1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2013 Joyent, Inc. All rights reserved.
26 */
27 /*
28 * Copyright (c) 2010, Intel Corporation.
29 * All rights reserved.
30 */
31
32 #include <sys/types.h>
33 #include <sys/t_lock.h>
34 #include <sys/param.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/systm.h>
38 #include <sys/user.h>
39 #include <sys/mman.h>
40 #include <sys/vm.h>
41 #include <sys/conf.h>
42 #include <sys/avintr.h>
43 #include <sys/autoconf.h>
44 #include <sys/disp.h>
45 #include <sys/class.h>
46 #include <sys/bitmap.h>
47
48 #include <sys/privregs.h>
49
50 #include <sys/proc.h>
51 #include <sys/buf.h>
52 #include <sys/kmem.h>
53 #include <sys/mem.h>
54 #include <sys/kstat.h>
55
56 #include <sys/reboot.h>
57
58 #include <sys/cred.h>
59 #include <sys/vnode.h>
60 #include <sys/file.h>
61
62 #include <sys/procfs.h>
63
64 #include <sys/vfs.h>
65 #include <sys/cmn_err.h>
66 #include <sys/utsname.h>
67 #include <sys/debug.h>
68 #include <sys/kdi.h>
69
70 #include <sys/dumphdr.h>
71 #include <sys/bootconf.h>
72 #include <sys/memlist_plat.h>
73 #include <sys/varargs.h>
74 #include <sys/promif.h>
75 #include <sys/modctl.h>
76
77 #include <sys/sunddi.h>
78 #include <sys/sunndi.h>
79 #include <sys/ndi_impldefs.h>
80 #include <sys/ddidmareq.h>
81 #include <sys/psw.h>
82 #include <sys/regset.h>
83 #include <sys/clock.h>
84 #include <sys/pte.h>
85 #include <sys/tss.h>
86 #include <sys/stack.h>
87 #include <sys/trap.h>
88 #include <sys/fp.h>
89 #include <vm/kboot_mmu.h>
90 #include <vm/anon.h>
91 #include <vm/as.h>
92 #include <vm/page.h>
93 #include <vm/seg.h>
94 #include <vm/seg_dev.h>
95 #include <vm/seg_kmem.h>
96 #include <vm/seg_kpm.h>
97 #include <vm/seg_map.h>
98 #include <vm/seg_vn.h>
99 #include <vm/seg_kp.h>
100 #include <sys/memnode.h>
101 #include <vm/vm_dep.h>
102 #include <sys/thread.h>
103 #include <sys/sysconf.h>
104 #include <sys/vm_machparam.h>
105 #include <sys/archsystm.h>
106 #include <sys/machsystm.h>
107 #include <vm/hat.h>
108 #include <vm/hat_i86.h>
109 #include <sys/pmem.h>
110 #include <sys/smp_impldefs.h>
111 #include <sys/x86_archext.h>
112 #include <sys/cpuvar.h>
113 #include <sys/segments.h>
114 #include <sys/clconf.h>
115 #include <sys/kobj.h>
116 #include <sys/kobj_lex.h>
117 #include <sys/cpc_impl.h>
118 #include <sys/cpu_module.h>
119 #include <sys/smbios.h>
120 #include <sys/debug_info.h>
121 #include <sys/bootinfo.h>
122 #include <sys/ddi_periodic.h>
123 #include <sys/systeminfo.h>
124 #include <sys/multiboot.h>
125 #include <sys/ramdisk.h>
126
127 #ifdef __xpv
128
129 #include <sys/hypervisor.h>
130 #include <sys/xen_mmu.h>
131 #include <sys/evtchn_impl.h>
132 #include <sys/gnttab.h>
133 #include <sys/xpv_panic.h>
134 #include <xen/sys/xenbus_comms.h>
135 #include <xen/public/physdev.h>
136
137 extern void xen_late_startup(void);
138
139 struct xen_evt_data cpu0_evt_data;
140
141 #else /* __xpv */
142 #include <sys/memlist_impl.h>
143
144 extern void mem_config_init(void);
145 #endif /* __xpv */
146
147 extern void progressbar_init(void);
148 extern void brand_init(void);
149 extern void pcf_init(void);
150 extern void pg_init(void);
151 extern void ssp_init(void);
152
153 extern int size_pse_array(pgcnt_t, int);
154
155 #if defined(_SOFT_HOSTID)
156
157 #include <sys/rtc.h>
158
159 static int32_t set_soft_hostid(void);
160 static char hostid_file[] = "/etc/hostid";
161
162 #endif
163
164 void *gfx_devinfo_list;
165
166 #if defined(__amd64) && !defined(__xpv)
167 extern void immu_startup(void);
168 #endif
169
170 /*
171 * XXX make declaration below "static" when drivers no longer use this
172 * interface.
173 */
174 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */
175
176 /*
177 * segkp
178 */
179 extern int segkp_fromheap;
180
181 static void kvm_init(void);
182 static void startup_init(void);
183 static void startup_memlist(void);
184 static void startup_kmem(void);
185 static void startup_modules(void);
186 static void startup_vm(void);
187 static void startup_end(void);
188 static void layout_kernel_va(void);
189
190 /*
191 * Declare these as initialized data so we can patch them.
192 */
193 #ifdef __i386
194
195 /*
196 * Due to virtual address space limitations running in 32 bit mode, restrict
197 * the amount of physical memory configured to a max of PHYSMEM pages (16g).
198 *
199 * If the physical max memory size of 64g were allowed to be configured, the
200 * size of user virtual address space will be less than 1g. A limited user
201 * address space greatly reduces the range of applications that can run.
202 *
203 * If more physical memory than PHYSMEM is required, users should preferably
204 * run in 64 bit mode which has far looser virtual address space limitations.
205 *
206 * If 64 bit mode is not available (as in IA32) and/or more physical memory
207 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired
208 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase
209 * should also be carefully tuned to balance out the need of the user
210 * application while minimizing the risk of kernel heap exhaustion due to
211 * kernelbase being set too high.
212 */
213 #define PHYSMEM 0x400000
214
215 #else /* __amd64 */
216
217 /*
218 * For now we can handle memory with physical addresses up to about
219 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly
220 * half the VA space for seg_kpm. When systems get bigger than 64TB this
221 * code will need revisiting. There is an implicit assumption that there
222 * are no *huge* holes in the physical address space too.
223 */
224 #define TERABYTE (1ul << 40)
225 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE)
226 #define PHYSMEM PHYSMEM_MAX64
227 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul
228
229 #endif /* __amd64 */
230
231 pgcnt_t physmem = PHYSMEM;
232 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */
233
234 char *kobj_file_buf;
235 int kobj_file_bufsize; /* set in /etc/system */
236
237 /* Global variables for MP support. Used in mp_startup */
238 caddr_t rm_platter_va = 0;
239 uint32_t rm_platter_pa;
240
241 int auto_lpg_disable = 1;
242
243 /*
244 * Some CPUs have holes in the middle of the 64-bit virtual address range.
245 */
246 uintptr_t hole_start, hole_end;
247
248 /*
249 * kpm mapping window
250 */
251 caddr_t kpm_vbase;
252 size_t kpm_size;
253 static int kpm_desired;
254 #ifdef __amd64
255 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE;
256 #endif
257
258 /*
259 * Configuration parameters set at boot time.
