1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1988, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31 #include "opt_ddb.h"
32 #include "opt_route.h"
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35
36 #include <sys/param.h>
37 #include <sys/jail.h>
38 #include <sys/kernel.h>
39 #include <sys/eventhandler.h>
40 #include <sys/domain.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/priv.h>
45 #include <sys/proc.h>
46 #include <sys/protosw.h>
47 #include <sys/rmlock.h>
48 #include <sys/rwlock.h>
49 #include <sys/signalvar.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54
55 #include <net/if.h>
56 #include <net/if_var.h>
57 #include <net/if_private.h>
58 #include <net/if_dl.h>
59 #include <net/if_llatbl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62 #include <net/route.h>
63 #include <net/route/route_ctl.h>
64 #include <net/route/route_var.h>
65 #include <net/vnet.h>
66
67 #include <netinet/in.h>
68 #include <netinet/if_ether.h>
69 #include <netinet/ip_carp.h>
70 #ifdef INET6
71 #include <netinet6/in6_var.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #endif
75 #include <net/route/nhop.h>
76
77 #define DEBUG_MOD_NAME rtsock
78 #define DEBUG_MAX_LEVEL LOG_DEBUG
79 #include <net/route/route_debug.h>
80 _DECLARE_DEBUG(LOG_INFO);
81
82 #ifdef COMPAT_FREEBSD32
83 #include <sys/mount.h>
84 #include <compat/freebsd32/freebsd32.h>
85
86 struct if_msghdr32 {
87 uint16_t ifm_msglen;
88 uint8_t ifm_version;
89 uint8_t ifm_type;
90 int32_t ifm_addrs;
91 int32_t ifm_flags;
92 uint16_t ifm_index;
93 uint16_t _ifm_spare1;
94 struct if_data ifm_data;
95 };
96
97 struct if_msghdrl32 {
98 uint16_t ifm_msglen;
99 uint8_t ifm_version;
100 uint8_t ifm_type;
101 int32_t ifm_addrs;
102 int32_t ifm_flags;
103 uint16_t ifm_index;
104 uint16_t _ifm_spare1;
105 uint16_t ifm_len;
106 uint16_t ifm_data_off;
107 uint32_t _ifm_spare2;
108 struct if_data ifm_data;
109 };
110
111 struct ifa_msghdrl32 {
112 uint16_t ifam_msglen;
113 uint8_t ifam_version;
114 uint8_t ifam_type;
115 int32_t ifam_addrs;
116 int32_t ifam_flags;
117 uint16_t ifam_index;
118 uint16_t _ifam_spare1;
119 uint16_t ifam_len;
120 uint16_t ifam_data_off;
121 int32_t ifam_metric;
122 struct if_data ifam_data;
123 };
124
125 #define SA_SIZE32(sa) \
126 ( (((struct sockaddr *)(sa))->sa_len == 0) ? \
127 sizeof(int) : \
128 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) )
129
130 #endif /* COMPAT_FREEBSD32 */
131
132 struct linear_buffer {
133 char *base; /* Base allocated memory pointer */
134 uint32_t offset; /* Currently used offset */
135 uint32_t size; /* Total buffer size */
136 };
137 #define SCRATCH_BUFFER_SIZE 1024
138
139 #define RTS_PID_LOG(_l, _fmt, ...) \
140 RT_LOG_##_l(_l, "PID %d: " _fmt, curproc ? curproc->p_pid : 0, \
141 ## __VA_ARGS__)
142
143 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
144
145 /* NB: these are not modified */
146 static struct sockaddr route_src = { 2, PF_ROUTE, };
147 static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, };
148
149 /* These are external hooks for CARP. */
150 int (*carp_get_vhid_p)(struct ifaddr *);
151
152 /*
153 * Used by rtsock callback code to decide whether to filter the update
154 * notification to a socket bound to a particular FIB.
155 */
156 #define RTS_FILTER_FIB M_PROTO8
157 /*
158 * Used to store address family of the notification.
159 */
160 #define m_rtsock_family m_pkthdr.PH_loc.eight[0]
161
162 struct rcb {
163 LIST_ENTRY(rcb) list;
164 struct socket *rcb_socket;
165 sa_family_t rcb_family;
166 };
167
168 typedef struct {
169 LIST_HEAD(, rcb) cblist;
170 int ip_count; /* attached w/ AF_INET */
171 int ip6_count; /* attached w/ AF_INET6 */
172 int any_count; /* total attached */
173 } route_cb_t;
174 VNET_DEFINE_STATIC(route_cb_t, route_cb);
175 #define V_route_cb VNET(route_cb)
176
177 struct mtx rtsock_mtx;
178 MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
179
180 #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx)
181 #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
182 #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED)
183
184 SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
185
186 struct walkarg {
187 int family;
188 int w_tmemsize;
189 int w_op, w_arg;
190 caddr_t w_tmem;
191 struct sysctl_req *w_req;
192 struct sockaddr *dst;
193 struct sockaddr *mask;
194 };
195
196 static void rts_input(struct mbuf *m);
197 static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo);
198 static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo,
199 struct walkarg *w, int *plen);
200 static int rt_xaddrs(caddr_t cp, caddr_t cplim,
201 struct rt_addrinfo *rtinfo);
202 static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb);
203 static int sysctl_dumpentry(struct rtentry *rt, void *vw);
204 static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh,
205 uint32_t weight, struct walkarg *w);
206 static int sysctl_iflist(int af, struct walkarg *w);
207 static int sysctl_ifmalist(int af, struct walkarg *w);
208 static void rt_getmetrics(const struct rtentry *rt,
209 const struct nhop_object *nh, struct rt_metrics *out);
210 static void rt_dispatch(struct mbuf *, sa_family_t);
211 static void rt_ifannouncemsg(struct ifnet *ifp, int what);
212 static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
213 struct rt_msghdr *rtm, struct rib_cmd_info *rc);
214 static int update_rtm_from_rc(struct rt_addrinfo *info,
215 struct rt_msghdr **prtm, int alloc_len,
216 struct rib_cmd_info *rc, struct nhop_object *nh);
217 static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm,
218 struct mbuf *m, sa_family_t saf, u_int fibnum,
219 int rtm_errno);
220 static void rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc);
221 static void rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask);
222
223 static struct netisr_handler rtsock_nh = {
224 .nh_name = "rtsock",
225 .nh_handler = rts_input,
226 .nh_proto = NETISR_ROUTE,
227 .nh_policy = NETISR_POLICY_SOURCE,
228 };
229
230 static int
sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)231 sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
232 {
233 int error, qlimit;
234
235 netisr_getqlimit(&rtsock_nh, &qlimit);
236 error = sysctl_handle_int(oidp, &qlimit, 0, req);
237 if (error || !req->newptr)
238 return (error);
239 if (qlimit < 1)
240 return (EINVAL);
241 return (netisr_setqlimit(&rtsock_nh, qlimit));
242 }
243 SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen,
244 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
245 0, 0, sysctl_route_netisr_maxqlen, "I",
246 "maximum routing socket dispatch queue length");
247
248 static void
vnet_rts_init(void)249 vnet_rts_init(void)
250 {
251 int tmp;
252
253 if (IS_DEFAULT_VNET(curvnet)) {
254 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
255 rtsock_nh.nh_qlimit = tmp;
256 netisr_register(&rtsock_nh);
257 }
258 #ifdef VIMAGE
259 else
260 netisr_register_vnet(&rtsock_nh);
261 #endif
262 }
263 VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
264 vnet_rts_init, NULL);
265
266 #ifdef VIMAGE
267 static void
vnet_rts_uninit(void)268 vnet_rts_uninit(void)
269 {
270
271 netisr_unregister_vnet(&rtsock_nh);
272 }
273 VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD,
274 vnet_rts_uninit, NULL);
275 #endif
276
277 static void
report_route_event(const struct rib_cmd_info * rc,void * _cbdata)278 report_route_event(const struct rib_cmd_info *rc, void *_cbdata)
279 {
280 uint32_t fibnum = (uint32_t)(uintptr_t)_cbdata;
281 struct nhop_object *nh;
282
283 nh = rc->rc_cmd == RTM_DELETE ? rc->rc_nh_old : rc->rc_nh_new;
284 rt_routemsg(rc->rc_cmd, rc->rc_rt, nh, fibnum);
285 }
286
287 static void
rts_handle_route_event(uint32_t fibnum,const struct rib_cmd_info * rc)288 rts_handle_route_event(uint32_t fibnum, const struct rib_cmd_info *rc)
289 {
290 #ifdef ROUTE_MPATH
291 if ((rc->rc_nh_new && NH_IS_NHGRP(rc->rc_nh_new)) ||
292 (rc->rc_nh_old && NH_IS_NHGRP(rc->rc_nh_old))) {
293 rib_decompose_notification(rc, report_route_event,
294 (void *)(uintptr_t)fibnum);
295 } else
296 #endif
297 report_route_event(rc, (void *)(uintptr_t)fibnum);
298 }
299 static struct rtbridge rtsbridge = {
300 .route_f = rts_handle_route_event,
301 .ifmsg_f = rtsock_ifmsg,
302 };
303 static struct rtbridge *rtsbridge_orig_p;
304
305 static void
rtsock_notify_event(uint32_t fibnum,const struct rib_cmd_info * rc)306 rtsock_notify_event(uint32_t fibnum, const struct rib_cmd_info *rc)
307 {
308 netlink_callback_p->route_f(fibnum, rc);
309 }
310
311 static void
rtsock_init(void)312 rtsock_init(void)
313 {
314 rtsbridge_orig_p = rtsock_callback_p;
315 rtsock_callback_p = &rtsbridge;
316 }
317 SYSINIT(rtsock_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rtsock_init, NULL);
318
319 static void
rts_handle_ifnet_arrival(void * arg __unused,struct ifnet * ifp)320 rts_handle_ifnet_arrival(void *arg __unused, struct ifnet *ifp)
321 {
322 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
323 }
324 EVENTHANDLER_DEFINE(ifnet_arrival_event, rts_handle_ifnet_arrival, NULL, 0);
325
326 static void
rts_handle_ifnet_departure(void * arg __unused,struct ifnet * ifp)327 rts_handle_ifnet_departure(void *arg __unused, struct ifnet *ifp)
328 {
329 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
330 }
331 EVENTHANDLER_DEFINE(ifnet_departure_event, rts_handle_ifnet_departure, NULL, 0);
332
333 static void
rts_append_data(struct socket * so,struct mbuf * m)334 rts_append_data(struct socket *so, struct mbuf *m)
335 {
336
337 if (sbappendaddr(&so->so_rcv, &route_src, m, NULL) == 0) {
338 soroverflow(so);
339 m_freem(m);
340 } else
341 sorwakeup(so);
342 }
343
344 static void
rts_input(struct mbuf * m)345 rts_input(struct mbuf *m)
346 {
347 struct rcb *rcb;
348 struct socket *last;
349
350 last = NULL;
351 RTSOCK_LOCK();
352 LIST_FOREACH(rcb, &V_route_cb.cblist, list) {
353 if (rcb->rcb_family != AF_UNSPEC &&
354 rcb->rcb_family != m->m_rtsock_family)
355 continue;
356 if ((m->m_flags & RTS_FILTER_FIB) &&
357 M_GETFIB(m) != rcb->rcb_socket->so_fibnum)
358 continue;
359 if (last != NULL) {
360 struct mbuf *n;
361
362 n = m_copym(m, 0, M_COPYALL, M_NOWAIT);
363 if (n != NULL)
364 rts_append_data(last, n);
365 }
366 last = rcb->rcb_socket;
367 }
368 if (last != NULL)
369 rts_append_data(last, m);
370 else
371 m_freem(m);
372 RTSOCK_UNLOCK();
373 }
374
375 static void
rts_close(struct socket * so)376 rts_close(struct socket *so)
377 {
378
379 soisdisconnected(so);
380 }
381
