xref: /freebsd/libexec/rtld-elf/rtld.c (revision b2b3d2a962eb00005641546fbe672b95e5d0672a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/ktrace.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "libmap.h"
62 #include "notes.h"
63 #include "rtld.h"
64 #include "rtld_libc.h"
65 #include "rtld_malloc.h"
66 #include "rtld_paths.h"
67 #include "rtld_printf.h"
68 #include "rtld_tls.h"
69 #include "rtld_utrace.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void *(*path_enum_proc)(const char *path, size_t len, void *arg);
74 
75 /* Variables that cannot be static: */
76 extern struct r_debug r_debug; /* For GDB */
77 extern int _thread_autoinit_dummy_decl;
78 extern void (*__cleanup)(void);
79 
80 struct dlerror_save {
81 	int seen;
82 	char *msg;
83 };
84 
85 struct tcb_list_entry {
86 	TAILQ_ENTRY(tcb_list_entry)	next;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static bool allocate_tls_offset_common(size_t *offp, size_t tlssize,
93     size_t tlsalign, size_t tlspoffset);
94 static const char *basename(const char *);
95 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
96     const Elf_Dyn **, const Elf_Dyn **);
97 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
98     const Elf_Dyn *);
99 static bool digest_dynamic(Obj_Entry *, int);
100 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
101 static void distribute_static_tls(Objlist *);
102 static Obj_Entry *dlcheck(void *);
103 static int dlclose_locked(void *, RtldLockState *);
104 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
105     int lo_flags, int mode, RtldLockState *lockstate);
106 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
107 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
108 static bool donelist_check(DoneList *, const Obj_Entry *);
109 static void dump_auxv(Elf_Auxinfo **aux_info);
110 static void errmsg_restore(struct dlerror_save *);
111 static struct dlerror_save *errmsg_save(void);
112 static void *fill_search_info(const char *, size_t, void *);
113 static char *find_library(const char *, const Obj_Entry *, int *);
114 static const char *gethints(bool);
115 static void hold_object(Obj_Entry *);
116 static void unhold_object(Obj_Entry *);
117 static void init_dag(Obj_Entry *);
118 static void init_marker(Obj_Entry *);
119 static void init_pagesizes(Elf_Auxinfo **aux_info);
120 static void init_rtld(caddr_t, Elf_Auxinfo **);
121 static void initlist_add_neededs(Needed_Entry *, Objlist *, Objlist *);
122 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *,
123     Objlist *);
124 static void initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail,
125     Objlist *list);
126 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
127 static void linkmap_add(Obj_Entry *);
128 static void linkmap_delete(Obj_Entry *);
129 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
130 static void unload_filtees(Obj_Entry *, RtldLockState *);
131 static int load_needed_objects(Obj_Entry *, int);
132 static int load_preload_objects(const char *, bool);
133 static int load_kpreload(const void *addr);
134 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
135 static void map_stacks_exec(RtldLockState *);
136 static int obj_disable_relro(Obj_Entry *);
137 static int obj_enforce_relro(Obj_Entry *);
138 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
139 static void objlist_call_init(Objlist *, RtldLockState *);
140 static void objlist_clear(Objlist *);
141 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
142 static void objlist_init(Objlist *);
143 static void objlist_push_head(Objlist *, Obj_Entry *);
144 static void objlist_push_tail(Objlist *, Obj_Entry *);
145 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
146 static void objlist_remove(Objlist *, Obj_Entry *);
147 static int open_binary_fd(const char *argv0, bool search_in_path,
148     const char **binpath_res);
149 static int parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
150     const char **argv0, bool *dir_ignore);
151 static int parse_integer(const char *);
152 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
153 static void print_usage(const char *argv0);
154 static void release_object(Obj_Entry *);
155 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
156     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
157 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
158     int flags, RtldLockState *lockstate);
159 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
160     RtldLockState *);
161 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
162 static int rtld_dirname(const char *, char *);
163 static int rtld_dirname_abs(const char *, char *);
164 static void *rtld_dlopen(const char *name, int fd, int mode);
165 static void rtld_exit(void);
166 static void rtld_nop_exit(void);
167 static char *search_library_path(const char *, const char *, const char *,
168     int *);
169 static char *search_library_pathfds(const char *, const char *, int *);
170 static const void **get_program_var_addr(const char *, RtldLockState *);
171 static void set_program_var(const char *, const void *);
172 static int symlook_default(SymLook *, const Obj_Entry *refobj);
173 static int symlook_global(SymLook *, DoneList *);
174 static void symlook_init_from_req(SymLook *, const SymLook *);
175 static int symlook_list(SymLook *, const Objlist *, DoneList *);
176 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
177 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
178 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
179 static void *tls_get_addr_slow(struct tcb *, int, size_t, bool) __noinline;
180 static void trace_loaded_objects(Obj_Entry *, bool);
181 static void unlink_object(Obj_Entry *);
182 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
183 static void unref_dag(Obj_Entry *);
184 static void ref_dag(Obj_Entry *);
185 static char *origin_subst_one(Obj_Entry *, char *, const char *, const char *,
186     bool);
187 static char *origin_subst(Obj_Entry *, const char *);
188 static bool obj_resolve_origin(Obj_Entry *obj);
189 static void preinit_main(void);
190 static int rtld_verify_versions(const Objlist *);
191 static int rtld_verify_object_versions(Obj_Entry *);
192 static void object_add_name(Obj_Entry *, const char *);
193 static int object_match_name(const Obj_Entry *, const char *);
194 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
195 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
196     struct dl_phdr_info *phdr_info);
197 static uint32_t gnu_hash(const char *);
198 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
199     const unsigned long);
200 
201 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
202 void _r_debug_postinit(struct link_map *) __noinline __exported;
203 
204 int __sys_openat(int, const char *, int, ...);
205 
206 /*
207  * Data declarations.
208  */
209 struct r_debug r_debug __exported;  /* for GDB; */
210 static bool libmap_disable;	    /* Disable libmap */
211 static bool ld_loadfltr;	    /* Immediate filters processing */
212 static const char *libmap_override; /* Maps to use in addition to libmap.conf */
213 static bool trust;		    /* False for setuid and setgid programs */
214 static bool dangerous_ld_env;	    /* True if environment variables have been
215 				       used to affect the libraries loaded */
216 bool ld_bind_not;		    /* Disable PLT update */
217 static const char *ld_bind_now; /* Environment variable for immediate binding */
218 static const char *ld_debug;	/* Environment variable for debugging */
219 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
220 				       weak definition */
221 static const char *ld_library_path; /* Environment variable for search path */
222 static const char
223     *ld_library_dirs; /* Environment variable for library descriptors */
224 static const char *ld_preload;	   /* Environment variable for libraries to
225 				      load first */
226 static const char *ld_preload_fds; /* Environment variable for libraries
227 				    represented by descriptors */
228 static const char
229     *ld_elf_hints_path; /* Environment variable for alternative hints path */
230 static const char *ld_tracing;	    /* Called from ldd to print libs */
231 static const char *ld_utrace;	    /* Use utrace() to log events. */
232 static struct obj_entry_q obj_list; /* Queue of all loaded objects */
233 static Obj_Entry *obj_main;	    /* The main program shared object */
234 static Obj_Entry obj_rtld;	    /* The dynamic linker shared object */
235 static unsigned int obj_count;	    /* Number of objects in obj_list */
236 static unsigned int obj_loads;	    /* Number of loads of objects (gen count) */
237 size_t ld_static_tls_extra =	    /* Static TLS extra space (bytes) */
238     RTLD_STATIC_TLS_EXTRA;
239 
240 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
241     STAILQ_HEAD_INITIALIZER(list_global);
242 static Objlist list_main = /* Objects loaded at program startup */
243     STAILQ_HEAD_INITIALIZER(list_main);
244 static Objlist list_fini = /* Objects needing fini() calls */
245     STAILQ_HEAD_INITIALIZER(list_fini);
246 
247 Elf_Sym sym_zero; /* For resolving undefined weak refs. */
248 
249 #define GDB_STATE(s, m)      \
250 	r_debug.r_state = s; \
251 	r_debug_state(&r_debug, m);
252 
253 extern Elf_Dyn _DYNAMIC;
254 #pragma weak _DYNAMIC
255 
256 int dlclose(void *) __exported;
257 char *dlerror(void) __exported;
258 void *dlopen(const char *, int) __exported;
259 void *fdlopen(int, int) __exported;
260 void *dlsym(void *, const char *) __exported;
261 dlfunc_t dlfunc(void *, const char *) __exported;
262 void *dlvsym(void *, const char *, const char *) __exported;
263 int dladdr(const void *, Dl_info *) __exported;
264 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
265     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
266 int dlinfo(void *, int, void *) __exported;
267 int _dl_iterate_phdr_locked(__dl_iterate_hdr_callback, void *) __exported;
268 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
269 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
270 int _rtld_get_stack_prot(void) __exported;
271 int _rtld_is_dlopened(void *) __exported;
272 void _rtld_error(const char *, ...) __exported;
273 const char *rtld_get_var(const char *name) __exported;
274 int rtld_set_var(const char *name, const char *val) __exported;
275 
276 /* Only here to fix -Wmissing-prototypes warnings */
277 int __getosreldate(void);
278 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
279 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
280 
281 int npagesizes;
282 static int osreldate;
283 size_t *pagesizes;
284 size_t page_size;
285 
286 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
287 static int max_stack_flags;
288 
289 /*
290  * Global declarations normally provided by crt1.  The dynamic linker is
291  * not built with crt1, so we have to provide them ourselves.
292  */
293 char *__progname;
294 char **environ;
295 
296 /*
297  * Used to pass argc, argv to init functions.
298  */
299 int main_argc;
300 char **main_argv;
301 
302 /*
303  * Globals to control TLS allocation.
304  */
305 size_t tls_last_offset;	 /* Static TLS offset of last module */
306 size_t tls_last_size;	 /* Static TLS size of last module */
307 size_t tls_static_space; /* Static TLS space allocated */
308 static size_t tls_static_max_align;
309 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */
310 int tls_max_index = 1;		 /* Largest module index allocated */
311 
312 static TAILQ_HEAD(, tcb_list_entry) tcb_list =
313     TAILQ_HEAD_INITIALIZER(tcb_list);
314 static size_t tcb_list_entry_offset;
315 
316 static bool ld_library_path_rpath = false;
317 bool ld_fast_sigblock = false;
318 
319 /*
320  * Globals for path names, and such
321  */
322 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
323 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
324 const char *ld_path_rtld = _PATH_RTLD;
325 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
326 const char *ld_env_prefix = LD_;
327 
328 static void (*rtld_exit_ptr)(void);
329 
330 /*
331  * Fill in a DoneList with an allocation large enough to hold all of
332  * the currently-loaded objects.  Keep this as a macro since it calls
333  * alloca and we want that to occur within the scope of the caller.
334  */
335 #define donelist_init(dlp)                                             \
336 	((dlp)->objs = alloca(obj_count * sizeof(dlp)->objs[0]),       \
337 	    assert((dlp)->objs != NULL), (dlp)->num_alloc = obj_count, \
338 	    (dlp)->num_used = 0)
339 
340 #define LD_UTRACE(e, h, mb, ms, r, n)                      \
341 	do {                                               \
342 		if (ld_utrace != NULL)                     \
343 			ld_utrace_log(e, h, mb, ms, r, n); \
344 	} while (0)
345 
346 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)347 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
348     int refcnt, const char *name)
349 {
350 	struct utrace_rtld ut;
351 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
352 
353 	memset(&ut, 0, sizeof(ut));	/* clear holes */
354 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
355 	ut.event = event;
356 	ut.handle = handle;
357 	ut.mapbase = mapbase;
358 	ut.mapsize = mapsize;
359 	ut.refcnt = refcnt;
360 	if (name != NULL)
361 		strlcpy(ut.name, name, sizeof(ut.name));
362 	utrace(&ut, sizeof(ut));
363 }
364 
365 struct ld_env_var_desc {
366 	const char *const n;
367 	const char *val;
368 	const bool unsecure : 1;
369 	const bool can_update : 1;
370 	const bool debug : 1;
371 	bool owned : 1;
372 };
373 #define LD_ENV_DESC(var, unsec, ...) \
374 	[LD_##var] = { .n = #var, .unsecure = unsec, __VA_ARGS__ }
375 
376 static struct ld_env_var_desc ld_env_vars[] = {
377 	LD_ENV_DESC(BIND_NOW, false),
378 	LD_ENV_DESC(PRELOAD, true),
379 	LD_ENV_DESC(LIBMAP, true),
380 	LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
381 	LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
382 	LD_ENV_DESC(LIBMAP_DISABLE, true),
383 	LD_ENV_DESC(BIND_NOT, true),
384 	LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
385 	LD_ENV_DESC(ELF_HINTS_PATH, true),
386 	LD_ENV_DESC(LOADFLTR, true),
387 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
388 	LD_ENV_DESC(PRELOAD_FDS, true),
389 	LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
390 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
391 	LD_ENV_DESC(UTRACE, false, .can_update = true),
392 	LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
393 	LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
394 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
395 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
396 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
397 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
398 	LD_ENV_DESC(SHOW_AUXV, false),
399 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
400 	LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
401 };
402 
403 const char *
ld_get_env_var(int idx)404 ld_get_env_var(int idx)
405 {
406 	return (ld_env_vars[idx].val);
407 }
408 
409 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)410 rtld_get_env_val(char **env, const char *name, size_t name_len)
411 {
412 	char **m, *n, *v;
413 
414 	for (m = env; *m != NULL; m++) {
415 		n = *m;
416 		v = strchr(n, '=');
417 		if (v == NULL) {
418 			/* corrupt environment? */
419 			continue;
420 		}
421 		if (v - n == (ptrdiff_t)name_len &&
422 		    strncmp(name, n, name_len) == 0)
423 			return (v + 1);
424 	}
425 	return (NULL);
426 }
427 
428 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)429 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
430 {
431 	struct ld_env_var_desc *lvd;
432 	size_t prefix_len, nlen;
433 	char **m, *n, *v;
434 	int i;
435 
436 	prefix_len = strlen(env_prefix);
437 	for (m = env; *m != NULL; m++) {
438 		n = *m;
439 		if (strncmp(env_prefix, n, prefix_len) != 0) {
440 			/* Not a rtld environment variable. */
441 			continue;
442 		}
443 		n += prefix_len;
444 		v = strchr(n, '=');
445 		if (v == NULL) {
446 			/* corrupt environment? */
447 			continue;
448 		}
449 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
450 			lvd = &ld_env_vars[i];
451 			if (lvd->val != NULL) {
452 				/* Saw higher-priority variable name already. */
453 				continue;
454 			}
455 			nlen = strlen(lvd->n);
456 			if (v - n == (ptrdiff_t)nlen &&
457 			    strncmp(lvd->n, n, nlen) == 0) {
458 				lvd->val = v + 1;
459 				break;
460 			}
461 		}
462 	}
463 }
464 
465 static void
rtld_init_env_vars(char ** env)466 rtld_init_env_vars(char **env)
467 {
468 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
469 }
470 
471 static void
set_ld_elf_hints_path(void)472 set_ld_elf_hints_path(void)
473 {
474 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
475 		ld_elf_hints_path = ld_elf_hints_default;
476 }
477 
478 uintptr_t
rtld_round_page(uintptr_t x)479 rtld_round_page(uintptr_t x)
480 {
481 	return (roundup2(x, page_size));
482 }
483 
484 uintptr_t
rtld_trunc_page(uintptr_t x)485 rtld_trunc_page(uintptr_t x)
486 {
487 	return (rounddown2(x, page_size));
488 }
489 
490 /*
491  * Main entry point for dynamic linking.  The first argument is the
492  * stack pointer.  The stack is expected to be laid out as described
493  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
494  * Specifically, the stack pointer points to a word containing
495  * ARGC.  Following that in the stack is a null-terminated sequence
496  * of pointers to argument strings.  Then comes a null-terminated
497  * sequence of pointers to environment strings.  Finally, there is a
498  * sequence of "auxiliary vector" entries.
499  *
500  * The second argument points to a place to store the dynamic linker's
501  * exit procedure pointer and the third to a place to store the main
502  * program's object.
503  *
504  * The return value is the main program's entry point.
505  */
506 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)507 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
508 {
509 	Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT], auxtmp;
510 	Objlist_Entry *entry;
511 	Obj_Entry *last_interposer, *obj, *preload_tail;
512 	const Elf_Phdr *phdr;
513 	Objlist initlist;
514 	RtldLockState lockstate;
515 	struct stat st;
516 	Elf_Addr *argcp;
517 	char **argv, **env, **envp, *kexecpath;
518 	const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
519 	struct ld_env_var_desc *lvd;
520 	caddr_t imgentry;
521 	char buf[MAXPATHLEN];
522 	int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
523 	size_t sz;
524 	bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
525 
526 	/*
527 	 * On entry, the dynamic linker itself has not been relocated yet.
528 	 * Be very careful not to reference any global data until after
529 	 * init_rtld has returned.  It is OK to reference file-scope statics
530 	 * and string constants, and to call static and global functions.
531 	 */
532 
533 	/* Find the auxiliary vector on the stack. */
534 	argcp = sp;
535 	argc = *sp++;
536 	argv = (char **)sp;
537 	sp += argc + 1; /* Skip over arguments and NULL terminator */
538 	env = (char **)sp;
539 	while (*sp++ != 0) /* Skip over environment, and NULL terminator */
540 		;
541 	aux = (Elf_Auxinfo *)sp;
542 
543 	/* Digest the auxiliary vector. */
544 	for (i = 0; i < AT_COUNT; i++)
545 		aux_info[i] = NULL;
546 	for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
547 		if (auxp->a_type < AT_COUNT)
548 			aux_info[auxp->a_type] = auxp;
549 	}
550 	arch_fix_auxv(aux, aux_info);
551 
552 	/* Initialize and relocate ourselves. */
553 	assert(aux_info[AT_BASE] != NULL);
554 	init_rtld((caddr_t)aux_info[AT_BASE]->a_un.a_ptr, aux_info);
555 
556 	dlerror_dflt_init();
557 
558 	__progname = obj_rtld.path;
559 	argv0 = argv[0] != NULL ? argv[0] : "(null)";
560 	environ = env;
561 	main_argc = argc;
562 	main_argv = argv;
563 
564 	if (aux_info[AT_BSDFLAGS] != NULL &&
565 	    (aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
566 		ld_fast_sigblock = true;
567 
568 	trust = !issetugid();
569 	direct_exec = false;
570 
571 	md_abi_variant_hook(aux_info);
572 	rtld_init_env_vars(env);
573 
574 	fd = -1;
575 	if (aux_info[AT_EXECFD] != NULL) {
576 		fd = aux_info[AT_EXECFD]->a_un.a_val;
577 	} else {
578 		assert(aux_info[AT_PHDR] != NULL);
579 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
580 		if (phdr == obj_rtld.phdr) {
581 			if (!trust) {
582 				_rtld_error(
583 				    "Tainted process refusing to run binary %s",
584 				    argv0);
585 				rtld_die();
586 			}
587 			direct_exec = true;
588 
589 			dbg("opening main program in direct exec mode");
590 			if (argc >= 2) {
591 				rtld_argc = parse_args(argv, argc,
592 				    &search_in_path, &fd, &argv0, &dir_ignore);
593 				explicit_fd = (fd != -1);
594 				binpath = NULL;
595 				if (!explicit_fd)
596 					fd = open_binary_fd(argv0,
597 					    search_in_path, &binpath);
598 				if (fstat(fd, &st) == -1) {
599 					_rtld_error(
600 					    "Failed to fstat FD %d (%s): %s",
601 					    fd,
602 					    explicit_fd ?
603 						"user-provided descriptor" :
604 						argv0,
605 					    rtld_strerror(errno));
606 					rtld_die();
607 				}
608 
609 				/*
610 				 * Rough emulation of the permission checks done
611 				 * by execve(2), only Unix DACs are checked,
612 				 * ACLs are ignored.  Preserve the semantic of
613 				 * disabling owner to execute if owner x bit is
614 				 * cleared, even if others x bit is enabled.
615 				 * mmap(2) does not allow to mmap with PROT_EXEC
616 				 * if binary' file comes from noexec mount.  We
617 				 * cannot set a text reference on the binary.
618 				 */
619 				dir_enable = false;
620 				if (st.st_uid == geteuid()) {
621 					if ((st.st_mode & S_IXUSR) != 0)
622 						dir_enable = true;
623 				} else if (st.st_gid == getegid()) {
624 					if ((st.st_mode & S_IXGRP) != 0)
625 						dir_enable = true;
626 				} else if ((st.st_mode & S_IXOTH) != 0) {
627 					dir_enable = true;
628 				}
629 				if (!dir_enable && !dir_ignore) {
630 					_rtld_error(
631 				    "No execute permission for binary %s",
632 					    argv0);
633 					rtld_die();
634 				}
635 
636 				/*
637 				 * For direct exec mode, argv[0] is the
638 				 * interpreter name, we must remove it and shift
639 				 * arguments left before invoking binary main.
640 				 * Since stack layout places environment
641 				 * pointers and aux vectors right after the
642 				 * terminating NULL, we must shift environment
643 				 * and aux as well.
644 				 */
645 				main_argc = argc - rtld_argc;
646 				for (i = 0; i <= main_argc; i++)
647 					argv[i] = argv[i + rtld_argc];
648 				*argcp -= rtld_argc;
649 				environ = env = envp = argv + main_argc + 1;
650 				dbg("move env from %p to %p", envp + rtld_argc,
651 				    envp);
652 				do {
653 					*envp = *(envp + rtld_argc);
654 				} while (*envp++ != NULL);
655 				aux = auxp = (Elf_Auxinfo *)envp;
656 				auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
657 				dbg("move aux from %p to %p", auxpf, aux);
658 				/*
659 				 * XXXKIB insert place for AT_EXECPATH if not
660 				 * present
661 				 */
662 				for (;; auxp++, auxpf++) {
663 					/*
664 					 * NB: Use a temporary since *auxpf and
665 					 * *auxp overlap if rtld_argc is 1
666 					 */
667 					auxtmp = *auxpf;
668 					*auxp = auxtmp;
669 					if (auxp->a_type == AT_NULL)
670 						break;
671 				}
672 				/*
673 				 * Since the auxiliary vector has moved,
674 				 * redigest it.
675 				 */
676 				for (i = 0; i < AT_COUNT; i++)
677 					aux_info[i] = NULL;
678 				for (auxp = aux; auxp->a_type != AT_NULL;
679 				    auxp++) {
680 					if (auxp->a_type < AT_COUNT)
681 						aux_info[auxp->a_type] = auxp;
682 				}
683 
684 				/*
685 				 * Point AT_EXECPATH auxv and aux_info to the
686 				 * binary path.
687 				 */
688 				if (binpath == NULL) {
689 					aux_info[AT_EXECPATH] = NULL;
690 				} else {
691 					if (aux_info[AT_EXECPATH] == NULL) {
692 						aux_info[AT_EXECPATH] = xmalloc(
693 						    sizeof(Elf_Auxinfo));
694 						aux_info[AT_EXECPATH]->a_type =
695 						    AT_EXECPATH;
696 					}
697 					aux_info[AT_EXECPATH]->a_un.a_ptr =
698 					    __DECONST(void *, binpath);
699 				}
700 			} else {
701 				_rtld_error("No binary");
702 				rtld_die();
703 			}
704 		}
705 	}
706 
707 	ld_bind_now = ld_get_env_var(LD_BIND_NOW);
708 
709 	/*
710 	 * If the process is tainted, then we un-set the dangerous environment
711 	 * variables.  The process will be marked as tainted until setuid(2)
712 	 * is called.  If any child process calls setuid(2) we do not want any
713 	 * future processes to honor the potentially un-safe variables.
714 	 */
715 	if (!trust) {
716 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
717 			lvd = &ld_env_vars[i];
718 			if (lvd->unsecure)
719 				lvd->val = NULL;
720 		}
721 	}
722 
723 	ld_debug = ld_get_env_var(LD_DEBUG);
724 	if (ld_bind_now == NULL)
725 		ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
726 	ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
727 	libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
728 	libmap_override = ld_get_env_var(LD_LIBMAP);
729 	ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
730 	ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
731 	ld_preload = ld_get_env_var(LD_PRELOAD);
732 	ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
733 	ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
734 	ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
735 	library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
736 	if (library_path_rpath != NULL) {
737 		if (library_path_rpath[0] == 'y' ||
738 		    library_path_rpath[0] == 'Y' ||
739 		    library_path_rpath[0] == '1')
740 			ld_library_path_rpath = true;
741 		else
742 			ld_library_path_rpath = false;
743 	}
744 	static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
745 	if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
746 		sz = parse_integer(static_tls_extra);
747 		if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
748 			ld_static_tls_extra = sz;
749 	}
750 	dangerous_ld_env = libmap_disable || libmap_override != NULL ||
751 	    ld_library_path != NULL || ld_preload != NULL ||
752 	    ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
753 	    static_tls_extra != NULL;
754 	ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
755 	ld_utrace = ld_get_env_var(LD_UTRACE);
756 
757 	set_ld_elf_hints_path();
758 	if (ld_debug != NULL && *ld_debug != '\0')
759 		debug = 1;
760 	dbg("%s is initialized, base address = %p", __progname,
761 	    (caddr_t)aux_info[AT_BASE]->a_un.a_ptr);
762 	dbg("RTLD dynamic = %p", obj_rtld.dynamic);
763 	dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
764 
765 	dbg("initializing thread locks");
766 	lockdflt_init();
767 
768 	/*
769 	 * Load the main program, or process its program header if it is
770 	 * already loaded.
771 	 */
772 	if (fd != -1) { /* Load the main program. */
773 		dbg("loading main program");
774 		obj_main = map_object(fd, argv0, NULL, true);
775 		close(fd);
776 		if (obj_main == NULL)
777 			rtld_die();
778 		max_stack_flags = obj_main->stack_flags;
779 	} else { /* Main program already loaded. */
780 		dbg("processing main program's program header");
781 		assert(aux_info[AT_PHDR] != NULL);
782 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
783 		assert(aux_info[AT_PHNUM] != NULL);
784 		phnum = aux_info[AT_PHNUM]->a_un.a_val;
785 		assert(aux_info[AT_PHENT] != NULL);
786 		assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
787 		assert(aux_info[AT_ENTRY] != NULL);
788 		imgentry = (caddr_t)aux_info[AT_ENTRY]->a_un.a_ptr;
789 		if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) ==
790 		    NULL)
791 			rtld_die();
792 	}
793 
794 	if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
795 		kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
796 		dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
797 		if (kexecpath[0] == '/')
798 			obj_main->path = kexecpath;
799 		else if (getcwd(buf, sizeof(buf)) == NULL ||
800 		    strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
801 		    strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
802 			obj_main->path = xstrdup(argv0);
803 		else
804 			obj_main->path = xstrdup(buf);
805 	} else {
806 		dbg("No AT_EXECPATH or direct exec");
807 		obj_main->path = xstrdup(argv0);
808 	}
809 	dbg("obj_main path %s", obj_main->path);
810 	obj_main->mainprog = true;
811 
812 	if (aux_info[AT_STACKPROT] != NULL &&
813 	    aux_info[AT_STACKPROT]->a_un.a_val != 0)
814 		stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
815 
816 #ifndef COMPAT_libcompat
817 	/*
818 	 * Get the actual dynamic linker pathname from the executable if
819 	 * possible.  (It should always be possible.)  That ensures that
820 	 * gdb will find the right dynamic linker even if a non-standard
821 	 * one is being used.