260 */
261
262 caddr_t econtig; /* end of first block of contiguous kernel */
263
264 struct bootops *bootops = 0; /* passed in from boot */
265 struct bootops **bootopsp;
266 struct boot_syscalls *sysp; /* passed in from boot */
267
268 char bootblock_fstype[16];
269
270 char kern_bootargs[OBP_MAXPATHLEN];
271 char kern_bootfile[OBP_MAXPATHLEN];
272
273 /*
274 * ZFS zio segment. This allows us to exclude large portions of ZFS data that
275 * gets cached in kmem caches on the heap. If this is set to zero, we allocate
276 * zio buffers from their own segment, otherwise they are allocated from the
277 * heap. The optimization of allocating zio buffers from their own segment is
278 * only valid on 64-bit kernels.
279 */
280 #if defined(__amd64)
281 int segzio_fromheap = 0;
282 #else
283 int segzio_fromheap = 1;
284 #endif
285
286 /*
287 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
288 * depends on number of BOP_ALLOC calls made and requested size, memory size
289 * combination and whether boot.bin memory needs to be freed.
290 */
291 #define POSS_NEW_FRAGMENTS 12
292
293 /*
294 * VM data structures
295 */
296 long page_hashsz; /* Size of page hash table (power of two) */
297 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
298 struct page *pp_base; /* Base of initial system page struct array */
299 struct page **page_hash; /* Page hash table */
300 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
301 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
302 int pse_shift; /* log2(pse_table_size) */
303 struct seg ktextseg; /* Segment used for kernel executable image */
304 struct seg kvalloc; /* Segment used for "valloc" mapping */
305 struct seg kpseg; /* Segment used for pageable kernel virt mem */
306 struct seg kmapseg; /* Segment used for generic kernel mappings */
307 struct seg kdebugseg; /* Segment used for the kernel debugger */
308
309 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
310 static struct seg *segmap = &kmapseg; /* easier to use name for in here */
311
312 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
313
314 #if defined(__amd64)
315 struct seg kvseg_core; /* Segment used for the core heap */
316 struct seg kpmseg; /* Segment used for physical mapping */
317 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
318 #else
319 struct seg *segkpm = NULL; /* Unused on IA32 */
320 #endif
321
322 caddr_t segkp_base; /* Base address of segkp */
323 caddr_t segzio_base; /* Base address of segzio */
324 #if defined(__amd64)
325 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
326 #else
327 pgcnt_t segkpsize = 0;
328 #endif
329 pgcnt_t segziosize = 0; /* size of zio segment in pages */
330
331 /*
332 * A static DR page_t VA map is reserved that can map the page structures
333 * for a domain's entire RA space. The pages that back this space are
334 * dynamically allocated and need not be physically contiguous. The DR
335 * map size is derived from KPM size.
336 * This mechanism isn't used by x86 yet, so just stubs here.
337 */
338 int ppvm_enable = 0; /* Static virtual map for page structs */
339 page_t *ppvm_base = NULL; /* Base of page struct map */
340 pgcnt_t ppvm_size = 0; /* Size of page struct map */
341
342 /*
343 * VA range available to the debugger
344 */
345 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
346 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
347
348 struct memseg *memseg_base;
349 struct vnode unused_pages_vp;
350
351 #define FOURGB 0x100000000LL
352
353 struct memlist *memlist;
354
355 caddr_t s_text; /* start of kernel text segment */
356 caddr_t e_text; /* end of kernel text segment */
357 caddr_t s_data; /* start of kernel data segment */
358 caddr_t e_data; /* end of kernel data segment */
359 caddr_t modtext; /* start of loadable module text reserved */
360 caddr_t e_modtext; /* end of loadable module text reserved */
361 caddr_t moddata; /* start of loadable module data reserved */
362 caddr_t e_moddata; /* end of loadable module data reserved */
363
364 struct memlist *phys_install; /* Total installed physical memory */
365 struct memlist *phys_avail; /* Total available physical memory */
366 struct memlist *bios_rsvd; /* Bios reserved memory */
367
368 /*
369 * kphysm_init returns the number of pages that were processed
370 */
371 static pgcnt_t kphysm_init(page_t *, pgcnt_t);
372
373 #define IO_PROP_SIZE 64 /* device property size */
374
375 /*
376 * a couple useful roundup macros
377 */
378 #define ROUND_UP_PAGE(x) \
379 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
380 #define ROUND_UP_LPAGE(x) \
381 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
382 #define ROUND_UP_4MEG(x) \
383 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG))
384 #define ROUND_UP_TOPLEVEL(x) \
385 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
386
387 /*
388 * 32-bit Kernel's Virtual memory layout.
389 * +-----------------------+
390 * | |
391 * 0xFFC00000 -|-----------------------|- ARGSBASE
392 * | debugger |
393 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE
394 * | Kernel Data |
395 * 0xFEC00000 -|-----------------------|
396 * | Kernel Text |
397 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen)
398 * |--- GDT ---|- GDT page (GDT_VA)
399 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
400 * | |
401 * | page_t structures |
402 * | memsegs, memlists, |
403 * | page hash, etc. |
404 * --- -|-----------------------|- ekernelheap, valloc_base (floating)
405 * | | (segkp is just an arena in the heap)
406 * | |
407 * | kvseg |
408 * | |
409 * | |
410 * --- -|-----------------------|- kernelheap (floating)
411 * | Segkmap |
412 * 0xC3002000 -|-----------------------|- segmap_start (floating)
413 * | Red Zone |
414 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating)
415 * | | ||
416 * | Shared objects | \/
417 * | |
418 * : :
419 * | user data |
420 * |-----------------------|
421 * | user text |
422 * 0x08048000 -|-----------------------|
423 * | user stack |
424 * : :
425 * | invalid |
426 * 0x00000000 +-----------------------+
427 *
428 *
429 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
430 * +-----------------------+
431 * | |
432 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE
433 * | debugger (?) |
434 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE
435 * | unused |
436 * +-----------------------+
437 * | Kernel Data |
438 * 0xFFFFFFFF.FBC00000 |-----------------------|
439 * | Kernel Text |
440 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT
441 * |--- GDT ---|- GDT page (GDT_VA)
442 * |--- debug info ---|- debug info (DEBUG_INFO_VA)
443 * | |
444 * | Core heap | (used for loadable modules)
445 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap
446 * | Kernel |
447 * | heap |
448 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating)
449 * | segmap |
450 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating)
451 * | device mappings |
452 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating)
453 * | segzio |
454 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating)
455 * | segkp |
456 * --- |-----------------------|- segkp_base (floating)
457 * | page_t structures | valloc_base + valloc_sz
458 * | memsegs, memlists, |
459 * | page hash, etc. |
460 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB)
461 * | segkpm |
462 * 0xFFFFFE00.00000000 |-----------------------|
463 * | Red Zone |
464 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB)
465 * | User stack |- User space memory
466 * | |
467 * | shared objects, etc | (grows downwards)
468 * : :
469 * | |
470 * 0xFFFF8000.00000000 |-----------------------|
471 * | |
472 * | VA Hole / unused |
473 * | |
474 * 0x00008000.00000000 |-----------------------|
475 * | |
476 * | |
477 * : :
478 * | user heap | (grows upwards)
479 * | |
480 * | user data |
481 * |-----------------------|
482 * | user text |
483 * 0x00000000.04000000 |-----------------------|
484 * | invalid |
485 * 0x00000000.00000000 +-----------------------+
486 *
487 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
488 * kernel, except that userlimit is raised to 0xfe000000
489 *
490 * Floating values:
491 *
492 * valloc_base: start of the kernel's memory management/tracking data
493 * structures. This region contains page_t structures for
494 * physical memory, memsegs, memlists, and the page hash.
495 *
496 * core_base: start of the kernel's "core" heap area on 64-bit systems.
497 * This area is intended to be used for global data as well as for module
498 * text/data that does not fit into the nucleus pages. The core heap is
499 * restricted to a 2GB range, allowing every address within it to be
500 * accessed using rip-relative addressing
501 *
502 * ekernelheap: end of kernelheap and start of segmap.
