1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Management Component Transport Protocol (MCTP) - routing
4 * implementation.
5 *
6 * This is currently based on a simple routing table, with no dst cache. The
7 * number of routes should stay fairly small, so the lookup cost is small.
8 *
9 * Copyright (c) 2021 Code Construct
10 * Copyright (c) 2021 Google
11 */
12
13 #include <linux/idr.h>
14 #include <linux/kconfig.h>
15 #include <linux/mctp.h>
16 #include <linux/netdevice.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/skbuff.h>
19
20 #include <uapi/linux/if_arp.h>
21
22 #include <net/mctp.h>
23 #include <net/mctpdevice.h>
24 #include <net/netlink.h>
25 #include <net/sock.h>
26
27 #include <trace/events/mctp.h>
28
29 static const unsigned int mctp_message_maxlen = 64 * 1024;
30 static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ;
31
32 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev);
33
34 /* route output callbacks */
mctp_route_discard(struct mctp_route * route,struct sk_buff * skb)35 static int mctp_route_discard(struct mctp_route *route, struct sk_buff *skb)
36 {
37 kfree_skb(skb);
38 return 0;
39 }
40
mctp_lookup_bind(struct net * net,struct sk_buff * skb)41 static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb)
42 {
43 struct mctp_skb_cb *cb = mctp_cb(skb);
44 struct mctp_hdr *mh;
45 struct sock *sk;
46 u8 type;
47
48 WARN_ON(!rcu_read_lock_held());
49
50 /* TODO: look up in skb->cb? */
51 mh = mctp_hdr(skb);
52
53 if (!skb_headlen(skb))
54 return NULL;
55
56 type = (*(u8 *)skb->data) & 0x7f;
57
58 sk_for_each_rcu(sk, &net->mctp.binds) {
59 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
60
61 if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net)
62 continue;
63
64 if (msk->bind_type != type)
65 continue;
66
67 if (!mctp_address_matches(msk->bind_addr, mh->dest))
68 continue;
69
70 return msk;
71 }
72
73 return NULL;
74 }
75
76 /* A note on the key allocations.
77 *
78 * struct net->mctp.keys contains our set of currently-allocated keys for
79 * MCTP tag management. The lookup tuple for these is the peer EID,
80 * local EID and MCTP tag.
81 *
82 * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a
83 * broadcast message is sent, we may receive responses from any peer EID.
84 * Because the broadcast dest address is equivalent to ANY, we create
85 * a key with (local = local-eid, peer = ANY). This allows a match on the
86 * incoming broadcast responses from any peer.
87 *
88 * We perform lookups when packets are received, and when tags are allocated
89 * in two scenarios:
90 *
91 * - when a packet is sent, with a locally-owned tag: we need to find an
92 * unused tag value for the (local, peer) EID pair.
93 *
94 * - when a tag is manually allocated: we need to find an unused tag value
95 * for the peer EID, but don't have a specific local EID at that stage.
96 *
97 * in the latter case, on successful allocation, we end up with a tag with
98 * (local = ANY, peer = peer-eid).
99 *
100 * So, the key set allows both a local EID of ANY, as well as a peer EID of
101 * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast.
102 * The matching (in mctp_key_match()) during lookup allows the match value to
103 * be ANY in either the dest or source addresses.
104 *
105 * When allocating (+ inserting) a tag, we need to check for conflicts amongst
106 * the existing tag set. This requires macthing either exactly on the local
107 * and peer addresses, or either being ANY.
108 */
109
mctp_key_match(struct mctp_sk_key * key,unsigned int net,mctp_eid_t local,mctp_eid_t peer,u8 tag)110 static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net,
111 mctp_eid_t local, mctp_eid_t peer, u8 tag)
112 {
113 if (key->net != net)
114 return false;
115
116 if (!mctp_address_matches(key->local_addr, local))
117 return false;
118
119 if (!mctp_address_matches(key->peer_addr, peer))
120 return false;
121
122 if (key->tag != tag)
123 return false;
124
125 return true;
126 }
127
128 /* returns a key (with key->lock held, and refcounted), or NULL if no such
129 * key exists.
130 */
mctp_lookup_key(struct net * net,struct sk_buff * skb,unsigned int netid,mctp_eid_t peer,unsigned long * irqflags)131 static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb,
132 unsigned int netid, mctp_eid_t peer,
133 unsigned long *irqflags)
134 __acquires(&key->lock)
135 {
136 struct mctp_sk_key *key, *ret;
137 unsigned long flags;
138 struct mctp_hdr *mh;
139 u8 tag;
140
141 mh = mctp_hdr(skb);
142 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
143
144 ret = NULL;
145 spin_lock_irqsave(&net->mctp.keys_lock, flags);
146
147 hlist_for_each_entry(key, &net->mctp.keys, hlist) {
148 if (!mctp_key_match(key, netid, mh->dest, peer, tag))
149 continue;
150
151 spin_lock(&key->lock);
152 if (key->valid) {
153 refcount_inc(&key->refs);
154 ret = key;
155 break;
156 }
157 spin_unlock(&key->lock);
158 }
159
160 if (ret) {
161 spin_unlock(&net->mctp.keys_lock);
162 *irqflags = flags;
163 } else {
164 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
165 }
166
167 return ret;
168 }
169
mctp_key_alloc(struct mctp_sock * msk,unsigned int net,mctp_eid_t local,mctp_eid_t peer,u8 tag,gfp_t gfp)170 static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk,
171 unsigned int net,
172 mctp_eid_t local, mctp_eid_t peer,
173 u8 tag, gfp_t gfp)
174 {
175 struct mctp_sk_key *key;
176
177 key = kzalloc(sizeof(*key), gfp);
178 if (!key)
179 return NULL;
180
181 key->net = net;
182 key->peer_addr = peer;
183 key->local_addr = local;
184 key->tag = tag;
185 key->sk = &msk->sk;
186 key->valid = true;
187 spin_lock_init(&key->lock);
188 refcount_set(&key->refs, 1);
189 sock_hold(key->sk);
190
191 return key;
192 }
193
mctp_key_unref(struct mctp_sk_key * key)194 void mctp_key_unref(struct mctp_sk_key *key)
195 {
196 unsigned long flags;
197
198 if (!refcount_dec_and_test(&key->refs))
199 return;
200
201 /* even though no refs exist here, the lock allows us to stay
202 * consistent with the locking requirement of mctp_dev_release_key
203 */
204 spin_lock_irqsave(&key->lock, flags);
205 mctp_dev_release_key(key->dev, key);
206 spin_unlock_irqrestore(&key->lock, flags);
207
208 sock_put(key->sk);
209 kfree(key);
210 }
211
mctp_key_add(struct mctp_sk_key * key,struct mctp_sock * msk)212 static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk)
213 {
214 struct net *net = sock_net(&msk->sk);
215 struct mctp_sk_key *tmp;
216 unsigned long flags;
217 int rc = 0;
218
219 spin_lock_irqsave(&net->mctp.keys_lock, flags);
220
221 if (sock_flag(&msk->sk, SOCK_DEAD)) {
222 rc = -EINVAL;
223 goto out_unlock;
224 }
225
226 hlist_for_each_entry(tmp, &net->mctp.keys, hlist) {
227 if (mctp_key_match(tmp, key->net, key->local_addr,
228 key->peer_addr, key->tag)) {
229 spin_lock(&tmp->lock);
230 if (tmp->valid)
231 rc = -EEXIST;
232 spin_unlock(&tmp->lock);
233 if (rc)
234 break;
235 }
236 }
237
238 if (!rc) {
239 refcount_inc(&key->refs);
240 key->expiry = jiffies + mctp_key_lifetime;
241 timer_reduce(&msk->key_expiry, key->expiry);
242
243 hlist_add_head(&key->hlist, &net->mctp.keys);
244 hlist_add_head(&key->sklist, &msk->keys);
245 }
246
247 out_unlock:
248 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
249
250 return rc;
251 }
252
253 /* Helper for mctp_route_input().