822 	 */
823 	if (obj_main->interp != NULL &&
824 	    strcmp(obj_main->interp, obj_rtld.path) != 0) {
825 		free(obj_rtld.path);
826 		obj_rtld.path = xstrdup(obj_main->interp);
827 		__progname = obj_rtld.path;
828 	}
829 #endif
830 
831 	if (!digest_dynamic(obj_main, 0))
832 		rtld_die();
833 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
834 	    obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
835 	    obj_main->dynsymcount);
836 
837 	linkmap_add(obj_main);
838 	linkmap_add(&obj_rtld);
839 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj_main, obj_main->mapbase,
840 	    obj_main->mapsize, 0, obj_main->path);
841 	LD_UTRACE(UTRACE_LOAD_OBJECT, &obj_rtld, obj_rtld.mapbase,
842 	    obj_rtld.mapsize, 0, obj_rtld.path);
843 
844 	/* Link the main program into the list of objects. */
845 	TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
846 	obj_count++;
847 	obj_loads++;
848 
849 	/* Initialize a fake symbol for resolving undefined weak references. */
850 	sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
851 	sym_zero.st_shndx = SHN_UNDEF;
852 	sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
853 
854 	if (!libmap_disable)
855 		libmap_disable = (bool)lm_init(libmap_override);
856 
857 	if (aux_info[AT_KPRELOAD] != NULL &&
858 	    aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
859 		dbg("loading kernel vdso");
860 		if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
861 			rtld_die();
862 	}
863 
864 	dbg("loading LD_PRELOAD_FDS libraries");
865 	if (load_preload_objects(ld_preload_fds, true) == -1)
866 		rtld_die();
867 
868 	dbg("loading LD_PRELOAD libraries");
869 	if (load_preload_objects(ld_preload, false) == -1)
870 		rtld_die();
871 	preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
872 
873 	dbg("loading needed objects");
874 	if (load_needed_objects(obj_main,
875 		ld_tracing != NULL ? RTLD_LO_TRACE : 0) == -1)
876 		rtld_die();
877 
878 	/* Make a list of all objects loaded at startup. */
879 	last_interposer = obj_main;
880 	TAILQ_FOREACH(obj, &obj_list, next) {
881 		if (obj->marker)
882 			continue;
883 		if (obj->z_interpose && obj != obj_main) {
884 			objlist_put_after(&list_main, last_interposer, obj);
885 			last_interposer = obj;
886 		} else {
887 			objlist_push_tail(&list_main, obj);
888 		}
889 		obj->refcount++;
890 	}
891 
892 	dbg("checking for required versions");
893 	if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
894 		rtld_die();
895 
896 	if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
897 		dump_auxv(aux_info);
898 
899 	if (ld_tracing) { /* We're done */
900 		trace_loaded_objects(obj_main, true);
901 		exit(0);
902 	}
903 
904 	if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
905 		dump_relocations(obj_main);
906 		exit(0);
907 	}
908 
909 	/*
910 	 * Processing tls relocations requires having the tls offsets
911 	 * initialized.  Prepare offsets before starting initial
912 	 * relocation processing.
913 	 */
914 	dbg("initializing initial thread local storage offsets");
915 	STAILQ_FOREACH(entry, &list_main, link) {
916 		/*
917 		 * Allocate all the initial objects out of the static TLS
918 		 * block even if they didn't ask for it.
919 		 */
920 		allocate_tls_offset(entry->obj);
921 	}
922 
923 	if (!allocate_tls_offset_common(&tcb_list_entry_offset,
924 	    sizeof(struct tcb_list_entry), _Alignof(struct tcb_list_entry),
925 	    0)) {
926 		/*
927 		 * This should be impossible as the static block size is not
928 		 * yet fixed, but catch and diagnose it failing if that ever
929 		 * changes or somehow turns out to be false.
930 		 */
931 		_rtld_error("Could not allocate offset for tcb_list_entry");
932 		rtld_die();
933 	}
934 	dbg("tcb_list_entry_offset %zu", tcb_list_entry_offset);
935 
936 	if (relocate_objects(obj_main,
937 		ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld,
938 		SYMLOOK_EARLY, NULL) == -1)
939 		rtld_die();
940 
941 	dbg("doing copy relocations");
942 	if (do_copy_relocations(obj_main) == -1)
943 		rtld_die();
944 
945 	if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
946 		dump_relocations(obj_main);
947 		exit(0);
948 	}
949 
950 	ifunc_init(aux_info);
951 
952 	/*
953 	 * Setup TLS for main thread.  This must be done after the
954 	 * relocations are processed, since tls initialization section
955 	 * might be the subject for relocations.
956 	 */
957 	dbg("initializing initial thread local storage");
958 	allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
959 
960 	dbg("initializing key program variables");
961 	set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
962 	set_program_var("environ", env);
963 	set_program_var("__elf_aux_vector", aux);
964 
965 	/* Make a list of init functions to call. */
966 	objlist_init(&initlist);
967 	initlist_for_loaded_obj(globallist_curr(TAILQ_FIRST(&obj_list)),
968 	    preload_tail, &initlist);
969 
970 	r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
971 
972 	map_stacks_exec(NULL);
973 
974 	if (!obj_main->crt_no_init) {
975 		/*
976 		 * Make sure we don't call the main program's init and fini
977 		 * functions for binaries linked with old crt1 which calls
978 		 * _init itself.
979 		 */
980 		obj_main->init = obj_main->fini = (Elf_Addr)NULL;
981 		obj_main->preinit_array = obj_main->init_array =
982 		    obj_main->fini_array = (Elf_Addr)NULL;
983 	}
984 
985 	if (direct_exec) {
986 		/* Set osrel for direct-execed binary */
987 		mib[0] = CTL_KERN;
988 		mib[1] = KERN_PROC;
989 		mib[2] = KERN_PROC_OSREL;
990 		mib[3] = getpid();
991 		osrel = obj_main->osrel;
992 		sz = sizeof(old_osrel);
993 		dbg("setting osrel to %d", osrel);
994 		(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
995 	}
996 
997 	wlock_acquire(rtld_bind_lock, &lockstate);
998 
999 	dbg("resolving ifuncs");
1000 	if (initlist_objects_ifunc(&initlist,
1001 		ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
1002 		&lockstate) == -1)
1003 		rtld_die();
1004 
1005 	rtld_exit_ptr = rtld_exit;
1006 	if (obj_main->crt_no_init)
1007 		preinit_main();
1008 	objlist_call_init(&initlist, &lockstate);
1009 	_r_debug_postinit(&obj_main->linkmap);
1010 	objlist_clear(&initlist);
1011 	dbg("loading filtees");
1012 	TAILQ_FOREACH(obj, &obj_list, next) {
1013 		if (obj->marker)
1014 			continue;
1015 		if (ld_loadfltr || obj->z_loadfltr)
1016 			load_filtees(obj, 0, &lockstate);
1017 	}
1018 
1019 	dbg("enforcing main obj relro");
1020 	if (obj_enforce_relro(obj_main) == -1)
1021 		rtld_die();
1022 
1023 	lock_release(rtld_bind_lock, &lockstate);
1024 
1025 	dbg("transferring control to program entry point = %p",
1026 	    obj_main->entry);
1027 
1028 	/* Return the exit procedure and the program entry point. */
1029 	*exit_proc = rtld_exit_ptr;
1030 	*objp = obj_main;
1031 	return ((func_ptr_type)obj_main->entry);
1032 }
1033 
1034 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)1035 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1036 {
1037 	void *ptr;
1038 	Elf_Addr target;
1039 
1040 	ptr = (void *)make_function_pointer(def, obj);
1041 	target = call_ifunc_resolver(ptr);
1042 	return ((void *)target);
1043 }
1044 
1045 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1046 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1047 {
1048 	const Elf_Rel *rel;
1049 	const Elf_Sym *def;
1050 	const Obj_Entry *defobj;
1051 	Elf_Addr *where;
1052 	Elf_Addr target;
1053 	RtldLockState lockstate;
1054 
1055 relock:
1056 	rlock_acquire(rtld_bind_lock, &lockstate);
1057 	if (sigsetjmp(lockstate.env, 0) != 0)
1058 		lock_upgrade(rtld_bind_lock, &lockstate);
1059 	if (obj->pltrel)
1060 		rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1061 	else
1062 		rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1063 
1064 	where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1065 	def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1066 	    NULL, &lockstate);
1067 	if (def == NULL)
1068 		rtld_die();
1069 	if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
1070 		if (lockstate_wlocked(&lockstate)) {
1071 			lock_release(rtld_bind_lock, &lockstate);
1072 			goto relock;
1073 		}
1074 		target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1075 	} else {
1076 		target = (Elf_Addr)(defobj->relocbase + def->st_value);
1077 	}
1078 
1079 	dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", defobj->strtab + def->st_name,
1080 	    obj->path == NULL ? NULL : basename(obj->path), (void *)target,
1081 	    defobj->path == NULL ? NULL : basename(defobj->path));
1082 
1083 	/*
1084 	 * Write the new contents for the jmpslot. Note that depending on
1085 	 * architecture, the value which we need to return back to the
1086 	 * lazy binding trampoline may or may not be the target
1087 	 * address. The value returned from reloc_jmpslot() is the value
1088 	 * that the trampoline needs.
1089 	 */
1090 	target = reloc_jmpslot(where, target, defobj, obj, rel);
1091 	lock_release(rtld_bind_lock, &lockstate);
1092 	return (target);
1093 }
1094 
1095 /*
1096  * Error reporting function.  Use it like printf.  If formats the message
1097  * into a buffer, and sets things up so that the next call to dlerror()
1098  * will return the message.
1099  */
1100 void
_rtld_error(const char * fmt,...)1101 _rtld_error(const char *fmt, ...)
1102 {
1103 	va_list ap;
1104 
1105 	va_start(ap, fmt);
1106 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz, fmt,
1107 	    ap);
1108 	va_end(ap);
1109 	*lockinfo.dlerror_seen() = 0;
1110 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1111 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1112 }
1113 
1114 /*
1115  * Return a dynamically-allocated copy of the current error message, if any.
1116  */
1117 static struct dlerror_save *
errmsg_save(void)1118 errmsg_save(void)
1119 {
1120 	struct dlerror_save *res;
1121 
1122 	res = xmalloc(sizeof(*res));
1123 	res->seen = *lockinfo.dlerror_seen();
1124 	if (res->seen == 0)
1125 		res->msg = xstrdup(lockinfo.dlerror_loc());
1126 	return (res);
1127 }
1128 
1129 /*
1130  * Restore the current error message from a copy which was previously saved
1131  * by errmsg_save().  The copy is freed.
1132  */
1133 static void
errmsg_restore(struct dlerror_save * saved_msg)1134 errmsg_restore(struct dlerror_save *saved_msg)
1135 {
1136 	if (saved_msg == NULL || saved_msg->seen == 1) {
1137 		*lockinfo.dlerror_seen() = 1;
1138 	} else {
1139 		*lockinfo.dlerror_seen() = 0;
1140 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1141 		    lockinfo.dlerror_loc_sz);
1142 		free(saved_msg->msg);
1143 	}
1144 	free(saved_msg);
1145 }
1146 
1147 static const char *
basename(const char * name)1148 basename(const char *name)
1149 {
1150 	const char *p;
1151 
1152 	p = strrchr(name, '/');
1153 	return (p != NULL ? p + 1 : name);
1154 }
1155 
1156 static struct utsname uts;
1157 
1158 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1159 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, const char *subst,
1160     bool may_free)
1161 {
1162 	char *p, *p1, *res, *resp;
1163 	int subst_len, kw_len, subst_count, old_len, new_len;
1164 
1165 	kw_len = strlen(kw);
1166 
1167 	/*
1168 	 * First, count the number of the keyword occurrences, to
1169 	 * preallocate the final string.
1170 	 */
1171 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1172 		p1 = strstr(p, kw);
1173 		if (p1 == NULL)
1174 			break;
1175 	}
1176 
1177 	/*
1178 	 * If the keyword is not found, just return.
1179 	 *
1180 	 * Return non-substituted string if resolution failed.  We
1181 	 * cannot do anything more reasonable, the failure mode of the
1182 	 * caller is unresolved library anyway.
1183 	 */
1184 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1185 		return (may_free ? real : xstrdup(real));
1186 	if (obj != NULL)
1187 		subst = obj->origin_path;
1188 
1189 	/*
1190 	 * There is indeed something to substitute.  Calculate the
1191 	 * length of the resulting string, and allocate it.
1192 	 */
1193 	subst_len = strlen(subst);
1194 	old_len = strlen(real);
1195 	new_len = old_len + (subst_len - kw_len) * subst_count;
1196 	res = xmalloc(new_len + 1);
1197 
1198 	/*
1199 	 * Now, execute the substitution loop.
1200 	 */
1201 	for (p = real, resp = res, *resp = '\0';;) {
1202 		p1 = strstr(p, kw);
1203 		if (p1 != NULL) {
1204 			/* Copy the prefix before keyword. */
1205 			memcpy(resp, p, p1 - p);
1206 			resp += p1 - p;
1207 			/* Keyword replacement. */
1208 			memcpy(resp, subst, subst_len);
1209 			resp += subst_len;
1210 			*resp = '\0';
1211 			p = p1 + kw_len;
1212 		} else
1213 			break;
1214 	}
1215 
1216 	/* Copy to the end of string and finish. */
1217 	strcat(resp, p);
1218 	if (may_free)
1219 		free(real);
1220 	return (res);
1221 }
1222 
1223 static const struct {
1224 	const char *kw;
1225 	bool pass_obj;
1226 	const char *subst;
1227 } tokens[] = {
1228 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1229 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1230 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1231 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1232 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1233 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1234 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1235 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1236 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1237 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1238 };
1239 
1240 static char *
origin_subst(Obj_Entry * obj,const char * real)1241 origin_subst(Obj_Entry *obj, const char *real)
1242 {
1243 	char *res;
1244 	int i;
1245 
1246 	if (obj == NULL || !trust)
1247 		return (xstrdup(real));
1248 	if (uts.sysname[0] == '\0') {
1249 		if (uname(&uts) != 0) {
1250 			_rtld_error("utsname failed: %d", errno);
1251 			return (NULL);
1252 		}
1253 	}
1254 
1255 	/* __DECONST is safe here since without may_free real is unchanged */
1256 	res = __DECONST(char *, real);
1257 	for (i = 0; i < (int)nitems(tokens); i++) {
1258 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL, res,
1259 		    tokens[i].kw, tokens[i].subst, i != 0);
1260 	}
1261 	return (res);
1262 }
1263 
1264 void
rtld_die(void)1265 rtld_die(void)
1266 {
1267 	const char *msg = dlerror();
1268 
1269 	if (msg == NULL)
1270 		msg = "Fatal error";
1271 	rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1272 	rtld_fdputstr(STDERR_FILENO, msg);
1273 	rtld_fdputchar(STDERR_FILENO, '\n');
1274 	_exit(1);
1275 }
1276 
1277 /*
1278  * Process a shared object's DYNAMIC section, and save the important
1279  * information in its Obj_Entry structure.
1280  */
1281 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1282 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1283     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1284 {
1285 	const Elf_Dyn *dynp;
1286 	Needed_Entry **needed_tail = &obj->needed;
1287 	Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1288 	Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1289 	const Elf_Hashelt *hashtab;
1290 	const Elf32_Word *hashval;
1291 	Elf32_Word bkt, nmaskwords;
1292 	int bloom_size32;
1293 	int plttype = DT_REL;
1294 
1295 	*dyn_rpath = NULL;
1296 	*dyn_soname = NULL;
1297 	*dyn_runpath = NULL;
1298 
1299 	obj->bind_now = false;
1300 	dynp = obj->dynamic;
1301 	if (dynp == NULL)
1302 		return;
1303 	for (; dynp->d_tag != DT_NULL; dynp++) {
1304 		switch (dynp->d_tag) {
1305 		case DT_REL:
1306 			obj->rel = (const Elf_Rel *)(obj->relocbase +
1307 			    dynp->d_un.d_ptr);
1308 			break;
1309 
1310 		case DT_RELSZ:
1311 			obj->relsize = dynp->d_un.d_val;
1312 			break;
1313 
1314 		case DT_RELENT:
1315 			assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1316 			break;
1317 
1318 		case DT_JMPREL:
1319 			obj->pltrel = (const Elf_Rel *)(obj->relocbase +
1320 			    dynp->d_un.d_ptr);
1321 			break;
1322 
1323 		case DT_PLTRELSZ:
1324 			obj->pltrelsize = dynp->d_un.d_val;
1325 			break;
1326 
1327 		case DT_RELA:
1328 			obj->rela = (const Elf_Rela *)(obj->relocbase +
1329 			    dynp->d_un.d_ptr);
1330 			break;
1331 
1332 		case DT_RELASZ:
1333 			obj->relasize = dynp->d_un.d_val;
1334 			break;
1335 
1336 		case DT_RELAENT:
1337 			assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1338 			break;
1339 
1340 		case DT_RELR:
1341 			obj->relr = (const Elf_Relr *)(obj->relocbase +
1342 			    dynp->d_un.d_ptr);
1343 			break;
1344 
1345 		case DT_RELRSZ:
1346 			obj->relrsize = dynp->d_un.d_val;
1347 			break;
1348 
1349 		case DT_RELRENT:
1350 			assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1351 			break;
1352 
1353 		case DT_PLTREL:
1354 			plttype = dynp->d_un.d_val;
1355 			assert(
1356 			    dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1357 			break;
1358 
1359 		case DT_SYMTAB:
1360 			obj->symtab = (const Elf_Sym *)(obj->relocbase +
1361 			    dynp->d_un.d_ptr);
1362 			break;
1363 
1364 		case DT_SYMENT:
1365 			assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1366 			break;
1367 
1368 		case DT_STRTAB:
1369 			obj->strtab = (const char *)(obj->relocbase +
1370 			    dynp->d_un.d_ptr);
1371 			break;
1372 
1373 		case DT_STRSZ:
1374 			obj->strsize = dynp->d_un.d_val;
1375 			break;
1376 
1377 		case DT_VERNEED:
1378 			obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1379 			    dynp->d_un.d_val);
1380 			break;
1381 
1382 		case DT_VERNEEDNUM:
1383 			obj->verneednum = dynp->d_un.d_val;
1384 			break;
1385 
1386 		case DT_VERDEF:
1387 			obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1388 			    dynp->d_un.d_val);
1389 			break;
1390 
1391 		case DT_VERDEFNUM:
1392 			obj->verdefnum = dynp->d_un.d_val;
1393 			break;
1394 
1395 		case DT_VERSYM:
1396 			obj->versyms = (const Elf_Versym *)(obj->relocbase +
1397 			    dynp->d_un.d_val);
1398 			break;
1399 
1400 		case DT_HASH: {
1401 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1402 			    dynp->d_un.d_ptr);
1403 			obj->nbuckets = hashtab[0];
1404 			obj->nchains = hashtab[1];
1405 			obj->buckets = hashtab + 2;
1406 			obj->chains = obj->buckets + obj->nbuckets;
1407 			obj->valid_hash_sysv = obj->nbuckets > 0 &&
1408 			    obj->nchains > 0 && obj->buckets != NULL;
1409 		} break;
1410 
1411 		case DT_GNU_HASH: {
1412 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1413 			    dynp->d_un.d_ptr);
1414 			obj->nbuckets_gnu = hashtab[0];
1415 			obj->symndx_gnu = hashtab[1];
1416 			nmaskwords = hashtab[2];
1417 			bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1418 			obj->maskwords_bm_gnu = nmaskwords - 1;
1419 			obj->shift2_gnu = hashtab[3];
1420 			obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1421 			obj->buckets_gnu = hashtab + 4 + bloom_size32;
1422 			obj->chain_zero_gnu = obj->buckets_gnu +
1423 			    obj->nbuckets_gnu - obj->symndx_gnu;
1424 			/* Number of bitmask words is required to be power of 2
1425 			 */
1426 			obj->valid_hash_gnu = powerof2(nmaskwords) &&
1427 			    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1428 		} break;
1429 
1430 		case DT_NEEDED:
1431 			if (!obj->rtld) {
1432 				Needed_Entry *nep = NEW(Needed_Entry);
1433 				nep->name = dynp->d_un.d_val;
1434 				nep->obj = NULL;
1435 				nep->next = NULL;
1436 
1437 				*needed_tail = nep;
1438 				needed_tail = &nep->next;
1439 			}
1440 			break;
1441 
1442 		case DT_FILTER:
1443 			if (!obj->rtld) {
1444 				Needed_Entry *nep = NEW(Needed_Entry);
1445 				nep->name = dynp->d_un.d_val;
1446 				nep->obj = NULL;
1447 				nep->next = NULL;
1448 
1449 				*needed_filtees_tail = nep;
1450 				needed_filtees_tail = &nep->next;
1451 
1452 				if (obj->linkmap.l_refname == NULL)
1453 					obj->linkmap.l_refname =
1454 					    (char *)dynp->d_un.d_val;
1455 			}
1456 			break;
1457 
1458 		case DT_AUXILIARY:
1459 			if (!obj->rtld) {
1460 				Needed_Entry *nep = NEW(Needed_Entry);
1461 				nep->name = dynp->d_un.d_val;
1462 				nep->obj = NULL;
1463 				nep->next = NULL;
1464 
1465 				*needed_aux_filtees_tail = nep;
1466 				needed_aux_filtees_tail = &nep->next;
1467 			}
1468 			break;
1469 
1470 		case DT_PLTGOT:
1471 			obj->pltgot = (Elf_Addr *)(obj->relocbase +
1472 			    dynp->d_un.d_ptr);
1473 			break;
1474 
1475 		case DT_TEXTREL:
1476 			obj->textrel = true;
1477 			break;
1478 
1479 		case DT_SYMBOLIC:
1480 			obj->symbolic = true;
1481 			break;
1482 
1483 		case DT_RPATH:
1484 			/*
1485 			 * We have to wait until later to process this, because
1486 			 * we might not have gotten the address of the string
1487 			 * table yet.
1488 			 */
1489 			*dyn_rpath = dynp;
1490 			break;
1491 
1492 		case DT_SONAME:
1493 			*dyn_soname = dynp;
1494 			break;
1495 
1496 		case DT_RUNPATH:
1497 			*dyn_runpath = dynp;
1498 			break;
1499 
1500 		case DT_INIT:
1501 			obj->init = (Elf_Addr)(obj->relocbase +
1502 			    dynp->d_un.d_ptr);
1503 			break;
1504 
1505 		case DT_PREINIT_ARRAY:
1506 			obj->preinit_array = (Elf_Addr)(obj->relocbase +
1507 			    dynp->d_un.d_ptr);
1508 			break;
1509 
1510 		case DT_PREINIT_ARRAYSZ:
1511 			obj->preinit_array_num = dynp->d_un.d_val /
1512 			    sizeof(Elf_Addr);
1513 			break;
1514 
1515 		case DT_INIT_ARRAY:
1516 			obj->init_array = (Elf_Addr)(obj->relocbase +
1517 			    dynp->d_un.d_ptr);
1518 			break;
1519 
1520 		case DT_INIT_ARRAYSZ:
1521 			obj->init_array_num = dynp->d_un.d_val /
1522 			    sizeof(Elf_Addr);
1523 			break;
1524 
1525 		case DT_FINI:
1526 			obj->fini = (Elf_Addr)(obj->relocbase +
1527 			    dynp->d_un.d_ptr);
1528 			break;
1529 
1530 		case DT_FINI_ARRAY:
1531 			obj->fini_array = (Elf_Addr)(obj->relocbase +
1532 			    dynp->d_un.d_ptr);
1533 			break;
1534 
1535 		case DT_FINI_ARRAYSZ:
1536 			obj->fini_array_num = dynp->d_un.d_val /
1537 			    sizeof(Elf_Addr);
1538 			break;
1539 
1540 		case DT_DEBUG:
1541 			if (!early)
1542 				dbg("Filling in DT_DEBUG entry");
1543 			(__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr =
1544 			    (Elf_Addr)&r_debug;
1545 			break;
1546 
1547 		case DT_FLAGS:
1548 			if (dynp->d_un.d_val & DF_ORIGIN)
1549 				obj->z_origin = true;
1550 			if (dynp->d_un.d_val & DF_SYMBOLIC)
1551 				obj->symbolic = true;
1552 			if (dynp->d_un.d_val & DF_TEXTREL)
1553 				obj->textrel = true;
1554 			if (dynp->d_un.d_val & DF_BIND_NOW)
1555 				obj->bind_now = true;
1556 			if (dynp->d_un.d_val & DF_STATIC_TLS)
1557 				obj->static_tls = true;
1558 			break;
1559 
1560 		case DT_FLAGS_1:
1561 			if (dynp->d_un.d_val & DF_1_NOOPEN)
1562 				obj->z_noopen = true;
1563 			if (dynp->d_un.d_val & DF_1_ORIGIN)
1564 				obj->z_origin = true;
1565 			if (dynp->d_un.d_val & DF_1_GLOBAL)
1566 				obj->z_global = true;
1567 			if (dynp->d_un.d_val & DF_1_BIND_NOW)
1568 				obj->bind_now = true;
1569 			if (dynp->d_un.d_val & DF_1_NODELETE)
1570 				obj->z_nodelete = true;
1571 			if (dynp->d_un.d_val & DF_1_LOADFLTR)
1572 				obj->z_loadfltr = true;
1573 			if (dynp->d_un.d_val & DF_1_INTERPOSE)
1574 				obj->z_interpose = true;
1575 			if (dynp->d_un.d_val & DF_1_NODEFLIB)
1576 				obj->z_nodeflib = true;
1577 			if (dynp->d_un.d_val & DF_1_PIE)
1578 				obj->z_pie = true;
1579 			if (dynp->d_un.d_val & DF_1_INITFIRST)
1580 				obj->z_initfirst = true;
1581 			break;
1582 
1583 		default:
1584 			if (arch_digest_dynamic(obj, dynp))
1585 				break;
1586 
1587 			if (!early) {
1588 				dbg("Ignoring d_tag %ld = %#lx",
1589 				    (long)dynp->d_tag, (long)dynp->d_tag);
1590 			}
1591 			break;
1592 		}
1593 	}
1594 
1595 	obj->traced = false;
1596 
1597 	if (plttype == DT_RELA) {
1598 		obj->pltrela = (const Elf_Rela *)obj->pltrel;
1599 		obj->pltrel = NULL;
1600 		obj->pltrelasize = obj->pltrelsize;
1601 		obj->pltrelsize = 0;
1602 	}
1603 
1604 	/* Determine size of dynsym table (equal to nchains of sysv hash) */
1605 	if (obj->valid_hash_sysv)
1606 		obj->dynsymcount = obj->nchains;
1607 	else if (obj->valid_hash_gnu) {
1608 		obj->dynsymcount = 0;
1609 		for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1610 			if (obj->buckets_gnu[bkt] == 0)
1611 				continue;
1612 			hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1613 			do
1614 				obj->dynsymcount++;
1615 			while ((*hashval++ & 1u) == 0);
1616 		}
1617 		obj->dynsymcount += obj->symndx_gnu;
1618 	}
1619 
1620 	if (obj->linkmap.l_refname != NULL)
1621 		obj->linkmap.l_refname = obj->strtab +
1622 		    (unsigned long)obj->linkmap.l_refname;
1623 }
1624 
1625 static bool
obj_resolve_origin(Obj_Entry * obj)1626 obj_resolve_origin(Obj_Entry *obj)
1627 {
1628 	if (obj->origin_path != NULL)
1629 		return (true);
1630 	obj->origin_path = xmalloc(PATH_MAX);
1631 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1632 }
1633 
1634 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1635 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1636     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1637 {
1638 	if (obj->z_origin && !obj_resolve_origin(obj))
1639 		return (false);
1640 
1641 	if (dyn_runpath != NULL) {
1642 		obj->runpath = (const char *)obj->strtab +
1643 		    dyn_runpath->d_un.d_val;
1644 		obj->runpath = origin_subst(obj, obj->runpath);
1645 	} else if (dyn_rpath != NULL) {
1646 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1647 		obj->rpath = origin_subst(obj, obj->rpath);
1648 	}
1649 	if (dyn_soname != NULL)
1650 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1651 	return (true);
1652 }
1653 
1654 static bool
digest_dynamic(Obj_Entry * obj,int early)1655 digest_dynamic(Obj_Entry *obj, int early)
1656 {
1657 	const Elf_Dyn *dyn_rpath;
1658 	const Elf_Dyn *dyn_soname;
1659 	const Elf_Dyn *dyn_runpath;
1660 
1661 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1662 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1663 }
1664 
1665 /*
1666  * Process a shared object's program header.  This is used only for the
1667  * main program, when the kernel has already loaded the main program
1668  * into memory before calling the dynamic linker.  It creates and
1669  * returns an Obj_Entry structure.
