1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsubr.h>
29 #include <sys/stropts.h>
30 #include <sys/strsun.h>
31 #include <sys/strlog.h>
32 #define _SUN_TPI_VERSION 2
33 #include <sys/tihdr.h>
34 #include <sys/timod.h>
35 #include <sys/ddi.h>
36 #include <sys/sunddi.h>
37 #include <sys/cmn_err.h>
38 #include <sys/proc.h>
39 #include <sys/suntpi.h>
40 #include <sys/policy.h>
41 #include <sys/zone.h>
42 #include <sys/disp.h>
43
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <netinet/in.h>
47
48 #include <inet/common.h>
49 #include <netinet/ip6.h>
50 #include <inet/ip.h>
51 #include <inet/ipclassifier.h>
52 #include <inet/proto_set.h>
53 #include <inet/nd.h>
54 #include <inet/optcom.h>
55 #include <netinet/ip_mroute.h>
56 #include <sys/isa_defs.h>
57 #include <net/route.h>
58
59 #include <inet/rts_impl.h>
60 #include <inet/ip_rts.h>
61
62 /*
63 * This is a transport provider for routing sockets. Downstream messages are
64 * wrapped with a IP_IOCTL header, and ip_wput_ioctl calls the appropriate entry
65 * in the ip_ioctl_ftbl callout table to pass the routing socket data into IP.
66 * Upstream messages are generated for listeners of the routing socket as well
67 * as the message sender (unless they have turned off their end using
68 * SO_USELOOPBACK or shutdown(3n)). Upstream messages may also be generated
69 * asynchronously when:
70 *
71 * Interfaces are brought up or down.
72 * Addresses are assigned to interfaces.
73 * ICMP redirects are processed and a IRE_HOST/RTF_DYNAMIC is installed.
74 * No route is found while sending a packet.
75 *
76 * Since all we do is reformat the messages between routing socket and
77 * ioctl forms, no synchronization is necessary in this module; all
78 * the dirty work is done down in ip.
79 */
80
81 /* Default structure copied into T_INFO_ACK messages */
82 static struct T_info_ack rts_g_t_info_ack = {
83 T_INFO_ACK,
84 T_INFINITE, /* TSDU_size. Maximum size messages. */
85 T_INVALID, /* ETSDU_size. No expedited data. */
86 T_INVALID, /* CDATA_size. No connect data. */
87 T_INVALID, /* DDATA_size. No disconnect data. */
88 0, /* ADDR_size. */
89 0, /* OPT_size - not initialized here */
90 64 * 1024, /* TIDU_size. rts allows maximum size messages. */
91 T_COTS, /* SERV_type. rts supports connection oriented. */
92 TS_UNBND, /* CURRENT_state. This is set from rts_state. */
93 (XPG4_1) /* PROVIDER_flag */
94 };
95
96 /*
97 * Table of ND variables supported by rts. These are loaded into rts_g_nd
98 * in rts_open.
99 * All of these are alterable, within the min/max values given, at run time.
100 */
101 static rtsparam_t lcl_param_arr[] = {
102 /* min max value name */
103 { 4096, 65536, 8192, "rts_xmit_hiwat"},
104 { 0, 65536, 1024, "rts_xmit_lowat"},
105 { 4096, 65536, 8192, "rts_recv_hiwat"},
106 { 65536, 1024*1024*1024, 256*1024, "rts_max_buf"},
107 };
108 #define rtss_xmit_hiwat rtss_params[0].rts_param_value
109 #define rtss_xmit_lowat rtss_params[1].rts_param_value
110 #define rtss_recv_hiwat rtss_params[2].rts_param_value
111 #define rtss_max_buf rtss_params[3].rts_param_value
112
113 static void rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
114 int sys_error);
115 static void rts_input(void *, mblk_t *, void *, ip_recv_attr_t *);
116 static void rts_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *);
117 static mblk_t *rts_ioctl_alloc(mblk_t *data);
118 static int rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
119 static boolean_t rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt);
120 static int rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
121 cred_t *cr);
122 static void rts_rsrv(queue_t *q);
123 static void *rts_stack_init(netstackid_t stackid, netstack_t *ns);
124 static void rts_stack_fini(netstackid_t stackid, void *arg);
125 static void rts_wput(queue_t *q, mblk_t *mp);
126 static void rts_wput_iocdata(queue_t *q, mblk_t *mp);
127 static void rts_wput_other(queue_t *q, mblk_t *mp);
128 static int rts_wrw(queue_t *q, struiod_t *dp);
129
130 static int rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag,
131 cred_t *credp);
132 static conn_t *rts_open(int flag, cred_t *credp);
133
134 static int rts_stream_close(queue_t *q);
135 static int rts_close(sock_lower_handle_t proto_handle, int flags,
136 cred_t *cr);
137
138 static struct module_info rts_mod_info = {
139 129, "rts", 1, INFPSZ, 512, 128
140 };
141
142 static struct qinit rtsrinit = {
143 NULL, (pfi_t)rts_rsrv, rts_stream_open, rts_stream_close, NULL,
144 &rts_mod_info
145 };
146
147 static struct qinit rtswinit = {
148 (pfi_t)rts_wput, NULL, NULL, NULL, NULL, &rts_mod_info,
149 NULL, (pfi_t)rts_wrw, NULL, STRUIOT_STANDARD
150 };
151
152 struct streamtab rtsinfo = {
153 &rtsrinit, &rtswinit
154 };
155
156 /*
157 * This routine allocates the necessary
158 * message blocks for IOCTL wrapping the
159 * user data.
160 */
161 static mblk_t *
rts_ioctl_alloc(mblk_t * data)162 rts_ioctl_alloc(mblk_t *data)
163 {
164 mblk_t *mp = NULL;
165 mblk_t *mp1 = NULL;
166 ipllc_t *ipllc;
167 struct iocblk *ioc;
168
169 mp = allocb_tmpl(sizeof (ipllc_t), data);
170 if (mp == NULL)
171 return (NULL);
172 mp1 = allocb_tmpl(sizeof (struct iocblk), data);
173 if (mp1 == NULL) {
174 freeb(mp);
175 return (NULL);
176 }
177
178 ipllc = (ipllc_t *)mp->b_rptr;
179 ipllc->ipllc_cmd = IP_IOC_RTS_REQUEST;
180 ipllc->ipllc_name_offset = 0;
181 ipllc->ipllc_name_length = 0;
182 mp->b_wptr += sizeof (ipllc_t);
183 mp->b_cont = data;
184
185 ioc = (struct iocblk *)mp1->b_rptr;
186 ioc->ioc_cmd = IP_IOCTL;
187 ioc->ioc_error = 0;
188 ioc->ioc_cr = NULL;
189 ioc->ioc_count = msgdsize(mp);
190 mp1->b_wptr += sizeof (struct iocblk);
191 mp1->b_datap->db_type = M_IOCTL;
192 mp1->b_cont = mp;
193
194 return (mp1);
195 }
196
197 /*
198 * This routine closes rts stream, by disabling
199 * put/srv routines and freeing the this module
200 * internal datastructure.
