireless_set = WIRELESS_OFDM;
1264 		}
1265 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1266 	} else if (hal->current_band_type == RTW_BAND_2G) {
1267 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1268 		ra_mask_bak = ra_mask;
1269 		if (sta->deflink.vht_cap.vht_supported) {
1270 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1271 				   RA_MASK_OFDM_IN_VHT;
1272 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1273 				       WIRELESS_HT | WIRELESS_VHT;
1274 		} else if (sta->deflink.ht_cap.ht_supported) {
1275 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1276 				   RA_MASK_OFDM_IN_HT_2G;
1277 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1278 				       WIRELESS_HT;
1279 #if defined(__linux__)
1280 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1281 #elif defined(__FreeBSD__)
1282 		} else if (sta->deflink.supp_rates[NL80211_BAND_2GHZ] <= 0xf) {
1283 #endif
1284 			wireless_set = WIRELESS_CCK;
1285 		} else {
1286 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1287 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1288 		}
1289 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1290 	} else {
1291 		rtw_err(rtwdev, "Unknown band type\n");
1292 		ra_mask_bak = ra_mask;
1293 		wireless_set = 0;
1294 	}
1295 
1296 	switch (sta->deflink.bandwidth) {
1297 	case IEEE80211_STA_RX_BW_80:
1298 		bw_mode = RTW_CHANNEL_WIDTH_80;
1299 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1300 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1301 		break;
1302 	case IEEE80211_STA_RX_BW_40:
1303 		bw_mode = RTW_CHANNEL_WIDTH_40;
1304 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1305 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1306 		break;
1307 	default:
1308 		bw_mode = RTW_CHANNEL_WIDTH_20;
1309 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1310 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1311 		break;
1312 	}
1313 
1314 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1315 		tx_num = 2;
1316 		rf_type = RF_2T2R;
1317 	} else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1318 		tx_num = 2;
1319 		rf_type = RF_2T2R;
1320 	}
1321 
1322 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1323 
1324 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1325 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1326 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1327 
1328 	si->bw_mode = bw_mode;
1329 	si->stbc_en = stbc_en;
1330 	si->ldpc_en = ldpc_en;
1331 	si->rf_type = rf_type;
1332 	si->sgi_enable = is_support_sgi;
1333 	si->vht_enable = is_vht_enable;
1334 	si->ra_mask = ra_mask;
1335 	si->rate_id = rate_id;
1336 
1337 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1338 }
1339 
1340 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1341 {
1342 	const struct rtw_chip_info *chip = rtwdev->chip;
1343 	struct rtw_fw_state *fw;
1344 
1345 	fw = &rtwdev->fw;
1346 	wait_for_completion(&fw->completion);
1347 	if (!fw->firmware)
1348 		return -EINVAL;
1349 
1350 	if (chip->wow_fw_name) {
1351 		fw = &rtwdev->wow_fw;
1352 		wait_for_completion(&fw->completion);
1353 		if (!fw->firmware)
1354 			return -EINVAL;
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1361 						       struct rtw_fw_state *fw)
1362 {
1363 	const struct rtw_chip_info *chip = rtwdev->chip;
1364 
1365 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1366 	    !fw->feature)
1367 		return LPS_DEEP_MODE_NONE;
1368 
1369 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1370 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1371 		return LPS_DEEP_MODE_PG;
1372 
1373 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1374 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1375 		return LPS_DEEP_MODE_LCLK;
1376 
1377 	return LPS_DEEP_MODE_NONE;
1378 }
1379 
1380 static int rtw_power_on(struct rtw_dev *rtwdev)
1381 {
1382 	const struct rtw_chip_info *chip = rtwdev->chip;
1383 	struct rtw_fw_state *fw = &rtwdev->fw;
1384 	bool wifi_only;
1385 	int ret;
1386 
1387 	ret = rtw_hci_setup(rtwdev);
1388 	if (ret) {
1389 		rtw_err(rtwdev, "failed to setup hci\n");
1390 		goto err;
1391 	}
1392 
1393 	/* power on MAC before firmware downloaded */
1394 	ret = rtw_mac_power_on(rtwdev);
1395 	if (ret) {
1396 		rtw_err(rtwdev, "failed to power on mac\n");
1397 		goto err;
1398 	}
1399 
1400 	ret = rtw_wait_firmware_completion(rtwdev);
1401 	if (ret) {
1402 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1403 		goto err_off;
1404 	}
1405 
1406 	ret = rtw_download_firmware(rtwdev, fw);
1407 	if (ret) {
1408 		rtw_err(rtwdev, "failed to download firmware\n");
1409 		goto err_off;
1410 	}
1411 
1412 	/* config mac after firmware downloaded */
1413 	ret = rtw_mac_init(rtwdev);
1414 	if (ret) {