1670  */
1671 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1672 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1673 {
1674 	Obj_Entry *obj;
1675 	const Elf_Phdr *phlimit = phdr + phnum;
1676 	const Elf_Phdr *ph;
1677 	Elf_Addr note_start, note_end;
1678 	int nsegs = 0;
1679 
1680 	obj = obj_new();
1681 	for (ph = phdr; ph < phlimit; ph++) {
1682 		if (ph->p_type != PT_PHDR)
1683 			continue;
1684 
1685 		obj->phdr = phdr;
1686 		obj->phsize = ph->p_memsz;
1687 		obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1688 		break;
1689 	}
1690 
1691 	obj->stack_flags = PF_X | PF_R | PF_W;
1692 
1693 	for (ph = phdr; ph < phlimit; ph++) {
1694 		switch (ph->p_type) {
1695 		case PT_INTERP:
1696 			obj->interp = (const char *)(ph->p_vaddr +
1697 			    obj->relocbase);
1698 			break;
1699 
1700 		case PT_LOAD:
1701 			if (nsegs == 0) { /* First load segment */
1702 				obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1703 				obj->mapbase = obj->vaddrbase + obj->relocbase;
1704 			} else { /* Last load segment */
1705 				obj->mapsize = rtld_round_page(
1706 				    ph->p_vaddr + ph->p_memsz) -
1707 				    obj->vaddrbase;
1708 			}
1709 			nsegs++;
1710 			break;
1711 
1712 		case PT_DYNAMIC:
1713 			obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr +
1714 			    obj->relocbase);
1715 			break;
1716 
1717 		case PT_TLS:
1718 			obj->tlsindex = 1;
1719 			obj->tlssize = ph->p_memsz;
1720 			obj->tlsalign = ph->p_align;
1721 			obj->tlsinitsize = ph->p_filesz;
1722 			obj->tlsinit = (void *)(ph->p_vaddr + obj->relocbase);
1723 			obj->tlspoffset = ph->p_offset;
1724 			break;
1725 
1726 		case PT_GNU_STACK:
1727 			obj->stack_flags = ph->p_flags;
1728 			break;
1729 
1730 		case PT_NOTE:
1731 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1732 			note_end = note_start + ph->p_filesz;
1733 			digest_notes(obj, note_start, note_end);
1734 			break;
1735 		}
1736 	}
1737 	if (nsegs < 1) {
1738 		_rtld_error("%s: too few PT_LOAD segments", path);
1739 		return (NULL);
1740 	}
1741 
1742 	obj->entry = entry;
1743 	return (obj);
1744 }
1745 
1746 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1747 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1748 {
1749 	const Elf_Note *note;
1750 	const char *note_name;
1751 	uintptr_t p;
1752 
1753 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1754 	    note = (const Elf_Note *)((const char *)(note + 1) +
1755 		roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1756 		roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1757 		if (arch_digest_note(obj, note))
1758 			continue;
1759 
1760 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1761 		    note->n_descsz != sizeof(int32_t))
1762 			continue;
1763 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1764 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1765 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1766 			continue;
1767 		note_name = (const char *)(note + 1);
1768 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1769 			sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1770 			continue;
1771 		switch (note->n_type) {
1772 		case NT_FREEBSD_ABI_TAG:
1773 			/* FreeBSD osrel note */
1774 			p = (uintptr_t)(note + 1);
1775 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1776 			obj->osrel = *(const int32_t *)(p);
1777 			dbg("note osrel %d", obj->osrel);
1778 			break;
1779 		case NT_FREEBSD_FEATURE_CTL:
1780 			/* FreeBSD ABI feature control note */
1781 			p = (uintptr_t)(note + 1);
1782 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1783 			obj->fctl0 = *(const uint32_t *)(p);
1784 			dbg("note fctl0 %#x", obj->fctl0);
1785 			break;
1786 		case NT_FREEBSD_NOINIT_TAG:
1787 			/* FreeBSD 'crt does not call init' note */
1788 			obj->crt_no_init = true;
1789 			dbg("note crt_no_init");
1790 			break;
1791 		}
1792 	}
1793 }
1794 
1795 static Obj_Entry *
dlcheck(void * handle)1796 dlcheck(void *handle)
1797 {
1798 	Obj_Entry *obj;
1799 
1800 	TAILQ_FOREACH(obj, &obj_list, next) {
1801 		if (obj == (Obj_Entry *)handle)
1802 			break;
1803 	}
1804 
1805 	if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1806 		_rtld_error("Invalid shared object handle %p", handle);
1807 		return (NULL);
1808 	}
1809 	return (obj);
1810 }
1811 
1812 /*
1813  * If the given object is already in the donelist, return true.  Otherwise
1814  * add the object to the list and return false.
1815  */
1816 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1817 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1818 {
1819 	unsigned int i;
1820 
1821 	for (i = 0; i < dlp->num_used; i++)
1822 		if (dlp->objs[i] == obj)
1823 			return (true);
1824 	/*
1825 	 * Our donelist allocation should always be sufficient.  But if
1826 	 * our threads locking isn't working properly, more shared objects
1827 	 * could have been loaded since we allocated the list.  That should
1828 	 * never happen, but we'll handle it properly just in case it does.
1829 	 */
1830 	if (dlp->num_used < dlp->num_alloc)
1831 		dlp->objs[dlp->num_used++] = obj;
1832 	return (false);
1833 }
1834 
1835 /*
1836  * SysV hash function for symbol table lookup.  It is a slightly optimized
1837  * version of the hash specified by the System V ABI.
1838  */
1839 Elf32_Word
elf_hash(const char * name)1840 elf_hash(const char *name)
1841 {
1842 	const unsigned char *p = (const unsigned char *)name;
1843 	Elf32_Word h = 0;
1844 
1845 	while (*p != '\0') {
1846 		h = (h << 4) + *p++;
1847 		h ^= (h >> 24) & 0xf0;
1848 	}
1849 	return (h & 0x0fffffff);
1850 }
1851 
1852 /*
1853  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1854  * unsigned in case it's implemented with a wider type.
1855  */
1856 static uint32_t
gnu_hash(const char * s)1857 gnu_hash(const char *s)
1858 {
1859 	uint32_t h;
1860 	unsigned char c;
1861 
1862 	h = 5381;
1863 	for (c = *s; c != '\0'; c = *++s)
1864 		h = h * 33 + c;
1865 	return (h & 0xffffffff);
1866 }
1867 
1868 /*
1869  * Find the library with the given name, and return its full pathname.
1870  * The returned string is dynamically allocated.  Generates an error
1871  * message and returns NULL if the library cannot be found.
1872  *
1873  * If the second argument is non-NULL, then it refers to an already-
1874  * loaded shared object, whose library search path will be searched.
1875  *
1876  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1877  * descriptor (which is close-on-exec) will be passed out via the third
1878  * argument.
1879  *
1880  * The search order is:
1881  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1882  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1883  *   LD_LIBRARY_PATH
1884  *   DT_RUNPATH in the referencing file
1885  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1886  *	 from list)
1887  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1888  *
1889  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1890  */
1891 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1892 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1893 {
1894 	char *pathname, *refobj_path;
1895 	const char *name;
1896 	bool nodeflib, objgiven;
1897 
1898 	objgiven = refobj != NULL;
1899 
1900 	if (libmap_disable || !objgiven ||
1901 	    (name = lm_find(refobj->path, xname)) == NULL)
1902 		name = xname;
1903 
1904 	if (strchr(name, '/') != NULL) { /* Hard coded pathname */
1905 		if (name[0] != '/' && !trust) {
1906 			_rtld_error(
1907 		    "Absolute pathname required for shared object \"%s\"",
1908 			    name);
1909 			return (NULL);
1910 		}
1911 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1912 		    __DECONST(char *, name)));
1913 	}
1914 
1915 	dbg(" Searching for \"%s\"", name);
1916 	refobj_path = objgiven ? refobj->path : NULL;
1917 
1918 	/*
1919 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1920 	 * back to pre-conforming behaviour if user requested so with
1921 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1922 	 * nodeflib.
1923 	 */
1924 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1925 		pathname = search_library_path(name, ld_library_path,
1926 		    refobj_path, fdp);
1927 		if (pathname != NULL)
1928 			return (pathname);
1929 		if (refobj != NULL) {
1930 			pathname = search_library_path(name, refobj->rpath,
1931 			    refobj_path, fdp);
1932 			if (pathname != NULL)
1933 				return (pathname);
1934 		}
1935 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1936 		if (pathname != NULL)
1937 			return (pathname);
1938 		pathname = search_library_path(name, gethints(false),
1939 		    refobj_path, fdp);
1940 		if (pathname != NULL)
1941 			return (pathname);
1942 		pathname = search_library_path(name, ld_standard_library_path,
1943 		    refobj_path, fdp);
1944 		if (pathname != NULL)
1945 			return (pathname);
1946 	} else {
1947 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1948 		if (objgiven) {
1949 			pathname = search_library_path(name, refobj->rpath,
1950 			    refobj->path, fdp);
1951 			if (pathname != NULL)
1952 				return (pathname);
1953 		}
1954 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1955 			pathname = search_library_path(name, obj_main->rpath,
1956 			    refobj_path, fdp);
1957 			if (pathname != NULL)
1958 				return (pathname);
1959 		}
1960 		pathname = search_library_path(name, ld_library_path,
1961 		    refobj_path, fdp);
1962 		if (pathname != NULL)
1963 			return (pathname);
1964 		if (objgiven) {
1965 			pathname = search_library_path(name, refobj->runpath,
1966 			    refobj_path, fdp);
1967 			if (pathname != NULL)
1968 				return (pathname);
1969 		}
1970 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1971 		if (pathname != NULL)
1972 			return (pathname);
1973 		pathname = search_library_path(name, gethints(nodeflib),
1974 		    refobj_path, fdp);
1975 		if (pathname != NULL)
1976 			return (pathname);
1977 		if (objgiven && !nodeflib) {
1978 			pathname = search_library_path(name,
1979 			    ld_standard_library_path, refobj_path, fdp);
1980 			if (pathname != NULL)
1981 				return (pathname);
1982 		}
1983 	}
1984 
1985 	if (objgiven && refobj->path != NULL) {
1986 		_rtld_error(
1987 	    "Shared object \"%s\" not found, required by \"%s\"",
1988 		    name, basename(refobj->path));
1989 	} else {
1990 		_rtld_error("Shared object \"%s\" not found", name);
1991 	}
1992 	return (NULL);
1993 }
1994 
1995 /*
1996  * Given a symbol number in a referencing object, find the corresponding
1997  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1998  * no definition was found.  Returns a pointer to the Obj_Entry of the
1999  * defining object via the reference parameter DEFOBJ_OUT.
2000  */
2001 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)2002 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
2003     const Obj_Entry **defobj_out, int flags, SymCache *cache,
2004     RtldLockState *lockstate)
2005 {
2006 	const Elf_Sym *ref;
2007 	const Elf_Sym *def;
2008 	const Obj_Entry *defobj;
2009 	const Ver_Entry *ve;
2010 	SymLook req;
2011 	const char *name;
2012 	int res;
2013 
2014 	/*
2015 	 * If we have already found this symbol, get the information from
2016 	 * the cache.
2017 	 */
2018 	if (symnum >= refobj->dynsymcount)
2019 		return (NULL); /* Bad object */
2020 	if (cache != NULL && cache[symnum].sym != NULL) {
2021 		*defobj_out = cache[symnum].obj;
2022 		return (cache[symnum].sym);
2023 	}
2024 
2025 	ref = refobj->symtab + symnum;
2026 	name = refobj->strtab + ref->st_name;
2027 	def = NULL;
2028 	defobj = NULL;
2029 	ve = NULL;
2030 
2031 	/*
2032 	 * We don't have to do a full scale lookup if the symbol is local.
2033 	 * We know it will bind to the instance in this load module; to
2034 	 * which we already have a pointer (ie ref). By not doing a lookup,
2035 	 * we not only improve performance, but it also avoids unresolvable
2036 	 * symbols when local symbols are not in the hash table. This has
2037 	 * been seen with the ia64 toolchain.
2038 	 */
2039 	if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2040 		if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2041 			_rtld_error("%s: Bogus symbol table entry %lu",
2042 			    refobj->path, symnum);
2043 		}
2044 		symlook_init(&req, name);
2045 		req.flags = flags;
2046 		ve = req.ventry = fetch_ventry(refobj, symnum);
2047 		req.lockstate = lockstate;
2048 		res = symlook_default(&req, refobj);
2049 		if (res == 0) {
2050 			def = req.sym_out;
2051 			defobj = req.defobj_out;
2052 		}
2053 	} else {
2054 		def = ref;
2055 		defobj = refobj;
2056 	}
2057 
2058 	/*
2059 	 * If we found no definition and the reference is weak, treat the
2060 	 * symbol as having the value zero.
2061 	 */
2062 	if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2063 		def = &sym_zero;
2064 		defobj = obj_main;
2065 	}
2066 
2067 	if (def != NULL) {
2068 		*defobj_out = defobj;
2069 		/*
2070 		 * Record the information in the cache to avoid subsequent
2071 		 * lookups.
2072 		 */
2073 		if (cache != NULL) {
2074 			cache[symnum].sym = def;
2075 			cache[symnum].obj = defobj;
2076 		}
2077 	} else {
2078 		if (refobj != &obj_rtld)
2079 			_rtld_error("%s: Undefined symbol \"%s%s%s\"",
2080 			    refobj->path, name, ve != NULL ? "@" : "",
2081 			    ve != NULL ? ve->name : "");
2082 	}
2083 	return (def);
2084 }
2085 
2086 /* Convert between native byte order and forced little resp. big endian. */
2087 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2088 
2089 /*
2090  * Return the search path from the ldconfig hints file, reading it if
2091  * necessary.  If nostdlib is true, then the default search paths are
2092  * not added to result.
2093  *
2094  * Returns NULL if there are problems with the hints file,
2095  * or if the search path there is empty.
2096  */
2097 static const char *
gethints(bool nostdlib)2098 gethints(bool nostdlib)
2099 {
2100 	static char *filtered_path;
2101 	static const char *hints;
2102 	static struct elfhints_hdr hdr;
2103 	struct fill_search_info_args sargs, hargs;
2104 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2105 	struct dl_serpath *SLPpath, *hintpath;
2106 	char *p;
2107 	struct stat hint_stat;
2108 	unsigned int SLPndx, hintndx, fndx, fcount;
2109 	int fd;
2110 	size_t flen;
2111 	uint32_t dl;
2112 	uint32_t magic;	     /* Magic number */
2113 	uint32_t version;    /* File version (1) */
2114 	uint32_t strtab;     /* Offset of string table in file */
2115 	uint32_t dirlist;    /* Offset of directory list in string table */
2116 	uint32_t dirlistlen; /* strlen(dirlist) */
2117 	bool is_le;	     /* Does the hints file use little endian */
2118 	bool skip;
2119 
2120 	/* First call, read the hints file */
2121 	if (hints == NULL) {
2122 		/* Keep from trying again in case the hints file is bad. */
2123 		hints = "";
2124 
2125 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) ==
2126 		    -1) {
2127 			dbg("failed to open hints file \"%s\"",
2128 			    ld_elf_hints_path);
2129 			return (NULL);
2130 		}
2131 
2132 		/*
2133 		 * Check of hdr.dirlistlen value against type limit
2134 		 * intends to pacify static analyzers.  Further
2135 		 * paranoia leads to checks that dirlist is fully
2136 		 * contained in the file range.
2137 		 */
2138 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2139 			dbg("failed to read %lu bytes from hints file \"%s\"",
2140 			    (u_long)sizeof hdr, ld_elf_hints_path);
2141 cleanup1:
2142 			close(fd);
2143 			hdr.dirlistlen = 0;
2144 			return (NULL);
2145 		}
2146 		dbg("host byte-order: %s-endian",
2147 		    le32toh(1) == 1 ? "little" : "big");
2148 		dbg("hints file byte-order: %s-endian",
2149 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2150 		is_le = /*htole32(1) == 1 || */ hdr.magic ==
2151 		    htole32(ELFHINTS_MAGIC);
2152 		magic = COND_SWAP(hdr.magic);
2153 		version = COND_SWAP(hdr.version);
2154 		strtab = COND_SWAP(hdr.strtab);
2155 		dirlist = COND_SWAP(hdr.dirlist);
2156 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2157 		if (magic != ELFHINTS_MAGIC) {
2158 			dbg("invalid magic number %#08x (expected: %#08x)",
2159 			    magic, ELFHINTS_MAGIC);
2160 			goto cleanup1;
2161 		}
2162 		if (version != 1) {
2163 			dbg("hints file version %d (expected: 1)", version);
2164 			goto cleanup1;
2165 		}
2166 		if (dirlistlen > UINT_MAX / 2) {
2167 			dbg("directory list is to long: %d > %d", dirlistlen,
2168 			    UINT_MAX / 2);
2169 			goto cleanup1;
2170 		}
2171 		if (fstat(fd, &hint_stat) == -1) {
2172 			dbg("failed to find length of hints file \"%s\"",
2173 			    ld_elf_hints_path);
2174 			goto cleanup1;
2175 		}
2176 		dl = strtab;
2177 		if (dl + dirlist < dl) {
2178 			dbg("invalid string table position %d", dl);
2179 			goto cleanup1;
2180 		}
2181 		dl += dirlist;
2182 		if (dl + dirlistlen < dl) {
2183 			dbg("invalid directory list offset %d", dirlist);
2184 			goto cleanup1;
2185 		}
2186 		dl += dirlistlen;
2187 		if (dl > hint_stat.st_size) {
2188 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2189 			    ld_elf_hints_path, dl,
2190 			    (uintmax_t)hint_stat.st_size);
2191 			goto cleanup1;
2192 		}
2193 		p = xmalloc(dirlistlen + 1);
2194 		if (pread(fd, p, dirlistlen + 1, strtab + dirlist) !=
2195 		    (ssize_t)dirlistlen + 1 || p[dirlistlen] != '\0') {
2196 			free(p);
2197 			dbg(
2198 	    "failed to read %d bytes starting at %d from hints file \"%s\"",
2199 			    dirlistlen + 1, strtab + dirlist,
2200 			    ld_elf_hints_path);
2201 			goto cleanup1;
2202 		}
2203 		hints = p;
2204 		close(fd);
2205 	}
2206 
2207 	/*
2208 	 * If caller agreed to receive list which includes the default
2209 	 * paths, we are done. Otherwise, if we still did not
2210 	 * calculated filtered result, do it now.
2211 	 */
2212 	if (!nostdlib)
2213 		return (hints[0] != '\0' ? hints : NULL);
2214 	if (filtered_path != NULL)
2215 		goto filt_ret;
2216 
2217 	/*
2218 	 * Obtain the list of all configured search paths, and the
2219 	 * list of the default paths.
2220 	 *
2221 	 * First estimate the size of the results.
2222 	 */
2223 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2224 	smeta.dls_cnt = 0;
2225 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2226 	hmeta.dls_cnt = 0;
2227 
2228 	sargs.request = RTLD_DI_SERINFOSIZE;
2229 	sargs.serinfo = &smeta;
2230 	hargs.request = RTLD_DI_SERINFOSIZE;
2231 	hargs.serinfo = &hmeta;
2232 
2233 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2234 	    &sargs);
2235 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2236 
2237 	SLPinfo = xmalloc(smeta.dls_size);
2238 	hintinfo = xmalloc(hmeta.dls_size);
2239 
2240 	/*
2241 	 * Next fetch both sets of paths.
2242 	 */
2243 	sargs.request = RTLD_DI_SERINFO;
2244 	sargs.serinfo = SLPinfo;
2245 	sargs.serpath = &SLPinfo->dls_serpath[0];
2246 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2247 
2248 	hargs.request = RTLD_DI_SERINFO;
2249 	hargs.serinfo = hintinfo;
2250 	hargs.serpath = &hintinfo->dls_serpath[0];
2251 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2252 
2253 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2254 	    &sargs);
2255 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2256 
2257 	/*
2258 	 * Now calculate the difference between two sets, by excluding
2259 	 * standard paths from the full set.
2260 	 */
2261 	fndx = 0;
2262 	fcount = 0;
2263 	filtered_path = xmalloc(dirlistlen + 1);
2264 	hintpath = &hintinfo->dls_serpath[0];
2265 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2266 		skip = false;
2267 		SLPpath = &SLPinfo->dls_serpath[0];
2268 		/*
2269 		 * Check each standard path against current.
2270 		 */
2271 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2272 			/* matched, skip the path */
2273 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2274 				skip = true;
2275 				break;
2276 			}
2277 		}
2278 		if (skip)
2279 			continue;
2280 		/*
2281 		 * Not matched against any standard path, add the path
2282 		 * to result. Separate consequtive paths with ':'.
2283 		 */
2284 		if (fcount > 0) {
2285 			filtered_path[fndx] = ':';
2286 			fndx++;
2287 		}
2288 		fcount++;
2289 		flen = strlen(hintpath->dls_name);
2290 		strncpy((filtered_path + fndx), hintpath->dls_name, flen);
2291 		fndx += flen;
2292 	}
2293 	filtered_path[fndx] = '\0';
2294 
2295 	free(SLPinfo);
2296 	free(hintinfo);
2297 
2298 filt_ret:
2299 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2300 }
2301 
2302 static void
init_dag(Obj_Entry * root)2303 init_dag(Obj_Entry *root)
2304 {
2305 	const Needed_Entry *needed;
2306 	const Objlist_Entry *elm;
2307 	DoneList donelist;
2308 
2309 	if (root->dag_inited)
2310 		return;
2311 	donelist_init(&donelist);
2312 
2313 	/* Root object belongs to own DAG. */
2314 	objlist_push_tail(&root->dldags, root);
2315 	objlist_push_tail(&root->dagmembers, root);
2316 	donelist_check(&donelist, root);
2317 
2318 	/*
2319 	 * Add dependencies of root object to DAG in breadth order
2320 	 * by exploiting the fact that each new object get added
2321 	 * to the tail of the dagmembers list.
2322 	 */
2323 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2324 		for (needed = elm->obj->needed; needed != NULL;
2325 		    needed = needed->next) {
2326 			if (needed->obj == NULL ||
2327 			    donelist_check(&donelist, needed->obj))
2328 				continue;
2329 			objlist_push_tail(&needed->obj->dldags, root);
2330 			objlist_push_tail(&root->dagmembers, needed->obj);
2331 		}
2332 	}
2333 	root->dag_inited = true;
2334 }
2335 
2336 static void
init_marker(Obj_Entry * marker)2337 init_marker(Obj_Entry *marker)
2338 {
2339 	bzero(marker, sizeof(*marker));
2340 	marker->marker = true;
2341 }
2342 
2343 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2344 globallist_curr(const Obj_Entry *obj)
2345 {
2346 	for (;;) {
2347 		if (obj == NULL)
2348 			return (NULL);
2349 		if (!obj->marker)
2350 			return (__DECONST(Obj_Entry *, obj));
2351 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2352 	}
2353 }
2354 
2355 Obj_Entry *
globallist_next(const Obj_Entry * obj)2356 globallist_next(const Obj_Entry *obj)
2357 {
2358 	for (;;) {
2359 		obj = TAILQ_NEXT(obj, next);
2360 		if (obj == NULL)
2361 			return (NULL);
2362 		if (!obj->marker)
2363 			return (__DECONST(Obj_Entry *, obj));
2364 	}
2365 }
2366 
2367 /* Prevent the object from being unmapped while the bind lock is dropped. */
2368 static void
hold_object(Obj_Entry * obj)2369 hold_object(Obj_Entry *obj)
2370 {
2371 	obj->holdcount++;
2372 }
2373 
2374 static void
unhold_object(Obj_Entry * obj)2375 unhold_object(Obj_Entry *obj)
2376 {
2377 	assert(obj->holdcount > 0);
2378 	if (--obj->holdcount == 0 && obj->unholdfree)
2379 		release_object(obj);
2380 }
2381 
2382 static void
process_z(Obj_Entry * root)2383 process_z(Obj_Entry *root)
2384 {
2385 	const Objlist_Entry *elm;
2386 	Obj_Entry *obj;
2387 
2388 	/*
2389 	 * Walk over object DAG and process every dependent object
2390 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2391 	 * to grow their own DAG.
2392 	 *
2393 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2394 	 * symlook_global() to work.
2395 	 *
2396 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2397 	 */
2398 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2399 		obj = elm->obj;
2400 		if (obj == NULL)
2401 			continue;
2402 		if (obj->z_nodelete && !obj->ref_nodel) {
2403 			dbg("obj %s -z nodelete", obj->path);
2404 			init_dag(obj);
2405 			ref_dag(obj);
2406 			obj->ref_nodel = true;
2407 		}
2408 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2409 			dbg("obj %s -z global", obj->path);
2410 			objlist_push_tail(&list_global, obj);
2411 			init_dag(obj);
2412 		}
2413 	}
2414 }
2415 
2416 static void
parse_rtld_phdr(Obj_Entry * obj)2417 parse_rtld_phdr(Obj_Entry *obj)
2418 {
2419 	const Elf_Phdr *ph;
2420 	Elf_Addr note_start, note_end;
2421 	bool first_seg;
2422 
2423 	first_seg = true;
2424 	obj->stack_flags = PF_X | PF_R | PF_W;
2425 	for (ph = obj->phdr;
2426 	    (const char *)ph < (const char *)obj->phdr + obj->phsize; ph++) {
2427 		switch (ph->p_type) {
2428 		case PT_LOAD:
2429 			if (first_seg) {
2430 				obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
2431 				first_seg = false;
2432 			}
2433 			obj->mapsize = rtld_round_page(ph->p_vaddr +
2434 			    ph->p_memsz) - obj->vaddrbase;
2435 			break;
2436 		case PT_GNU_STACK:
2437 			obj->stack_flags = ph->p_flags;
2438 			break;
2439 		case PT_NOTE:
2440 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2441 			note_end = note_start + ph->p_filesz;
2442 			digest_notes(obj, note_start, note_end);
2443 			break;
2444 		}
2445 	}
2446 }
2447 
2448 /*
2449  * Initialize the dynamic linker.  The argument is the address at which
2450  * the dynamic linker has been mapped into memory.  The primary task of
2451  * this function is to relocate the dynamic linker.
2452  */
2453 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2454 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2455 {
2456 	Obj_Entry objtmp; /* Temporary rtld object */
2457 	const Elf_Ehdr *ehdr;
2458 	const Elf_Dyn *dyn_rpath;
2459 	const Elf_Dyn *dyn_soname;
2460 	const Elf_Dyn *dyn_runpath;
2461 
2462 	/*
2463 	 * Conjure up an Obj_Entry structure for the dynamic linker.
2464 	 *
2465 	 * The "path" member can't be initialized yet because string constants
2466 	 * cannot yet be accessed. Below we will set it correctly.
2467 	 */
2468 	memset(&objtmp, 0, sizeof(objtmp));
2469 	objtmp.path = NULL;
2470 	objtmp.rtld = true;
2471 	objtmp.mapbase = mapbase;
2472 #ifdef PIC
2473 	objtmp.relocbase = mapbase;
2474 #endif
2475 
2476 	objtmp.dynamic = rtld_dynamic(&objtmp);
2477 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2478 	assert(objtmp.needed == NULL);
2479 	assert(!objtmp.textrel);
2480 	/*
2481 	 * Temporarily put the dynamic linker entry into the object list, so
2482 	 * that symbols can be found.
2483 	 */
2484 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2485 
2486 	ehdr = (Elf_Ehdr *)mapbase;
2487 	objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2488 	objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2489 
2490 	/* Initialize the object list. */
2491 	TAILQ_INIT(&obj_list);
2492 
2493 	/* Now that non-local variables can be accesses, copy out obj_rtld. */
2494 	memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2495 
2496 	/* The page size is required by the dynamic memory allocator. */
2497 	init_pagesizes(aux_info);
2498 
2499 	if (aux_info[AT_OSRELDATE] != NULL)
2500 		osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2501 
2502 	digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2503 
2504 	/* Replace the path with a dynamically allocated copy. */
2505 	obj_rtld.path = xstrdup(ld_path_rtld);
2506 
2507 	parse_rtld_phdr(&obj_rtld);
2508 	if (obj_enforce_relro(&obj_rtld) == -1)
2509 		rtld_die();
2510 
2511 	r_debug.r_version = R_DEBUG_VERSION;
2512 	r_debug.r_brk = r_debug_state;
2513 	r_debug.r_state = RT_CONSISTENT;
2514 	r_debug.r_ldbase = obj_rtld.relocbase;
2515 }
2516 
2517 /*
2518  * Retrieve the array of supported page sizes.  The kernel provides the page
2519  * sizes in increasing order.