201 */
202 static int
rts_common_close(queue_t * q,conn_t * connp)203 rts_common_close(queue_t *q, conn_t *connp)
204 {
205
206 ASSERT(connp != NULL && IPCL_IS_RTS(connp));
207
208 ip_rts_unregister(connp);
209
210 ip_quiesce_conn(connp);
211
212 if (!IPCL_IS_NONSTR(connp)) {
213 qprocsoff(q);
214 }
215
216 /*
217 * Now we are truly single threaded on this stream, and can
218 * delete the things hanging off the connp, and finally the connp.
219 * We removed this connp from the fanout list, it cannot be
220 * accessed thru the fanouts, and we already waited for the
221 * conn_ref to drop to 0. We are already in close, so
222 * there cannot be any other thread from the top. qprocsoff
223 * has completed, and service has completed or won't run in
224 * future.
225 */
226 ASSERT(connp->conn_ref == 1);
227
228 if (!IPCL_IS_NONSTR(connp)) {
229 inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
230 } else {
231 ip_free_helper_stream(connp);
232 }
233
234 connp->conn_ref--;
235 ipcl_conn_destroy(connp);
236 return (0);
237 }
238
239 static int
rts_stream_close(queue_t * q)240 rts_stream_close(queue_t *q)
241 {
242 conn_t *connp = Q_TO_CONN(q);
243
244 (void) rts_common_close(q, connp);
245 q->q_ptr = WR(q)->q_ptr = NULL;
246 return (0);
247 }
248
249 /*
250 * This is the open routine for routing socket. It allocates
251 * rts_t structure for the stream and tells IP that it is a routing socket.
252 */
253 /* ARGSUSED */
254 static int
rts_stream_open(queue_t * q,dev_t * devp,int flag,int sflag,cred_t * credp)255 rts_stream_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
256 {
257 conn_t *connp;
258 dev_t conn_dev;
259 rts_t *rts;
260
261 /* If the stream is already open, return immediately. */
262 if (q->q_ptr != NULL)
263 return (0);
264
265 if (sflag == MODOPEN)
266 return (EINVAL);
267
268 /*
269 * Since RTS is not used so heavily, allocating from the small
270 * arena should be sufficient.
271 */
272 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
273 return (EBUSY);
274 }
275
276 connp = rts_open(flag, credp);
277 ASSERT(connp != NULL);
278
279 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
280
281 rts = connp->conn_rts;
282 rw_enter(&rts->rts_rwlock, RW_WRITER);
283 connp->conn_dev = conn_dev;
284 connp->conn_minor_arena = ip_minor_arena_sa;
285
286 q->q_ptr = connp;
287 WR(q)->q_ptr = connp;
288 connp->conn_rq = q;
289 connp->conn_wq = WR(q);
290
291 WR(q)->q_hiwat = connp->conn_sndbuf;
292 WR(q)->q_lowat = connp->conn_sndlowat;
293
294 mutex_enter(&connp->conn_lock);
295 connp->conn_state_flags &= ~CONN_INCIPIENT;
296 mutex_exit(&connp->conn_lock);
297 rw_exit(&rts->rts_rwlock);
298
299 /* Indicate to IP that this is a routing socket client */
300 ip_rts_register(connp);
301
302 qprocson(q);
303
304 return (0);
305 }
306
307 /* ARGSUSED */
308 static conn_t *
rts_open(int flag,cred_t * credp)309 rts_open(int flag, cred_t *credp)
310 {
311 netstack_t *ns;
312 rts_stack_t *rtss;
313 rts_t *rts;
314 conn_t *connp;
315 zoneid_t zoneid;
316
317 ns = netstack_find_by_cred(credp);
318 ASSERT(ns != NULL);
319 rtss = ns->netstack_rts;
320 ASSERT(rtss != NULL);
321
322 /*
323 * For exclusive stacks we set the zoneid to zero
324 * to make RTS operate as if in the global zone.
325 */
326 if (ns->netstack_stackid != GLOBAL_NETSTACKID)
327 zoneid = GLOBAL_ZONEID;
328 else
329 zoneid = crgetzoneid(credp);
330
331 connp = ipcl_conn_create(IPCL_RTSCONN, KM_SLEEP, ns);
332 rts = connp->conn_rts;
333
334 /*
335 * ipcl_conn_create did a netstack_hold. Undo the hold that was
336 * done by netstack_find_by_cred()
337 */
338 netstack_rele(ns);
339
340 rw_enter(&rts->rts_rwlock, RW_WRITER);
341 ASSERT(connp->conn_rts == rts);
342 ASSERT(rts->rts_connp == connp);
343
344 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
345 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
346 connp->conn_ixa->ixa_zoneid = zoneid;
347 connp->conn_zoneid = zoneid;
348 connp->conn_flow_cntrld = B_FALSE;
349
350 rts->rts_rtss = rtss;
351
352 connp->conn_rcvbuf = rtss->rtss_recv_hiwat;
353 connp->conn_sndbuf = rtss->rtss_xmit_hiwat;
354 connp->conn_sndlowat = rtss->rtss_xmit_lowat;
355 connp->conn_rcvlowat = rts_mod_info.mi_lowat;
356
357 connp->conn_family = PF_ROUTE;
358 connp->conn_so_type = SOCK_RAW;
359 /* SO_PROTOTYPE is always sent down by sockfs setting conn_proto */
360
361 connp->conn_recv = rts_input;
362 connp->conn_recvicmp = rts_icmp_input;
363
364 crhold(credp);
365 connp->conn_cred = credp;
366 connp->conn_cpid = curproc->p_pid;
367 /* Cache things in ixa without an extra refhold */
368 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
369 connp->conn_ixa->ixa_cred = connp->conn_cred;
370 connp->conn_ixa->ixa_cpid = connp->conn_cpid;
371 if (is_system_labeled())
372 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
373
374 /*
375 * rts sockets start out as bound and connected
376 * For streams based sockets, socket state is set to
377 * SS_ISBOUND | SS_ISCONNECTED in so_strinit.
378 */
379 rts->rts_state = TS_DATA_XFER;
380 rw_exit(&rts->rts_rwlock);
381
382 return (connp);
383 }
384
385 /*
386 * This routine creates a T_ERROR_ACK message and passes it upstream.
387 */
388 static void
rts_err_ack(queue_t * q,mblk_t * mp,t_scalar_t t_error,int sys_error)389 rts_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
390 {
391 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
392 qreply(q, mp);
393 }
394
395 /*
396 * This routine creates a T_OK_ACK message and passes it upstream.
397 */
398 static void
rts_ok_ack(queue_t * q,mblk_t * mp)399 rts_ok_ack(queue_t *q, mblk_t *mp)
400 {
401 if ((mp = mi_tpi_ok_ack_alloc(mp)) != NULL)
402 qreply(q, mp);
403 }
404
405 /*
406 * This routine is called by rts_wput to handle T_UNBIND_REQ messages.
407 */
408 static void
rts_tpi_unbind(queue_t * q,mblk_t * mp)409 rts_tpi_unbind(queue_t *q, mblk_t *mp)
410 {
411 conn_t *connp = Q_TO_CONN(q);
412 rts_t *rts = connp->conn_rts;
413
414 /* If a bind has not been done, we can't unbind. */
415 if (rts->rts_state != TS_IDLE) {
416 rts_err_ack(q, mp, TOUTSTATE, 0);
417 return;
418 }
419 rts->rts_state = TS_UNBND;
420 rts_ok_ack(q, mp);
421 }
422
423 /*
424 * This routine is called to handle each
425 * O_T_BIND_REQ/T_BIND_REQ message passed to
426 * rts_wput. Note: This routine works with both
427 * O_T_BIND_REQ and T_BIND_REQ semantics.