503 *
504 * kernelheap: start of kernel heap. On 32-bit systems, this starts right
505 * above a red zone that separates the user's address space from the
506 * kernel's. On 64-bit systems, it sits above segkp and segkpm.
507 *
508 * segmap_start: start of segmap. The length of segmap can be modified
509 * through eeprom. The default length is 16MB on 32-bit systems and 64MB
510 * on 64-bit systems.
511 *
512 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
513 * decreased by 2X the size required for page_t. This allows the kernel
514 * heap to grow in size with physical memory. With sizeof(page_t) == 80
515 * bytes, the following shows the values of kernelbase and kernel heap
516 * sizes for different memory configurations (assuming default segmap and
517 * segkp sizes).
518 *
519 * mem size for kernelbase kernel heap
520 * size page_t's size
521 * ---- --------- ---------- -----------
522 * 1gb 0x01400000 0xd1800000 684MB
523 * 2gb 0x02800000 0xcf000000 704MB
524 * 4gb 0x05000000 0xca000000 744MB
525 * 6gb 0x07800000 0xc5000000 784MB
526 * 8gb 0x0a000000 0xc0000000 824MB
527 * 16gb 0x14000000 0xac000000 984MB
528 * 32gb 0x28000000 0x84000000 1304MB
529 * 64gb 0x50000000 0x34000000 1944MB (*)
530 *
531 * kernelbase is less than the abi minimum of 0xc0000000 for memory
532 * configurations above 8gb.
533 *
534 * (*) support for memory configurations above 32gb will require manual tuning
535 * of kernelbase to balance out the need of user applications.
536 */
537
538 /* real-time-clock initialization parameters */
539 extern time_t process_rtc_config_file(void);
540
541 uintptr_t kernelbase;
542 uintptr_t postbootkernelbase; /* not set till boot loader is gone */
543 uintptr_t eprom_kernelbase;
544 size_t segmapsize;
545 uintptr_t segmap_start;
546 int segmapfreelists;
547 pgcnt_t npages;
548 pgcnt_t orig_npages;
549 size_t core_size; /* size of "core" heap */
550 uintptr_t core_base; /* base address of "core" heap */
551
552 /*
553 * List of bootstrap pages. We mark these as allocated in startup.
554 * release_bootstrap() will free them when we're completely done with
555 * the bootstrap.
556 */
557 static page_t *bootpages;
558
559 /*
560 * boot time pages that have a vnode from the ramdisk will keep that forever.
561 */
562 static page_t *rd_pages;
563
564 /*
565 * Lower 64K
566 */
567 static page_t *lower_pages = NULL;
568 static int lower_pages_count = 0;
569
570 struct system_hardware system_hardware;
571
572 /*
573 * Enable some debugging messages concerning memory usage...
574 */
575 static void
print_memlist(char * title,struct memlist * mp)576 print_memlist(char *title, struct memlist *mp)
577 {
578 prom_printf("MEMLIST: %s:\n", title);
579 while (mp != NULL) {
580 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
581 mp->ml_address, mp->ml_size);
582 mp = mp->ml_next;
583 }
584 }
585
586 /*
587 * XX64 need a comment here.. are these just default values, surely
588 * we read the "cpuid" type information to figure this out.
589 */
590 int l2cache_sz = 0x80000;
591 int l2cache_linesz = 0x40;
592 int l2cache_assoc = 1;
593
594 static size_t textrepl_min_gb = 10;
595
596 /*
597 * on 64 bit we use a predifined VA range for mapping devices in the kernel
598 * on 32 bit the mappings are intermixed in the heap, so we use a bit map
599 */
600 #ifdef __amd64
601
602 vmem_t *device_arena;
603 uintptr_t toxic_addr = (uintptr_t)NULL;
604 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
605
606 #else /* __i386 */
607
608 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */
609 size_t toxic_bit_map_len = 0; /* in bits */
610
611 #endif /* __i386 */
612
613 /*
614 * Simple boot time debug facilities
615 */
616 static char *prm_dbg_str[] = {
617 "%s:%d: '%s' is 0x%x\n",
618 "%s:%d: '%s' is 0x%llx\n"
619 };
620
621 int prom_debug;
622
623 #define PRM_DEBUG(q) if (prom_debug) \
624 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
625 #define PRM_POINT(q) if (prom_debug) \
626 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
627
628 /*
629 * This structure is used to keep track of the intial allocations
630 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
631 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
632 */
633 #define NUM_ALLOCATIONS 8
634 int num_allocations = 0;
635 struct {
636 void **al_ptr;
637 size_t al_size;
638 } allocations[NUM_ALLOCATIONS];
639 size_t valloc_sz = 0;
640 uintptr_t valloc_base;
641
642 #define ADD_TO_ALLOCATIONS(ptr, size) { \
643 size = ROUND_UP_PAGE(size); \
644 if (num_allocations == NUM_ALLOCATIONS) \
645 panic("too many ADD_TO_ALLOCATIONS()"); \
646 allocations[num_allocations].al_ptr = (void**)&ptr; \
647 allocations[num_allocations].al_size = size; \
648 valloc_sz += size; \
649 ++num_allocations; \
650 }
651
652 /*
653 * Allocate all the initial memory needed by the page allocator.
654 */
655 static void
perform_allocations(void)656 perform_allocations(void)
657 {
658 caddr_t mem;
659 int i;
660 int valloc_align;
661
662 PRM_DEBUG(valloc_base);
663 PRM_DEBUG(valloc_sz);
664 valloc_align = mmu.level_size[mmu.max_page_level > 0];
665 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align);
666 if (mem != (caddr_t)valloc_base)
667 panic("BOP_ALLOC() failed");
668 bzero(mem, valloc_sz);
669 for (i = 0; i < num_allocations; ++i) {
670 *allocations[i].al_ptr = (void *)mem;
671 mem += allocations[i].al_size;
672 }
673 }
674
675 /*
676 * Our world looks like this at startup time.
677 *
678 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
679 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at
680 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those
681 * addresses are fixed in the binary at link time.
682 *
683 * On the text page:
684 * unix/genunix/krtld/module text loads.
685 *
686 * On the data page:
687 * unix/genunix/krtld/module data loads.
688 *
689 * Machine-dependent startup code
690 */
691 void
startup(void)692 startup(void)
693 {
694 #if !defined(__xpv)
695 extern void startup_pci_bios(void);
696 #endif
697 extern cpuset_t cpu_ready_set;
698
699 /*
700 * Make sure that nobody tries to use sekpm until we have
701 * initialized it properly.
702 */
703 #if defined(__amd64)
704 kpm_desired = 1;
705 #endif
706 kpm_enable = 0;
707 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */
708
709 #if defined(__xpv) /* XXPV fix me! */
710 {
711 extern int segvn_use_regions;
712 segvn_use_regions = 0;
713 }
714 #endif
715 ssp_init();
716 progressbar_init();
717 startup_init();
718 #if defined(__xpv)
719 startup_xen_version();
720 #endif
721 startup_memlist();
722 startup_kmem();
723 startup_vm();
724 #if !defined(__xpv)
725 /*
726 * Note we need to do this even on fast reboot in order to access
727 * the irq routing table (used for pci labels).
728 */
729 startup_pci_bios();
730 #endif
731 #if defined(__xpv)
732 startup_xen_mca();
733 #endif
734 startup_modules();
735
736 startup_end();
737 }
738
739 static void
startup_init()740 startup_init()
741 {
742 PRM_POINT("startup_init() starting...");
743
744 /*
745 * Complete the extraction of cpuid data
746 */
747 cpuid_pass2(CPU);
748
749 (void) check_boot_version(BOP_GETVERSION(bootops));
750
751 /*
752 * Check for prom_debug in boot environment
753 */
754 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
755 ++prom_debug;
756 PRM_POINT("prom_debug found in boot enviroment");
757 }
758
759 /*
760 * Collect node, cpu and memory configuration information.
