1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2019-2020 Realtek Corporation
3 */
4
5 #include "acpi.h"
6 #include "debug.h"
7 #include "phy.h"
8 #include "reg.h"
9 #include "sar.h"
10
11 #define RTW89_TAS_FACTOR 2 /* unit: 0.25 dBm */
12 #define RTW89_TAS_DPR_GAP (1 << RTW89_TAS_FACTOR)
13 #define RTW89_TAS_DELTA (2 << RTW89_TAS_FACTOR)
14
rtw89_sar_get_subband(struct rtw89_dev * rtwdev,u32 center_freq)15 static enum rtw89_sar_subband rtw89_sar_get_subband(struct rtw89_dev *rtwdev,
16 u32 center_freq)
17 {
18 switch (center_freq) {
19 default:
20 rtw89_debug(rtwdev, RTW89_DBG_SAR,
21 "center freq: %u to SAR subband is unhandled\n",
22 center_freq);
23 fallthrough;
24 case 2412 ... 2484:
25 return RTW89_SAR_2GHZ_SUBBAND;
26 case 5180 ... 5320:
27 return RTW89_SAR_5GHZ_SUBBAND_1_2;
28 case 5500 ... 5720:
29 return RTW89_SAR_5GHZ_SUBBAND_2_E;
30 case 5745 ... 5885:
31 return RTW89_SAR_5GHZ_SUBBAND_3_4;
32 case 5955 ... 6155:
33 return RTW89_SAR_6GHZ_SUBBAND_5_L;
34 case 6175 ... 6415:
35 return RTW89_SAR_6GHZ_SUBBAND_5_H;
36 case 6435 ... 6515:
37 return RTW89_SAR_6GHZ_SUBBAND_6;
38 case 6535 ... 6695:
39 return RTW89_SAR_6GHZ_SUBBAND_7_L;
40 case 6715 ... 6855:
41 return RTW89_SAR_6GHZ_SUBBAND_7_H;
42
43 /* freq 6875 (ch 185, 20MHz) spans RTW89_SAR_6GHZ_SUBBAND_7_H
44 * and RTW89_SAR_6GHZ_SUBBAND_8, so directly describe it with
45 * struct rtw89_sar_span in the following.
46 */
47
48 case 6895 ... 7115:
49 return RTW89_SAR_6GHZ_SUBBAND_8;
50 }
51 }
52
53 struct rtw89_sar_span {
54 enum rtw89_sar_subband subband_low;
55 enum rtw89_sar_subband subband_high;
56 };
57
58 #define RTW89_SAR_SPAN_VALID(span) ((span)->subband_high)
59
60 #define RTW89_SAR_6GHZ_SPAN_HEAD 6145
61 #define RTW89_SAR_6GHZ_SPAN_IDX(center_freq) \
62 ((((int)(center_freq) - RTW89_SAR_6GHZ_SPAN_HEAD) / 5) / 2)
63
64 #define RTW89_DECL_SAR_6GHZ_SPAN(center_freq, subband_l, subband_h) \
65 [RTW89_SAR_6GHZ_SPAN_IDX(center_freq)] = { \
66 .subband_low = RTW89_SAR_6GHZ_ ## subband_l, \
67 .subband_high = RTW89_SAR_6GHZ_ ## subband_h, \
68 }
69
70 /* Since 6GHz SAR subbands are not edge aligned, some cases span two SAR
71 * subbands. In the following, we describe each of them with rtw89_sar_span.