428 */
429 static void
rts_tpi_bind(queue_t * q,mblk_t * mp)430 rts_tpi_bind(queue_t *q, mblk_t *mp)
431 {
432 conn_t *connp = Q_TO_CONN(q);
433 rts_t *rts = connp->conn_rts;
434 struct T_bind_req *tbr;
435
436 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
437 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
438 "rts_tpi_bind: bad data, %d", rts->rts_state);
439 rts_err_ack(q, mp, TBADADDR, 0);
440 return;
441 }
442 if (rts->rts_state != TS_UNBND) {
443 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
444 "rts_tpi_bind: bad state, %d", rts->rts_state);
445 rts_err_ack(q, mp, TOUTSTATE, 0);
446 return;
447 }
448 tbr = (struct T_bind_req *)mp->b_rptr;
449 if (tbr->ADDR_length != 0) {
450 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
451 "rts_tpi_bind: bad ADDR_length %d", tbr->ADDR_length);
452 rts_err_ack(q, mp, TBADADDR, 0);
453 return;
454 }
455 /* Generic request */
456 tbr->ADDR_offset = (t_scalar_t)sizeof (struct T_bind_req);
457 tbr->ADDR_length = 0;
458 tbr->PRIM_type = T_BIND_ACK;
459 mp->b_datap->db_type = M_PCPROTO;
460 rts->rts_state = TS_IDLE;
461 qreply(q, mp);
462 }
463
464 static void
rts_copy_info(struct T_info_ack * tap,rts_t * rts)465 rts_copy_info(struct T_info_ack *tap, rts_t *rts)
466 {
467 *tap = rts_g_t_info_ack;
468 tap->CURRENT_state = rts->rts_state;
469 tap->OPT_size = rts_max_optsize;
470 }
471
472 /*
473 * This routine responds to T_CAPABILITY_REQ messages. It is called by
474 * rts_wput. Much of the T_CAPABILITY_ACK information is copied from
475 * rts_g_t_info_ack. The current state of the stream is copied from
476 * rts_state.
477 */
478 static void
rts_capability_req(queue_t * q,mblk_t * mp)479 rts_capability_req(queue_t *q, mblk_t *mp)
480 {
481 conn_t *connp = Q_TO_CONN(q);
482 rts_t *rts = connp->conn_rts;
483 t_uscalar_t cap_bits1;
484 struct T_capability_ack *tcap;
485
486 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
487
488 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
489 mp->b_datap->db_type, T_CAPABILITY_ACK);
490 if (mp == NULL)
491 return;
492
493 tcap = (struct T_capability_ack *)mp->b_rptr;
494 tcap->CAP_bits1 = 0;
495
496 if (cap_bits1 & TC1_INFO) {
497 rts_copy_info(&tcap->INFO_ack, rts);
498 tcap->CAP_bits1 |= TC1_INFO;
499 }
500
501 qreply(q, mp);
502 }
503
504 /*
505 * This routine responds to T_INFO_REQ messages. It is called by rts_wput.
506 * Most of the T_INFO_ACK information is copied from rts_g_t_info_ack.
507 * The current state of the stream is copied from rts_state.
508 */
509 static void
rts_info_req(queue_t * q,mblk_t * mp)510 rts_info_req(queue_t *q, mblk_t *mp)
511 {
512 conn_t *connp = Q_TO_CONN(q);
513 rts_t *rts = connp->conn_rts;
514
515 mp = tpi_ack_alloc(mp, sizeof (rts_g_t_info_ack), M_PCPROTO,
516 T_INFO_ACK);
517 if (mp == NULL)
518 return;
519 rts_copy_info((struct T_info_ack *)mp->b_rptr, rts);
520 qreply(q, mp);
521 }
522
523 /*
524 * This routine gets default values of certain options whose default
525 * values are maintained by protcol specific code
526 */
527 /* ARGSUSED */
528 int
rts_opt_default(queue_t * q,t_scalar_t level,t_scalar_t name,uchar_t * ptr)529 rts_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
530 {
531 /* no default value processed by protocol specific code currently */
532 return (-1);
533 }
534
535
536 static int
rts_opt_get(conn_t * connp,int level,int name,uchar_t * ptr)537 rts_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
538 {
539 rts_t *rts = connp->conn_rts;
540 conn_opt_arg_t coas;
541 int retval;
542
543 ASSERT(RW_READ_HELD(&rts->rts_rwlock));
544
545 switch (level) {
546 /* do this in conn_opt_get? */
547 case SOL_ROUTE:
548 switch (name) {
549 case RT_AWARE:
550 mutex_enter(&connp->conn_lock);
551 *(int *)ptr = connp->conn_rtaware;
552 mutex_exit(&connp->conn_lock);
553 return (0);
554 }
555 break;
556 }
557 coas.coa_connp = connp;
558 coas.coa_ixa = connp->conn_ixa;
559 coas.coa_ipp = &connp->conn_xmit_ipp;
560 mutex_enter(&connp->conn_lock);
561 retval = conn_opt_get(&coas, level, name, ptr);
562 mutex_exit(&connp->conn_lock);
563 return (retval);
564 }
565
566 /* ARGSUSED */
567 static int
rts_do_opt_set(conn_t * connp,int level,int name,uint_t inlen,uchar_t * invalp,uint_t * outlenp,uchar_t * outvalp,cred_t * cr,void * thisdg_attrs,boolean_t checkonly)568 rts_do_opt_set(conn_t *connp, int level, int name, uint_t inlen,
569 uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, cred_t *cr,
570 void *thisdg_attrs, boolean_t checkonly)
571 {
572 int *i1 = (int *)invalp;
573 rts_t *rts = connp->conn_rts;
574 rts_stack_t *rtss = rts->rts_rtss;
575 int error;
576 conn_opt_arg_t coas;
577
578 coas.coa_connp = connp;
579 coas.coa_ixa = connp->conn_ixa;
580 coas.coa_ipp = &connp->conn_xmit_ipp;
581
582 ASSERT(RW_WRITE_HELD(&rts->rts_rwlock));
583
584 /*
585 * For rts, we should have no ancillary data sent down
586 * (rts_wput doesn't handle options).
587 */
588 ASSERT(thisdg_attrs == NULL);
589
590 /*
591 * For fixed length options, no sanity check
592 * of passed in length is done. It is assumed *_optcom_req()
593 * routines do the right thing.
594 */
595
596 switch (level) {
597 case SOL_SOCKET:
598 switch (name) {
599 case SO_PROTOTYPE:
600 /*
601 * Routing socket applications that call socket() with
602 * a third argument can filter which messages will be
603 * sent upstream thanks to sockfs. so_socket() sends
604 * down the SO_PROTOTYPE and rts_queue_input()
605 * implements the filtering.
606 */
607 if (*i1 != AF_INET && *i1 != AF_INET6) {
608 *outlenp = 0;
609 return (EPROTONOSUPPORT);
610 }
611 if (!checkonly)
612 connp->conn_proto = *i1;
613 *outlenp = inlen;
614 return (0);
615
616 /*
617 * The following two items can be manipulated,
618 * but changing them should do nothing.