761 */
762 get_system_configuration();
763
764 /*
765 * Halt if this is an unsupported processor.
766 */
767 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
768 printf("\n486 processor (\"%s\") detected.\n",
769 CPU->cpu_brandstr);
770 halt("This processor is not supported by this release "
771 "of Solaris.");
772 }
773
774 PRM_POINT("startup_init() done");
775 }
776
777 /*
778 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
779 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
780 * also filters out physical page zero. There is some reliance on the
781 * boot loader allocating only a few contiguous physical memory chunks.
782 */
783 static void
avail_filter(uint64_t * addr,uint64_t * size)784 avail_filter(uint64_t *addr, uint64_t *size)
785 {
786 uintptr_t va;
787 uintptr_t next_va;
788 pfn_t pfn;
789 uint64_t pfn_addr;
790 uint64_t pfn_eaddr;
791 uint_t prot;
792 size_t len;
793 uint_t change;
794
795 if (prom_debug)
796 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
797 *addr, *size);
798
799 /*
800 * page zero is required for BIOS.. never make it available
801 */
802 if (*addr == 0) {
803 *addr += MMU_PAGESIZE;
804 *size -= MMU_PAGESIZE;
805 }
806
807 /*
808 * First we trim from the front of the range. Since kbm_probe()
809 * walks ranges in virtual order, but addr/size are physical, we need
810 * to the list until no changes are seen. This deals with the case
811 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
812 * but w < v.
813 */
814 do {
815 change = 0;
816 for (va = KERNEL_TEXT;
817 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
818 va = next_va) {
819
820 next_va = va + len;
821 pfn_addr = pfn_to_pa(pfn);
822 pfn_eaddr = pfn_addr + len;
823
824 if (pfn_addr <= *addr && pfn_eaddr > *addr) {
825 change = 1;
826 while (*size > 0 && len > 0) {
827 *addr += MMU_PAGESIZE;
828 *size -= MMU_PAGESIZE;
829 len -= MMU_PAGESIZE;
830 }
831 }
832 }
833 if (change && prom_debug)
834 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
835 *addr, *size);
836 } while (change);
837
838 /*
839 * Trim pages from the end of the range.
840 */
841 for (va = KERNEL_TEXT;
842 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0;
843 va = next_va) {
844
845 next_va = va + len;
846 pfn_addr = pfn_to_pa(pfn);
847
848 if (pfn_addr >= *addr && pfn_addr < *addr + *size)
849 *size = pfn_addr - *addr;
850 }
851
852 if (prom_debug)
853 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
854 *addr, *size);
855 }
856
857 static void
kpm_init()858 kpm_init()
859 {
860 struct segkpm_crargs b;
861
862 /*
863 * These variables were all designed for sfmmu in which segkpm is
864 * mapped using a single pagesize - either 8KB or 4MB. On x86, we
865 * might use 2+ page sizes on a single machine, so none of these
866 * variables have a single correct value. They are set up as if we
867 * always use a 4KB pagesize, which should do no harm. In the long
868 * run, we should get rid of KPM's assumption that only a single
869 * pagesize is used.
870 */
871 kpm_pgshft = MMU_PAGESHIFT;
872 kpm_pgsz = MMU_PAGESIZE;
873 kpm_pgoff = MMU_PAGEOFFSET;
874 kpmp2pshft = 0;
875 kpmpnpgs = 1;
876 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
877
878 PRM_POINT("about to create segkpm");
879 rw_enter(&kas.a_lock, RW_WRITER);
880
881 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
882 panic("cannot attach segkpm");
883
884 b.prot = PROT_READ | PROT_WRITE;
885 b.nvcolors = 1;
886
887 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
888 panic("segkpm_create segkpm");
889
890 rw_exit(&kas.a_lock);
891 }
892
893 /*
894 * The debug info page provides enough information to allow external
895 * inspectors (e.g. when running under a hypervisor) to bootstrap
896 * themselves into allowing full-blown kernel debugging.
897 */
898 static void
init_debug_info(void)899 init_debug_info(void)
900 {
901 caddr_t mem;
902 debug_info_t *di;
903
904 #ifndef __lint
905 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE);
906 #endif
907
908 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE,
909 MMU_PAGESIZE);
910
911 if (mem != (caddr_t)DEBUG_INFO_VA)
912 panic("BOP_ALLOC() failed");
913 bzero(mem, MMU_PAGESIZE);
914
915 di = (debug_info_t *)mem;
916
917 di->di_magic = DEBUG_INFO_MAGIC;
918 di->di_version = DEBUG_INFO_VERSION;
919 di->di_modules = (uintptr_t)&modules;
920 di->di_s_text = (uintptr_t)s_text;
921 di->di_e_text = (uintptr_t)e_text;
922 di->di_s_data = (uintptr_t)s_data;
923 di->di_e_data = (uintptr_t)e_data;
924 di->di_hat_htable_off = offsetof(hat_t, hat_htable);
925 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn);
926 }
927
928 /*
929 * Build the memlists and other kernel essential memory system data structures.
930 * This is everything at valloc_base.
931 */
932 static void
startup_memlist(void)933 startup_memlist(void)
934 {
935 size_t memlist_sz;
936 size_t memseg_sz;
937 size_t pagehash_sz;
938 size_t pp_sz;
939 uintptr_t va;
940 size_t len;
941 uint_t prot;
942 pfn_t pfn;
943 int memblocks;
944 pfn_t rsvd_high_pfn;
945 pgcnt_t rsvd_pgcnt;
946 size_t rsvdmemlist_sz;
947 int rsvdmemblocks;
948 caddr_t pagecolor_mem;
949 size_t pagecolor_memsz;
950 caddr_t page_ctrs_mem;
951 size_t page_ctrs_size;
952 size_t pse_table_alloc_size;
953 struct memlist *current;
954 extern void startup_build_mem_nodes(struct memlist *);
955
956 /* XX64 fix these - they should be in include files */
957 extern size_t page_coloring_init(uint_t, int, int);
958 extern void page_coloring_setup(caddr_t);
959
960 PRM_POINT("startup_memlist() starting...");
961
962 /*
963 * Use leftover large page nucleus text/data space for loadable modules.
964 * Use at most MODTEXT/MODDATA.
965 */
966 len = kbm_nucleus_size;
967 ASSERT(len > MMU_PAGESIZE);
968
969 moddata = (caddr_t)ROUND_UP_PAGE(e_data);
970 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len);
971 if (e_moddata - moddata > MODDATA)
972 e_moddata = moddata + MODDATA;
973
974 modtext = (caddr_t)ROUND_UP_PAGE(e_text);
975 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len);
976 if (e_modtext - modtext > MODTEXT)
977 e_modtext = modtext + MODTEXT;
978
979 econtig = e_moddata;
980
981 PRM_DEBUG(modtext);
982 PRM_DEBUG(e_modtext);
983 PRM_DEBUG(moddata);
984 PRM_DEBUG(e_moddata);
985 PRM_DEBUG(econtig);
986
987 /*
988 * Examine the boot loader physical memory map to find out:
989 * - total memory in system - physinstalled
990 * - the max physical address - physmax
991 * - the number of discontiguous segments of memory.