72 */
73 static const struct rtw89_sar_span rtw89_sar_overlapping_6ghz[] = {
74 RTW89_DECL_SAR_6GHZ_SPAN(6145, SUBBAND_5_L, SUBBAND_5_H),
75 RTW89_DECL_SAR_6GHZ_SPAN(6165, SUBBAND_5_L, SUBBAND_5_H),
76 RTW89_DECL_SAR_6GHZ_SPAN(6185, SUBBAND_5_L, SUBBAND_5_H),
77 RTW89_DECL_SAR_6GHZ_SPAN(6505, SUBBAND_6, SUBBAND_7_L),
78 RTW89_DECL_SAR_6GHZ_SPAN(6525, SUBBAND_6, SUBBAND_7_L),
79 RTW89_DECL_SAR_6GHZ_SPAN(6545, SUBBAND_6, SUBBAND_7_L),
80 RTW89_DECL_SAR_6GHZ_SPAN(6665, SUBBAND_7_L, SUBBAND_7_H),
81 RTW89_DECL_SAR_6GHZ_SPAN(6705, SUBBAND_7_L, SUBBAND_7_H),
82 RTW89_DECL_SAR_6GHZ_SPAN(6825, SUBBAND_7_H, SUBBAND_8),
83 RTW89_DECL_SAR_6GHZ_SPAN(6865, SUBBAND_7_H, SUBBAND_8),
84 RTW89_DECL_SAR_6GHZ_SPAN(6875, SUBBAND_7_H, SUBBAND_8),
85 RTW89_DECL_SAR_6GHZ_SPAN(6885, SUBBAND_7_H, SUBBAND_8),
86 };
87
rtw89_query_sar_config_common(struct rtw89_dev * rtwdev,u32 center_freq,s32 * cfg)88 static int rtw89_query_sar_config_common(struct rtw89_dev *rtwdev,
89 u32 center_freq, s32 *cfg)
90 {
91 struct rtw89_sar_cfg_common *rtwsar = &rtwdev->sar.cfg_common;
92 const struct rtw89_sar_span *span = NULL;
93 enum rtw89_sar_subband subband_l, subband_h;
94 int idx;
95
96 if (center_freq >= RTW89_SAR_6GHZ_SPAN_HEAD) {
97 idx = RTW89_SAR_6GHZ_SPAN_IDX(center_freq);
98 /* To decrease size of rtw89_sar_overlapping_6ghz[],
99 * RTW89_SAR_6GHZ_SPAN_IDX() truncates the leading NULLs
100 * to make first span as index 0 of the table. So, if center
101 * frequency is less than the first one, it will get netative.
102 */
103 if (idx >= 0 && idx < ARRAY_SIZE(rtw89_sar_overlapping_6ghz))
104 span = &rtw89_sar_overlapping_6ghz[idx];
105 }
106
107 if (span && RTW89_SAR_SPAN_VALID(span)) {
108 subband_l = span->subband_low;
109 subband_h = span->subband_high;
110 } else {
111 subband_l = rtw89_sar_get_subband(rtwdev, center_freq);
112 subband_h = subband_l;
113 }
114
115 rtw89_debug(rtwdev, RTW89_DBG_SAR,
116 "center_freq %u: SAR subband {%u, %u}\n",
117 center_freq, subband_l, subband_h);
118
119 if (!rtwsar->set[subband_l] && !rtwsar->set[subband_h])
120 return -ENODATA;
121
122 if (!rtwsar->set[subband_l])
123 *cfg = rtwsar->cfg[subband_h];
124 else if (!rtwsar->set[subband_h])
125 *cfg = rtwsar->cfg[subband_l];
126 else
127 *cfg = min(rtwsar->cfg[subband_l], rtwsar->cfg[subband_h]);
128
129 return 0;
130 }
131
132 static const
133 struct rtw89_sar_handler rtw89_sar_handlers[RTW89_SAR_SOURCE_NR] = {
134 [RTW89_SAR_SOURCE_COMMON] = {
135 .descr_sar_source = "RTW89_SAR_SOURCE_COMMON",
136 .txpwr_factor_sar = 2,
137 .query_sar_config = rtw89_query_sar_config_common,
138 },
139 };
140
141 #define rtw89_sar_set_src(_dev, _src, _cfg_name, _cfg_data) \
142 do { \
143 typeof(_src) _s = (_src); \
144 typeof(_dev) _d = (_dev); \
145 BUILD_BUG_ON(!rtw89_sar_handlers[_s].descr_sar_source); \
146 BUILD_BUG_ON(!rtw89_sar_handlers[_s].query_sar_config); \
147 lockdep_assert_held(&_d->mutex); \
148 _d->sar._cfg_name = *(_cfg_data); \
149 _d->sar.src = _s; \
150 } while (0)
151
rtw89_txpwr_sar_to_mac(struct rtw89_dev * rtwdev,u8 fct,s32 cfg)152 static s8 rtw89_txpwr_sar_to_mac(struct rtw89_dev *rtwdev, u8 fct, s32 cfg)
153 {
154 const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
155 s32 cfg_mac;
156
157 cfg_mac = fct > fct_mac ?