619 */
620 case SO_SNDBUF:
621 if (*i1 > rtss->rtss_max_buf) {
622 *outlenp = 0;
623 return (ENOBUFS);
624 }
625 break; /* goto sizeof (int) option return */
626 case SO_RCVBUF:
627 if (*i1 > rtss->rtss_max_buf) {
628 *outlenp = 0;
629 return (ENOBUFS);
630 }
631 break; /* goto sizeof (int) option return */
632 }
633 break;
634 case SOL_ROUTE:
635 switch (name) {
636 case RT_AWARE:
637 if (!checkonly) {
638 mutex_enter(&connp->conn_lock);
639 connp->conn_rtaware = *i1;
640 mutex_exit(&connp->conn_lock);
641 }
642 *outlenp = inlen;
643 return (0);
644 }
645 break;
646 }
647 /* Serialized setsockopt since we are D_MTQPAIR */
648 error = conn_opt_set(&coas, level, name, inlen, invalp,
649 checkonly, cr);
650 if (error != 0) {
651 *outlenp = 0;
652 return (error);
653 }
654 /*
655 * Common case of return from an option that is sizeof (int)
656 */
657 if (invalp != outvalp) {
658 /* don't trust bcopy for identical src/dst */
659 (void) bcopy(invalp, outvalp, inlen);
660 }
661 *outlenp = (t_uscalar_t)sizeof (int);
662 return (0);
663 }
664
665 static int
rts_opt_set(conn_t * connp,uint_t optset_context,int level,int name,uint_t inlen,uchar_t * invalp,uint_t * outlenp,uchar_t * outvalp,void * thisdg_attrs,cred_t * cr)666 rts_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
667 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
668 void *thisdg_attrs, cred_t *cr)
669 {
670 boolean_t checkonly = B_FALSE;
671
672 if (optset_context) {
673 switch (optset_context) {
674 case SETFN_OPTCOM_CHECKONLY:
675 checkonly = B_TRUE;
676 /*
677 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
678 * inlen != 0 implies value supplied and
679 * we have to "pretend" to set it.
680 * inlen == 0 implies that there is no value part
681 * in T_CHECK request and just validation
682 * done elsewhere should be enough, we just return here.
683 */
684 if (inlen == 0) {
685 *outlenp = 0;
686 return (0);
687 }
688 break;
689 case SETFN_OPTCOM_NEGOTIATE:
690 checkonly = B_FALSE;
691 break;
692 case SETFN_UD_NEGOTIATE:
693 case SETFN_CONN_NEGOTIATE:
694 checkonly = B_FALSE;
695 /*
696 * Negotiating local and "association-related" options
697 * through T_UNITDATA_REQ or T_CONN_{REQ,CON}
698 * Not allowed in this module.
699 */
700 return (EINVAL);
701 default:
702 /*
703 * We should never get here
704 */
705 *outlenp = 0;
706 return (EINVAL);
707 }
708
709 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
710 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
711
712 }
713 return (rts_do_opt_set(connp, level, name, inlen, invalp, outlenp,
714 outvalp, cr, thisdg_attrs, checkonly));
715
716 }
717
718 /*
719 * This routine retrieves the current status of socket options.
720 * It returns the size of the option retrieved.
721 */
722 int
rts_tpi_opt_get(queue_t * q,t_scalar_t level,t_scalar_t name,uchar_t * ptr)723 rts_tpi_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
724 {
725 rts_t *rts;
726 int err;
727
728 rts = Q_TO_RTS(q);
729 rw_enter(&rts->rts_rwlock, RW_READER);
730 err = rts_opt_get(Q_TO_CONN(q), level, name, ptr);
731 rw_exit(&rts->rts_rwlock);
732 return (err);
733 }
734
735 /*
736 * This routine sets socket options.
737 */
738 /*ARGSUSED*/
739 int
rts_tpi_opt_set(queue_t * q,uint_t optset_context,int level,int name,uint_t inlen,uchar_t * invalp,uint_t * outlenp,uchar_t * outvalp,void * thisdg_attrs,cred_t * cr)740 rts_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
741 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
742 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr)
743 {
744 conn_t *connp = Q_TO_CONN(q);
745 int error;
746 rts_t *rts = connp->conn_rts;
747
748
749 rw_enter(&rts->rts_rwlock, RW_WRITER);
750 error = rts_opt_set(connp, optset_context, level, name, inlen, invalp,
751 outlenp, outvalp, thisdg_attrs, cr);
752 rw_exit(&rts->rts_rwlock);
753 return (error);
754 }
755
756 /*
757 * This routine retrieves the value of an ND variable in a rtsparam_t
758 * structure. It is called through nd_getset when a user reads the
759 * variable.
760 */
761 /* ARGSUSED */
762 static int
rts_param_get(queue_t * q,mblk_t * mp,caddr_t cp,cred_t * cr)763 rts_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
764 {
765 rtsparam_t *rtspa = (rtsparam_t *)cp;
766
767 (void) mi_mpprintf(mp, "%u", rtspa->rts_param_value);
768 return (0);
769 }
770
771 /*
772 * Walk through the param array specified registering each element with the
773 * named dispatch (ND) handler.
774 */
775 static boolean_t
rts_param_register(IDP * ndp,rtsparam_t * rtspa,int cnt)776 rts_param_register(IDP *ndp, rtsparam_t *rtspa, int cnt)
777 {
778 for (; cnt-- > 0; rtspa++) {
779 if (rtspa->rts_param_name != NULL && rtspa->rts_param_name[0]) {
780 if (!nd_load(ndp, rtspa->rts_param_name,
781 rts_param_get, rts_param_set, (caddr_t)rtspa)) {
782 nd_free(ndp);
783 return (B_FALSE);
784 }
785 }
786 }
787 return (B_TRUE);
788 }
789
790 /* This routine sets an ND variable in a rtsparam_t structure. */
791 /* ARGSUSED */
792 static int
rts_param_set(queue_t * q,mblk_t * mp,char * value,caddr_t cp,cred_t * cr)793 rts_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
794 {
795 ulong_t new_value;
796 rtsparam_t *rtspa = (rtsparam_t *)cp;
797
798 /*
799 * Fail the request if the new value does not lie within the
800 * required bounds.
801 */
802 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
803 new_value < rtspa->rts_param_min ||
804 new_value > rtspa->rts_param_max) {
805 return (EINVAL);
806 }
807
808 /* Set the new value */
809 rtspa->rts_param_value = new_value;
810 return (0);
811 }
812
813 /*
814 * Empty rsrv routine which is used by rts_input to cause a wakeup
815 * of a thread in qwait.
816 */
817 /*ARGSUSED*/
818 static void
rts_rsrv(queue_t * q)819 rts_rsrv(queue_t *q)
820 {
821 }
822
823 /*
824 * This routine handles synchronous messages passed downstream. It either
825 * consumes the message or passes it downstream; it never queues a
826 * a message. The data messages that go down are wrapped in an IOCTL
827 * message.
828 *
829 * Since it is synchronous, it waits for the M_IOCACK/M_IOCNAK so that
830 * it can return an immediate error (such as ENETUNREACH when adding a route).