1415 		rtw_err(rtwdev, "failed to configure mac\n");
1416 		goto err_off;
1417 	}
1418 
1419 	chip->ops->phy_set_param(rtwdev);
1420 
1421 	ret = rtw_hci_start(rtwdev);
1422 	if (ret) {
1423 		rtw_err(rtwdev, "failed to start hci\n");
1424 		goto err_off;
1425 	}
1426 
1427 	/* send H2C after HCI has started */
1428 	rtw_fw_send_general_info(rtwdev);
1429 	rtw_fw_send_phydm_info(rtwdev);
1430 
1431 	wifi_only = !rtwdev->efuse.btcoex;
1432 	rtw_coex_power_on_setting(rtwdev);
1433 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1434 
1435 	return 0;
1436 
1437 err_off:
1438 	rtw_mac_power_off(rtwdev);
1439 
1440 err:
1441 	return ret;
1442 }
1443 
1444 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1445 {
1446 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1447 		return;
1448 
1449 	if (start) {
1450 		rtw_fw_scan_notify(rtwdev, true);
1451 	} else {
1452 		reinit_completion(&rtwdev->fw_scan_density);
1453 		rtw_fw_scan_notify(rtwdev, false);
1454 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1455 						 SCAN_NOTIFY_TIMEOUT))
1456 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1457 	}
1458 }
1459 
1460 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1461 			 const u8 *mac_addr, bool hw_scan)
1462 {
1463 	u32 config = 0;
1464 	int ret = 0;
1465 
1466 	rtw_leave_lps(rtwdev);
1467 
1468 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1469 		ret = rtw_leave_ips(rtwdev);
1470 		if (ret) {
1471 			rtw_err(rtwdev, "failed to leave idle state\n");
1472 			return;
1473 		}
1474 	}
1475 
1476 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1477 	config |= PORT_SET_MAC_ADDR;
1478 	rtw_vif_port_config(rtwdev, rtwvif, config);
1479 
1480 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1481 	rtw_core_fw_scan_notify(rtwdev, true);
1482 
1483 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1484 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1485 }
1486 
1487 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1488 			    bool hw_scan)
1489 {
1490 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1491 	u32 config = 0;
1492 
1493 	if (!rtwvif)
1494 		return;
1495 
1496 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1497 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1498 
1499 	rtw_core_fw_scan_notify(rtwdev, false);
1500 
1501 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1502 	config |= PORT_SET_MAC_ADDR;
1503 	rtw_vif_port_config(rtwdev, rtwvif, config);
1504 
1505 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1506 
1507 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1508 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1509 }
1510 
1511 int rtw_core_start(struct rtw_dev *rtwdev)
1512 {
1513 	int ret;
1514 
1515 	ret = rtw_power_on(rtwdev);
1516 	if (ret)
1517 		return ret;
1518 
1519 	rtw_sec_enable_sec_engine(rtwdev);
1520 
1521 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1522 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1523 
1524 	/* rcr reset after powered on */
1525 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1526 
1527 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1528 				     RTW_WATCH_DOG_DELAY_TIME);
1529 
1530 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1531 
1532 	return 0;
1533 }
1534 
1535 static void rtw_power_off(struct rtw_dev *rtwdev)
1536 {
1537 	rtw_hci_stop(rtwdev);
1538 	rtw_coex_power_off_setting(rtwdev);
1539 	rtw_mac_power_off(rtwdev);
1540 }
1541 
1542 void rtw_core_stop(struct rtw_dev *rtwdev)
1543 {
1544 	struct rtw_coex *coex = &rtwdev->coex;
1545 
1546 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1547 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1548 
1549 	mutex_unlock(&rtwdev->mutex);
1550 
1551 	cancel_work_sync(&rtwdev->c2h_work);
1552 	cancel_work_sync(&rtwdev->update_beacon_work);
1553 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1554 	cancel_delayed_work_sync(&coex->bt_relink_work);
1555 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1556 	cancel_delayed_work_sync(&coex->defreeze_work);
1557 	cancel_delayed_work_sync(&coex->wl_remain_work);
1558 	cancel_delayed_work_sync(&coex->bt_remain_work);
1559 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1560 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1561 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1562 
1563 	mutex_lock(&rtwdev->mutex);
1564 
1565 	rtw_power_off(rtwdev);
1566 }
1567 
1568 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1569 			    struct ieee80211_sta_ht_cap *ht_cap)
1570 {
1571 	const struct rtw_chip_info *chip = rtwdev->chip;
1572 	struct rtw_efuse *efuse = &rtwdev->efuse;
1573 
1574 	ht_cap->ht_supported = true;
1575 	ht_cap->cap = 0;
1576 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1577 			IEEE80211_HT_CAP_MAX_AMSDU |