254 * We're done with the key; unlock and unref the key.
255 * For the usual case of automatic expiry we remove the key from lists.
256 * In the case that manual allocation is set on a key we release the lock
257 * and local ref, reset reassembly, but don't remove from lists.
258 */
__mctp_key_done_in(struct mctp_sk_key * key,struct net * net,unsigned long flags,unsigned long reason)259 static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net,
260 unsigned long flags, unsigned long reason)
261 __releases(&key->lock)
262 {
263 struct sk_buff *skb;
264
265 trace_mctp_key_release(key, reason);
266 skb = key->reasm_head;
267 key->reasm_head = NULL;
268
269 if (!key->manual_alloc) {
270 key->reasm_dead = true;
271 key->valid = false;
272 mctp_dev_release_key(key->dev, key);
273 }
274 spin_unlock_irqrestore(&key->lock, flags);
275
276 if (!key->manual_alloc) {
277 spin_lock_irqsave(&net->mctp.keys_lock, flags);
278 if (!hlist_unhashed(&key->hlist)) {
279 hlist_del_init(&key->hlist);
280 hlist_del_init(&key->sklist);
281 mctp_key_unref(key);
282 }
283 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
284 }
285
286 /* and one for the local reference */
287 mctp_key_unref(key);
288
289 kfree_skb(skb);
290 }
291
292 #ifdef CONFIG_MCTP_FLOWS
mctp_skb_set_flow(struct sk_buff * skb,struct mctp_sk_key * key)293 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key)
294 {
295 struct mctp_flow *flow;
296
297 flow = skb_ext_add(skb, SKB_EXT_MCTP);
298 if (!flow)
299 return;
300
301 refcount_inc(&key->refs);
302 flow->key = key;
303 }
304
mctp_flow_prepare_output(struct sk_buff * skb,struct mctp_dev * dev)305 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev)
306 {
307 struct mctp_sk_key *key;
308 struct mctp_flow *flow;
309
310 flow = skb_ext_find(skb, SKB_EXT_MCTP);
311 if (!flow)
312 return;
313
314 key = flow->key;
315
316 if (WARN_ON(key->dev && key->dev != dev))
317 return;
318
319 mctp_dev_set_key(dev, key);
320 }
321 #else
mctp_skb_set_flow(struct sk_buff * skb,struct mctp_sk_key * key)322 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {}
mctp_flow_prepare_output(struct sk_buff * skb,struct mctp_dev * dev)323 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {}
324 #endif
325
mctp_frag_queue(struct mctp_sk_key * key,struct sk_buff * skb)326 static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb)
327 {
328 struct mctp_hdr *hdr = mctp_hdr(skb);
329 u8 exp_seq, this_seq;
330
331 this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT)
332 & MCTP_HDR_SEQ_MASK;
333
334 if (!key->reasm_head) {
335 /* Since we're manipulating the shared frag_list, ensure it isn't
336 * shared with any other SKBs.
337 */
338 key->reasm_head = skb_unshare(skb, GFP_ATOMIC);
339 if (!key->reasm_head)
340 return -ENOMEM;
341
342 key->reasm_tailp = &(skb_shinfo(key->reasm_head)->frag_list);
343 key->last_seq = this_seq;
344 return 0;
345 }
346
347 exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK;
348
349 if (this_seq != exp_seq)
350 return -EINVAL;
351
352 if (key->reasm_head->len + skb->len > mctp_message_maxlen)
353 return -EINVAL;
354
355 skb->next = NULL;
356 skb->sk = NULL;
357 *key->reasm_tailp = skb;
358 key->reasm_tailp = &skb->next;
359
360 key->last_seq = this_seq;
361
362 key->reasm_head->data_len += skb->len;
363 key->reasm_head->len += skb->len;
364 key->reasm_head->truesize += skb->truesize;
365
366 return 0;
367 }
368
mctp_route_input(struct mctp_route * route,struct sk_buff * skb)369 static int mctp_route_input(struct mctp_route *route, struct sk_buff *skb)
370 {
371 struct mctp_sk_key *key, *any_key = NULL;
372 struct net *net = dev_net(skb->dev);
373 struct mctp_sock *msk;
374 struct mctp_hdr *mh;
375 unsigned int netid;
376 unsigned long f;
377 u8 tag, flags;
378 int rc;
379
380 msk = NULL;
381 rc = -EINVAL;
382
383 /* We may be receiving a locally-routed packet; drop source sk
384 * accounting.
385 *
386 * From here, we will either queue the skb - either to a frag_queue, or
387 * to a receiving socket. When that succeeds, we clear the skb pointer;
388 * a non-NULL skb on exit will be otherwise unowned, and hence
389 * kfree_skb()-ed.
