1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2018 Toomas Soome <tsoome@me.com>
25 */
26
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/strsubr.h>
30 #include <sys/stropts.h>
31 #include <sys/strsun.h>
32 #include <sys/strlog.h>
33 #define _SUN_TPI_VERSION 2
34 #include <sys/tihdr.h>
35 #include <sys/timod.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/cmn_err.h>
39 #include <sys/proc.h>
40 #include <sys/suntpi.h>
41 #include <sys/policy.h>
42 #include <sys/zone.h>
43 #include <sys/disp.h>
44
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <netinet/in.h>
48
49 #include <inet/common.h>
50 #include <netinet/ip6.h>
51 #include <inet/ip.h>
52 #include <inet/ipclassifier.h>
53 #include <inet/proto_set.h>
54 #include <inet/nd.h>
55 #include <inet/optcom.h>
56 #include <netinet/ip_mroute.h>
57 #include <sys/isa_defs.h>
58 #include <net/route.h>
59
60 #include <inet/rts_impl.h>
61 #include <inet/ip_rts.h>
62
63 /*
64 * This is a transport provider for routing sockets. Downstream messages are
65 * wrapped with a IP_IOCTL header, and ip_wput_ioctl calls the appropriate entry
66 * in the ip_ioctl_ftbl callout table to pass the routing socket data into IP.
67 * Upstream messages are generated for listeners of the routing socket as well
68 * as the message sender (unless they have turned off their end using
69 * SO_USELOOPBACK or shutdown(3n)). Upstream messages may also be generated
70 * asynchronously when:
71 *
72 * Interfaces are brought up or down.
73 * Addresses are assigned to interfaces.
74 * ICMP redirects are processed and a IRE_HOST/RTF_DYNAMIC is installed.
75 * No route is found while sending a packet.
76 *
77 * Since all we do is reformat the messages between routing socket and
78 * ioctl forms, no synchronization is necessary in this module; all
79 * the dirty work is done down in ip.
80 */
81
82 /* Default structure copied into T_INFO_ACK messages */
83 static struct T_info_ack rts_g_t_info_ack = {
84 T_INFO_ACK,
85 T_INFINITE, /* TSDU_size. Maximum size messages. */
86 T_INVALID, /* ETSDU_size. No expedited data. */
87 T_INVALID, /* CDATA_size. No connect data. */
88 T_INVALID, /* DDATA_size. No disconnect data. */
89 0, /* ADDR_size. */
90 0, /* OPT_size - not initialized here */
91 64 * 1024, /* TIDU_size. rts allows maximum size messages. */
92 T_COTS, /* SERV_type. rts supports connection oriented. */
93 TS_UNBND, /* CURRENT_state. This is set from rts_state. */
94 (XPG4_1) /* PROVIDER_flag */
95 };
96
97 /*
98 * Table of ND variables supported by rts. These are loaded into rts_g_nd
99 * in rts_open.
100 * All of these are alterable, within the min/max values given, at run time.
101 */
102 static rtsparam_t lcl_param_arr[] = {
103 /* min max value name */
104 { 4096, 65536, 8192, "rts_xmit_hiwat"},
105 { 0, 65536, 1024, "rts_xmit_lowat"},
106 { 4096, 65536, 8192, "rts_recv_hiwat"},
107 { 65536, 1024*1024*1024, 256*1024, "rts_max_buf"},
108 };
109 #define rtss_xmit_hiwat rtss_params[0].rts_param_value
110 #define rtss_xmit_lowat rtss_params[1].rts_param_value
111 #define rtss_recv_hiwat rtss_params[2].rts_param_value
112 #define rtss_max_buf rtss_params[3].rts_param_value
113
114 static void rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
115 int sys_error);
116 static void rts_input(void *, mblk_t *, void *, ip_recv_attr_t *);
117 static void rts_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
118 static mblk_t *rts_ioctl_alloc(mblk_t *data);
119 static int rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
120 static boolean_t rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt);
121 static int rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
122 cred_t *cr);
123 static int rts_rsrv(queue_t *q);
124 static void *rts_stack_init(netstackid_t stackid, netstack_t *ns);
125 static void rts_stack_fini(netstackid_t stackid, void *arg);
126 static int rts_wput(queue_t *q, mblk_t *mp);
127 static void rts_wput_iocdata(queue_t *q, mblk_t *mp);
128 static void rts_wput_other(queue_t *q, mblk_t *mp);
129 static int rts_wrw(queue_t *q, struiod_t *dp);
130
131 static int rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag,
132 cred_t *credp);
133 static conn_t *rts_open(int flag, cred_t *credp);
134
135 static int rts_stream_close(queue_t *, int, cred_t *);
136 static int rts_close(sock_lower_handle_t proto_handle, int flags,
137 cred_t *cr);
138
139 static struct module_info rts_mod_info = {
140 129, "rts", 1, INFPSZ, 512, 128
141 };
142
143 static struct qinit rtsrinit = {
144 NULL, rts_rsrv, rts_stream_open, rts_stream_close, NULL,
145 &rts_mod_info
146 };
147
148 static struct qinit rtswinit = {
149 rts_wput, NULL, NULL, NULL, NULL, &rts_mod_info,
150 NULL, rts_wrw, NULL, STRUIOT_STANDARD
151 };
152
153 struct streamtab rtsinfo = {
154 &rtsrinit, &rtswinit
155 };
156
157 /*
158 * This routine allocates the necessary
159 * message blocks for IOCTL wrapping the
160 * user data.
161 */
162 static mblk_t *
rts_ioctl_alloc(mblk_t * data)163 rts_ioctl_alloc(mblk_t *data)
164 {
165 mblk_t *mp = NULL;
166 mblk_t *mp1 = NULL;
167 ipllc_t *ipllc;
168 struct iocblk *ioc;
169
170 mp = allocb_tmpl(sizeof (ipllc_t), data);
171 if (mp == NULL)
172 return (NULL);
173 mp1 = allocb_tmpl(sizeof (struct iocblk), data);
174 if (mp1 == NULL) {
175 freeb(mp);
176 return (NULL);
177 }
178
179 ipllc = (ipllc_t *)mp->b_rptr;
180 ipllc->ipllc_cmd = IP_IOC_RTS_REQUEST;
181 ipllc->ipllc_name_offset = 0;
182 ipllc->ipllc_name_length = 0;
183 mp->b_wptr += sizeof (ipllc_t);
184 mp->b_cont = data;
185
186 ioc = (struct iocblk *)mp1->b_rptr;
187 ioc->ioc_cmd = IP_IOCTL;
188 ioc->ioc_error = 0;
189 ioc->ioc_cr = NULL;
190 ioc->ioc_count = msgdsize(mp);
191 mp1->b_wptr += sizeof (struct iocblk);
192 mp1->b_datap->db_type = M_IOCTL;
193 mp1->b_cont = mp;
194
195 return (mp1);
196 }
197
198 /*
199 * This routine closes rts stream, by disabling
200 * put/srv routines and freeing the this module
201 * internal datastructure.