1578 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1579 
1580 	if (rtw_chip_has_rx_ldpc(rtwdev))
1581 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1582 	if (rtw_chip_has_tx_stbc(rtwdev))
1583 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1584 
1585 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1586 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1587 				IEEE80211_HT_CAP_DSSSCCK40 |
1588 				IEEE80211_HT_CAP_SGI_40;
1589 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1590 	ht_cap->ampdu_density = chip->ampdu_density;
1591 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1592 	if (efuse->hw_cap.nss > 1) {
1593 		ht_cap->mcs.rx_mask[0] = 0xFF;
1594 		ht_cap->mcs.rx_mask[1] = 0xFF;
1595 		ht_cap->mcs.rx_mask[4] = 0x01;
1596 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1597 	} else {
1598 		ht_cap->mcs.rx_mask[0] = 0xFF;
1599 		ht_cap->mcs.rx_mask[1] = 0x00;
1600 		ht_cap->mcs.rx_mask[4] = 0x01;
1601 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1602 	}
1603 }
1604 
1605 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1606 			     struct ieee80211_sta_vht_cap *vht_cap)
1607 {
1608 	struct rtw_efuse *efuse = &rtwdev->efuse;
1609 	u16 mcs_map;
1610 	__le16 highest;
1611 
1612 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1613 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1614 		return;
1615 
1616 	vht_cap->vht_supported = true;
1617 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1618 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1619 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1620 		       IEEE80211_VHT_CAP_HTC_VHT |
1621 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1622 		       0;
1623 	if (rtwdev->hal.rf_path_num > 1)
1624 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1625 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1626 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1627 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1628 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1629 
1630 	if (rtw_chip_has_rx_ldpc(rtwdev))
1631 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1632 
1633 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1634 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1635 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1636 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1637 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1638 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1639 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1640 	if (efuse->hw_cap.nss > 1) {
1641 		highest = cpu_to_le16(780);
1642 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1643 	} else {
1644 		highest = cpu_to_le16(390);
1645 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1646 	}
1647 
1648 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1649 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1650 	vht_cap->vht_mcs.rx_highest = highest;
1651 	vht_cap->vht_mcs.tx_highest = highest;
1652 }
1653 
1654 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1655 {
1656 	u16 len;
1657 
1658 	len = rtwdev->chip->max_scan_ie_len;
1659 
1660 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1661 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1662 		len = IEEE80211_MAX_DATA_LEN;
1663 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1664 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1665 
1666 	return len;
1667 }
1668 
1669 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1670 				   const struct rtw_chip_info *chip)
1671 {
1672 	struct rtw_dev *rtwdev = hw->priv;
1673 	struct ieee80211_supported_band *sband;
1674 
1675 	if (chip->band & RTW_BAND_2G) {
1676 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1677 		if (!sband)
1678 			goto err_out;
1679 #if defined(__linux__)
1680 		if (chip->ht_supported)
1681 #elif defined(__FreeBSD__)
1682 		if (rtw_ht_support && chip->ht_supported)
1683 #endif
1684 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1685 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1686 	}
1687 
1688 	if (chip->band & RTW_BAND_5G) {
1689 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1690 		if (!sband)
1691 			goto err_out;
1692 #if defined(__linux__)
1693 		if (chip->ht_supported)
1694 #elif defined(__FreeBSD__)
1695 		if (rtw_ht_support && chip->ht_supported)
1696 #endif
1697 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1698 #if defined(__linux__)
1699 		if (chip->vht_supported)
1700 #elif defined(__FreeBSD__)
1701 		if (rtw_vht_support && chip->vht_supported)
1702 #endif
1703 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1704 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1705 	}
1706 
1707 	return;
1708 
1709 err_out:
