1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 /*
12 * period over which we measure -rt task CPU usage in us.
13 * default: 1s
14 */
15 int sysctl_sched_rt_period = 1000000;
16
17 /*
18 * part of the period that we allow rt tasks to run in us.
19 * default: 0.95s
20 */
21 int sysctl_sched_rt_runtime = 950000;
22
23 #ifdef CONFIG_SYSCTL
24 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
25 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
26 size_t *lenp, loff_t *ppos);
27 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
28 size_t *lenp, loff_t *ppos);
29 static struct ctl_table sched_rt_sysctls[] = {
30 {
31 .procname = "sched_rt_period_us",
32 .data = &sysctl_sched_rt_period,
33 .maxlen = sizeof(int),
34 .mode = 0644,
35 .proc_handler = sched_rt_handler,
36 .extra1 = SYSCTL_ONE,
37 .extra2 = SYSCTL_INT_MAX,
38 },
39 {
40 .procname = "sched_rt_runtime_us",
41 .data = &sysctl_sched_rt_runtime,
42 .maxlen = sizeof(int),
43 .mode = 0644,
44 .proc_handler = sched_rt_handler,
45 .extra1 = SYSCTL_NEG_ONE,
46 .extra2 = (void *)&sysctl_sched_rt_period,
47 },
48 {
49 .procname = "sched_rr_timeslice_ms",
50 .data = &sysctl_sched_rr_timeslice,
51 .maxlen = sizeof(int),
52 .mode = 0644,
53 .proc_handler = sched_rr_handler,
54 },
55 };
56
sched_rt_sysctl_init(void)57 static int __init sched_rt_sysctl_init(void)
58 {
59 register_sysctl_init("kernel", sched_rt_sysctls);
60 return 0;
61 }
62 late_initcall(sched_rt_sysctl_init);
63 #endif
64
init_rt_rq(struct rt_rq * rt_rq)65 void init_rt_rq(struct rt_rq *rt_rq)
66 {
67 struct rt_prio_array *array;
68 int i;
69
70 array = &rt_rq->active;
71 for (i = 0; i < MAX_RT_PRIO; i++) {
72 INIT_LIST_HEAD(array->queue + i);
73 __clear_bit(i, array->bitmap);
74 }
75 /* delimiter for bitsearch: */
76 __set_bit(MAX_RT_PRIO, array->bitmap);
77
78 #if defined CONFIG_SMP
79 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
80 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
81 rt_rq->overloaded = 0;
82 plist_head_init(&rt_rq->pushable_tasks);
83 #endif /* CONFIG_SMP */
84 /* We start is dequeued state, because no RT tasks are queued */
85 rt_rq->rt_queued = 0;
86
87 #ifdef CONFIG_RT_GROUP_SCHED
88 rt_rq->rt_time = 0;
89 rt_rq->rt_throttled = 0;
90 rt_rq->rt_runtime = 0;
91 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
92 #endif
93 }
94
95 #ifdef CONFIG_RT_GROUP_SCHED
96
97 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
98
sched_rt_period_timer(struct hrtimer * timer)99 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
100 {
101 struct rt_bandwidth *rt_b =
102 container_of(timer, struct rt_bandwidth, rt_period_timer);
103 int idle = 0;
104 int overrun;
105
106 raw_spin_lock(&rt_b->rt_runtime_lock);
107 for (;;) {
108 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
109 if (!overrun)
110 break;
111
112 raw_spin_unlock(&rt_b->rt_runtime_lock);
113 idle = do_sched_rt_period_timer(rt_b, overrun);
114 raw_spin_lock(&rt_b->rt_runtime_lock);
115 }
116 if (idle)
117 rt_b->rt_period_active = 0;
118 raw_spin_unlock(&rt_b->rt_runtime_lock);
119
120 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
121 }
122
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)123 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
124 {
125 rt_b->rt_period = ns_to_ktime(period);
126 rt_b->rt_runtime = runtime;
127
128 raw_spin_lock_init(&rt_b->rt_runtime_lock);
129
130 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
131 HRTIMER_MODE_REL_HARD);
132 rt_b->rt_period_timer.function = sched_rt_period_timer;
133 }
134
do_start_rt_bandwidth(struct rt_bandwidth * rt_b)135 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
136 {
137 raw_spin_lock(&rt_b->rt_runtime_lock);
138 if (!rt_b->rt_period_active) {
139 rt_b->rt_period_active = 1;
140 /*
141 * SCHED_DEADLINE updates the bandwidth, as a run away
142 * RT task with a DL task could hog a CPU. But DL does
143 * not reset the period. If a deadline task was running
144 * without an RT task running, it can cause RT tasks to
145 * throttle when they start up. Kick the timer right away
146 * to update the period.
147 */
148 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
149 hrtimer_start_expires(&rt_b->rt_period_timer,
150 HRTIMER_MODE_ABS_PINNED_HARD);
151 }
152 raw_spin_unlock(&rt_b->rt_runtime_lock);
153 }
154
start_rt_bandwidth(struct rt_bandwidth * rt_b)155 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
156 {
157 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
158 return;
159
160 do_start_rt_bandwidth(rt_b);
161 }
162
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
164 {
165 hrtimer_cancel(&rt_b->rt_period_timer);
166 }
167
168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
169
rt_task_of(struct sched_rt_entity * rt_se)170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
171 {
172 #ifdef CONFIG_SCHED_DEBUG
173 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174 #endif
175 return container_of(rt_se, struct task_struct, rt);
176 }
177
rq_of_rt_rq(struct rt_rq * rt_rq)178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179 {
180 return rt_rq->rq;
181 }
182
rt_rq_of_se(struct sched_rt_entity * rt_se)183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
184 {
185 return rt_se->rt_rq;
186 }
187
rq_of_rt_se(struct sched_rt_entity * rt_se)188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
189 {
190 struct rt_rq *rt_rq = rt_se->rt_rq;
191
192 return rt_rq->rq;
193 }
194
unregister_rt_sched_group(struct task_group * tg)195 void unregister_rt_sched_group(struct task_group *tg)
196 {
197 if (tg->rt_se)
198 destroy_rt_bandwidth(&tg->rt_bandwidth);
199 }
200
free_rt_sched_group(struct task_group * tg)201 void free_rt_sched_group(struct task_group *tg)
202 {
203 int i;
204
205 for_each_possible_cpu(i) {
206 if (tg->rt_rq)
207 kfree(tg->rt_rq[i]);
208 if (tg->rt_se)
209 kfree(tg->rt_se[i]);
210 }
211
212 kfree(tg->rt_rq);
213 kfree(tg->rt_se);
214 }
215
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)216 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
217 struct sched_rt_entity *rt_se, int cpu,
218 struct sched_rt_entity *parent)
219 {
220 struct rq *rq = cpu_rq(cpu);
221
222 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
223 rt_rq->rt_nr_boosted = 0;
224 rt_rq->rq = rq;
225 rt_rq->tg = tg;
226
227 tg->rt_rq[cpu] = rt_rq;
228 tg->rt_se[cpu] = rt_se;
229
230 if (!rt_se)
231 return;
232
233 if (!parent)
234 rt_se->rt_rq = &rq->rt;
235 else
236 rt_se->rt_rq = parent->my_q;
237
238 rt_se->my_q = rt_rq;
239 rt_se->parent = parent;
240 INIT_LIST_HEAD(&rt_se->run_list);
241 }
242
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)243 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
244 {
245 struct rt_rq *rt_rq;
246 struct sched_rt_entity *rt_se;
247 int i;
248
249 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
250 if (!tg->rt_rq)
251 goto err;
252 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
253 if (!tg->rt_se)
254 goto err;
255
256 init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
257
258 for_each_possible_cpu(i) {
259 rt_rq = kzalloc_node(sizeof(struct rt_rq),
260 GFP_KERNEL, cpu_to_node(i));
261 if (!rt_rq)
262 goto err;
263
264 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
265 GFP_KERNEL, cpu_to_node(i));
266 if (!rt_se)
267 goto err_free_rq;
268
269 init_rt_rq(rt_rq);
270 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
271 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
272 }
273
274 return 1;
275
276 err_free_rq:
277 kfree(rt_rq);
278 err:
279 return 0;
280 }
281
282 #else /* CONFIG_RT_GROUP_SCHED */
283
284 #define rt_entity_is_task(rt_se) (1)
285
rt_task_of(struct sched_rt_entity * rt_se)286 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
287 {
288 return container_of(rt_se, struct task_struct, rt);
289 }
290
rq_of_rt_rq(struct rt_rq * rt_rq)291 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
292 {
293 return container_of(rt_rq, struct rq, rt);
294 }
295
rq_of_rt_se(struct sched_rt_entity * rt_se)296 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
297 {
298 struct task_struct *p = rt_task_of(rt_se);
299
300 return task_rq(p);
301 }
302
rt_rq_of_se(struct sched_rt_entity * rt_se)303 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
304 {
305 struct rq *rq = rq_of_rt_se(rt_se);
306
307 return &rq->rt;
308 }
309
unregister_rt_sched_group(struct task_group * tg)310 void unregister_rt_sched_group(struct task_group *tg) { }
311
free_rt_sched_group(struct task_group * tg)312 void free_rt_sched_group(struct task_group *tg) { }
313
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)314 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
315 {
316 return 1;
317 }
318 #endif /* CONFIG_RT_GROUP_SCHED */
319
320 #ifdef CONFIG_SMP
321
need_pull_rt_task(struct rq * rq,struct task_struct * prev)322 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
323 {
324 /* Try to pull RT tasks here if we lower this rq's prio */
325 return rq->online && rq->rt.highest_prio.curr > prev->prio;
326 }
327
rt_overloaded(struct rq * rq)328 static inline int rt_overloaded(struct rq *rq)
329 {
330 return atomic_read(&rq->rd->rto_count);
331 }
332
rt_set_overload(struct rq * rq)333 static inline void rt_set_overload(struct rq *rq)
334 {
335 if (!rq->online)
336 return;
337
338 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
339 /*
340 * Make sure the mask is visible before we set
341 * the overload count. That is checked to determine
342 * if we should look at the mask. It would be a shame
343 * if we looked at the mask, but the mask was not
344 * updated yet.
345 *
346 * Matched by the barrier in pull_rt_task().