390 */
391 skb_orphan(skb);
392
393 /* ensure we have enough data for a header and a type */
394 if (skb->len < sizeof(struct mctp_hdr) + 1)
395 goto out;
396
397 /* grab header, advance data ptr */
398 mh = mctp_hdr(skb);
399 netid = mctp_cb(skb)->net;
400 skb_pull(skb, sizeof(struct mctp_hdr));
401
402 if (mh->ver != 1)
403 goto out;
404
405 flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM);
406 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
407
408 rcu_read_lock();
409
410 /* lookup socket / reasm context, exactly matching (src,dest,tag).
411 * we hold a ref on the key, and key->lock held.
412 */
413 key = mctp_lookup_key(net, skb, netid, mh->src, &f);
414
415 if (flags & MCTP_HDR_FLAG_SOM) {
416 if (key) {
417 msk = container_of(key->sk, struct mctp_sock, sk);
418 } else {
419 /* first response to a broadcast? do a more general
420 * key lookup to find the socket, but don't use this
421 * key for reassembly - we'll create a more specific
422 * one for future packets if required (ie, !EOM).
423 *
424 * this lookup requires key->peer to be MCTP_ADDR_ANY,
425 * it doesn't match just any key->peer.
426 */
427 any_key = mctp_lookup_key(net, skb, netid,
428 MCTP_ADDR_ANY, &f);
429 if (any_key) {
430 msk = container_of(any_key->sk,
431 struct mctp_sock, sk);
432 spin_unlock_irqrestore(&any_key->lock, f);
433 }
434 }
435
436 if (!key && !msk && (tag & MCTP_HDR_FLAG_TO))
437 msk = mctp_lookup_bind(net, skb);
438
439 if (!msk) {
440 rc = -ENOENT;
441 goto out_unlock;
442 }
443
444 /* single-packet message? deliver to socket, clean up any
445 * pending key.
446 */
447 if (flags & MCTP_HDR_FLAG_EOM) {
448 rc = sock_queue_rcv_skb(&msk->sk, skb);
449 if (!rc)
450 skb = NULL;
451 if (key) {
452 /* we've hit a pending reassembly; not much we
453 * can do but drop it
454 */
455 __mctp_key_done_in(key, net, f,
456 MCTP_TRACE_KEY_REPLIED);
457 key = NULL;
458 }
459 goto out_unlock;
460 }
461
462 /* broadcast response or a bind() - create a key for further
463 * packets for this message
464 */
465 if (!key) {
466 key = mctp_key_alloc(msk, netid, mh->dest, mh->src,
467 tag, GFP_ATOMIC);
468 if (!key) {
469 rc = -ENOMEM;
470 goto out_unlock;
471 }
472
473 /* we can queue without the key lock here, as the
474 * key isn't observable yet
475 */
476 mctp_frag_queue(key, skb);
477
478 /* if the key_add fails, we've raced with another
479 * SOM packet with the same src, dest and tag. There's
480 * no way to distinguish future packets, so all we
481 * can do is drop; we'll free the skb on exit from
482 * this function.
483 */
484 rc = mctp_key_add(key, msk);
485 if (!rc) {
486 trace_mctp_key_acquire(key);
487 skb = NULL;
488 }
489
490 /* we don't need to release key->lock on exit, so
491 * clean up here and suppress the unlock via
492 * setting to NULL
493 */
494 mctp_key_unref(key);
495 key = NULL;
496
497 } else {
498 if (key->reasm_head || key->reasm_dead) {
499 /* duplicate start? drop everything */
500 __mctp_key_done_in(key, net, f,
501 MCTP_TRACE_KEY_INVALIDATED);
502 rc = -EEXIST;
503 key = NULL;
504 } else {
505 rc = mctp_frag_queue(key, skb);
506 if (!rc)
507 skb = NULL;
508 }
509 }
510
511 } else if (key) {
512 /* this packet continues a previous message; reassemble
513 * using the message-specific key
514 */
515
516 /* we need to be continuing an existing reassembly... */
517 if (!key->reasm_head)
518 rc = -EINVAL;
519 else
520 rc = mctp_frag_queue(key, skb);
521
522 if (rc)
523 goto out_unlock;
524
525 /* we've queued; the queue owns the skb now */
526 skb = NULL;
527
528 /* end of message? deliver to socket, and we're done with
529 * the reassembly/response key
530 */
531 if (flags & MCTP_HDR_FLAG_EOM) {
532 rc = sock_queue_rcv_skb(key->sk, key->reasm_head);
533 if (!rc)
534 key->reasm_head = NULL;
535 __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED);
536 key = NULL;
537 }
538
539 } else {
540 /* not a start, no matching key */
541 rc = -ENOENT;
542 }
543
544 out_unlock:
545 rcu_read_unlock();
546 if (key) {
547 spin_unlock_irqrestore(&key->lock, f);
548 mctp_key_unref(key);
549 }
550 if (any_key)
551 mctp_key_unref(any_key);
552 out:
553 kfree_skb(skb);
554 return rc;
555 }
556
mctp_route_mtu(struct mctp_route * rt)557 static unsigned int mctp_route_mtu(struct mctp_route *rt)
558 {
559 return rt->mtu ?: READ_ONCE(rt->dev->dev->mtu);
560 }
561
mctp_route_output(struct mctp_route * route,struct sk_buff * skb)562 static int mctp_route_output(struct mctp_route *route, struct sk_buff *skb)
563 {
564 struct mctp_skb_cb *cb = mctp_cb(skb);
565 struct mctp_hdr *hdr = mctp_hdr(skb);
566 char daddr_buf[MAX_ADDR_LEN];
567 char *daddr = NULL;
568 unsigned int mtu;
569 int rc;
570
571 skb->protocol = htons(ETH_P_MCTP);
572
573 mtu = READ_ONCE(skb->dev->mtu);
574 if (skb->len > mtu) {
575 kfree_skb(skb);
576 return -EMSGSIZE;
577 }
578
579 if (cb->ifindex) {
580 /* direct route; use the hwaddr we stashed in sendmsg */
581 if (cb->halen != skb->dev->addr_len) {
582 /* sanity check, sendmsg should have already caught this */
583 kfree_skb(skb);
584 return -EMSGSIZE;
585 }
586 daddr = cb->haddr;
587 } else {
588 /* If lookup fails let the device handle daddr==NULL */