1710 	rtw_err(rtwdev, "failed to set supported band\n");
1711 }
1712 
1713 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1714 				     const struct rtw_chip_info *chip)
1715 {
1716 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1717 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1718 }
1719 
1720 static void rtw_vif_smps_iter(void *data, u8 *mac,
1721 			      struct ieee80211_vif *vif)
1722 {
1723 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1724 
1725 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1726 		return;
1727 
1728 	if (rtwdev->hal.txrx_1ss)
1729 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1730 	else
1731 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1732 }
1733 
1734 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1735 {
1736 	const struct rtw_chip_info *chip = rtwdev->chip;
1737 	struct rtw_hal *hal = &rtwdev->hal;
1738 
1739 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1740 		return;
1741 
1742 	rtwdev->hal.txrx_1ss = txrx_1ss;
1743 	if (txrx_1ss)
1744 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1745 	else
1746 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1747 					    hal->antenna_rx, false);
1748 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1749 }
1750 
1751 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1752 				      struct rtw_fw_state *fw)
1753 {
1754 	u32 feature;
1755 	const struct rtw_fw_hdr *fw_hdr =
1756 				(const struct rtw_fw_hdr *)fw->firmware->data;
1757 
1758 	feature = le32_to_cpu(fw_hdr->feature);
1759 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1760 
1761 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1762 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1763 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1764 }
1765 
1766 static void __update_firmware_info(struct rtw_dev *rtwdev,
1767 				   struct rtw_fw_state *fw)
1768 {
1769 	const struct rtw_fw_hdr *fw_hdr =
1770 				(const struct rtw_fw_hdr *)fw->firmware->data;
1771 
1772 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1773 	fw->version = le16_to_cpu(fw_hdr->version);
1774 	fw->sub_version = fw_hdr->subversion;
1775 	fw->sub_index = fw_hdr->subindex;
1776 
1777 	__update_firmware_feature(rtwdev, fw);
1778 }
1779 
1780 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1781 					  struct rtw_fw_state *fw)
1782 {
1783 	struct rtw_fw_hdr_legacy *legacy =
1784 #if defined(__linux__)
1785 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1786 #elif defined(__FreeBSD__)
1787 	    __DECONST(struct rtw_fw_hdr_legacy *, fw->firmware->data);
1788 #endif
1789 
1790 	fw->h2c_version = 0;
1791 	fw->version = le16_to_cpu(legacy->version);
1792 	fw->sub_version = legacy->subversion1;
1793 	fw->sub_index = legacy->subversion2;
1794 }
1795 
1796 static void update_firmware_info(struct rtw_dev *rtwdev,
1797 				 struct rtw_fw_state *fw)
1798 {
1799 	if (rtw_chip_wcpu_11n(rtwdev))
1800 		__update_firmware_info_legacy(rtwdev, fw);
1801 	else
1802 		__update_firmware_info(rtwdev, fw);
1803 }
1804 
1805 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1806 {
1807 	struct rtw_fw_state *fw = context;
1808 	struct rtw_dev *rtwdev = fw->rtwdev;
1809 
1810 	if (!firmware || !firmware->data) {
1811 		rtw_err(rtwdev, "failed to request firmware\n");
1812 		complete_all(&fw->completion);
1813 		return;
1814 	}
1815 
1816 	fw->firmware = firmware;
1817 	update_firmware_info(rtwdev, fw);
1818 	complete_all(&fw->completion);
1819 
1820 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1821 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1822 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1823 }
1824 
1825 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1826 {
1827 	const char *fw_name;
1828 	struct rtw_fw_state *fw;
1829 	int ret;
1830 
1831 	switch (type) {
1832 	case RTW_WOWLAN_FW:
1833 		fw = &rtwdev->wow_fw;
1834 		fw_name = rtwdev->chip->wow_fw_name;
1835 		break;
1836 
1837 	case RTW_NORMAL_FW:
1838 		fw = &rtwdev->fw;
1839 		fw_name = rtwdev->chip->fw_name;
1840 		break;
1841 
1842 	default:
1843 		rtw_warn(rtwdev, "unsupported firmware type\n");
1844 		return -ENOENT;
1845 	}
1846 
1847 	fw->type = type;
1848 	fw->rtwdev = rtwdev;
1849 	init_completion(&fw->completion);
1850 
1851 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1852 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1853 	if (ret) {
1854 		rtw_err(rtwdev, "failed to async firmware request\n");
1855 		return ret;
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1862 {
1863 	const struct rtw_chip_info *chip = rtwdev->chip;
1864 	struct rtw_hal *hal = &rtwdev->hal;
1865 	struct rtw_efuse *efuse = &rtwdev->efuse;
1866 
1867 	switch (rtw_hci_type(rtwdev)) {
1868 	case RTW_HCI_TYPE_PCIE:
1869 		rtwdev->hci.rpwm_addr = 0x03d9;