158 cfg >> (fct - fct_mac) : cfg << (fct_mac - fct);
159
160 return (s8)clamp_t(s32, cfg_mac,
161 RTW89_SAR_TXPWR_MAC_MIN,
162 RTW89_SAR_TXPWR_MAC_MAX);
163 }
164
rtw89_txpwr_tas_to_sar(const struct rtw89_sar_handler * sar_hdl,s8 cfg)165 static s8 rtw89_txpwr_tas_to_sar(const struct rtw89_sar_handler *sar_hdl,
166 s8 cfg)
167 {
168 const u8 fct = sar_hdl->txpwr_factor_sar;
169
170 if (fct > RTW89_TAS_FACTOR)
171 return cfg << (fct - RTW89_TAS_FACTOR);
172 else
173 return cfg >> (RTW89_TAS_FACTOR - fct);
174 }
175
rtw89_txpwr_sar_to_tas(const struct rtw89_sar_handler * sar_hdl,s8 cfg)176 static s8 rtw89_txpwr_sar_to_tas(const struct rtw89_sar_handler *sar_hdl,
177 s8 cfg)
178 {
179 const u8 fct = sar_hdl->txpwr_factor_sar;
180
181 if (fct > RTW89_TAS_FACTOR)
182 return cfg >> (fct - RTW89_TAS_FACTOR);
183 else
184 return cfg << (RTW89_TAS_FACTOR - fct);
185 }
186
rtw89_query_sar(struct rtw89_dev * rtwdev,u32 center_freq)187 s8 rtw89_query_sar(struct rtw89_dev *rtwdev, u32 center_freq)
188 {
189 const enum rtw89_sar_sources src = rtwdev->sar.src;
190 /* its members are protected by rtw89_sar_set_src() */
191 const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
192 struct rtw89_tas_info *tas = &rtwdev->tas;
193 s8 delta;
194 int ret;
195 s32 cfg;
196 u8 fct;
197
198 lockdep_assert_held(&rtwdev->mutex);
199
200 if (src == RTW89_SAR_SOURCE_NONE)
201 return RTW89_SAR_TXPWR_MAC_MAX;
202
203 ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
204 if (ret)
205 return RTW89_SAR_TXPWR_MAC_MAX;
206
207 if (tas->enable) {
208 switch (tas->state) {
209 case RTW89_TAS_STATE_DPR_OFF:
210 return RTW89_SAR_TXPWR_MAC_MAX;
211 case RTW89_TAS_STATE_DPR_ON:
212 delta = rtw89_txpwr_tas_to_sar(sar_hdl, tas->delta);
213 cfg -= delta;
214 break;
215 case RTW89_TAS_STATE_DPR_FORBID:
216 default:
217 break;
218 }
219 }
220
221 fct = sar_hdl->txpwr_factor_sar;
222
223 return rtw89_txpwr_sar_to_mac(rtwdev, fct, cfg);
224 }
225
rtw89_print_sar(struct seq_file * m,struct rtw89_dev * rtwdev,u32 center_freq)226 void rtw89_print_sar(struct seq_file *m, struct rtw89_dev *rtwdev, u32 center_freq)
227 {
228 const enum rtw89_sar_sources src = rtwdev->sar.src;
229 /* its members are protected by rtw89_sar_set_src() */
230 const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
231 const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
232 int ret;
233 s32 cfg;
234 u8 fct;
235
236 lockdep_assert_held(&rtwdev->mutex);
237
238 if (src == RTW89_SAR_SOURCE_NONE) {
239 seq_puts(m, "no SAR is applied\n");
240 return;
241 }
242