589 if (mctp_neigh_lookup(route->dev, hdr->dest, daddr_buf) == 0)
590 daddr = daddr_buf;
591 }
592
593 rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol),
594 daddr, skb->dev->dev_addr, skb->len);
595 if (rc < 0) {
596 kfree_skb(skb);
597 return -EHOSTUNREACH;
598 }
599
600 mctp_flow_prepare_output(skb, route->dev);
601
602 rc = dev_queue_xmit(skb);
603 if (rc)
604 rc = net_xmit_errno(rc);
605
606 return rc;
607 }
608
609 /* route alloc/release */
mctp_route_release(struct mctp_route * rt)610 static void mctp_route_release(struct mctp_route *rt)
611 {
612 if (refcount_dec_and_test(&rt->refs)) {
613 mctp_dev_put(rt->dev);
614 kfree_rcu(rt, rcu);
615 }
616 }
617
618 /* returns a route with the refcount at 1 */
mctp_route_alloc(void)619 static struct mctp_route *mctp_route_alloc(void)
620 {
621 struct mctp_route *rt;
622
623 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
624 if (!rt)
625 return NULL;
626
627 INIT_LIST_HEAD(&rt->list);
628 refcount_set(&rt->refs, 1);
629 rt->output = mctp_route_discard;
630
631 return rt;
632 }
633
mctp_default_net(struct net * net)634 unsigned int mctp_default_net(struct net *net)
635 {
636 return READ_ONCE(net->mctp.default_net);
637 }
638
mctp_default_net_set(struct net * net,unsigned int index)639 int mctp_default_net_set(struct net *net, unsigned int index)
640 {
641 if (index == 0)
642 return -EINVAL;
643 WRITE_ONCE(net->mctp.default_net, index);
644 return 0;
645 }
646
647 /* tag management */
mctp_reserve_tag(struct net * net,struct mctp_sk_key * key,struct mctp_sock * msk)648 static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key,
649 struct mctp_sock *msk)
650 {
651 struct netns_mctp *mns = &net->mctp;
652
653 lockdep_assert_held(&mns->keys_lock);
654
655 key->expiry = jiffies + mctp_key_lifetime;
656 timer_reduce(&msk->key_expiry, key->expiry);
657
658 /* we hold the net->key_lock here, allowing updates to both
659 * then net and sk
660 */
661 hlist_add_head_rcu(&key->hlist, &mns->keys);
662 hlist_add_head_rcu(&key->sklist, &msk->keys);
663 refcount_inc(&key->refs);
664 }
665
666 /* Allocate a locally-owned tag value for (local, peer), and reserve
667 * it for the socket msk
668 */
mctp_alloc_local_tag(struct mctp_sock * msk,unsigned int netid,mctp_eid_t local,mctp_eid_t peer,bool manual,u8 * tagp)669 struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk,
670 unsigned int netid,
671 mctp_eid_t local, mctp_eid_t peer,
672 bool manual, u8 *tagp)
673 {
674 struct net *net = sock_net(&msk->sk);
675 struct netns_mctp *mns = &net->mctp;
676 struct mctp_sk_key *key, *tmp;
677 unsigned long flags;
678 u8 tagbits;
679
680 /* for NULL destination EIDs, we may get a response from any peer */
681 if (peer == MCTP_ADDR_NULL)
682 peer = MCTP_ADDR_ANY;
683
684 /* be optimistic, alloc now */
685 key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL);
686 if (!key)
687 return ERR_PTR(-ENOMEM);
688
689 /* 8 possible tag values */
690 tagbits = 0xff;
691
692 spin_lock_irqsave(&mns->keys_lock, flags);
693
694 /* Walk through the existing keys, looking for potential conflicting
695 * tags. If we find a conflict, clear that bit from tagbits
696 */
697 hlist_for_each_entry(tmp, &mns->keys, hlist) {
698 /* We can check the lookup fields (*_addr, tag) without the
699 * lock held, they don't change over the lifetime of the key.
700 */
701
702 /* tags are net-specific */
703 if (tmp->net != netid)
704 continue;
705
706 /* if we don't own the tag, it can't conflict */
707 if (tmp->tag & MCTP_HDR_FLAG_TO)
708 continue;
709
710 /* Since we're avoiding conflicting entries, match peer and
711 * local addresses, including with a wildcard on ANY. See
712 * 'A note on key allocations' for background.
713 */
714 if (peer != MCTP_ADDR_ANY &&
715 !mctp_address_matches(tmp->peer_addr, peer))
716 continue;
717
718 if (local != MCTP_ADDR_ANY &&
719 !mctp_address_matches(tmp->local_addr, local))
720 continue;
721
722 spin_lock(&tmp->lock);
723 /* key must still be valid. If we find a match, clear the
724 * potential tag value
725 */
726 if (tmp->valid)
727 tagbits &= ~(1 << tmp->tag);
728 spin_unlock(&tmp->lock);
729
730 if (!tagbits)
731 break;
732 }
733
734 if (tagbits) {
735 key->tag = __ffs(tagbits);
736 mctp_reserve_tag(net, key, msk);
737 trace_mctp_key_acquire(key);
738
739 key->manual_alloc = manual;
740 *tagp = key->tag;
741 }
742
743 spin_unlock_irqrestore(&mns->keys_lock, flags);
744
745 if (!tagbits) {
746 mctp_key_unref(key);
747 return ERR_PTR(-EBUSY);
748 }
749
750 return key;
751 }
752
mctp_lookup_prealloc_tag(struct mctp_sock * msk,unsigned int netid,mctp_eid_t daddr,u8 req_tag,u8 * tagp)753 static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk,
754 unsigned int netid,
755 mctp_eid_t daddr,
756 u8 req_tag, u8 *tagp)
757 {
758 struct net *net = sock_net(&msk->sk);
759 struct netns_mctp *mns = &net->mctp;
760 struct mctp_sk_key *key, *tmp;
761 unsigned long flags;
762
763 req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER);
764 key = NULL;
765
766 spin_lock_irqsave(&mns->keys_lock, flags);
767
768 hlist_for_each_entry(tmp, &mns->keys, hlist) {
769 if (tmp->net != netid)
770 continue;
771
772 if (tmp->tag != req_tag)
773 continue;