1870 		rtwdev->hci.cpwm_addr = 0x03da;
1871 		break;
1872 	case RTW_HCI_TYPE_SDIO:
1873 		rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1874 		rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1875 		break;
1876 	case RTW_HCI_TYPE_USB:
1877 		rtwdev->hci.rpwm_addr = 0xfe58;
1878 		rtwdev->hci.cpwm_addr = 0xfe57;
1879 		break;
1880 	default:
1881 		rtw_err(rtwdev, "unsupported hci type\n");
1882 		return -EINVAL;
1883 	}
1884 
1885 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1886 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1887 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1888 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1889 		hal->rf_type = RF_2T2R;
1890 		hal->rf_path_num = 2;
1891 		hal->antenna_tx = BB_PATH_AB;
1892 		hal->antenna_rx = BB_PATH_AB;
1893 	} else {
1894 		hal->rf_type = RF_1T1R;
1895 		hal->rf_path_num = 1;
1896 		hal->antenna_tx = BB_PATH_A;
1897 		hal->antenna_rx = BB_PATH_A;
1898 	}
1899 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1900 			  hal->rf_path_num;
1901 
1902 	efuse->physical_size = chip->phy_efuse_size;
1903 	efuse->logical_size = chip->log_efuse_size;
1904 	efuse->protect_size = chip->ptct_efuse_size;
1905 
1906 	/* default use ack */
1907 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1908 
1909 	hal->bfee_sts_cap = 3;
1910 
1911 	return 0;
1912 }
1913 
1914 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1915 {
1916 	struct rtw_fw_state *fw = &rtwdev->fw;
1917 	int ret;
1918 
1919 	ret = rtw_hci_setup(rtwdev);
1920 	if (ret) {
1921 		rtw_err(rtwdev, "failed to setup hci\n");
1922 		goto err;
1923 	}
1924 
1925 	ret = rtw_mac_power_on(rtwdev);
1926 	if (ret) {
1927 		rtw_err(rtwdev, "failed to power on mac\n");
1928 		goto err;
1929 	}
1930 
1931 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1932 
1933 	wait_for_completion(&fw->completion);
1934 	if (!fw->firmware) {
1935 		ret = -EINVAL;
1936 		rtw_err(rtwdev, "failed to load firmware\n");
1937 		goto err;
1938 	}
1939 
1940 	ret = rtw_download_firmware(rtwdev, fw);
1941 	if (ret) {
1942 		rtw_err(rtwdev, "failed to download firmware\n");
1943 		goto err_off;
1944 	}
1945 
1946 	return 0;
1947 
1948 err_off:
1949 	rtw_mac_power_off(rtwdev);
1950 
1951 err:
1952 	return ret;
1953 }
1954 
1955 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1956 {
1957 	struct rtw_efuse *efuse = &rtwdev->efuse;
1958 	u8 hw_feature[HW_FEATURE_LEN];
1959 	u8 id;
1960 	u8 bw;
1961 	int i;
1962 
1963 	id = rtw_read8(rtwdev, REG_C2HEVT);
1964 	if (id != C2H_HW_FEATURE_REPORT) {
1965 		rtw_err(rtwdev, "failed to read hw feature report\n");
1966 		return -EBUSY;
1967 	}
1968 
1969 	for (i = 0; i < HW_FEATURE_LEN; i++)
1970 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1971 
1972 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1973 
1974 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1975 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1976 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1977 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1978 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1979 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1980 
1981 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1982 
1983 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1984 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1985 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1986 
1987 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1988 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1989 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1990 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1991 
1992 	return 0;
1993 }
1994 
1995 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1996 {
1997 	rtw_hci_stop(rtwdev);
1998 	rtw_mac_power_off(rtwdev);
1999 }
2000 
2001 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
2002 {
2003 	struct rtw_efuse *efuse = &rtwdev->efuse;
2004 	int ret;
2005 
2006 	mutex_lock(&rtwdev->mutex);
2007 
2008 	/* power on mac to read efuse */
2009 	ret = rtw_chip_efuse_enable(rtwdev);
2010 	if (ret)
2011 		goto out_unlock;
2012 
2013 	ret = rtw_parse_efuse_map(rtwdev);
2014 	if (ret)
2015 		goto out_disable;
2016 
2017 	ret = rtw_dump_hw_feature(rtwdev);
2018 	if (ret)
2019 		goto out_disable;
2020 
2021 	ret = rtw_check_supported_rfe(rtwdev);
2022 	if (ret)
2023 		goto out_disable;
2024 
2025 	if (efuse->crystal_cap == 0xff)
2026 		efuse->crystal_cap = 0;
2027 	if (efuse->pa_type_2g == 0xff)
2028 		efuse->pa_type_2g = 0;
2029 	if (efuse->pa_type_5g == 0xff)
2030 		efuse->pa_type_5g = 0;
2031 	if (efuse->lna_type_2g == 0xff)
2032 		efuse->lna_type_2g = 0;
2033 	if (efuse->lna_type_5g == 0xff)
2034 		efuse->lna_type_5g = 0;
2035 	if (efuse->channel_plan == 0xff)