992 */
993 if (prom_debug)
994 print_memlist("boot physinstalled",
995 bootops->boot_mem->physinstalled);
996 installed_top_size_ex(bootops->boot_mem->physinstalled, &physmax,
997 &physinstalled, &memblocks);
998 PRM_DEBUG(physmax);
999 PRM_DEBUG(physinstalled);
1000 PRM_DEBUG(memblocks);
1001
1002 /*
1003 * Compute maximum physical address for memory DR operations.
1004 * Memory DR operations are unsupported on xpv or 32bit OSes.
1005 */
1006 #ifdef __amd64
1007 if (plat_dr_support_memory()) {
1008 if (plat_dr_physmax == 0) {
1009 uint_t pabits = UINT_MAX;
1010
1011 cpuid_get_addrsize(CPU, &pabits, NULL);
1012 plat_dr_physmax = btop(1ULL << pabits);
1013 }
1014 if (plat_dr_physmax > PHYSMEM_MAX64)
1015 plat_dr_physmax = PHYSMEM_MAX64;
1016 } else
1017 #endif
1018 plat_dr_physmax = 0;
1019
1020 /*
1021 * Examine the bios reserved memory to find out:
1022 * - the number of discontiguous segments of memory.
1023 */
1024 if (prom_debug)
1025 print_memlist("boot reserved mem",
1026 bootops->boot_mem->rsvdmem);
1027 installed_top_size_ex(bootops->boot_mem->rsvdmem, &rsvd_high_pfn,
1028 &rsvd_pgcnt, &rsvdmemblocks);
1029 PRM_DEBUG(rsvd_high_pfn);
1030 PRM_DEBUG(rsvd_pgcnt);
1031 PRM_DEBUG(rsvdmemblocks);
1032
1033 /*
1034 * Initialize hat's mmu parameters.
1035 * Check for enforce-prot-exec in boot environment. It's used to
1036 * enable/disable support for the page table entry NX bit.
1037 * The default is to enforce PROT_EXEC on processors that support NX.
1038 * Boot seems to round up the "len", but 8 seems to be big enough.
1039 */
1040 mmu_init();
1041
1042 #ifdef __i386
1043 /*
1044 * physmax is lowered if there is more memory than can be
1045 * physically addressed in 32 bit (PAE/non-PAE) modes.
1046 */
1047 if (mmu.pae_hat) {
1048 if (PFN_ABOVE64G(physmax)) {
1049 physinstalled -= (physmax - (PFN_64G - 1));
1050 physmax = PFN_64G - 1;
1051 }
1052 } else {
1053 if (PFN_ABOVE4G(physmax)) {
1054 physinstalled -= (physmax - (PFN_4G - 1));
1055 physmax = PFN_4G - 1;
1056 }
1057 }
1058 #endif
1059
1060 startup_build_mem_nodes(bootops->boot_mem->physinstalled);
1061
1062 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
1063 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
1064 char value[8];
1065
1066 if (len < 8)
1067 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
1068 else
1069 (void) strcpy(value, "");
1070 if (strcmp(value, "off") == 0)
1071 mmu.pt_nx = 0;
1072 }
1073 PRM_DEBUG(mmu.pt_nx);
1074
1075 /*
1076 * We will need page_t's for every page in the system, except for
1077 * memory mapped at or above above the start of the kernel text segment.
1078 *
1079 * pages above e_modtext are attributed to kernel debugger (obp_pages)
1080 */
1081 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
1082 obp_pages = 0;
1083 va = KERNEL_TEXT;
1084 while (kbm_probe(&va, &len, &pfn, &prot) != 0) {
1085 npages -= len >> MMU_PAGESHIFT;
1086 if (va >= (uintptr_t)e_moddata)
1087 obp_pages += len >> MMU_PAGESHIFT;
1088 va += len;
1089 }
1090 PRM_DEBUG(npages);
1091 PRM_DEBUG(obp_pages);
1092
1093 /*
1094 * If physmem is patched to be non-zero, use it instead of the computed
1095 * value unless it is larger than the actual amount of memory on hand.
1096 */
1097 if (physmem == 0 || physmem > npages) {
1098 physmem = npages;
1099 } else if (physmem < npages) {
1100 orig_npages = npages;
1101 npages = physmem;
1102 }
1103 PRM_DEBUG(physmem);
1104
1105 /*
1106 * We now compute the sizes of all the initial allocations for
1107 * structures the kernel needs in order do kmem_alloc(). These
1108 * include:
1109 * memsegs
1110 * memlists
1111 * page hash table
1112 * page_t's
1113 * page coloring data structs
1114 */
1115 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
1116 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
1117 PRM_DEBUG(memseg_sz);
1118
1119 /*
1120 * Reserve space for memlists. There's no real good way to know exactly
1121 * how much room we'll need, but this should be a good upper bound.
1122 */
1123 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1124 (memblocks + POSS_NEW_FRAGMENTS));
1125 ADD_TO_ALLOCATIONS(memlist, memlist_sz);
1126 PRM_DEBUG(memlist_sz);
1127
1128 /*
1129 * Reserve space for bios reserved memlists.
1130 */
1131 rsvdmemlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
1132 (rsvdmemblocks + POSS_NEW_FRAGMENTS));
1133 ADD_TO_ALLOCATIONS(bios_rsvd, rsvdmemlist_sz);
1134 PRM_DEBUG(rsvdmemlist_sz);
1135
1136 /* LINTED */
1137 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), sizeof (struct page)));
1138 /*
1139 * The page structure hash table size is a power of 2
1140 * such that the average hash chain length is PAGE_HASHAVELEN.
1141 */
1142 page_hashsz = npages / PAGE_HASHAVELEN;
1143 page_hashsz_shift = highbit(page_hashsz);
1144 page_hashsz = 1 << page_hashsz_shift;
1145 pagehash_sz = sizeof (struct page *) * page_hashsz;
1146 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
1147 PRM_DEBUG(pagehash_sz);
1148
1149 /*
1150 * Set aside room for the page structures themselves.
1151 */
1152 PRM_DEBUG(npages);
1153 pp_sz = sizeof (struct page) * npages;
1154 ADD_TO_ALLOCATIONS(pp_base, pp_sz);
1155 PRM_DEBUG(pp_sz);
1156
1157 /*
1158 * determine l2 cache info and memory size for page coloring
1159 */
1160 (void) getl2cacheinfo(CPU,
1161 &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
1162 pagecolor_memsz =
1163 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
1164 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
1165 PRM_DEBUG(pagecolor_memsz);
1166
1167 page_ctrs_size = page_ctrs_sz();
1168 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
1169 PRM_DEBUG(page_ctrs_size);
1170
1171 /*
1172 * Allocate the array that protects pp->p_selock.
1173 */
1174 pse_shift = size_pse_array(physmem, max_ncpus);
1175 pse_table_size = 1 << pse_shift;
1176 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t);
1177 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size);
1178
1179 #if defined(__amd64)
1180 valloc_sz = ROUND_UP_LPAGE(valloc_sz);
1181 valloc_base = VALLOC_BASE;
1182
1183 /*
1184 * The default values of VALLOC_BASE and SEGKPM_BASE should work
1185 * for values of physmax up to 1 Terabyte. They need adjusting when
1186 * memory is at addresses above 1 TB. When adjusted, segkpm_base must
1187 * be aligned on KERNEL_REDZONE_SIZE boundary (span of top level pte).