831 * It uses the RTS_WRW_PENDING to ensure that each rts instance has only
832 * one M_IOCTL outstanding at any given time.
833 */
834 static int
rts_wrw(queue_t * q,struiod_t * dp)835 rts_wrw(queue_t *q, struiod_t *dp)
836 {
837 mblk_t *mp = dp->d_mp;
838 mblk_t *mp1;
839 int error;
840 rt_msghdr_t *rtm;
841 conn_t *connp = Q_TO_CONN(q);
842 rts_t *rts = connp->conn_rts;
843
844 while (rts->rts_flag & RTS_WRW_PENDING) {
845 if (qwait_rw(q)) {
846 rts->rts_error = EINTR;
847 goto err_ret;
848 }
849 }
850 rts->rts_flag |= RTS_WRW_PENDING;
851
852 if (isuioq(q) && (error = struioget(q, mp, dp, 0))) {
853 /*
854 * Uio error of some sort, so just return the error.
855 */
856 rts->rts_error = error;
857 goto err_ret;
858 }
859 /*
860 * Pass the mblk (chain) onto wput().
861 */
862 dp->d_mp = 0;
863
864 switch (mp->b_datap->db_type) {
865 case M_PROTO:
866 case M_PCPROTO:
867 /* Expedite other than T_DATA_REQ to below the switch */
868 if (((mp->b_wptr - mp->b_rptr) !=
869 sizeof (struct T_data_req)) ||
870 (((union T_primitives *)mp->b_rptr)->type != T_DATA_REQ))
871 break;
872 if ((mp1 = mp->b_cont) == NULL) {
873 rts->rts_error = EINVAL;
874 freemsg(mp);
875 goto err_ret;
876 }
877 freeb(mp);
878 mp = mp1;
879 /* FALLTHRU */
880 case M_DATA:
881 /*
882 * The semantics of the routing socket is such that the rtm_pid
883 * field is automatically filled in during requests with the
884 * current process' pid. We do this here (where we still have
885 * user context) after checking we have at least a message the
886 * size of a routing message header.
887 */
888 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
889 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) {
890 rts->rts_error = EINVAL;
891 freemsg(mp);
892 goto err_ret;
893 }
894 }
895 rtm = (rt_msghdr_t *)mp->b_rptr;
896 rtm->rtm_pid = curproc->p_pid;
897 break;
898 default:
899 break;
900 }
901 rts->rts_flag |= RTS_WPUT_PENDING;
902 rts_wput(q, mp);
903 while (rts->rts_flag & RTS_WPUT_PENDING)
904 if (qwait_rw(q)) {
905 /* RTS_WPUT_PENDING will be cleared below */
906 rts->rts_error = EINTR;
907 break;
908 }
909 err_ret:
910 rts->rts_flag &= ~(RTS_WPUT_PENDING | RTS_WRW_PENDING);
911 return (rts->rts_error);
912 }
913
914 /*
915 * This routine handles all messages passed downstream. It either
916 * consumes the message or passes it downstream; it never queues a
917 * a message. The data messages that go down are wrapped in an IOCTL
918 * message.
919 */
920 static void
rts_wput(queue_t * q,mblk_t * mp)921 rts_wput(queue_t *q, mblk_t *mp)
922 {
923 uchar_t *rptr = mp->b_rptr;
924 mblk_t *mp1;
925 conn_t *connp = Q_TO_CONN(q);
926 rts_t *rts = connp->conn_rts;
927
928 switch (mp->b_datap->db_type) {
929 case M_DATA:
930 break;
931 case M_PROTO:
932 case M_PCPROTO:
933 if ((mp->b_wptr - rptr) == sizeof (struct T_data_req)) {
934 /* Expedite valid T_DATA_REQ to below the switch */
935 if (((union T_primitives *)rptr)->type == T_DATA_REQ) {
936 mp1 = mp->b_cont;
937 freeb(mp);
938 if (mp1 == NULL)
939 return;
940 mp = mp1;
941 break;
942 }
943 }
944 /* FALLTHRU */
945 default:
946 rts_wput_other(q, mp);
947 return;
948 }
949
950
951 ASSERT(msg_getcred(mp, NULL) != NULL);
952
953 mp1 = rts_ioctl_alloc(mp);
954 if (mp1 == NULL) {
955 ASSERT(rts != NULL);
956 freemsg(mp);
957 if (rts->rts_flag & RTS_WPUT_PENDING) {
958 rts->rts_error = ENOMEM;
959 rts->rts_flag &= ~RTS_WPUT_PENDING;
960 }
961 return;
962 }
963 ip_wput_nondata(q, mp1);
964 }
965
966
967 /*
968 * Handles all the control message, if it
969 * can not understand it, it will
970 * pass down stream.
971 */
972 static void
rts_wput_other(queue_t * q,mblk_t * mp)973 rts_wput_other(queue_t *q, mblk_t *mp)
974 {
975 conn_t *connp = Q_TO_CONN(q);
976 rts_t *rts = connp->conn_rts;
977 uchar_t *rptr = mp->b_rptr;
978 struct iocblk *iocp;
979 cred_t *cr;
980 rts_stack_t *rtss;
981
982 rtss = rts->rts_rtss;
983
984 switch (mp->b_datap->db_type) {
985 case M_PROTO:
986 case M_PCPROTO:
987 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) {
988 /*
989 * If the message does not contain a PRIM_type,
990 * throw it away.
991 */
992 freemsg(mp);
993 return;
994 }
995 switch (((union T_primitives *)rptr)->type) {
996 case T_BIND_REQ:
997 case O_T_BIND_REQ:
998 rts_tpi_bind(q, mp);
999 return;
1000 case T_UNBIND_REQ:
1001 rts_tpi_unbind(q, mp);
1002 return;
1003 case T_CAPABILITY_REQ:
1004 rts_capability_req(q, mp);
1005 return;
1006 case T_INFO_REQ:
1007 rts_info_req(q, mp);
1008 return;
1009 case T_SVR4_OPTMGMT_REQ:
1010 case T_OPTMGMT_REQ:
1011 /*
1012 * All Solaris components should pass a db_credp
1013 * for this TPI message, hence we ASSERT.
1014 * But in case there is some other M_PROTO that looks
1015 * like a TPI message sent by some other kernel
1016 * component, we check and return an error.
1017 */
1018 cr = msg_getcred(mp, NULL);
1019 ASSERT(cr != NULL);
1020 if (cr == NULL) {
1021 rts_err_ack(q, mp, TSYSERR, EINVAL);
1022 return;
1023 }
1024 if (((union T_primitives *)rptr)->type ==
1025 T_SVR4_OPTMGMT_REQ) {
1026 svr4_optcom_req(q, mp, cr, &rts_opt_obj);
1027 } else {
1028 tpi_optcom_req(q, mp, cr, &rts_opt_obj);
1029 }
1030 return;
1031 case O_T_CONN_RES:
1032 case T_CONN_RES:
1033 case T_DISCON_REQ:
1034 /* Not supported by rts. */
1035 rts_err_ack(q, mp, TNOTSUPPORT, 0);
1036 return;
1037 case T_DATA_REQ:
1038 case T_EXDATA_REQ:
1039 case T_ORDREL_REQ:
1040 /* Illegal for rts. */
1041 freemsg(mp);
1042 (void) putnextctl1(RD(q), M_ERROR, EPROTO);
1043 return;
1044
1045 default:
1046 break;
1047 }
1048 break;
1049 case M_IOCTL:
1050 iocp = (struct iocblk *)mp->b_rptr;
1051 switch (iocp->ioc_cmd) {
1052 case ND_SET:
1053 case ND_GET:
1054 if (nd_getset(q, rtss->rtss_g_nd, mp)) {
1055 qreply(q, mp);
1056 return;
1057 }
1058 break;
1059 case TI_GETPEERNAME:
1060 mi_copyin(q, mp, NULL,
1061 SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
1062 return;
1063 default:
1064 break;
1065 }
1066 case M_IOCDATA:
1067 rts_wput_iocdata(q, mp);
1068 return;
1069 default:
1070 break;
1071 }
1072 ip_wput_nondata(q, mp);
1073 }
1074
1075 /*
1076 * Called by rts_wput_other to handle all M_IOCDATA messages.