347 */
348 smp_wmb();
349 atomic_inc(&rq->rd->rto_count);
350 }
351
rt_clear_overload(struct rq * rq)352 static inline void rt_clear_overload(struct rq *rq)
353 {
354 if (!rq->online)
355 return;
356
357 /* the order here really doesn't matter */
358 atomic_dec(&rq->rd->rto_count);
359 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
360 }
361
has_pushable_tasks(struct rq * rq)362 static inline int has_pushable_tasks(struct rq *rq)
363 {
364 return !plist_head_empty(&rq->rt.pushable_tasks);
365 }
366
367 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
368 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
369
370 static void push_rt_tasks(struct rq *);
371 static void pull_rt_task(struct rq *);
372
rt_queue_push_tasks(struct rq * rq)373 static inline void rt_queue_push_tasks(struct rq *rq)
374 {
375 if (!has_pushable_tasks(rq))
376 return;
377
378 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
379 }
380
rt_queue_pull_task(struct rq * rq)381 static inline void rt_queue_pull_task(struct rq *rq)
382 {
383 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
384 }
385
enqueue_pushable_task(struct rq * rq,struct task_struct * p)386 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
387 {
388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 plist_node_init(&p->pushable_tasks, p->prio);
390 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
391
392 /* Update the highest prio pushable task */
393 if (p->prio < rq->rt.highest_prio.next)
394 rq->rt.highest_prio.next = p->prio;
395
396 if (!rq->rt.overloaded) {
397 rt_set_overload(rq);
398 rq->rt.overloaded = 1;
399 }
400 }
401
dequeue_pushable_task(struct rq * rq,struct task_struct * p)402 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
403 {
404 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
405
406 /* Update the new highest prio pushable task */
407 if (has_pushable_tasks(rq)) {
408 p = plist_first_entry(&rq->rt.pushable_tasks,
409 struct task_struct, pushable_tasks);
410 rq->rt.highest_prio.next = p->prio;
411 } else {
412 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
413
414 if (rq->rt.overloaded) {
415 rt_clear_overload(rq);
416 rq->rt.overloaded = 0;
417 }
418 }
419 }
420
421 #else
422
enqueue_pushable_task(struct rq * rq,struct task_struct * p)423 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
424 {
425 }
426
dequeue_pushable_task(struct rq * rq,struct task_struct * p)427 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
428 {
429 }
430
rt_queue_push_tasks(struct rq * rq)431 static inline void rt_queue_push_tasks(struct rq *rq)
432 {
433 }
434 #endif /* CONFIG_SMP */
435
436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
438
on_rt_rq(struct sched_rt_entity * rt_se)439 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 {
441 return rt_se->on_rq;
442 }
443
444 #ifdef CONFIG_UCLAMP_TASK
445 /*
446 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
447 * settings.
448 *
449 * This check is only important for heterogeneous systems where uclamp_min value
450 * is higher than the capacity of a @cpu. For non-heterogeneous system this
451 * function will always return true.
452 *
453 * The function will return true if the capacity of the @cpu is >= the
454 * uclamp_min and false otherwise.
455 *
456 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
457 * > uclamp_max.
458 */
rt_task_fits_capacity(struct task_struct * p,int cpu)459 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
460 {
461 unsigned int min_cap;
462 unsigned int max_cap;
463 unsigned int cpu_cap;
464
465 /* Only heterogeneous systems can benefit from this check */
466 if (!sched_asym_cpucap_active())
467 return true;
468
469 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
470 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
471
472 cpu_cap = arch_scale_cpu_capacity(cpu);
473
474 return cpu_cap >= min(min_cap, max_cap);
475 }
476 #else
rt_task_fits_capacity(struct task_struct * p,int cpu)477 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
478 {
479 return true;
480 }
481 #endif
482
483 #ifdef CONFIG_RT_GROUP_SCHED
484
sched_rt_runtime(struct rt_rq * rt_rq)485 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
486 {
487 if (!rt_rq->tg)
488 return RUNTIME_INF;
489
490 return rt_rq->rt_runtime;
491 }
492
sched_rt_period(struct rt_rq * rt_rq)493 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
494 {
495 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
496 }
497
498 typedef struct task_group *rt_rq_iter_t;
499
next_task_group(struct task_group * tg)500 static inline struct task_group *next_task_group(struct task_group *tg)
501 {
502 do {
503 tg = list_entry_rcu(tg->list.next,
504 typeof(struct task_group), list);
505 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
506
507 if (&tg->list == &task_groups)
508 tg = NULL;
509
510 return tg;
511 }
512
513 #define for_each_rt_rq(rt_rq, iter, rq) \
514 for (iter = container_of(&task_groups, typeof(*iter), list); \
515 (iter = next_task_group(iter)) && \
516 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
517
518 #define for_each_sched_rt_entity(rt_se) \
519 for (; rt_se; rt_se = rt_se->parent)
520
group_rt_rq(struct sched_rt_entity * rt_se)521 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
522 {
523 return rt_se->my_q;
524 }
525
526 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
527 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
528
sched_rt_rq_enqueue(struct rt_rq * rt_rq)529 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
530 {
531 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
532 struct rq *rq = rq_of_rt_rq(rt_rq);
533 struct sched_rt_entity *rt_se;
534
535 int cpu = cpu_of(rq);
536
537 rt_se = rt_rq->tg->rt_se[cpu];
538
539 if (rt_rq->rt_nr_running) {
540 if (!rt_se)
541 enqueue_top_rt_rq(rt_rq);
542 else if (!on_rt_rq(rt_se))
543 enqueue_rt_entity(rt_se, 0);
544
545 if (rt_rq->highest_prio.curr < curr->prio)
546 resched_curr(rq);
547 }
548 }
549
sched_rt_rq_dequeue(struct rt_rq * rt_rq)550 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
551 {
552 struct sched_rt_entity *rt_se;
553 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
554
555 rt_se = rt_rq->tg->rt_se[cpu];
556
557 if (!rt_se) {
558 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
559 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
560 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
561 }
562 else if (on_rt_rq(rt_se))
563 dequeue_rt_entity(rt_se, 0);
564 }
565
rt_rq_throttled(struct rt_rq * rt_rq)566 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
567 {
568 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
569 }
570
rt_se_boosted(struct sched_rt_entity * rt_se)571 static int rt_se_boosted(struct sched_rt_entity *rt_se)
572 {
573 struct rt_rq *rt_rq = group_rt_rq(rt_se);
574 struct task_struct *p;
575
576 if (rt_rq)
577 return !!rt_rq->rt_nr_boosted;
578
579 p = rt_task_of(rt_se);
580 return p->prio != p->normal_prio;
581 }
582
583 #ifdef CONFIG_SMP
sched_rt_period_mask(void)584 static inline const struct cpumask *sched_rt_period_mask(void)
585 {
586 return this_rq()->rd->span;
587 }
588 #else
sched_rt_period_mask(void)589 static inline const struct cpumask *sched_rt_period_mask(void)
590 {
591 return cpu_online_mask;
592 }
593 #endif
594
595 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)596 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
597 {
598 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
599 }
600
sched_rt_bandwidth(struct rt_rq * rt_rq)601 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
602 {
603 return &rt_rq->tg->rt_bandwidth;
604 }
605
sched_rt_bandwidth_account(struct rt_rq * rt_rq)606 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
607 {
608 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
609
610 return (hrtimer_active(&rt_b->rt_period_timer) ||
611 rt_rq->rt_time < rt_b->rt_runtime);
612 }
613
614 #ifdef CONFIG_SMP
615 /*
616 * We ran out of runtime, see if we can borrow some from our neighbours.
617 */
do_balance_runtime(struct rt_rq * rt_rq)618 static void do_balance_runtime(struct rt_rq *rt_rq)
619 {
620 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
621 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
622 int i, weight;
623 u64 rt_period;
624
625 weight = cpumask_weight(rd->span);
626
627 raw_spin_lock(&rt_b->rt_runtime_lock);
628 rt_period = ktime_to_ns(rt_b->rt_period);
629 for_each_cpu(i, rd->span) {
630 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
631 s64 diff;
632
633 if (iter == rt_rq)
634 continue;
635
636 raw_spin_lock(&iter->rt_runtime_lock);
637 /*
638 * Either all rqs have inf runtime and there's nothing to steal
639 * or __disable_runtime() below sets a specific rq to inf to
640 * indicate its been disabled and disallow stealing.
641 */
642 if (iter->rt_runtime == RUNTIME_INF)
643 goto next;
644
645 /*
646 * From runqueues with spare time, take 1/n part of their
647 * spare time, but no more than our period.
648 */
649 diff = iter->rt_runtime - iter->rt_time;
650 if (diff > 0) {
651 diff = div_u64((u64)diff, weight);
652 if (rt_rq->rt_runtime + diff > rt_period)
653 diff = rt_period - rt_rq->rt_runtime;
654 iter->rt_runtime -= diff;
655 rt_rq->rt_runtime += diff;
656 if (rt_rq->rt_runtime == rt_period) {
657 raw_spin_unlock(&iter->rt_runtime_lock);
658 break;
659 }
660 }
661 next:
662 raw_spin_unlock(&iter->rt_runtime_lock);
663 }
664 raw_spin_unlock(&rt_b->rt_runtime_lock);
665 }
666
667 /*
668 * Ensure this RQ takes back all the runtime it lend to its neighbours.
669 */
__disable_runtime(struct rq * rq)670 static void __disable_runtime(struct rq *rq)
671 {
672 struct root_domain *rd = rq->rd;
673 rt_rq_iter_t iter;
674 struct rt_rq *rt_rq;
675
676 if (unlikely(!scheduler_running))
677 return;
678
679 for_each_rt_rq(rt_rq, iter, rq) {
680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681 s64 want;
682 int i;
683
684 raw_spin_lock(&rt_b->rt_runtime_lock);
685 raw_spin_lock(&rt_rq->rt_runtime_lock);
686 /*
687 * Either we're all inf and nobody needs to borrow, or we're
688 * already disabled and thus have nothing to do, or we have
689 * exactly the right amount of runtime to take out.
690 */
691 if (rt_rq->rt_runtime == RUNTIME_INF ||
692 rt_rq->rt_runtime == rt_b->rt_runtime)
693 goto balanced;
694 raw_spin_unlock(&rt_rq->rt_runtime_lock);
695
696 /*
697 * Calculate the difference between what we started out with
698 * and what we current have, that's the amount of runtime
699 * we lend and now have to reclaim.
700 */
701 want = rt_b->rt_runtime - rt_rq->rt_runtime;
702
703 /*
704 * Greedy reclaim, take back as much as we can.
705 */
706 for_each_cpu(i, rd->span) {
707 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
708 s64 diff;
709
710 /*
711 * Can't reclaim from ourselves or disabled runqueues.
712 */
713 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
714 continue;
715
716 raw_spin_lock(&iter->rt_runtime_lock);
717 if (want > 0) {
718 diff = min_t(s64, iter->rt_runtime, want);
719 iter->rt_runtime -= diff;
720 want -= diff;
721 } else {
722 iter->rt_runtime -= want;
723 want -= want;
724 }
725 raw_spin_unlock(&iter->rt_runtime_lock);
726
727 if (!want)
728 break;
729 }
730
731 raw_spin_lock(&rt_rq->rt_runtime_lock);
732 /*
733 * We cannot be left wanting - that would mean some runtime
734 * leaked out of the system.
735 */
736 WARN_ON_ONCE(want);
737 balanced:
738 /*
739 * Disable all the borrow logic by pretending we have inf
740 * runtime - in which case borrowing doesn't make sense.