243 seq_printf(m, "source: %d (%s)\n", src, sar_hdl->descr_sar_source);
244
245 ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
246 if (ret) {
247 seq_printf(m, "config: return code: %d\n", ret);
248 seq_printf(m, "assign: max setting: %d (unit: 1/%lu dBm)\n",
249 RTW89_SAR_TXPWR_MAC_MAX, BIT(fct_mac));
250 return;
251 }
252
253 fct = sar_hdl->txpwr_factor_sar;
254
255 seq_printf(m, "config: %d (unit: 1/%lu dBm)\n", cfg, BIT(fct));
256 }
257
rtw89_print_tas(struct seq_file * m,struct rtw89_dev * rtwdev)258 void rtw89_print_tas(struct seq_file *m, struct rtw89_dev *rtwdev)
259 {
260 struct rtw89_tas_info *tas = &rtwdev->tas;
261
262 if (!tas->enable) {
263 seq_puts(m, "no TAS is applied\n");
264 return;
265 }
266
267 seq_printf(m, "DPR gap: %d\n", tas->dpr_gap);
268 seq_printf(m, "TAS delta: %d\n", tas->delta);
269 }
270
rtw89_apply_sar_common(struct rtw89_dev * rtwdev,const struct rtw89_sar_cfg_common * sar)271 static int rtw89_apply_sar_common(struct rtw89_dev *rtwdev,
272 const struct rtw89_sar_cfg_common *sar)
273 {
274 enum rtw89_sar_sources src;
275 int ret = 0;
276
277 mutex_lock(&rtwdev->mutex);
278
279 src = rtwdev->sar.src;
280 if (src != RTW89_SAR_SOURCE_NONE && src != RTW89_SAR_SOURCE_COMMON) {
281 rtw89_warn(rtwdev, "SAR source: %d is in use", src);
282 ret = -EBUSY;
283 goto exit;
284 }
285
286 rtw89_sar_set_src(rtwdev, RTW89_SAR_SOURCE_COMMON, cfg_common, sar);
287 rtw89_core_set_chip_txpwr(rtwdev);
288
289 exit:
290 mutex_unlock(&rtwdev->mutex);
291 return ret;
292 }
293
294 static const struct cfg80211_sar_freq_ranges rtw89_common_sar_freq_ranges[] = {
295 { .start_freq = 2412, .end_freq = 2484, },
296 { .start_freq = 5180, .end_freq = 5320, },
297 { .start_freq = 5500, .end_freq = 5720, },
298 { .start_freq = 5745, .end_freq = 5885, },
299 { .start_freq = 5955, .end_freq = 6155, },
300 { .start_freq = 6175, .end_freq = 6415, },
301 { .start_freq = 6435, .end_freq = 6515, },
302 { .start_freq = 6535, .end_freq = 6695, },
303 { .start_freq = 6715, .end_freq = 6875, },
304 { .start_freq = 6875, .end_freq = 7115, },
305 };
306
307 static_assert(RTW89_SAR_SUBBAND_NR ==
308 ARRAY_SIZE(rtw89_common_sar_freq_ranges));
309
310 const struct cfg80211_sar_capa rtw89_sar_capa = {
311 .type = NL80211_SAR_TYPE_POWER,
312 .num_freq_ranges = ARRAY_SIZE(rtw89_common_sar_freq_ranges),
313 .freq_ranges = rtw89_common_sar_freq_ranges,
314 };
315
rtw89_ops_set_sar_specs(struct ieee80211_hw * hw,const struct cfg80211_sar_specs * sar)316 int rtw89_ops_set_sar_specs(struct ieee80211_hw *hw,
317 const struct cfg80211_sar_specs *sar)