1188 */
1189 if (physmax + 1 > mmu_btop(TERABYTE) ||
1190 plat_dr_physmax > mmu_btop(TERABYTE)) {
1191 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1);
1192
1193 if (kpm_resv_amount < mmu_ptob(plat_dr_physmax)) {
1194 kpm_resv_amount = mmu_ptob(plat_dr_physmax);
1195 }
1196
1197 segkpm_base = -(P2ROUNDUP((2 * kpm_resv_amount),
1198 KERNEL_REDZONE_SIZE)); /* down from top VA */
1199
1200 /* make sure we leave some space for user apps above hole */
1201 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE);
1202 if (segkpm_base > SEGKPM_BASE)
1203 segkpm_base = SEGKPM_BASE;
1204 PRM_DEBUG(segkpm_base);
1205
1206 valloc_base = segkpm_base + P2ROUNDUP(kpm_resv_amount, ONE_GIG);
1207 if (valloc_base < segkpm_base)
1208 panic("not enough kernel VA to support memory size");
1209 PRM_DEBUG(valloc_base);
1210 }
1211 #else /* __i386 */
1212 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz);
1213 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]);
1214 PRM_DEBUG(valloc_base);
1215 #endif /* __i386 */
1216
1217 /*
1218 * do all the initial allocations
1219 */
1220 perform_allocations();
1221
1222 /*
1223 * Build phys_install and phys_avail in kernel memspace.
1224 * - phys_install should be all memory in the system.
1225 * - phys_avail is phys_install minus any memory mapped before this
1226 * point above KERNEL_TEXT.
1227 */
1228 current = phys_install = memlist;
1229 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL);
1230 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1231 panic("physinstalled was too big!");
1232 if (prom_debug)
1233 print_memlist("phys_install", phys_install);
1234
1235 phys_avail = current;
1236 PRM_POINT("Building phys_avail:\n");
1237 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t,
1238 avail_filter);
1239 if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
1240 panic("physavail was too big!");
1241 if (prom_debug)
1242 print_memlist("phys_avail", phys_avail);
1243 #ifndef __xpv
1244 /*
1245 * Free unused memlist items, which may be used by memory DR driver
1246 * at runtime.
1247 */
1248 if ((caddr_t)current < (caddr_t)memlist + memlist_sz) {
1249 memlist_free_block((caddr_t)current,
1250 (caddr_t)memlist + memlist_sz - (caddr_t)current);
1251 }
1252 #endif
1253
1254 /*
1255 * Build bios reserved memspace
1256 */
1257 current = bios_rsvd;
1258 copy_memlist_filter(bootops->boot_mem->rsvdmem, ¤t, NULL);
1259 if ((caddr_t)current > (caddr_t)bios_rsvd + rsvdmemlist_sz)
1260 panic("bios_rsvd was too big!");
1261 if (prom_debug)
1262 print_memlist("bios_rsvd", bios_rsvd);
1263 #ifndef __xpv
1264 /*
1265 * Free unused memlist items, which may be used by memory DR driver
1266 * at runtime.
1267 */
1268 if ((caddr_t)current < (caddr_t)bios_rsvd + rsvdmemlist_sz) {
1269 memlist_free_block((caddr_t)current,
1270 (caddr_t)bios_rsvd + rsvdmemlist_sz - (caddr_t)current);
1271 }
1272 #endif
1273
1274 /*
1275 * setup page coloring
1276 */
1277 page_coloring_setup(pagecolor_mem);
1278 page_lock_init(); /* currently a no-op */
1279
1280 /*
1281 * free page list counters
1282 */
1283 (void) page_ctrs_alloc(page_ctrs_mem);
1284
1285 /*
1286 * Size the pcf array based on the number of cpus in the box at
1287 * boot time.
1288 */
1289
1290 pcf_init();
1291
1292 /*
1293 * Initialize the page structures from the memory lists.
1294 */
1295 availrmem_initial = availrmem = freemem = 0;
1296 PRM_POINT("Calling kphysm_init()...");
1297 npages = kphysm_init(pp_base, npages);
1298 PRM_POINT("kphysm_init() done");
1299 PRM_DEBUG(npages);
1300
1301 init_debug_info();
1302
1303 /*
1304 * Now that page_t's have been initialized, remove all the
1305 * initial allocation pages from the kernel free page lists.
1306 */
1307 boot_mapin((caddr_t)valloc_base, valloc_sz);
1308 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE);
1309 PRM_POINT("startup_memlist() done");
1310
1311 PRM_DEBUG(valloc_sz);
1312
1313 #if defined(__amd64)
1314 if ((availrmem >> (30 - MMU_PAGESHIFT)) >=
1315 textrepl_min_gb && l2cache_sz <= 2 << 20) {
1316 extern size_t textrepl_size_thresh;
1317 textrepl_size_thresh = (16 << 20) - 1;
1318 }
1319 #endif
1320 }
1321
1322 /*
1323 * Layout the kernel's part of address space and initialize kmem allocator.
1324 */
1325 static void
startup_kmem(void)1326 startup_kmem(void)
1327 {
1328 extern void page_set_colorequiv_arr(void);
1329
1330 PRM_POINT("startup_kmem() starting...");
1331
1332 #if defined(__amd64)
1333 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
1334 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
1335 "systems.");
1336 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE;
1337 core_base = (uintptr_t)COREHEAP_BASE;
1338 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE;
1339 #else /* __i386 */
1340 /*
1341 * We configure kernelbase based on:
1342 *
1343 * 1. user specified kernelbase via eeprom command. Value cannot exceed
1344 * KERNELBASE_MAX. we large page align eprom_kernelbase
1345 *
1346 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
1347 * On large memory systems we must lower kernelbase to allow
1348 * enough room for page_t's for all of memory.
1349 *
1350 * The value set here, might be changed a little later.
1351 */
1352 if (eprom_kernelbase) {
1353 kernelbase = eprom_kernelbase & mmu.level_mask[1];
1354 if (kernelbase > KERNELBASE_MAX)
1355 kernelbase = KERNELBASE_MAX;
1356 } else {
1357 kernelbase = (uintptr_t)KERNELBASE;
1358 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
1359 }
1360 ASSERT((kernelbase & mmu.level_offset[1]) == 0);
1361 core_base = valloc_base;
1362 core_size = 0;
1363 #endif /* __i386 */
1364
1365 PRM_DEBUG(core_base);
1366 PRM_DEBUG(core_size);
1367 PRM_DEBUG(kernelbase);
1368
1369 #if defined(__i386)
1370 segkp_fromheap = 1;
1371 #endif /* __i386 */
1372
1373 ekernelheap = (char *)core_base;
1374 PRM_DEBUG(ekernelheap);
1375
1376 /*
1377 * Now that we know the real value of kernelbase,
1378 * update variables that were initialized with a value of
1379 * KERNELBASE (in common/conf/param.c).
1380 *
1381 * XXX The problem with this sort of hackery is that the
1382 * compiler just may feel like putting the const declarations
1383 * (in param.c) into the .text section. Perhaps they should
1384 * just be declared as variables there?
1385 */
1386
1387 *(uintptr_t *)&_kernelbase = kernelbase;
1388 *(uintptr_t *)&_userlimit = kernelbase;
1389 #if defined(__amd64)
1390 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT;
1391 #else
1392 *(uintptr_t *)&_userlimit32 = _userlimit;
1393 #endif
1394 PRM_DEBUG(_kernelbase);
1395 PRM_DEBUG(_userlimit);
1396 PRM_DEBUG(_userlimit32);
1397
1398 layout_kernel_va();
1399
1400 #if defined(__i386)
1401 /*
1402 * If segmap is too large we can push the bottom of the kernel heap
1403 * higher than the base. Or worse, it could exceed the top of the
1404 * VA space entirely, causing it to wrap around.
1405 */
1406 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
1407 panic("too little address space available for kernelheap,"
1408 " use eeprom for lower kernelbase or smaller segmapsize");
1409 #endif /* __i386 */
1410
1411 /*
1412 * Initialize the kernel heap. Note 3rd argument must be > 1st.