741 */
742 rt_rq->rt_runtime = RUNTIME_INF;
743 rt_rq->rt_throttled = 0;
744 raw_spin_unlock(&rt_rq->rt_runtime_lock);
745 raw_spin_unlock(&rt_b->rt_runtime_lock);
746
747 /* Make rt_rq available for pick_next_task() */
748 sched_rt_rq_enqueue(rt_rq);
749 }
750 }
751
__enable_runtime(struct rq * rq)752 static void __enable_runtime(struct rq *rq)
753 {
754 rt_rq_iter_t iter;
755 struct rt_rq *rt_rq;
756
757 if (unlikely(!scheduler_running))
758 return;
759
760 /*
761 * Reset each runqueue's bandwidth settings
762 */
763 for_each_rt_rq(rt_rq, iter, rq) {
764 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
765
766 raw_spin_lock(&rt_b->rt_runtime_lock);
767 raw_spin_lock(&rt_rq->rt_runtime_lock);
768 rt_rq->rt_runtime = rt_b->rt_runtime;
769 rt_rq->rt_time = 0;
770 rt_rq->rt_throttled = 0;
771 raw_spin_unlock(&rt_rq->rt_runtime_lock);
772 raw_spin_unlock(&rt_b->rt_runtime_lock);
773 }
774 }
775
balance_runtime(struct rt_rq * rt_rq)776 static void balance_runtime(struct rt_rq *rt_rq)
777 {
778 if (!sched_feat(RT_RUNTIME_SHARE))
779 return;
780
781 if (rt_rq->rt_time > rt_rq->rt_runtime) {
782 raw_spin_unlock(&rt_rq->rt_runtime_lock);
783 do_balance_runtime(rt_rq);
784 raw_spin_lock(&rt_rq->rt_runtime_lock);
785 }
786 }
787 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)788 static inline void balance_runtime(struct rt_rq *rt_rq) {}
789 #endif /* CONFIG_SMP */
790
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)791 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
792 {
793 int i, idle = 1, throttled = 0;
794 const struct cpumask *span;
795
796 span = sched_rt_period_mask();
797
798 /*
799 * FIXME: isolated CPUs should really leave the root task group,
800 * whether they are isolcpus or were isolated via cpusets, lest
801 * the timer run on a CPU which does not service all runqueues,
802 * potentially leaving other CPUs indefinitely throttled. If
803 * isolation is really required, the user will turn the throttle
804 * off to kill the perturbations it causes anyway. Meanwhile,
805 * this maintains functionality for boot and/or troubleshooting.
806 */
807 if (rt_b == &root_task_group.rt_bandwidth)
808 span = cpu_online_mask;
809
810 for_each_cpu(i, span) {
811 int enqueue = 0;
812 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
813 struct rq *rq = rq_of_rt_rq(rt_rq);
814 struct rq_flags rf;
815 int skip;
816
817 /*
818 * When span == cpu_online_mask, taking each rq->lock
819 * can be time-consuming. Try to avoid it when possible.
820 */
821 raw_spin_lock(&rt_rq->rt_runtime_lock);
822 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
823 rt_rq->rt_runtime = rt_b->rt_runtime;
824 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
825 raw_spin_unlock(&rt_rq->rt_runtime_lock);
826 if (skip)
827 continue;
828
829 rq_lock(rq, &rf);
830 update_rq_clock(rq);
831
832 if (rt_rq->rt_time) {
833 u64 runtime;
834
835 raw_spin_lock(&rt_rq->rt_runtime_lock);
836 if (rt_rq->rt_throttled)
837 balance_runtime(rt_rq);
838 runtime = rt_rq->rt_runtime;
839 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
840 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
841 rt_rq->rt_throttled = 0;
842 enqueue = 1;
843
844 /*
845 * When we're idle and a woken (rt) task is
846 * throttled wakeup_preempt() will set
847 * skip_update and the time between the wakeup
848 * and this unthrottle will get accounted as
849 * 'runtime'.
850 */
851 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
852 rq_clock_cancel_skipupdate(rq);
853 }
854 if (rt_rq->rt_time || rt_rq->rt_nr_running)
855 idle = 0;
856 raw_spin_unlock(&rt_rq->rt_runtime_lock);
857 } else if (rt_rq->rt_nr_running) {
858 idle = 0;
859 if (!rt_rq_throttled(rt_rq))
860 enqueue = 1;
861 }
862 if (rt_rq->rt_throttled)
863 throttled = 1;
864
865 if (enqueue)
866 sched_rt_rq_enqueue(rt_rq);
867 rq_unlock(rq, &rf);
868 }
869
870 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
871 return 1;
872
873 return idle;
874 }
875
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)876 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
877 {
878 u64 runtime = sched_rt_runtime(rt_rq);
879
880 if (rt_rq->rt_throttled)
881 return rt_rq_throttled(rt_rq);
882
883 if (runtime >= sched_rt_period(rt_rq))
884 return 0;
885
886 balance_runtime(rt_rq);
887 runtime = sched_rt_runtime(rt_rq);
888 if (runtime == RUNTIME_INF)
889 return 0;
890
891 if (rt_rq->rt_time > runtime) {
892 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
893
894 /*
895 * Don't actually throttle groups that have no runtime assigned
896 * but accrue some time due to boosting.
897 */
898 if (likely(rt_b->rt_runtime)) {
899 rt_rq->rt_throttled = 1;
900 printk_deferred_once("sched: RT throttling activated\n");
901 } else {
902 /*
903 * In case we did anyway, make it go away,
904 * replenishment is a joke, since it will replenish us
905 * with exactly 0 ns.
906 */
907 rt_rq->rt_time = 0;
908 }
909
910 if (rt_rq_throttled(rt_rq)) {
911 sched_rt_rq_dequeue(rt_rq);
912 return 1;
913 }
914 }
915
916 return 0;
917 }
918
919 #else /* !CONFIG_RT_GROUP_SCHED */
920
921 typedef struct rt_rq *rt_rq_iter_t;
922
923 #define for_each_rt_rq(rt_rq, iter, rq) \
924 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
925
926 #define for_each_sched_rt_entity(rt_se) \
927 for (; rt_se; rt_se = NULL)
928
group_rt_rq(struct sched_rt_entity * rt_se)929 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
930 {
931 return NULL;
932 }
933
sched_rt_rq_enqueue(struct rt_rq * rt_rq)934 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
935 {
936 struct rq *rq = rq_of_rt_rq(rt_rq);
937
938 if (!rt_rq->rt_nr_running)
939 return;
940
941 enqueue_top_rt_rq(rt_rq);
942 resched_curr(rq);
943 }
944
sched_rt_rq_dequeue(struct rt_rq * rt_rq)945 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
946 {
947 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
948 }
949
rt_rq_throttled(struct rt_rq * rt_rq)950 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
951 {
952 return false;
953 }
954
sched_rt_period_mask(void)955 static inline const struct cpumask *sched_rt_period_mask(void)
956 {
957 return cpu_online_mask;
958 }
959
960 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)961 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
962 {
963 return &cpu_rq(cpu)->rt;
964 }
965
966 #ifdef CONFIG_SMP
__enable_runtime(struct rq * rq)967 static void __enable_runtime(struct rq *rq) { }
__disable_runtime(struct rq * rq)968 static void __disable_runtime(struct rq *rq) { }
969 #endif
970
971 #endif /* CONFIG_RT_GROUP_SCHED */
972
rt_se_prio(struct sched_rt_entity * rt_se)973 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
974 {
975 #ifdef CONFIG_RT_GROUP_SCHED
976 struct rt_rq *rt_rq = group_rt_rq(rt_se);
977
978 if (rt_rq)
979 return rt_rq->highest_prio.curr;
980 #endif
981
982 return rt_task_of(rt_se)->prio;
983 }
984
985 /*
986 * Update the current task's runtime statistics. Skip current tasks that
987 * are not in our scheduling class.
988 */
update_curr_rt(struct rq * rq)989 static void update_curr_rt(struct rq *rq)
990 {
991 struct task_struct *curr = rq->curr;
992 s64 delta_exec;
993
994 if (curr->sched_class != &rt_sched_class)
995 return;
996
997 delta_exec = update_curr_common(rq);
998 if (unlikely(delta_exec <= 0))
999 return;
1000
1001 #ifdef CONFIG_RT_GROUP_SCHED
1002 struct sched_rt_entity *rt_se = &curr->rt;
1003
1004 if (!rt_bandwidth_enabled())
1005 return;
1006
1007 for_each_sched_rt_entity(rt_se) {
1008 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1009 int exceeded;
1010
1011 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1012 raw_spin_lock(&rt_rq->rt_runtime_lock);
1013 rt_rq->rt_time += delta_exec;
1014 exceeded = sched_rt_runtime_exceeded(rt_rq);
1015 if (exceeded)
1016 resched_curr(rq);
1017 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1018 if (exceeded)
1019 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1020 }
1021 }
1022 #endif
1023 }
1024
1025 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq,unsigned int count)1026 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1027 {
1028 struct rq *rq = rq_of_rt_rq(rt_rq);
1029
1030 BUG_ON(&rq->rt != rt_rq);
1031
1032 if (!rt_rq->rt_queued)
1033 return;
1034
1035 BUG_ON(!rq->nr_running);
1036
1037 sub_nr_running(rq, count);
1038 rt_rq->rt_queued = 0;
1039
1040 }
1041
1042 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1043 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1044 {
1045 struct rq *rq = rq_of_rt_rq(rt_rq);
1046
1047 BUG_ON(&rq->rt != rt_rq);
1048
1049 if (rt_rq->rt_queued)
1050 return;
1051
1052 if (rt_rq_throttled(rt_rq))
1053 return;
1054
1055 if (rt_rq->rt_nr_running) {
1056 add_nr_running(rq, rt_rq->rt_nr_running);
1057 rt_rq->rt_queued = 1;
1058 }
1059
1060 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1061 cpufreq_update_util(rq, 0);
1062 }
1063
1064 #if defined CONFIG_SMP
1065
1066 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1067 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1068 {
1069 struct rq *rq = rq_of_rt_rq(rt_rq);
1070
1071 #ifdef CONFIG_RT_GROUP_SCHED
1072 /*
1073 * Change rq's cpupri only if rt_rq is the top queue.
1074 */
1075 if (&rq->rt != rt_rq)
1076 return;
1077 #endif
1078 if (rq->online && prio < prev_prio)
1079 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1080 }
1081
1082 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1083 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1084 {
1085 struct rq *rq = rq_of_rt_rq(rt_rq);
1086
1087 #ifdef CONFIG_RT_GROUP_SCHED
1088 /*
1089 * Change rq's cpupri only if rt_rq is the top queue.