2036 		efuse->channel_plan = 0x7f;
2037 	if (efuse->rf_board_option == 0xff)
2038 		efuse->rf_board_option = 0;
2039 	if (efuse->bt_setting & BIT(0))
2040 		efuse->share_ant = true;
2041 	if (efuse->regd == 0xff)
2042 		efuse->regd = 0;
2043 	if (efuse->tx_bb_swing_setting_2g == 0xff)
2044 		efuse->tx_bb_swing_setting_2g = 0;
2045 	if (efuse->tx_bb_swing_setting_5g == 0xff)
2046 		efuse->tx_bb_swing_setting_5g = 0;
2047 
2048 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2049 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2050 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2051 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2052 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2053 
2054 	if (!is_valid_ether_addr(efuse->addr)) {
2055 		eth_random_addr(efuse->addr);
2056 		dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2057 	}
2058 
2059 out_disable:
2060 	rtw_chip_efuse_disable(rtwdev);
2061 
2062 out_unlock:
2063 	mutex_unlock(&rtwdev->mutex);
2064 	return ret;
2065 }
2066 
2067 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2068 {
2069 	struct rtw_hal *hal = &rtwdev->hal;
2070 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2071 
2072 	if (!rfe_def)
2073 		return -ENODEV;
2074 
2075 	rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2076 
2077 	rtw_phy_init_tx_power(rtwdev);
2078 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2079 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2080 	rtw_phy_tx_power_by_rate_config(hal);
2081 	rtw_phy_tx_power_limit_config(hal);
2082 
2083 	return 0;
2084 }
2085 
2086 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2087 {
2088 	int ret;
2089 
2090 	ret = rtw_chip_parameter_setup(rtwdev);
2091 	if (ret) {
2092 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2093 		goto err_out;
2094 	}
2095 
2096 	ret = rtw_chip_efuse_info_setup(rtwdev);
2097 	if (ret) {
2098 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2099 		goto err_out;
2100 	}
2101 
2102 	ret = rtw_chip_board_info_setup(rtwdev);
2103 	if (ret) {
2104 		rtw_err(rtwdev, "failed to setup chip board info\n");
2105 		goto err_out;
2106 	}
2107 
2108 	return 0;
2109 
2110 err_out:
2111 	return ret;
2112 }
2113 EXPORT_SYMBOL(rtw_chip_info_setup);
2114 
2115 static void rtw_stats_init(struct rtw_dev *rtwdev)
2116 {
2117 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2118 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2119 	int i;
2120 
2121 	ewma_tp_init(&stats->tx_ewma_tp);
2122 	ewma_tp_init(&stats->rx_ewma_tp);
2123 
2124 	for (i = 0; i < RTW_EVM_NUM; i++)
2125 		ewma_evm_init(&dm_info->ewma_evm[i]);
2126 	for (i = 0; i < RTW_SNR_NUM; i++)
2127 		ewma_snr_init(&dm_info->ewma_snr[i]);
2128 }
2129 
2130 int rtw_core_init(struct rtw_dev *rtwdev)
2131 {
2132 	const struct rtw_chip_info *chip = rtwdev->chip;
2133 	struct rtw_coex *coex = &rtwdev->coex;
2134 	int ret;
2135 
2136 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2137 	INIT_LIST_HEAD(&rtwdev->txqs);
2138 
2139 	timer_setup(&rtwdev->tx_report.purge_timer,
2140 		    rtw_tx_report_purge_timer, 0);
2141 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2142 	if (!rtwdev->tx_wq) {
2143 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2144 		return -ENOMEM;
2145 	}
2146 
2147 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2148 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2149 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2150 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2151 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2152 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2153 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2154 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2155 			  rtw_coex_bt_multi_link_remain_work);
2156 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2157 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2158 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2159 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2160 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2161 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2162 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2163 	skb_queue_head_init(&rtwdev->c2h_queue);
2164 	skb_queue_head_init(&rtwdev->coex.queue);
2165 	skb_queue_head_init(&rtwdev->tx_report.queue);
2166 
2167 	spin_lock_init(&rtwdev->txq_lock);
2168 	spin_lock_init(&rtwdev->tx_report.q_lock);
2169 
2170 	mutex_init(&rtwdev->mutex);
2171 	mutex_init(&rtwdev->hal.tx_power_mutex);
2172 
2173 	init_waitqueue_head(&rtwdev->coex.wait);
2174 	init_completion(&rtwdev->lps_leave_check);
2175 	init_completion(&rtwdev->fw_scan_density);
2176 
2177 	rtwdev->sec.total_cam_num = 32;
2178 	rtwdev->hal.current_channel = 1;