1413 */
1414 kernelheap_init(kernelheap, ekernelheap,
1415 kernelheap + MMU_PAGESIZE,
1416 (void *)core_base, (void *)(core_base + core_size));
1417
1418 #if defined(__xpv)
1419 /*
1420 * Link pending events struct into cpu struct
1421 */
1422 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data;
1423 #endif
1424 /*
1425 * Initialize kernel memory allocator.
1426 */
1427 kmem_init();
1428
1429 /*
1430 * Factor in colorequiv to check additional 'equivalent' bins
1431 */
1432 page_set_colorequiv_arr();
1433
1434 /*
1435 * print this out early so that we know what's going on
1436 */
1437 print_x86_featureset(x86_featureset);
1438
1439 /*
1440 * Initialize bp_mapin().
1441 */
1442 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
1443
1444 /*
1445 * orig_npages is non-zero if physmem has been configured for less
1446 * than the available memory.
1447 */
1448 if (orig_npages) {
1449 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages",
1450 (npages == PHYSMEM ? "Due to virtual address space " : ""),
1451 npages, orig_npages);
1452 }
1453 #if defined(__i386)
1454 if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
1455 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
1456 "System using 0x%lx",
1457 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
1458 #endif
1459
1460 #ifdef KERNELBASE_ABI_MIN
1461 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
1462 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
1463 "i386 ABI compliant.", (uintptr_t)kernelbase);
1464 }
1465 #endif
1466
1467 #ifndef __xpv
1468 if (plat_dr_support_memory()) {
1469 mem_config_init();
1470 }
1471 #else /* __xpv */
1472 /*
1473 * Some of the xen start information has to be relocated up
1474 * into the kernel's permanent address space.
1475 */
1476 PRM_POINT("calling xen_relocate_start_info()");
1477 xen_relocate_start_info();
1478 PRM_POINT("xen_relocate_start_info() done");
1479
1480 /*
1481 * (Update the vcpu pointer in our cpu structure to point into
1482 * the relocated shared info.)
1483 */
1484 CPU->cpu_m.mcpu_vcpu_info =
1485 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id];
1486 #endif /* __xpv */
1487
1488 PRM_POINT("startup_kmem() done");
1489 }
1490
1491 #ifndef __xpv
1492 /*
1493 * If we have detected that we are running in an HVM environment, we need
1494 * to prepend the PV driver directory to the module search path.
1495 */
1496 #define HVM_MOD_DIR "/platform/i86hvm/kernel"
1497 static void
update_default_path()1498 update_default_path()
1499 {
1500 char *current, *newpath;
1501 int newlen;
1502
1503 /*
1504 * We are about to resync with krtld. krtld will reset its
1505 * internal module search path iff Solaris has set default_path.
1506 * We want to be sure we're prepending this new directory to the
1507 * right search path.
1508 */
1509 current = (default_path == NULL) ? kobj_module_path : default_path;
1510
1511 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 2;
1512 newpath = kmem_alloc(newlen, KM_SLEEP);
1513 (void) strcpy(newpath, HVM_MOD_DIR);
1514 (void) strcat(newpath, " ");
1515 (void) strcat(newpath, current);
1516
1517 default_path = newpath;
1518 }
1519 #endif
1520
1521 static void
startup_modules(void)1522 startup_modules(void)
1523 {
1524 int cnt;
1525 extern void prom_setup(void);
1526 int32_t v, h;
1527 char d[11];
1528 char *cp;
1529 cmi_hdl_t hdl;
1530
1531 PRM_POINT("startup_modules() starting...");
1532
1533 #ifndef __xpv
1534 /*
1535 * Initialize ten-micro second timer so that drivers will
1536 * not get short changed in their init phase. This was
1537 * not getting called until clkinit which, on fast cpu's
1538 * caused the drv_usecwait to be way too short.
1539 */
1540 microfind();
1541
1542 if ((get_hwenv() & HW_XEN_HVM) != 0)
1543 update_default_path();
1544 #endif
1545
1546 /*
1547 * Read the GMT lag from /etc/rtc_config.
1548 */
1549 sgmtl(process_rtc_config_file());
1550
1551 /*
1552 * Calculate default settings of system parameters based upon
1553 * maxusers, yet allow to be overridden via the /etc/system file.
1554 */
1555 param_calc(0);
1556
1557 mod_setup();
1558
1559 /*
1560 * Initialize system parameters.
1561 */
1562 param_init();
1563
1564 /*
1565 * Initialize the default brands
1566 */
1567 brand_init();
1568
1569 /*
1570 * maxmem is the amount of physical memory we're playing with.
1571 */
1572 maxmem = physmem;
1573
1574 /*
1575 * Initialize segment management stuff.
1576 */
1577 seg_init();
1578
1579 if (modload("fs", "specfs") == -1)
1580 halt("Can't load specfs");
1581
1582 if (modload("fs", "devfs") == -1)
1583 halt("Can't load devfs");
1584
1585 if (modload("fs", "dev") == -1)
1586 halt("Can't load dev");
1587
1588 if (modload("fs", "procfs") == -1)
1589 halt("Can't load procfs");
1590
1591 (void) modloadonly("sys", "lbl_edition");
1592
1593 dispinit();
1594
1595 /* Read cluster configuration data. */
1596 clconf_init();
1597
1598 #if defined(__xpv)
1599 (void) ec_init();
1600 gnttab_init();
1601 (void) xs_early_init();
1602 #endif /* __xpv */
1603
1604 /*
1605 * Create a kernel device tree. First, create rootnex and
1606 * then invoke bus specific code to probe devices.
1607 */
1608 setup_ddi();
1609
1610 #ifdef __xpv
1611 if (DOMAIN_IS_INITDOMAIN(xen_info))
1612 #endif
1613 {
1614 /*
1615 * Load the System Management BIOS into the global ksmbios
1616 * handle, if an SMBIOS is present on this system.
1617 */
1618 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL);
1619 }
1620
1621
1622 /*
1623 * Originally clconf_init() apparently needed the hostid. But
1624 * this no longer appears to be true - it uses its own nodeid.
1625 * By placing the hostid logic here, we are able to make use of
1626 * the SMBIOS UUID.
1627 */
1628 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) {
1629 cmn_err(CE_WARN, "Unable to set hostid");
1630 } else {
1631 for (v = h, cnt = 0; cnt < 10; cnt++) {
1632 d[cnt] = (char)(v % 10);
1633 v /= 10;
1634 if (v == 0)
1635 break;
1636 }
1637 for (cp = hw_serial; cnt >= 0; cnt--)
1638 *cp++ = d[cnt] + '0';
1639 *cp = 0;
1640 }
1641
1642 /*
1643 * Set up the CPU module subsystem for the boot cpu in the native
1644 * case, and all physical cpu resource in the xpv dom0 case.
1645 * Modifies the device tree, so this must be done after
1646 * setup_ddi().
1647 */
1648 #ifdef __xpv
1649 /*
1650 * If paravirtualized and on dom0 then we initialize all physical
1651 * cpu handles now; if paravirtualized on a domU then do not
1652 * initialize.
1653 */
1654 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1655 xen_mc_lcpu_cookie_t cpi;
1656
1657 for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1658 cpi = xen_physcpu_next(cpi)) {
1659 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA,
1660 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi),
1661 xen_physcpu_strandid(cpi))) != NULL &&
1662 is_x86_feature(x86_featureset, X86FSET_MCA))
1663 cmi_mca_init(hdl);
1664 }
1665 }
1666 #else
1667 /*
1668 * Initialize a handle for the boot cpu - others will initialize
1669 * as they startup. Do not do this if we know we are in an HVM domU.