1090 */
1091 if (&rq->rt != rt_rq)
1092 return;
1093 #endif
1094 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1095 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1096 }
1097
1098 #else /* CONFIG_SMP */
1099
1100 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1101 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1102 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1103 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1104
1105 #endif /* CONFIG_SMP */
1106
1107 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1108 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1109 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1110 {
1111 int prev_prio = rt_rq->highest_prio.curr;
1112
1113 if (prio < prev_prio)
1114 rt_rq->highest_prio.curr = prio;
1115
1116 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1117 }
1118
1119 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1120 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1121 {
1122 int prev_prio = rt_rq->highest_prio.curr;
1123
1124 if (rt_rq->rt_nr_running) {
1125
1126 WARN_ON(prio < prev_prio);
1127
1128 /*
1129 * This may have been our highest task, and therefore
1130 * we may have some re-computation to do
1131 */
1132 if (prio == prev_prio) {
1133 struct rt_prio_array *array = &rt_rq->active;
1134
1135 rt_rq->highest_prio.curr =
1136 sched_find_first_bit(array->bitmap);
1137 }
1138
1139 } else {
1140 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1141 }
1142
1143 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1144 }
1145
1146 #else
1147
inc_rt_prio(struct rt_rq * rt_rq,int prio)1148 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1149 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1150
1151 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1152
1153 #ifdef CONFIG_RT_GROUP_SCHED
1154
1155 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1156 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1157 {
1158 if (rt_se_boosted(rt_se))
1159 rt_rq->rt_nr_boosted++;
1160
1161 if (rt_rq->tg)
1162 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1163 }
1164
1165 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1166 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1167 {
1168 if (rt_se_boosted(rt_se))
1169 rt_rq->rt_nr_boosted--;
1170
1171 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1172 }
1173
1174 #else /* CONFIG_RT_GROUP_SCHED */
1175
1176 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1177 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1178 {
1179 }
1180
1181 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1182 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1183
1184 #endif /* CONFIG_RT_GROUP_SCHED */
1185
1186 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1187 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1188 {
1189 struct rt_rq *group_rq = group_rt_rq(rt_se);
1190
1191 if (group_rq)
1192 return group_rq->rt_nr_running;
1193 else
1194 return 1;
1195 }
1196
1197 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1198 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1199 {
1200 struct rt_rq *group_rq = group_rt_rq(rt_se);
1201 struct task_struct *tsk;
1202
1203 if (group_rq)
1204 return group_rq->rr_nr_running;
1205
1206 tsk = rt_task_of(rt_se);
1207
1208 return (tsk->policy == SCHED_RR) ? 1 : 0;
1209 }
1210
1211 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1212 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1213 {
1214 int prio = rt_se_prio(rt_se);
1215
1216 WARN_ON(!rt_prio(prio));
1217 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1218 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1219
1220 inc_rt_prio(rt_rq, prio);
1221 inc_rt_group(rt_se, rt_rq);
1222 }
1223
1224 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1225 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1226 {
1227 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1228 WARN_ON(!rt_rq->rt_nr_running);
1229 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1230 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1231
1232 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1233 dec_rt_group(rt_se, rt_rq);
1234 }
1235
1236 /*
1237 * Change rt_se->run_list location unless SAVE && !MOVE
1238 *
1239 * assumes ENQUEUE/DEQUEUE flags match
1240 */
move_entity(unsigned int flags)1241 static inline bool move_entity(unsigned int flags)
1242 {
1243 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1244 return false;
1245
1246 return true;
1247 }
1248
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1249 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1250 {
1251 list_del_init(&rt_se->run_list);
1252
1253 if (list_empty(array->queue + rt_se_prio(rt_se)))
1254 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1255
1256 rt_se->on_list = 0;
1257 }
1258
1259 static inline struct sched_statistics *
__schedstats_from_rt_se(struct sched_rt_entity * rt_se)1260 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1261 {
1262 #ifdef CONFIG_RT_GROUP_SCHED
1263 /* schedstats is not supported for rt group. */
1264 if (!rt_entity_is_task(rt_se))
1265 return NULL;
1266 #endif
1267
1268 return &rt_task_of(rt_se)->stats;
1269 }
1270
1271 static inline void
update_stats_wait_start_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1272 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1273 {
1274 struct sched_statistics *stats;
1275 struct task_struct *p = NULL;
1276
1277 if (!schedstat_enabled())
1278 return;
1279
1280 if (rt_entity_is_task(rt_se))
1281 p = rt_task_of(rt_se);
1282
1283 stats = __schedstats_from_rt_se(rt_se);
1284 if (!stats)
1285 return;
1286
1287 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1288 }
1289
1290 static inline void
update_stats_enqueue_sleeper_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1291 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1292 {
1293 struct sched_statistics *stats;
1294 struct task_struct *p = NULL;
1295
1296 if (!schedstat_enabled())
1297 return;
1298
1299 if (rt_entity_is_task(rt_se))
1300 p = rt_task_of(rt_se);
1301
1302 stats = __schedstats_from_rt_se(rt_se);
1303 if (!stats)
1304 return;
1305
1306 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1307 }
1308
1309 static inline void
update_stats_enqueue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1310 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1311 int flags)
1312 {
1313 if (!schedstat_enabled())
1314 return;
1315
1316 if (flags & ENQUEUE_WAKEUP)
1317 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1318 }
1319
1320 static inline void
update_stats_wait_end_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1321 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1322 {
1323 struct sched_statistics *stats;
1324 struct task_struct *p = NULL;
1325
1326 if (!schedstat_enabled())
1327 return;
1328
1329 if (rt_entity_is_task(rt_se))
1330 p = rt_task_of(rt_se);
1331
1332 stats = __schedstats_from_rt_se(rt_se);
1333 if (!stats)
1334 return;
1335
1336 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1337 }
1338
1339 static inline void
update_stats_dequeue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1340 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1341 int flags)
1342 {
1343 struct task_struct *p = NULL;
1344
1345 if (!schedstat_enabled())
1346 return;
1347
1348 if (rt_entity_is_task(rt_se))
1349 p = rt_task_of(rt_se);
1350
1351 if ((flags & DEQUEUE_SLEEP) && p) {
1352 unsigned int state;
1353
1354 state = READ_ONCE(p->__state);
1355 if (state & TASK_INTERRUPTIBLE)
1356 __schedstat_set(p->stats.sleep_start,
1357 rq_clock(rq_of_rt_rq(rt_rq)));
1358
1359 if (state & TASK_UNINTERRUPTIBLE)
1360 __schedstat_set(p->stats.block_start,
1361 rq_clock(rq_of_rt_rq(rt_rq)));
1362 }
1363 }
1364
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1365 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1366 {
1367 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1368 struct rt_prio_array *array = &rt_rq->active;
1369 struct rt_rq *group_rq = group_rt_rq(rt_se);
1370 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1371
1372 /*
1373 * Don't enqueue the group if its throttled, or when empty.
1374 * The latter is a consequence of the former when a child group
1375 * get throttled and the current group doesn't have any other
1376 * active members.
1377 */
1378 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1379 if (rt_se->on_list)
1380 __delist_rt_entity(rt_se, array);
1381 return;
1382 }
1383
1384 if (move_entity(flags)) {
1385 WARN_ON_ONCE(rt_se->on_list);
1386 if (flags & ENQUEUE_HEAD)
1387 list_add(&rt_se->run_list, queue);
1388 else
1389 list_add_tail(&rt_se->run_list, queue);
1390
1391 __set_bit(rt_se_prio(rt_se), array->bitmap);
1392 rt_se->on_list = 1;
1393 }
1394 rt_se->on_rq = 1;
1395
1396 inc_rt_tasks(rt_se, rt_rq);
1397 }
1398
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1399 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1400 {
1401 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1402 struct rt_prio_array *array = &rt_rq->active;
1403
1404 if (move_entity(flags)) {
1405 WARN_ON_ONCE(!rt_se->on_list);
1406 __delist_rt_entity(rt_se, array);
1407 }
1408 rt_se->on_rq = 0;
1409
1410 dec_rt_tasks(rt_se, rt_rq);
1411 }
1412
1413 /*
1414 * Because the prio of an upper entry depends on the lower
1415 * entries, we must remove entries top - down.
1416 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1417 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1418 {
1419 struct sched_rt_entity *back = NULL;
1420 unsigned int rt_nr_running;
1421
1422 for_each_sched_rt_entity(rt_se) {
1423 rt_se->back = back;
1424 back = rt_se;
1425 }
1426
1427 rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1428
1429 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1430 if (on_rt_rq(rt_se))
1431 __dequeue_rt_entity(rt_se, flags);
1432 }
1433
1434 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1435 }
1436
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1437 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1438 {
1439 struct rq *rq = rq_of_rt_se(rt_se);
1440
1441 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1442
1443 dequeue_rt_stack(rt_se, flags);
1444 for_each_sched_rt_entity(rt_se)
1445 __enqueue_rt_entity(rt_se, flags);
1446 enqueue_top_rt_rq(&rq->rt);
1447 }
1448
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1449 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1450 {
1451 struct rq *rq = rq_of_rt_se(rt_se);
1452
1453 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1454
1455 dequeue_rt_stack(rt_se, flags);
1456
1457 for_each_sched_rt_entity(rt_se) {
1458 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1459
1460 if (rt_rq && rt_rq->rt_nr_running)
1461 __enqueue_rt_entity(rt_se, flags);
1462 }
1463 enqueue_top_rt_rq(&rq->rt);
1464 }
1465
1466 /*
1467 * Adding/removing a task to/from a priority array:
1468 */
1469 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1470 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1471 {
1472 struct sched_rt_entity *rt_se = &p->rt;
1473
1474 if (flags & ENQUEUE_WAKEUP)
1475 rt_se->timeout = 0;
1476
1477 check_schedstat_required();
1478 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1479
1480 enqueue_rt_entity(rt_se, flags);
1481
1482 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1483 enqueue_pushable_task(rq, p);
1484 }
1485
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1486 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1487 {
1488 struct sched_rt_entity *rt_se = &p->rt;
1489
1490 update_curr_rt(rq);
1491 dequeue_rt_entity(rt_se, flags);
1492
1493 dequeue_pushable_task(rq, p);
1494
1495 return true;
1496 }
1497
1498 /*
1499 * Put task to the head or the end of the run list without the overhead of
1500 * dequeue followed by enqueue.
1501 */
1502 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1503 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1504 {
1505 if (on_rt_rq(rt_se)) {
1506 struct rt_prio_array *array = &rt_rq->active;
1507 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1508
1509 if (head)
1510 list_move(&rt_se->run_list, queue);
1511 else
1512 list_move_tail(&rt_se->run_list, queue);
1513 }
1514 }
1515
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1516 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1517 {
1518 struct sched_rt_entity *rt_se = &p->rt;
1519 struct rt_rq *rt_rq;
1520
1521 for_each_sched_rt_entity(rt_se) {
1522 rt_rq = rt_rq_of_se(rt_se);
1523 requeue_rt_entity(rt_rq, rt_se, head);
1524 }
1525 }
1526
yield_task_rt(struct rq * rq)1527 static void yield_task_rt(struct rq *rq)
1528 {
1529 requeue_task_rt(rq, rq->curr, 0);
1530 }
1531
1532 #ifdef CONFIG_SMP
1533 static int find_lowest_rq(struct task_struct *task);
1534
1535 static int
select_task_rq_rt(struct task_struct * p,int cpu,int flags)1536 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1537 {
1538 struct task_struct *curr;
1539 struct rq *rq;
1540 bool test;
1541
1542 /* For anything but wake ups, just return the task_cpu */
1543 if (!(flags & (WF_TTWU | WF_FORK)))
1544 goto out;
1545
1546 rq = cpu_rq(cpu);
1547
1548 rcu_read_lock();
1549 curr = READ_ONCE(rq->curr); /* unlocked access */
1550
1551 /*
1552 * If the current task on @p's runqueue is an RT task, then
1553 * try to see if we can wake this RT task up on another
1554 * runqueue. Otherwise simply start this RT task
1555 * on its current runqueue.