382 static SYSCTL_NODE(_net, OID_AUTO, rtsock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
383 "Routing socket infrastructure");
384 static u_long rts_sendspace = 8192;
385 SYSCTL_ULONG(_net_rtsock, OID_AUTO, sendspace, CTLFLAG_RW, &rts_sendspace, 0,
386 "Default routing socket send space");
387 static u_long rts_recvspace = 8192;
388 SYSCTL_ULONG(_net_rtsock, OID_AUTO, recvspace, CTLFLAG_RW, &rts_recvspace, 0,
389 "Default routing socket receive space");
390
391 static int
rts_attach(struct socket * so,int proto,struct thread * td)392 rts_attach(struct socket *so, int proto, struct thread *td)
393 {
394 struct rcb *rcb;
395 int error;
396
397 error = soreserve(so, rts_sendspace, rts_recvspace);
398 if (error)
399 return (error);
400
401 rcb = malloc(sizeof(*rcb), M_PCB, M_WAITOK);
402 rcb->rcb_socket = so;
403 rcb->rcb_family = proto;
404
405 so->so_pcb = rcb;
406 so->so_fibnum = td->td_proc->p_fibnum;
407 so->so_options |= SO_USELOOPBACK;
408
409 RTSOCK_LOCK();
410 LIST_INSERT_HEAD(&V_route_cb.cblist, rcb, list);
411 switch (proto) {
412 case AF_INET:
413 V_route_cb.ip_count++;
414 break;
415 case AF_INET6:
416 V_route_cb.ip6_count++;
417 break;
418 }
419 V_route_cb.any_count++;
420 RTSOCK_UNLOCK();
421 soisconnected(so);
422
423 return (0);
424 }
425
426 static int
rts_ctloutput(struct socket * so,struct sockopt * sopt)427 rts_ctloutput(struct socket *so, struct sockopt *sopt)
428 {
429 int error, optval;
430
431 error = ENOPROTOOPT;
432 if (sopt->sopt_dir == SOPT_SET) {
433 switch (sopt->sopt_level) {
434 case SOL_SOCKET:
435 switch (sopt->sopt_name) {
436 case SO_SETFIB:
437 error = sooptcopyin(sopt, &optval,
438 sizeof(optval), sizeof(optval));
439 if (error != 0)
440 break;
441 error = sosetfib(so, optval);
442 break;
443 }
444 break;
445 }
446 }
447 return (error);
448 }
449
450 static void
rts_detach(struct socket * so)451 rts_detach(struct socket *so)
452 {
453 struct rcb *rcb = so->so_pcb;
454
455 RTSOCK_LOCK();
456 LIST_REMOVE(rcb, list);
457 switch(rcb->rcb_family) {
458 case AF_INET:
459 V_route_cb.ip_count--;
460 break;
461 case AF_INET6:
462 V_route_cb.ip6_count--;
463 break;
464 }
465 V_route_cb.any_count--;
466 RTSOCK_UNLOCK();
467 free(rcb, M_PCB);
468 so->so_pcb = NULL;
469 }
470
471 static int
rts_disconnect(struct socket * so)472 rts_disconnect(struct socket *so)
473 {
474
475 return (ENOTCONN);
476 }
477
478 static int
rts_shutdown(struct socket * so,enum shutdown_how how)479 rts_shutdown(struct socket *so, enum shutdown_how how)
480 {
481 /*
482 * Note: route socket marks itself as connected through its lifetime.
483 */
484 switch (how) {
485 case SHUT_RD:
486 sorflush(so);
487 break;
488 case SHUT_RDWR:
489 sorflush(so);
490 /* FALLTHROUGH */
491 case SHUT_WR:
492 socantsendmore(so);
493 }
494
495 return (0);
496 }
497
498 #ifndef _SOCKADDR_UNION_DEFINED
499 #define _SOCKADDR_UNION_DEFINED
500 /*
501 * The union of all possible address formats we handle.
502 */
503 union sockaddr_union {
504 struct sockaddr sa;
505 struct sockaddr_in sin;
506 struct sockaddr_in6 sin6;
507 };
508 #endif /* _SOCKADDR_UNION_DEFINED */
509
510 static int
rtm_get_jailed(struct rt_addrinfo * info,struct ifnet * ifp,struct nhop_object * nh,union sockaddr_union * saun,struct ucred * cred)511 rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
512 struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred)
513 {
514 #if defined(INET) || defined(INET6)
515 struct epoch_tracker et;
516 #endif
517
518 /* First, see if the returned address is part of the jail. */
519 if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) {
520 info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
521 return (0);
522 }
523
524 switch (info->rti_info[RTAX_DST]->sa_family) {
525 #ifdef INET
526 case AF_INET:
527 {
528 struct in_addr ia;
529 struct ifaddr *ifa;
530 int found;
531
532 found = 0;
533 /*
534 * Try to find an address on the given outgoing interface
535 * that belongs to the jail.
536 */
537 NET_EPOCH_ENTER(et);
538 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
539 struct sockaddr *sa;
540 sa = ifa->ifa_addr;
541 if (sa->sa_family != AF_INET)
542 continue;
543 ia = ((struct sockaddr_in *)sa)->sin_addr;
544 if (prison_check_ip4(cred, &ia) == 0) {
545 found = 1;
546 break;
547 }
548 }
549 NET_EPOCH_EXIT(et);
550 if (!found) {
551 /*
552 * As a last resort return the 'default' jail address.
553 */
554 ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)->
555 sin_addr;
556 if (prison_get_ip4(cred, &ia) != 0)
557 return (ESRCH);
558 }
559 bzero(&saun->sin, sizeof(struct sockaddr_in));
560 saun->sin.sin_len = sizeof(struct sockaddr_in);
561 saun->sin.sin_family = AF_INET;
562 saun->sin.sin_addr.s_addr = ia.s_addr;
563 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
564 break;
565 }
566 #endif
567 #ifdef INET6
568 case AF_INET6:
569 {
570 struct in6_addr ia6;
571 struct ifaddr *ifa;
572 int found;
573
574 found = 0;
575 /*
576 * Try to find an address on the given outgoing interface
577 * that belongs to the jail.
578 */
579 NET_EPOCH_ENTER(et);
580 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
581 struct sockaddr *sa;
582 sa = ifa->ifa_addr;
583 if (sa->sa_family != AF_INET6)
584 continue;
585 bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
586 &ia6, sizeof(struct in6_addr));
587 if (prison_check_ip6(cred, &ia6) == 0) {
588 found = 1;
589 break;
590 }
591 }
592 NET_EPOCH_EXIT(et);
593 if (!found) {
594 /*
595 * As a last resort return the 'default' jail address.
596 */
597 ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)->
598 sin6_addr;
599 if (prison_get_ip6(cred, &ia6) != 0)
600 return (ESRCH);
601 }
602 bzero(&saun->sin6, sizeof(struct sockaddr_in6));
603 saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
604 saun->sin6.sin6_family = AF_INET6;
605 bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
606 if (sa6_recoverscope(&saun->sin6) != 0)
607 return (ESRCH);
608 info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
609 break;
610 }
611 #endif
612 default:
613 return (ESRCH);
614 }
615 return (0);
616 }
617
618 static int
fill_blackholeinfo(struct rt_addrinfo * info,union sockaddr_union * saun)619 fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun)
620 {
621 struct ifaddr *ifa;
622 sa_family_t saf;
623
624 if (V_loif == NULL) {
625 RTS_PID_LOG(LOG_INFO, "Unable to add blackhole/reject nhop without loopback");
626 return (ENOTSUP);
627 }
628 info->rti_ifp = V_loif;
629
630 saf = info->rti_info[RTAX_DST]->sa_family;
631
632 CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) {
633 if (ifa->ifa_addr->sa_family == saf) {
634 info->rti_ifa = ifa;
635 break;
636 }
637 }
638 if (info->rti_ifa == NULL) {
639 RTS_PID_LOG(LOG_INFO, "Unable to find ifa for blackhole/reject nhop");
640 return (ENOTSUP);
641 }
642
643 bzero(saun, sizeof(union sockaddr_union));
644 switch (saf) {
645 #ifdef INET
646 case AF_INET:
647 saun->sin.sin_family = AF_INET;
648 saun->sin.sin_len = sizeof(struct sockaddr_in);
649 saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
650 break;
651 #endif
652 #ifdef INET6
653 case AF_INET6:
654 saun->sin6.sin6_family = AF_INET6;
655 saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
656 saun->sin6.sin6_addr = in6addr_loopback;
657 break;
658 #endif
659 default:
660 RTS_PID_LOG(LOG_INFO, "unsupported family: %d", saf);
661 return (ENOTSUP);
662 }
663 info->rti_info[RTAX_GATEWAY] = &saun->sa;
664 info->rti_flags |= RTF_GATEWAY;
665
666 return (0);
667 }
668
669 /*
670 * Fills in @info based on userland-provided @rtm message.
671 *
672 * Returns 0 on success.
673 */
674 static int
fill_addrinfo(struct rt_msghdr * rtm,int len,struct linear_buffer * lb,u_int fibnum,struct rt_addrinfo * info)675 fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum,
676 struct rt_addrinfo *info)
677 {
678 int error;
679
680 rtm->rtm_pid = curproc->p_pid;
681 info->rti_addrs = rtm->rtm_addrs;
682
683 info->rti_mflags = rtm->rtm_inits;
684 info->rti_rmx = &rtm->rtm_rmx;
685
686 /*
687 * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6
688 * link-local address because rtrequest requires addresses with
689 * embedded scope id.
690 */
691 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info))
692 return (EINVAL);
693
694 info->rti_flags = rtm->rtm_flags;
695 error = cleanup_xaddrs(info, lb);
696 if (error != 0)
697 return (error);
698 /*
699 * Verify that the caller has the appropriate privilege; RTM_GET
700 * is the only operation the non-superuser is allowed.
701 */
702 if (rtm->rtm_type != RTM_GET) {
703 error = priv_check(curthread, PRIV_NET_ROUTE);
704 if (error != 0)
705 return (error);
706 }
707
708 /*
709 * The given gateway address may be an interface address.
710 * For example, issuing a "route change" command on a route
711 * entry that was created from a tunnel, and the gateway
712 * address given is the local end point. In this case the
713 * RTF_GATEWAY flag must be cleared or the destination will
714 * not be reachable even though there is no error message.
715 */
716 if (info->rti_info[RTAX_GATEWAY] != NULL &&
717 info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) {
718 struct nhop_object *nh;
719
720 /*
721 * A host route through the loopback interface is
722 * installed for each interface address. In pre 8.0
723 * releases the interface address of a PPP link type
724 * is not reachable locally. This behavior is fixed as
725 * part of the new L2/L3 redesign and rewrite work. The
726 * signature of this interface address route is the
727 * AF_LINK sa_family type of the gateway, and the
728 * rt_ifp has the IFF_LOOPBACK flag set.
729 */
730 nh = rib_lookup(fibnum, info->rti_info[RTAX_GATEWAY], NHR_NONE, 0);
731 if (nh != NULL && nh->gw_sa.sa_family == AF_LINK &&
732 nh->nh_ifp->if_flags & IFF_LOOPBACK) {
733 info->rti_flags &= ~RTF_GATEWAY;
734 info->rti_flags |= RTF_GWFLAG_COMPAT;
735 }
736 }
737
738 return (0);
739 }
740
741 static struct nhop_object *
select_nhop(struct nhop_object * nh,const struct sockaddr * gw)742 select_nhop(struct nhop_object *nh, const struct sockaddr *gw)
743 {
744 if (!NH_IS_NHGRP(nh))
745 return (nh);
746 #ifdef ROUTE_MPATH
747 const struct weightened_nhop *wn;
748 uint32_t num_nhops;
749 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
750 if (gw == NULL)
751 return (wn[0].nh);
752 for (int i = 0; i < num_nhops; i++) {
753 if (match_nhop_gw(wn[i].nh, gw))
754 return (wn[i].nh);
755 }
756 #endif
757 return (NULL);
758 }
759
760 /*
761 * Handles RTM_GET message from routing socket, returning matching rt.