774
775 if (!mctp_address_matches(tmp->peer_addr, daddr))
776 continue;
777
778 if (!tmp->manual_alloc)
779 continue;
780
781 spin_lock(&tmp->lock);
782 if (tmp->valid) {
783 key = tmp;
784 refcount_inc(&key->refs);
785 spin_unlock(&tmp->lock);
786 break;
787 }
788 spin_unlock(&tmp->lock);
789 }
790 spin_unlock_irqrestore(&mns->keys_lock, flags);
791
792 if (!key)
793 return ERR_PTR(-ENOENT);
794
795 if (tagp)
796 *tagp = key->tag;
797
798 return key;
799 }
800
801 /* routing lookups */
mctp_rt_match_eid(struct mctp_route * rt,unsigned int net,mctp_eid_t eid)802 static bool mctp_rt_match_eid(struct mctp_route *rt,
803 unsigned int net, mctp_eid_t eid)
804 {
805 return READ_ONCE(rt->dev->net) == net &&
806 rt->min <= eid && rt->max >= eid;
807 }
808
809 /* compares match, used for duplicate prevention */
mctp_rt_compare_exact(struct mctp_route * rt1,struct mctp_route * rt2)810 static bool mctp_rt_compare_exact(struct mctp_route *rt1,
811 struct mctp_route *rt2)
812 {
813 ASSERT_RTNL();
814 return rt1->dev->net == rt2->dev->net &&
815 rt1->min == rt2->min &&
816 rt1->max == rt2->max;
817 }
818
mctp_route_lookup(struct net * net,unsigned int dnet,mctp_eid_t daddr)819 struct mctp_route *mctp_route_lookup(struct net *net, unsigned int dnet,
820 mctp_eid_t daddr)
821 {
822 struct mctp_route *tmp, *rt = NULL;
823
824 rcu_read_lock();
825
826 list_for_each_entry_rcu(tmp, &net->mctp.routes, list) {
827 /* TODO: add metrics */
828 if (mctp_rt_match_eid(tmp, dnet, daddr)) {
829 if (refcount_inc_not_zero(&tmp->refs)) {
830 rt = tmp;
831 break;
832 }
833 }
834 }
835
836 rcu_read_unlock();
837
838 return rt;
839 }
840
mctp_route_lookup_null(struct net * net,struct net_device * dev)841 static struct mctp_route *mctp_route_lookup_null(struct net *net,
842 struct net_device *dev)
843 {
844 struct mctp_route *tmp, *rt = NULL;
845
846 rcu_read_lock();
847
848 list_for_each_entry_rcu(tmp, &net->mctp.routes, list) {
849 if (tmp->dev->dev == dev && tmp->type == RTN_LOCAL &&
850 refcount_inc_not_zero(&tmp->refs)) {
851 rt = tmp;
852 break;
853 }
854 }
855
856 rcu_read_unlock();
857
858 return rt;
859 }
860
mctp_do_fragment_route(struct mctp_route * rt,struct sk_buff * skb,unsigned int mtu,u8 tag)861 static int mctp_do_fragment_route(struct mctp_route *rt, struct sk_buff *skb,
862 unsigned int mtu, u8 tag)
863 {
864 const unsigned int hlen = sizeof(struct mctp_hdr);
865 struct mctp_hdr *hdr, *hdr2;
866 unsigned int pos, size, headroom;
867 struct sk_buff *skb2;
868 int rc;
869 u8 seq;
870
871 hdr = mctp_hdr(skb);
872 seq = 0;
873 rc = 0;
874
875 if (mtu < hlen + 1) {
876 kfree_skb(skb);
877 return -EMSGSIZE;
878 }
879
880 /* keep same headroom as the original skb */
881 headroom = skb_headroom(skb);
882
883 /* we've got the header */
884 skb_pull(skb, hlen);
885
886 for (pos = 0; pos < skb->len;) {
887 /* size of message payload */
888 size = min(mtu - hlen, skb->len - pos);
889
890 skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL);
891 if (!skb2) {
892 rc = -ENOMEM;
893 break;
894 }
895
896 /* generic skb copy */
897 skb2->protocol = skb->protocol;
898 skb2->priority = skb->priority;
899 skb2->dev = skb->dev;
900 memcpy(skb2->cb, skb->cb, sizeof(skb2->cb));
901
902 if (skb->sk)
903 skb_set_owner_w(skb2, skb->sk);
904
905 /* establish packet */
906 skb_reserve(skb2, headroom);
907 skb_reset_network_header(skb2);
908 skb_put(skb2, hlen + size);
909 skb2->transport_header = skb2->network_header + hlen;
910
911 /* copy header fields, calculate SOM/EOM flags & seq */
912 hdr2 = mctp_hdr(skb2);
913 hdr2->ver = hdr->ver;
914 hdr2->dest = hdr->dest;
915 hdr2->src = hdr->src;
916 hdr2->flags_seq_tag = tag &
917 (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
918
919 if (pos == 0)
920 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM;
921
922 if (pos + size == skb->len)
923 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM;
924
925 hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT;
926
927 /* copy message payload */
928 skb_copy_bits(skb, pos, skb_transport_header(skb2), size);
929
930 /* we need to copy the extensions, for MCTP flow data */
931 skb_ext_copy(skb2, skb);
932
933 /* do route */
934 rc = rt->output(rt, skb2);
935 if (rc)
936 break;
937
938 seq = (seq + 1) & MCTP_HDR_SEQ_MASK;
939 pos += size;
940 }
941
942 consume_skb(skb);
943 return rc;
944 }
945
mctp_local_output(struct sock * sk,struct mctp_route * rt,struct sk_buff * skb,mctp_eid_t daddr,u8 req_tag)946 int mctp_local_output(struct sock *sk, struct mctp_route *rt,
947 struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag)
948 {
949 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
950 struct mctp_skb_cb *cb = mctp_cb(skb);
951 struct mctp_route tmp_rt = {0};
952 struct mctp_sk_key *key;
953 struct mctp_hdr *hdr;
954 unsigned long flags;
955 unsigned int netid;
956 unsigned int mtu;
957 mctp_eid_t saddr;
958 bool ext_rt;
959 int rc;
960 u8 tag;
961
962 rc = -ENODEV;
963
964 if (rt) {
965 ext_rt = false;
966 if (WARN_ON(!rt->dev))
967 goto out_release;
968
969 } else if (cb->ifindex) {
970 struct net_device *dev;
971
972 ext_rt = true;
973 rt = &tmp_rt;
974
975 rcu_read_lock();