2520  */
2521 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2522 init_pagesizes(Elf_Auxinfo **aux_info)
2523 {
2524 	static size_t psa[MAXPAGESIZES];
2525 	int mib[2];
2526 	size_t len, size;
2527 
2528 	if (aux_info[AT_PAGESIZES] != NULL &&
2529 	    aux_info[AT_PAGESIZESLEN] != NULL) {
2530 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2531 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2532 	} else {
2533 		len = 2;
2534 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2535 			size = sizeof(psa);
2536 		else {
2537 			/* As a fallback, retrieve the base page size. */
2538 			size = sizeof(psa[0]);
2539 			if (aux_info[AT_PAGESZ] != NULL) {
2540 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2541 				goto psa_filled;
2542 			} else {
2543 				mib[0] = CTL_HW;
2544 				mib[1] = HW_PAGESIZE;
2545 				len = 2;
2546 			}
2547 		}
2548 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2549 			_rtld_error("sysctl for hw.pagesize(s) failed");
2550 			rtld_die();
2551 		}
2552 	psa_filled:
2553 		pagesizes = psa;
2554 	}
2555 	npagesizes = size / sizeof(pagesizes[0]);
2556 	/* Discard any invalid entries at the end of the array. */
2557 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2558 		npagesizes--;
2559 
2560 	page_size = pagesizes[0];
2561 }
2562 
2563 /*
2564  * Add the init functions from a needed object list (and its recursive
2565  * needed objects) to "list".  This is not used directly; it is a helper
2566  * function for initlist_add_objects().  The write lock must be held
2567  * when this function is called.
2568  */
2569 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list,Objlist * iflist)2570 initlist_add_neededs(Needed_Entry *needed, Objlist *list, Objlist *iflist)
2571 {
2572 	/* Recursively process the successor needed objects. */
2573 	if (needed->next != NULL)
2574 		initlist_add_neededs(needed->next, list, iflist);
2575 
2576 	/* Process the current needed object. */
2577 	if (needed->obj != NULL)
2578 		initlist_add_objects(needed->obj, needed->obj, list, iflist);
2579 }
2580 
2581 /*
2582  * Scan all of the DAGs rooted in the range of objects from "obj" to
2583  * "tail" and add their init functions to "list".  This recurses over
2584  * the DAGs and ensure the proper init ordering such that each object's
2585  * needed libraries are initialized before the object itself.  At the
2586  * same time, this function adds the objects to the global finalization
2587  * list "list_fini" in the opposite order.  The write lock must be
2588  * held when this function is called.
2589  */
2590 static void
initlist_for_loaded_obj(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2591 initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2592 {
2593 	Objlist iflist;		/* initfirst objs and their needed */
2594 	Objlist_Entry *tmp;
2595 
2596 	objlist_init(&iflist);
2597 	initlist_add_objects(obj, tail, list, &iflist);
2598 
2599 	STAILQ_FOREACH(tmp, &iflist, link) {
2600 		Obj_Entry *tobj = tmp->obj;
2601 
2602 		if ((tobj->fini != (Elf_Addr)NULL ||
2603 		    tobj->fini_array != (Elf_Addr)NULL) &&
2604 		    !tobj->on_fini_list) {
2605 			objlist_push_tail(&list_fini, tobj);
2606 			tobj->on_fini_list = true;
2607 		}
2608 	}
2609 
2610 	/*
2611 	 * This might result in the same object appearing more
2612 	 * than once on the init list.  objlist_call_init()
2613 	 * uses obj->init_scanned to avoid dup calls.
2614 	 */
2615 	STAILQ_REVERSE(&iflist, Struct_Objlist_Entry, link);
2616 	STAILQ_FOREACH(tmp, &iflist, link)
2617 		objlist_push_head(list, tmp->obj);
2618 
2619 	objlist_clear(&iflist);
2620 }
2621 
2622 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list,Objlist * iflist)2623 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list,
2624     Objlist *iflist)
2625 {
2626 	Obj_Entry *nobj;
2627 
2628 	if (obj->init_done)
2629 		return;
2630 
2631 	if (obj->z_initfirst || list == NULL) {
2632 		/*
2633 		 * Ignore obj->init_scanned.  The object might indeed
2634 		 * already be on the init list, but due to being
2635 		 * needed by an initfirst object, we must put it at
2636 		 * the head of the init list.  obj->init_done protects
2637 		 * against double-initialization.
2638 		 */
2639 		if (obj->needed != NULL)
2640 			initlist_add_neededs(obj->needed, NULL, iflist);
2641 		if (obj->needed_filtees != NULL)
2642 			initlist_add_neededs(obj->needed_filtees, NULL,
2643 			    iflist);
2644 		if (obj->needed_aux_filtees != NULL)
2645 			initlist_add_neededs(obj->needed_aux_filtees,
2646 			    NULL, iflist);
2647 		objlist_push_tail(iflist, obj);
2648 	} else {
2649 		if (obj->init_scanned)
2650 			return;
2651 		obj->init_scanned = true;
2652 
2653 		/* Recursively process the successor objects. */
2654 		nobj = globallist_next(obj);
2655 		if (nobj != NULL && obj != tail)
2656 			initlist_add_objects(nobj, tail, list, iflist);
2657 
2658 		/* Recursively process the needed objects. */
2659 		if (obj->needed != NULL)
2660 			initlist_add_neededs(obj->needed, list, iflist);
2661 		if (obj->needed_filtees != NULL)
2662 			initlist_add_neededs(obj->needed_filtees, list,
2663 			    iflist);
2664 		if (obj->needed_aux_filtees != NULL)
2665 			initlist_add_neededs(obj->needed_aux_filtees, list,
2666 			    iflist);
2667 
2668 		/* Add the object to the init list. */
2669 		objlist_push_tail(list, obj);
2670 
2671 		/*
2672 		 * Add the object to the global fini list in the
2673 		 * reverse order.
2674 		 */
2675 		if ((obj->fini != (Elf_Addr)NULL ||
2676 		    obj->fini_array != (Elf_Addr)NULL) &&
2677 		    !obj->on_fini_list) {
2678 			objlist_push_head(&list_fini, obj);
2679 			obj->on_fini_list = true;
2680 		}
2681 	}
2682 }
2683 
2684 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2685 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2686 {
2687 	Needed_Entry *needed, *needed1;
2688 
2689 	for (needed = n; needed != NULL; needed = needed->next) {
2690 		if (needed->obj != NULL) {
2691 			dlclose_locked(needed->obj, lockstate);
2692 			needed->obj = NULL;
2693 		}
2694 	}
2695 	for (needed = n; needed != NULL; needed = needed1) {
2696 		needed1 = needed->next;
2697 		free(needed);
2698 	}
2699 }
2700 
2701 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2702 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2703 {
2704 	free_needed_filtees(obj->needed_filtees, lockstate);
2705 	obj->needed_filtees = NULL;
2706 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2707 	obj->needed_aux_filtees = NULL;
2708 	obj->filtees_loaded = false;
2709 }
2710 
2711 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2712 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2713     RtldLockState *lockstate)
2714 {
2715 	for (; needed != NULL; needed = needed->next) {
2716 		needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2717 		    flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW :
2718 		    RTLD_LAZY) | RTLD_LOCAL, lockstate);
2719 	}
2720 }
2721 
2722 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2723 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2724 {
2725 	if (obj->filtees_loaded || obj->filtees_loading)
2726 		return;
2727 	lock_restart_for_upgrade(lockstate);
2728 	obj->filtees_loading = true;
2729 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2730 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2731 	obj->filtees_loaded = true;
2732 	obj->filtees_loading = false;
2733 }
2734 
2735 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2736 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2737 {
2738 	Obj_Entry *obj1;
2739 
2740 	for (; needed != NULL; needed = needed->next) {
2741 		obj1 = needed->obj = load_object(obj->strtab + needed->name, -1,
2742 		    obj, flags & ~RTLD_LO_NOLOAD);
2743 		if (obj1 == NULL && !ld_tracing &&
2744 		    (flags & RTLD_LO_FILTEES) == 0)
2745 			return (-1);
2746 	}
2747 	return (0);
2748 }
2749 
2750 /*
2751  * Given a shared object, traverse its list of needed objects, and load
2752  * each of them.  Returns 0 on success.  Generates an error message and
2753  * returns -1 on failure.
2754  */
2755 static int
load_needed_objects(Obj_Entry * first,int flags)2756 load_needed_objects(Obj_Entry *first, int flags)
2757 {
2758 	Obj_Entry *obj;
2759 
2760 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2761 		if (obj->marker)
2762 			continue;
2763 		if (process_needed(obj, obj->needed, flags) == -1)
2764 			return (-1);
2765 	}
2766 	return (0);
2767 }
2768 
2769 static int
load_preload_objects(const char * penv,bool isfd)2770 load_preload_objects(const char *penv, bool isfd)
2771 {
2772 	Obj_Entry *obj;
2773 	const char *name;
2774 	size_t len;
2775 	char savech, *p, *psave;
2776 	int fd;
2777 	static const char delim[] = " \t:;";
2778 
2779 	if (penv == NULL)
2780 		return (0);
2781 
2782 	p = psave = xstrdup(penv);
2783 	p += strspn(p, delim);
2784 	while (*p != '\0') {
2785 		len = strcspn(p, delim);
2786 
2787 		savech = p[len];
2788 		p[len] = '\0';
2789 		if (isfd) {
2790 			name = NULL;
2791 			fd = parse_integer(p);
2792 			if (fd == -1) {
2793 				free(psave);
2794 				return (-1);
2795 			}
2796 		} else {
2797 			name = p;
2798 			fd = -1;
2799 		}
2800 
2801 		obj = load_object(name, fd, NULL, 0);
2802 		if (obj == NULL) {
2803 			free(psave);
2804 			return (-1); /* XXX - cleanup */
2805 		}
2806 		obj->z_interpose = true;
2807 		p[len] = savech;
2808 		p += len;
2809 		p += strspn(p, delim);
2810 	}
2811 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2812 
2813 	free(psave);
2814 	return (0);
2815 }
2816 
2817 static const char *
printable_path(const char * path)2818 printable_path(const char *path)
2819 {
2820 	return (path == NULL ? "<unknown>" : path);
2821 }
2822 
2823 /*
2824  * Load a shared object into memory, if it is not already loaded.  The
2825  * object may be specified by name or by user-supplied file descriptor
2826  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2827  * duplicate is.
2828  *
2829  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2830  * on failure.
2831  */
2832 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2833 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2834 {
2835 	Obj_Entry *obj;
2836 	int fd;
2837 	struct stat sb;
2838 	char *path;
2839 
2840 	fd = -1;
2841 	if (name != NULL) {
2842 		TAILQ_FOREACH(obj, &obj_list, next) {
2843 			if (obj->marker || obj->doomed)
2844 				continue;
2845 			if (object_match_name(obj, name))
2846 				return (obj);
2847 		}
2848 
2849 		path = find_library(name, refobj, &fd);
2850 		if (path == NULL)
2851 			return (NULL);
2852 	} else
2853 		path = NULL;
2854 
2855 	if (fd >= 0) {
2856 		/*
2857 		 * search_library_pathfds() opens a fresh file descriptor for
2858 		 * the library, so there is no need to dup().
2859 		 */
2860 	} else if (fd_u == -1) {
2861 		/*
2862 		 * If we didn't find a match by pathname, or the name is not
2863 		 * supplied, open the file and check again by device and inode.
2864 		 * This avoids false mismatches caused by multiple links or ".."
2865 		 * in pathnames.
2866 		 *
2867 		 * To avoid a race, we open the file and use fstat() rather than
2868 		 * using stat().
2869 		 */
2870 		if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2871 			_rtld_error("Cannot open \"%s\"", path);
2872 			free(path);
2873 			return (NULL);
2874 		}
2875 	} else {
2876 		fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2877 		if (fd == -1) {
2878 			_rtld_error("Cannot dup fd");
2879 			free(path);
2880 			return (NULL);
2881 		}
2882 	}
2883 	if (fstat(fd, &sb) == -1) {
2884 		_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2885 		close(fd);
2886 		free(path);
2887 		return (NULL);
2888 	}
2889 	TAILQ_FOREACH(obj, &obj_list, next) {
2890 		if (obj->marker || obj->doomed)
2891 			continue;
2892 		if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2893 			break;
2894 	}
2895 	if (obj != NULL) {
2896 		if (name != NULL)
2897 			object_add_name(obj, name);
2898 		free(path);
2899 		close(fd);
2900 		return (obj);
2901 	}
2902 	if (flags & RTLD_LO_NOLOAD) {
2903 		free(path);
2904 		close(fd);
2905 		return (NULL);
2906 	}
2907 
2908 	/* First use of this object, so we must map it in */
2909 	obj = do_load_object(fd, name, path, &sb, flags);
2910 	if (obj == NULL)
2911 		free(path);
2912 	close(fd);
2913 
2914 	return (obj);
2915 }
2916 
2917 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2918 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2919     int flags)
2920 {
2921 	Obj_Entry *obj;
2922 	struct statfs fs;
2923 
2924 	/*
2925 	 * First, make sure that environment variables haven't been
2926 	 * used to circumvent the noexec flag on a filesystem.
2927 	 * We ignore fstatfs(2) failures, since fd might reference
2928 	 * not a file, e.g. shmfd.
2929 	 */
2930 	if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2931 	    (fs.f_flags & MNT_NOEXEC) != 0) {
2932 		_rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2933 		return (NULL);
2934 	}
2935 
2936 	dbg("loading \"%s\"", printable_path(path));
2937 	obj = map_object(fd, printable_path(path), sbp, false);
2938 	if (obj == NULL)
2939 		return (NULL);
2940 
2941 	/*
2942 	 * If DT_SONAME is present in the object, digest_dynamic2 already
2943 	 * added it to the object names.
2944 	 */
2945 	if (name != NULL)
2946 		object_add_name(obj, name);
2947 	obj->path = path;
2948 	if (!digest_dynamic(obj, 0))
2949 		goto errp;
2950 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2951 	    obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2952 	if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2953 		dbg("refusing to load PIE executable \"%s\"", obj->path);
2954 		_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2955 		goto errp;
2956 	}
2957 	if (obj->z_noopen &&
2958 	    (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == RTLD_LO_DLOPEN) {
2959 		dbg("refusing to load non-loadable \"%s\"", obj->path);
2960 		_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2961 		goto errp;
2962 	}
2963 
2964 	obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2965 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2966 	obj_count++;
2967 	obj_loads++;
2968 	linkmap_add(obj); /* for GDB & dlinfo() */
2969 	max_stack_flags |= obj->stack_flags;
2970 
2971 	dbg("  %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
2972 	    obj->path);
2973 	if (obj->textrel)
2974 		dbg("  WARNING: %s has impure text", obj->path);
2975 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2976 	    obj->path);
2977 
2978 	return (obj);
2979 
2980 errp:
2981 	munmap(obj->mapbase, obj->mapsize);
2982 	obj_free(obj);
2983 	return (NULL);
2984 }
2985 
2986 static int
load_kpreload(const void * addr)2987 load_kpreload(const void *addr)
2988 {
2989 	Obj_Entry *obj;
2990 	const Elf_Ehdr *ehdr;
2991 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2992 	static const char kname[] = "[vdso]";
2993 
2994 	ehdr = addr;
2995 	if (!check_elf_headers(ehdr, "kpreload"))
2996 		return (-1);
2997 	obj = obj_new();
2998 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
2999 	obj->phdr = phdr;
3000 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
3001 	phlimit = phdr + ehdr->e_phnum;
3002 	seg0 = segn = NULL;
3003 
3004 	for (; phdr < phlimit; phdr++) {
3005 		switch (phdr->p_type) {
3006 		case PT_DYNAMIC:
3007 			phdyn = phdr;
3008 			break;
3009 		case PT_GNU_STACK:
3010 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
3011 			obj->stack_flags = phdr->p_flags;
3012 			break;
3013 		case PT_LOAD:
3014 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
3015 				seg0 = phdr;
3016 			if (segn == NULL ||
3017 			    segn->p_vaddr + segn->p_memsz <
3018 				phdr->p_vaddr + phdr->p_memsz)
3019 				segn = phdr;
3020 			break;
3021 		}
3022 	}
3023 
3024 	obj->mapbase = __DECONST(caddr_t, addr);
3025 	obj->mapsize = segn->p_vaddr + segn->p_memsz;
3026 	obj->vaddrbase = 0;
3027 	obj->relocbase = obj->mapbase;
3028 
3029 	object_add_name(obj, kname);
3030 	obj->path = xstrdup(kname);
3031 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
3032 
3033 	if (!digest_dynamic(obj, 0)) {
3034 		obj_free(obj);
3035 		return (-1);
3036 	}
3037 
3038 	/*
3039 	 * We assume that kernel-preloaded object does not need
3040 	 * relocation.  It is currently written into read-only page,
3041 	 * handling relocations would mean we need to allocate at
3042 	 * least one additional page per AS.
3043 	 */
3044 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
3045 	    obj->path, obj->mapbase, obj->phdr, seg0,
3046 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
3047 
3048 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
3049 	obj_count++;
3050 	obj_loads++;
3051 	linkmap_add(obj); /* for GDB & dlinfo() */
3052 	max_stack_flags |= obj->stack_flags;
3053 
3054 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3055 	    obj->path);
3056 	return (0);
3057 }
3058 
3059 Obj_Entry *
obj_from_addr(const void * addr)3060 obj_from_addr(const void *addr)
3061 {
3062 	Obj_Entry *obj;
3063 
3064 	TAILQ_FOREACH(obj, &obj_list, next) {
3065 		if (obj->marker)
3066 			continue;
3067 		if (addr < (void *)obj->mapbase)
3068 			continue;
3069 		if (addr < (void *)(obj->mapbase + obj->mapsize))
3070 			return obj;
3071 	}
3072 	return (NULL);
3073 }
3074 
3075 static void
preinit_main(void)3076 preinit_main(void)
3077 {
3078 	Elf_Addr *preinit_addr;
3079 	int index;
3080 
3081 	preinit_addr = (Elf_Addr *)obj_main->preinit_array;
3082 	if (preinit_addr == NULL)
3083 		return;
3084 
3085 	for (index = 0; index < obj_main->preinit_array_num; index++) {
3086 		if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
3087 			dbg("calling preinit function for %s at %p",
3088 			    obj_main->path, (void *)preinit_addr[index]);
3089 			LD_UTRACE(UTRACE_INIT_CALL, obj_main,
3090 			    (void *)preinit_addr[index], 0, 0, obj_main->path);
3091 			call_init_pointer(obj_main, preinit_addr[index]);
3092 		}
3093 	}
3094 }
3095 
3096 /*
3097  * Call the finalization functions for each of the objects in "list"
3098  * belonging to the DAG of "root" and referenced once. If NULL "root"
3099  * is specified, every finalization function will be called regardless
3100  * of the reference count and the list elements won't be freed. All of
3101  * the objects are expected to have non-NULL fini functions.
3102  */
3103 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)3104 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
3105 {
3106 	Objlist_Entry *elm;
3107 	struct dlerror_save *saved_msg;
3108 	Elf_Addr *fini_addr;
3109 	int index;
3110 
3111 	assert(root == NULL || root->refcount == 1);
3112 
3113 	if (root != NULL)
3114 		root->doomed = true;
3115 
3116 	/*
3117 	 * Preserve the current error message since a fini function might
3118 	 * call into the dynamic linker and overwrite it.
3119 	 */
3120 	saved_msg = errmsg_save();
3121 	do {
3122 		STAILQ_FOREACH(elm, list, link) {
3123 			if (root != NULL &&
3124 			    (elm->obj->refcount != 1 ||
3125 				objlist_find(&root->dagmembers, elm->obj) ==
3126 				    NULL))
3127 				continue;
3128 			/* Remove object from fini list to prevent recursive
3129 			 * invocation. */
3130 			STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3131 			/* Ensure that new references cannot be acquired. */
3132 			elm->obj->doomed = true;
3133 
3134 			hold_object(elm->obj);
3135 			lock_release(rtld_bind_lock, lockstate);
3136 			/*
3137 			 * It is legal to have both DT_FINI and DT_FINI_ARRAY
3138 			 * defined. When this happens, DT_FINI_ARRAY is
3139 			 * processed first.
3140 			 */
3141 			fini_addr = (Elf_Addr *)elm->obj->fini_array;
3142 			if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3143 				for (index = elm->obj->fini_array_num - 1;
3144 				    index >= 0; index--) {
3145 					if (fini_addr[index] != 0 &&
3146 					    fini_addr[index] != 1) {
3147 				dbg("calling fini function for %s at %p",
3148 						    elm->obj->path,
3149 						    (void *)fini_addr[index]);
3150 						LD_UTRACE(UTRACE_FINI_CALL,
3151 						    elm->obj,
3152 						    (void *)fini_addr[index], 0,
3153 						    0, elm->obj->path);
3154 						call_initfini_pointer(elm->obj,
3155 						    fini_addr[index]);
3156 					}
3157 				}
3158 			}
3159 			if (elm->obj->fini != (Elf_Addr)NULL) {
3160 				dbg("calling fini function for %s at %p",
3161 				    elm->obj->path, (void *)elm->obj->fini);
3162 				LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3163 				    (void *)elm->obj->fini, 0, 0,
3164 				    elm->obj->path);
3165 				call_initfini_pointer(elm->obj, elm->obj->fini);
3166 			}
3167 			wlock_acquire(rtld_bind_lock, lockstate);
3168 			unhold_object(elm->obj);
3169 			/* No need to free anything if process is going down. */
3170 			if (root != NULL)
3171 				free(elm);
3172 			/*
3173 			 * We must restart the list traversal after every fini
3174 			 * call because a dlclose() call from the fini function
3175 			 * or from another thread might have modified the
3176 			 * reference counts.
3177 			 */
3178 			break;
3179 		}
3180 	} while (elm != NULL);
3181 	errmsg_restore(saved_msg);
3182 }
3183 
3184 /*
3185  * Call the initialization functions for each of the objects in
3186  * "list".  All of the objects are expected to have non-NULL init
3187  * functions.
3188  */
3189 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3190 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3191 {
3192 	Objlist_Entry *elm;
3193 	Obj_Entry *obj;
3194 	struct dlerror_save *saved_msg;
3195 	Elf_Addr *init_addr;
3196 	void (*reg)(void (*)(void));
3197 	int index;
3198 
3199 	/*
3200 	 * Clean init_scanned flag so that objects can be rechecked and
3201 	 * possibly initialized earlier if any of vectors called below
3202 	 * cause the change by using dlopen.
3203 	 */
3204 	TAILQ_FOREACH(obj, &obj_list, next) {
3205 		if (obj->marker)
3206 			continue;
3207 		obj->init_scanned = false;
3208 	}
3209 
3210 	/*
3211 	 * Preserve the current error message since an init function might
3212 	 * call into the dynamic linker and overwrite it.
3213 	 */
3214 	saved_msg = errmsg_save();
3215 	STAILQ_FOREACH(elm, list, link) {
3216 		if (elm->obj->init_done) /* Initialized early. */
3217 			continue;
3218 		/*
3219 		 * Race: other thread might try to use this object before
3220 		 * current one completes the initialization. Not much can be
3221 		 * done here without better locking.
3222 		 */
3223 		elm->obj->init_done = true;
3224 		hold_object(elm->obj);
3225 		reg = NULL;
3226 		if (elm->obj == obj_main && obj_main->crt_no_init) {
3227 			reg = (void (*)(void (*)(void)))
3228 			    get_program_var_addr("__libc_atexit", lockstate);
3229 		}
3230 		lock_release(rtld_bind_lock, lockstate);
3231 		if (reg != NULL) {
3232 			reg(rtld_exit);
3233 			rtld_exit_ptr = rtld_nop_exit;
3234 		}
3235 
3236 		/*
3237 		 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3238 		 * When this happens, DT_INIT is processed first.
3239 		 */
3240 		if (elm->obj->init != (Elf_Addr)NULL) {
3241 			dbg("calling init function for %s at %p",
3242 			    elm->obj->path, (void *)elm->obj->init);
3243 			LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3244 			    (void *)elm->obj->init, 0, 0, elm->obj->path);
3245 			call_init_pointer(elm->obj, elm->obj->init);
3246 		}
3247 		init_addr = (Elf_Addr *)elm->obj->init_array;
3248 		if (init_addr != NULL) {
3249 			for (index = 0; index < elm->obj->init_array_num;
3250 			    index++) {
3251 				if (init_addr[index] != 0 &&
3252 				    init_addr[index] != 1) {
3253 				dbg("calling init function for %s at %p",
3254 					    elm->obj->path,
3255 					    (void *)init_addr[index]);
3256 					LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3257 					    (void *)init_addr[index], 0, 0,
3258 					    elm->obj->path);
3259 					call_init_pointer(elm->obj,
3260 					    init_addr[index]);
3261 				}
3262 			}
3263 		}
3264 		wlock_acquire(rtld_bind_lock, lockstate);
3265 		unhold_object(elm->obj);
3266 	}
3267 	errmsg_restore(saved_msg);
3268 }
3269 
3270 static void
objlist_clear(Objlist * list)3271 objlist_clear(Objlist *list)
3272 {
3273 	Objlist_Entry *elm;
3274 
3275 	while (!STAILQ_EMPTY(list)) {
3276 		elm = STAILQ_FIRST(list);
3277 		STAILQ_REMOVE_HEAD(list, link);
3278 		free(elm);
3279 	}
3280 }
3281 
3282 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3283 objlist_find(Objlist *list, const Obj_Entry *obj)
3284 {
3285 	Objlist_Entry *elm;
3286 
3287 	STAILQ_FOREACH(elm, list, link)
3288 		if (elm->obj == obj)
3289 			return elm;
3290 	return (NULL);
3291 }
3292 
3293 static void
objlist_init(Objlist * list)3294 objlist_init(Objlist *list)
3295 {
3296 	STAILQ_INIT(list);
3297 }
3298 
3299 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3300 objlist_push_head(Objlist *list, Obj_Entry *obj)
3301 {
3302 	Objlist_Entry *elm;
3303 
3304 	elm = NEW(Objlist_Entry);
3305 	elm->obj = obj;
3306 	STAILQ_INSERT_HEAD(list, elm, link);
3307 }
3308 
3309 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3310 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3311 {
3312 	Objlist_Entry *elm;
3313 
3314 	elm = NEW(Objlist_Entry);
3315 	elm->obj = obj;
3316 	STAILQ_INSERT_TAIL(list, elm, link);
3317 }
3318 
3319 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3320 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3321 {
3322 	Objlist_Entry *elm, *listelm;
3323 
3324 	STAILQ_FOREACH(listelm, list, link) {
3325 		if (listelm->obj == listobj)
3326 			break;
3327 	}
3328 	elm = NEW(Objlist_Entry);
3329 	elm->obj = obj;
3330 	if (listelm != NULL)
3331 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3332 	else
3333 		STAILQ_INSERT_TAIL(list, elm, link);
3334 }
3335 
3336 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3337 objlist_remove(Objlist *list, Obj_Entry *obj)
3338 {
3339 	Objlist_Entry *elm;
3340 
3341 	if ((elm = objlist_find(list, obj)) != NULL) {
3342 		STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3343 		free(elm);
3344 	}
3345 }
3346 
3347 /*
3348  * Relocate dag rooted in the specified object.
3349  * Returns 0 on success, or -1 on failure.
3350  */
3351 
3352 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3353 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3354     int flags, RtldLockState *lockstate)
3355 {
3356 	Objlist_Entry *elm;
3357 	int error;
3358 
3359 	error = 0;
3360 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3361 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3362 		    lockstate);
3363 		if (error == -1)
3364 			break;
3365 	}
3366 	return (error);
3367 }
3368 
3369 /*
3370  * Prepare for, or clean after, relocating an object marked with
3371  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3372  * segments are remapped read-write.  After relocations are done, the
3373  * segment's permissions are returned back to the modes specified in
3374  * the phdrs.  If any relocation happened, or always for wired
3375  * program, COW is triggered.