1077 */
1078 static void
rts_wput_iocdata(queue_t * q,mblk_t * mp)1079 rts_wput_iocdata(queue_t *q, mblk_t *mp)
1080 {
1081 struct sockaddr *rtsaddr;
1082 mblk_t *mp1;
1083 STRUCT_HANDLE(strbuf, sb);
1084 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
1085
1086 /* Make sure it is one of ours. */
1087 switch (iocp->ioc_cmd) {
1088 case TI_GETPEERNAME:
1089 break;
1090 default:
1091 ip_wput_nondata(q, mp);
1092 return;
1093 }
1094 switch (mi_copy_state(q, mp, &mp1)) {
1095 case -1:
1096 return;
1097 case MI_COPY_CASE(MI_COPY_IN, 1):
1098 break;
1099 case MI_COPY_CASE(MI_COPY_OUT, 1):
1100 /* Copy out the strbuf. */
1101 mi_copyout(q, mp);
1102 return;
1103 case MI_COPY_CASE(MI_COPY_OUT, 2):
1104 /* All done. */
1105 mi_copy_done(q, mp, 0);
1106 return;
1107 default:
1108 mi_copy_done(q, mp, EPROTO);
1109 return;
1110 }
1111 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
1112 if (STRUCT_FGET(sb, maxlen) < (int)sizeof (sin_t)) {
1113 mi_copy_done(q, mp, EINVAL);
1114 return;
1115 }
1116 switch (iocp->ioc_cmd) {
1117 case TI_GETPEERNAME:
1118 break;
1119 default:
1120 mi_copy_done(q, mp, EPROTO);
1121 return;
1122 }
1123 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), sizeof (sin_t),
1124 B_TRUE);
1125 if (mp1 == NULL)
1126 return;
1127 STRUCT_FSET(sb, len, (int)sizeof (sin_t));
1128 rtsaddr = (struct sockaddr *)mp1->b_rptr;
1129 mp1->b_wptr = (uchar_t *)&rtsaddr[1];
1130 bzero(rtsaddr, sizeof (struct sockaddr));
1131 rtsaddr->sa_family = AF_ROUTE;
1132 /* Copy out the address */
1133 mi_copyout(q, mp);
1134 }
1135
1136 /*
1137 * IP passes up a NULL ira.
1138 */
1139 /*ARGSUSED2*/
1140 static void
rts_input(void * arg1,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)1141 rts_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1142 {
1143 conn_t *connp = (conn_t *)arg1;
1144 rts_t *rts = connp->conn_rts;
1145 struct iocblk *iocp;
1146 mblk_t *mp1;
1147 struct T_data_ind *tdi;
1148 int error;
1149
1150 switch (mp->b_datap->db_type) {
1151 case M_IOCACK:
1152 case M_IOCNAK:
1153 iocp = (struct iocblk *)mp->b_rptr;
1154 ASSERT(!IPCL_IS_NONSTR(connp));
1155 if (rts->rts_flag & (RTS_WPUT_PENDING)) {
1156 rts->rts_flag &= ~RTS_WPUT_PENDING;
1157 rts->rts_error = iocp->ioc_error;
1158 /*
1159 * Tell rts_wvw/qwait that we are done.
1160 * Note: there is no qwait_wakeup() we can use.
1161 */
1162 qenable(connp->conn_rq);
1163 freemsg(mp);
1164 return;
1165 }
1166 break;
1167 case M_DATA:
1168 /*
1169 * Prepend T_DATA_IND to prevent the stream head from
1170 * consolidating multiple messages together.
1171 * If the allocation fails just send up the M_DATA.
1172 */
1173 mp1 = allocb(sizeof (*tdi), BPRI_MED);
1174 if (mp1 != NULL) {
1175 mp1->b_cont = mp;
1176 mp = mp1;
1177
1178 mp->b_datap->db_type = M_PROTO;
1179 mp->b_wptr += sizeof (*tdi);
1180 tdi = (struct T_data_ind *)mp->b_rptr;
1181 tdi->PRIM_type = T_DATA_IND;
1182 tdi->MORE_flag = 0;
1183 }
1184 break;
1185 default:
1186 break;
1187 }
1188
1189 if (IPCL_IS_NONSTR(connp)) {
1190 if ((*connp->conn_upcalls->su_recv)
1191 (connp->conn_upper_handle, mp, msgdsize(mp), 0,
1192 &error, NULL) < 0) {
1193 ASSERT(error == ENOSPC);
1194 /*
1195 * Let's confirm hoding the lock that
1196 * we are out of recv space.
1197 */
1198 mutex_enter(&rts->rts_recv_mutex);
1199 if ((*connp->conn_upcalls->su_recv)
1200 (connp->conn_upper_handle, NULL, 0, 0,
1201 &error, NULL) < 0) {
1202 ASSERT(error == ENOSPC);
1203 connp->conn_flow_cntrld = B_TRUE;
1204 }
1205 mutex_exit(&rts->rts_recv_mutex);
1206 }
1207 } else {
1208 putnext(connp->conn_rq, mp);
1209 }
1210 }
1211
1212 /*ARGSUSED*/
1213 static void
rts_icmp_input(void * arg1,mblk_t * mp,void * arg2,ip_recv_attr_t * ira)1214 rts_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1215 {
1216 freemsg(mp);
1217 }
1218
1219 void
rts_ddi_g_init(void)1220 rts_ddi_g_init(void)
1221 {
1222 rts_max_optsize = optcom_max_optsize(rts_opt_obj.odb_opt_des_arr,
1223 rts_opt_obj.odb_opt_arr_cnt);
1224
1225 /*
1226 * We want to be informed each time a stack is created or
1227 * destroyed in the kernel, so we can maintain the
1228 * set of rts_stack_t's.
1229 */
1230 netstack_register(NS_RTS, rts_stack_init, NULL, rts_stack_fini);
1231 }
1232
1233 void
rts_ddi_g_destroy(void)1234 rts_ddi_g_destroy(void)
1235 {
1236 netstack_unregister(NS_RTS);
1237 }
1238
1239 #define INET_NAME "ip"
1240
1241 /*
1242 * Initialize the RTS stack instance.