762 *
763 * Returns:
764 * 0 on success, with locked and referenced matching rt in @rt_nrt
765 * errno of failure
766 */
767 static int
handle_rtm_get(struct rt_addrinfo * info,u_int fibnum,struct rt_msghdr * rtm,struct rib_cmd_info * rc)768 handle_rtm_get(struct rt_addrinfo *info, u_int fibnum,
769 struct rt_msghdr *rtm, struct rib_cmd_info *rc)
770 {
771 RIB_RLOCK_TRACKER;
772 struct rib_head *rnh;
773 struct nhop_object *nh;
774 sa_family_t saf;
775
776 saf = info->rti_info[RTAX_DST]->sa_family;
777
778 rnh = rt_tables_get_rnh(fibnum, saf);
779 if (rnh == NULL)
780 return (EAFNOSUPPORT);
781
782 RIB_RLOCK(rnh);
783
784 /*
785 * By (implicit) convention host route (one without netmask)
786 * means longest-prefix-match request and the route with netmask
787 * means exact-match lookup.
788 * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128
789 * prefixes, use original data to check for the netmask presence.
790 */
791 if ((rtm->rtm_addrs & RTA_NETMASK) == 0) {
792 /*
793 * Provide longest prefix match for
794 * address lookup (no mask).
795 * 'route -n get addr'
796 */
797 rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr(
798 info->rti_info[RTAX_DST], &rnh->head);
799 } else
800 rc->rc_rt = (struct rtentry *) rnh->rnh_lookup(
801 info->rti_info[RTAX_DST],
802 info->rti_info[RTAX_NETMASK], &rnh->head);
803
804 if (rc->rc_rt == NULL) {
805 RIB_RUNLOCK(rnh);
806 return (ESRCH);
807 }
808
809 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
810 if (nh == NULL) {
811 RIB_RUNLOCK(rnh);
812 return (ESRCH);
813 }
814 /*
815 * If performing proxied L2 entry insertion, and
816 * the actual PPP host entry is found, perform
817 * another search to retrieve the prefix route of
818 * the local end point of the PPP link.
819 * TODO: move this logic to userland.
820 */
821 if (rtm->rtm_flags & RTF_ANNOUNCE) {
822 struct sockaddr_storage laddr;
823
824 if (nh->nh_ifp != NULL &&
825 nh->nh_ifp->if_type == IFT_PROPVIRTUAL) {
826 struct ifaddr *ifa;
827
828 ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1,
829 RT_ALL_FIBS);
830 if (ifa != NULL)
831 rt_maskedcopy(ifa->ifa_addr,
832 (struct sockaddr *)&laddr,
833 ifa->ifa_netmask);
834 } else
835 rt_maskedcopy(nh->nh_ifa->ifa_addr,
836 (struct sockaddr *)&laddr,
837 nh->nh_ifa->ifa_netmask);
838 /*
839 * refactor rt and no lock operation necessary
840 */
841 rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(
842 (struct sockaddr *)&laddr, &rnh->head);
843 if (rc->rc_rt == NULL) {
844 RIB_RUNLOCK(rnh);
845 return (ESRCH);
846 }
847 nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]);
848 if (nh == NULL) {
849 RIB_RUNLOCK(rnh);
850 return (ESRCH);
851 }
852 }
853 rc->rc_nh_new = nh;
854 rc->rc_nh_weight = rc->rc_rt->rt_weight;
855 RIB_RUNLOCK(rnh);
856
857 return (0);
858 }
859
860 static void
init_sockaddrs_family(int family,struct sockaddr * dst,struct sockaddr * mask)861 init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask)
862 {
863 #ifdef INET
864 if (family == AF_INET) {
865 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
866 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
867
868 bzero(dst4, sizeof(struct sockaddr_in));
869 bzero(mask4, sizeof(struct sockaddr_in));
870
871 dst4->sin_family = AF_INET;
872 dst4->sin_len = sizeof(struct sockaddr_in);
873 mask4->sin_family = AF_INET;
874 mask4->sin_len = sizeof(struct sockaddr_in);
875 }
876 #endif
877 #ifdef INET6
878 if (family == AF_INET6) {
879 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
880 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
881
882 bzero(dst6, sizeof(struct sockaddr_in6));
883 bzero(mask6, sizeof(struct sockaddr_in6));
884
885 dst6->sin6_family = AF_INET6;
886 dst6->sin6_len = sizeof(struct sockaddr_in6);
887 mask6->sin6_family = AF_INET6;
888 mask6->sin6_len = sizeof(struct sockaddr_in6);
889 }
890 #endif
891 }
892
893 static void
export_rtaddrs(const struct rtentry * rt,struct sockaddr * dst,struct sockaddr * mask)894 export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst,
895 struct sockaddr *mask)
896 {
897 #ifdef INET
898 if (dst->sa_family == AF_INET) {
899 struct sockaddr_in *dst4 = (struct sockaddr_in *)dst;
900 struct sockaddr_in *mask4 = (struct sockaddr_in *)mask;
901 uint32_t scopeid = 0;
902 rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr,
903 &scopeid);
904 return;
905 }
906 #endif
907 #ifdef INET6
908 if (dst->sa_family == AF_INET6) {
909 struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst;
910 struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask;
911 uint32_t scopeid = 0;
912 rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr,
913 &mask6->sin6_addr, &scopeid);
914 dst6->sin6_scope_id = scopeid;
915 return;
916 }
917 #endif
918 }
919
920 static int
update_rtm_from_info(struct rt_addrinfo * info,struct rt_msghdr ** prtm,int alloc_len)921 update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm,
922 int alloc_len)
923 {
924 struct rt_msghdr *rtm, *orig_rtm = NULL;
925 struct walkarg w;
926 int len;
927
928 rtm = *prtm;
929 /* Check if we need to realloc storage */
930 rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len);
931 if (len > alloc_len) {
932 struct rt_msghdr *tmp_rtm;
933
934 tmp_rtm = malloc(len, M_TEMP, M_NOWAIT);
935 if (tmp_rtm == NULL)
936 return (ENOBUFS);
937 bcopy(rtm, tmp_rtm, rtm->rtm_msglen);
938 orig_rtm = rtm;
939 rtm = tmp_rtm;
940 alloc_len = len;
941
942 /*
943 * Delay freeing original rtm as info contains
944 * data referencing it.
945 */
946 }
947
948 w = (struct walkarg ){
949 .w_tmem = (caddr_t)rtm,
950 .w_tmemsize = alloc_len,
951 };
952 rtsock_msg_buffer(rtm->rtm_type, info, &w, &len);
953 rtm->rtm_addrs = info->rti_addrs;
954
955 if (orig_rtm != NULL)
956 free(orig_rtm, M_TEMP);
957 *prtm = rtm;
958 return (0);
959 }
960
961
962 /*
963 * Update sockaddrs, flags, etc in @prtm based on @rc data.
964 * rtm can be reallocated.
965 *
966 * Returns 0 on success, along with pointer to (potentially reallocated)
967 * rtm.
968 *
969 */
970 static int
update_rtm_from_rc(struct rt_addrinfo * info,struct rt_msghdr ** prtm,int alloc_len,struct rib_cmd_info * rc,struct nhop_object * nh)971 update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm,
972 int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh)
973 {
974 union sockaddr_union saun;
975 struct rt_msghdr *rtm;
976 struct ifnet *ifp;
977 int error;
978
979 rtm = *prtm;
980 union sockaddr_union sa_dst, sa_mask;
981 int family = info->rti_info[RTAX_DST]->sa_family;
982 init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa);
983 export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa);
984
985 info->rti_info[RTAX_DST] = &sa_dst.sa;
986 info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa;
987 info->rti_info[RTAX_GATEWAY] = &nh->gw_sa;
988 info->rti_info[RTAX_GENMASK] = 0;
989 ifp = nh->nh_ifp;
990 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
991 if (ifp) {
992 info->rti_info[RTAX_IFP] =
993 ifp->if_addr->ifa_addr;
994 error = rtm_get_jailed(info, ifp, nh,
995 &saun, curthread->td_ucred);
996 if (error != 0)
997 return (error);
998 if (ifp->if_flags & IFF_POINTOPOINT)
999 info->rti_info[RTAX_BRD] =
1000 nh->nh_ifa->ifa_dstaddr;
1001 rtm->rtm_index = ifp->if_index;
1002 } else {
1003 info->rti_info[RTAX_IFP] = NULL;
1004 info->rti_info[RTAX_IFA] = NULL;
1005 }
1006 } else if (ifp != NULL)
1007 rtm->rtm_index = ifp->if_index;
1008
1009 if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0)
1010 return (error);
1011
1012 rtm = *prtm;
1013 rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh);
1014 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
1015 rtm->rtm_flags = RTF_GATEWAY |
1016 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
1017 rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx);
1018 rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight;
1019
1020 return (0);
1021 }
1022
1023 #ifdef ROUTE_MPATH
1024 static void
save_del_notification(const struct rib_cmd_info * rc,void * _cbdata)1025 save_del_notification(const struct rib_cmd_info *rc, void *_cbdata)
1026 {
1027 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
1028
1029 if (rc->rc_cmd == RTM_DELETE)
1030 *rc_new = *rc;
1031 }
1032
1033 static void
save_add_notification(const struct rib_cmd_info * rc,void * _cbdata)1034 save_add_notification(const struct rib_cmd_info *rc, void *_cbdata)
1035 {
1036 struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata;
1037
1038 if (rc->rc_cmd == RTM_ADD)
1039 *rc_new = *rc;
1040 }
1041 #endif
1042
1043 #if defined(INET6) || defined(INET)
1044 static struct sockaddr *
alloc_sockaddr_aligned(struct linear_buffer * lb,int len)1045 alloc_sockaddr_aligned(struct linear_buffer *lb, int len)
1046 {
1047 len = roundup2(len, sizeof(uint64_t));
1048 if (lb->offset + len > lb->size)
1049 return (NULL);
1050 struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset);
1051 lb->offset += len;
1052 return (sa);
1053 }
1054 #endif
1055
1056 static int
rts_send(struct socket * so,int flags,struct mbuf * m,struct sockaddr * nam,struct mbuf * control,struct thread * td)1057 rts_send(struct socket *so, int flags, struct mbuf *m,
1058 struct sockaddr *nam, struct mbuf *control, struct thread *td)
1059 {
1060 struct rt_msghdr *rtm = NULL;
1061 struct rt_addrinfo info;
1062 struct epoch_tracker et;
1063 #ifdef INET6
1064 struct sockaddr_storage ss;
1065 struct sockaddr_in6 *sin6;
1066 int i, rti_need_deembed = 0;
1067 #endif
1068 int alloc_len = 0, len, error = 0, fibnum;
1069 sa_family_t saf = AF_UNSPEC;
1070 struct rib_cmd_info rc;
1071 struct nhop_object *nh;
1072
1073 if ((flags & PRUS_OOB) || control != NULL) {
1074 m_freem(m);
1075 if (control != NULL)
1076 m_freem(control);
1077 return (EOPNOTSUPP);
1078 }
1079
1080 fibnum = so->so_fibnum;
1081 #define senderr(e) { error = e; goto flush;}
1082 if (m == NULL || ((m->m_len < sizeof(long)) &&
1083 (m = m_pullup(m, sizeof(long))) == NULL))
1084 return (ENOBUFS);
1085 if ((m->m_flags & M_PKTHDR) == 0)
1086 panic("route_output");
1087 NET_EPOCH_ENTER(et);
1088 len = m->m_pkthdr.len;
1089 if (len < sizeof(*rtm) ||
1090 len != mtod(m, struct rt_msghdr *)->rtm_msglen)
1091 senderr(EINVAL);
1092
1093 /*
1094 * Most of current messages are in range 200-240 bytes,
1095 * minimize possible re-allocation on reply using larger size
1096 * buffer aligned on 1k boundaty.