2179 	rtwdev->dm_info.fix_rate = U8_MAX;
2180 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2181 
2182 	rtw_stats_init(rtwdev);
2183 
2184 	/* default rx filter setting */
2185 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2186 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2187 			  BIT_AB | BIT_AM | BIT_APM;
2188 
2189 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2190 	if (ret) {
2191 		rtw_warn(rtwdev, "no firmware loaded\n");
2192 		goto out;
2193 	}
2194 
2195 	if (chip->wow_fw_name) {
2196 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2197 		if (ret) {
2198 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2199 			wait_for_completion(&rtwdev->fw.completion);
2200 			if (rtwdev->fw.firmware)
2201 				release_firmware(rtwdev->fw.firmware);
2202 			goto out;
2203 		}
2204 	}
2205 
2206 #if defined(__FreeBSD__)
2207 	rtw_wait_firmware_completion(rtwdev);
2208 #endif
2209 
2210 	return 0;
2211 
2212 out:
2213 	destroy_workqueue(rtwdev->tx_wq);
2214 	return ret;
2215 }
2216 EXPORT_SYMBOL(rtw_core_init);
2217 
2218 void rtw_core_deinit(struct rtw_dev *rtwdev)
2219 {
2220 	struct rtw_fw_state *fw = &rtwdev->fw;
2221 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2222 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2223 	unsigned long flags;
2224 
2225 	rtw_wait_firmware_completion(rtwdev);
2226 
2227 	if (fw->firmware)
2228 		release_firmware(fw->firmware);
2229 
2230 	if (wow_fw->firmware)
2231 		release_firmware(wow_fw->firmware);
2232 
2233 	destroy_workqueue(rtwdev->tx_wq);
2234 	timer_delete_sync(&rtwdev->tx_report.purge_timer);
2235 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2236 	skb_queue_purge(&rtwdev->tx_report.queue);
2237 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2238 	skb_queue_purge(&rtwdev->coex.queue);
2239 	skb_queue_purge(&rtwdev->c2h_queue);
2240 
2241 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2242 				 build_list) {
2243 		list_del(&rsvd_pkt->build_list);
2244 		kfree(rsvd_pkt);
2245 	}
2246 
2247 	mutex_destroy(&rtwdev->mutex);
2248 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2249 }
2250 EXPORT_SYMBOL(rtw_core_deinit);
2251 
2252 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2253 {
2254 	bool sta_mode_only = rtwdev->hci.type == RTW_HCI_TYPE_SDIO;
2255 	struct rtw_hal *hal = &rtwdev->hal;
2256 	int max_tx_headroom = 0;
2257 	int ret;
2258 
2259 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2260 
2261 	if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2262 		max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2263 
2264 	hw->extra_tx_headroom = max_tx_headroom;
2265 	hw->queues = IEEE80211_NUM_ACS;
2266 	hw->txq_data_size = sizeof(struct rtw_txq);
2267 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2268 	hw->vif_data_size = sizeof(struct rtw_vif);
2269 
2270 	ieee80211_hw_set(hw, SIGNAL_DBM);
2271 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2272 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2273 	ieee80211_hw_set(hw, MFP_CAPABLE);
2274 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2275 	ieee80211_hw_set(hw, SUPPORTS_PS);
2276 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2277 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2278 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2279 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2280 	ieee80211_hw_set(hw, TX_AMSDU);
2281 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2282 
2283 	if (sta_mode_only)
2284 		hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
2285 	else
2286 		hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2287 					     BIT(NL80211_IFTYPE_AP) |
2288 					     BIT(NL80211_IFTYPE_ADHOC);
2289 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2290 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2291 
2292 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2293 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2294 
2295 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2296 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2297 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2298 
2299 	if (!sta_mode_only && rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2300 		hw->wiphy->iface_combinations = rtw_iface_combs;
2301 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2302 	}
2303 
2304 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2305 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2306 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2307 
2308 #ifdef CONFIG_PM
2309 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2310 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2311 #endif
2312 	rtw_set_supported_band(hw, rtwdev->chip);
2313 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2314 