3376  */
3377 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3378 reloc_textrel_prot(Obj_Entry *obj, bool before)
3379 {
3380 	const Elf_Phdr *ph;
3381 	void *base;
3382 	size_t l, sz;
3383 	int prot;
3384 
3385 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; l--, ph++) {
3386 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3387 			continue;
3388 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3389 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3390 		    rtld_trunc_page(ph->p_vaddr);
3391 		prot = before ? (PROT_READ | PROT_WRITE) :
3392 		    convert_prot(ph->p_flags);
3393 		if (mprotect(base, sz, prot) == -1) {
3394 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3395 			    obj->path, before ? "en" : "dis",
3396 			    rtld_strerror(errno));
3397 			return (-1);
3398 		}
3399 	}
3400 	return (0);
3401 }
3402 
3403 /* Process RELR relative relocations. */
3404 static void
reloc_relr(Obj_Entry * obj)3405 reloc_relr(Obj_Entry *obj)
3406 {
3407 	const Elf_Relr *relr, *relrlim;
3408 	Elf_Addr *where;
3409 
3410 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3411 	for (relr = obj->relr; relr < relrlim; relr++) {
3412 		Elf_Relr entry = *relr;
3413 
3414 		if ((entry & 1) == 0) {
3415 			where = (Elf_Addr *)(obj->relocbase + entry);
3416 			*where++ += (Elf_Addr)obj->relocbase;
3417 		} else {
3418 			for (long i = 0; (entry >>= 1) != 0; i++)
3419 				if ((entry & 1) != 0)
3420 					where[i] += (Elf_Addr)obj->relocbase;
3421 			where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3422 		}
3423 	}
3424 }
3425 
3426 /*
3427  * Relocate single object.
3428  * Returns 0 on success, or -1 on failure.
3429  */
3430 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3431 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags,
3432     RtldLockState *lockstate)
3433 {
3434 	if (obj->relocated)
3435 		return (0);
3436 	obj->relocated = true;
3437 	if (obj != rtldobj)
3438 		dbg("relocating \"%s\"", obj->path);
3439 
3440 	if (obj->symtab == NULL || obj->strtab == NULL ||
3441 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3442 		dbg("object %s has no run-time symbol table", obj->path);
3443 
3444 	/* There are relocations to the write-protected text segment. */
3445 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3446 		return (-1);
3447 
3448 	/* Process the non-PLT non-IFUNC relocations. */
3449 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3450 		return (-1);
3451 	reloc_relr(obj);
3452 
3453 	/* Re-protected the text segment. */
3454 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3455 		return (-1);
3456 
3457 	/* Set the special PLT or GOT entries. */
3458 	init_pltgot(obj);
3459 
3460 	/* Process the PLT relocations. */
3461 	if (reloc_plt(obj, flags, lockstate) == -1)
3462 		return (-1);
3463 	/* Relocate the jump slots if we are doing immediate binding. */
3464 	if ((obj->bind_now || bind_now) &&
3465 	    reloc_jmpslots(obj, flags, lockstate) == -1)
3466 		return (-1);
3467 
3468 	if (obj != rtldobj && !obj->mainprog && obj_enforce_relro(obj) == -1)
3469 		return (-1);
3470 
3471 	/*
3472 	 * Set up the magic number and version in the Obj_Entry.  These
3473 	 * were checked in the crt1.o from the original ElfKit, so we
3474 	 * set them for backward compatibility.
3475 	 */
3476 	obj->magic = RTLD_MAGIC;
3477 	obj->version = RTLD_VERSION;
3478 
3479 	return (0);
3480 }
3481 
3482 /*
3483  * Relocate newly-loaded shared objects.  The argument is a pointer to
3484  * the Obj_Entry for the first such object.  All objects from the first
3485  * to the end of the list of objects are relocated.  Returns 0 on success,
3486  * or -1 on failure.
3487  */
3488 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3489 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, int flags,
3490     RtldLockState *lockstate)
3491 {
3492 	Obj_Entry *obj;
3493 	int error;
3494 
3495 	for (error = 0, obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3496 		if (obj->marker)
3497 			continue;
3498 		error = relocate_object(obj, bind_now, rtldobj, flags,
3499 		    lockstate);
3500 		if (error == -1)
3501 			break;
3502 	}
3503 	return (error);
3504 }
3505 
3506 /*
3507  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3508  * referencing STT_GNU_IFUNC symbols is postponed till the other
3509  * relocations are done.  The indirect functions specified as
3510  * ifunc are allowed to call other symbols, so we need to have
3511  * objects relocated before asking for resolution from indirects.
3512  *
3513  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3514  * instead of the usual lazy handling of PLT slots.  It is
3515  * consistent with how GNU does it.
3516  */
3517 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3518 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3519     RtldLockState *lockstate)
3520 {
3521 	if (obj->ifuncs_resolved)
3522 		return (0);
3523 	obj->ifuncs_resolved = true;
3524 	if (!obj->irelative && !obj->irelative_nonplt &&
3525 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3526 	    !obj->non_plt_gnu_ifunc)
3527 		return (0);
3528 	if (obj_disable_relro(obj) == -1 ||
3529 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3530 	    (obj->irelative_nonplt &&
3531 	    reloc_iresolve_nonplt(obj, lockstate) == -1) ||
3532 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3533 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3534 	    (obj->non_plt_gnu_ifunc &&
3535 	    reloc_non_plt(obj, &obj_rtld, flags | SYMLOOK_IFUNC,
3536 	    lockstate) == -1) ||
3537 	    obj_enforce_relro(obj) == -1)
3538 		return (-1);
3539 	return (0);
3540 }
3541 
3542 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3543 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3544     RtldLockState *lockstate)
3545 {
3546 	Objlist_Entry *elm;
3547 	Obj_Entry *obj;
3548 
3549 	STAILQ_FOREACH(elm, list, link) {
3550 		obj = elm->obj;
3551 		if (obj->marker)
3552 			continue;
3553 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
3554 			return (-1);
3555 	}
3556 	return (0);
3557 }
3558 
3559 /*
3560  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3561  * before the process exits.
3562  */
3563 static void
rtld_exit(void)3564 rtld_exit(void)
3565 {
3566 	RtldLockState lockstate;
3567 
3568 	wlock_acquire(rtld_bind_lock, &lockstate);
3569 	dbg("rtld_exit()");
3570 	objlist_call_fini(&list_fini, NULL, &lockstate);
3571 	/* No need to remove the items from the list, since we are exiting. */
3572 	if (!libmap_disable)
3573 		lm_fini();
3574 	lock_release(rtld_bind_lock, &lockstate);
3575 }
3576 
3577 static void
rtld_nop_exit(void)3578 rtld_nop_exit(void)
3579 {
3580 }
3581 
3582 /*
3583  * Iterate over a search path, translate each element, and invoke the
3584  * callback on the result.
3585  */
3586 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3587 path_enumerate(const char *path, path_enum_proc callback,
3588     const char *refobj_path, void *arg)
3589 {
3590 	const char *trans;
3591 	if (path == NULL)
3592 		return (NULL);
3593 
3594 	path += strspn(path, ":;");
3595 	while (*path != '\0') {
3596 		size_t len;
3597 		char *res;
3598 
3599 		len = strcspn(path, ":;");
3600 		trans = lm_findn(refobj_path, path, len);
3601 		if (trans)
3602 			res = callback(trans, strlen(trans), arg);
3603 		else
3604 			res = callback(path, len, arg);
3605 
3606 		if (res != NULL)
3607 			return (res);
3608 
3609 		path += len;
3610 		path += strspn(path, ":;");
3611 	}
3612 
3613 	return (NULL);
3614 }
3615 
3616 struct try_library_args {
3617 	const char *name;
3618 	size_t namelen;
3619 	char *buffer;
3620 	size_t buflen;
3621 	int fd;
3622 };
3623 
3624 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3625 try_library_path(const char *dir, size_t dirlen, void *param)
3626 {
3627 	struct try_library_args *arg;
3628 	int fd;
3629 
3630 	arg = param;
3631 	if (*dir == '/' || trust) {
3632 		char *pathname;
3633 
3634 		if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3635 			return (NULL);
3636 
3637 		pathname = arg->buffer;
3638 		strncpy(pathname, dir, dirlen);
3639 		pathname[dirlen] = '/';
3640 		strcpy(pathname + dirlen + 1, arg->name);
3641 
3642 		dbg("  Trying \"%s\"", pathname);
3643 		fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3644 		if (fd >= 0) {
3645 			dbg("  Opened \"%s\", fd %d", pathname, fd);
3646 			pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3647 			strcpy(pathname, arg->buffer);
3648 			arg->fd = fd;
3649 			return (pathname);
3650 		} else {
3651 			dbg("  Failed to open \"%s\": %s", pathname,
3652 			    rtld_strerror(errno));
3653 		}
3654 	}
3655 	return (NULL);
3656 }
3657 
3658 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3659 search_library_path(const char *name, const char *path, const char *refobj_path,
3660     int *fdp)
3661 {
3662 	char *p;
3663 	struct try_library_args arg;
3664 
3665 	if (path == NULL)
3666 		return (NULL);
3667 
3668 	arg.name = name;
3669 	arg.namelen = strlen(name);
3670 	arg.buffer = xmalloc(PATH_MAX);
3671 	arg.buflen = PATH_MAX;
3672 	arg.fd = -1;
3673 
3674 	p = path_enumerate(path, try_library_path, refobj_path, &arg);
3675 	*fdp = arg.fd;
3676 
3677 	free(arg.buffer);
3678 
3679 	return (p);
3680 }
3681 
3682 /*
3683  * Finds the library with the given name using the directory descriptors
3684  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3685  *
3686  * Returns a freshly-opened close-on-exec file descriptor for the library,
3687  * or -1 if the library cannot be found.
3688  */
3689 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3690 search_library_pathfds(const char *name, const char *path, int *fdp)
3691 {
3692 	char *envcopy, *fdstr, *found, *last_token;
3693 	size_t len;
3694 	int dirfd, fd;
3695 
3696 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3697 
3698 	/* Don't load from user-specified libdirs into setuid binaries. */
3699 	if (!trust)
3700 		return (NULL);
3701 
3702 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3703 	if (path == NULL)
3704 		return (NULL);
3705 
3706 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3707 	if (name[0] == '/') {
3708 		dbg("Absolute path (%s) passed to %s", name, __func__);
3709 		return (NULL);
3710 	}
3711 
3712 	/*
3713 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3714 	 * copy of the path, as strtok_r rewrites separator tokens
3715 	 * with '\0'.
3716 	 */
3717 	found = NULL;
3718 	envcopy = xstrdup(path);
3719 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3720 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3721 		dirfd = parse_integer(fdstr);
3722 		if (dirfd < 0) {
3723 			_rtld_error("failed to parse directory FD: '%s'",
3724 			    fdstr);
3725 			break;
3726 		}
3727 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3728 		if (fd >= 0) {
3729 			*fdp = fd;
3730 			len = strlen(fdstr) + strlen(name) + 3;
3731 			found = xmalloc(len);
3732 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) <
3733 			    0) {
3734 				_rtld_error("error generating '%d/%s'", dirfd,
3735 				    name);
3736 				rtld_die();
3737 			}
3738 			dbg("open('%s') => %d", found, fd);
3739 			break;
3740 		}
3741 	}
3742 	free(envcopy);
3743 
3744 	return (found);
3745 }
3746 
3747 int
dlclose(void * handle)3748 dlclose(void *handle)
3749 {
3750 	RtldLockState lockstate;
3751 	int error;
3752 
3753 	wlock_acquire(rtld_bind_lock, &lockstate);
3754 	error = dlclose_locked(handle, &lockstate);
3755 	lock_release(rtld_bind_lock, &lockstate);
3756 	return (error);
3757 }
3758 
3759 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3760 dlclose_locked(void *handle, RtldLockState *lockstate)
3761 {
3762 	Obj_Entry *root;
3763 
3764 	root = dlcheck(handle);
3765 	if (root == NULL)
3766 		return (-1);
3767 	LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3768 	    root->path);
3769 
3770 	/* Unreference the object and its dependencies. */
3771 	root->dl_refcount--;
3772 
3773 	if (root->refcount == 1) {
3774 		/*
3775 		 * The object will be no longer referenced, so we must unload
3776 		 * it. First, call the fini functions.
3777 		 */
3778 		objlist_call_fini(&list_fini, root, lockstate);
3779 
3780 		unref_dag(root);
3781 
3782 		/* Finish cleaning up the newly-unreferenced objects. */
3783 		GDB_STATE(RT_DELETE, &root->linkmap);
3784 		unload_object(root, lockstate);
3785 		GDB_STATE(RT_CONSISTENT, NULL);
3786 	} else
3787 		unref_dag(root);
3788 
3789 	LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3790 	return (0);
3791 }
3792 
3793 char *
dlerror(void)3794 dlerror(void)
3795 {
3796 	if (*(lockinfo.dlerror_seen()) != 0)
3797 		return (NULL);
3798 	*lockinfo.dlerror_seen() = 1;
3799 	return (lockinfo.dlerror_loc());
3800 }
3801 
3802 /*
3803  * This function is deprecated and has no effect.
3804  */
3805 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3806 dllockinit(void *context, void *(*_lock_create)(void *context)__unused,
3807     void (*_rlock_acquire)(void *lock) __unused,
3808     void (*_wlock_acquire)(void *lock) __unused,
3809     void (*_lock_release)(void *lock) __unused,
3810     void (*_lock_destroy)(void *lock) __unused,
3811     void (*context_destroy)(void *context))
3812 {
3813 	static void *cur_context;
3814 	static void (*cur_context_destroy)(void *);
3815 
3816 	/* Just destroy the context from the previous call, if necessary. */
3817 	if (cur_context_destroy != NULL)
3818 		cur_context_destroy(cur_context);
3819 	cur_context = context;
3820 	cur_context_destroy = context_destroy;
3821 }
3822 
3823 void *
dlopen(const char * name,int mode)3824 dlopen(const char *name, int mode)
3825 {
3826 	return (rtld_dlopen(name, -1, mode));
3827 }
3828 
3829 void *
fdlopen(int fd,int mode)3830 fdlopen(int fd, int mode)
3831 {
3832 	return (rtld_dlopen(NULL, fd, mode));
3833 }
3834 
3835 static void *
rtld_dlopen(const char * name,int fd,int mode)3836 rtld_dlopen(const char *name, int fd, int mode)
3837 {
3838 	RtldLockState lockstate;
3839 	int lo_flags;
3840 
3841 	LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3842 	ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3843 	if (ld_tracing != NULL) {
3844 		rlock_acquire(rtld_bind_lock, &lockstate);
3845 		if (sigsetjmp(lockstate.env, 0) != 0)
3846 			lock_upgrade(rtld_bind_lock, &lockstate);
3847 		environ = __DECONST(char **,
3848 		    *get_program_var_addr("environ", &lockstate));
3849 		lock_release(rtld_bind_lock, &lockstate);
3850 	}
3851 	lo_flags = RTLD_LO_DLOPEN;
3852 	if (mode & RTLD_NODELETE)
3853 		lo_flags |= RTLD_LO_NODELETE;
3854 	if (mode & RTLD_NOLOAD)
3855 		lo_flags |= RTLD_LO_NOLOAD;
3856 	if (mode & RTLD_DEEPBIND)
3857 		lo_flags |= RTLD_LO_DEEPBIND;
3858 	if (ld_tracing != NULL)
3859 		lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3860 
3861 	return (dlopen_object(name, fd, obj_main, lo_flags,
3862 	    mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3863 }
3864 
3865 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3866 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3867 {
3868 	obj->dl_refcount--;
3869 	unref_dag(obj);
3870 	if (obj->refcount == 0)
3871 		unload_object(obj, lockstate);
3872 }
3873 
3874 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3875 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3876     int mode, RtldLockState *lockstate)
3877 {
3878 	Obj_Entry *obj;
3879 	Objlist initlist;
3880 	RtldLockState mlockstate;
3881 	int result;
3882 
3883 	dbg(
3884     "dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3885 	    name != NULL ? name : "<null>", fd,
3886 	    refobj == NULL ? "<null>" : refobj->path, lo_flags, mode);
3887 	objlist_init(&initlist);
3888 
3889 	if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3890 		wlock_acquire(rtld_bind_lock, &mlockstate);
3891 		lockstate = &mlockstate;
3892 	}
3893 	GDB_STATE(RT_ADD, NULL);
3894 
3895 	obj = NULL;
3896 	if (name == NULL && fd == -1) {
3897 		obj = obj_main;
3898 		obj->refcount++;
3899 	} else {
3900 		obj = load_object(name, fd, refobj, lo_flags);
3901 	}
3902 
3903 	if (obj != NULL) {
3904 		obj->dl_refcount++;
3905 		if ((mode & RTLD_GLOBAL) != 0 &&
3906 		    objlist_find(&list_global, obj) == NULL)
3907 			objlist_push_tail(&list_global, obj);
3908 
3909 		if (!obj->init_done) {
3910 			/* We loaded something new and have to init something.
3911 			 */
3912 			if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3913 				obj->deepbind = true;
3914 			result = 0;
3915 			if ((lo_flags & (RTLD_LO_EARLY |
3916 			    RTLD_LO_IGNSTLS)) == 0 &&
3917 			    obj->static_tls && !allocate_tls_offset(obj)) {
3918 				_rtld_error(
3919 		    "%s: No space available for static Thread Local Storage",
3920 				    obj->path);
3921 				result = -1;
3922 			}
3923 			if (result != -1)
3924 				result = load_needed_objects(obj,
3925 				    lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY |
3926 				    RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3927 			init_dag(obj);
3928 			ref_dag(obj);
3929 			if (result != -1)
3930 				result = rtld_verify_versions(&obj->dagmembers);
3931 			if (result != -1 && ld_tracing)
3932 				goto trace;
3933 			if (result == -1 || relocate_object_dag(obj,
3934 			    (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3935 			    (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3936 			    lockstate) == -1) {
3937 				dlopen_cleanup(obj, lockstate);
3938 				obj = NULL;
3939 			} else if ((lo_flags & RTLD_LO_EARLY) != 0) {
3940 				/*
3941 				 * Do not call the init functions for early
3942 				 * loaded filtees.  The image is still not
3943 				 * initialized enough for them to work.
3944 				 *
3945 				 * Our object is found by the global object list
3946 				 * and will be ordered among all init calls done
3947 				 * right before transferring control to main.
3948 				 */
3949 			} else {
3950 				/* Make list of init functions to call. */
3951 				initlist_for_loaded_obj(obj, obj, &initlist);
3952 			}
3953 			/*
3954 			 * Process all no_delete or global objects here, given
3955 			 * them own DAGs to prevent their dependencies from
3956 			 * being unloaded.  This has to be done after we have
3957 			 * loaded all of the dependencies, so that we do not
3958 			 * miss any.
3959 			 */
3960 			if (obj != NULL)
3961 				process_z(obj);
3962 		} else {
3963 			/*
3964 			 * Bump the reference counts for objects on this DAG. If
3965 			 * this is the first dlopen() call for the object that
3966 			 * was already loaded as a dependency, initialize the
3967 			 * dag starting at it.
3968 			 */
3969 			init_dag(obj);
3970 			ref_dag(obj);
3971 
3972 			if ((lo_flags & RTLD_LO_TRACE) != 0)
3973 				goto trace;
3974 		}
3975 		if (obj != NULL &&
3976 		    ((lo_flags & RTLD_LO_NODELETE) != 0 || obj->z_nodelete) &&
3977 		    !obj->ref_nodel) {
3978 			dbg("obj %s nodelete", obj->path);
3979 			ref_dag(obj);
3980 			obj->z_nodelete = obj->ref_nodel = true;
3981 		}
3982 	}
3983 
3984 	LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3985 	    name);
3986 	GDB_STATE(RT_CONSISTENT, obj ? &obj->linkmap : NULL);
3987 
3988 	if ((lo_flags & RTLD_LO_EARLY) == 0) {
3989 		map_stacks_exec(lockstate);
3990 		if (obj != NULL)
3991 			distribute_static_tls(&initlist);
3992 	}
3993 
3994 	if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) ==
3995 	    RTLD_NOW, (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3996 	    lockstate) == -1) {
3997 		objlist_clear(&initlist);
3998 		dlopen_cleanup(obj, lockstate);
3999 		if (lockstate == &mlockstate)
4000 			lock_release(rtld_bind_lock, lockstate);
4001 		return (NULL);
4002 	}
4003 
4004 	if ((lo_flags & RTLD_LO_EARLY) == 0) {
4005 		/* Call the init functions. */
4006 		objlist_call_init(&initlist, lockstate);
4007 	}
4008 	objlist_clear(&initlist);
4009 	if (lockstate == &mlockstate)
4010 		lock_release(rtld_bind_lock, lockstate);
4011 	return (obj);
4012 trace:
4013 	trace_loaded_objects(obj, false);
4014 	if (lockstate == &mlockstate)
4015 		lock_release(rtld_bind_lock, lockstate);
4016 	exit(0);
4017 }
4018 
4019 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)4020 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
4021     int flags)
4022 {
4023 	DoneList donelist;
4024 	const Obj_Entry *obj, *defobj;
4025 	const Elf_Sym *def;
4026 	SymLook req;
4027 	RtldLockState lockstate;
4028 	tls_index ti;
4029 	void *sym;
4030 	int res;
4031 
4032 	def = NULL;
4033 	defobj = NULL;
4034 	symlook_init(&req, name);
4035 	req.ventry = ve;
4036 	req.flags = flags | SYMLOOK_IN_PLT;
4037 	req.lockstate = &lockstate;
4038 
4039 	LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
4040 	rlock_acquire(rtld_bind_lock, &lockstate);
4041 	if (sigsetjmp(lockstate.env, 0) != 0)
4042 		lock_upgrade(rtld_bind_lock, &lockstate);
4043 	if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT ||
4044 	    handle == RTLD_SELF) {
4045 		if ((obj = obj_from_addr(retaddr)) == NULL) {
4046 			_rtld_error("Cannot determine caller's shared object");
4047 			lock_release(rtld_bind_lock, &lockstate);
4048 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4049 			return (NULL);
4050 		}
4051 		if (handle == NULL) { /* Just the caller's shared object. */
4052 			res = symlook_obj(&req, obj);
4053 			if (res == 0) {
4054 				def = req.sym_out;
4055 				defobj = req.defobj_out;
4056 			}
4057 		} else if (handle == RTLD_NEXT || /* Objects after caller's */
4058 		    handle == RTLD_SELF) {	  /* ... caller included */
4059 			if (handle == RTLD_NEXT)
4060 				obj = globallist_next(obj);
4061 			for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4062 				if (obj->marker)
4063 					continue;
4064 				res = symlook_obj(&req, obj);
4065 				if (res == 0) {
4066 					if (def == NULL ||
4067 					    (ld_dynamic_weak &&
4068 						ELF_ST_BIND(
4069 						    req.sym_out->st_info) !=
4070 						    STB_WEAK)) {
4071 						def = req.sym_out;
4072 						defobj = req.defobj_out;
4073 						if (!ld_dynamic_weak ||
4074 						    ELF_ST_BIND(def->st_info) !=
4075 							STB_WEAK)
4076 							break;
4077 					}
4078 				}
4079 			}
4080 			/*
4081 			 * Search the dynamic linker itself, and possibly
4082 			 * resolve the symbol from there.  This is how the
4083 			 * application links to dynamic linker services such as
4084 			 * dlopen. Note that we ignore ld_dynamic_weak == false
4085 			 * case, always overriding weak symbols by rtld
4086 			 * definitions.
4087 			 */
4088 			if (def == NULL ||
4089 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4090 				res = symlook_obj(&req, &obj_rtld);
4091 				if (res == 0) {
4092 					def = req.sym_out;
4093 					defobj = req.defobj_out;
4094 				}
4095 			}
4096 		} else {
4097 			assert(handle == RTLD_DEFAULT);
4098 			res = symlook_default(&req, obj);
4099 			if (res == 0) {
4100 				defobj = req.defobj_out;
4101 				def = req.sym_out;
4102 			}
4103 		}
4104 	} else {
4105 		if ((obj = dlcheck(handle)) == NULL) {
4106 			lock_release(rtld_bind_lock, &lockstate);
4107 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4108 			return (NULL);
4109 		}
4110 
4111 		donelist_init(&donelist);
4112 		if (obj->mainprog) {
4113 			/* Handle obtained by dlopen(NULL, ...) implies global
4114 			 * scope. */
4115 			res = symlook_global(&req, &donelist);
4116 			if (res == 0) {
4117 				def = req.sym_out;
4118 				defobj = req.defobj_out;
4119 			}
4120 			/*
4121 			 * Search the dynamic linker itself, and possibly
4122 			 * resolve the symbol from there.  This is how the
4123 			 * application links to dynamic linker services such as
4124 			 * dlopen.
4125 			 */
4126 			if (def == NULL ||
4127 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4128 				res = symlook_obj(&req, &obj_rtld);
4129 				if (res == 0) {
4130 					def = req.sym_out;
4131 					defobj = req.defobj_out;
4132 				}
4133 			}
4134 		} else {
4135 			/* Search the whole DAG rooted at the given object. */
4136 			res = symlook_list(&req, &obj->dagmembers, &donelist);
4137 			if (res == 0) {
4138 				def = req.sym_out;
4139 				defobj = req.defobj_out;
4140 			}
4141 		}
4142 	}
4143 
4144 	if (def != NULL) {
4145 		lock_release(rtld_bind_lock, &lockstate);
4146 
4147 		/*
4148 		 * The value required by the caller is derived from the value
4149 		 * of the symbol. this is simply the relocated value of the
4150 		 * symbol.
4151 		 */
4152 		if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4153 			sym = make_function_pointer(def, defobj);
4154 		else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4155 			sym = rtld_resolve_ifunc(defobj, def);
4156 		else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4157 			ti.ti_module = defobj->tlsindex;
4158 			ti.ti_offset = def->st_value - TLS_DTV_OFFSET;
4159 			sym = __tls_get_addr(&ti);
4160 		} else
4161 			sym = defobj->relocbase + def->st_value;
4162 		LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4163 		return (sym);
4164 	}
4165 
4166 	_rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4167 	    ve != NULL ? ve->name : "");
4168 	lock_release(rtld_bind_lock, &lockstate);
4169 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4170 	return (NULL);
4171 }
4172 
4173 void *
dlsym(void * handle,const char * name)4174 dlsym(void *handle, const char *name)
4175 {
4176 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4177 	    SYMLOOK_DLSYM));
4178 }
4179 
4180 dlfunc_t
dlfunc(void * handle,const char * name)4181 dlfunc(void *handle, const char *name)
4182 {
4183 	union {
4184 		void *d;
4185 		dlfunc_t f;
4186 	} rv;
4187 
4188 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4189 	    SYMLOOK_DLSYM);
4190 	return (rv.f);
4191 }
4192 
4193 void *
dlvsym(void * handle,const char * name,const char * version)4194 dlvsym(void *handle, const char *name, const char *version)
4195 {
4196 	Ver_Entry ventry;
4197 
4198 	ventry.name = version;
4199 	ventry.file = NULL;
4200 	ventry.hash = elf_hash(version);
4201 	ventry.flags = 0;
4202 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4203 	    SYMLOOK_DLSYM));
4204 }
4205 
4206 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4207 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4208 {
4209 	const Obj_Entry *obj;
4210 	RtldLockState lockstate;
4211 
4212 	rlock_acquire(rtld_bind_lock, &lockstate);
4213 	obj = obj_from_addr(addr);
4214 	if (obj == NULL) {
4215 		_rtld_error("No shared object contains address");
4216 		lock_release(rtld_bind_lock, &lockstate);
4217 		return (0);
4218 	}
4219 	rtld_fill_dl_phdr_info(obj, phdr_info);
4220 	lock_release(rtld_bind_lock, &lockstate);
4221 	return (1);
4222 }
4223 
4224 int
dladdr(const void * addr,Dl_info * info)4225 dladdr(const void *addr, Dl_info *info)
4226 {
4227 	const Obj_Entry *obj;
4228 	const Elf_Sym *def;
4229 	void *symbol_addr;
4230 	unsigned long symoffset;
4231 	RtldLockState lockstate;
4232 
4233 	rlock_acquire(rtld_bind_lock, &lockstate);
4234 	obj = obj_from_addr(addr);
4235 	if (obj == NULL) {
4236 		_rtld_error("No shared object contains address");
4237 		lock_release(rtld_bind_lock, &lockstate);
4238 		return (0);
4239 	}
4240 	info->dli_fname = obj->path;
4241 	info->dli_fbase = obj->mapbase;
4242 	info->dli_saddr = (void *)0;
4243 	info->dli_sname = NULL;
4244 
4245 	/*
4246 	 * Walk the symbol list looking for the symbol whose address is
4247 	 * closest to the address sent in.