1097 */
1098 alloc_len = roundup2(len, 1024);
1099 int total_len = alloc_len + SCRATCH_BUFFER_SIZE;
1100 if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL)
1101 senderr(ENOBUFS);
1102
1103 m_copydata(m, 0, len, (caddr_t)rtm);
1104 bzero(&info, sizeof(info));
1105 nh = NULL;
1106 struct linear_buffer lb = {
1107 .base = (char *)rtm + alloc_len,
1108 .size = SCRATCH_BUFFER_SIZE,
1109 };
1110
1111 if (rtm->rtm_version != RTM_VERSION) {
1112 /* Do not touch message since format is unknown */
1113 free(rtm, M_TEMP);
1114 rtm = NULL;
1115 senderr(EPROTONOSUPPORT);
1116 }
1117
1118 /*
1119 * Starting from here, it is possible
1120 * to alter original message and insert
1121 * caller PID and error value.
1122 */
1123
1124 if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) {
1125 senderr(error);
1126 }
1127 /* fill_addringo() embeds scope into IPv6 addresses */
1128 #ifdef INET6
1129 rti_need_deembed = 1;
1130 #endif
1131
1132 saf = info.rti_info[RTAX_DST]->sa_family;
1133
1134 /* support for new ARP code */
1135 if (rtm->rtm_flags & RTF_LLDATA) {
1136 error = lla_rt_output(rtm, &info);
1137 goto flush;
1138 }
1139
1140 union sockaddr_union gw_saun;
1141 int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT);
1142 if (blackhole_flags != 0) {
1143 if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT))
1144 error = fill_blackholeinfo(&info, &gw_saun);
1145 else {
1146 RTS_PID_LOG(LOG_DEBUG, "both BLACKHOLE and REJECT flags specifiied");
1147 error = EINVAL;
1148 }
1149 if (error != 0)
1150 senderr(error);
1151 }
1152
1153 switch (rtm->rtm_type) {
1154 case RTM_ADD:
1155 case RTM_CHANGE:
1156 if (rtm->rtm_type == RTM_ADD) {
1157 if (info.rti_info[RTAX_GATEWAY] == NULL) {
1158 RTS_PID_LOG(LOG_DEBUG, "RTM_ADD w/o gateway");
1159 senderr(EINVAL);
1160 }
1161 }
1162 error = rib_action(fibnum, rtm->rtm_type, &info, &rc);
1163 if (error == 0) {
1164 rtsock_notify_event(fibnum, &rc);
1165 #ifdef ROUTE_MPATH
1166 if (NH_IS_NHGRP(rc.rc_nh_new) ||
1167 (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) {
1168 struct rib_cmd_info rc_simple = {};
1169 rib_decompose_notification(&rc,
1170 save_add_notification, (void *)&rc_simple);
1171 rc = rc_simple;
1172 }
1173 #endif
1174 /* nh MAY be empty if RTM_CHANGE request is no-op */
1175 nh = rc.rc_nh_new;
1176 if (nh != NULL) {
1177 rtm->rtm_index = nh->nh_ifp->if_index;
1178 rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh);
1179 }
1180 }
1181 break;
1182
1183 case RTM_DELETE:
1184 error = rib_action(fibnum, RTM_DELETE, &info, &rc);
1185 if (error == 0) {
1186 rtsock_notify_event(fibnum, &rc);
1187 #ifdef ROUTE_MPATH
1188 if (NH_IS_NHGRP(rc.rc_nh_old) ||
1189 (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) {
1190 struct rib_cmd_info rc_simple = {};
1191 rib_decompose_notification(&rc,
1192 save_del_notification, (void *)&rc_simple);
1193 rc = rc_simple;
1194 }
1195 #endif
1196 nh = rc.rc_nh_old;
1197 }
1198 break;
1199
1200 case RTM_GET:
1201 error = handle_rtm_get(&info, fibnum, rtm, &rc);
1202 if (error != 0)
1203 senderr(error);
1204 nh = rc.rc_nh_new;
1205
1206 if (!rt_is_exportable(rc.rc_rt, curthread->td_ucred))
1207 senderr(ESRCH);
1208 break;
1209
1210 default:
1211 senderr(EOPNOTSUPP);
1212 }
1213
1214 if (error == 0 && nh != NULL) {
1215 error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh);
1216 /*
1217 * Note that some sockaddr pointers may have changed to
1218 * point to memory outsize @rtm. Some may be pointing
1219 * to the on-stack variables.
1220 * Given that, any pointer in @info CANNOT BE USED.
1221 */
1222
1223 /*
1224 * scopeid deembedding has been performed while
1225 * writing updated rtm in rtsock_msg_buffer().
1226 * With that in mind, skip deembedding procedure below.
1227 */
1228 #ifdef INET6
1229 rti_need_deembed = 0;
1230 #endif
1231 }
1232
1233 flush:
1234 NET_EPOCH_EXIT(et);
1235
1236 #ifdef INET6
1237 if (rtm != NULL) {
1238 if (rti_need_deembed) {
1239 /* sin6_scope_id is recovered before sending rtm. */
1240 sin6 = (struct sockaddr_in6 *)&ss;
1241 for (i = 0; i < RTAX_MAX; i++) {
1242 if (info.rti_info[i] == NULL)
1243 continue;
1244 if (info.rti_info[i]->sa_family != AF_INET6)
1245 continue;
1246 bcopy(info.rti_info[i], sin6, sizeof(*sin6));
1247 if (sa6_recoverscope(sin6) == 0)
1248 bcopy(sin6, info.rti_info[i],
1249 sizeof(*sin6));
1250 }
1251 if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) {
1252 if (error != 0)
1253 error = ENOBUFS;
1254 }
1255 }
1256 }
1257 #endif
1258 send_rtm_reply(so, rtm, m, saf, fibnum, error);
1259
1260 return (error);
1261 }
1262
1263 /*
1264 * Sends the prepared reply message in @rtm to all rtsock clients.
1265 * Frees @m and @rtm.
1266 *
1267 */
1268 static void
send_rtm_reply(struct socket * so,struct rt_msghdr * rtm,struct mbuf * m,sa_family_t saf,u_int fibnum,int rtm_errno)1269 send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m,
1270 sa_family_t saf, u_int fibnum, int rtm_errno)
1271 {
1272 struct rcb *rcb = NULL;
1273
1274 /*
1275 * Check to see if we don't want our own messages.
1276 */
1277 if ((so->so_options & SO_USELOOPBACK) == 0) {
1278 if (V_route_cb.any_count <= 1) {
1279 if (rtm != NULL)
1280 free(rtm, M_TEMP);
1281 m_freem(m);
1282 return;
1283 }
1284 /* There is another listener, so construct message */
1285 rcb = so->so_pcb;
1286 }
1287
1288 if (rtm != NULL) {
1289 if (rtm_errno!= 0)
1290 rtm->rtm_errno = rtm_errno;
1291 else
1292 rtm->rtm_flags |= RTF_DONE;
1293
1294 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
1295 if (m->m_pkthdr.len < rtm->rtm_msglen) {
1296 m_freem(m);
1297 m = NULL;
1298 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
1299 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1300
1301 free(rtm, M_TEMP);
1302 }
1303 if (m != NULL) {
1304 M_SETFIB(m, fibnum);
1305 m->m_flags |= RTS_FILTER_FIB;
1306 if (rcb) {
1307 /*
1308 * XXX insure we don't get a copy by
1309 * invalidating our protocol
1310 */
1311 sa_family_t family = rcb->rcb_family;
1312 rcb->rcb_family = AF_UNSPEC;
1313 rt_dispatch(m, saf);
1314 rcb->rcb_family = family;
1315 } else
1316 rt_dispatch(m, saf);
1317 }
1318 }
1319
1320 static void
rt_getmetrics(const struct rtentry * rt,const struct nhop_object * nh,struct rt_metrics * out)1321 rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh,
1322 struct rt_metrics *out)
1323 {
1324
1325 bzero(out, sizeof(*out));
1326 out->rmx_mtu = nh->nh_mtu;
1327 out->rmx_weight = rt->rt_weight;
1328 out->rmx_nhidx = nhop_get_idx(nh);
1329 /* Kernel -> userland timebase conversion. */
1330 out->rmx_expire = nhop_get_expire(nh) ?
1331 nhop_get_expire(nh) - time_uptime + time_second : 0;
1332 }
1333
1334 /*
1335 * Extract the addresses of the passed sockaddrs.
1336 * Do a little sanity checking so as to avoid bad memory references.
1337 * This data is derived straight from userland.
1338 */
1339 static int
rt_xaddrs(caddr_t cp,caddr_t cplim,struct rt_addrinfo * rtinfo)1340 rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
1341 {
1342 struct sockaddr *sa;
1343 int i;
1344
1345 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
1346 if ((rtinfo->rti_addrs & (1 << i)) == 0)
1347 continue;
1348 sa = (struct sockaddr *)cp;
1349 /*
1350 * It won't fit.
1351 */
1352 if (cp + sa->sa_len > cplim) {
1353 RTS_PID_LOG(LOG_DEBUG, "sa_len too big for sa type %d", i);
1354 return (EINVAL);
1355 }
1356 /*
1357 * there are no more.. quit now
1358 * If there are more bits, they are in error.
1359 * I've seen this. route(1) can evidently generate these.
1360 * This causes kernel to core dump.
1361 * for compatibility, If we see this, point to a safe address.
1362 */
1363 if (sa->sa_len == 0) {
1364 rtinfo->rti_info[i] = &sa_zero;
1365 return (0); /* should be EINVAL but for compat */
1366 }
1367 /* accept it */
1368 #ifdef INET6
1369 if (sa->sa_family == AF_INET6)
1370 sa6_embedscope((struct sockaddr_in6 *)sa,
1371 V_ip6_use_defzone);
1372 #endif
1373 rtinfo->rti_info[i] = sa;
1374 cp += SA_SIZE(sa);
1375 }
1376 return (0);
1377 }
1378
1379 #ifdef INET
1380 static inline void
fill_sockaddr_inet(struct sockaddr_in * sin,struct in_addr addr)1381 fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr)
1382 {
1383
1384 const struct sockaddr_in nsin = {
1385 .sin_family = AF_INET,
1386 .sin_len = sizeof(struct sockaddr_in),
1387 .sin_addr = addr,
1388 };
1389 *sin = nsin;
1390 }
1391 #endif
1392
1393 #ifdef INET6
1394 static inline void
fill_sockaddr_inet6(struct sockaddr_in6 * sin6,const struct in6_addr * addr6,uint32_t scopeid)1395 fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6,
1396 uint32_t scopeid)
1397 {
1398
1399 const struct sockaddr_in6 nsin6 = {
1400 .sin6_family = AF_INET6,
1401 .sin6_len = sizeof(struct sockaddr_in6),
1402 .sin6_addr = *addr6,
1403 .sin6_scope_id = scopeid,
1404 };
1405 *sin6 = nsin6;
1406 }
1407 #endif
1408
1409 #if defined(INET6) || defined(INET)
1410 /*
1411 * Checks if gateway is suitable for lltable operations.