2315 	hw->wiphy->sar_capa = &rtw_sar_capa;
2316 
2317 	ret = rtw_regd_init(rtwdev);
2318 	if (ret) {
2319 		rtw_err(rtwdev, "failed to init regd\n");
2320 		return ret;
2321 	}
2322 
2323 	ret = ieee80211_register_hw(hw);
2324 	if (ret) {
2325 		rtw_err(rtwdev, "failed to register hw\n");
2326 		return ret;
2327 	}
2328 
2329 	ret = rtw_regd_hint(rtwdev);
2330 	if (ret) {
2331 		rtw_err(rtwdev, "failed to hint regd\n");
2332 		return ret;
2333 	}
2334 
2335 	rtw_debugfs_init(rtwdev);
2336 
2337 	rtwdev->bf_info.bfer_mu_cnt = 0;
2338 	rtwdev->bf_info.bfer_su_cnt = 0;
2339 
2340 	return 0;
2341 }
2342 EXPORT_SYMBOL(rtw_register_hw);
2343 
2344 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2345 {
2346 	const struct rtw_chip_info *chip = rtwdev->chip;
2347 
2348 	ieee80211_unregister_hw(hw);
2349 	rtw_unset_supported_band(hw, chip);
2350 }
2351 EXPORT_SYMBOL(rtw_unregister_hw);
2352 
2353 static
2354 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2355 			 const struct rtw_hw_reg *reg2, u8 nbytes)
2356 {
2357 	u8 i;
2358 
2359 	for (i = 0; i < nbytes; i++) {
2360 		u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2361 		u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2362 
2363 		rtw_write8(rtwdev, reg1->addr + i, v2);
2364 		rtw_write8(rtwdev, reg2->addr + i, v1);
2365 	}
2366 }
2367 
2368 static
2369 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2370 		       const struct rtw_hw_reg *reg2)
2371 {
2372 	u32 v1, v2;
2373 
2374 	v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2375 	v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2376 	rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2377 	rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2378 }
2379 
2380 struct rtw_iter_port_switch_data {
2381 	struct rtw_dev *rtwdev;
2382 	struct rtw_vif *rtwvif_ap;
2383 };
2384 
2385 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2386 {
2387 	struct rtw_iter_port_switch_data *iter_data = data;
2388 	struct rtw_dev *rtwdev = iter_data->rtwdev;
2389 	struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2390 	struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2391 	const struct rtw_hw_reg *reg1, *reg2;
2392 
2393 	if (rtwvif_target->port != RTW_PORT_0)
2394 		return;
2395 
2396 	rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2397 		rtwvif_ap->port, rtwvif_target->port);
2398 
2399 	/* Leave LPS so the value swapped are not in PS mode */
2400 	rtw_leave_lps(rtwdev);
2401 
2402 	reg1 = &rtwvif_ap->conf->net_type;
2403 	reg2 = &rtwvif_target->conf->net_type;
2404 	rtw_swap_reg_mask(rtwdev, reg1, reg2);
2405 
2406 	reg1 = &rtwvif_ap->conf->mac_addr;
2407 	reg2 = &rtwvif_target->conf->mac_addr;
2408 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2409 
2410 	reg1 = &rtwvif_ap->conf->bssid;
2411 	reg2 = &rtwvif_target->conf->bssid;
2412 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2413 
2414 	reg1 = &rtwvif_ap->conf->bcn_ctrl;
2415 	reg2 = &rtwvif_target->conf->bcn_ctrl;
2416 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2417 
2418 	swap(rtwvif_target->port, rtwvif_ap->port);
2419 	swap(rtwvif_target->conf, rtwvif_ap->conf);
2420 
2421 	rtw_fw_default_port(rtwdev, rtwvif_target);
2422 }
2423 
2424 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2425 {
2426 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2427 	struct rtw_iter_port_switch_data iter_data;
2428 
2429 	if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2430 		return;
2431 
2432 	iter_data.rtwdev = rtwdev;
2433 	iter_data.rtwvif_ap = rtwvif;
2434 	rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2435 }
2436 
2437 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2438 {
2439 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2440 	bool *active = data;
2441 
2442 	if (*active)
2443 		return;
2444 
2445 	if (vif->type != NL80211_IFTYPE_STATION)
2446 		return;
2447 
2448 	if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2449 		*active = true;
2450 }
2451 
2452 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2453 {
2454 	bool sta_active = false;
2455 
2456 	rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2457 
2458 	return rtwdev->ap_active || sta_active;
2459 }
2460 
2461 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2462 {
2463 	if (!rtwdev->ap_active)
2464 		return;
2465 
2466 	if (enable) {
2467 		rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2468 		rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2469 	} else {
2470 		rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2471 		rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2472 	}
2473 }
2474 
2475 MODULE_AUTHOR("Realtek Corporation");
2476 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2477 MODULE_LICENSE("Dual BSD/GPL");
2478