4248 	 */
4249 	for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4250 		def = obj->symtab + symoffset;
4251 
4252 		/*
4253 		 * For skip the symbol if st_shndx is either SHN_UNDEF or
4254 		 * SHN_COMMON.
4255 		 */
4256 		if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4257 			continue;
4258 
4259 		/*
4260 		 * If the symbol is greater than the specified address, or if it
4261 		 * is further away from addr than the current nearest symbol,
4262 		 * then reject it.
4263 		 */
4264 		symbol_addr = obj->relocbase + def->st_value;
4265 		if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4266 			continue;
4267 
4268 		/* Update our idea of the nearest symbol. */
4269 		info->dli_sname = obj->strtab + def->st_name;
4270 		info->dli_saddr = symbol_addr;
4271 
4272 		/* Exact match? */
4273 		if (info->dli_saddr == addr)
4274 			break;
4275 	}
4276 	lock_release(rtld_bind_lock, &lockstate);
4277 	return (1);
4278 }
4279 
4280 int
dlinfo(void * handle,int request,void * p)4281 dlinfo(void *handle, int request, void *p)
4282 {
4283 	const Obj_Entry *obj;
4284 	RtldLockState lockstate;
4285 	int error;
4286 
4287 	rlock_acquire(rtld_bind_lock, &lockstate);
4288 
4289 	if (handle == NULL || handle == RTLD_SELF) {
4290 		void *retaddr;
4291 
4292 		retaddr = __builtin_return_address(0); /* __GNUC__ only */
4293 		if ((obj = obj_from_addr(retaddr)) == NULL)
4294 			_rtld_error("Cannot determine caller's shared object");
4295 	} else
4296 		obj = dlcheck(handle);
4297 
4298 	if (obj == NULL) {
4299 		lock_release(rtld_bind_lock, &lockstate);
4300 		return (-1);
4301 	}
4302 
4303 	error = 0;
4304 	switch (request) {
4305 	case RTLD_DI_LINKMAP:
4306 		*((struct link_map const **)p) = &obj->linkmap;
4307 		break;
4308 	case RTLD_DI_ORIGIN:
4309 		error = rtld_dirname(obj->path, p);
4310 		break;
4311 
4312 	case RTLD_DI_SERINFOSIZE:
4313 	case RTLD_DI_SERINFO:
4314 		error = do_search_info(obj, request, (struct dl_serinfo *)p);
4315 		break;
4316 
4317 	default:
4318 		_rtld_error("Invalid request %d passed to dlinfo()", request);
4319 		error = -1;
4320 	}
4321 
4322 	lock_release(rtld_bind_lock, &lockstate);
4323 
4324 	return (error);
4325 }
4326 
4327 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4328 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4329 {
4330 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4331 	phdr_info->dlpi_name = obj->path;
4332 	phdr_info->dlpi_phdr = obj->phdr;
4333 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4334 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4335 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(_tcb_get(),
4336 	    obj->tlsindex, 0, true);
4337 	phdr_info->dlpi_adds = obj_loads;
4338 	phdr_info->dlpi_subs = obj_loads - obj_count;
4339 }
4340 
4341 /*
4342  * It's completely UB to actually use this, so extreme caution is advised.  It's
4343  * probably not what you want.
4344  */
4345 int
_dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback,void * param)4346 _dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback, void *param)
4347 {
4348 	struct dl_phdr_info phdr_info;
4349 	Obj_Entry *obj;
4350 	int error;
4351 
4352 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;
4353 	    obj = globallist_next(obj)) {
4354 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4355 		error = callback(&phdr_info, sizeof(phdr_info), param);
4356 		if (error != 0)
4357 			return (error);
4358 	}
4359 
4360 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4361 	return (callback(&phdr_info, sizeof(phdr_info), param));
4362 }
4363 
4364 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4365 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4366 {
4367 	struct dl_phdr_info phdr_info;
4368 	Obj_Entry *obj, marker;
4369 	RtldLockState bind_lockstate, phdr_lockstate;
4370 	int error;
4371 
4372 	init_marker(&marker);
4373 	error = 0;
4374 
4375 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4376 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4377 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4378 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4379 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4380 		hold_object(obj);
4381 		lock_release(rtld_bind_lock, &bind_lockstate);
4382 
4383 		error = callback(&phdr_info, sizeof phdr_info, param);
4384 
4385 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4386 		unhold_object(obj);
4387 		obj = globallist_next(&marker);
4388 		TAILQ_REMOVE(&obj_list, &marker, next);
4389 		if (error != 0) {
4390 			lock_release(rtld_bind_lock, &bind_lockstate);
4391 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4392 			return (error);
4393 		}
4394 	}
4395 
4396 	if (error == 0) {
4397 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4398 		lock_release(rtld_bind_lock, &bind_lockstate);
4399 		error = callback(&phdr_info, sizeof(phdr_info), param);
4400 	}
4401 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4402 	return (error);
4403 }
4404 
4405 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4406 fill_search_info(const char *dir, size_t dirlen, void *param)
4407 {
4408 	struct fill_search_info_args *arg;
4409 
4410 	arg = param;
4411 
4412 	if (arg->request == RTLD_DI_SERINFOSIZE) {
4413 		arg->serinfo->dls_cnt++;
4414 		arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen +
4415 		    1;
4416 	} else {
4417 		struct dl_serpath *s_entry;
4418 
4419 		s_entry = arg->serpath;
4420 		s_entry->dls_name = arg->strspace;
4421 		s_entry->dls_flags = arg->flags;
4422 
4423 		strncpy(arg->strspace, dir, dirlen);
4424 		arg->strspace[dirlen] = '\0';
4425 
4426 		arg->strspace += dirlen + 1;
4427 		arg->serpath++;
4428 	}
4429 
4430 	return (NULL);
4431 }
4432 
4433 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4434 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4435 {
4436 	struct dl_serinfo _info;
4437 	struct fill_search_info_args args;
4438 
4439 	args.request = RTLD_DI_SERINFOSIZE;
4440 	args.serinfo = &_info;
4441 
4442 	_info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4443 	_info.dls_cnt = 0;
4444 
4445 	path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4446 	path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4447 	path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4448 	path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4449 	    &args);
4450 	if (!obj->z_nodeflib)
4451 		path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4452 		    &args);
4453 
4454 	if (request == RTLD_DI_SERINFOSIZE) {
4455 		info->dls_size = _info.dls_size;
4456 		info->dls_cnt = _info.dls_cnt;
4457 		return (0);
4458 	}
4459 
4460 	if (info->dls_cnt != _info.dls_cnt ||
4461 	    info->dls_size != _info.dls_size) {
4462 		_rtld_error(
4463 		    "Uninitialized Dl_serinfo struct passed to dlinfo()");
4464 		return (-1);
4465 	}
4466 
4467 	args.request = RTLD_DI_SERINFO;
4468 	args.serinfo = info;
4469 	args.serpath = &info->dls_serpath[0];
4470 	args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4471 
4472 	args.flags = LA_SER_RUNPATH;
4473 	if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4474 		return (-1);
4475 
4476 	args.flags = LA_SER_LIBPATH;
4477 	if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) !=
4478 	    NULL)
4479 		return (-1);
4480 
4481 	args.flags = LA_SER_RUNPATH;
4482 	if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4483 		return (-1);
4484 
4485 	args.flags = LA_SER_CONFIG;
4486 	if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4487 		&args) != NULL)
4488 		return (-1);
4489 
4490 	args.flags = LA_SER_DEFAULT;
4491 	if (!obj->z_nodeflib &&
4492 	    path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4493 		&args) != NULL)
4494 		return (-1);
4495 	return (0);
4496 }
4497 
4498 static int
rtld_dirname(const char * path,char * bname)4499 rtld_dirname(const char *path, char *bname)
4500 {
4501 	const char *endp;
4502 
4503 	/* Empty or NULL string gets treated as "." */
4504 	if (path == NULL || *path == '\0') {
4505 		bname[0] = '.';
4506 		bname[1] = '\0';
4507 		return (0);
4508 	}
4509 
4510 	/* Strip trailing slashes */
4511 	endp = path + strlen(path) - 1;
4512 	while (endp > path && *endp == '/')
4513 		endp--;
4514 
4515 	/* Find the start of the dir */
4516 	while (endp > path && *endp != '/')
4517 		endp--;
4518 
4519 	/* Either the dir is "/" or there are no slashes */
4520 	if (endp == path) {
4521 		bname[0] = *endp == '/' ? '/' : '.';
4522 		bname[1] = '\0';
4523 		return (0);
4524 	} else {
4525 		do {
4526 			endp--;
4527 		} while (endp > path && *endp == '/');
4528 	}
4529 
4530 	if (endp - path + 2 > PATH_MAX) {
4531 		_rtld_error("Filename is too long: %s", path);
4532 		return (-1);
4533 	}
4534 
4535 	strncpy(bname, path, endp - path + 1);
4536 	bname[endp - path + 1] = '\0';
4537 	return (0);
4538 }
4539 
4540 static int
rtld_dirname_abs(const char * path,char * base)4541 rtld_dirname_abs(const char *path, char *base)
4542 {
4543 	char *last;
4544 
4545 	if (realpath(path, base) == NULL) {
4546 		_rtld_error("realpath \"%s\" failed (%s)", path,
4547 		    rtld_strerror(errno));
4548 		return (-1);
4549 	}
4550 	dbg("%s -> %s", path, base);
4551 	last = strrchr(base, '/');
4552 	if (last == NULL) {
4553 		_rtld_error("non-abs result from realpath \"%s\"", path);
4554 		return (-1);
4555 	}
4556 	if (last != base)
4557 		*last = '\0';
4558 	return (0);
4559 }
4560 
4561 static void
linkmap_add(Obj_Entry * obj)4562 linkmap_add(Obj_Entry *obj)
4563 {
4564 	struct link_map *l, *prev;
4565 
4566 	l = &obj->linkmap;
4567 	l->l_name = obj->path;
4568 	l->l_base = obj->mapbase;
4569 	l->l_ld = obj->dynamic;
4570 	l->l_addr = obj->relocbase;
4571 
4572 	if (r_debug.r_map == NULL) {
4573 		r_debug.r_map = l;
4574 		return;
4575 	}
4576 
4577 	/*
4578 	 * Scan to the end of the list, but not past the entry for the
4579 	 * dynamic linker, which we want to keep at the very end.
4580 	 */
4581 	for (prev = r_debug.r_map;
4582 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4583 	    prev = prev->l_next)
4584 		;
4585 
4586 	/* Link in the new entry. */
4587 	l->l_prev = prev;
4588 	l->l_next = prev->l_next;
4589 	if (l->l_next != NULL)
4590 		l->l_next->l_prev = l;
4591 	prev->l_next = l;
4592 }
4593 
4594 static void
linkmap_delete(Obj_Entry * obj)4595 linkmap_delete(Obj_Entry *obj)
4596 {
4597 	struct link_map *l;
4598 
4599 	l = &obj->linkmap;
4600 	if (l->l_prev == NULL) {
4601 		if ((r_debug.r_map = l->l_next) != NULL)
4602 			l->l_next->l_prev = NULL;
4603 		return;
4604 	}
4605 
4606 	if ((l->l_prev->l_next = l->l_next) != NULL)
4607 		l->l_next->l_prev = l->l_prev;
4608 }
4609 
4610 /*
4611  * Function for the debugger to set a breakpoint on to gain control.
4612  *
4613  * The two parameters allow the debugger to easily find and determine
4614  * what the runtime loader is doing and to whom it is doing it.
4615  *
4616  * When the loadhook trap is hit (r_debug_state, set at program
4617  * initialization), the arguments can be found on the stack:
4618  *
4619  *  +8   struct link_map *m
4620  *  +4   struct r_debug  *rd
4621  *  +0   RetAddr
4622  */
4623 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4624 r_debug_state(struct r_debug *rd __unused, struct link_map *m __unused)
4625 {
4626 	/*
4627 	 * The following is a hack to force the compiler to emit calls to
4628 	 * this function, even when optimizing.  If the function is empty,
4629 	 * the compiler is not obliged to emit any code for calls to it,
4630 	 * even when marked __noinline.  However, gdb depends on those
4631 	 * calls being made.
4632 	 */
4633 	__compiler_membar();
4634 }
4635 
4636 /*
4637  * A function called after init routines have completed. This can be used to
4638  * break before a program's entry routine is called, and can be used when
4639  * main is not available in the symbol table.
4640  */
4641 void
_r_debug_postinit(struct link_map * m __unused)4642 _r_debug_postinit(struct link_map *m __unused)
4643 {
4644 	/* See r_debug_state(). */
4645 	__compiler_membar();
4646 }
4647 
4648 static void
release_object(Obj_Entry * obj)4649 release_object(Obj_Entry *obj)
4650 {
4651 	if (obj->holdcount > 0) {
4652 		obj->unholdfree = true;
4653 		return;
4654 	}
4655 	munmap(obj->mapbase, obj->mapsize);
4656 	linkmap_delete(obj);
4657 	obj_free(obj);
4658 }
4659 
4660 /*
4661  * Get address of the pointer variable in the main program.
4662  * Prefer non-weak symbol over the weak one.
4663  */
4664 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4665 get_program_var_addr(const char *name, RtldLockState *lockstate)
4666 {
4667 	SymLook req;
4668 	DoneList donelist;
4669 
4670 	symlook_init(&req, name);
4671 	req.lockstate = lockstate;
4672 	donelist_init(&donelist);
4673 	if (symlook_global(&req, &donelist) != 0)
4674 		return (NULL);
4675 	if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4676 		return ((const void **)make_function_pointer(req.sym_out,
4677 		    req.defobj_out));
4678 	else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4679 		return ((const void **)rtld_resolve_ifunc(req.defobj_out,
4680 		    req.sym_out));
4681 	else
4682 		return ((const void **)(req.defobj_out->relocbase +
4683 		    req.sym_out->st_value));
4684 }
4685 
4686 /*
4687  * Set a pointer variable in the main program to the given value.  This
4688  * is used to set key variables such as "environ" before any of the
4689  * init functions are called.
4690  */
4691 static void
set_program_var(const char * name,const void * value)4692 set_program_var(const char *name, const void *value)
4693 {
4694 	const void **addr;
4695 
4696 	if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4697 		dbg("\"%s\": *%p <-- %p", name, addr, value);
4698 		*addr = value;
4699 	}
4700 }
4701 
4702 /*
4703  * Search the global objects, including dependencies and main object,
4704  * for the given symbol.
4705  */
4706 static int
symlook_global(SymLook * req,DoneList * donelist)4707 symlook_global(SymLook *req, DoneList *donelist)
4708 {
4709 	SymLook req1;
4710 	const Objlist_Entry *elm;
4711 	int res;
4712 
4713 	symlook_init_from_req(&req1, req);
4714 
4715 	/* Search all objects loaded at program start up. */
4716 	if (req->defobj_out == NULL || (ld_dynamic_weak &&
4717 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4718 		res = symlook_list(&req1, &list_main, donelist);
4719 		if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4720 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4721 			req->sym_out = req1.sym_out;
4722 			req->defobj_out = req1.defobj_out;
4723 			assert(req->defobj_out != NULL);
4724 		}
4725 	}
4726 
4727 	/* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4728 	STAILQ_FOREACH(elm, &list_global, link) {
4729 		if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4730 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4731 			break;
4732 		res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4733 		if (res == 0 && (req->defobj_out == NULL ||
4734 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4735 			req->sym_out = req1.sym_out;
4736 			req->defobj_out = req1.defobj_out;
4737 			assert(req->defobj_out != NULL);
4738 		}
4739 	}
4740 
4741 	return (req->sym_out != NULL ? 0 : ESRCH);
4742 }
4743 
4744 /*
4745  * Given a symbol name in a referencing object, find the corresponding
4746  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4747  * no definition was found.  Returns a pointer to the Obj_Entry of the
4748  * defining object via the reference parameter DEFOBJ_OUT.
4749  */
4750 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4751 symlook_default(SymLook *req, const Obj_Entry *refobj)
4752 {
4753 	DoneList donelist;
4754 	const Objlist_Entry *elm;
4755 	SymLook req1;
4756 	int res;
4757 
4758 	donelist_init(&donelist);
4759 	symlook_init_from_req(&req1, req);
4760 
4761 	/*
4762 	 * Look first in the referencing object if linked symbolically,
4763 	 * and similarly handle protected symbols.
4764 	 */
4765 	res = symlook_obj(&req1, refobj);
4766 	if (res == 0 && (refobj->symbolic ||
4767 	    ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED ||
4768 	    refobj->deepbind)) {
4769 		req->sym_out = req1.sym_out;
4770 		req->defobj_out = req1.defobj_out;
4771 		assert(req->defobj_out != NULL);
4772 	}
4773 	if (refobj->symbolic || req->defobj_out != NULL || refobj->deepbind)
4774 		donelist_check(&donelist, refobj);
4775 
4776 	if (!refobj->deepbind)
4777 		symlook_global(req, &donelist);
4778 
4779 	/* Search all dlopened DAGs containing the referencing object. */
4780 	STAILQ_FOREACH(elm, &refobj->dldags, link) {
4781 		if (req->sym_out != NULL && (!ld_dynamic_weak ||
4782 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4783 			break;
4784 		res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4785 		if (res == 0 && (req->sym_out == NULL ||
4786 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4787 			req->sym_out = req1.sym_out;
4788 			req->defobj_out = req1.defobj_out;
4789 			assert(req->defobj_out != NULL);
4790 		}
4791 	}
4792 
4793 	if (refobj->deepbind)
4794 		symlook_global(req, &donelist);
4795 
4796 	/*
4797 	 * Search the dynamic linker itself, and possibly resolve the
4798 	 * symbol from there.  This is how the application links to
4799 	 * dynamic linker services such as dlopen.
4800 	 */
4801 	if (req->sym_out == NULL ||
4802 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4803 		res = symlook_obj(&req1, &obj_rtld);
4804 		if (res == 0) {
4805 			req->sym_out = req1.sym_out;
4806 			req->defobj_out = req1.defobj_out;
4807 			assert(req->defobj_out != NULL);
4808 		}
4809 	}
4810 
4811 	return (req->sym_out != NULL ? 0 : ESRCH);
4812 }
4813 
4814 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4815 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4816 {
4817 	const Elf_Sym *def;
4818 	const Obj_Entry *defobj;
4819 	const Objlist_Entry *elm;
4820 	SymLook req1;
4821 	int res;
4822 
4823 	def = NULL;
4824 	defobj = NULL;
4825 	STAILQ_FOREACH(elm, objlist, link) {
4826 		if (donelist_check(dlp, elm->obj))
4827 			continue;
4828 		symlook_init_from_req(&req1, req);
4829 		if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4830 			if (def == NULL || (ld_dynamic_weak &&
4831 			    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4832 				def = req1.sym_out;
4833 				defobj = req1.defobj_out;
4834 				if (!ld_dynamic_weak ||
4835 				    ELF_ST_BIND(def->st_info) != STB_WEAK)
4836 					break;
4837 			}
4838 		}
4839 	}
4840 	if (def != NULL) {
4841 		req->sym_out = def;
4842 		req->defobj_out = defobj;
4843 		return (0);
4844 	}
4845 	return (ESRCH);
4846 }
4847 
4848 /*
4849  * Search the chain of DAGS cointed to by the given Needed_Entry
4850  * for a symbol of the given name.  Each DAG is scanned completely
4851  * before advancing to the next one.  Returns a pointer to the symbol,
4852  * or NULL if no definition was found.
4853  */
4854 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4855 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4856 {
4857 	const Elf_Sym *def;
4858 	const Needed_Entry *n;
4859 	const Obj_Entry *defobj;
4860 	SymLook req1;
4861 	int res;
4862 
4863 	def = NULL;
4864 	defobj = NULL;
4865 	symlook_init_from_req(&req1, req);
4866 	for (n = needed; n != NULL; n = n->next) {
4867 		if (n->obj == NULL || (res = symlook_list(&req1,
4868 		    &n->obj->dagmembers, dlp)) != 0)
4869 			continue;
4870 		if (def == NULL || (ld_dynamic_weak &&
4871 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4872 			def = req1.sym_out;
4873 			defobj = req1.defobj_out;
4874 			if (!ld_dynamic_weak ||
4875 			    ELF_ST_BIND(def->st_info) != STB_WEAK)
4876 				break;
4877 		}
4878 	}
4879 	if (def != NULL) {
4880 		req->sym_out = def;
4881 		req->defobj_out = defobj;
4882 		return (0);
4883 	}
4884 	return (ESRCH);
4885 }
4886 
4887 static int
symlook_obj_load_filtees(SymLook * req,SymLook * req1,const Obj_Entry * obj,Needed_Entry * needed)4888 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4889     Needed_Entry *needed)
4890 {
4891 	DoneList donelist;
4892 	int flags;
4893 
4894 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4895 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4896 	donelist_init(&donelist);
4897 	symlook_init_from_req(req1, req);
4898 	return (symlook_needed(req1, needed, &donelist));
4899 }
4900 
4901 /*
4902  * Search the symbol table of a single shared object for a symbol of
4903  * the given name and version, if requested.  Returns a pointer to the
4904  * symbol, or NULL if no definition was found.  If the object is
4905  * filter, return filtered symbol from filtee.
4906  *
4907  * The symbol's hash value is passed in for efficiency reasons; that
4908  * eliminates many recomputations of the hash value.
4909  */
4910 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4911 symlook_obj(SymLook *req, const Obj_Entry *obj)
4912 {
4913 	SymLook req1;
4914 	int res, mres;
4915 
4916 	/*
4917 	 * If there is at least one valid hash at this point, we prefer to
4918 	 * use the faster GNU version if available.
4919 	 */
4920 	if (obj->valid_hash_gnu)
4921 		mres = symlook_obj1_gnu(req, obj);
4922 	else if (obj->valid_hash_sysv)
4923 		mres = symlook_obj1_sysv(req, obj);
4924 	else
4925 		return (EINVAL);
4926 
4927 	if (mres == 0) {
4928 		if (obj->needed_filtees != NULL) {
4929 			res = symlook_obj_load_filtees(req, &req1, obj,
4930 			    obj->needed_filtees);
4931 			if (res == 0) {
4932 				req->sym_out = req1.sym_out;
4933 				req->defobj_out = req1.defobj_out;
4934 			}
4935 			return (res);
4936 		}
4937 		if (obj->needed_aux_filtees != NULL) {
4938 			res = symlook_obj_load_filtees(req, &req1, obj,
4939 			    obj->needed_aux_filtees);
4940 			if (res == 0) {
4941 				req->sym_out = req1.sym_out;
4942 				req->defobj_out = req1.defobj_out;
4943 				return (res);
4944 			}
4945 		}
4946 	}
4947 	return (mres);
4948 }
4949 
4950 /* Symbol match routine common to both hash functions */
4951 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4952 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4953     const unsigned long symnum)
4954 {
4955 	Elf_Versym verndx;
4956 	const Elf_Sym *symp;
4957 	const char *strp;
4958 
4959 	symp = obj->symtab + symnum;
4960 	strp = obj->strtab + symp->st_name;
4961 
4962 	switch (ELF_ST_TYPE(symp->st_info)) {
4963 	case STT_FUNC:
4964 	case STT_NOTYPE:
4965 	case STT_OBJECT:
4966 	case STT_COMMON:
4967 	case STT_GNU_IFUNC:
4968 		if (symp->st_value == 0)
4969 			return (false);
4970 		/* fallthrough */
4971 	case STT_TLS:
4972 		if (symp->st_shndx != SHN_UNDEF)
4973 			break;
4974 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4975 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4976 			break;
4977 		/* fallthrough */
4978 	default:
4979 		return (false);
4980 	}
4981 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4982 		return (false);
4983 
4984 	if (req->ventry == NULL) {
4985 		if (obj->versyms != NULL) {
4986 			verndx = VER_NDX(obj->versyms[symnum]);
4987 			if (verndx > obj->vernum) {
4988 				_rtld_error(
4989 				    "%s: symbol %s references wrong version %d",
4990 				    obj->path, obj->strtab + symnum, verndx);
4991 				return (false);
4992 			}
4993 			/*
4994 			 * If we are not called from dlsym (i.e. this
4995 			 * is a normal relocation from unversioned
4996 			 * binary), accept the symbol immediately if
4997 			 * it happens to have first version after this
4998 			 * shared object became versioned.  Otherwise,
4999 			 * if symbol is versioned and not hidden,
5000 			 * remember it. If it is the only symbol with
5001 			 * this name exported by the shared object, it
5002 			 * will be returned as a match by the calling
5003 			 * function. If symbol is global (verndx < 2)
5004 			 * accept it unconditionally.
5005 			 */
5006 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
5007 			    verndx == VER_NDX_GIVEN) {
5008 				result->sym_out = symp;
5009 				return (true);
5010 			} else if (verndx >= VER_NDX_GIVEN) {
5011 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN) ==
5012 				    0) {
5013 					if (result->vsymp == NULL)
5014 						result->vsymp = symp;
5015 					result->vcount++;
5016 				}
5017 				return (false);
5018 			}
5019 		}
5020 		result->sym_out = symp;
5021 		return (true);
5022 	}
5023 	if (obj->versyms == NULL) {
5024 		if (object_match_name(obj, req->ventry->name)) {
5025 			_rtld_error(
5026 		    "%s: object %s should provide version %s for symbol %s",
5027 			    obj_rtld.path, obj->path, req->ventry->name,
5028 			    obj->strtab + symnum);
5029 			return (false);
5030 		}
5031 	} else {
5032 		verndx = VER_NDX(obj->versyms[symnum]);
5033 		if (verndx > obj->vernum) {
5034 			_rtld_error("%s: symbol %s references wrong version %d",
5035 			    obj->path, obj->strtab + symnum, verndx);
5036 			return (false);
5037 		}
5038 		if (obj->vertab[verndx].hash != req->ventry->hash ||
5039 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
5040 			/*
5041 			 * Version does not match. Look if this is a
5042 			 * global symbol and if it is not hidden. If
5043 			 * global symbol (verndx < 2) is available,
5044 			 * use it. Do not return symbol if we are
5045 			 * called by dlvsym, because dlvsym looks for
5046 			 * a specific version and default one is not
5047 			 * what dlvsym wants.
5048 			 */
5049 			if ((req->flags & SYMLOOK_DLSYM) ||
5050 			    (verndx >= VER_NDX_GIVEN) ||
5051 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
5052 				return (false);
5053 		}
5054 	}
5055 	result->sym_out = symp;
5056 	return (true);
5057 }
5058 
5059 /*
5060  * Search for symbol using SysV hash function.
5061  * obj->buckets is known not to be NULL at this point; the test for this was
5062  * performed with the obj->valid_hash_sysv assignment.