1243 */
1244 /* ARGSUSED */
1245 static void *
rts_stack_init(netstackid_t stackid,netstack_t * ns)1246 rts_stack_init(netstackid_t stackid, netstack_t *ns)
1247 {
1248 rts_stack_t *rtss;
1249 rtsparam_t *pa;
1250 int error = 0;
1251 major_t major;
1252
1253 rtss = (rts_stack_t *)kmem_zalloc(sizeof (*rtss), KM_SLEEP);
1254 rtss->rtss_netstack = ns;
1255
1256 pa = (rtsparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
1257 rtss->rtss_params = pa;
1258 bcopy(lcl_param_arr, rtss->rtss_params, sizeof (lcl_param_arr));
1259
1260 (void) rts_param_register(&rtss->rtss_g_nd,
1261 rtss->rtss_params, A_CNT(lcl_param_arr));
1262
1263 major = mod_name_to_major(INET_NAME);
1264 error = ldi_ident_from_major(major, &rtss->rtss_ldi_ident);
1265 ASSERT(error == 0);
1266 return (rtss);
1267 }
1268
1269 /*
1270 * Free the RTS stack instance.
1271 */
1272 /* ARGSUSED */
1273 static void
rts_stack_fini(netstackid_t stackid,void * arg)1274 rts_stack_fini(netstackid_t stackid, void *arg)
1275 {
1276 rts_stack_t *rtss = (rts_stack_t *)arg;
1277
1278 nd_free(&rtss->rtss_g_nd);
1279 kmem_free(rtss->rtss_params, sizeof (lcl_param_arr));
1280 rtss->rtss_params = NULL;
1281 ldi_ident_release(rtss->rtss_ldi_ident);
1282 kmem_free(rtss, sizeof (*rtss));
1283 }
1284
1285 /* ARGSUSED */
1286 int
rts_accept(sock_lower_handle_t lproto_handle,sock_lower_handle_t eproto_handle,sock_upper_handle_t sock_handle,cred_t * cr)1287 rts_accept(sock_lower_handle_t lproto_handle,
1288 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
1289 cred_t *cr)
1290 {
1291 return (EINVAL);
1292 }
1293
1294 /* ARGSUSED */
1295 static int
rts_bind(sock_lower_handle_t proto_handle,struct sockaddr * sa,socklen_t len,cred_t * cr)1296 rts_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
1297 socklen_t len, cred_t *cr)
1298 {
1299 /*
1300 * rebind not allowed
1301 */
1302 return (EINVAL);
1303 }
1304
1305 /* ARGSUSED */
1306 int
rts_listen(sock_lower_handle_t proto_handle,int backlog,cred_t * cr)1307 rts_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
1308 {
1309 return (EINVAL);
1310 }
1311
1312 /* ARGSUSED */
1313 int
rts_connect(sock_lower_handle_t proto_handle,const struct sockaddr * sa,socklen_t len,sock_connid_t * id,cred_t * cr)1314 rts_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
1315 socklen_t len, sock_connid_t *id, cred_t *cr)
1316 {
1317 /*
1318 * rts sockets start out as bound and connected
1319 */
1320 *id = 0;
1321 return (EISCONN);
1322 }
1323
1324 /* ARGSUSED */
1325 int
rts_getpeername(sock_lower_handle_t proto_handle,struct sockaddr * addr,socklen_t * addrlen,cred_t * cr)1326 rts_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
1327 socklen_t *addrlen, cred_t *cr)
1328 {
1329 bzero(addr, sizeof (struct sockaddr));
1330 addr->sa_family = AF_ROUTE;
1331 *addrlen = sizeof (struct sockaddr);
1332
1333 return (0);
1334 }
1335
1336 /* ARGSUSED */
1337 int
rts_getsockname(sock_lower_handle_t proto_handle,struct sockaddr * addr,socklen_t * addrlen,cred_t * cr)1338 rts_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
1339 socklen_t *addrlen, cred_t *cr)
1340 {
1341 bzero(addr, sizeof (struct sockaddr));
1342 addr->sa_family = AF_ROUTE;
1343 *addrlen = sizeof (struct sockaddr);
1344
1345 return (0);
1346 }
1347
1348 static int
rts_getsockopt(sock_lower_handle_t proto_handle,int level,int option_name,void * optvalp,socklen_t * optlen,cred_t * cr)1349 rts_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
1350 void *optvalp, socklen_t *optlen, cred_t *cr)
1351 {
1352 conn_t *connp = (conn_t *)proto_handle;
1353 rts_t *rts = connp->conn_rts;
1354 int error;
1355 t_uscalar_t max_optbuf_len;
1356 void *optvalp_buf;
1357 int len;
1358
1359 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
1360 rts_opt_obj.odb_opt_des_arr,
1361 rts_opt_obj.odb_opt_arr_cnt,
1362 B_FALSE, B_TRUE, cr);
1363 if (error != 0) {
1364 if (error < 0)
1365 error = proto_tlitosyserr(-error);
1366 return (error);
1367 }
1368
1369 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
1370 rw_enter(&rts->rts_rwlock, RW_READER);
1371 len = rts_opt_get(connp, level, option_name, optvalp_buf);
1372 rw_exit(&rts->rts_rwlock);
1373 if (len == -1) {
1374 kmem_free(optvalp_buf, max_optbuf_len);
1375 return (EINVAL);
1376 }
1377
1378 /*
1379 * update optlen and copy option value
1380 */
1381 t_uscalar_t size = MIN(len, *optlen);
1382
1383 bcopy(optvalp_buf, optvalp, size);
1384 bcopy(&size, optlen, sizeof (size));
1385 kmem_free(optvalp_buf, max_optbuf_len);
1386 return (0);
1387 }
1388
1389 static int
rts_setsockopt(sock_lower_handle_t proto_handle,int level,int option_name,const void * optvalp,socklen_t optlen,cred_t * cr)1390 rts_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
1391 const void *optvalp, socklen_t optlen, cred_t *cr)
1392 {
1393 conn_t *connp = (conn_t *)proto_handle;
1394 rts_t *rts = connp->conn_rts;
1395 int error;
1396
1397 error = proto_opt_check(level, option_name, optlen, NULL,
1398 rts_opt_obj.odb_opt_des_arr,
1399 rts_opt_obj.odb_opt_arr_cnt,
1400 B_TRUE, B_FALSE, cr);
1401
1402 if (error != 0) {
1403 if (error < 0)
1404 error = proto_tlitosyserr(-error);
1405 return (error);
1406 }
1407
1408 rw_enter(&rts->rts_rwlock, RW_WRITER);
1409 error = rts_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
1410 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
1411 NULL, cr);
1412 rw_exit(&rts->rts_rwlock);
1413
1414 ASSERT(error >= 0);
1415
1416 return (error);
1417 }
1418
1419 /* ARGSUSED */
1420 static int
rts_send(sock_lower_handle_t proto_handle,mblk_t * mp,struct nmsghdr * msg,cred_t * cr)1421 rts_send(sock_lower_handle_t proto_handle, mblk_t *mp,
1422 struct nmsghdr *msg, cred_t *cr)
1423 {
1424 conn_t *connp = (conn_t *)proto_handle;
1425 rt_msghdr_t *rtm;
1426 int error;
1427
1428 ASSERT(DB_TYPE(mp) == M_DATA);
1429 /*
1430 * The semantics of the routing socket is such that the rtm_pid
1431 * field is automatically filled in during requests with the
1432 * current process' pid. We do this here (where we still have
1433 * user context) after checking we have at least a message the
1434 * size of a routing message header.