1412 * Lltable code requires AF_LINK gateway with ifindex
1413 * and mac address specified.
1414 * Returns 0 on success.
1415 */
1416 static int
cleanup_xaddrs_lladdr(struct rt_addrinfo * info)1417 cleanup_xaddrs_lladdr(struct rt_addrinfo *info)
1418 {
1419 struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY];
1420
1421 if (sdl->sdl_family != AF_LINK)
1422 return (EINVAL);
1423
1424 if (sdl->sdl_index == 0) {
1425 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gateway w/o ifindex");
1426 return (EINVAL);
1427 }
1428
1429 if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) {
1430 RTS_PID_LOG(LOG_DEBUG, "AF_LINK gw: sdl_nlen/sdl_alen too large");
1431 return (EINVAL);
1432 }
1433
1434 return (0);
1435 }
1436
1437 static int
cleanup_xaddrs_gateway(struct rt_addrinfo * info,struct linear_buffer * lb)1438 cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb)
1439 {
1440 struct sockaddr *gw = info->rti_info[RTAX_GATEWAY];
1441 struct sockaddr *sa;
1442
1443 if (info->rti_flags & RTF_LLDATA)
1444 return (cleanup_xaddrs_lladdr(info));
1445
1446 switch (gw->sa_family) {
1447 #ifdef INET
1448 case AF_INET:
1449 {
1450 struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw;
1451
1452 /* Ensure reads do not go beyoud SA boundary */
1453 if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) {
1454 RTS_PID_LOG(LOG_DEBUG, "gateway sin_len too small: %d",
1455 gw->sa_len);
1456 return (EINVAL);
1457 }
1458 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in));
1459 if (sa == NULL)
1460 return (ENOBUFS);
1461 fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr);
1462 info->rti_info[RTAX_GATEWAY] = sa;
1463 }
1464 break;
1465 #endif
1466 #ifdef INET6
1467 case AF_INET6:
1468 {
1469 struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw;
1470 if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) {
1471 RTS_PID_LOG(LOG_DEBUG, "gateway sin6_len too small: %d",
1472 gw->sa_len);
1473 return (EINVAL);
1474 }
1475 fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0);
1476 break;
1477 }
1478 #endif
1479 case AF_LINK:
1480 {
1481 struct sockaddr_dl *gw_sdl;
1482
1483 size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data);
1484 gw_sdl = (struct sockaddr_dl *)gw;
1485 if (gw_sdl->sdl_len < sdl_min_len) {
1486 RTS_PID_LOG(LOG_DEBUG, "gateway sdl_len too small: %d",
1487 gw_sdl->sdl_len);
1488 return (EINVAL);
1489 }
1490 sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short));
1491 if (sa == NULL)
1492 return (ENOBUFS);
1493
1494 const struct sockaddr_dl_short sdl = {
1495 .sdl_family = AF_LINK,
1496 .sdl_len = sizeof(struct sockaddr_dl_short),
1497 .sdl_index = gw_sdl->sdl_index,
1498 };
1499 *((struct sockaddr_dl_short *)sa) = sdl;
1500 info->rti_info[RTAX_GATEWAY] = sa;
1501 break;
1502 }
1503 }
1504
1505 return (0);
1506 }
1507 #endif
1508
1509 static void
remove_netmask(struct rt_addrinfo * info)1510 remove_netmask(struct rt_addrinfo *info)
1511 {
1512 info->rti_info[RTAX_NETMASK] = NULL;
1513 info->rti_flags |= RTF_HOST;
1514 info->rti_addrs &= ~RTA_NETMASK;
1515 }
1516
1517 #ifdef INET
1518 static int
cleanup_xaddrs_inet(struct rt_addrinfo * info,struct linear_buffer * lb)1519 cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb)
1520 {
1521 struct sockaddr_in *dst_sa, *mask_sa;
1522 const int sa_len = sizeof(struct sockaddr_in);
1523 struct in_addr dst, mask;
1524
1525 /* Check & fixup dst/netmask combination first */
1526 dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST];
1527 mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK];
1528
1529 /* Ensure reads do not go beyound the buffer size */
1530 if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) {
1531 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin_len too small: %d",
1532 dst_sa->sin_len);
1533 return (EINVAL);
1534 }
1535
1536 if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) {
1537 /*
1538 * Some older routing software encode mask length into the
1539 * sin_len, thus resulting in "truncated" sockaddr.
1540 */
1541 int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr);
1542 if (len >= 0) {
1543 mask.s_addr = 0;
1544 if (len > sizeof(struct in_addr))
1545 len = sizeof(struct in_addr);
1546 memcpy(&mask, &mask_sa->sin_addr, len);
1547 } else {
1548 RTS_PID_LOG(LOG_DEBUG, "prefix mask sin_len too small: %d",
1549 mask_sa->sin_len);
1550 return (EINVAL);
1551 }
1552 } else
1553 mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST;
1554
1555 dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr));
1556
1557 /* Construct new "clean" dst/mask sockaddresses */
1558 if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1559 return (ENOBUFS);
1560 fill_sockaddr_inet(dst_sa, dst);
1561 info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa;
1562
1563 if (mask.s_addr != INADDR_BROADCAST) {
1564 if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1565 return (ENOBUFS);
1566 fill_sockaddr_inet(mask_sa, mask);
1567 info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa;
1568 info->rti_flags &= ~RTF_HOST;
1569 } else
1570 remove_netmask(info);
1571
1572 /* Check gateway */
1573 if (info->rti_info[RTAX_GATEWAY] != NULL)
1574 return (cleanup_xaddrs_gateway(info, lb));
1575
1576 return (0);
1577 }
1578 #endif
1579
1580 #ifdef INET6
1581 static int
cleanup_xaddrs_inet6(struct rt_addrinfo * info,struct linear_buffer * lb)1582 cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb)
1583 {
1584 struct sockaddr *sa;
1585 struct sockaddr_in6 *dst_sa, *mask_sa;
1586 struct in6_addr mask, *dst;
1587 const int sa_len = sizeof(struct sockaddr_in6);
1588
1589 /* Check & fixup dst/netmask combination first */
1590 dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST];
1591 mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK];
1592
1593 if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) {
1594 RTS_PID_LOG(LOG_DEBUG, "prefix dst sin6_len too small: %d",
1595 dst_sa->sin6_len);
1596 return (EINVAL);
1597 }
1598
1599 if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) {
1600 /*
1601 * Some older routing software encode mask length into the
1602 * sin6_len, thus resulting in "truncated" sockaddr.
1603 */
1604 int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr);
1605 if (len >= 0) {
1606 bzero(&mask, sizeof(mask));
1607 if (len > sizeof(struct in6_addr))
1608 len = sizeof(struct in6_addr);
1609 memcpy(&mask, &mask_sa->sin6_addr, len);
1610 } else {
1611 RTS_PID_LOG(LOG_DEBUG, "rtsock: prefix mask sin6_len too small: %d",
1612 mask_sa->sin6_len);
1613 return (EINVAL);
1614 }
1615 } else
1616 mask = mask_sa ? mask_sa->sin6_addr : in6mask128;
1617
1618 dst = &dst_sa->sin6_addr;
1619 IN6_MASK_ADDR(dst, &mask);
1620
1621 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1622 return (ENOBUFS);
1623 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0);
1624 info->rti_info[RTAX_DST] = sa;
1625
1626 if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) {
1627 if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL)
1628 return (ENOBUFS);
1629 fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0);
1630 info->rti_info[RTAX_NETMASK] = sa;
1631 info->rti_flags &= ~RTF_HOST;
1632 } else
1633 remove_netmask(info);
1634
1635 /* Check gateway */
1636 if (info->rti_info[RTAX_GATEWAY] != NULL)
1637 return (cleanup_xaddrs_gateway(info, lb));
1638
1639 return (0);
1640 }
1641 #endif
1642
1643 static int
cleanup_xaddrs(struct rt_addrinfo * info,struct linear_buffer * lb)1644 cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb)
1645 {
1646 int error = EAFNOSUPPORT;
1647
1648 if (info->rti_info[RTAX_DST] == NULL) {
1649 RTS_PID_LOG(LOG_DEBUG, "prefix dst is not set");
1650 return (EINVAL);
1651 }
1652
1653 if (info->rti_flags & RTF_LLDATA) {
1654 /*
1655 * arp(8)/ndp(8) sends RTA_NETMASK for the associated
1656 * prefix along with the actual address in RTA_DST.
1657 * Remove netmask to avoid unnecessary address masking.
1658 */
1659 remove_netmask(info);
1660 }
1661
1662 switch (info->rti_info[RTAX_DST]->sa_family) {
1663 #ifdef INET
1664 case AF_INET:
1665 error = cleanup_xaddrs_inet(info, lb);
1666 break;
1667 #endif
1668 #ifdef INET6
1669 case AF_INET6:
1670 error = cleanup_xaddrs_inet6(info, lb);
1671 break;
1672 #endif
1673 }
1674
1675 return (error);
1676 }
1677
1678 /*
1679 * Fill in @dmask with valid netmask leaving original @smask
1680 * intact. Mostly used with radix netmasks.
1681 */
1682 struct sockaddr *
rtsock_fix_netmask(const struct sockaddr * dst,const struct sockaddr * smask,struct sockaddr_storage * dmask)1683 rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask,
1684 struct sockaddr_storage *dmask)
1685 {
1686 if (dst == NULL || smask == NULL)
1687 return (NULL);
1688
1689 memset(dmask, 0, dst->sa_len);
1690 memcpy(dmask, smask, smask->sa_len);
1691 dmask->ss_len = dst->sa_len;
1692 dmask->ss_family = dst->sa_family;
1693
1694 return ((struct sockaddr *)dmask);
1695 }
1696
1697 /*
1698 * Writes information related to @rtinfo object to newly-allocated mbuf.
1699 * Assumes MCLBYTES is enough to construct any message.
1700 * Used for OS notifications of vaious events (if/ifa announces,etc)
1701 *
1702 * Returns allocated mbuf or NULL on failure.
1703 */
1704 static struct mbuf *
rtsock_msg_mbuf(int type,struct rt_addrinfo * rtinfo)1705 rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo)
1706 {
1707 struct sockaddr_storage ss;
1708 struct rt_msghdr *rtm;
1709 struct mbuf *m;
1710 int i;
1711 struct sockaddr *sa;
1712 #ifdef INET6
1713 struct sockaddr_in6 *sin6;
1714 #endif
1715 int len, dlen;
1716
1717 switch (type) {
1718 case RTM_DELADDR:
1719 case RTM_NEWADDR:
1720 len = sizeof(struct ifa_msghdr);
1721 break;
1722
1723 case RTM_DELMADDR:
1724 case RTM_NEWMADDR:
1725 len = sizeof(struct ifma_msghdr);
1726 break;
1727
1728 case RTM_IFINFO:
1729 len = sizeof(struct if_msghdr);
1730 break;
1731
1732 case RTM_IFANNOUNCE:
1733 case RTM_IEEE80211:
1734 len = sizeof(struct if_announcemsghdr);
1735 break;
1736
1737 default:
1738 len = sizeof(struct rt_msghdr);
1739 }
1740
1741 /* XXXGL: can we use MJUMPAGESIZE cluster here? */
1742 KASSERT(len <= MCLBYTES, ("%s: message too big", __func__));
1743 if (len > MHLEN)
1744 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1745 else
1746 m = m_gethdr(M_NOWAIT, MT_DATA);
1747 if (m == NULL)
1748 return (m);
1749
1750 m->m_pkthdr.len = m->m_len = len;
1751 rtm = mtod(m, struct rt_msghdr *);
1752 bzero((caddr_t)rtm, len);
1753 for (i = 0; i < RTAX_MAX; i++) {
1754 if ((sa = rtinfo->rti_info[i]) == NULL)
1755 continue;
1756 rtinfo->rti_addrs |= (1 << i);
1757
1758 dlen = SA_SIZE(sa);
1759 KASSERT(dlen <= sizeof(ss),
1760 ("%s: sockaddr size overflow", __func__));
1761 bzero(&ss, sizeof(ss));
1762 bcopy(sa, &ss, sa->sa_len);
1763 sa = (struct sockaddr *)&ss;
1764 #ifdef INET6
1765 if (sa->sa_family == AF_INET6) {
1766 sin6 = (struct sockaddr_in6 *)sa;
1767 (void)sa6_recoverscope(sin6);
1768 }
1769 #endif
1770 m_copyback(m, len, dlen, (caddr_t)sa);
1771 len += dlen;
1772 }
1773 if (m->m_pkthdr.len != len) {
1774 m_freem(m);
1775 return (NULL);
1776 }
1777 rtm->rtm_msglen = len;
1778 rtm->rtm_version = RTM_VERSION;
1779 rtm->rtm_type = type;
1780 return (m);
1781 }
1782
1783 /*
1784 * Writes information related to @rtinfo object to preallocated buffer.
