1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
28 */
29
30 #ifndef _SYS_RANGE_TREE_H
31 #define _SYS_RANGE_TREE_H
32
33 #include <sys/btree.h>
34 #include <sys/dmu.h>
35
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39
40 #define ZFS_RANGE_TREE_HISTOGRAM_SIZE 64
41
42 typedef struct zfs_range_tree_ops zfs_range_tree_ops_t;
43
44 typedef enum zfs_range_seg_type {
45 ZFS_RANGE_SEG32,
46 ZFS_RANGE_SEG64,
47 ZFS_RANGE_SEG_GAP,
48 ZFS_RANGE_SEG_NUM_TYPES,
49 } zfs_range_seg_type_t;
50
51 /*
52 * Note: the range_tree may not be accessed concurrently; consumers
53 * must provide external locking if required.
54 */
55 typedef struct zfs_range_tree {
56 zfs_btree_t rt_root; /* offset-ordered segment b-tree */
57 uint64_t rt_space; /* sum of all segments in the map */
58 zfs_range_seg_type_t rt_type; /* type of zfs_range_seg_t in use */
59 /*
60 * All data that is stored in the range tree must have a start higher
61 * than or equal to rt_start, and all sizes and offsets must be
62 * multiples of 1 << rt_shift.
63 */
64 uint8_t rt_shift;
65 uint64_t rt_start;
66 const zfs_range_tree_ops_t *rt_ops;
67 void *rt_arg;
68 uint64_t rt_gap; /* allowable inter-segment gap */
69
70 /*
71 * The rt_histogram maintains a histogram of ranges. Each bucket,
72 * rt_histogram[i], contains the number of ranges whose size is:
73 * 2^i <= size of range in bytes < 2^(i+1)
74 */
75 uint64_t rt_histogram[ZFS_RANGE_TREE_HISTOGRAM_SIZE];
76 } zfs_range_tree_t;
77
78 typedef struct zfs_range_seg32 {
79 uint32_t rs_start; /* starting offset of this segment */
80 uint32_t rs_end; /* ending offset (non-inclusive) */
81 } zfs_range_seg32_t;
82
83 /*
84 * Extremely large metaslabs, vdev-wide trees, and dnode-wide trees may
85 * require 64-bit integers for ranges.
86 */
87 typedef struct zfs_range_seg64 {
88 uint64_t rs_start; /* starting offset of this segment */
89 uint64_t rs_end; /* ending offset (non-inclusive) */
90 } zfs_range_seg64_t;
91
92 typedef struct zfs_range_seg_gap {
93 uint64_t rs_start; /* starting offset of this segment */
94 uint64_t rs_end; /* ending offset (non-inclusive) */
95 uint64_t rs_fill; /* actual fill if gap mode is on */
96 } zfs_range_seg_gap_t;
97
98 /*
99 * This type needs to be the largest of the range segs, since it will be stack
100 * allocated and then cast the actual type to do tree operations.
101 */
102 typedef zfs_range_seg_gap_t zfs_range_seg_max_t;
103
104 /*
105 * This is just for clarity of code purposes, so we can make it clear that a
106 * pointer is to a range seg of some type; when we need to do the actual math,
107 * we'll figure out the real type.
108 */
109 typedef void zfs_range_seg_t;
110
111 struct zfs_range_tree_ops {
112 void (*rtop_create)(zfs_range_tree_t *rt, void *arg);
113 void (*rtop_destroy)(zfs_range_tree_t *rt, void *arg);
114 void (*rtop_add)(zfs_range_tree_t *rt, void *rs, void *arg);
115 void (*rtop_remove)(zfs_range_tree_t *rt, void *rs, void *arg);
116 void (*rtop_vacate)(zfs_range_tree_t *rt, void *arg);
117 };
118
119 static inline uint64_t
zfs_rs_get_start_raw(const zfs_range_seg_t * rs,const zfs_range_tree_t * rt)120 zfs_rs_get_start_raw(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
121 {
122 ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
123 switch (rt->rt_type) {
124 case ZFS_RANGE_SEG32:
125 return (((const zfs_range_seg32_t *)rs)->rs_start);
126 case ZFS_RANGE_SEG64:
127 return (((const zfs_range_seg64_t *)rs)->rs_start);
128 case ZFS_RANGE_SEG_GAP:
129 return (((const zfs_range_seg_gap_t *)rs)->rs_start);
130 default:
131 VERIFY(0);
132 return (0);
133 }
134 }
135
136 static inline uint64_t