5063  */
5064 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)5065 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
5066 {
5067 	unsigned long symnum;
5068 	Sym_Match_Result matchres;
5069 
5070 	matchres.sym_out = NULL;
5071 	matchres.vsymp = NULL;
5072 	matchres.vcount = 0;
5073 
5074 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
5075 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
5076 		if (symnum >= obj->nchains)
5077 			return (ESRCH); /* Bad object */
5078 
5079 		if (matched_symbol(req, obj, &matchres, symnum)) {
5080 			req->sym_out = matchres.sym_out;
5081 			req->defobj_out = obj;
5082 			return (0);
5083 		}
5084 	}
5085 	if (matchres.vcount == 1) {
5086 		req->sym_out = matchres.vsymp;
5087 		req->defobj_out = obj;
5088 		return (0);
5089 	}
5090 	return (ESRCH);
5091 }
5092 
5093 /* Search for symbol using GNU hash function */
5094 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)5095 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
5096 {
5097 	Elf_Addr bloom_word;
5098 	const Elf32_Word *hashval;
5099 	Elf32_Word bucket;
5100 	Sym_Match_Result matchres;
5101 	unsigned int h1, h2;
5102 	unsigned long symnum;
5103 
5104 	matchres.sym_out = NULL;
5105 	matchres.vsymp = NULL;
5106 	matchres.vcount = 0;
5107 
5108 	/* Pick right bitmask word from Bloom filter array */
5109 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
5110 	    obj->maskwords_bm_gnu];
5111 
5112 	/* Calculate modulus word size of gnu hash and its derivative */
5113 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
5114 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
5115 
5116 	/* Filter out the "definitely not in set" queries */
5117 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
5118 		return (ESRCH);
5119 
5120 	/* Locate hash chain and corresponding value element*/
5121 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
5122 	if (bucket == 0)
5123 		return (ESRCH);
5124 	hashval = &obj->chain_zero_gnu[bucket];
5125 	do {
5126 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
5127 			symnum = hashval - obj->chain_zero_gnu;
5128 			if (matched_symbol(req, obj, &matchres, symnum)) {
5129 				req->sym_out = matchres.sym_out;
5130 				req->defobj_out = obj;
5131 				return (0);
5132 			}
5133 		}
5134 	} while ((*hashval++ & 1) == 0);
5135 	if (matchres.vcount == 1) {
5136 		req->sym_out = matchres.vsymp;
5137 		req->defobj_out = obj;
5138 		return (0);
5139 	}
5140 	return (ESRCH);
5141 }
5142 
5143 static void
trace_calc_fmts(const char ** main_local,const char ** fmt1,const char ** fmt2)5144 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
5145 {
5146 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
5147 	if (*main_local == NULL)
5148 		*main_local = "";
5149 
5150 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5151 	if (*fmt1 == NULL)
5152 		*fmt1 = "\t%o => %p (%x)\n";
5153 
5154 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5155 	if (*fmt2 == NULL)
5156 		*fmt2 = "\t%o (%x)\n";
5157 }
5158 
5159 static void
trace_print_obj(Obj_Entry * obj,const char * name,const char * path,const char * main_local,const char * fmt1,const char * fmt2)5160 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5161     const char *main_local, const char *fmt1, const char *fmt2)
5162 {
5163 	const char *fmt;
5164 	int c;
5165 
5166 	if (fmt1 == NULL)
5167 		fmt = fmt2;
5168 	else
5169 		/* XXX bogus */
5170 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5171 
5172 	while ((c = *fmt++) != '\0') {
5173 		switch (c) {
5174 		default:
5175 			rtld_putchar(c);
5176 			continue;
5177 		case '\\':
5178 			switch (c = *fmt) {
5179 			case '\0':
5180 				continue;
5181 			case 'n':
5182 				rtld_putchar('\n');
5183 				break;
5184 			case 't':
5185 				rtld_putchar('\t');
5186 				break;
5187 			}
5188 			break;
5189 		case '%':
5190 			switch (c = *fmt) {
5191 			case '\0':
5192 				continue;
5193 			case '%':
5194 			default:
5195 				rtld_putchar(c);
5196 				break;
5197 			case 'A':
5198 				rtld_putstr(main_local);
5199 				break;
5200 			case 'a':
5201 				rtld_putstr(obj_main->path);
5202 				break;
5203 			case 'o':
5204 				rtld_putstr(name);
5205 				break;
5206 			case 'p':
5207 				rtld_putstr(path);
5208 				break;
5209 			case 'x':
5210 				rtld_printf("%p",
5211 				    obj != NULL ? obj->mapbase : NULL);
5212 				break;
5213 			}
5214 			break;
5215 		}
5216 		++fmt;
5217 	}
5218 }
5219 
5220 static void
trace_loaded_objects(Obj_Entry * obj,bool show_preload)5221 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5222 {
5223 	const char *fmt1, *fmt2, *main_local;
5224 	const char *name, *path;
5225 	bool first_spurious, list_containers;
5226 
5227 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5228 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5229 
5230 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5231 		Needed_Entry *needed;
5232 
5233 		if (obj->marker)
5234 			continue;
5235 		if (list_containers && obj->needed != NULL)
5236 			rtld_printf("%s:\n", obj->path);
5237 		for (needed = obj->needed; needed; needed = needed->next) {
5238 			if (needed->obj != NULL) {
5239 				if (needed->obj->traced && !list_containers)
5240 					continue;
5241 				needed->obj->traced = true;
5242 				path = needed->obj->path;
5243 			} else
5244 				path = "not found";
5245 
5246 			name = obj->strtab + needed->name;
5247 			trace_print_obj(needed->obj, name, path, main_local,
5248 			    fmt1, fmt2);
5249 		}
5250 	}
5251 
5252 	if (show_preload) {
5253 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5254 			fmt2 = "\t%p (%x)\n";
5255 		first_spurious = true;
5256 
5257 		TAILQ_FOREACH(obj, &obj_list, next) {
5258 			if (obj->marker || obj == obj_main || obj->traced)
5259 				continue;
5260 
5261 			if (list_containers && first_spurious) {
5262 				rtld_printf("[preloaded]\n");
5263 				first_spurious = false;
5264 			}
5265 
5266 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5267 			name = fname == NULL ? "<unknown>" : fname->name;
5268 			trace_print_obj(obj, name, obj->path, main_local, NULL,
5269 			    fmt2);
5270 		}
5271 	}
5272 }
5273 
5274 /*
5275  * Unload a dlopened object and its dependencies from memory and from
5276  * our data structures.  It is assumed that the DAG rooted in the
5277  * object has already been unreferenced, and that the object has a
5278  * reference count of 0.
5279  */
5280 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5281 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5282 {
5283 	Obj_Entry marker, *obj, *next;
5284 
5285 	assert(root->refcount == 0);
5286 
5287 	/*
5288 	 * Pass over the DAG removing unreferenced objects from
5289 	 * appropriate lists.
5290 	 */
5291 	unlink_object(root);
5292 
5293 	/* Unmap all objects that are no longer referenced. */
5294 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5295 		next = TAILQ_NEXT(obj, next);
5296 		if (obj->marker || obj->refcount != 0)
5297 			continue;
5298 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize,
5299 		    0, obj->path);
5300 		dbg("unloading \"%s\"", obj->path);
5301 		/*
5302 		 * Unlink the object now to prevent new references from
5303 		 * being acquired while the bind lock is dropped in
5304 		 * recursive dlclose() invocations.
5305 		 */
5306 		TAILQ_REMOVE(&obj_list, obj, next);
5307 		obj_count--;
5308 
5309 		if (obj->filtees_loaded) {
5310 			if (next != NULL) {
5311 				init_marker(&marker);
5312 				TAILQ_INSERT_BEFORE(next, &marker, next);
5313 				unload_filtees(obj, lockstate);
5314 				next = TAILQ_NEXT(&marker, next);
5315 				TAILQ_REMOVE(&obj_list, &marker, next);
5316 			} else
5317 				unload_filtees(obj, lockstate);
5318 		}
5319 		release_object(obj);
5320 	}
5321 }
5322 
5323 static void
unlink_object(Obj_Entry * root)5324 unlink_object(Obj_Entry *root)
5325 {
5326 	Objlist_Entry *elm;
5327 
5328 	if (root->refcount == 0) {
5329 		/* Remove the object from the RTLD_GLOBAL list. */
5330 		objlist_remove(&list_global, root);
5331 
5332 		/* Remove the object from all objects' DAG lists. */
5333 		STAILQ_FOREACH(elm, &root->dagmembers, link) {
5334 			objlist_remove(&elm->obj->dldags, root);
5335 			if (elm->obj != root)
5336 				unlink_object(elm->obj);
5337 		}
5338 	}
5339 }
5340 
5341 static void
ref_dag(Obj_Entry * root)5342 ref_dag(Obj_Entry *root)
5343 {
5344 	Objlist_Entry *elm;
5345 
5346 	assert(root->dag_inited);
5347 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5348 		elm->obj->refcount++;
5349 }
5350 
5351 static void
unref_dag(Obj_Entry * root)5352 unref_dag(Obj_Entry *root)
5353 {
5354 	Objlist_Entry *elm;
5355 
5356 	assert(root->dag_inited);
5357 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5358 		elm->obj->refcount--;
5359 }
5360 
5361 /*
5362  * Common code for MD __tls_get_addr().
5363  */
5364 static void *
tls_get_addr_slow(struct tcb * tcb,int index,size_t offset,bool locked)5365 tls_get_addr_slow(struct tcb *tcb, int index, size_t offset, bool locked)
5366 {
5367 	struct dtv *newdtv, *dtv;
5368 	RtldLockState lockstate;
5369 	int to_copy;
5370 
5371 	dtv = tcb->tcb_dtv;
5372 	/* Check dtv generation in case new modules have arrived */
5373 	if (dtv->dtv_gen != tls_dtv_generation) {
5374 		if (!locked)
5375 			wlock_acquire(rtld_bind_lock, &lockstate);
5376 		newdtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5377 		    sizeof(struct dtv_slot));
5378 		to_copy = dtv->dtv_size;
5379 		if (to_copy > tls_max_index)
5380 			to_copy = tls_max_index;
5381 		memcpy(newdtv->dtv_slots, dtv->dtv_slots, to_copy *
5382 		    sizeof(struct dtv_slot));
5383 		newdtv->dtv_gen = tls_dtv_generation;
5384 		newdtv->dtv_size = tls_max_index;
5385 		free(dtv);
5386 		if (!locked)
5387 			lock_release(rtld_bind_lock, &lockstate);
5388 		dtv = tcb->tcb_dtv = newdtv;
5389 	}
5390 
5391 	/* Dynamically allocate module TLS if necessary */
5392 	if (dtv->dtv_slots[index - 1].dtvs_tls == 0) {
5393 		/* Signal safe, wlock will block out signals. */
5394 		if (!locked)
5395 			wlock_acquire(rtld_bind_lock, &lockstate);
5396 		if (!dtv->dtv_slots[index - 1].dtvs_tls)
5397 			dtv->dtv_slots[index - 1].dtvs_tls =
5398 			    allocate_module_tls(tcb, index);
5399 		if (!locked)
5400 			lock_release(rtld_bind_lock, &lockstate);
5401 	}
5402 	return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5403 }
5404 
5405 void *
tls_get_addr_common(struct tcb * tcb,int index,size_t offset)5406 tls_get_addr_common(struct tcb *tcb, int index, size_t offset)
5407 {
5408 	struct dtv *dtv;
5409 
5410 	dtv = tcb->tcb_dtv;
5411 	/* Check dtv generation in case new modules have arrived */
5412 	if (__predict_true(dtv->dtv_gen == tls_dtv_generation &&
5413 	    dtv->dtv_slots[index - 1].dtvs_tls != 0))
5414 		return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5415 	return (tls_get_addr_slow(tcb, index, offset, false));
5416 }
5417 
5418 static struct tcb *
tcb_from_tcb_list_entry(struct tcb_list_entry * tcbelm)5419 tcb_from_tcb_list_entry(struct tcb_list_entry *tcbelm)
5420 {
5421 #ifdef TLS_VARIANT_I
5422 	return ((struct tcb *)((char *)tcbelm - tcb_list_entry_offset));
5423 #else
5424 	return ((struct tcb *)((char *)tcbelm + tcb_list_entry_offset));
5425 #endif
5426 }
5427 
5428 static struct tcb_list_entry *
tcb_list_entry_from_tcb(struct tcb * tcb)5429 tcb_list_entry_from_tcb(struct tcb *tcb)
5430 {
5431 #ifdef TLS_VARIANT_I
5432 	return ((struct tcb_list_entry *)((char *)tcb + tcb_list_entry_offset));
5433 #else
5434 	return ((struct tcb_list_entry *)((char *)tcb - tcb_list_entry_offset));
5435 #endif
5436 }
5437 
5438 static void
tcb_list_insert(struct tcb * tcb)5439 tcb_list_insert(struct tcb *tcb)
5440 {
5441 	struct tcb_list_entry *tcbelm;
5442 
5443 	tcbelm = tcb_list_entry_from_tcb(tcb);
5444 	TAILQ_INSERT_TAIL(&tcb_list, tcbelm, next);
5445 }
5446 
5447 static void
tcb_list_remove(struct tcb * tcb)5448 tcb_list_remove(struct tcb *tcb)
5449 {
5450 	struct tcb_list_entry *tcbelm;
5451 
5452 	tcbelm = tcb_list_entry_from_tcb(tcb);
5453 	TAILQ_REMOVE(&tcb_list, tcbelm, next);
5454 }
5455 
5456 #ifdef TLS_VARIANT_I
5457 
5458 /*
5459  * Return pointer to allocated TLS block
5460  */
5461 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5462 get_tls_block_ptr(void *tcb, size_t tcbsize)
5463 {
5464 	size_t extra_size, post_size, pre_size, tls_block_size;
5465 	size_t tls_init_align;
5466 
5467 	tls_init_align = MAX(obj_main->tlsalign, 1);
5468 
5469 	/* Compute fragments sizes. */
5470 	extra_size = tcbsize - TLS_TCB_SIZE;
5471 	post_size = calculate_tls_post_size(tls_init_align);
5472 	tls_block_size = tcbsize + post_size;
5473 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5474 
5475 	return ((char *)tcb - pre_size - extra_size);
5476 }
5477 
5478 /*
5479  * Allocate Static TLS using the Variant I method.
5480  *
5481  * For details on the layout, see lib/libc/gen/tls.c.
5482  *
5483  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5484  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5485  *     offsets, whereas libc's tls_static_space is just the executable's static
5486  *     TLS segment.
5487  *
5488  * NB: This differs from NetBSD's ld.elf_so, where TLS offsets are relative to
5489  *     the end of the TCB.
5490  */
5491 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5492 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5493 {
5494 	Obj_Entry *obj;
5495 	char *tls_block;
5496 	struct dtv *dtv;
5497 	struct tcb *tcb;
5498 	char *addr;
5499 	size_t i;
5500 	size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5501 	size_t tls_init_align, tls_init_offset;
5502 
5503 	if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5504 		return (oldtcb);
5505 
5506 	assert(tcbsize >= TLS_TCB_SIZE);
5507 	maxalign = MAX(tcbalign, tls_static_max_align);
5508 	tls_init_align = MAX(obj_main->tlsalign, 1);
5509 
5510 	/* Compute fragments sizes. */
5511 	extra_size = tcbsize - TLS_TCB_SIZE;
5512 	post_size = calculate_tls_post_size(tls_init_align);
5513 	tls_block_size = tcbsize + post_size;
5514 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5515 	tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE -
5516 	    post_size;
5517 
5518 	/* Allocate whole TLS block */
5519 	tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5520 	tcb = (struct tcb *)(tls_block + pre_size + extra_size);
5521 
5522 	if (oldtcb != NULL) {
5523 		memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5524 		    tls_static_space);
5525 		free(get_tls_block_ptr(oldtcb, tcbsize));
5526 
5527 		/* Adjust the DTV. */
5528 		dtv = tcb->tcb_dtv;
5529 		for (i = 0; i < dtv->dtv_size; i++) {
5530 			if ((uintptr_t)dtv->dtv_slots[i].dtvs_tls >=
5531 			    (uintptr_t)oldtcb &&
5532 			    (uintptr_t)dtv->dtv_slots[i].dtvs_tls <
5533 			    (uintptr_t)oldtcb + tls_static_space) {
5534 				dtv->dtv_slots[i].dtvs_tls = (char *)tcb +
5535 				    (dtv->dtv_slots[i].dtvs_tls -
5536 				    (char *)oldtcb);
5537 			}
5538 		}
5539 	} else {
5540 		dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5541 		    sizeof(struct dtv_slot));
5542 		tcb->tcb_dtv = dtv;
5543 		dtv->dtv_gen = tls_dtv_generation;
5544 		dtv->dtv_size = tls_max_index;
5545 
5546 		for (obj = globallist_curr(objs); obj != NULL;
5547 		    obj = globallist_next(obj)) {
5548 			if (obj->tlsoffset == 0)
5549 				continue;
5550 			tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5551 			addr = (char *)tcb + obj->tlsoffset;
5552 			if (tls_init_offset > 0)
5553 				memset(addr, 0, tls_init_offset);
5554 			if (obj->tlsinitsize > 0) {
5555 				memcpy(addr + tls_init_offset, obj->tlsinit,
5556 				    obj->tlsinitsize);
5557 			}
5558 			if (obj->tlssize > obj->tlsinitsize) {
5559 				memset(addr + tls_init_offset +
5560 				    obj->tlsinitsize,
5561 				    0,
5562 				    obj->tlssize - obj->tlsinitsize -
5563 					tls_init_offset);
5564 			}
5565 			dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5566 		}
5567 	}
5568 
5569 	tcb_list_insert(tcb);
5570 	return (tcb);
5571 }
5572 
5573 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5574 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5575 {
5576 	struct dtv *dtv;
5577 	uintptr_t tlsstart, tlsend;
5578 	size_t post_size;
5579 	size_t i, tls_init_align __unused;
5580 
5581 	tcb_list_remove(tcb);
5582 
5583 	assert(tcbsize >= TLS_TCB_SIZE);
5584 	tls_init_align = MAX(obj_main->tlsalign, 1);
5585 
5586 	/* Compute fragments sizes. */
5587 	post_size = calculate_tls_post_size(tls_init_align);
5588 
5589 	tlsstart = (uintptr_t)tcb + TLS_TCB_SIZE + post_size;
5590 	tlsend = (uintptr_t)tcb + tls_static_space;
5591 
5592 	dtv = ((struct tcb *)tcb)->tcb_dtv;
5593 	for (i = 0; i < dtv->dtv_size; i++) {
5594 		if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5595 		    ((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5596 		    (uintptr_t)dtv->dtv_slots[i].dtvs_tls >= tlsend)) {
5597 			free(dtv->dtv_slots[i].dtvs_tls);
5598 		}
5599 	}
5600 	free(dtv);
5601 	free(get_tls_block_ptr(tcb, tcbsize));
5602 }
5603 
5604 #endif /* TLS_VARIANT_I */
5605 
5606 #ifdef TLS_VARIANT_II
5607 
5608 /*
5609  * Allocate Static TLS using the Variant II method.
5610  */
5611 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5612 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5613 {
5614 	Obj_Entry *obj;
5615 	size_t size, ralign;
5616 	char *tls_block;
5617 	struct dtv *dtv, *olddtv;
5618 	struct tcb *tcb;
5619 	char *addr;
5620 	size_t i;
5621 
5622 	ralign = tcbalign;
5623 	if (tls_static_max_align > ralign)
5624 		ralign = tls_static_max_align;
5625 	size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5626 
5627 	assert(tcbsize >= 2 * sizeof(uintptr_t));
5628 	tls_block = xmalloc_aligned(size, ralign, 0 /* XXX */);
5629 	dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5630 	    sizeof(struct dtv_slot));
5631 
5632 	tcb = (struct tcb *)(tls_block + roundup(tls_static_space, ralign));
5633 	tcb->tcb_self = tcb;
5634 	tcb->tcb_dtv = dtv;
5635 
5636 	dtv->dtv_gen = tls_dtv_generation;
5637 	dtv->dtv_size = tls_max_index;
5638 
5639 	if (oldtcb != NULL) {
5640 		/*
5641 		 * Copy the static TLS block over whole.
5642 		 */
5643 		memcpy((char *)tcb - tls_static_space,
5644 		    (const char *)oldtcb - tls_static_space,
5645 		    tls_static_space);
5646 
5647 		/*
5648 		 * If any dynamic TLS blocks have been created tls_get_addr(),
5649 		 * move them over.
5650 		 */
5651 		olddtv = ((struct tcb *)oldtcb)->tcb_dtv;
5652 		for (i = 0; i < olddtv->dtv_size; i++) {
5653 			if ((uintptr_t)olddtv->dtv_slots[i].dtvs_tls <
5654 			    (uintptr_t)oldtcb - size ||
5655 			    (uintptr_t)olddtv->dtv_slots[i].dtvs_tls >
5656 			    (uintptr_t)oldtcb) {
5657 				dtv->dtv_slots[i].dtvs_tls =
5658 				    olddtv->dtv_slots[i].dtvs_tls;
5659 				olddtv->dtv_slots[i].dtvs_tls = NULL;
5660 			}
5661 		}
5662 
5663 		/*
5664 		 * We assume that this block was the one we created with
5665 		 * allocate_initial_tls().
5666 		 */
5667 		free_tls(oldtcb, 2 * sizeof(uintptr_t), sizeof(uintptr_t));
5668 	} else {
5669 		for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5670 			if (obj->marker || obj->tlsoffset == 0)
5671 				continue;
5672 			addr = (char *)tcb - obj->tlsoffset;
5673 			memset(addr + obj->tlsinitsize, 0, obj->tlssize -
5674 			    obj->tlsinitsize);
5675 			if (obj->tlsinit) {
5676 				memcpy(addr, obj->tlsinit, obj->tlsinitsize);
5677 				obj->static_tls_copied = true;
5678 			}
5679 			dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5680 		}
5681 	}
5682 
5683 	tcb_list_insert(tcb);
5684 	return (tcb);
5685 }
5686 
5687 void
free_tls(void * tcb,size_t tcbsize __unused,size_t tcbalign)5688 free_tls(void *tcb, size_t tcbsize __unused, size_t tcbalign)
5689 {
5690 	struct dtv *dtv;
5691 	size_t size, ralign;
5692 	size_t i;
5693 	uintptr_t tlsstart, tlsend;
5694 
5695 	tcb_list_remove(tcb);
5696 
5697 	/*
5698 	 * Figure out the size of the initial TLS block so that we can
5699 	 * find stuff which ___tls_get_addr() allocated dynamically.
5700 	 */
5701 	ralign = tcbalign;
5702 	if (tls_static_max_align > ralign)
5703 		ralign = tls_static_max_align;
5704 	size = roundup(tls_static_space, ralign);
5705 
5706 	dtv = ((struct tcb *)tcb)->tcb_dtv;
5707 	tlsend = (uintptr_t)tcb;
5708 	tlsstart = tlsend - size;
5709 	for (i = 0; i < dtv->dtv_size; i++) {
5710 		if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5711 		    ((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5712 		    (uintptr_t)dtv->dtv_slots[i].dtvs_tls > tlsend)) {
5713 			free(dtv->dtv_slots[i].dtvs_tls);
5714 		}
5715 	}
5716 
5717 	free((void *)tlsstart);
5718 	free(dtv);
5719 }
5720 
5721 #endif /* TLS_VARIANT_II */
5722 
5723 /*
5724  * Allocate TLS block for module with given index.
5725  */
5726 void *
allocate_module_tls(struct tcb * tcb,int index)5727 allocate_module_tls(struct tcb *tcb, int index)
5728 {
5729 	Obj_Entry *obj;
5730 	char *p;
5731 
5732 	TAILQ_FOREACH(obj, &obj_list, next) {
5733 		if (obj->marker)
5734 			continue;
5735 		if (obj->tlsindex == index)
5736 			break;
5737 	}
5738 	if (obj == NULL) {
5739 		_rtld_error("Can't find module with TLS index %d", index);
5740 		rtld_die();
5741 	}
5742 
5743 	if (obj->tls_static) {
5744 #ifdef TLS_VARIANT_I
5745 		p = (char *)tcb + obj->tlsoffset;
5746 #else
5747 		p = (char *)tcb - obj->tlsoffset;
5748 #endif
5749 		return (p);
5750 	}
5751 
5752 	obj->tls_dynamic = true;
5753 
5754 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5755 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5756 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5757 	return (p);
5758 }
5759 
5760 static bool
allocate_tls_offset_common(size_t * offp,size_t tlssize,size_t tlsalign,size_t tlspoffset __unused)5761 allocate_tls_offset_common(size_t *offp, size_t tlssize, size_t tlsalign,
5762     size_t tlspoffset __unused)
5763 {
5764 	size_t off;
5765 
5766 	if (tls_last_offset == 0)
5767 		off = calculate_first_tls_offset(tlssize, tlsalign,
5768 		    tlspoffset);
5769 	else
5770 		off = calculate_tls_offset(tls_last_offset, tls_last_size,
5771 		    tlssize, tlsalign, tlspoffset);
5772 
5773 	*offp = off;
5774 #ifdef TLS_VARIANT_I
5775 	off += tlssize;
5776 #endif
5777 
5778 	/*
5779 	 * If we have already fixed the size of the static TLS block, we
5780 	 * must stay within that size. When allocating the static TLS, we
5781 	 * leave a small amount of space spare to be used for dynamically
5782 	 * loading modules which use static TLS.
5783 	 */
5784 	if (tls_static_space != 0) {
5785 		if (off > tls_static_space)
5786 			return (false);
5787 	} else if (tlsalign > tls_static_max_align) {
5788 		tls_static_max_align = tlsalign;
5789 	}
5790 
5791 	tls_last_offset = off;
5792 	tls_last_size = tlssize;
5793 
5794 	return (true);
5795 }
5796 
5797 bool
allocate_tls_offset(Obj_Entry * obj)5798 allocate_tls_offset(Obj_Entry *obj)
5799 {
5800 	if (obj->tls_dynamic)
5801 		return (false);
5802 
5803 	if (obj->tls_static)
5804 		return (true);
5805 
5806 	if (obj->tlssize == 0) {
5807 		obj->tls_static = true;
5808 		return (true);
5809 	}
5810 
5811 	if (!allocate_tls_offset_common(&obj->tlsoffset, obj->tlssize,
5812 	    obj->tlsalign, obj->tlspoffset))
5813 		return (false);
5814 
5815 	obj->tls_static = true;
5816 
5817 	return (true);
5818 }
5819 
5820 void
free_tls_offset(Obj_Entry * obj)5821 free_tls_offset(Obj_Entry *obj)
5822 {
5823 	/*
5824 	 * If we were the last thing to allocate out of the static TLS
5825 	 * block, we give our space back to the 'allocator'. This is a
5826 	 * simplistic workaround to allow libGL.so.1 to be loaded and
5827 	 * unloaded multiple times.
5828 	 */
5829 	size_t off = obj->tlsoffset;
5830 
5831 #ifdef TLS_VARIANT_I
5832 	off += obj->tlssize;
5833 #endif
5834 	if (off == tls_last_offset) {
5835 		tls_last_offset -= obj->tlssize;
5836 		tls_last_size = 0;
5837 	}
5838 }
5839 
5840 void *
_rtld_allocate_tls(void * oldtcb,size_t tcbsize,size_t tcbalign)5841 _rtld_allocate_tls(void *oldtcb, size_t tcbsize, size_t tcbalign)
5842 {
5843 	void *ret;
5844 	RtldLockState lockstate;
5845 
5846 	wlock_acquire(rtld_bind_lock, &lockstate);
5847 	ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtcb,
5848 	    tcbsize, tcbalign);
5849 	lock_release(rtld_bind_lock, &lockstate);
5850 	return (ret);
5851 }
5852 
5853 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5854 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5855 {
5856 	RtldLockState lockstate;
5857 
5858 	wlock_acquire(rtld_bind_lock, &lockstate);
5859 	free_tls(tcb, tcbsize, tcbalign);
5860 	lock_release(rtld_bind_lock, &lockstate);
5861 }
5862 
5863 static void
object_add_name(Obj_Entry * obj,const char * name)5864 object_add_name(Obj_Entry *obj, const char *name)
5865 {
5866 	Name_Entry *entry;
5867 	size_t len;
5868 
5869 	len = strlen(name);
5870 	entry = malloc(sizeof(Name_Entry) + len);
5871 
5872 	if (entry != NULL) {
5873 		strcpy(entry->name, name);
5874 		STAILQ_INSERT_TAIL(&obj->names, entry, link);
5875 	}
5876 }
5877 
5878 static int
object_match_name(const Obj_Entry * obj,const char * name)5879 object_match_name(const Obj_Entry *obj, const char *name)
5880 {
5881 	Name_Entry *entry;
5882 
5883 	STAILQ_FOREACH(entry, &obj->names, link) {
5884 		if (strcmp(name, entry->name) == 0)
5885 			return (1);
5886 	}
5887 	return (0);
5888 }
5889 
5890 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5891 locate_dependency(const Obj_Entry *obj, const char *name)
5892 {
5893 	const Objlist_Entry *entry;
5894 	const Needed_Entry *needed;
5895 
5896 	STAILQ_FOREACH(entry, &list_main, link) {
5897 		if (object_match_name(entry->obj, name))
5898 			return (entry->obj);
5899 	}
5900 
5901 	for (needed = obj->needed; needed != NULL; needed = needed->next) {
5902 		if (strcmp(obj->strtab + needed->name, name) == 0 ||
5903 		    (needed->obj != NULL && object_match_name(needed->obj,
5904 		    name))) {
5905 			/*
5906 			 * If there is DT_NEEDED for the name we are looking
5907 			 * for, we are all set.  Note that object might not be
5908 			 * found if dependency was not loaded yet, so the
5909 			 * function can return NULL here.  This is expected and
5910 			 * handled properly by the caller.