202 */
203 static int
rts_common_close(queue_t * q,conn_t * connp)204 rts_common_close(queue_t *q, conn_t *connp)
205 {
206
207 ASSERT(connp != NULL && IPCL_IS_RTS(connp));
208
209 ip_rts_unregister(connp);
210
211 ip_quiesce_conn(connp);
212
213 if (!IPCL_IS_NONSTR(connp)) {
214 qprocsoff(q);
215 }
216
217 /*
218 * Now we are truly single threaded on this stream, and can
219 * delete the things hanging off the connp, and finally the connp.
220 * We removed this connp from the fanout list, it cannot be
221 * accessed thru the fanouts, and we already waited for the
222 * conn_ref to drop to 0. We are already in close, so
223 * there cannot be any other thread from the top. qprocsoff
224 * has completed, and service has completed or won't run in
225 * future.
226 */
227 ASSERT(connp->conn_ref == 1);
228
229 if (!IPCL_IS_NONSTR(connp)) {
230 inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
231 } else {
232 ip_free_helper_stream(connp);
233 }
234
235 connp->conn_ref--;
236 ipcl_conn_destroy(connp);
237 return (0);
238 }
239
240 /* ARGSUSED */
241 static int
rts_stream_close(queue_t * q,int flags __unused,cred_t * credp __unused)242 rts_stream_close(queue_t *q, int flags __unused, cred_t *credp __unused)
243 {
244 conn_t *connp = Q_TO_CONN(q);
245
246 (void) rts_common_close(q, connp);
247 q->q_ptr = WR(q)->q_ptr = NULL;
248 return (0);
249 }
250
251 /*
252 * This is the open routine for routing socket. It allocates
253 * rts_t structure for the stream and tells IP that it is a routing socket.
254 */
255 /* ARGSUSED */
256 static int
rts_stream_open(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp)257 rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
258 {
259 conn_t *connp;
260 dev_t conn_dev;
261 rts_t *rts;
262
263 /* If the stream is already open, return immediately. */
264 if (q->q_ptr != NULL)
265 return (0);
266
267 if (sflag == MODOPEN)
268 return (EINVAL);
269
270 /*
271 * Since RTS is not used so heavily, allocating from the small
272 * arena should be sufficient.
273 */
274 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
275 return (EBUSY);
276 }
277
278 connp = rts_open(flag, credp);
279 ASSERT(connp != NULL);
280
281 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
282
283 rts = connp->conn_rts;
284 rw_enter(&rts->rts_rwlock, RW_WRITER);
285 connp->conn_dev = conn_dev;
286 connp->conn_minor_arena = ip_minor_arena_sa;
287
288 q->q_ptr = connp;
289 WR(q)->q_ptr = connp;
290 connp->conn_rq = q;
291 connp->conn_wq = WR(q);
292
293 WR(q)->q_hiwat = connp->conn_sndbuf;
294 WR(q)->q_lowat = connp->conn_sndlowat;
295
296 mutex_enter(&connp->conn_lock);
297 connp->conn_state_flags &= ~CONN_INCIPIENT;
298 mutex_exit(&connp->conn_lock);
299 rw_exit(&rts->rts_rwlock);
300
301 /* Indicate to IP that this is a routing socket client */
302 ip_rts_register(connp);
303
304 qprocson(q);
305
306 return (0);
307 }
308
309 /* ARGSUSED */
310 static conn_t *
rts_open(int flag,cred_t * credp)311 rts_open(int flag, cred_t *credp)
312 {
313 netstack_t *ns;
314 rts_stack_t *rtss;
315 rts_t *rts;
316 conn_t *connp;
317 zoneid_t zoneid;
318
319 ns = netstack_find_by_cred(credp);
320 ASSERT(ns != NULL);
321 rtss = ns->netstack_rts;
322 ASSERT(rtss != NULL);
323
324 /*
325 * For exclusive stacks we set the zoneid to zero
326 * to make RTS operate as if in the global zone.
327 */
328 if (ns->netstack_stackid != GLOBAL_NETSTACKID)
329 zoneid = GLOBAL_ZONEID;
330 else
331 zoneid = crgetzoneid(credp);
332
333 connp = ipcl_conn_create(IPCL_RTSCONN, KM_SLEEP, ns);
334 rts = connp->conn_rts;
335
336 /*
337 * ipcl_conn_create did a netstack_hold. Undo the hold that was
338 * done by netstack_find_by_cred()
339 */
340 netstack_rele(ns);
341
342 rw_enter(&rts->rts_rwlock, RW_WRITER);
343 ASSERT(connp->conn_rts == rts);
344 ASSERT(rts->rts_connp == connp);
345
346 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
347 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
348 connp->conn_ixa->ixa_zoneid = zoneid;
349 connp->conn_zoneid = zoneid;
350 connp->conn_flow_cntrld = B_FALSE;
351
352 rts->rts_rtss = rtss;
353
354 connp->conn_rcvbuf = rtss->rtss_recv_hiwat;
355 connp->conn_sndbuf = rtss->rtss_xmit_hiwat;
356 connp->conn_sndlowat = rtss->rtss_xmit_lowat;
357 connp->conn_rcvlowat = rts_mod_info.mi_lowat;
358
359 connp->conn_family = PF_ROUTE;
360 connp->conn_so_type = SOCK_RAW;
361 /* SO_PROTOTYPE is always sent down by sockfs setting conn_proto */
362
363 connp->conn_recv = rts_input;
364 connp->conn_recvicmp = rts_icmp_input;
365
366 crhold(credp);
367 connp->conn_cred = credp;
368 connp->conn_cpid = curproc->p_pid;
369 /* Cache things in ixa without an extra refhold */
370 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
371 connp->conn_ixa->ixa_cred = connp->conn_cred;
372 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
373 if (is_system_labeled())
374 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
375
376 /*
377 * rts sockets start out as bound and connected
378 * For streams based sockets, socket state is set to
379 * SS_ISBOUND | SS_ISCONNECTED in so_strinit.
380 */
381 rts->rts_state = TS_DATA_XFER;
382 rw_exit(&rts->rts_rwlock);
383
384 return (connp);
385 }
386
387 /*
388 * This routine creates a T_ERROR_ACK message and passes it upstream.
389 */
390 static void
rts_err_ack(queue_t * q,mblk_t * mp,t_scalar_t t_error,int sys_error)391 rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
392 {
393 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
394 qreply(q, mp);
395 }
396
397 /*
398 * This routine creates a T_OK_ACK message and passes it upstream.
399 */
400 static void
rts_ok_ack(queue_t * q,mblk_t * mp)401 rts_ok_ack(queue_t *q, mblk_t *mp)
402 {
403 if ((mp = mi_tpi_ok_ack_alloc(mp)) != NULL)
404 qreply(q, mp);
405 }
406
407 /*
408 * This routine is called by rts_wput to handle T_UNBIND_REQ messages.
409 */
410 static void
rts_tpi_unbind(queue_t * q,mblk_t * mp)411 rts_tpi_unbind(queue_t *q, mblk_t *mp)
412 {
413 conn_t *connp = Q_TO_CONN(q);
414 rts_t *rts = connp->conn_rts;
415
416 /* If a bind has not been done, we can't unbind. */
417 if (rts->rts_state != TS_IDLE) {
418 rts_err_ack(q, mp, TOUTSTATE, 0);
419 return;
420 }
421 rts->rts_state = TS_UNBND;
422 rts_ok_ack(q, mp);
423 }
424
425 /*
426 * This routine is called to handle each
427 * O_T_BIND_REQ/T_BIND_REQ message passed to
428 * rts_wput. Note: This routine works with both
429 * O_T_BIND_REQ and T_BIND_REQ semantics.