318 {
319 struct rtw89_dev *rtwdev = hw->priv;
320 struct rtw89_sar_cfg_common sar_common = {0};
321 u8 fct;
322 u32 freq_start;
323 u32 freq_end;
324 s32 power;
325 u32 i, idx;
326
327 if (sar->type != NL80211_SAR_TYPE_POWER)
328 return -EINVAL;
329
330 fct = rtw89_sar_handlers[RTW89_SAR_SOURCE_COMMON].txpwr_factor_sar;
331
332 for (i = 0; i < sar->num_sub_specs; i++) {
333 idx = sar->sub_specs[i].freq_range_index;
334 if (idx >= ARRAY_SIZE(rtw89_common_sar_freq_ranges))
335 return -EINVAL;
336
337 freq_start = rtw89_common_sar_freq_ranges[idx].start_freq;
338 freq_end = rtw89_common_sar_freq_ranges[idx].end_freq;
339 power = sar->sub_specs[i].power;
340
341 rtw89_debug(rtwdev, RTW89_DBG_SAR,
342 "On freq %u to %u, set SAR limit %d (unit: 1/%lu dBm)\n",
343 freq_start, freq_end, power, BIT(fct));
344
345 sar_common.set[idx] = true;
346 sar_common.cfg[idx] = power;
347 }
348
349 return rtw89_apply_sar_common(rtwdev, &sar_common);
350 }
351
rtw89_tas_state_update(struct rtw89_dev * rtwdev)352 static void rtw89_tas_state_update(struct rtw89_dev *rtwdev)
353 {
354 const enum rtw89_sar_sources src = rtwdev->sar.src;
355 /* its members are protected by rtw89_sar_set_src() */
356 const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
357 struct rtw89_tas_info *tas = &rtwdev->tas;
358 s32 txpwr_avg = tas->total_txpwr / RTW89_TAS_MAX_WINDOW / PERCENT;
359 s32 dpr_on_threshold, dpr_off_threshold, cfg;
360 enum rtw89_tas_state state = tas->state;
361 const struct rtw89_chan *chan;
362 int ret;
363
364 lockdep_assert_held(&rtwdev->mutex);
365
366 if (src == RTW89_SAR_SOURCE_NONE)
367 return;
368
369 chan = rtw89_chan_get(rtwdev, RTW89_CHANCTX_0);
370 ret = sar_hdl->query_sar_config(rtwdev, chan->freq, &cfg);
371 if (ret)
372 return;
373
374 cfg = rtw89_txpwr_sar_to_tas(sar_hdl, cfg);
375
376 if (tas->delta >= cfg) {
377 rtw89_debug(rtwdev, RTW89_DBG_SAR,
378 "TAS delta exceed SAR limit\n");
379 state = RTW89_TAS_STATE_DPR_FORBID;
380 goto out;
381 }
382
383 dpr_on_threshold = cfg;
384 dpr_off_threshold = cfg - tas->dpr_gap;
385 rtw89_debug(rtwdev, RTW89_DBG_SAR,
386 "DPR_ON thold: %d, DPR_OFF thold: %d, txpwr_avg: %d\n",
387 dpr_on_threshold, dpr_off_threshold, txpwr_avg);
388
389 if (txpwr_avg >= dpr_on_threshold)
390 state = RTW89_TAS_STATE_DPR_ON;
391 else if (txpwr_avg < dpr_off_threshold)
392 state = RTW89_TAS_STATE_DPR_OFF;
393
394 out:
395 if (tas->state == state)
396 return;
397
398 rtw89_debug(rtwdev, RTW89_DBG_SAR,
399 "TAS old state: %d, new state: %d\n", tas->state, state);
400 tas->state = state;