976 dev = dev_get_by_index_rcu(sock_net(sk), cb->ifindex);
977 if (!dev) {
978 rcu_read_unlock();
979 goto out_free;
980 }
981 rt->dev = __mctp_dev_get(dev);
982 rcu_read_unlock();
983
984 if (!rt->dev)
985 goto out_release;
986
987 /* establish temporary route - we set up enough to keep
988 * mctp_route_output happy
989 */
990 rt->output = mctp_route_output;
991 rt->mtu = 0;
992
993 } else {
994 rc = -EINVAL;
995 goto out_free;
996 }
997
998 spin_lock_irqsave(&rt->dev->addrs_lock, flags);
999 if (rt->dev->num_addrs == 0) {
1000 rc = -EHOSTUNREACH;
1001 } else {
1002 /* use the outbound interface's first address as our source */
1003 saddr = rt->dev->addrs[0];
1004 rc = 0;
1005 }
1006 spin_unlock_irqrestore(&rt->dev->addrs_lock, flags);
1007 netid = READ_ONCE(rt->dev->net);
1008
1009 if (rc)
1010 goto out_release;
1011
1012 if (req_tag & MCTP_TAG_OWNER) {
1013 if (req_tag & MCTP_TAG_PREALLOC)
1014 key = mctp_lookup_prealloc_tag(msk, netid, daddr,
1015 req_tag, &tag);
1016 else
1017 key = mctp_alloc_local_tag(msk, netid, saddr, daddr,
1018 false, &tag);
1019
1020 if (IS_ERR(key)) {
1021 rc = PTR_ERR(key);
1022 goto out_release;
1023 }
1024 mctp_skb_set_flow(skb, key);
1025 /* done with the key in this scope */
1026 mctp_key_unref(key);
1027 tag |= MCTP_HDR_FLAG_TO;
1028 } else {
1029 key = NULL;
1030 tag = req_tag & MCTP_TAG_MASK;
1031 }
1032
1033 skb->protocol = htons(ETH_P_MCTP);
1034 skb->priority = 0;
1035 skb_reset_transport_header(skb);
1036 skb_push(skb, sizeof(struct mctp_hdr));
1037 skb_reset_network_header(skb);
1038 skb->dev = rt->dev->dev;
1039
1040 /* cb->net will have been set on initial ingress */
1041 cb->src = saddr;
1042
1043 /* set up common header fields */
1044 hdr = mctp_hdr(skb);
1045 hdr->ver = 1;
1046 hdr->dest = daddr;
1047 hdr->src = saddr;
1048
1049 mtu = mctp_route_mtu(rt);
1050
1051 if (skb->len + sizeof(struct mctp_hdr) <= mtu) {
1052 hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM |
1053 MCTP_HDR_FLAG_EOM | tag;
1054 rc = rt->output(rt, skb);
1055 } else {
1056 rc = mctp_do_fragment_route(rt, skb, mtu, tag);
1057 }
1058
1059 /* route output functions consume the skb, even on error */
1060 skb = NULL;
1061
1062 out_release:
1063 if (!ext_rt)
1064 mctp_route_release(rt);
1065
1066 mctp_dev_put(tmp_rt.dev);
1067
1068 out_free:
1069 kfree_skb(skb);
1070 return rc;
1071 }
1072
1073 /* route management */
mctp_route_add(struct mctp_dev * mdev,mctp_eid_t daddr_start,unsigned int daddr_extent,unsigned int mtu,unsigned char type)1074 static int mctp_route_add(struct mctp_dev *mdev, mctp_eid_t daddr_start,
1075 unsigned int daddr_extent, unsigned int mtu,
1076 unsigned char type)
1077 {
1078 int (*rtfn)(struct mctp_route *rt, struct sk_buff *skb);
1079 struct net *net = dev_net(mdev->dev);
1080 struct mctp_route *rt, *ert;
1081
1082 if (!mctp_address_unicast(daddr_start))
1083 return -EINVAL;
1084
1085 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
1086 return -EINVAL;
1087
1088 switch (type) {
1089 case RTN_LOCAL:
1090 rtfn = mctp_route_input;
1091 break;
1092 case RTN_UNICAST:
1093 rtfn = mctp_route_output;
1094 break;
1095 default:
1096 return -EINVAL;
1097 }
1098
1099 rt = mctp_route_alloc();
1100 if (!rt)
1101 return -ENOMEM;
1102
1103 rt->min = daddr_start;
1104 rt->max = daddr_start + daddr_extent;
1105 rt->mtu = mtu;
1106 rt->dev = mdev;
1107 mctp_dev_hold(rt->dev);
1108 rt->type = type;
1109 rt->output = rtfn;
1110
1111 ASSERT_RTNL();
1112 /* Prevent duplicate identical routes. */
1113 list_for_each_entry(ert, &net->mctp.routes, list) {
1114 if (mctp_rt_compare_exact(rt, ert)) {
1115 mctp_route_release(rt);
1116 return -EEXIST;
1117 }
1118 }
1119
1120 list_add_rcu(&rt->list, &net->mctp.routes);
1121
1122 return 0;
1123 }
1124
mctp_route_remove(struct mctp_dev * mdev,mctp_eid_t daddr_start,unsigned int daddr_extent,unsigned char type)1125 static int mctp_route_remove(struct mctp_dev *mdev, mctp_eid_t daddr_start,
1126 unsigned int daddr_extent, unsigned char type)
1127 {
1128 struct net *net = dev_net(mdev->dev);
1129 struct mctp_route *rt, *tmp;
1130 mctp_eid_t daddr_end;
1131 bool dropped;
1132
1133 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
1134 return -EINVAL;
1135
1136 daddr_end = daddr_start + daddr_extent;
1137 dropped = false;
1138
1139 ASSERT_RTNL();
1140
1141 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1142 if (rt->dev == mdev &&
1143 rt->min == daddr_start && rt->max == daddr_end &&
1144 rt->type == type) {
1145 list_del_rcu(&rt->list);
1146 /* TODO: immediate RTM_DELROUTE */
1147 mctp_route_release(rt);
1148 dropped = true;
1149 }
1150 }
1151
1152 return dropped ? 0 : -ENOENT;
1153 }
1154
mctp_route_add_local(struct mctp_dev * mdev,mctp_eid_t addr)1155 int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr)
1156 {
1157 return mctp_route_add(mdev, addr, 0, 0, RTN_LOCAL);
1158 }
1159
mctp_route_remove_local(struct mctp_dev * mdev,mctp_eid_t addr)1160 int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr)
1161 {
1162 return mctp_route_remove(mdev, addr, 0, RTN_LOCAL);
1163 }
1164
1165 /* removes all entries for a given device */
mctp_route_remove_dev(struct mctp_dev * mdev)1166 void mctp_route_remove_dev(struct mctp_dev *mdev)