430 */
431 static void
rts_tpi_bind(queue_t * q,mblk_t * mp)432 rts_tpi_bind(queue_t *q, mblk_t *mp)
433 {
434 conn_t *connp = Q_TO_CONN(q);
435 rts_t *rts = connp->conn_rts;
436 struct T_bind_req *tbr;
437
438 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
439 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
440 "rts_tpi_bind: bad data, %d", rts->rts_state);
441 rts_err_ack(q, mp, TBADADDR, 0);
442 return;
443 }
444 if (rts->rts_state != TS_UNBND) {
445 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
446 "rts_tpi_bind: bad state, %d", rts->rts_state);
447 rts_err_ack(q, mp, TOUTSTATE, 0);
448 return;
449 }
450 tbr = (struct T_bind_req *)mp->b_rptr;
451 if (tbr->ADDR_length != 0) {
452 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
453 "rts_tpi_bind: bad ADDR_length %d", tbr->ADDR_length);
454 rts_err_ack(q, mp, TBADADDR, 0);
455 return;
456 }
457 /* Generic request */
458 tbr->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_req);
459 tbr->ADDR_length = 0;
460 tbr->PRIM_type = T_BIND_ACK;
461 mp->b_datap->db_type = M_PCPROTO;
462 rts->rts_state = TS_IDLE;
463 qreply(q, mp);
464 }
465
466 static void
rts_copy_info(struct T_info_ack * tap,rts_t * rts)467 rts_copy_info(struct T_info_ack *tap, rts_t *rts)
468 {
469 *tap = rts_g_t_info_ack;
470 tap->CURRENT_state = rts->rts_state;
471 tap->OPT_size = rts_max_optsize;
472 }
473
474 /*
475 * This routine responds to T_CAPABILITY_REQ messages. It is called by
476 * rts_wput. Much of the T_CAPABILITY_ACK information is copied from
477 * rts_g_t_info_ack. The current state of the stream is copied from
478 * rts_state.
479 */
480 static void
rts_capability_req(queue_t * q,mblk_t * mp)481 rts_capability_req(queue_t *q, mblk_t *mp)
482 {
483 conn_t *connp = Q_TO_CONN(q);
484 rts_t *rts = connp->conn_rts;
485 t_uscalar_t cap_bits1;
486 struct T_capability_ack *tcap;
487
488 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
489
490 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
491 mp->b_datap->db_type, T_CAPABILITY_ACK);
492 if (mp == NULL)
493 return;
494
495 tcap = (struct T_capability_ack *)mp->b_rptr;
496 tcap->CAP_bits1 = 0;
497
498 if (cap_bits1 & TC1_INFO) {
499 rts_copy_info(&tcap->INFO_ack, rts);
500 tcap->CAP_bits1 |= TC1_INFO;
501 }
502
503 qreply(q, mp);
504 }
505
506 /*
507 * This routine responds to T_INFO_REQ messages. It is called by rts_wput.
508 * Most of the T_INFO_ACK information is copied from rts_g_t_info_ack.
509 * The current state of the stream is copied from rts_state.
510 */
511 static void
rts_info_req(queue_t * q,mblk_t * mp)512 rts_info_req(queue_t *q, mblk_t *mp)
513 {
514 conn_t *connp = Q_TO_CONN(q);
515 rts_t *rts = connp->conn_rts;
516
517 mp = tpi_ack_alloc(mp, sizeof (rts_g_t_info_ack), M_PCPROTO,
518 T_INFO_ACK);
519 if (mp == NULL)
520 return;
521 rts_copy_info((struct T_info_ack *)mp->b_rptr, rts);
522 qreply(q, mp);
523 }
524
525 /*
526 * This routine gets default values of certain options whose default
527 * values are maintained by protcol specific code
528 */
529 /* ARGSUSED */
530 int
rts_opt_default(queue_t * q,t_scalar_t level,t_scalar_t name,uchar_t * ptr)531 rts_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
532 {
533 /* no default value processed by protocol specific code currently */
534 return (-1);
535 }
536
537
538 static int
rts_opt_get(conn_t * connp,int level,int name,uchar_t * ptr)539 rts_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
540 {
541 rts_t *rts = connp->conn_rts;
542 conn_opt_arg_t coas;
543 int retval;
544
545 ASSERT(RW_READ_HELD(&rts->rts_rwlock));
546
547 switch (level) {
548 /* do this in conn_opt_get? */
549 case SOL_ROUTE:
550 switch (name) {
551 case RT_AWARE:
552 mutex_enter(&connp->conn_lock);
553 *(int *)ptr = connp->conn_rtaware;
554 mutex_exit(&connp->conn_lock);
555 return (0);
556 }
557 break;
558 }
559 coas.coa_connp = connp;
560 coas.coa_ixa = connp->conn_ixa;
561 coas.coa_ipp = &connp->conn_xmit_ipp;
562 mutex_enter(&connp->conn_lock);
563 retval = conn_opt_get(&coas, level, name, ptr);
564 mutex_exit(&connp->conn_lock);
565 return (retval);
566 }
567
568 /* ARGSUSED */
569 static int
rts_do_opt_set(conn_t * connp,int level,int name,uint_t inlen,uchar_t * invalp,uint_t * outlenp,uchar_t * outvalp,cred_t * cr,void * thisdg_attrs,boolean_t checkonly)570 rts_do_opt_set(conn_t *connp, int level, int name, uint_t inlen,
571 uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, cred_t *cr,
572 void *thisdg_attrs, boolean_t checkonly)
573 {
574 int *i1 = (int *)invalp;
575 rts_t *rts = connp->conn_rts;
576 rts_stack_t *rtss = rts->rts_rtss;
577 int error;
578 conn_opt_arg_t coas;
579
580 coas.coa_connp = connp;
581 coas.coa_ixa = connp->conn_ixa;
582 coas.coa_ipp = &connp->conn_xmit_ipp;
583
584 ASSERT(RW_WRITE_HELD(&rts->rts_rwlock));
585
586 /*
587 * For rts, we should have no ancillary data sent down
588 * (rts_wput doesn't handle options).
589 */
590 ASSERT(thisdg_attrs == NULL);
591
592 /*
593 * For fixed length options, no sanity check
594 * of passed in length is done. It is assumed *_optcom_req()
595 * routines do the right thing.
596 */
597
598 switch (level) {
599 case SOL_SOCKET:
600 switch (name) {
601 case SO_PROTOTYPE:
602 /*
603 * Routing socket applications that call socket() with
604 * a third argument can filter which messages will be
605 * sent upstream thanks to sockfs. so_socket() sends
606 * down the SO_PROTOTYPE and rts_queue_input()
607 * implements the filtering.
608 */
609 if (*i1 != AF_INET && *i1 != AF_INET6) {
610 *outlenp = 0;
611 return (EPROTONOSUPPORT);
612 }
613 if (!checkonly)
614 connp->conn_proto = *i1;
615 *outlenp = inlen;
616 return (0);
617
618 /*
619 * The following two items can be manipulated,
620 * but changing them should do nothing.