1556 *
1557 * We want to avoid overloading runqueues. If the woken
1558 * task is a higher priority, then it will stay on this CPU
1559 * and the lower prio task should be moved to another CPU.
1560 * Even though this will probably make the lower prio task
1561 * lose its cache, we do not want to bounce a higher task
1562 * around just because it gave up its CPU, perhaps for a
1563 * lock?
1564 *
1565 * For equal prio tasks, we just let the scheduler sort it out.
1566 *
1567 * Otherwise, just let it ride on the affine RQ and the
1568 * post-schedule router will push the preempted task away
1569 *
1570 * This test is optimistic, if we get it wrong the load-balancer
1571 * will have to sort it out.
1572 *
1573 * We take into account the capacity of the CPU to ensure it fits the
1574 * requirement of the task - which is only important on heterogeneous
1575 * systems like big.LITTLE.
1576 */
1577 test = curr &&
1578 unlikely(rt_task(curr)) &&
1579 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1580
1581 if (test || !rt_task_fits_capacity(p, cpu)) {
1582 int target = find_lowest_rq(p);
1583
1584 /*
1585 * Bail out if we were forcing a migration to find a better
1586 * fitting CPU but our search failed.
1587 */
1588 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1589 goto out_unlock;
1590
1591 /*
1592 * Don't bother moving it if the destination CPU is
1593 * not running a lower priority task.
1594 */
1595 if (target != -1 &&
1596 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1597 cpu = target;
1598 }
1599
1600 out_unlock:
1601 rcu_read_unlock();
1602
1603 out:
1604 return cpu;
1605 }
1606
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1607 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1608 {
1609 /*
1610 * Current can't be migrated, useless to reschedule,
1611 * let's hope p can move out.
1612 */
1613 if (rq->curr->nr_cpus_allowed == 1 ||
1614 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1615 return;
1616
1617 /*
1618 * p is migratable, so let's not schedule it and
1619 * see if it is pushed or pulled somewhere else.
1620 */
1621 if (p->nr_cpus_allowed != 1 &&
1622 cpupri_find(&rq->rd->cpupri, p, NULL))
1623 return;
1624
1625 /*
1626 * There appear to be other CPUs that can accept
1627 * the current task but none can run 'p', so lets reschedule
1628 * to try and push the current task away:
1629 */
1630 requeue_task_rt(rq, p, 1);
1631 resched_curr(rq);
1632 }
1633
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1634 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1635 {
1636 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1637 /*
1638 * This is OK, because current is on_cpu, which avoids it being
1639 * picked for load-balance and preemption/IRQs are still
1640 * disabled avoiding further scheduler activity on it and we've
1641 * not yet started the picking loop.
1642 */
1643 rq_unpin_lock(rq, rf);
1644 pull_rt_task(rq);
1645 rq_repin_lock(rq, rf);
1646 }
1647
1648 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1649 }
1650 #endif /* CONFIG_SMP */
1651
1652 /*
1653 * Preempt the current task with a newly woken task if needed:
1654 */
wakeup_preempt_rt(struct rq * rq,struct task_struct * p,int flags)1655 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1656 {
1657 if (p->prio < rq->curr->prio) {
1658 resched_curr(rq);
1659 return;
1660 }
1661
1662 #ifdef CONFIG_SMP
1663 /*
1664 * If:
1665 *
1666 * - the newly woken task is of equal priority to the current task
1667 * - the newly woken task is non-migratable while current is migratable
1668 * - current will be preempted on the next reschedule
1669 *
1670 * we should check to see if current can readily move to a different
1671 * cpu. If so, we will reschedule to allow the push logic to try
1672 * to move current somewhere else, making room for our non-migratable
1673 * task.
1674 */
1675 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1676 check_preempt_equal_prio(rq, p);
1677 #endif
1678 }
1679
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1680 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1681 {
1682 struct sched_rt_entity *rt_se = &p->rt;
1683 struct rt_rq *rt_rq = &rq->rt;
1684
1685 p->se.exec_start = rq_clock_task(rq);
1686 if (on_rt_rq(&p->rt))
1687 update_stats_wait_end_rt(rt_rq, rt_se);
1688
1689 /* The running task is never eligible for pushing */
1690 dequeue_pushable_task(rq, p);
1691
1692 if (!first)
1693 return;
1694
1695 /*
1696 * If prev task was rt, put_prev_task() has already updated the
1697 * utilization. We only care of the case where we start to schedule a
1698 * rt task
1699 */
1700 if (rq->curr->sched_class != &rt_sched_class)
1701 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1702
1703 rt_queue_push_tasks(rq);
1704 }
1705
pick_next_rt_entity(struct rt_rq * rt_rq)1706 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1707 {
1708 struct rt_prio_array *array = &rt_rq->active;
1709 struct sched_rt_entity *next = NULL;
1710 struct list_head *queue;
1711 int idx;
1712
1713 idx = sched_find_first_bit(array->bitmap);
1714 BUG_ON(idx >= MAX_RT_PRIO);
1715
1716 queue = array->queue + idx;
1717 if (SCHED_WARN_ON(list_empty(queue)))
1718 return NULL;
1719 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1720
1721 return next;
1722 }
1723
_pick_next_task_rt(struct rq * rq)1724 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1725 {
1726 struct sched_rt_entity *rt_se;
1727 struct rt_rq *rt_rq = &rq->rt;
1728
1729 do {
1730 rt_se = pick_next_rt_entity(rt_rq);
1731 if (unlikely(!rt_se))
1732 return NULL;
1733 rt_rq = group_rt_rq(rt_se);
1734 } while (rt_rq);
1735
1736 return rt_task_of(rt_se);
1737 }
1738
pick_task_rt(struct rq * rq)1739 static struct task_struct *pick_task_rt(struct rq *rq)
1740 {
1741 struct task_struct *p;
1742
1743 if (!sched_rt_runnable(rq))
1744 return NULL;
1745
1746 p = _pick_next_task_rt(rq);
1747
1748 return p;
1749 }
1750
put_prev_task_rt(struct rq * rq,struct task_struct * p,struct task_struct * next)1751 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
1752 {
1753 struct sched_rt_entity *rt_se = &p->rt;
1754 struct rt_rq *rt_rq = &rq->rt;
1755
1756 if (on_rt_rq(&p->rt))
1757 update_stats_wait_start_rt(rt_rq, rt_se);
1758
1759 update_curr_rt(rq);
1760
1761 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1762
1763 /*
1764 * The previous task needs to be made eligible for pushing
1765 * if it is still active
1766 */
1767 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1768 enqueue_pushable_task(rq, p);
1769 }
1770
1771 #ifdef CONFIG_SMP
1772
1773 /* Only try algorithms three times */
1774 #define RT_MAX_TRIES 3
1775
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1776 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1777 {
1778 if (!task_on_cpu(rq, p) &&
1779 cpumask_test_cpu(cpu, &p->cpus_mask))
1780 return 1;
1781
1782 return 0;
1783 }
1784
1785 /*
1786 * Return the highest pushable rq's task, which is suitable to be executed
1787 * on the CPU, NULL otherwise
1788 */
pick_highest_pushable_task(struct rq * rq,int cpu)1789 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1790 {
1791 struct plist_head *head = &rq->rt.pushable_tasks;
1792 struct task_struct *p;
1793
1794 if (!has_pushable_tasks(rq))
1795 return NULL;
1796
1797 plist_for_each_entry(p, head, pushable_tasks) {
1798 if (pick_rt_task(rq, p, cpu))
1799 return p;
1800 }
1801
1802 return NULL;
1803 }
1804
1805 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1806
find_lowest_rq(struct task_struct * task)1807 static int find_lowest_rq(struct task_struct *task)
1808 {
1809 struct sched_domain *sd;
1810 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1811 int this_cpu = smp_processor_id();
1812 int cpu = task_cpu(task);
1813 int ret;
1814
1815 /* Make sure the mask is initialized first */
1816 if (unlikely(!lowest_mask))
1817 return -1;
1818
1819 if (task->nr_cpus_allowed == 1)
1820 return -1; /* No other targets possible */
1821
1822 /*
1823 * If we're on asym system ensure we consider the different capacities
1824 * of the CPUs when searching for the lowest_mask.
1825 */
1826 if (sched_asym_cpucap_active()) {
1827
1828 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1829 task, lowest_mask,
1830 rt_task_fits_capacity);
1831 } else {
1832
1833 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1834 task, lowest_mask);
1835 }
1836
1837 if (!ret)
1838 return -1; /* No targets found */
1839
1840 /*
1841 * At this point we have built a mask of CPUs representing the
1842 * lowest priority tasks in the system. Now we want to elect
1843 * the best one based on our affinity and topology.
1844 *
1845 * We prioritize the last CPU that the task executed on since
1846 * it is most likely cache-hot in that location.
1847 */
1848 if (cpumask_test_cpu(cpu, lowest_mask))
1849 return cpu;
1850
1851 /*
1852 * Otherwise, we consult the sched_domains span maps to figure
1853 * out which CPU is logically closest to our hot cache data.
1854 */
1855 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1856 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1857
1858 rcu_read_lock();
1859 for_each_domain(cpu, sd) {
1860 if (sd->flags & SD_WAKE_AFFINE) {
1861 int best_cpu;
1862
1863 /*
1864 * "this_cpu" is cheaper to preempt than a
1865 * remote processor.
1866 */
1867 if (this_cpu != -1 &&
1868 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1869 rcu_read_unlock();
1870 return this_cpu;
1871 }
1872
1873 best_cpu = cpumask_any_and_distribute(lowest_mask,
1874 sched_domain_span(sd));
1875 if (best_cpu < nr_cpu_ids) {
1876 rcu_read_unlock();
1877 return best_cpu;
1878 }
1879 }
1880 }
1881 rcu_read_unlock();
1882
1883 /*
1884 * And finally, if there were no matches within the domains
1885 * just give the caller *something* to work with from the compatible
1886 * locations.
1887 */
1888 if (this_cpu != -1)
1889 return this_cpu;
1890
1891 cpu = cpumask_any_distribute(lowest_mask);
1892 if (cpu < nr_cpu_ids)
1893 return cpu;
1894
1895 return -1;
1896 }
1897
1898 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1899 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1900 {
1901 struct rq *lowest_rq = NULL;
1902 int tries;
1903 int cpu;
1904
1905 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1906 cpu = find_lowest_rq(task);
1907
1908 if ((cpu == -1) || (cpu == rq->cpu))
1909 break;
1910
1911 lowest_rq = cpu_rq(cpu);
1912
1913 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1914 /*
1915 * Target rq has tasks of equal or higher priority,
1916 * retrying does not release any lock and is unlikely
1917 * to yield a different result.