1435 */
1436 if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) {
1437 if (!pullupmsg(mp, sizeof (rt_msghdr_t))) {
1438 freemsg(mp);
1439 return (EINVAL);
1440 }
1441 }
1442 rtm = (rt_msghdr_t *)mp->b_rptr;
1443 rtm->rtm_pid = curproc->p_pid;
1444
1445 /*
1446 * We are not constrained by the ioctl interface and
1447 * ip_rts_request_common processing requests synchronously hence
1448 * we can send them down concurrently.
1449 */
1450 error = ip_rts_request_common(mp, connp, cr);
1451 return (error);
1452 }
1453
1454 /* ARGSUSED */
1455 sock_lower_handle_t
rts_create(int family,int type,int proto,sock_downcalls_t ** sock_downcalls,uint_t * smodep,int * errorp,int flags,cred_t * credp)1456 rts_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
1457 uint_t *smodep, int *errorp, int flags, cred_t *credp)
1458 {
1459 conn_t *connp;
1460
1461 if (family != AF_ROUTE || type != SOCK_RAW ||
1462 (proto != 0 && proto != AF_INET && proto != AF_INET6)) {
1463 *errorp = EPROTONOSUPPORT;
1464 return (NULL);
1465 }
1466
1467 connp = rts_open(flags, credp);
1468 ASSERT(connp != NULL);
1469 connp->conn_flags |= IPCL_NONSTR;
1470
1471 connp->conn_proto = proto;
1472
1473 mutex_enter(&connp->conn_lock);
1474 connp->conn_state_flags &= ~CONN_INCIPIENT;
1475 mutex_exit(&connp->conn_lock);
1476
1477 *errorp = 0;
1478 *smodep = SM_ATOMIC;
1479 *sock_downcalls = &sock_rts_downcalls;
1480 return ((sock_lower_handle_t)connp);
1481 }
1482
1483 /* ARGSUSED */
1484 void
rts_activate(sock_lower_handle_t proto_handle,sock_upper_handle_t sock_handle,sock_upcalls_t * sock_upcalls,int flags,cred_t * cr)1485 rts_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
1486 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
1487 {
1488 conn_t *connp = (conn_t *)proto_handle;
1489 struct sock_proto_props sopp;
1490
1491 connp->conn_upcalls = sock_upcalls;
1492 connp->conn_upper_handle = sock_handle;
1493
1494 sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
1495 SOCKOPT_MAXBLK | SOCKOPT_MAXPSZ | SOCKOPT_MINPSZ;
1496 sopp.sopp_wroff = 0;
1497 sopp.sopp_rxhiwat = connp->conn_rcvbuf;
1498 sopp.sopp_rxlowat = connp->conn_rcvlowat;
1499 sopp.sopp_maxblk = INFPSZ;
1500 sopp.sopp_maxpsz = rts_mod_info.mi_maxpsz;
1501 sopp.sopp_minpsz = (rts_mod_info.mi_minpsz == 1) ? 0 :
1502 rts_mod_info.mi_minpsz;
1503
1504 (*connp->conn_upcalls->su_set_proto_props)
1505 (connp->conn_upper_handle, &sopp);
1506
1507 /*
1508 * We treat it as already connected for routing socket.
1509 */
1510 (*connp->conn_upcalls->su_connected)
1511 (connp->conn_upper_handle, 0, NULL, -1);
1512
1513 /* Indicate to IP that this is a routing socket client */
1514 ip_rts_register(connp);
1515 }
1516
1517 /* ARGSUSED */
1518 int
rts_close(sock_lower_handle_t proto_handle,int flags,cred_t * cr)1519 rts_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
1520 {
1521 conn_t *connp = (conn_t *)proto_handle;
1522
1523 ASSERT(connp != NULL && IPCL_IS_RTS(connp));
1524 return (rts_common_close(NULL, connp));
1525 }
1526
1527 /* ARGSUSED */
1528 int
rts_shutdown(sock_lower_handle_t proto_handle,int how,cred_t * cr)1529 rts_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
1530 {
1531 conn_t *connp = (conn_t *)proto_handle;
1532
1533 /* shut down the send side */
1534 if (how != SHUT_RD)
1535 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
1536 SOCK_OPCTL_SHUT_SEND, 0);
1537 /* shut down the recv side */
1538 if (how != SHUT_WR)
1539 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
1540 SOCK_OPCTL_SHUT_RECV, 0);
1541 return (0);
1542 }
1543
1544 void
rts_clr_flowctrl(sock_lower_handle_t proto_handle)1545 rts_clr_flowctrl(sock_lower_handle_t proto_handle)
1546 {
1547 conn_t *connp = (conn_t *)proto_handle;
1548 rts_t *rts = connp->conn_rts;
1549
1550 mutex_enter(&rts->rts_recv_mutex);
1551 connp->conn_flow_cntrld = B_FALSE;
1552 mutex_exit(&rts->rts_recv_mutex);
1553 }
1554
1555 int
rts_ioctl(sock_lower_handle_t proto_handle,int cmd,intptr_t arg,int mode,int32_t * rvalp,cred_t * cr)1556 rts_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
1557 int mode, int32_t *rvalp, cred_t *cr)
1558 {
1559 conn_t *connp = (conn_t *)proto_handle;
1560 int error;
1561
1562 /*
1563 * If we don't have a helper stream then create one.
1564 * ip_create_helper_stream takes care of locking the conn_t,
1565 * so this check for NULL is just a performance optimization.
1566 */
1567 if (connp->conn_helper_info == NULL) {
1568 rts_stack_t *rtss = connp->conn_rts->rts_rtss;
1569
1570 ASSERT(rtss->rtss_ldi_ident != NULL);
1571
1572 /*
1573 * Create a helper stream for non-STREAMS socket.
1574 */
1575 error = ip_create_helper_stream(connp, rtss->rtss_ldi_ident);
1576 if (error != 0) {
1577 ip0dbg(("rts_ioctl: create of IP helper stream "
1578 "failed %d\n", error));
1579 return (error);
1580 }
1581 }
1582
1583 switch (cmd) {
1584 case ND_SET:
1585 case ND_GET:
1586 case TI_GETPEERNAME:
1587 case TI_GETMYNAME:
1588 #ifdef DEUG
1589 cmn_err(CE_CONT, "rts_ioctl cmd 0x%x on non sreams"
1590 " socket", cmd);
1591 #endif
1592 error = EINVAL;
1593 break;
1594 default:
1595 /*
1596 * Pass on to IP using helper stream
1597 */
1598 error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
1599 cmd, arg, mode, cr, rvalp);
1600 break;
1601 }
1602
1603 return (error);
1604 }
1605
1606 sock_downcalls_t sock_rts_downcalls = {
1607 rts_activate,
1608 rts_accept,
1609 rts_bind,
1610 rts_listen,
1611 rts_connect,
1612 rts_getpeername,
1613 rts_getsockname,
1614 rts_getsockopt,
1615 rts_setsockopt,
1616 rts_send,
1617 NULL,
1618 NULL,
1619 NULL,
1620 rts_shutdown,
1621 rts_clr_flowctrl,
1622 rts_ioctl,
1623 rts_close
1624 };
1625