621 */
622 case SO_SNDBUF:
623 if (*i1 > rtss->rtss_max_buf) {
624 *outlenp = 0;
625 return (ENOBUFS);
626 }
627 break; /* goto sizeof (int) option return */
628 case SO_RCVBUF:
629 if (*i1 > rtss->rtss_max_buf) {
630 *outlenp = 0;
631 return (ENOBUFS);
632 }
633 break; /* goto sizeof (int) option return */
634 }
635 break;
636 case SOL_ROUTE:
637 switch (name) {
638 case RT_AWARE:
639 if (!checkonly) {
640 mutex_enter(&connp->conn_lock);
641 connp->conn_rtaware = *i1;
642 mutex_exit(&connp->conn_lock);
643 }
644 *outlenp = inlen;
645 return (0);
646 }
647 break;
648 }
649 /* Serialized setsockopt since we are D_MTQPAIR */
650 error = conn_opt_set(&coas, level, name, inlen, invalp,
651 checkonly, cr);
652 if (error != 0) {
653 *outlenp = 0;
654 return (error);
655 }
656 /*
657 * Common case of return from an option that is sizeof (int)
658 */
659 if (invalp != outvalp) {
660 /* don't trust bcopy for identical src/dst */
661 (void) bcopy(invalp, outvalp, inlen);
662 }
663 *outlenp = (t_uscalar_t)sizeof (int);
664 return (0);
665 }
666
667 static int
rts_opt_set(conn_t * connp,uint_t optset_context,int level,int name,uint_t inlen,uchar_t * invalp,uint_t * outlenp,uchar_t * outvalp,void * thisdg_attrs,cred_t * cr)668 rts_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
669 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
670 void *thisdg_attrs, cred_t *cr)
671 {
672 boolean_t checkonly = B_FALSE;
673
674 if (optset_context) {
675 switch (optset_context) {
676 case SETFN_OPTCOM_CHECKONLY:
677 checkonly = B_TRUE;
678 /*
679 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
680 * inlen != 0 implies value supplied and
681 * we have to "pretend" to set it.
682 * inlen == 0 implies that there is no value part
683 * in T_CHECK request and just validation
684 * done elsewhere should be enough, we just return here.
685 */
686 if (inlen == 0) {
687 *outlenp = 0;
688 return (0);
689 }
690 break;
691 case SETFN_OPTCOM_NEGOTIATE:
692 checkonly = B_FALSE;
693 break;
694 case SETFN_UD_NEGOTIATE:
695 case SETFN_CONN_NEGOTIATE:
696 checkonly = B_FALSE;
697 /*
698 * Negotiating local and "association-related" options
699 * through T_UNITDATA_REQ or T_CONN_{REQ,CON}
700 * Not allowed in this module.
701 */
702 return (EINVAL);
703 default:
704 /*
705 * We should never get here
706 */
707 *outlenp = 0;
708 return (EINVAL);
709 }
710
711 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
712 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
713
714 }
715 return (rts_do_opt_set(connp, level, name, inlen, invalp, outlenp,
716 outvalp, cr, thisdg_attrs, checkonly));
717
718 }
719
720 /*
721 * This routine retrieves the current status of socket options.
722 * It returns the size of the option retrieved.
723 */
724 int
rts_tpi_opt_get(queue_t * q,t_scalar_t level,t_scalar_t name,uchar_t * ptr)725 rts_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
726 {
727 rts_t *rts;
728 int err;
729
730 rts = Q_TO_RTS(q);
731 rw_enter(&rts->rts_rwlock, RW_READER);
732 err = rts_opt_get(Q_TO_CONN(q), level, name, ptr);
733 rw_exit(&rts->rts_rwlock);
734 return (err);
735 }
736
737 /*
738 * This routine sets socket options.
739 */
740 /*ARGSUSED*/
741 int
rts_tpi_opt_set(queue_t * q,uint_t optset_context,int level,int name,uint_t inlen,uchar_t * invalp,uint_t * outlenp,uchar_t * outvalp,void * thisdg_attrs,cred_t * cr)742 rts_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
743 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
744 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr)
745 {
746 conn_t *connp = Q_TO_CONN(q);
747 int error;
748 rts_t *rts = connp->conn_rts;
749
750
751 rw_enter(&rts->rts_rwlock, RW_WRITER);
752 error = rts_opt_set(connp, optset_context, level, name, inlen, invalp,
753 outlenp, outvalp, thisdg_attrs, cr);
754 rw_exit(&rts->rts_rwlock);
755 return (error);
756 }
757
758 /*
759 * This routine retrieves the value of an ND variable in a rtsparam_t
760 * structure. It is called through nd_getset when a user reads the
761 * variable.
762 */
763 /* ARGSUSED */
764 static int
rts_param_get(queue_t * q,mblk_t * mp,caddr_t cp,cred_t * cr)765 rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
766 {
767 rtsparam_t *rtspa = (rtsparam_t *)cp;
768
769 (void) mi_mpprintf(mp, "%u", rtspa->rts_param_value);
770 return (0);
771 }
772
773 /*
774 * Walk through the param array specified registering each element with the
775 * named dispatch (ND) handler.
776 */
777 static boolean_t
rts_param_register(IDP * ndp,rtsparam_t * rtspa,int cnt)778 rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt)
779 {
780 for (; cnt-- > 0; rtspa++) {
781 if (rtspa->rts_param_name != NULL && rtspa->rts_param_name[0]) {
782 if (!nd_load(ndp, rtspa->rts_param_name,
783 rts_param_get, rts_param_set, (caddr_t)rtspa)) {
784 nd_free(ndp);
785 return (B_FALSE);
786 }
787 }
788 }
789 return (B_TRUE);
790 }
791
792 /* This routine sets an ND variable in a rtsparam_t structure. */
793 /* ARGSUSED */
794 static int
rts_param_set(queue_t * q,mblk_t * mp,char * value,caddr_t cp,cred_t * cr)795 rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
796 {
797 ulong_t new_value;
798 rtsparam_t *rtspa = (rtsparam_t *)cp;
799
800 /*
801 * Fail the request if the new value does not lie within the
802 * required bounds.
803 */
804 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
805 new_value < rtspa->rts_param_min ||
806 new_value > rtspa->rts_param_max) {
807 return (EINVAL);
808 }
809
810 /* Set the new value */
811 rtspa->rts_param_value = new_value;
812 return (0);
813 }
814
815 /*
816 * Empty rsrv routine which is used by rts_input to cause a wakeup
817 * of a thread in qwait.
818 */
819 /*ARGSUSED*/
820 static int
rts_rsrv(queue_t * q)821 rts_rsrv(queue_t *q)
822 {
823 return (0);
824 }
825
826 /*
827 * This routine handles synchronous messages passed downstream. It either
828 * consumes the message or passes it downstream; it never queues a
829 * a message. The data messages that go down are wrapped in an IOCTL
830 * message.
831 *
832 * Since it is synchronous, it waits for the M_IOCACK/M_IOCNAK so that
833 * it can return an immediate error (such as ENETUNREACH when adding a route).