1918 */
1919 lowest_rq = NULL;
1920 break;
1921 }
1922
1923 /* if the prio of this runqueue changed, try again */
1924 if (double_lock_balance(rq, lowest_rq)) {
1925 /*
1926 * We had to unlock the run queue. In
1927 * the mean time, task could have
1928 * migrated already or had its affinity changed.
1929 * Also make sure that it wasn't scheduled on its rq.
1930 * It is possible the task was scheduled, set
1931 * "migrate_disabled" and then got preempted, so we must
1932 * check the task migration disable flag here too.
1933 */
1934 if (unlikely(task_rq(task) != rq ||
1935 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1936 task_on_cpu(rq, task) ||
1937 !rt_task(task) ||
1938 is_migration_disabled(task) ||
1939 !task_on_rq_queued(task))) {
1940
1941 double_unlock_balance(rq, lowest_rq);
1942 lowest_rq = NULL;
1943 break;
1944 }
1945 }
1946
1947 /* If this rq is still suitable use it. */
1948 if (lowest_rq->rt.highest_prio.curr > task->prio)
1949 break;
1950
1951 /* try again */
1952 double_unlock_balance(rq, lowest_rq);
1953 lowest_rq = NULL;
1954 }
1955
1956 return lowest_rq;
1957 }
1958
pick_next_pushable_task(struct rq * rq)1959 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1960 {
1961 struct task_struct *p;
1962
1963 if (!has_pushable_tasks(rq))
1964 return NULL;
1965
1966 p = plist_first_entry(&rq->rt.pushable_tasks,
1967 struct task_struct, pushable_tasks);
1968
1969 BUG_ON(rq->cpu != task_cpu(p));
1970 BUG_ON(task_current(rq, p));
1971 BUG_ON(p->nr_cpus_allowed <= 1);
1972
1973 BUG_ON(!task_on_rq_queued(p));
1974 BUG_ON(!rt_task(p));
1975
1976 return p;
1977 }
1978
1979 /*
1980 * If the current CPU has more than one RT task, see if the non
1981 * running task can migrate over to a CPU that is running a task
1982 * of lesser priority.
1983 */
push_rt_task(struct rq * rq,bool pull)1984 static int push_rt_task(struct rq *rq, bool pull)
1985 {
1986 struct task_struct *next_task;
1987 struct rq *lowest_rq;
1988 int ret = 0;
1989
1990 if (!rq->rt.overloaded)
1991 return 0;
1992
1993 next_task = pick_next_pushable_task(rq);
1994 if (!next_task)
1995 return 0;
1996
1997 retry:
1998 /*
1999 * It's possible that the next_task slipped in of
2000 * higher priority than current. If that's the case
2001 * just reschedule current.
2002 */
2003 if (unlikely(next_task->prio < rq->curr->prio)) {
2004 resched_curr(rq);
2005 return 0;
2006 }
2007
2008 if (is_migration_disabled(next_task)) {
2009 struct task_struct *push_task = NULL;
2010 int cpu;
2011
2012 if (!pull || rq->push_busy)
2013 return 0;
2014
2015 /*
2016 * Invoking find_lowest_rq() on anything but an RT task doesn't
2017 * make sense. Per the above priority check, curr has to
2018 * be of higher priority than next_task, so no need to
2019 * reschedule when bailing out.
2020 *
2021 * Note that the stoppers are masqueraded as SCHED_FIFO
2022 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2023 */
2024 if (rq->curr->sched_class != &rt_sched_class)
2025 return 0;
2026
2027 cpu = find_lowest_rq(rq->curr);
2028 if (cpu == -1 || cpu == rq->cpu)
2029 return 0;
2030
2031 /*
2032 * Given we found a CPU with lower priority than @next_task,
2033 * therefore it should be running. However we cannot migrate it
2034 * to this other CPU, instead attempt to push the current
2035 * running task on this CPU away.
2036 */
2037 push_task = get_push_task(rq);
2038 if (push_task) {
2039 preempt_disable();
2040 raw_spin_rq_unlock(rq);
2041 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2042 push_task, &rq->push_work);
2043 preempt_enable();
2044 raw_spin_rq_lock(rq);
2045 }
2046
2047 return 0;
2048 }
2049
2050 if (WARN_ON(next_task == rq->curr))
2051 return 0;
2052
2053 /* We might release rq lock */
2054 get_task_struct(next_task);
2055
2056 /* find_lock_lowest_rq locks the rq if found */
2057 lowest_rq = find_lock_lowest_rq(next_task, rq);
2058 if (!lowest_rq) {
2059 struct task_struct *task;
2060 /*
2061 * find_lock_lowest_rq releases rq->lock
2062 * so it is possible that next_task has migrated.
2063 *
2064 * We need to make sure that the task is still on the same
2065 * run-queue and is also still the next task eligible for
2066 * pushing.
2067 */
2068 task = pick_next_pushable_task(rq);
2069 if (task == next_task) {
2070 /*
2071 * The task hasn't migrated, and is still the next
2072 * eligible task, but we failed to find a run-queue
2073 * to push it to. Do not retry in this case, since
2074 * other CPUs will pull from us when ready.
2075 */
2076 goto out;
2077 }
2078
2079 if (!task)
2080 /* No more tasks, just exit */
2081 goto out;
2082
2083 /*
2084 * Something has shifted, try again.
2085 */
2086 put_task_struct(next_task);
2087 next_task = task;
2088 goto retry;
2089 }
2090
2091 deactivate_task(rq, next_task, 0);
2092 set_task_cpu(next_task, lowest_rq->cpu);
2093 activate_task(lowest_rq, next_task, 0);
2094 resched_curr(lowest_rq);
2095 ret = 1;
2096
2097 double_unlock_balance(rq, lowest_rq);
2098 out:
2099 put_task_struct(next_task);
2100
2101 return ret;
2102 }
2103
push_rt_tasks(struct rq * rq)2104 static void push_rt_tasks(struct rq *rq)
2105 {
2106 /* push_rt_task will return true if it moved an RT */
2107 while (push_rt_task(rq, false))
2108 ;
2109 }
2110
2111 #ifdef HAVE_RT_PUSH_IPI
2112
2113 /*
2114 * When a high priority task schedules out from a CPU and a lower priority
2115 * task is scheduled in, a check is made to see if there's any RT tasks
2116 * on other CPUs that are waiting to run because a higher priority RT task
2117 * is currently running on its CPU. In this case, the CPU with multiple RT
2118 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2119 * up that may be able to run one of its non-running queued RT tasks.
2120 *
2121 * All CPUs with overloaded RT tasks need to be notified as there is currently
2122 * no way to know which of these CPUs have the highest priority task waiting
2123 * to run. Instead of trying to take a spinlock on each of these CPUs,
2124 * which has shown to cause large latency when done on machines with many
2125 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2126 * RT tasks waiting to run.
2127 *
2128 * Just sending an IPI to each of the CPUs is also an issue, as on large
2129 * count CPU machines, this can cause an IPI storm on a CPU, especially
2130 * if its the only CPU with multiple RT tasks queued, and a large number
2131 * of CPUs scheduling a lower priority task at the same time.
2132 *
2133 * Each root domain has its own IRQ work function that can iterate over
2134 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2135 * task must be checked if there's one or many CPUs that are lowering
2136 * their priority, there's a single IRQ work iterator that will try to
2137 * push off RT tasks that are waiting to run.
2138 *
2139 * When a CPU schedules a lower priority task, it will kick off the
2140 * IRQ work iterator that will jump to each CPU with overloaded RT tasks.
2141 * As it only takes the first CPU that schedules a lower priority task
2142 * to start the process, the rto_start variable is incremented and if
2143 * the atomic result is one, then that CPU will try to take the rto_lock.
2144 * This prevents high contention on the lock as the process handles all
2145 * CPUs scheduling lower priority tasks.
2146 *
2147 * All CPUs that are scheduling a lower priority task will increment the
2148 * rt_loop_next variable. This will make sure that the IRQ work iterator
2149 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2150 * priority task, even if the iterator is in the middle of a scan. Incrementing
2151 * the rt_loop_next will cause the iterator to perform another scan.
2152 *
2153 */
rto_next_cpu(struct root_domain * rd)2154 static int rto_next_cpu(struct root_domain *rd)
2155 {
2156 int next;
2157 int cpu;
2158
2159 /*
2160 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2161 * rt_next_cpu() will simply return the first CPU found in
2162 * the rto_mask.
2163 *
2164 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2165 * will return the next CPU found in the rto_mask.
2166 *
2167 * If there are no more CPUs left in the rto_mask, then a check is made
2168 * against rto_loop and rto_loop_next. rto_loop is only updated with
2169 * the rto_lock held, but any CPU may increment the rto_loop_next
2170 * without any locking.
2171 */
2172 for (;;) {
2173
2174 /* When rto_cpu is -1 this acts like cpumask_first() */
2175 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2176
2177 rd->rto_cpu = cpu;
2178
2179 if (cpu < nr_cpu_ids)
2180 return cpu;
2181
2182 rd->rto_cpu = -1;
2183
2184 /*
2185 * ACQUIRE ensures we see the @rto_mask changes
2186 * made prior to the @next value observed.
2187 *
2188 * Matches WMB in rt_set_overload().
2189 */
2190 next = atomic_read_acquire(&rd->rto_loop_next);
2191
2192 if (rd->rto_loop == next)
2193 break;
2194
2195 rd->rto_loop = next;
2196 }
2197
2198 return -1;
2199 }
2200
rto_start_trylock(atomic_t * v)2201 static inline bool rto_start_trylock(atomic_t *v)
2202 {
2203 return !atomic_cmpxchg_acquire(v, 0, 1);
2204 }
2205
rto_start_unlock(atomic_t * v)2206 static inline void rto_start_unlock(atomic_t *v)
2207 {
2208 atomic_set_release(v, 0);
2209 }
2210
tell_cpu_to_push(struct rq * rq)2211 static void tell_cpu_to_push(struct rq *rq)
2212 {
2213 int cpu = -1;
2214
2215 /* Keep the loop going if the IPI is currently active */
2216 atomic_inc(&rq->rd->rto_loop_next);
2217
2218 /* Only one CPU can initiate a loop at a time */
2219 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2220 return;
2221
2222 raw_spin_lock(&rq->rd->rto_lock);
2223
2224 /*
2225 * The rto_cpu is updated under the lock, if it has a valid CPU
2226 * then the IPI is still running and will continue due to the
2227 * update to loop_next, and nothing needs to be done here.
2228 * Otherwise it is finishing up and an IPI needs to be sent.