5911 			 */
5912 			return (needed->obj);
5913 		}
5914 	}
5915 	_rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5916 	    obj->path, name);
5917 	rtld_die();
5918 }
5919 
5920 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5921 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5922     const Elf_Vernaux *vna)
5923 {
5924 	const Elf_Verdef *vd;
5925 	const char *vername;
5926 
5927 	vername = refobj->strtab + vna->vna_name;
5928 	vd = depobj->verdef;
5929 	if (vd == NULL) {
5930 		_rtld_error("%s: version %s required by %s not defined",
5931 		    depobj->path, vername, refobj->path);
5932 		return (-1);
5933 	}
5934 	for (;;) {
5935 		if (vd->vd_version != VER_DEF_CURRENT) {
5936 			_rtld_error(
5937 			    "%s: Unsupported version %d of Elf_Verdef entry",
5938 			    depobj->path, vd->vd_version);
5939 			return (-1);
5940 		}
5941 		if (vna->vna_hash == vd->vd_hash) {
5942 			const Elf_Verdaux *aux =
5943 			    (const Elf_Verdaux *)((const char *)vd +
5944 				vd->vd_aux);
5945 			if (strcmp(vername, depobj->strtab + aux->vda_name) ==
5946 			    0)
5947 				return (0);
5948 		}
5949 		if (vd->vd_next == 0)
5950 			break;
5951 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5952 	}
5953 	if (vna->vna_flags & VER_FLG_WEAK)
5954 		return (0);
5955 	_rtld_error("%s: version %s required by %s not found", depobj->path,
5956 	    vername, refobj->path);
5957 	return (-1);
5958 }
5959 
5960 static int
rtld_verify_object_versions(Obj_Entry * obj)5961 rtld_verify_object_versions(Obj_Entry *obj)
5962 {
5963 	const Elf_Verneed *vn;
5964 	const Elf_Verdef *vd;
5965 	const Elf_Verdaux *vda;
5966 	const Elf_Vernaux *vna;
5967 	const Obj_Entry *depobj;
5968 	int maxvernum, vernum;
5969 
5970 	if (obj->ver_checked)
5971 		return (0);
5972 	obj->ver_checked = true;
5973 
5974 	maxvernum = 0;
5975 	/*
5976 	 * Walk over defined and required version records and figure out
5977 	 * max index used by any of them. Do very basic sanity checking
5978 	 * while there.
5979 	 */
5980 	vn = obj->verneed;
5981 	while (vn != NULL) {
5982 		if (vn->vn_version != VER_NEED_CURRENT) {
5983 			_rtld_error(
5984 			    "%s: Unsupported version %d of Elf_Verneed entry",
5985 			    obj->path, vn->vn_version);
5986 			return (-1);
5987 		}
5988 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5989 		for (;;) {
5990 			vernum = VER_NEED_IDX(vna->vna_other);
5991 			if (vernum > maxvernum)
5992 				maxvernum = vernum;
5993 			if (vna->vna_next == 0)
5994 				break;
5995 			vna = (const Elf_Vernaux *)((const char *)vna +
5996 			    vna->vna_next);
5997 		}
5998 		if (vn->vn_next == 0)
5999 			break;
6000 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
6001 	}
6002 
6003 	vd = obj->verdef;
6004 	while (vd != NULL) {
6005 		if (vd->vd_version != VER_DEF_CURRENT) {
6006 			_rtld_error(
6007 			    "%s: Unsupported version %d of Elf_Verdef entry",
6008 			    obj->path, vd->vd_version);
6009 			return (-1);
6010 		}
6011 		vernum = VER_DEF_IDX(vd->vd_ndx);
6012 		if (vernum > maxvernum)
6013 			maxvernum = vernum;
6014 		if (vd->vd_next == 0)
6015 			break;
6016 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
6017 	}
6018 
6019 	if (maxvernum == 0)
6020 		return (0);
6021 
6022 	/*
6023 	 * Store version information in array indexable by version index.
6024 	 * Verify that object version requirements are satisfied along the
6025 	 * way.
6026 	 */
6027 	obj->vernum = maxvernum + 1;
6028 	obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
6029 
6030 	vd = obj->verdef;
6031 	while (vd != NULL) {
6032 		if ((vd->vd_flags & VER_FLG_BASE) == 0) {
6033 			vernum = VER_DEF_IDX(vd->vd_ndx);
6034 			assert(vernum <= maxvernum);
6035 			vda = (const Elf_Verdaux *)((const char *)vd +
6036 			    vd->vd_aux);
6037 			obj->vertab[vernum].hash = vd->vd_hash;
6038 			obj->vertab[vernum].name = obj->strtab + vda->vda_name;
6039 			obj->vertab[vernum].file = NULL;
6040 			obj->vertab[vernum].flags = 0;
6041 		}
6042 		if (vd->vd_next == 0)
6043 			break;
6044 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
6045 	}
6046 
6047 	vn = obj->verneed;
6048 	while (vn != NULL) {
6049 		depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
6050 		if (depobj == NULL)
6051 			return (-1);
6052 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
6053 		for (;;) {
6054 			if (check_object_provided_version(obj, depobj, vna))
6055 				return (-1);
6056 			vernum = VER_NEED_IDX(vna->vna_other);
6057 			assert(vernum <= maxvernum);
6058 			obj->vertab[vernum].hash = vna->vna_hash;
6059 			obj->vertab[vernum].name = obj->strtab + vna->vna_name;
6060 			obj->vertab[vernum].file = obj->strtab + vn->vn_file;
6061 			obj->vertab[vernum].flags = (vna->vna_other &
6062 			    VER_NEED_HIDDEN) != 0 ? VER_INFO_HIDDEN : 0;
6063 			if (vna->vna_next == 0)
6064 				break;
6065 			vna = (const Elf_Vernaux *)((const char *)vna +
6066 			    vna->vna_next);
6067 		}
6068 		if (vn->vn_next == 0)
6069 			break;
6070 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
6071 	}
6072 	return (0);
6073 }
6074 
6075 static int
rtld_verify_versions(const Objlist * objlist)6076 rtld_verify_versions(const Objlist *objlist)
6077 {
6078 	Objlist_Entry *entry;
6079 	int rc;
6080 
6081 	rc = 0;
6082 	STAILQ_FOREACH(entry, objlist, link) {
6083 		/*
6084 		 * Skip dummy objects or objects that have their version
6085 		 * requirements already checked.
6086 		 */
6087 		if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
6088 			continue;
6089 		if (rtld_verify_object_versions(entry->obj) == -1) {
6090 			rc = -1;
6091 			if (ld_tracing == NULL)
6092 				break;
6093 		}
6094 	}
6095 	if (rc == 0 || ld_tracing != NULL)
6096 		rc = rtld_verify_object_versions(&obj_rtld);
6097 	return (rc);
6098 }
6099 
6100 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)6101 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
6102 {
6103 	Elf_Versym vernum;
6104 
6105 	if (obj->vertab) {
6106 		vernum = VER_NDX(obj->versyms[symnum]);
6107 		if (vernum >= obj->vernum) {
6108 			_rtld_error("%s: symbol %s has wrong verneed value %d",
6109 			    obj->path, obj->strtab + symnum, vernum);
6110 		} else if (obj->vertab[vernum].hash != 0) {
6111 			return (&obj->vertab[vernum]);
6112 		}
6113 	}
6114 	return (NULL);
6115 }
6116 
6117 int
_rtld_get_stack_prot(void)6118 _rtld_get_stack_prot(void)
6119 {
6120 	return (stack_prot);
6121 }
6122 
6123 int
_rtld_is_dlopened(void * arg)6124 _rtld_is_dlopened(void *arg)
6125 {
6126 	Obj_Entry *obj;
6127 	RtldLockState lockstate;
6128 	int res;
6129 
6130 	rlock_acquire(rtld_bind_lock, &lockstate);
6131 	obj = dlcheck(arg);
6132 	if (obj == NULL)
6133 		obj = obj_from_addr(arg);
6134 	if (obj == NULL) {
6135 		_rtld_error("No shared object contains address");
6136 		lock_release(rtld_bind_lock, &lockstate);
6137 		return (-1);
6138 	}
6139 	res = obj->dlopened ? 1 : 0;
6140 	lock_release(rtld_bind_lock, &lockstate);
6141 	return (res);
6142 }
6143 
6144 static int
obj_remap_relro(Obj_Entry * obj,int prot)6145 obj_remap_relro(Obj_Entry *obj, int prot)
6146 {
6147 	const Elf_Phdr *ph;
6148 	caddr_t relro_page;
6149 	size_t relro_size;
6150 
6151 	for (ph = obj->phdr; (const char *)ph < (const char *)obj->phdr +
6152 	    obj->phsize; ph++) {
6153 		if (ph->p_type != PT_GNU_RELRO)
6154 			continue;
6155 		relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
6156 		relro_size = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
6157 		    rtld_trunc_page(ph->p_vaddr);
6158 		if (mprotect(relro_page, relro_size, prot) == -1) {
6159 			_rtld_error(
6160 			    "%s: Cannot set relro protection to %#x: %s",
6161 			    obj->path, prot, rtld_strerror(errno));
6162 			return (-1);
6163 		}
6164 		break;
6165 	}
6166 	return (0);
6167 }
6168 
6169 static int
obj_disable_relro(Obj_Entry * obj)6170 obj_disable_relro(Obj_Entry *obj)
6171 {
6172 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
6173 }
6174 
6175 static int
obj_enforce_relro(Obj_Entry * obj)6176 obj_enforce_relro(Obj_Entry *obj)
6177 {
6178 	return (obj_remap_relro(obj, PROT_READ));
6179 }
6180 
6181 static void
map_stacks_exec(RtldLockState * lockstate)6182 map_stacks_exec(RtldLockState *lockstate)
6183 {
6184 	void (*thr_map_stacks_exec)(void);
6185 
6186 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
6187 		return;
6188 	thr_map_stacks_exec = (void (*)(void))(
6189 	    uintptr_t)get_program_var_addr("__pthread_map_stacks_exec",
6190 	    lockstate);
6191 	if (thr_map_stacks_exec != NULL) {
6192 		stack_prot |= PROT_EXEC;
6193 		thr_map_stacks_exec();
6194 	}
6195 }
6196 
6197 static void
distribute_static_tls(Objlist * list)6198 distribute_static_tls(Objlist *list)
6199 {
6200 	struct tcb_list_entry *tcbelm;
6201 	Objlist_Entry *objelm;
6202 	struct tcb *tcb;
6203 	Obj_Entry *obj;
6204 	char *tlsbase;
6205 
6206 	STAILQ_FOREACH(objelm, list, link) {
6207 		obj = objelm->obj;
6208 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
6209 			continue;
6210 		TAILQ_FOREACH(tcbelm, &tcb_list, next) {
6211 			tcb = tcb_from_tcb_list_entry(tcbelm);
6212 #ifdef TLS_VARIANT_I
6213 			tlsbase = (char *)tcb + obj->tlsoffset;
6214 #else
6215 			tlsbase = (char *)tcb - obj->tlsoffset;
6216 #endif
6217 			memcpy(tlsbase, obj->tlsinit, obj->tlsinitsize);
6218 			memset(tlsbase + obj->tlsinitsize, 0,
6219 			    obj->tlssize - obj->tlsinitsize);
6220 		}
6221 		obj->static_tls_copied = true;
6222 	}
6223 }
6224 
6225 void
symlook_init(SymLook * dst,const char * name)6226 symlook_init(SymLook *dst, const char *name)
6227 {
6228 	bzero(dst, sizeof(*dst));
6229 	dst->name = name;
6230 	dst->hash = elf_hash(name);
6231 	dst->hash_gnu = gnu_hash(name);
6232 }
6233 
6234 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)6235 symlook_init_from_req(SymLook *dst, const SymLook *src)
6236 {
6237 	dst->name = src->name;
6238 	dst->hash = src->hash;
6239 	dst->hash_gnu = src->hash_gnu;
6240 	dst->ventry = src->ventry;
6241 	dst->flags = src->flags;
6242 	dst->defobj_out = NULL;
6243 	dst->sym_out = NULL;
6244 	dst->lockstate = src->lockstate;
6245 }
6246 
6247 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)6248 open_binary_fd(const char *argv0, bool search_in_path, const char **binpath_res)
6249 {
6250 	char *binpath, *pathenv, *pe, *res1;
6251 	const char *res;
6252 	int fd;
6253 
6254 	binpath = NULL;
6255 	res = NULL;
6256 	if (search_in_path && strchr(argv0, '/') == NULL) {
6257 		binpath = xmalloc(PATH_MAX);
6258 		pathenv = getenv("PATH");
6259 		if (pathenv == NULL) {
6260 			_rtld_error("-p and no PATH environment variable");
6261 			rtld_die();
6262 		}
6263 		pathenv = strdup(pathenv);
6264 		if (pathenv == NULL) {
6265 			_rtld_error("Cannot allocate memory");
6266 			rtld_die();
6267 		}
6268 		fd = -1;
6269 		errno = ENOENT;
6270 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6271 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6272 				continue;
6273 			if (binpath[0] != '\0' &&
6274 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6275 				continue;
6276 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6277 				continue;
6278 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6279 			if (fd != -1 || errno != ENOENT) {
6280 				res = binpath;
6281 				break;
6282 			}
6283 		}
6284 		free(pathenv);
6285 	} else {
6286 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6287 		res = argv0;
6288 	}
6289 
6290 	if (fd == -1) {
6291 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6292 		rtld_die();
6293 	}
6294 	if (res != NULL && res[0] != '/') {
6295 		res1 = xmalloc(PATH_MAX);
6296 		if (realpath(res, res1) != NULL) {
6297 			if (res != argv0)
6298 				free(__DECONST(char *, res));
6299 			res = res1;
6300 		} else {
6301 			free(res1);
6302 		}
6303 	}
6304 	*binpath_res = res;
6305 	return (fd);
6306 }
6307 
6308 /*
6309  * Parse a set of command-line arguments.
6310  */
6311 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)6312 parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
6313     const char **argv0, bool *dir_ignore)
6314 {
6315 	const char *arg;
6316 	char machine[64];
6317 	size_t sz;
6318 	int arglen, fd, i, j, mib[2];
6319 	char opt;
6320 	bool seen_b, seen_f;
6321 
6322 	dbg("Parsing command-line arguments");
6323 	*use_pathp = false;
6324 	*fdp = -1;
6325 	*dir_ignore = false;
6326 	seen_b = seen_f = false;
6327 
6328 	for (i = 1; i < argc; i++) {
6329 		arg = argv[i];
6330 		dbg("argv[%d]: '%s'", i, arg);
6331 
6332 		/*
6333 		 * rtld arguments end with an explicit "--" or with the first
6334 		 * non-prefixed argument.
6335 		 */
6336 		if (strcmp(arg, "--") == 0) {
6337 			i++;
6338 			break;
6339 		}
6340 		if (arg[0] != '-')
6341 			break;
6342 
6343 		/*
6344 		 * All other arguments are single-character options that can
6345 		 * be combined, so we need to search through `arg` for them.
6346 		 */
6347 		arglen = strlen(arg);
6348 		for (j = 1; j < arglen; j++) {
6349 			opt = arg[j];
6350 			if (opt == 'h') {
6351 				print_usage(argv[0]);
6352 				_exit(0);
6353 			} else if (opt == 'b') {
6354 				if (seen_f) {
6355 					_rtld_error("Both -b and -f specified");
6356 					rtld_die();
6357 				}
6358 				if (j != arglen - 1) {
6359 					_rtld_error("Invalid options: %s", arg);
6360 					rtld_die();
6361 				}
6362 				i++;
6363 				*argv0 = argv[i];
6364 				seen_b = true;
6365 				break;
6366 			} else if (opt == 'd') {
6367 				*dir_ignore = true;
6368 			} else if (opt == 'f') {
6369 				if (seen_b) {
6370 					_rtld_error("Both -b and -f specified");
6371 					rtld_die();
6372 				}
6373 
6374 				/*
6375 				 * -f XX can be used to specify a
6376 				 * descriptor for the binary named at
6377 				 * the command line (i.e., the later
6378 				 * argument will specify the process
6379 				 * name but the descriptor is what
6380 				 * will actually be executed).
6381 				 *
6382 				 * -f must be the last option in the
6383 				 * group, e.g., -abcf <fd>.
6384 				 */
6385 				if (j != arglen - 1) {
6386 					_rtld_error("Invalid options: %s", arg);
6387 					rtld_die();
6388 				}
6389 				i++;
6390 				fd = parse_integer(argv[i]);
6391 				if (fd == -1) {
6392 					_rtld_error(
6393 					    "Invalid file descriptor: '%s'",
6394 					    argv[i]);
6395 					rtld_die();
6396 				}
6397 				*fdp = fd;
6398 				seen_f = true;
6399 				break;
6400 			} else if (opt == 'o') {
6401 				struct ld_env_var_desc *l;
6402 				char *n, *v;
6403 				u_int ll;
6404 
6405 				if (j != arglen - 1) {
6406 					_rtld_error("Invalid options: %s", arg);
6407 					rtld_die();
6408 				}
6409 				i++;
6410 				n = argv[i];
6411 				v = strchr(n, '=');
6412 				if (v == NULL) {
6413 					_rtld_error("No '=' in -o parameter");
6414 					rtld_die();
6415 				}
6416 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6417 					l = &ld_env_vars[ll];
6418 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6419 					    strncmp(n, l->n, v - n) == 0) {
6420 						l->val = v + 1;
6421 						break;
6422 					}
6423 				}
6424 				if (ll == nitems(ld_env_vars)) {
6425 					_rtld_error("Unknown LD_ option %s", n);
6426 					rtld_die();
6427 				}
6428 			} else if (opt == 'p') {
6429 				*use_pathp = true;
6430 			} else if (opt == 'u') {
6431 				u_int ll;
6432 
6433 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6434 					ld_env_vars[ll].val = NULL;
6435 			} else if (opt == 'v') {
6436 				machine[0] = '\0';
6437 				mib[0] = CTL_HW;
6438 				mib[1] = HW_MACHINE;
6439 				sz = sizeof(machine);
6440 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6441 				ld_elf_hints_path = ld_get_env_var(
6442 				    LD_ELF_HINTS_PATH);
6443 				set_ld_elf_hints_path();
6444 				rtld_printf(
6445 				    "FreeBSD ld-elf.so.1 %s\n"
6446 				    "FreeBSD_version %d\n"
6447 				    "Default lib path %s\n"
6448 				    "Hints lib path %s\n"
6449 				    "Env prefix %s\n"
6450 				    "Default hint file %s\n"
6451 				    "Hint file %s\n"
6452 				    "libmap file %s\n"
6453 				    "Optional static TLS size %zd bytes\n",
6454 				    machine, __FreeBSD_version,
6455 				    ld_standard_library_path, gethints(false),
6456 				    ld_env_prefix, ld_elf_hints_default,
6457 				    ld_elf_hints_path, ld_path_libmap_conf,
6458 				    ld_static_tls_extra);
6459 				_exit(0);
6460 			} else {
6461 				_rtld_error("Invalid argument: '%s'", arg);
6462 				print_usage(argv[0]);
6463 				rtld_die();
6464 			}
6465 		}
6466 	}
6467 
6468 	if (!seen_b)
6469 		*argv0 = argv[i];
6470 	return (i);
6471 }
6472 
6473 /*
6474  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6475  */
6476 static int
parse_integer(const char * str)6477 parse_integer(const char *str)
6478 {
6479 	static const int RADIX = 10; /* XXXJA: possibly support hex? */
6480 	const char *orig;
6481 	int n;
6482 	char c;
6483 
6484 	orig = str;
6485 	n = 0;
6486 	for (c = *str; c != '\0'; c = *++str) {
6487 		if (c < '0' || c > '9')
6488 			return (-1);
6489 
6490 		n *= RADIX;
6491 		n += c - '0';
6492 	}
6493 
6494 	/* Make sure we actually parsed something. */
6495 	if (str == orig)
6496 		return (-1);
6497 	return (n);
6498 }
6499 
6500 static void
print_usage(const char * argv0)6501 print_usage(const char *argv0)
6502 {
6503 	rtld_printf(
6504 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6505 	    "\n"
6506 	    "Options:\n"
6507 	    "  -h        Display this help message\n"
6508 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6509 	    "  -d        Ignore lack of exec permissions for the binary\n"
6510 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6511 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6512 	    "  -p        Search in PATH for named binary\n"
6513 	    "  -u        Ignore LD_ environment variables\n"
6514 	    "  -v        Display identification information\n"
6515 	    "  --        End of RTLD options\n"
6516 	    "  <binary>  Name of process to execute\n"
6517 	    "  <args>    Arguments to the executed process\n",
6518 	    argv0);
6519 }
6520 
6521 #define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6522 static const struct auxfmt {
6523 	const char *name;
6524 	const char *fmt;
6525 } auxfmts[] = {
6526 	AUXFMT(AT_NULL, NULL),
6527 	AUXFMT(AT_IGNORE, NULL),
6528 	AUXFMT(AT_EXECFD, "%ld"),
6529 	AUXFMT(AT_PHDR, "%p"),
6530 	AUXFMT(AT_PHENT, "%lu"),
6531 	AUXFMT(AT_PHNUM, "%lu"),
6532 	AUXFMT(AT_PAGESZ, "%lu"),
6533 	AUXFMT(AT_BASE, "%#lx"),
6534 	AUXFMT(AT_FLAGS, "%#lx"),
6535 	AUXFMT(AT_ENTRY, "%p"),
6536 	AUXFMT(AT_NOTELF, NULL),
6537 	AUXFMT(AT_UID, "%ld"),
6538 	AUXFMT(AT_EUID, "%ld"),
6539 	AUXFMT(AT_GID, "%ld"),
6540 	AUXFMT(AT_EGID, "%ld"),
6541 	AUXFMT(AT_EXECPATH, "%s"),
6542 	AUXFMT(AT_CANARY, "%p"),
6543 	AUXFMT(AT_CANARYLEN, "%lu"),
6544 	AUXFMT(AT_OSRELDATE, "%lu"),
6545 	AUXFMT(AT_NCPUS, "%lu"),
6546 	AUXFMT(AT_PAGESIZES, "%p"),
6547 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6548 	AUXFMT(AT_TIMEKEEP, "%p"),
6549 	AUXFMT(AT_STACKPROT, "%#lx"),
6550 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6551 	AUXFMT(AT_HWCAP, "%#lx"),
6552 	AUXFMT(AT_HWCAP2, "%#lx"),
6553 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6554 	AUXFMT(AT_ARGC, "%lu"),
6555 	AUXFMT(AT_ARGV, "%p"),
6556 	AUXFMT(AT_ENVC, "%p"),
6557 	AUXFMT(AT_ENVV, "%p"),
6558 	AUXFMT(AT_PS_STRINGS, "%p"),
6559 	AUXFMT(AT_FXRNG, "%p"),
6560 	AUXFMT(AT_KPRELOAD, "%p"),
6561 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6562 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6563 	/* AT_CHERI_STATS */
6564 	AUXFMT(AT_HWCAP3, "%#lx"),
6565 	AUXFMT(AT_HWCAP4, "%#lx"),
6566 
6567 };
6568 
6569 static bool
is_ptr_fmt(const char * fmt)6570 is_ptr_fmt(const char *fmt)
6571 {
6572 	char last;
6573 
6574 	last = fmt[strlen(fmt) - 1];
6575 	return (last == 'p' || last == 's');
6576 }
6577 
6578 static void
dump_auxv(Elf_Auxinfo ** aux_info)6579 dump_auxv(Elf_Auxinfo **aux_info)
6580 {
6581 	Elf_Auxinfo *auxp;
6582 	const struct auxfmt *fmt;
6583 	int i;
6584 
6585 	for (i = 0; i < AT_COUNT; i++) {
6586 		auxp = aux_info[i];
6587 		if (auxp == NULL)
6588 			continue;
6589 		fmt = &auxfmts[i];
6590 		if (fmt->fmt == NULL)
6591 			continue;
6592 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6593 		if (is_ptr_fmt(fmt->fmt)) {
6594 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6595 			    auxp->a_un.a_ptr);
6596 		} else {
6597 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6598 			    auxp->a_un.a_val);
6599 		}
6600 		rtld_fdprintf(STDOUT_FILENO, "\n");
6601 	}
6602 }
6603 
6604 const char *
rtld_get_var(const char * name)6605 rtld_get_var(const char *name)
6606 {
6607 	const struct ld_env_var_desc *lvd;
6608 	u_int i;
6609 
6610 	for (i = 0; i < nitems(ld_env_vars); i++) {
6611 		lvd = &ld_env_vars[i];
6612 		if (strcmp(lvd->n, name) == 0)
6613 			return (lvd->val);
6614 	}
6615 	return (NULL);
6616 }
6617 
6618 int
rtld_set_var(const char * name,const char * val)6619 rtld_set_var(const char *name, const char *val)
6620 {
6621 	struct ld_env_var_desc *lvd;
6622 	u_int i;
6623 
6624 	for (i = 0; i < nitems(ld_env_vars); i++) {
6625 		lvd = &ld_env_vars[i];
6626 		if (strcmp(lvd->n, name) != 0)
6627 			continue;
6628 		if (!lvd->can_update || (lvd->unsecure && !trust))
6629 			return (EPERM);
6630 		if (lvd->owned)
6631 			free(__DECONST(char *, lvd->val));
6632 		if (val != NULL)
6633 			lvd->val = xstrdup(val);
6634 		else
6635 			lvd->val = NULL;
6636 		lvd->owned = true;
6637 		if (lvd->debug)
6638 			debug = lvd->val != NULL && *lvd->val != '\0';
6639 		return (0);
6640 	}
6641 	return (ENOENT);
6642 }
6643 
6644 /*
6645  * Overrides for libc_pic-provided functions.
6646  */
6647 
6648 int
__getosreldate(void)6649 __getosreldate(void)
6650 {
6651 	size_t len;
6652 	int oid[2];
6653 	int error, osrel;
6654 
6655 	if (osreldate != 0)
6656 		return (osreldate);
6657 
6658 	oid[0] = CTL_KERN;
6659 	oid[1] = KERN_OSRELDATE;
6660 	osrel = 0;
6661 	len = sizeof(osrel);
6662 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6663 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6664 		osreldate = osrel;
6665 	return (osreldate);
6666 }
6667 const char *
rtld_strerror(int errnum)6668 rtld_strerror(int errnum)
6669 {
6670 	if (errnum < 0 || errnum >= sys_nerr)
6671 		return ("Unknown error");
6672 	return (sys_errlist[errnum]);
6673 }
6674 
6675 char *
getenv(const char * name)6676 getenv(const char *name)
6677 {
6678 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6679 	    strlen(name))));
6680 }
6681 
6682 /* malloc */
6683 void *
malloc(size_t nbytes)6684 malloc(size_t nbytes)
6685 {
6686 	return (__crt_malloc(nbytes));
6687 }
6688 
6689 void *
calloc(size_t num,size_t size)6690 calloc(size_t num, size_t size)
6691 {
6692 	return (__crt_calloc(num, size));
6693 }
6694 
6695 void
free(void * cp)6696 free(void *cp)
6697 {
6698 	__crt_free(cp);
6699 }
6700 
6701 void *
realloc(void * cp,size_t nbytes)6702 realloc(void *cp, size_t nbytes)
6703 {
6704 	return (__crt_realloc(cp, nbytes));
6705 }
6706 
6707 extern int _rtld_version__FreeBSD_version __exported;
6708 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6709 
6710 extern char _rtld_version_laddr_offset __exported;
6711 char _rtld_version_laddr_offset;
6712 
6713 extern char _rtld_version_dlpi_tls_data __exported;
6714 char _rtld_version_dlpi_tls_data;
6715