834 * It uses the RTS_WRW_PENDING to ensure that each rts instance has only
835 * one M_IOCTL outstanding at any given time.
836 */
837 static int
rts_wrw(queue_t * q,struiod_t * dp)838 rts_wrw(queue_t *q, struiod_t *dp)
839 {
840 mblk_t *mp = dp->d_mp;
841 mblk_t *mp1;
842 int error;
843 rt_msghdr_t *rtm;
844 conn_t *connp = Q_TO_CONN(q);
845 rts_t *rts = connp->conn_rts;
846
847 while (rts->rts_flag & RTS_WRW_PENDING) {
848 if (qwait_rw(q)) {
849 rts->rts_error = EINTR;
850 goto err_ret;
851 }
852 }
853 rts->rts_flag |= RTS_WRW_PENDING;
854
855 if (isuioq(q) && (error = struioget(q, mp, dp, 0))) {
856 /*
857 * Uio error of some sort, so just return the error.
858 */
859 rts->rts_error = error;
860 goto err_ret;
861 }
862 /*
863 * Pass the mblk (chain) onto wput().
864 */
865 dp->d_mp = 0;
866
867 switch (mp->b_datap->db_type) {
868 case M_PROTO:
869 case M_PCPROTO:
870 /* Expedite other than T_DATA_REQ to below the switch */
871 if (((mp->b_wptr - mp->b_rptr) !=
872 sizeof (struct T_data_req)) ||
873 (((union T_primitives *)mp->b_rptr)->type != T_DATA_REQ))
874 break;
875 if ((mp1 = mp->b_cont) == NULL) {
876 rts->rts_error = EINVAL;
877 freemsg(mp);
878 goto err_ret;
879 }
880 freeb(mp);
881 mp = mp1;
882 /* FALLTHRU */
883 case M_DATA:
884 /*
885 * The semantics of the routing socket is such that the rtm_pid
886 * field is automatically filled in during requests with the
887 * current process' pid. We do this here (where we still have
888 * user context) after checking we have at least a message the
889 * size of a routing message header.
890 */
891 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
892 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) {
893 rts->rts_error = EINVAL;
894 freemsg(mp);
895 goto err_ret;
896 }
897 }
898 rtm = (rt_msghdr_t *)mp->b_rptr;
899 rtm->rtm_pid = curproc->p_pid;
900 break;
901 default:
902 break;
903 }
904 rts->rts_flag |= RTS_WPUT_PENDING;
905 rts_wput(q, mp);
906 while (rts->rts_flag & RTS_WPUT_PENDING)
907 if (qwait_rw(q)) {
908 /* RTS_WPUT_PENDING will be cleared below */
909 rts->rts_error = EINTR;
910 break;
911 }
912 err_ret:
913 rts->rts_flag &= ~(RTS_WPUT_PENDING | RTS_WRW_PENDING);
914 return (rts->rts_error);
915 }
916
917 /*
918 * This routine handles all messages passed downstream. It either
919 * consumes the message or passes it downstream; it never queues a
920 * a message. The data messages that go down are wrapped in an IOCTL
921 * message.
922 */
923 static int
rts_wput(queue_t * q,mblk_t * mp)924 rts_wput(queue_t *q, mblk_t *mp)
925 {
926 uchar_t *rptr = mp->b_rptr;
927 mblk_t *mp1;
928 conn_t *connp = Q_TO_CONN(q);
929 rts_t *rts = connp->conn_rts;
930
931 switch (mp->b_datap->db_type) {
932 case M_DATA:
933 break;
934 case M_PROTO:
935 case M_PCPROTO:
936 if ((mp->b_wptr - rptr) == sizeof (struct T_data_req)) {
937 /* Expedite valid T_DATA_REQ to below the switch */
938 if (((union T_primitives *)rptr)->type == T_DATA_REQ) {
939 mp1 = mp->b_cont;
940 freeb(mp);
941 if (mp1 == NULL)
942 return (0);
943 mp = mp1;
944 break;
945 }
946 }
947 /* FALLTHRU */
948 default:
949 rts_wput_other(q, mp);
950 return (0);
951 }
952
953
954 ASSERT(msg_getcred(mp, NULL) != NULL);
955
956 mp1 = rts_ioctl_alloc(mp);
957 if (mp1 == NULL) {
958 ASSERT(rts != NULL);
959 freemsg(mp);
960 if (rts->rts_flag & RTS_WPUT_PENDING) {
961 rts->rts_error = ENOMEM;
962 rts->rts_flag &= ~RTS_WPUT_PENDING;
963 }
964 return (0);
965 }
966 ip_wput_nondata(q, mp1);
967 return (0);
968 }
969
970
971 /*
972 * Handles all the control message, if it
973 * can not understand it, it will
974 * pass down stream.
975 */
976 static void
rts_wput_other(queue_t * q,mblk_t * mp)977 rts_wput_other(queue_t *q, mblk_t *mp)
978 {
979 conn_t *connp = Q_TO_CONN(q);
980 rts_t *rts = connp->conn_rts;
981 uchar_t *rptr = mp->b_rptr;
982 struct iocblk *iocp;
983 cred_t *cr;
984 rts_stack_t *rtss;
985
986 rtss = rts->rts_rtss;
987
988 switch (mp->b_datap->db_type) {
989 case M_PROTO:
990 case M_PCPROTO:
991 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) {
992 /*
993 * If the message does not contain a PRIM_type,
994 * throw it away.
995 */
996 freemsg(mp);
997 return;
998 }
999 switch (((union T_primitives *)rptr)->type) {
1000 case T_BIND_REQ:
1001 case O_T_BIND_REQ:
1002 rts_tpi_bind(q, mp);
1003 return;
1004 case T_UNBIND_REQ:
1005 rts_tpi_unbind(q, mp);
1006 return;
1007 case T_CAPABILITY_REQ:
1008 rts_capability_req(q, mp);
1009 return;
1010 case T_INFO_REQ:
1011 rts_info_req(q, mp);
1012 return;
1013 case T_SVR4_OPTMGMT_REQ:
1014 case T_OPTMGMT_REQ:
1015 /*
1016 * All Solaris components should pass a db_credp
1017 * for this TPI message, hence we ASSERT.
1018 * But in case there is some other M_PROTO that looks
1019 * like a TPI message sent by some other kernel
1020 * component, we check and return an error.