1167 {
1168 struct net *net = dev_net(mdev->dev);
1169 struct mctp_route *rt, *tmp;
1170
1171 ASSERT_RTNL();
1172 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1173 if (rt->dev == mdev) {
1174 list_del_rcu(&rt->list);
1175 /* TODO: immediate RTM_DELROUTE */
1176 mctp_route_release(rt);
1177 }
1178 }
1179 }
1180
1181 /* Incoming packet-handling */
1182
mctp_pkttype_receive(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1183 static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev,
1184 struct packet_type *pt,
1185 struct net_device *orig_dev)
1186 {
1187 struct net *net = dev_net(dev);
1188 struct mctp_dev *mdev;
1189 struct mctp_skb_cb *cb;
1190 struct mctp_route *rt;
1191 struct mctp_hdr *mh;
1192
1193 rcu_read_lock();
1194 mdev = __mctp_dev_get(dev);
1195 rcu_read_unlock();
1196 if (!mdev) {
1197 /* basic non-data sanity checks */
1198 goto err_drop;
1199 }
1200
1201 if (!pskb_may_pull(skb, sizeof(struct mctp_hdr)))
1202 goto err_drop;
1203
1204 skb_reset_transport_header(skb);
1205 skb_reset_network_header(skb);
1206
1207 /* We have enough for a header; decode and route */
1208 mh = mctp_hdr(skb);
1209 if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX)
1210 goto err_drop;
1211
1212 /* source must be valid unicast or null; drop reserved ranges and
1213 * broadcast
1214 */
1215 if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src)))
1216 goto err_drop;
1217
1218 /* dest address: as above, but allow broadcast */
1219 if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) ||
1220 mctp_address_broadcast(mh->dest)))
1221 goto err_drop;
1222
1223 /* MCTP drivers must populate halen/haddr */
1224 if (dev->type == ARPHRD_MCTP) {
1225 cb = mctp_cb(skb);
1226 } else {
1227 cb = __mctp_cb(skb);
1228 cb->halen = 0;
1229 }
1230 cb->net = READ_ONCE(mdev->net);
1231 cb->ifindex = dev->ifindex;
1232
1233 rt = mctp_route_lookup(net, cb->net, mh->dest);
1234
1235 /* NULL EID, but addressed to our physical address */
1236 if (!rt && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST)
1237 rt = mctp_route_lookup_null(net, dev);
1238
1239 if (!rt)
1240 goto err_drop;
1241
1242 rt->output(rt, skb);
1243 mctp_route_release(rt);
1244 mctp_dev_put(mdev);
1245
1246 return NET_RX_SUCCESS;
1247
1248 err_drop:
1249 kfree_skb(skb);
1250 mctp_dev_put(mdev);
1251 return NET_RX_DROP;
1252 }
1253
1254 static struct packet_type mctp_packet_type = {
1255 .type = cpu_to_be16(ETH_P_MCTP),
1256 .func = mctp_pkttype_receive,
1257 };
1258
1259 /* netlink interface */
1260
1261 static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = {
1262 [RTA_DST] = { .type = NLA_U8 },
1263 [RTA_METRICS] = { .type = NLA_NESTED },
1264 [RTA_OIF] = { .type = NLA_U32 },
1265 };
1266
1267 /* Common part for RTM_NEWROUTE and RTM_DELROUTE parsing.
1268 * tb must hold RTA_MAX+1 elements.
1269 */
mctp_route_nlparse(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,struct nlattr ** tb,struct rtmsg ** rtm,struct mctp_dev ** mdev,mctp_eid_t * daddr_start)1270 static int mctp_route_nlparse(struct sk_buff *skb, struct nlmsghdr *nlh,
1271 struct netlink_ext_ack *extack,
1272 struct nlattr **tb, struct rtmsg **rtm,
1273 struct mctp_dev **mdev, mctp_eid_t *daddr_start)
1274 {
1275 struct net *net = sock_net(skb->sk);
1276 struct net_device *dev;
1277 unsigned int ifindex;
1278 int rc;
1279
1280 rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX,
1281 rta_mctp_policy, extack);
1282 if (rc < 0) {
1283 NL_SET_ERR_MSG(extack, "incorrect format");
1284 return rc;
1285 }
1286
1287 if (!tb[RTA_DST]) {
1288 NL_SET_ERR_MSG(extack, "dst EID missing");
1289 return -EINVAL;
1290 }
1291 *daddr_start = nla_get_u8(tb[RTA_DST]);
1292
1293 if (!tb[RTA_OIF]) {
1294 NL_SET_ERR_MSG(extack, "ifindex missing");
1295 return -EINVAL;
1296 }
1297 ifindex = nla_get_u32(tb[RTA_OIF]);
1298
1299 *rtm = nlmsg_data(nlh);
1300 if ((*rtm)->rtm_family != AF_MCTP) {
1301 NL_SET_ERR_MSG(extack, "route family must be AF_MCTP");
1302 return -EINVAL;
1303 }
1304
1305 dev = __dev_get_by_index(net, ifindex);
1306 if (!dev) {
1307 NL_SET_ERR_MSG(extack, "bad ifindex");
1308 return -ENODEV;
1309 }
1310 *mdev = mctp_dev_get_rtnl(dev);
1311 if (!*mdev)
1312 return -ENODEV;
1313
1314 if (dev->flags & IFF_LOOPBACK) {
1315 NL_SET_ERR_MSG(extack, "no routes to loopback");
1316 return -EINVAL;
1317 }
1318
1319 return 0;
1320 }
1321
1322 static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = {
1323 [RTAX_MTU] = { .type = NLA_U32 },
1324 };
1325
mctp_newroute(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1326 static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1327 struct netlink_ext_ack *extack)
1328 {
1329 struct nlattr *tb[RTA_MAX + 1];
1330 struct nlattr *tbx[RTAX_MAX + 1];
1331 mctp_eid_t daddr_start;
1332 struct mctp_dev *mdev;
1333 struct rtmsg *rtm;
1334 unsigned int mtu;
1335 int rc;
1336
1337 rc = mctp_route_nlparse(skb, nlh, extack, tb,
1338 &rtm, &mdev, &daddr_start);
1339 if (rc < 0)
1340 return rc;
1341
1342 if (rtm->rtm_type != RTN_UNICAST) {
1343 NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST");
1344 return -EINVAL;
1345 }
1346
1347 mtu = 0;
1348 if (tb[RTA_METRICS]) {