zfs_rs_get_end_raw(const zfs_range_seg_t * rs,const zfs_range_tree_t * rt)137 zfs_rs_get_end_raw(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
138 {
139 ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
140 switch (rt->rt_type) {
141 case ZFS_RANGE_SEG32:
142 return (((const zfs_range_seg32_t *)rs)->rs_end);
143 case ZFS_RANGE_SEG64:
144 return (((const zfs_range_seg64_t *)rs)->rs_end);
145 case ZFS_RANGE_SEG_GAP:
146 return (((const zfs_range_seg_gap_t *)rs)->rs_end);
147 default:
148 VERIFY(0);
149 return (0);
150 }
151 }
152
153 static inline uint64_t
zfs_rs_get_fill_raw(const zfs_range_seg_t * rs,const zfs_range_tree_t * rt)154 zfs_rs_get_fill_raw(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
155 {
156 ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
157 switch (rt->rt_type) {
158 case ZFS_RANGE_SEG32: {
159 const zfs_range_seg32_t *r32 = (const zfs_range_seg32_t *)rs;
160 return (r32->rs_end - r32->rs_start);
161 }
162 case ZFS_RANGE_SEG64: {
163 const zfs_range_seg64_t *r64 = (const zfs_range_seg64_t *)rs;
164 return (r64->rs_end - r64->rs_start);
165 }
166 case ZFS_RANGE_SEG_GAP:
167 return (((const zfs_range_seg_gap_t *)rs)->rs_fill);
168 default:
169 VERIFY(0);
170 return (0);
171 }
172
173 }
174
175 static inline uint64_t
zfs_rs_get_start(const zfs_range_seg_t * rs,const zfs_range_tree_t * rt)176 zfs_rs_get_start(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
177 {
178 return ((zfs_rs_get_start_raw(rs, rt) << rt->rt_shift) + rt->rt_start);
179 }
180
181 static inline uint64_t
zfs_rs_get_end(const zfs_range_seg_t * rs,const zfs_range_tree_t * rt)182 zfs_rs_get_end(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
183 {
184 return ((zfs_rs_get_end_raw(rs, rt) << rt->rt_shift) + rt->rt_start);
185 }
186
187 static inline uint64_t
zfs_rs_get_fill(const zfs_range_seg_t * rs,const zfs_range_tree_t * rt)188 zfs_rs_get_fill(const zfs_range_seg_t *rs, const zfs_range_tree_t *rt)
189 {
190 return (zfs_rs_get_fill_raw(rs, rt) << rt->rt_shift);
191 }
192
193 static inline void
zfs_rs_set_start_raw(zfs_range_seg_t * rs,zfs_range_tree_t * rt,uint64_t start)194 zfs_rs_set_start_raw(zfs_range_seg_t *rs, zfs_range_tree_t *rt, uint64_t start)
195 {
196 ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
197 switch (rt->rt_type) {
198 case ZFS_RANGE_SEG32:
199 ASSERT3U(start, <=, UINT32_MAX);
200 ((zfs_range_seg32_t *)rs)->rs_start = (uint32_t)start;
201 break;
202 case ZFS_RANGE_SEG64:
203 ((zfs_range_seg64_t *)rs)->rs_start = start;
204 break;
205 case ZFS_RANGE_SEG_GAP:
206 ((zfs_range_seg_gap_t *)rs)->rs_start = start;
207 break;
208 default:
209 VERIFY(0);
210 }
211 }
212
213 static inline void
zfs_rs_set_end_raw(zfs_range_seg_t * rs,zfs_range_tree_t * rt,uint64_t end)214 zfs_rs_set_end_raw(zfs_range_seg_t *rs, zfs_range_tree_t *rt, uint64_t end)
215 {
216 ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
217 switch (rt->rt_type) {
218 case ZFS_RANGE_SEG32:
219 ASSERT3U(end, <=, UINT32_MAX);
220 ((zfs_range_seg32_t *)rs)->rs_end = (uint32_t)end;
221 break;
222 case ZFS_RANGE_SEG64:
223 ((zfs_range_seg64_t *)rs)->rs_end = end;
224 break;
225 case ZFS_RANGE_SEG_GAP:
226 ((zfs_range_seg_gap_t *)rs)->rs_end = end;
227 break;
228 default:
229 VERIFY(0);
230 }
231 }
232
233 static inline void
zfs_zfs_rs_set_fill_raw(zfs_range_seg_t * rs,zfs_range_tree_t * rt,uint64_t fill)234 zfs_zfs_rs_set_fill_raw(zfs_range_seg_t *rs, zfs_range_tree_t *rt,
235 uint64_t fill)
236 {
237 ASSERT3U(rt->rt_type, <=, ZFS_RANGE_SEG_NUM_TYPES);
238 switch (rt->rt_type) {
239 case ZFS_RANGE_SEG32:
240 /* fall through */
241 case ZFS_RANGE_SEG64:
242 ASSERT3U(fill, ==, zfs_rs_get_end_raw(rs, rt) -
243 zfs_rs_get_start_raw(rs, rt));
244 break;