1021 */
1022 cr = msg_getcred(mp, NULL);
1023 ASSERT(cr != NULL);
1024 if (cr == NULL) {
1025 rts_err_ack(q, mp, TSYSERR, EINVAL);
1026 return;
1027 }
1028 if (((union T_primitives *)rptr)->type ==
1029 T_SVR4_OPTMGMT_REQ) {
1030 svr4_optcom_req(q, mp, cr, &rts_opt_obj);
1031 } else {
1032 tpi_optcom_req(q, mp, cr, &rts_opt_obj);
1033 }
1034 return;
1035 case O_T_CONN_RES:
1036 case T_CONN_RES:
1037 case T_DISCON_REQ:
1038 /* Not supported by rts. */
1039 rts_err_ack(q, mp, TNOTSUPPORT, 0);
1040 return;
1041 case T_DATA_REQ:
1042 case T_EXDATA_REQ:
1043 case T_ORDREL_REQ:
1044 /* Illegal for rts. */
1045 freemsg(mp);
1046 (void) putnextctl1(RD(q), M_ERROR, EPROTO);
1047 return;
1048
1049 default:
1050 break;
1051 }
1052 break;
1053 case M_IOCTL:
1054 iocp = (struct iocblk *)mp->b_rptr;
1055 switch (iocp->ioc_cmd) {
1056 case ND_SET:
1057 case ND_GET:
1058 if (nd_getset(q, rtss->rtss_g_nd, mp)) {
1059 qreply(q, mp);
1060 return;
1061 }
1062 break;
1063 case TI_GETPEERNAME:
1064 mi_copyin(q, mp, NULL,
1065 SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
1066 return;
1067 default:
1068 break;
1069 }
1070 break;
1071 case M_IOCDATA:
1072 rts_wput_iocdata(q, mp);
1073 return;
1074 default:
1075 break;
1076 }
1077 ip_wput_nondata(q, mp);
1078 }
1079
1080 /*
1081 * Called by rts_wput_other to handle all M_IOCDATA messages.
1082 */
1083 static void
rts_wput_iocdata(queue_t * q,mblk_t * mp)1084 rts_wput_iocdata(queue_t *q, mblk_t *mp)
1085 {
1086 struct sockaddr *rtsaddr;
1087 mblk_t *mp1;
1088 STRUCT_HANDLE(strbuf, sb);
1089 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
1090
1091 /* Make sure it is one of ours. */
1092 switch (iocp->ioc_cmd) {
1093 case TI_GETPEERNAME:
1094 break;
1095 default:
1096 ip_wput_nondata(q, mp);
1097 return;
1098 }
1099 switch (mi_copy_state(q, mp, &mp1)) {
1100 case -1:
1101 return;
1102 case MI_COPY_CASE(MI_COPY_IN, 1):
1103 break;
1104 case MI_COPY_CASE(MI_COPY_OUT, 1):
1105 /* Copy out the strbuf. */
1106 mi_copyout(q, mp);
1107 return;
1108 case MI_COPY_CASE(MI_COPY_OUT, 2):
1109 /* All done. */
1110 mi_copy_done(q, mp, 0);
1111 return;
1112 default:
1113 mi_copy_done(q, mp, EPROTO);
1114 return;
1115 }
1116 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
1117 if (STRUCT_FGET(sb, maxlen) < (int)sizeof (sin_t)) {
1118 mi_copy_done(q, mp, EINVAL);
1119 return;
1120 }
1121 switch (iocp->ioc_cmd) {
1122 case TI_GETPEERNAME:
1123 break;
1124 default:
1125 mi_copy_done(q, mp, EPROTO);
1126 return;
1127 }
1128 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), sizeof (sin_t),
1129 B_TRUE);
1130 if (mp1 == NULL)
1131 return;
1132 STRUCT_FSET(sb, len, (int)sizeof (sin_t));
1133 rtsaddr = (struct sockaddr *)mp1->b_rptr;
1134 mp1->b_wptr = (uchar_t *)&rtsaddr[1];
1135 bzero(rtsaddr, sizeof (struct sockaddr));
1136 rtsaddr->sa_family = AF_ROUTE;
1137 /* Copy out the address */
1138 mi_copyout(q, mp);
1139 }
1140
1141 /*
1142 * IP passes up a NULL ira.
1143 */
1144 /*ARGSUSED2*/
1145 static void
rts_input(void * arg1,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)1146 rts_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1147 {
1148 conn_t *connp = (conn_t *)arg1;
1149 rts_t *rts = connp->conn_rts;
1150 struct iocblk *iocp;
1151 mblk_t *mp1;
1152 struct T_data_ind *tdi;
1153 int error;
1154
1155 switch (mp->b_datap->db_type) {
1156 case M_IOCACK:
1157 case M_IOCNAK:
1158 iocp = (struct iocblk *)mp->b_rptr;
1159 ASSERT(!IPCL_IS_NONSTR(connp));
1160 if (rts->rts_flag & (RTS_WPUT_PENDING)) {
1161 rts->rts_flag &= ~RTS_WPUT_PENDING;
1162 rts->rts_error = iocp->ioc_error;
1163 /*
1164 * Tell rts_wvw/qwait that we are done.
1165 * Note: there is no qwait_wakeup() we can use.
1166 */
1167 qenable(connp->conn_rq);
1168 freemsg(mp);
1169 return;
1170 }
1171 break;
1172 case M_DATA:
1173 /*
1174 * Prepend T_DATA_IND to prevent the stream head from
1175 * consolidating multiple messages together.
1176 * If the allocation fails just send up the M_DATA.
1177 */
1178 mp1 = allocb(sizeof (*tdi), BPRI_MED);
1179 if (mp1 != NULL) {
1180 mp1->b_cont = mp;
1181 mp = mp1;
1182
1183 mp->b_datap->db_type = M_PROTO;
1184 mp->b_wptr += sizeof (*tdi);
1185 tdi = (struct T_data_ind *)mp->b_rptr;
1186 tdi->PRIM_type = T_DATA_IND;
1187 tdi->MORE_flag = 0;
1188 }
1189 break;
1190 default:
1191 break;
1192 }
1193
1194 if (IPCL_IS_NONSTR(connp)) {
1195 if ((*connp->conn_upcalls->su_recv)
1196 (connp->conn_upper_handle, mp, msgdsize(mp), 0,
1197 &error, NULL) < 0) {
1198 ASSERT(error == ENOSPC);
1199 /*
1200 * Let's confirm hoding the lock that
1201 * we are out of recv space.
1202 */
1203 mutex_enter(&rts->rts_recv_mutex);
1204 if ((*connp->conn_upcalls->su_recv)
1205 (connp->conn_upper_handle, NULL, 0, 0,
1206 &error, NULL) < 0) {
1207 ASSERT(error == ENOSPC);
1208 connp->conn_flow_cntrld = B_TRUE;
1209 }
1210 mutex_exit(&rts->rts_recv_mutex);
1211 }
1212 } else {
1213 putnext(connp->conn_rq, mp);
1214 }
1215 }
1216
1217 /*ARGSUSED*/
1218 static void
rts_icmp_input(void * arg1,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)1219 rts_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1220 {
1221 freemsg(mp);
1222 }
1223
1224 void
rts_ddi_g_init(void)1225 rts_ddi_g_init(void)
1226 {
1227 rts_max_optsize = optcom_max_optsize(rts_opt_obj.odb_opt_des_arr,
1228 rts_opt_obj.odb_opt_arr_cnt);
1229
1230 /*
1231 * We want to be informed each time a stack is created or
1232 * destroyed in the kernel, so we can maintain the
1233 * set of rts_stack_t's.
1234 */
1235 netstack_register(NS_RTS, rts_stack_init, NULL, rts_stack_fini);
1236 }
1237
1238 void
rts_ddi_g_destroy(void)1239 rts_ddi_g_destroy(void)
1240 {
1241 netstack_unregister(NS_RTS);
1242 }
1243
1244 #define INET_NAME "ip"
1245
1246 /*
1247 * Initialize the RTS stack instance.