1785 * Stores needed size in @plen. If @w is NULL, calculates size without
1786 * writing.
1787 * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation.
1788 *
1789 * Returns 0 on success.
1790 *
1791 */
1792 static int
rtsock_msg_buffer(int type,struct rt_addrinfo * rtinfo,struct walkarg * w,int * plen)1793 rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen)
1794 {
1795 struct sockaddr_storage ss;
1796 int len, buflen = 0, dlen, i;
1797 caddr_t cp = NULL;
1798 struct rt_msghdr *rtm = NULL;
1799 #ifdef INET6
1800 struct sockaddr_in6 *sin6;
1801 #endif
1802 #ifdef COMPAT_FREEBSD32
1803 bool compat32;
1804
1805 compat32 = w != NULL && w->w_req != NULL &&
1806 (w->w_req->flags & SCTL_MASK32);
1807 #endif
1808
1809 switch (type) {
1810 case RTM_DELADDR:
1811 case RTM_NEWADDR:
1812 if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1813 #ifdef COMPAT_FREEBSD32
1814 if (compat32)
1815 len = sizeof(struct ifa_msghdrl32);
1816 else
1817 #endif
1818 len = sizeof(struct ifa_msghdrl);
1819 } else
1820 len = sizeof(struct ifa_msghdr);
1821 break;
1822
1823 case RTM_IFINFO:
1824 if (w != NULL && w->w_op == NET_RT_IFLISTL) {
1825 #ifdef COMPAT_FREEBSD32
1826 if (compat32)
1827 len = sizeof(struct if_msghdrl32);
1828 else
1829 #endif
1830 len = sizeof(struct if_msghdrl);
1831 } else {
1832 #ifdef COMPAT_FREEBSD32
1833 if (compat32)
1834 len = sizeof(struct if_msghdr32);
1835 else
1836 #endif
1837 len = sizeof(struct if_msghdr);
1838 }
1839 break;
1840
1841 case RTM_NEWMADDR:
1842 len = sizeof(struct ifma_msghdr);
1843 break;
1844
1845 default:
1846 len = sizeof(struct rt_msghdr);
1847 }
1848
1849 if (w != NULL) {
1850 rtm = (struct rt_msghdr *)w->w_tmem;
1851 buflen = w->w_tmemsize - len;
1852 cp = (caddr_t)w->w_tmem + len;
1853 }
1854
1855 rtinfo->rti_addrs = 0;
1856 for (i = 0; i < RTAX_MAX; i++) {
1857 struct sockaddr *sa;
1858
1859 if ((sa = rtinfo->rti_info[i]) == NULL)
1860 continue;
1861 rtinfo->rti_addrs |= (1 << i);
1862 #ifdef COMPAT_FREEBSD32
1863 if (compat32)
1864 dlen = SA_SIZE32(sa);
1865 else
1866 #endif
1867 dlen = SA_SIZE(sa);
1868 if (cp != NULL && buflen >= dlen) {
1869 KASSERT(dlen <= sizeof(ss),
1870 ("%s: sockaddr size overflow", __func__));
1871 bzero(&ss, sizeof(ss));
1872 bcopy(sa, &ss, sa->sa_len);
1873 sa = (struct sockaddr *)&ss;
1874 #ifdef INET6
1875 if (sa->sa_family == AF_INET6) {
1876 sin6 = (struct sockaddr_in6 *)sa;
1877 (void)sa6_recoverscope(sin6);
1878 }
1879 #endif
1880 bcopy((caddr_t)sa, cp, (unsigned)dlen);
1881 cp += dlen;
1882 buflen -= dlen;
1883 } else if (cp != NULL) {
1884 /*
1885 * Buffer too small. Count needed size
1886 * and return with error.
1887 */
1888 cp = NULL;
1889 }
1890
1891 len += dlen;
1892 }
1893
1894 if (cp != NULL) {
1895 dlen = ALIGN(len) - len;
1896 if (buflen < dlen)
1897 cp = NULL;
1898 else {
1899 bzero(cp, dlen);
1900 cp += dlen;
1901 buflen -= dlen;
1902 }
1903 }
1904 len = ALIGN(len);
1905
1906 if (cp != NULL) {
1907 /* fill header iff buffer is large enough */
1908 rtm->rtm_version = RTM_VERSION;
1909 rtm->rtm_type = type;
1910 rtm->rtm_msglen = len;
1911 }
1912
1913 *plen = len;
1914
1915 if (w != NULL && cp == NULL)
1916 return (ENOBUFS);
1917
1918 return (0);
1919 }
1920
1921 /*
1922 * This routine is called to generate a message from the routing
1923 * socket indicating that a redirect has occurred, a routing lookup
1924 * has failed, or that a protocol has detected timeouts to a particular
1925 * destination.
1926 */
1927 void
rt_missmsg_fib(int type,struct rt_addrinfo * rtinfo,int flags,int error,int fibnum)1928 rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error,
1929 int fibnum)
1930 {
1931 struct rt_msghdr *rtm;
1932 struct mbuf *m;
1933 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
1934
1935 if (V_route_cb.any_count == 0)
1936 return;
1937 m = rtsock_msg_mbuf(type, rtinfo);
1938 if (m == NULL)
1939 return;
1940
1941 if (fibnum != RT_ALL_FIBS) {
1942 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
1943 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
1944 M_SETFIB(m, fibnum);
1945 m->m_flags |= RTS_FILTER_FIB;
1946 }
1947
1948 rtm = mtod(m, struct rt_msghdr *);
1949 rtm->rtm_flags = RTF_DONE | flags;
1950 rtm->rtm_errno = error;
1951 rtm->rtm_addrs = rtinfo->rti_addrs;
1952 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
1953 }
1954
1955 void
rt_missmsg(int type,struct rt_addrinfo * rtinfo,int flags,int error)1956 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
1957 {
1958
1959 rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS);
1960 }
1961
1962 /*
1963 * This routine is called to generate a message from the routing
1964 * socket indicating that the status of a network interface has changed.
1965 */
1966 static void
rtsock_ifmsg(struct ifnet * ifp,int if_flags_mask __unused)1967 rtsock_ifmsg(struct ifnet *ifp, int if_flags_mask __unused)
1968 {
1969 struct if_msghdr *ifm;
1970 struct mbuf *m;
1971 struct rt_addrinfo info;
1972
1973 if (V_route_cb.any_count == 0)
1974 return;
1975 bzero((caddr_t)&info, sizeof(info));
1976 m = rtsock_msg_mbuf(RTM_IFINFO, &info);
1977 if (m == NULL)
1978 return;
1979 ifm = mtod(m, struct if_msghdr *);
1980 ifm->ifm_index = ifp->if_index;
1981 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1982 if_data_copy(ifp, &ifm->ifm_data);
1983 ifm->ifm_addrs = 0;
1984 rt_dispatch(m, AF_UNSPEC);
1985 }
1986
1987 /*
1988 * Announce interface address arrival/withdraw.
1989 * Please do not call directly, use rt_addrmsg().
1990 * Assume input data to be valid.
1991 * Returns 0 on success.
1992 */
1993 int
rtsock_addrmsg(int cmd,struct ifaddr * ifa,int fibnum)1994 rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum)
1995 {
1996 struct rt_addrinfo info;
1997 struct sockaddr *sa;
1998 int ncmd;
1999 struct mbuf *m;
2000 struct ifa_msghdr *ifam;
2001 struct ifnet *ifp = ifa->ifa_ifp;
2002 struct sockaddr_storage ss;
2003
2004 if (V_route_cb.any_count == 0)
2005 return (0);
2006
2007 ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
2008
2009 bzero((caddr_t)&info, sizeof(info));
2010 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
2011 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
2012 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
2013 info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss);
2014 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
2015 if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL)
2016 return (ENOBUFS);
2017 ifam = mtod(m, struct ifa_msghdr *);
2018 ifam->ifam_index = ifp->if_index;
2019 ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2020 ifam->ifam_flags = ifa->ifa_flags;
2021 ifam->ifam_addrs = info.rti_addrs;
2022
2023 if (fibnum != RT_ALL_FIBS) {
2024 M_SETFIB(m, fibnum);
2025 m->m_flags |= RTS_FILTER_FIB;
2026 }
2027
2028 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
2029
2030 return (0);
2031 }
2032
2033 /*
2034 * Announce route addition/removal to rtsock based on @rt data.
2035 * Callers are advives to use rt_routemsg() instead of using this
2036 * function directly.
2037 * Assume @rt data is consistent.
2038 *
2039 * Returns 0 on success.
2040 */
2041 int
rtsock_routemsg(int cmd,struct rtentry * rt,struct nhop_object * nh,int fibnum)2042 rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh,
2043 int fibnum)
2044 {
2045 union sockaddr_union dst, mask;
2046 struct rt_addrinfo info;
2047
2048 if (V_route_cb.any_count == 0)
2049 return (0);
2050
2051 int family = rt_get_family(rt);
2052 init_sockaddrs_family(family, &dst.sa, &mask.sa);
2053 export_rtaddrs(rt, &dst.sa, &mask.sa);
2054
2055 bzero((caddr_t)&info, sizeof(info));
2056 info.rti_info[RTAX_DST] = &dst.sa;
2057 info.rti_info[RTAX_NETMASK] = &mask.sa;
2058 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
2059 info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh);
2060 info.rti_ifp = nh->nh_ifp;
2061
2062 return (rtsock_routemsg_info(cmd, &info, fibnum));
2063 }
2064
2065 int
rtsock_routemsg_info(int cmd,struct rt_addrinfo * info,int fibnum)2066 rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum)
2067 {
2068 struct rt_msghdr *rtm;
2069 struct sockaddr *sa;
2070 struct mbuf *m;
2071
2072 if (V_route_cb.any_count == 0)
2073 return (0);
2074
2075 if (info->rti_flags & RTF_HOST)
2076 info->rti_info[RTAX_NETMASK] = NULL;
2077
2078 m = rtsock_msg_mbuf(cmd, info);
2079 if (m == NULL)
2080 return (ENOBUFS);
2081
2082 if (fibnum != RT_ALL_FIBS) {
2083 KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out "
2084 "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs));
2085 M_SETFIB(m, fibnum);
2086 m->m_flags |= RTS_FILTER_FIB;
2087 }
2088
2089 rtm = mtod(m, struct rt_msghdr *);
2090 rtm->rtm_addrs = info->rti_addrs;
2091 if (info->rti_ifp != NULL)
2092 rtm->rtm_index = info->rti_ifp->if_index;
2093 /* Add RTF_DONE to indicate command 'completion' required by API */
2094 info->rti_flags |= RTF_DONE;
2095 /* Reported routes has to be up */
2096 if (cmd == RTM_ADD || cmd == RTM_CHANGE)
2097 info->rti_flags |= RTF_UP;
2098 rtm->rtm_flags = info->rti_flags;
2099
2100 sa = info->rti_info[RTAX_DST];
2101 rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC);
2102
2103 return (0);
2104 }
2105
2106 /*
2107 * This is the analogue to the rt_newaddrmsg which performs the same
2108 * function but for multicast group memberhips. This is easier since
2109 * there is no route state to worry about.