2229 */
2230 if (rq->rd->rto_cpu < 0)
2231 cpu = rto_next_cpu(rq->rd);
2232
2233 raw_spin_unlock(&rq->rd->rto_lock);
2234
2235 rto_start_unlock(&rq->rd->rto_loop_start);
2236
2237 if (cpu >= 0) {
2238 /* Make sure the rd does not get freed while pushing */
2239 sched_get_rd(rq->rd);
2240 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2241 }
2242 }
2243
2244 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2245 void rto_push_irq_work_func(struct irq_work *work)
2246 {
2247 struct root_domain *rd =
2248 container_of(work, struct root_domain, rto_push_work);
2249 struct rq *rq;
2250 int cpu;
2251
2252 rq = this_rq();
2253
2254 /*
2255 * We do not need to grab the lock to check for has_pushable_tasks.
2256 * When it gets updated, a check is made if a push is possible.
2257 */
2258 if (has_pushable_tasks(rq)) {
2259 raw_spin_rq_lock(rq);
2260 while (push_rt_task(rq, true))
2261 ;
2262 raw_spin_rq_unlock(rq);
2263 }
2264
2265 raw_spin_lock(&rd->rto_lock);
2266
2267 /* Pass the IPI to the next rt overloaded queue */
2268 cpu = rto_next_cpu(rd);
2269
2270 raw_spin_unlock(&rd->rto_lock);
2271
2272 if (cpu < 0) {
2273 sched_put_rd(rd);
2274 return;
2275 }
2276
2277 /* Try the next RT overloaded CPU */
2278 irq_work_queue_on(&rd->rto_push_work, cpu);
2279 }
2280 #endif /* HAVE_RT_PUSH_IPI */
2281
pull_rt_task(struct rq * this_rq)2282 static void pull_rt_task(struct rq *this_rq)
2283 {
2284 int this_cpu = this_rq->cpu, cpu;
2285 bool resched = false;
2286 struct task_struct *p, *push_task;
2287 struct rq *src_rq;
2288 int rt_overload_count = rt_overloaded(this_rq);
2289
2290 if (likely(!rt_overload_count))
2291 return;
2292
2293 /*
2294 * Match the barrier from rt_set_overloaded; this guarantees that if we
2295 * see overloaded we must also see the rto_mask bit.
2296 */
2297 smp_rmb();
2298
2299 /* If we are the only overloaded CPU do nothing */
2300 if (rt_overload_count == 1 &&
2301 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2302 return;
2303
2304 #ifdef HAVE_RT_PUSH_IPI
2305 if (sched_feat(RT_PUSH_IPI)) {
2306 tell_cpu_to_push(this_rq);
2307 return;
2308 }
2309 #endif
2310
2311 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2312 if (this_cpu == cpu)
2313 continue;
2314
2315 src_rq = cpu_rq(cpu);
2316
2317 /*
2318 * Don't bother taking the src_rq->lock if the next highest
2319 * task is known to be lower-priority than our current task.
2320 * This may look racy, but if this value is about to go
2321 * logically higher, the src_rq will push this task away.
2322 * And if its going logically lower, we do not care
2323 */
2324 if (src_rq->rt.highest_prio.next >=
2325 this_rq->rt.highest_prio.curr)
2326 continue;
2327
2328 /*
2329 * We can potentially drop this_rq's lock in
2330 * double_lock_balance, and another CPU could
2331 * alter this_rq
2332 */
2333 push_task = NULL;
2334 double_lock_balance(this_rq, src_rq);
2335
2336 /*
2337 * We can pull only a task, which is pushable
2338 * on its rq, and no others.
2339 */
2340 p = pick_highest_pushable_task(src_rq, this_cpu);
2341
2342 /*
2343 * Do we have an RT task that preempts
2344 * the to-be-scheduled task?
2345 */
2346 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2347 WARN_ON(p == src_rq->curr);
2348 WARN_ON(!task_on_rq_queued(p));
2349
2350 /*
2351 * There's a chance that p is higher in priority
2352 * than what's currently running on its CPU.
2353 * This is just that p is waking up and hasn't
2354 * had a chance to schedule. We only pull
2355 * p if it is lower in priority than the
2356 * current task on the run queue
2357 */
2358 if (p->prio < src_rq->curr->prio)
2359 goto skip;
2360
2361 if (is_migration_disabled(p)) {
2362 push_task = get_push_task(src_rq);
2363 } else {
2364 deactivate_task(src_rq, p, 0);
2365 set_task_cpu(p, this_cpu);
2366 activate_task(this_rq, p, 0);
2367 resched = true;
2368 }
2369 /*
2370 * We continue with the search, just in
2371 * case there's an even higher prio task
2372 * in another runqueue. (low likelihood
2373 * but possible)
2374 */
2375 }
2376 skip:
2377 double_unlock_balance(this_rq, src_rq);
2378
2379 if (push_task) {
2380 preempt_disable();
2381 raw_spin_rq_unlock(this_rq);
2382 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2383 push_task, &src_rq->push_work);
2384 preempt_enable();
2385 raw_spin_rq_lock(this_rq);
2386 }
2387 }
2388
2389 if (resched)
2390 resched_curr(this_rq);
2391 }
2392
2393 /*
2394 * If we are not running and we are not going to reschedule soon, we should
2395 * try to push tasks away now
2396 */
task_woken_rt(struct rq * rq,struct task_struct * p)2397 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2398 {
2399 bool need_to_push = !task_on_cpu(rq, p) &&
2400 !test_tsk_need_resched(rq->curr) &&
2401 p->nr_cpus_allowed > 1 &&
2402 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2403 (rq->curr->nr_cpus_allowed < 2 ||
2404 rq->curr->prio <= p->prio);
2405
2406 if (need_to_push)
2407 push_rt_tasks(rq);
2408 }
2409
2410 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2411 static void rq_online_rt(struct rq *rq)
2412 {
2413 if (rq->rt.overloaded)
2414 rt_set_overload(rq);
2415
2416 __enable_runtime(rq);
2417
2418 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2419 }
2420
2421 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2422 static void rq_offline_rt(struct rq *rq)
2423 {
2424 if (rq->rt.overloaded)
2425 rt_clear_overload(rq);
2426
2427 __disable_runtime(rq);
2428
2429 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2430 }
2431
2432 /*
2433 * When switch from the rt queue, we bring ourselves to a position
2434 * that we might want to pull RT tasks from other runqueues.
2435 */
switched_from_rt(struct rq * rq,struct task_struct * p)2436 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2437 {
2438 /*
2439 * If there are other RT tasks then we will reschedule
2440 * and the scheduling of the other RT tasks will handle
2441 * the balancing. But if we are the last RT task
2442 * we may need to handle the pulling of RT tasks
2443 * now.
2444 */
2445 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2446 return;
2447
2448 rt_queue_pull_task(rq);
2449 }
2450
init_sched_rt_class(void)2451 void __init init_sched_rt_class(void)
2452 {
2453 unsigned int i;
2454
2455 for_each_possible_cpu(i) {
2456 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2457 GFP_KERNEL, cpu_to_node(i));
2458 }
2459 }
2460 #endif /* CONFIG_SMP */
2461
2462 /*
2463 * When switching a task to RT, we may overload the runqueue
2464 * with RT tasks. In this case we try to push them off to
2465 * other runqueues.
2466 */
switched_to_rt(struct rq * rq,struct task_struct * p)2467 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2468 {
2469 /*
2470 * If we are running, update the avg_rt tracking, as the running time
2471 * will now on be accounted into the latter.
2472 */
2473 if (task_current(rq, p)) {
2474 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2475 return;
2476 }
2477
2478 /*
2479 * If we are not running we may need to preempt the current
2480 * running task. If that current running task is also an RT task
2481 * then see if we can move to another run queue.
2482 */
2483 if (task_on_rq_queued(p)) {
2484 #ifdef CONFIG_SMP
2485 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2486 rt_queue_push_tasks(rq);
2487 #endif /* CONFIG_SMP */
2488 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2489 resched_curr(rq);
2490 }
2491 }
2492
2493 /*
2494 * Priority of the task has changed. This may cause
2495 * us to initiate a push or pull.
2496 */
2497 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2498 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2499 {
2500 if (!task_on_rq_queued(p))
2501 return;
2502
2503 if (task_current(rq, p)) {
2504 #ifdef CONFIG_SMP
2505 /*
2506 * If our priority decreases while running, we
2507 * may need to pull tasks to this runqueue.
2508 */
2509 if (oldprio < p->prio)
2510 rt_queue_pull_task(rq);
2511
2512 /*
2513 * If there's a higher priority task waiting to run
2514 * then reschedule.
2515 */
2516 if (p->prio > rq->rt.highest_prio.curr)
2517 resched_curr(rq);
2518 #else
2519 /* For UP simply resched on drop of prio */
2520 if (oldprio < p->prio)
2521 resched_curr(rq);
2522 #endif /* CONFIG_SMP */
2523 } else {
2524 /*
2525 * This task is not running, but if it is
2526 * greater than the current running task
2527 * then reschedule.
2528 */
2529 if (p->prio < rq->curr->prio)
2530 resched_curr(rq);
2531 }
2532 }
2533
2534 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2535 static void watchdog(struct rq *rq, struct task_struct *p)
2536 {
2537 unsigned long soft, hard;
2538
2539 /* max may change after cur was read, this will be fixed next tick */
2540 soft = task_rlimit(p, RLIMIT_RTTIME);
2541 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2542
2543 if (soft != RLIM_INFINITY) {
2544 unsigned long next;
2545
2546 if (p->rt.watchdog_stamp != jiffies) {
2547 p->rt.timeout++;
2548 p->rt.watchdog_stamp = jiffies;
2549 }
2550
2551 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2552 if (p->rt.timeout > next) {
2553 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2554 p->se.sum_exec_runtime);
2555 }
2556 }
2557 }
2558 #else
watchdog(struct rq * rq,struct task_struct * p)2559 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2560 #endif
2561
2562 /*
2563 * scheduler tick hitting a task of our scheduling class.
2564 *
2565 * NOTE: This function can be called remotely by the tick offload that
2566 * goes along full dynticks. Therefore no local assumption can be made
2567 * and everything must be accessed through the @rq and @curr passed in
2568 * parameters.
2569 */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2570 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2571 {
2572 struct sched_rt_entity *rt_se = &p->rt;
2573
2574 update_curr_rt(rq);
2575 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2576
2577 watchdog(rq, p);
2578
2579 /*
2580 * RR tasks need a special form of time-slice management.
2581 * FIFO tasks have no timeslices.