1248 */
1249 /* ARGSUSED */
1250 static void *
rts_stack_init(netstackid_t stackid,netstack_t * ns)1251 rts_stack_init(netstackid_t stackid, netstack_t *ns)
1252 {
1253 rts_stack_t *rtss;
1254 rtsparam_t *pa;
1255 int error = 0;
1256 major_t major;
1257
1258 rtss = (rts_stack_t *)kmem_zalloc(sizeof (*rtss), KM_SLEEP);
1259 rtss->rtss_netstack = ns;
1260
1261 pa = (rtsparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
1262 rtss->rtss_params = pa;
1263 bcopy(lcl_param_arr, rtss->rtss_params, sizeof (lcl_param_arr));
1264
1265 (void) rts_param_register(&rtss->rtss_g_nd,
1266 rtss->rtss_params, A_CNT(lcl_param_arr));
1267
1268 major = mod_name_to_major(INET_NAME);
1269 error = ldi_ident_from_major(major, &rtss->rtss_ldi_ident);
1270 ASSERT(error == 0);
1271 return (rtss);
1272 }
1273
1274 /*
1275 * Free the RTS stack instance.
1276 */
1277 /* ARGSUSED */
1278 static void
rts_stack_fini(netstackid_t stackid,void * arg)1279 rts_stack_fini(netstackid_t stackid, void *arg)
1280 {
1281 rts_stack_t *rtss = (rts_stack_t *)arg;
1282
1283 nd_free(&rtss->rtss_g_nd);
1284 kmem_free(rtss->rtss_params, sizeof (lcl_param_arr));
1285 rtss->rtss_params = NULL;
1286 ldi_ident_release(rtss->rtss_ldi_ident);
1287 kmem_free(rtss, sizeof (*rtss));
1288 }
1289
1290 /* ARGSUSED */
1291 int
rts_accept(sock_lower_handle_t lproto_handle,sock_lower_handle_t eproto_handle,sock_upper_handle_t sock_handle,cred_t * cr)1292 rts_accept(sock_lower_handle_t lproto_handle,
1293 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
1294 cred_t *cr)
1295 {
1296 return (EINVAL);
1297 }
1298
1299 /* ARGSUSED */
1300 static int
rts_bind(sock_lower_handle_t proto_handle,struct sockaddr * sa,socklen_t len,cred_t * cr)1301 rts_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
1302 socklen_t len, cred_t *cr)
1303 {
1304 /*
1305 * rebind not allowed
1306 */
1307 return (EINVAL);
1308 }
1309
1310 /* ARGSUSED */
1311 int
rts_listen(sock_lower_handle_t proto_handle,int backlog,cred_t * cr)1312 rts_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
1313 {
1314 return (EINVAL);
1315 }
1316
1317 /* ARGSUSED */
1318 int
rts_connect(sock_lower_handle_t proto_handle,const struct sockaddr * sa,socklen_t len,sock_connid_t * id,cred_t * cr)1319 rts_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
1320 socklen_t len, sock_connid_t *id, cred_t *cr)
1321 {
1322 /*
1323 * rts sockets start out as bound and connected
1324 */
1325 *id = 0;
1326 return (EISCONN);
1327 }
1328
1329 /* ARGSUSED */
1330 int
rts_getpeername(sock_lower_handle_t proto_handle,struct sockaddr * addr,socklen_t * addrlen,cred_t * cr)1331 rts_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
1332 socklen_t *addrlen, cred_t *cr)
1333 {
1334 bzero(addr, sizeof (struct sockaddr));
1335 addr->sa_family = AF_ROUTE;
1336 *addrlen = sizeof (struct sockaddr);
1337
1338 return (0);
1339 }
1340
1341 /* ARGSUSED */
1342 int
rts_getsockname(sock_lower_handle_t proto_handle,struct sockaddr * addr,socklen_t * addrlen,cred_t * cr)1343 rts_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
1344 socklen_t *addrlen, cred_t *cr)
1345 {
1346 bzero(addr, sizeof (struct sockaddr));
1347 addr->sa_family = AF_ROUTE;
1348 *addrlen = sizeof (struct sockaddr);
1349
1350 return (0);
1351 }
1352
1353 static int
rts_getsockopt(sock_lower_handle_t proto_handle,int level,int option_name,void * optvalp,socklen_t * optlen,cred_t * cr)1354 rts_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
1355 void *optvalp, socklen_t *optlen, cred_t *cr)
1356 {
1357 conn_t *connp = (conn_t *)proto_handle;
1358 rts_t *rts = connp->conn_rts;
1359 int error;
1360 t_uscalar_t max_optbuf_len;
1361 void *optvalp_buf;
1362 int len;
1363
1364 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
1365 rts_opt_obj.odb_opt_des_arr,
1366 rts_opt_obj.odb_opt_arr_cnt,
1367 B_FALSE, B_TRUE, cr);
1368 if (error != 0) {
1369 if (error < 0)
1370 error = proto_tlitosyserr(-error);
1371 return (error);
1372 }
1373
1374 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
1375 rw_enter(&rts->rts_rwlock, RW_READER);
1376 len = rts_opt_get(connp, level, option_name, optvalp_buf);
1377 rw_exit(&rts->rts_rwlock);
1378 if (len == -1) {
1379 kmem_free(optvalp_buf, max_optbuf_len);
1380 return (EINVAL);
1381 }
1382
1383 /*
1384 * update optlen and copy option value
1385 */
1386 t_uscalar_t size = MIN(len, *optlen);
1387
1388 bcopy(optvalp_buf, optvalp, size);
1389 bcopy(&size, optlen, sizeof (size));
1390 kmem_free(optvalp_buf, max_optbuf_len);
1391 return (0);
1392 }
1393
1394 static int
rts_setsockopt(sock_lower_handle_t proto_handle,int level,int option_name,const void * optvalp,socklen_t optlen,cred_t * cr)1395 rts_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
1396 const void *optvalp, socklen_t optlen, cred_t *cr)
1397 {
1398 conn_t *connp = (conn_t *)proto_handle;
1399 rts_t *rts = connp->conn_rts;
1400 int error;
1401
1402 error = proto_opt_check(level, option_name, optlen, NULL,
1403 rts_opt_obj.odb_opt_des_arr,
1404 rts_opt_obj.odb_opt_arr_cnt,
1405 B_TRUE, B_FALSE, cr);
1406
1407 if (error != 0) {
1408 if (error < 0)
1409 error = proto_tlitosyserr(-error);
1410 return (error);
1411 }
1412
1413 rw_enter(&rts->rts_rwlock, RW_WRITER);
1414 error = rts_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
1415 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
1416 NULL, cr);
1417 rw_exit(&rts->rts_rwlock);
1418
1419 ASSERT(error >= 0);
1420
1421 return (error);
1422 }
1423
1424 /* ARGSUSED */
1425 static int
rts_send(sock_lower_handle_t proto_handle,mblk_t * mp,struct nmsghdr * msg,cred_t * cr)1426 rts_send(sock_lower_handle_t proto_handle, mblk_t *mp,
1427 struct nmsghdr *msg, cred_t *cr)
1428 {
1429 conn_t *connp = (conn_t *)proto_handle;
1430 rt_msghdr_t *rtm;
1431 int error;
1432
1433 ASSERT(DB_TYPE(mp) == M_DATA);
1434 /*
1435 * The semantics of the routing socket is such that the rtm_pid
1436 * field is automatically filled in during requests with the
1437 * current process' pid. We do this here (where we still have
1438 * user context) after checking we have at least a message the
1439 * size of a routing message header.