1349 rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS],
1350 rta_metrics_policy, NULL);
1351 if (rc < 0)
1352 return rc;
1353 if (tbx[RTAX_MTU])
1354 mtu = nla_get_u32(tbx[RTAX_MTU]);
1355 }
1356
1357 rc = mctp_route_add(mdev, daddr_start, rtm->rtm_dst_len, mtu,
1358 rtm->rtm_type);
1359 return rc;
1360 }
1361
mctp_delroute(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1362 static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1363 struct netlink_ext_ack *extack)
1364 {
1365 struct nlattr *tb[RTA_MAX + 1];
1366 mctp_eid_t daddr_start;
1367 struct mctp_dev *mdev;
1368 struct rtmsg *rtm;
1369 int rc;
1370
1371 rc = mctp_route_nlparse(skb, nlh, extack, tb,
1372 &rtm, &mdev, &daddr_start);
1373 if (rc < 0)
1374 return rc;
1375
1376 /* we only have unicast routes */
1377 if (rtm->rtm_type != RTN_UNICAST)
1378 return -EINVAL;
1379
1380 rc = mctp_route_remove(mdev, daddr_start, rtm->rtm_dst_len, RTN_UNICAST);
1381 return rc;
1382 }
1383
mctp_fill_rtinfo(struct sk_buff * skb,struct mctp_route * rt,u32 portid,u32 seq,int event,unsigned int flags)1384 static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt,
1385 u32 portid, u32 seq, int event, unsigned int flags)
1386 {
1387 struct nlmsghdr *nlh;
1388 struct rtmsg *hdr;
1389 void *metrics;
1390
1391 nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags);
1392 if (!nlh)
1393 return -EMSGSIZE;
1394
1395 hdr = nlmsg_data(nlh);
1396 hdr->rtm_family = AF_MCTP;
1397
1398 /* we use the _len fields as a number of EIDs, rather than
1399 * a number of bits in the address
1400 */
1401 hdr->rtm_dst_len = rt->max - rt->min;
1402 hdr->rtm_src_len = 0;
1403 hdr->rtm_tos = 0;
1404 hdr->rtm_table = RT_TABLE_DEFAULT;
1405 hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */
1406 hdr->rtm_scope = RT_SCOPE_LINK; /* TODO: scope in mctp_route? */
1407 hdr->rtm_type = rt->type;
1408
1409 if (nla_put_u8(skb, RTA_DST, rt->min))
1410 goto cancel;
1411
1412 metrics = nla_nest_start_noflag(skb, RTA_METRICS);
1413 if (!metrics)
1414 goto cancel;
1415
1416 if (rt->mtu) {
1417 if (nla_put_u32(skb, RTAX_MTU, rt->mtu))
1418 goto cancel;
1419 }
1420
1421 nla_nest_end(skb, metrics);
1422
1423 if (rt->dev) {
1424 if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex))
1425 goto cancel;
1426 }
1427
1428 /* TODO: conditional neighbour physaddr? */
1429
1430 nlmsg_end(skb, nlh);
1431
1432 return 0;
1433
1434 cancel:
1435 nlmsg_cancel(skb, nlh);
1436 return -EMSGSIZE;
1437 }
1438
mctp_dump_rtinfo(struct sk_buff * skb,struct netlink_callback * cb)1439 static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb)
1440 {
1441 struct net *net = sock_net(skb->sk);
1442 struct mctp_route *rt;
1443 int s_idx, idx;
1444
1445 /* TODO: allow filtering on route data, possibly under
1446 * cb->strict_check
1447 */
1448
1449 /* TODO: change to struct overlay */
1450 s_idx = cb->args[0];
1451 idx = 0;
1452
1453 rcu_read_lock();
1454 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
1455 if (idx++ < s_idx)
1456 continue;
1457 if (mctp_fill_rtinfo(skb, rt,
1458 NETLINK_CB(cb->skb).portid,
1459 cb->nlh->nlmsg_seq,
1460 RTM_NEWROUTE, NLM_F_MULTI) < 0)
1461 break;
1462 }
1463
1464 rcu_read_unlock();
1465 cb->args[0] = idx;
1466
1467 return skb->len;
1468 }
1469
1470 /* net namespace implementation */
mctp_routes_net_init(struct net * net)1471 static int __net_init mctp_routes_net_init(struct net *net)
1472 {
1473 struct netns_mctp *ns = &net->mctp;
1474
1475 INIT_LIST_HEAD(&ns->routes);
1476 INIT_HLIST_HEAD(&ns->binds);
1477 mutex_init(&ns->bind_lock);
1478 INIT_HLIST_HEAD(&ns->keys);
1479 spin_lock_init(&ns->keys_lock);
1480 WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET));
1481 return 0;
1482 }
1483
mctp_routes_net_exit(struct net * net)1484 static void __net_exit mctp_routes_net_exit(struct net *net)
1485 {
1486 struct mctp_route *rt;
1487
1488 rcu_read_lock();
1489 list_for_each_entry_rcu(rt, &net->mctp.routes, list)
1490 mctp_route_release(rt);
1491 rcu_read_unlock();
1492 }
1493
1494 static struct pernet_operations mctp_net_ops = {
1495 .init = mctp_routes_net_init,
1496 .exit = mctp_routes_net_exit,
1497 };
1498
1499 static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = {
1500 {THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0},
1501 {THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0},
1502 {THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0},
1503 };
1504
mctp_routes_init(void)1505 int __init mctp_routes_init(void)
1506 {
1507 int err;
1508
1509 dev_add_pack(&mctp_packet_type);
1510
1511 err = register_pernet_subsys(&mctp_net_ops);
1512 if (err)
1513 goto err_pernet;
1514
1515 err = rtnl_register_many(mctp_route_rtnl_msg_handlers);
1516 if (err)
1517 goto err_rtnl;
1518
1519 return 0;
1520
1521 err_rtnl:
1522 unregister_pernet_subsys(&mctp_net_ops);
1523 err_pernet:
1524 dev_remove_pack(&mctp_packet_type);
1525 return err;
1526 }
1527
mctp_routes_exit(void)1528 void mctp_routes_exit(void)
1529 {
1530 rtnl_unregister_many(mctp_route_rtnl_msg_handlers);
1531 unregister_pernet_subsys(&mctp_net_ops);
1532 dev_remove_pack(&mctp_packet_type);
1533 }
1534
1535 #if IS_ENABLED(CONFIG_MCTP_TEST)
1536 #include "test/route-test.c"
1537 #endif
1538