2582 */
2583 if (p->policy != SCHED_RR)
2584 return;
2585
2586 if (--p->rt.time_slice)
2587 return;
2588
2589 p->rt.time_slice = sched_rr_timeslice;
2590
2591 /*
2592 * Requeue to the end of queue if we (and all of our ancestors) are not
2593 * the only element on the queue
2594 */
2595 for_each_sched_rt_entity(rt_se) {
2596 if (rt_se->run_list.prev != rt_se->run_list.next) {
2597 requeue_task_rt(rq, p, 0);
2598 resched_curr(rq);
2599 return;
2600 }
2601 }
2602 }
2603
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2604 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2605 {
2606 /*
2607 * Time slice is 0 for SCHED_FIFO tasks
2608 */
2609 if (task->policy == SCHED_RR)
2610 return sched_rr_timeslice;
2611 else
2612 return 0;
2613 }
2614
2615 #ifdef CONFIG_SCHED_CORE
task_is_throttled_rt(struct task_struct * p,int cpu)2616 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2617 {
2618 struct rt_rq *rt_rq;
2619
2620 #ifdef CONFIG_RT_GROUP_SCHED
2621 rt_rq = task_group(p)->rt_rq[cpu];
2622 #else
2623 rt_rq = &cpu_rq(cpu)->rt;
2624 #endif
2625
2626 return rt_rq_throttled(rt_rq);
2627 }
2628 #endif
2629
2630 DEFINE_SCHED_CLASS(rt) = {
2631
2632 .enqueue_task = enqueue_task_rt,
2633 .dequeue_task = dequeue_task_rt,
2634 .yield_task = yield_task_rt,
2635
2636 .wakeup_preempt = wakeup_preempt_rt,
2637
2638 .pick_task = pick_task_rt,
2639 .put_prev_task = put_prev_task_rt,
2640 .set_next_task = set_next_task_rt,
2641
2642 #ifdef CONFIG_SMP
2643 .balance = balance_rt,
2644 .select_task_rq = select_task_rq_rt,
2645 .set_cpus_allowed = set_cpus_allowed_common,
2646 .rq_online = rq_online_rt,
2647 .rq_offline = rq_offline_rt,
2648 .task_woken = task_woken_rt,
2649 .switched_from = switched_from_rt,
2650 .find_lock_rq = find_lock_lowest_rq,
2651 #endif
2652
2653 .task_tick = task_tick_rt,
2654
2655 .get_rr_interval = get_rr_interval_rt,
2656
2657 .prio_changed = prio_changed_rt,
2658 .switched_to = switched_to_rt,
2659
2660 .update_curr = update_curr_rt,
2661
2662 #ifdef CONFIG_SCHED_CORE
2663 .task_is_throttled = task_is_throttled_rt,
2664 #endif
2665
2666 #ifdef CONFIG_UCLAMP_TASK
2667 .uclamp_enabled = 1,
2668 #endif
2669 };
2670
2671 #ifdef CONFIG_RT_GROUP_SCHED
2672 /*
2673 * Ensure that the real time constraints are schedulable.
2674 */
2675 static DEFINE_MUTEX(rt_constraints_mutex);
2676
tg_has_rt_tasks(struct task_group * tg)2677 static inline int tg_has_rt_tasks(struct task_group *tg)
2678 {
2679 struct task_struct *task;
2680 struct css_task_iter it;
2681 int ret = 0;
2682
2683 /*
2684 * Autogroups do not have RT tasks; see autogroup_create().
2685 */
2686 if (task_group_is_autogroup(tg))
2687 return 0;
2688
2689 css_task_iter_start(&tg->css, 0, &it);
2690 while (!ret && (task = css_task_iter_next(&it)))
2691 ret |= rt_task(task);
2692 css_task_iter_end(&it);
2693
2694 return ret;
2695 }
2696
2697 struct rt_schedulable_data {
2698 struct task_group *tg;
2699 u64 rt_period;
2700 u64 rt_runtime;
2701 };
2702
tg_rt_schedulable(struct task_group * tg,void * data)2703 static int tg_rt_schedulable(struct task_group *tg, void *data)
2704 {
2705 struct rt_schedulable_data *d = data;
2706 struct task_group *child;
2707 unsigned long total, sum = 0;
2708 u64 period, runtime;
2709
2710 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2711 runtime = tg->rt_bandwidth.rt_runtime;
2712
2713 if (tg == d->tg) {
2714 period = d->rt_period;
2715 runtime = d->rt_runtime;
2716 }
2717
2718 /*
2719 * Cannot have more runtime than the period.
2720 */
2721 if (runtime > period && runtime != RUNTIME_INF)
2722 return -EINVAL;
2723
2724 /*
2725 * Ensure we don't starve existing RT tasks if runtime turns zero.
2726 */
2727 if (rt_bandwidth_enabled() && !runtime &&
2728 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2729 return -EBUSY;
2730
2731 total = to_ratio(period, runtime);
2732
2733 /*
2734 * Nobody can have more than the global setting allows.
2735 */
2736 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2737 return -EINVAL;
2738
2739 /*
2740 * The sum of our children's runtime should not exceed our own.
2741 */
2742 list_for_each_entry_rcu(child, &tg->children, siblings) {
2743 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2744 runtime = child->rt_bandwidth.rt_runtime;
2745
2746 if (child == d->tg) {
2747 period = d->rt_period;
2748 runtime = d->rt_runtime;
2749 }
2750
2751 sum += to_ratio(period, runtime);
2752 }
2753
2754 if (sum > total)
2755 return -EINVAL;
2756
2757 return 0;
2758 }
2759
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2760 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2761 {
2762 int ret;
2763
2764 struct rt_schedulable_data data = {
2765 .tg = tg,
2766 .rt_period = period,
2767 .rt_runtime = runtime,
2768 };
2769
2770 rcu_read_lock();
2771 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2772 rcu_read_unlock();
2773
2774 return ret;
2775 }
2776
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2777 static int tg_set_rt_bandwidth(struct task_group *tg,
2778 u64 rt_period, u64 rt_runtime)
2779 {
2780 int i, err = 0;
2781
2782 /*
2783 * Disallowing the root group RT runtime is BAD, it would disallow the
2784 * kernel creating (and or operating) RT threads.
2785 */
2786 if (tg == &root_task_group && rt_runtime == 0)
2787 return -EINVAL;
2788
2789 /* No period doesn't make any sense. */
2790 if (rt_period == 0)
2791 return -EINVAL;
2792
2793 /*
2794 * Bound quota to defend quota against overflow during bandwidth shift.
2795 */
2796 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2797 return -EINVAL;
2798
2799 mutex_lock(&rt_constraints_mutex);
2800 err = __rt_schedulable(tg, rt_period, rt_runtime);
2801 if (err)
2802 goto unlock;
2803
2804 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2805 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2806 tg->rt_bandwidth.rt_runtime = rt_runtime;
2807
2808 for_each_possible_cpu(i) {
2809 struct rt_rq *rt_rq = tg->rt_rq[i];
2810
2811 raw_spin_lock(&rt_rq->rt_runtime_lock);
2812 rt_rq->rt_runtime = rt_runtime;
2813 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2814 }
2815 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2816 unlock:
2817 mutex_unlock(&rt_constraints_mutex);
2818
2819 return err;
2820 }
2821
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2822 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2823 {
2824 u64 rt_runtime, rt_period;
2825
2826 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2827 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2828 if (rt_runtime_us < 0)
2829 rt_runtime = RUNTIME_INF;
2830 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2831 return -EINVAL;
2832
2833 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2834 }
2835
sched_group_rt_runtime(struct task_group * tg)2836 long sched_group_rt_runtime(struct task_group *tg)
2837 {
2838 u64 rt_runtime_us;
2839
2840 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2841 return -1;
2842
2843 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2844 do_div(rt_runtime_us, NSEC_PER_USEC);
2845 return rt_runtime_us;
2846 }
2847
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2848 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2849 {
2850 u64 rt_runtime, rt_period;
2851
2852 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2853 return -EINVAL;
2854
2855 rt_period = rt_period_us * NSEC_PER_USEC;
2856 rt_runtime = tg->rt_bandwidth.rt_runtime;
2857
2858 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2859 }
2860
sched_group_rt_period(struct task_group * tg)2861 long sched_group_rt_period(struct task_group *tg)
2862 {
2863 u64 rt_period_us;
2864
2865 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2866 do_div(rt_period_us, NSEC_PER_USEC);
2867 return rt_period_us;
2868 }
2869
2870 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)2871 static int sched_rt_global_constraints(void)
2872 {
2873 int ret = 0;
2874
2875 mutex_lock(&rt_constraints_mutex);
2876 ret = __rt_schedulable(NULL, 0, 0);
2877 mutex_unlock(&rt_constraints_mutex);
2878
2879 return ret;
2880 }
2881 #endif /* CONFIG_SYSCTL */
2882
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2883 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2884 {
2885 /* Don't accept real-time tasks when there is no way for them to run */
2886 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2887 return 0;
2888
2889 return 1;
2890 }
2891
2892 #else /* !CONFIG_RT_GROUP_SCHED */
2893
2894 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)2895 static int sched_rt_global_constraints(void)
2896 {
2897 return 0;
2898 }
2899 #endif /* CONFIG_SYSCTL */
2900 #endif /* CONFIG_RT_GROUP_SCHED */
2901
2902 #ifdef CONFIG_SYSCTL
sched_rt_global_validate(void)2903 static int sched_rt_global_validate(void)
2904 {
2905 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2906 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2907 ((u64)sysctl_sched_rt_runtime *
2908 NSEC_PER_USEC > max_rt_runtime)))
2909 return -EINVAL;
2910
2911 return 0;
2912 }
2913
sched_rt_do_global(void)2914 static void sched_rt_do_global(void)
2915 {
2916 }
2917
sched_rt_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2918 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
2919 size_t *lenp, loff_t *ppos)
2920 {
2921 int old_period, old_runtime;
2922 static DEFINE_MUTEX(mutex);
2923 int ret;
2924
2925 mutex_lock(&mutex);
2926 old_period = sysctl_sched_rt_period;
2927 old_runtime = sysctl_sched_rt_runtime;
2928
2929 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2930
2931 if (!ret && write) {
2932 ret = sched_rt_global_validate();
2933 if (ret)
2934 goto undo;
2935
2936 ret = sched_dl_global_validate();
2937 if (ret)
2938 goto undo;
2939
2940 ret = sched_rt_global_constraints();
2941 if (ret)
2942 goto undo;
2943
2944 sched_rt_do_global();
2945 sched_dl_do_global();
2946 }
2947 if (0) {
2948 undo:
2949 sysctl_sched_rt_period = old_period;
2950 sysctl_sched_rt_runtime = old_runtime;
2951 }
2952 mutex_unlock(&mutex);
2953
2954 return ret;
2955 }
2956
sched_rr_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2957 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
2958 size_t *lenp, loff_t *ppos)
2959 {
2960 int ret;
2961 static DEFINE_MUTEX(mutex);
2962
2963 mutex_lock(&mutex);
2964 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2965 /*
2966 * Make sure that internally we keep jiffies.
2967 * Also, writing zero resets the time-slice to default:
2968 */
2969 if (!ret && write) {
2970 sched_rr_timeslice =
2971 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2972 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2973
2974 if (sysctl_sched_rr_timeslice <= 0)
2975 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2976 }
2977 mutex_unlock(&mutex);
2978
2979 return ret;
2980 }
2981 #endif /* CONFIG_SYSCTL */
2982
2983 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)2984 void print_rt_stats(struct seq_file *m, int cpu)
2985 {
2986 rt_rq_iter_t iter;
2987 struct rt_rq *rt_rq;
2988
2989 rcu_read_lock();
2990 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2991 print_rt_rq(m, cpu, rt_rq);
2992 rcu_read_unlock();
2993 }
2994 #endif /* CONFIG_SCHED_DEBUG */
2995