2110 */
2111 void
rt_newmaddrmsg(int cmd,struct ifmultiaddr * ifma)2112 rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
2113 {
2114 struct rt_addrinfo info;
2115 struct mbuf *m = NULL;
2116 struct ifnet *ifp = ifma->ifma_ifp;
2117 struct ifma_msghdr *ifmam;
2118
2119 if (V_route_cb.any_count == 0)
2120 return;
2121
2122 bzero((caddr_t)&info, sizeof(info));
2123 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
2124 if (ifp && ifp->if_addr)
2125 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
2126 else
2127 info.rti_info[RTAX_IFP] = NULL;
2128 /*
2129 * If a link-layer address is present, present it as a ``gateway''
2130 * (similarly to how ARP entries, e.g., are presented).
2131 */
2132 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
2133 m = rtsock_msg_mbuf(cmd, &info);
2134 if (m == NULL)
2135 return;
2136 ifmam = mtod(m, struct ifma_msghdr *);
2137 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
2138 __func__));
2139 ifmam->ifmam_index = ifp->if_index;
2140 ifmam->ifmam_addrs = info.rti_addrs;
2141 rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC);
2142 }
2143
2144 static struct mbuf *
rt_makeifannouncemsg(struct ifnet * ifp,int type,int what,struct rt_addrinfo * info)2145 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
2146 struct rt_addrinfo *info)
2147 {
2148 struct if_announcemsghdr *ifan;
2149 struct mbuf *m;
2150
2151 if (V_route_cb.any_count == 0)
2152 return NULL;
2153 bzero((caddr_t)info, sizeof(*info));
2154 m = rtsock_msg_mbuf(type, info);
2155 if (m != NULL) {
2156 ifan = mtod(m, struct if_announcemsghdr *);
2157 ifan->ifan_index = ifp->if_index;
2158 strlcpy(ifan->ifan_name, ifp->if_xname,
2159 sizeof(ifan->ifan_name));
2160 ifan->ifan_what = what;
2161 }
2162 return m;
2163 }
2164
2165 /*
2166 * This is called to generate routing socket messages indicating
2167 * IEEE80211 wireless events.
2168 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
2169 */
2170 void
rt_ieee80211msg(struct ifnet * ifp,int what,void * data,size_t data_len)2171 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
2172 {
2173 struct mbuf *m;
2174 struct rt_addrinfo info;
2175
2176 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
2177 if (m != NULL) {
2178 /*
2179 * Append the ieee80211 data. Try to stick it in the
2180 * mbuf containing the ifannounce msg; otherwise allocate
2181 * a new mbuf and append.
2182 *
2183 * NB: we assume m is a single mbuf.
2184 */
2185 if (data_len > M_TRAILINGSPACE(m)) {
2186 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
2187 if (n == NULL) {
2188 m_freem(m);
2189 return;
2190 }
2191 bcopy(data, mtod(n, void *), data_len);
2192 n->m_len = data_len;
2193 m->m_next = n;
2194 } else if (data_len > 0) {
2195 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
2196 m->m_len += data_len;
2197 }
2198 if (m->m_flags & M_PKTHDR)
2199 m->m_pkthdr.len += data_len;
2200 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
2201 rt_dispatch(m, AF_UNSPEC);
2202 }
2203 }
2204
2205 /*
2206 * This is called to generate routing socket messages indicating
2207 * network interface arrival and departure.
2208 */
2209 static void
rt_ifannouncemsg(struct ifnet * ifp,int what)2210 rt_ifannouncemsg(struct ifnet *ifp, int what)
2211 {
2212 struct mbuf *m;
2213 struct rt_addrinfo info;
2214
2215 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
2216 if (m != NULL)
2217 rt_dispatch(m, AF_UNSPEC);
2218 }
2219
2220 static void
rt_dispatch(struct mbuf * m,sa_family_t saf)2221 rt_dispatch(struct mbuf *m, sa_family_t saf)
2222 {
2223
2224 M_ASSERTPKTHDR(m);
2225
2226 m->m_rtsock_family = saf;
2227 if (V_loif)
2228 m->m_pkthdr.rcvif = V_loif;
2229 else {
2230 m_freem(m);
2231 return;
2232 }
2233 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */
2234 }
2235
2236 /*
2237 * This is used in dumping the kernel table via sysctl().
2238 */
2239 static int
sysctl_dumpentry(struct rtentry * rt,void * vw)2240 sysctl_dumpentry(struct rtentry *rt, void *vw)
2241 {
2242 struct walkarg *w = vw;
2243 struct nhop_object *nh;
2244
2245 NET_EPOCH_ASSERT();
2246
2247 if (!rt_is_exportable(rt, w->w_req->td->td_ucred))
2248 return (0);
2249
2250 export_rtaddrs(rt, w->dst, w->mask);
2251 nh = rt_get_raw_nhop(rt);
2252 #ifdef ROUTE_MPATH
2253 if (NH_IS_NHGRP(nh)) {
2254 const struct weightened_nhop *wn;
2255 uint32_t num_nhops;
2256 int error;
2257 wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops);
2258 for (int i = 0; i < num_nhops; i++) {
2259 error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w);
2260 if (error != 0)
2261 return (error);
2262 }
2263 } else
2264 #endif
2265 sysctl_dumpnhop(rt, nh, rt->rt_weight, w);
2266
2267 return (0);
2268 }
2269
2270
2271 static int
sysctl_dumpnhop(struct rtentry * rt,struct nhop_object * nh,uint32_t weight,struct walkarg * w)2272 sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight,
2273 struct walkarg *w)
2274 {
2275 struct rt_addrinfo info;
2276 int error = 0, size;
2277 uint32_t rtflags;
2278
2279 rtflags = nhop_get_rtflags(nh);
2280
2281 if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg))
2282 return (0);
2283
2284 bzero((caddr_t)&info, sizeof(info));
2285 info.rti_info[RTAX_DST] = w->dst;
2286 info.rti_info[RTAX_GATEWAY] = &nh->gw_sa;
2287 info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask;
2288 info.rti_info[RTAX_GENMASK] = 0;
2289 if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) {
2290 info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr;
2291 info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr;
2292 if (nh->nh_ifp->if_flags & IFF_POINTOPOINT)
2293 info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr;
2294 }
2295 if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0)
2296 return (error);
2297 if (w->w_req && w->w_tmem) {
2298 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
2299
2300 bzero(&rtm->rtm_index,
2301 sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index));
2302
2303 /*
2304 * rte flags may consist of RTF_HOST (duplicated in nhop rtflags)
2305 * and RTF_UP (if entry is linked, which is always true here).
2306 * Given that, use nhop rtflags & add RTF_UP.
2307 */
2308 rtm->rtm_flags = rtflags | RTF_UP;
2309 if (rtm->rtm_flags & RTF_GWFLAG_COMPAT)
2310 rtm->rtm_flags = RTF_GATEWAY |
2311 (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT);
2312 rt_getmetrics(rt, nh, &rtm->rtm_rmx);
2313 rtm->rtm_rmx.rmx_weight = weight;
2314 rtm->rtm_index = nh->nh_ifp->if_index;
2315 rtm->rtm_addrs = info.rti_addrs;
2316 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
2317 return (error);
2318 }
2319 return (error);
2320 }
2321
2322 static int
sysctl_iflist_ifml(struct ifnet * ifp,const struct if_data * src_ifd,struct rt_addrinfo * info,struct walkarg * w,int len)2323 sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd,
2324 struct rt_addrinfo *info, struct walkarg *w, int len)
2325 {
2326 struct if_msghdrl *ifm;
2327 struct if_data *ifd;
2328
2329 ifm = (struct if_msghdrl *)w->w_tmem;
2330
2331 #ifdef COMPAT_FREEBSD32
2332 if (w->w_req->flags & SCTL_MASK32) {
2333 struct if_msghdrl32 *ifm32;
2334
2335 ifm32 = (struct if_msghdrl32 *)ifm;
2336 ifm32->ifm_addrs = info->rti_addrs;
2337 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2338 ifm32->ifm_index = ifp->if_index;
2339 ifm32->_ifm_spare1 = 0;
2340 ifm32->ifm_len = sizeof(*ifm32);
2341 ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data);
2342 ifm32->_ifm_spare2 = 0;
2343 ifd = &ifm32->ifm_data;
2344 } else
2345 #endif
2346 {
2347 ifm->ifm_addrs = info->rti_addrs;
2348 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2349 ifm->ifm_index = ifp->if_index;
2350 ifm->_ifm_spare1 = 0;
2351 ifm->ifm_len = sizeof(*ifm);
2352 ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data);
2353 ifm->_ifm_spare2 = 0;
2354 ifd = &ifm->ifm_data;
2355 }
2356
2357 memcpy(ifd, src_ifd, sizeof(*ifd));
2358
2359 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
2360 }
2361
2362 static int
sysctl_iflist_ifm(struct ifnet * ifp,const struct if_data * src_ifd,struct rt_addrinfo * info,struct walkarg * w,int len)2363 sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd,
2364 struct rt_addrinfo *info, struct walkarg *w, int len)
2365 {
2366 struct if_msghdr *ifm;
2367 struct if_data *ifd;
2368
2369 ifm = (struct if_msghdr *)w->w_tmem;
2370
2371 #ifdef COMPAT_FREEBSD32
2372 if (w->w_req->flags & SCTL_MASK32) {
2373 struct if_msghdr32 *ifm32;
2374
2375 ifm32 = (struct if_msghdr32 *)ifm;
2376 ifm32->ifm_addrs = info->rti_addrs;
2377 ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2378 ifm32->ifm_index = ifp->if_index;
2379 ifm32->_ifm_spare1 = 0;
2380 ifd = &ifm32->ifm_data;
2381 } else
2382 #endif
2383 {
2384 ifm->ifm_addrs = info->rti_addrs;
2385 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
2386 ifm->ifm_index = ifp->if_index;
2387 ifm->_ifm_spare1 = 0;
2388 ifd = &ifm->ifm_data;
2389 }
2390
2391 memcpy(ifd, src_ifd, sizeof(*ifd));
2392
2393 return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len));
2394 }
2395
2396 static int
sysctl_iflist_ifaml(struct ifaddr * ifa,struct rt_addrinfo * info,struct walkarg * w,int len)2397 sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info,
2398 struct walkarg *w, int len)
2399 {
2400 struct ifa_msghdrl *ifam;
2401 struct if_data *ifd;
2402
2403 ifam = (struct ifa_msghdrl *)w->w_tmem;
2404
2405 #ifdef COMPAT_FREEBSD32
2406 if (w->w_req->flags & SCTL_MASK32) {
2407 struct ifa_msghdrl32 *ifam32;
2408
2409 ifam32 = (struct ifa_msghdrl32 *)ifam;
2410 ifam32->ifam_addrs = info->rti_addrs;