1440 */
1441 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
1442 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) {
1443 freemsg(mp);
1444 return (EINVAL);
1445 }
1446 }
1447 rtm = (rt_msghdr_t *)mp->b_rptr;
1448 rtm->rtm_pid = curproc->p_pid;
1449
1450 /*
1451 * We are not constrained by the ioctl interface and
1452 * ip_rts_request_common processing requests synchronously hence
1453 * we can send them down concurrently.
1454 */
1455 error = ip_rts_request_common(mp, connp, cr);
1456 return (error);
1457 }
1458
1459 /* ARGSUSED */
1460 sock_lower_handle_t
rts_create(int family,int type,int proto,sock_downcalls_t ** sock_downcalls,uint_t * smodep,int * errorp,int flags,cred_t * credp)1461 rts_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
1462 uint_t *smodep, int *errorp, int flags, cred_t *credp)
1463 {
1464 conn_t *connp;
1465
1466 if (family != AF_ROUTE || type != SOCK_RAW ||
1467 (proto != 0 && proto != AF_INET && proto != AF_INET6)) {
1468 *errorp = EPROTONOSUPPORT;
1469 return (NULL);
1470 }
1471
1472 connp = rts_open(flags, credp);
1473 ASSERT(connp != NULL);
1474 connp->conn_flags |= IPCL_NONSTR;
1475
1476 connp->conn_proto = proto;
1477
1478 mutex_enter(&connp->conn_lock);
1479 connp->conn_state_flags &= ~CONN_INCIPIENT;
1480 mutex_exit(&connp->conn_lock);
1481
1482 *errorp = 0;
1483 *smodep = SM_ATOMIC;
1484 *sock_downcalls = &sock_rts_downcalls;
1485 return ((sock_lower_handle_t)connp);
1486 }
1487
1488 /* ARGSUSED */
1489 void
rts_activate(sock_lower_handle_t proto_handle,sock_upper_handle_t sock_handle,sock_upcalls_t * sock_upcalls,int flags,cred_t * cr)1490 rts_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
1491 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
1492 {
1493 conn_t *connp = (conn_t *)proto_handle;
1494 struct sock_proto_props sopp;
1495
1496 connp->conn_upcalls = sock_upcalls;
1497 connp->conn_upper_handle = sock_handle;
1498
1499 sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
1500 SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ;
1501 sopp.sopp_wroff = 0;
1502 sopp.sopp_rxhiwat = connp->conn_rcvbuf;
1503 sopp.sopp_rxlowat = connp->conn_rcvlowat;
1504 sopp.sopp_maxblk = INFPSZ;
1505 sopp.sopp_maxpsz = rts_mod_info.mi_maxpsz;
1506 sopp.sopp_minpsz = (rts_mod_info.mi_minpsz == 1) ? 0 :
1507 rts_mod_info.mi_minpsz;
1508
1509 (*connp->conn_upcalls->su_set_proto_props)
1510 (connp->conn_upper_handle, &sopp);
1511
1512 /*
1513 * We treat it as already connected for routing socket.
1514 */
1515 (*connp->conn_upcalls->su_connected)
1516 (connp->conn_upper_handle, 0, NULL, -1);
1517
1518 /* Indicate to IP that this is a routing socket client */
1519 ip_rts_register(connp);
1520 }
1521
1522 /* ARGSUSED */
1523 int
rts_close(sock_lower_handle_t proto_handle,int flags,cred_t * cr)1524 rts_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
1525 {
1526 conn_t *connp = (conn_t *)proto_handle;
1527
1528 ASSERT(connp != NULL && IPCL_IS_RTS(connp));
1529 return (rts_common_close(NULL, connp));
1530 }
1531
1532 /* ARGSUSED */
1533 int
rts_shutdown(sock_lower_handle_t proto_handle,int how,cred_t * cr)1534 rts_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
1535 {
1536 conn_t *connp = (conn_t *)proto_handle;
1537
1538 /* shut down the send side */
1539 if (how != SHUT_RD)
1540 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
1541 SOCK_OPCTL_SHUT_SEND, 0);
1542 /* shut down the recv side */
1543 if (how != SHUT_WR)
1544 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
1545 SOCK_OPCTL_SHUT_RECV, 0);
1546 return (0);
1547 }
1548
1549 void
rts_clr_flowctrl(sock_lower_handle_t proto_handle)1550 rts_clr_flowctrl(sock_lower_handle_t proto_handle)
1551 {
1552 conn_t *connp = (conn_t *)proto_handle;
1553 rts_t *rts = connp->conn_rts;
1554
1555 mutex_enter(&rts->rts_recv_mutex);
1556 connp->conn_flow_cntrld = B_FALSE;
1557 mutex_exit(&rts->rts_recv_mutex);
1558 }
1559
1560 int
rts_ioctl(sock_lower_handle_t proto_handle,int cmd,intptr_t arg,int mode,int32_t * rvalp,cred_t * cr)1561 rts_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
1562 int mode, int32_t *rvalp, cred_t *cr)
1563 {
1564 conn_t *connp = (conn_t *)proto_handle;
1565 int error;
1566
1567 /*
1568 * If we don't have a helper stream then create one.
1569 * ip_create_helper_stream takes care of locking the conn_t,
1570 * so this check for NULL is just a performance optimization.
1571 */
1572 if (connp->conn_helper_info == NULL) {
1573 rts_stack_t *rtss = connp->conn_rts->rts_rtss;
1574
1575 ASSERT(rtss->rtss_ldi_ident != NULL);
1576
1577 /*
1578 * Create a helper stream for non-STREAMS socket.
1579 */
1580 error = ip_create_helper_stream(connp, rtss->rtss_ldi_ident);
1581 if (error != 0) {
1582 ip0dbg(("rts_ioctl: create of IP helper stream "
1583 "failed %d\n", error));
1584 return (error);
1585 }
1586 }
1587
1588 switch (cmd) {
1589 case ND_SET:
1590 case ND_GET:
1591 case TI_GETPEERNAME:
1592 case TI_GETMYNAME:
1593 #ifdef DEUG
1594 cmn_err(CE_CONT, "rts_ioctl cmd 0x%x on non sreams"
1595 " socket", cmd);
1596 #endif
1597 error = EINVAL;
1598 break;
1599 default:
1600 /*
1601 * Pass on to IP using helper stream
1602 */
1603 error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
1604 cmd, arg, mode, cr, rvalp);
1605 break;
1606 }
1607
1608 return (error);
1609 }
1610
1611 sock_downcalls_t sock_rts_downcalls = {
1612 rts_activate,
1613 rts_accept,
1614 rts_bind,
1615 rts_listen,
1616 rts_connect,
1617 rts_getpeername,
1618 rts_getsockname,
1619 rts_getsockopt,
1620 rts_setsockopt,
1621 rts_send,
1622 NULL,
1623 NULL,
1624 NULL,
1625 rts_shutdown,
1626 rts_clr_flowctrl,
1627 rts_ioctl,
1628 rts_close
1629 };
1630