401 rtw89_core_set_chip_txpwr(rtwdev);
402 }
403
rtw89_tas_init(struct rtw89_dev * rtwdev)404 void rtw89_tas_init(struct rtw89_dev *rtwdev)
405 {
406 struct rtw89_tas_info *tas = &rtwdev->tas;
407 struct rtw89_acpi_dsm_result res = {};
408 int ret;
409 u8 val;
410
411 ret = rtw89_acpi_evaluate_dsm(rtwdev, RTW89_ACPI_DSM_FUNC_TAS_EN, &res);
412 if (ret) {
413 rtw89_debug(rtwdev, RTW89_DBG_SAR,
414 "acpi: cannot get TAS: %d\n", ret);
415 return;
416 }
417
418 val = res.u.value;
419 switch (val) {
420 case 0:
421 tas->enable = false;
422 break;
423 case 1:
424 tas->enable = true;
425 break;
426 default:
427 break;
428 }
429
430 if (!tas->enable) {
431 rtw89_debug(rtwdev, RTW89_DBG_SAR, "TAS not enable\n");
432 return;
433 }
434
435 tas->dpr_gap = RTW89_TAS_DPR_GAP;
436 tas->delta = RTW89_TAS_DELTA;
437 }
438
rtw89_tas_reset(struct rtw89_dev * rtwdev)439 void rtw89_tas_reset(struct rtw89_dev *rtwdev)
440 {
441 struct rtw89_tas_info *tas = &rtwdev->tas;
442
443 if (!tas->enable)
444 return;
445
446 memset(&tas->txpwr_history, 0, sizeof(tas->txpwr_history));
447 tas->total_txpwr = 0;
448 tas->cur_idx = 0;
449 tas->state = RTW89_TAS_STATE_DPR_OFF;
450 }
451
452 static const struct rtw89_reg_def txpwr_regs[] = {
453 {R_PATH0_TXPWR, B_PATH0_TXPWR},
454 {R_PATH1_TXPWR, B_PATH1_TXPWR},
455 };
456
rtw89_tas_track(struct rtw89_dev * rtwdev)457 void rtw89_tas_track(struct rtw89_dev *rtwdev)
458 {
459 struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
460 const enum rtw89_sar_sources src = rtwdev->sar.src;
461 u8 max_nss_num = rtwdev->chip->rf_path_num;
462 struct rtw89_tas_info *tas = &rtwdev->tas;
463 s16 tmp, txpwr, instant_txpwr = 0;
464 u32 val;
465 int i;
466
467 if (!tas->enable || src == RTW89_SAR_SOURCE_NONE)
468 return;
469
470 if (env->ccx_watchdog_result != RTW89_PHY_ENV_MON_IFS_CLM)
471 return;
472
473 for (i = 0; i < max_nss_num; i++) {
474 val = rtw89_phy_read32_mask(rtwdev, txpwr_regs[i].addr,
475 txpwr_regs[i].mask);
476 tmp = sign_extend32(val, 8);
477 if (tmp <= 0)
478 return;
479 instant_txpwr += tmp;
480 }
481
482 instant_txpwr /= max_nss_num;
483 /* in unit of 0.25 dBm multiply by percentage */
484 txpwr = instant_txpwr * env->ifs_clm_tx_ratio;
485 tas->total_txpwr += txpwr - tas->txpwr_history[tas->cur_idx];
486 tas->txpwr_history[tas->cur_idx] = txpwr;
487 rtw89_debug(rtwdev, RTW89_DBG_SAR,
488 "instant_txpwr: %d, tx_ratio: %d, txpwr: %d\n",
489 instant_txpwr, env->ifs_clm_tx_ratio, txpwr);
490
491 tas->cur_idx = (tas->cur_idx + 1) % RTW89_TAS_MAX_WINDOW;
492
493 rtw89_tas_state_update(rtwdev);
494 }
495