2411 ifam32->ifam_flags = ifa->ifa_flags;
2412 ifam32->ifam_index = ifa->ifa_ifp->if_index;
2413 ifam32->_ifam_spare1 = 0;
2414 ifam32->ifam_len = sizeof(*ifam32);
2415 ifam32->ifam_data_off =
2416 offsetof(struct ifa_msghdrl32, ifam_data);
2417 ifam32->ifam_metric = ifa->ifa_ifp->if_metric;
2418 ifd = &ifam32->ifam_data;
2419 } else
2420 #endif
2421 {
2422 ifam->ifam_addrs = info->rti_addrs;
2423 ifam->ifam_flags = ifa->ifa_flags;
2424 ifam->ifam_index = ifa->ifa_ifp->if_index;
2425 ifam->_ifam_spare1 = 0;
2426 ifam->ifam_len = sizeof(*ifam);
2427 ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data);
2428 ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2429 ifd = &ifam->ifam_data;
2430 }
2431
2432 bzero(ifd, sizeof(*ifd));
2433 ifd->ifi_datalen = sizeof(struct if_data);
2434 ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets);
2435 ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets);
2436 ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes);
2437 ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes);
2438
2439 /* Fixup if_data carp(4) vhid. */
2440 if (carp_get_vhid_p != NULL)
2441 ifd->ifi_vhid = (*carp_get_vhid_p)(ifa);
2442
2443 return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
2444 }
2445
2446 static int
sysctl_iflist_ifam(struct ifaddr * ifa,struct rt_addrinfo * info,struct walkarg * w,int len)2447 sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info,
2448 struct walkarg *w, int len)
2449 {
2450 struct ifa_msghdr *ifam;
2451
2452 ifam = (struct ifa_msghdr *)w->w_tmem;
2453 ifam->ifam_addrs = info->rti_addrs;
2454 ifam->ifam_flags = ifa->ifa_flags;
2455 ifam->ifam_index = ifa->ifa_ifp->if_index;
2456 ifam->_ifam_spare1 = 0;
2457 ifam->ifam_metric = ifa->ifa_ifp->if_metric;
2458
2459 return (SYSCTL_OUT(w->w_req, w->w_tmem, len));
2460 }
2461
2462 static int
sysctl_iflist(int af,struct walkarg * w)2463 sysctl_iflist(int af, struct walkarg *w)
2464 {
2465 struct ifnet *ifp;
2466 struct ifaddr *ifa;
2467 struct if_data ifd;
2468 struct rt_addrinfo info;
2469 int len, error = 0;
2470 struct sockaddr_storage ss;
2471
2472 bzero((caddr_t)&info, sizeof(info));
2473 bzero(&ifd, sizeof(ifd));
2474 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2475 if (w->w_arg && w->w_arg != ifp->if_index)
2476 continue;
2477 if_data_copy(ifp, &ifd);
2478 ifa = ifp->if_addr;
2479 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
2480 error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len);
2481 if (error != 0)
2482 goto done;
2483 info.rti_info[RTAX_IFP] = NULL;
2484 if (w->w_req && w->w_tmem) {
2485 if (w->w_op == NET_RT_IFLISTL)
2486 error = sysctl_iflist_ifml(ifp, &ifd, &info, w,
2487 len);
2488 else
2489 error = sysctl_iflist_ifm(ifp, &ifd, &info, w,
2490 len);
2491 if (error)
2492 goto done;
2493 }
2494 while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) {
2495 if (af && af != ifa->ifa_addr->sa_family)
2496 continue;
2497 if (prison_if(w->w_req->td->td_ucred,
2498 ifa->ifa_addr) != 0)
2499 continue;
2500 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
2501 info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask(
2502 ifa->ifa_addr, ifa->ifa_netmask, &ss);
2503 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
2504 error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len);
2505 if (error != 0)
2506 goto done;
2507 if (w->w_req && w->w_tmem) {
2508 if (w->w_op == NET_RT_IFLISTL)
2509 error = sysctl_iflist_ifaml(ifa, &info,
2510 w, len);
2511 else
2512 error = sysctl_iflist_ifam(ifa, &info,
2513 w, len);
2514 if (error)
2515 goto done;
2516 }
2517 }
2518 info.rti_info[RTAX_IFA] = NULL;
2519 info.rti_info[RTAX_NETMASK] = NULL;
2520 info.rti_info[RTAX_BRD] = NULL;
2521 }
2522 done:
2523 return (error);
2524 }
2525
2526 static int
sysctl_ifmalist(int af,struct walkarg * w)2527 sysctl_ifmalist(int af, struct walkarg *w)
2528 {
2529 struct rt_addrinfo info;
2530 struct ifaddr *ifa;
2531 struct ifmultiaddr *ifma;
2532 struct ifnet *ifp;
2533 int error, len;
2534
2535 NET_EPOCH_ASSERT();
2536
2537 error = 0;
2538 bzero((caddr_t)&info, sizeof(info));
2539
2540 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2541 if (w->w_arg && w->w_arg != ifp->if_index)
2542 continue;
2543 ifa = ifp->if_addr;
2544 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
2545 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2546 if (af && af != ifma->ifma_addr->sa_family)
2547 continue;
2548 if (prison_if(w->w_req->td->td_ucred,
2549 ifma->ifma_addr) != 0)
2550 continue;
2551 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
2552 info.rti_info[RTAX_GATEWAY] =
2553 (ifma->ifma_addr->sa_family != AF_LINK) ?
2554 ifma->ifma_lladdr : NULL;
2555 error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len);
2556 if (error != 0)
2557 break;
2558 if (w->w_req && w->w_tmem) {
2559 struct ifma_msghdr *ifmam;
2560
2561 ifmam = (struct ifma_msghdr *)w->w_tmem;
2562 ifmam->ifmam_index = ifma->ifma_ifp->if_index;
2563 ifmam->ifmam_flags = 0;
2564 ifmam->ifmam_addrs = info.rti_addrs;
2565 ifmam->_ifmam_spare1 = 0;
2566 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
2567 if (error != 0)
2568 break;
2569 }
2570 }
2571 if (error != 0)
2572 break;
2573 }
2574 return (error);
2575 }
2576
2577 static void
rtable_sysctl_dump(uint32_t fibnum,int family,struct walkarg * w)2578 rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w)
2579 {
2580 union sockaddr_union sa_dst, sa_mask;
2581
2582 w->family = family;
2583 w->dst = (struct sockaddr *)&sa_dst;
2584 w->mask = (struct sockaddr *)&sa_mask;
2585
2586 init_sockaddrs_family(family, w->dst, w->mask);
2587
2588 rib_walk(fibnum, family, false, sysctl_dumpentry, w);
2589 }
2590
2591 static int
sysctl_rtsock(SYSCTL_HANDLER_ARGS)2592 sysctl_rtsock(SYSCTL_HANDLER_ARGS)
2593 {
2594 struct epoch_tracker et;
2595 int *name = (int *)arg1;
2596 u_int namelen = arg2;
2597 struct rib_head *rnh = NULL; /* silence compiler. */
2598 int i, lim, error = EINVAL;
2599 int fib = 0;
2600 u_char af;
2601 struct walkarg w;
2602
2603 if (namelen < 3)
2604 return (EINVAL);
2605
2606 name++;
2607 namelen--;
2608 if (req->newptr)
2609 return (EPERM);
2610 if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) {
2611 if (namelen == 3)
2612 fib = req->td->td_proc->p_fibnum;
2613 else if (namelen == 4)
2614 fib = (name[3] == RT_ALL_FIBS) ?
2615 req->td->td_proc->p_fibnum : name[3];
2616 else
2617 return ((namelen < 3) ? EISDIR : ENOTDIR);
2618 if (fib < 0 || fib >= rt_numfibs)
2619 return (EINVAL);
2620 } else if (namelen != 3)
2621 return ((namelen < 3) ? EISDIR : ENOTDIR);
2622 af = name[0];
2623 if (af > AF_MAX)
2624 return (EINVAL);
2625 bzero(&w, sizeof(w));
2626 w.w_op = name[1];
2627 w.w_arg = name[2];
2628 w.w_req = req;
2629
2630 error = sysctl_wire_old_buffer(req, 0);
2631 if (error)
2632 return (error);
2633
2634 /*
2635 * Allocate reply buffer in advance.
2636 * All rtsock messages has maximum length of u_short.
2637 */
2638 w.w_tmemsize = 65536;
2639 w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK);
2640
2641 NET_EPOCH_ENTER(et);
2642 switch (w.w_op) {
2643 case NET_RT_DUMP:
2644 case NET_RT_FLAGS:
2645 if (af == 0) { /* dump all tables */
2646 i = 1;
2647 lim = AF_MAX;
2648 } else /* dump only one table */
2649 i = lim = af;
2650
2651 /*
2652 * take care of llinfo entries, the caller must
2653 * specify an AF
2654 */
2655 if (w.w_op == NET_RT_FLAGS &&
2656 (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
2657 if (af != 0)
2658 error = lltable_sysctl_dumparp(af, w.w_req);
2659 else
2660 error = EINVAL;
2661 break;
2662 }
2663 /*
2664 * take care of routing entries
2665 */
2666 for (error = 0; error == 0 && i <= lim; i++) {
2667 rnh = rt_tables_get_rnh(fib, i);
2668 if (rnh != NULL) {
2669 rtable_sysctl_dump(fib, i, &w);
2670 } else if (af != 0)
2671 error = EAFNOSUPPORT;
2672 }
2673 break;
2674 case NET_RT_NHOP:
2675 case NET_RT_NHGRP:
2676 /* Allow dumping one specific af/fib at a time */
2677 if (namelen < 4) {
2678 error = EINVAL;
2679 break;
2680 }
2681 fib = name[3];
2682 if (fib < 0 || fib > rt_numfibs) {
2683 error = EINVAL;
2684 break;
2685 }
2686 rnh = rt_tables_get_rnh(fib, af);
2687 if (rnh == NULL) {
2688 error = EAFNOSUPPORT;
2689 break;
2690 }
2691 if (w.w_op == NET_RT_NHOP)
2692 error = nhops_dump_sysctl(rnh, w.w_req);
2693 else
2694 #ifdef ROUTE_MPATH
2695 error = nhgrp_dump_sysctl(rnh, w.w_req);
2696 #else
2697 error = ENOTSUP;
2698 #endif
2699 break;
2700 case NET_RT_IFLIST:
2701 case NET_RT_IFLISTL:
2702 error = sysctl_iflist(af, &w);
2703 break;
2704
2705 case NET_RT_IFMALIST:
2706 error = sysctl_ifmalist(af, &w);
2707 break;
2708 }
2709 NET_EPOCH_EXIT(et);
2710
2711 free(w.w_tmem, M_TEMP);
2712 return (error);
2713 }
2714
2715 static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE,
2716 sysctl_rtsock, "Return route tables and interface/address lists");
2717
2718 /*
2719 * Definitions of protocols supported in the ROUTE domain.
2720 */
2721
2722 static struct domain routedomain; /* or at least forward */
2723
2724 static struct protosw routesw = {
2725 .pr_type = SOCK_RAW,
2726 .pr_flags = PR_ATOMIC|PR_ADDR,
2727 .pr_abort = rts_close,
2728 .pr_attach = rts_attach,
2729 .pr_ctloutput = rts_ctloutput,
2730 .pr_detach = rts_detach,
2731 .pr_send = rts_send,
2732 .pr_shutdown = rts_shutdown,
2733 .pr_disconnect = rts_disconnect,
2734 .pr_close = rts_close,
2735 };
2736
2737 static struct domain routedomain = {
2738 .dom_family = PF_ROUTE,
2739 .dom_name = "route",
2740 .dom_nprotosw = 1,
2741 .dom_protosw = { &routesw },
2742 };
2743
2744 DOMAIN_SET(route);
2745