245 case ZFS_RANGE_SEG_GAP:
246 ((zfs_range_seg_gap_t *)rs)->rs_fill = fill;
247 break;
248 default:
249 VERIFY(0);
250 }
251 }
252
253 static inline void
zfs_rs_set_start(zfs_range_seg_t * rs,zfs_range_tree_t * rt,uint64_t start)254 zfs_rs_set_start(zfs_range_seg_t *rs, zfs_range_tree_t *rt, uint64_t start)
255 {
256 ASSERT3U(start, >=, rt->rt_start);
257 ASSERT(IS_P2ALIGNED(start, 1ULL << rt->rt_shift));
258 zfs_rs_set_start_raw(rs, rt, (start - rt->rt_start) >> rt->rt_shift);
259 }
260
261 static inline void
zfs_rs_set_end(zfs_range_seg_t * rs,zfs_range_tree_t * rt,uint64_t end)262 zfs_rs_set_end(zfs_range_seg_t *rs, zfs_range_tree_t *rt, uint64_t end)
263 {
264 ASSERT3U(end, >=, rt->rt_start);
265 ASSERT(IS_P2ALIGNED(end, 1ULL << rt->rt_shift));
266 zfs_rs_set_end_raw(rs, rt, (end - rt->rt_start) >> rt->rt_shift);
267 }
268
269 static inline void
zfs_rs_set_fill(zfs_range_seg_t * rs,zfs_range_tree_t * rt,uint64_t fill)270 zfs_rs_set_fill(zfs_range_seg_t *rs, zfs_range_tree_t *rt, uint64_t fill)
271 {
272 ASSERT(IS_P2ALIGNED(fill, 1ULL << rt->rt_shift));
273 zfs_zfs_rs_set_fill_raw(rs, rt, fill >> rt->rt_shift);
274 }
275
276 typedef void zfs_range_tree_func_t(void *arg, uint64_t start, uint64_t size);
277
278 zfs_range_tree_t *zfs_range_tree_create_gap(const zfs_range_tree_ops_t *ops,
279 zfs_range_seg_type_t type, void *arg, uint64_t start, uint64_t shift,
280 uint64_t gap);
281 zfs_range_tree_t *zfs_range_tree_create(const zfs_range_tree_ops_t *ops,
282 zfs_range_seg_type_t type, void *arg, uint64_t start, uint64_t shift);
283 void zfs_range_tree_destroy(zfs_range_tree_t *rt);
284 boolean_t zfs_range_tree_contains(zfs_range_tree_t *rt, uint64_t start,
285 uint64_t size);
286 zfs_range_seg_t *zfs_range_tree_find(zfs_range_tree_t *rt, uint64_t start,
287 uint64_t size);
288 boolean_t zfs_range_tree_find_in(zfs_range_tree_t *rt, uint64_t start,
289 uint64_t size, uint64_t *ostart, uint64_t *osize);
290 void zfs_range_tree_verify_not_present(zfs_range_tree_t *rt,
291 uint64_t start, uint64_t size);
292 void zfs_range_tree_resize_segment(zfs_range_tree_t *rt, zfs_range_seg_t *rs,
293 uint64_t newstart, uint64_t newsize);
294 uint64_t zfs_range_tree_space(zfs_range_tree_t *rt);
295 uint64_t zfs_range_tree_numsegs(zfs_range_tree_t *rt);
296 boolean_t zfs_range_tree_is_empty(zfs_range_tree_t *rt);
297 void zfs_range_tree_swap(zfs_range_tree_t **rtsrc, zfs_range_tree_t **rtdst);
298 void zfs_range_tree_stat_verify(zfs_range_tree_t *rt);
299 uint64_t zfs_range_tree_min(zfs_range_tree_t *rt);
300 uint64_t zfs_range_tree_max(zfs_range_tree_t *rt);
301 uint64_t zfs_range_tree_span(zfs_range_tree_t *rt);
302
303 void zfs_range_tree_add(void *arg, uint64_t start, uint64_t size);
304 void zfs_range_tree_remove(void *arg, uint64_t start, uint64_t size);
305 void zfs_range_tree_remove_fill(zfs_range_tree_t *rt, uint64_t start,
306 uint64_t size);
307 void zfs_range_tree_adjust_fill(zfs_range_tree_t *rt, zfs_range_seg_t *rs,
308 int64_t delta);
309 void zfs_range_tree_clear(zfs_range_tree_t *rt, uint64_t start, uint64_t size);
310
311 void zfs_range_tree_vacate(zfs_range_tree_t *rt, zfs_range_tree_func_t *func,
312 void *arg);
313 void zfs_range_tree_walk(zfs_range_tree_t *rt, zfs_range_tree_func_t *func,
314 void *arg);
315 zfs_range_seg_t *zfs_range_tree_first(zfs_range_tree_t *rt);
316
317 void zfs_range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
318 zfs_range_tree_t *removefrom, zfs_range_tree_t *addto);
319 void zfs_range_tree_remove_xor_add(zfs_range_tree_t *rt,
320 zfs_range_tree_t *removefrom, zfs_range_tree_t *addto);
321
322 #ifdef __cplusplus
323 }
324 #endif
325
326 #endif /* _SYS_RANGE_TREE_H */
327