1670 */
1671 if ((get_hwenv() & HW_XEN_HVM) == 0 &&
1672 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1673 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL &&
1674 is_x86_feature(x86_featureset, X86FSET_MCA)) {
1675 cmi_mca_init(hdl);
1676 CPU->cpu_m.mcpu_cmi_hdl = hdl;
1677 }
1678 #endif /* __xpv */
1679
1680 /*
1681 * Fake a prom tree such that /dev/openprom continues to work
1682 */
1683 PRM_POINT("startup_modules: calling prom_setup...");
1684 prom_setup();
1685 PRM_POINT("startup_modules: done");
1686
1687 /*
1688 * Load all platform specific modules
1689 */
1690 PRM_POINT("startup_modules: calling psm_modload...");
1691 psm_modload();
1692
1693 PRM_POINT("startup_modules() done");
1694 }
1695
1696 /*
1697 * claim a "setaside" boot page for use in the kernel
1698 */
1699 page_t *
boot_claim_page(pfn_t pfn)1700 boot_claim_page(pfn_t pfn)
1701 {
1702 page_t *pp;
1703
1704 pp = page_numtopp_nolock(pfn);
1705 ASSERT(pp != NULL);
1706
1707 if (PP_ISBOOTPAGES(pp)) {
1708 if (pp->p_next != NULL)
1709 pp->p_next->p_prev = pp->p_prev;
1710 if (pp->p_prev == NULL)
1711 bootpages = pp->p_next;
1712 else
1713 pp->p_prev->p_next = pp->p_next;
1714 } else {
1715 /*
1716 * htable_attach() expects a base pagesize page
1717 */
1718 if (pp->p_szc != 0)
1719 page_boot_demote(pp);
1720 pp = page_numtopp(pfn, SE_EXCL);
1721 }
1722 return (pp);
1723 }
1724
1725 /*
1726 * Walk through the pagetables looking for pages mapped in by boot. If the
1727 * setaside flag is set the pages are expected to be returned to the
1728 * kernel later in boot, so we add them to the bootpages list.
1729 */
1730 static void
protect_boot_range(uintptr_t low,uintptr_t high,int setaside)1731 protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
1732 {
1733 uintptr_t va = low;
1734 size_t len;
1735 uint_t prot;
1736 pfn_t pfn;
1737 page_t *pp;
1738 pgcnt_t boot_protect_cnt = 0;
1739
1740 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
1741 if (va + len >= high)
1742 panic("0x%lx byte mapping at 0x%p exceeds boot's "
1743 "legal range.", len, (void *)va);
1744
1745 while (len > 0) {
1746 pp = page_numtopp_alloc(pfn);
1747 if (pp != NULL) {
1748 if (setaside == 0)
1749 panic("Unexpected mapping by boot. "
1750 "addr=%p pfn=%lx\n",
1751 (void *)va, pfn);
1752
1753 pp->p_next = bootpages;
1754 pp->p_prev = NULL;
1755 PP_SETBOOTPAGES(pp);
1756 if (bootpages != NULL) {
1757 bootpages->p_prev = pp;
1758 }
1759 bootpages = pp;
1760 ++boot_protect_cnt;
1761 }
1762
1763 ++pfn;
1764 len -= MMU_PAGESIZE;
1765 va += MMU_PAGESIZE;
1766 }
1767 }
1768 PRM_DEBUG(boot_protect_cnt);
1769 }
1770
1771 /*
1772 *
1773 */
1774 static void
layout_kernel_va(void)1775 layout_kernel_va(void)
1776 {
1777 PRM_POINT("layout_kernel_va() starting...");
1778 /*
1779 * Establish the final size of the kernel's heap, size of segmap,
1780 * segkp, etc.
1781 */
1782
1783 #if defined(__amd64)
1784
1785 kpm_vbase = (caddr_t)segkpm_base;
1786 if (physmax + 1 < plat_dr_physmax) {
1787 kpm_size = ROUND_UP_LPAGE(mmu_ptob(plat_dr_physmax));
1788 } else {
1789 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1));
1790 }
1791 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base)
1792 panic("not enough room for kpm!");
1793 PRM_DEBUG(kpm_size);
1794 PRM_DEBUG(kpm_vbase);
1795
1796 /*
1797 * By default we create a seg_kp in 64 bit kernels, it's a little
1798 * faster to access than embedding it in the heap.
1799 */
1800 segkp_base = (caddr_t)valloc_base + valloc_sz;
1801 if (!segkp_fromheap) {
1802 size_t sz = mmu_ptob(segkpsize);
1803
1804 /*
1805 * determine size of segkp
1806 */
1807 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
1808 sz = SEGKPDEFSIZE;
1809 cmn_err(CE_WARN, "!Illegal value for segkpsize. "
1810 "segkpsize has been reset to %ld pages",
1811 mmu_btop(sz));
1812 }
1813 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
1814
1815 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
1816 }
1817 PRM_DEBUG(segkp_base);
1818 PRM_DEBUG(segkpsize);
1819
1820 /*
1821 * segzio is used for ZFS cached data. It uses a distinct VA
1822 * segment (from kernel heap) so that we can easily tell not to
1823 * include it in kernel crash dumps on 64 bit kernels. The trick is
1824 * to give it lots of VA, but not constrain the kernel heap.
1825 * We scale the size of segzio linearly with physmem up to
1826 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem.
1827 */
1828 segzio_base = segkp_base + SEGKPMAXSIZE;
1829 if (segzio_fromheap) {
1830 segziosize = 0;
1831 } else {
1832 size_t physmem_size = mmu_ptob(physmem);
1833 size_t size = (segziosize == 0) ?
1834 physmem_size : mmu_ptob(segziosize);
1835
1836 if (size < SEGZIOMINSIZE)
1837 size = SEGZIOMINSIZE;
1838 if (size > SEGZIOMAXSIZE) {
1839 size = SEGZIOMAXSIZE;
1840 if (physmem_size > size)
1841 size += (physmem_size - size) / 2;
1842 }
1843 segziosize = mmu_btop(ROUND_UP_LPAGE(size));
1844 }
1845 PRM_DEBUG(segziosize);
1846 PRM_DEBUG(segzio_base);
1847
1848 /*
1849 * Put the range of VA for device mappings next, kmdb knows to not
1850 * grep in this range of addresses.
1851 */
1852 toxic_addr =
1853 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize));
1854 PRM_DEBUG(toxic_addr);
1855 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size);
1856 #else /* __i386 */
1857 segmap_start = ROUND_UP_LPAGE(kernelbase);
1858 #endif /* __i386 */
1859 PRM_DEBUG(segmap_start);
1860
1861 /*
1862 * Users can change segmapsize through eeprom. If the variable
1863 * is tuned through eeprom, there is no upper bound on the
1864 * size of segmap.
1865 */
1866 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
1867
1868 #if defined(__i386)
1869 /*
1870 * 32-bit systems don't have segkpm or segkp, so segmap appears at
1871 * the bottom of the kernel's address range. Set aside space for a
1872 * small red zone just below the start of segmap.
1873 */
1874 segmap_start += KERNEL_REDZONE_SIZE;
1875 segmapsize -= KERNEL_REDZONE_SIZE;
1876 #endif
1877
1878 PRM_DEBUG(segmap_start);
1879 PRM_DEBUG(segmapsize);
1880 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize);
1881 PRM_DEBUG(kernelheap);
1882 PRM_POINT("layout_kernel_va() done...");
1883 }
1884
1885 /*
1886 * Finish initializing the VM system, now that we are no longer
1887 * relying on the boot time memory allocators.
1888 */
1889 static void
startup_vm(void)1890 startup_vm(void)
1891 {
1892 struct segmap_crargs a;
1893
1894 extern int use_brk_lpg, use_stk_lpg;
1895
1896 PRM_POINT("startup_vm() starting...");
1897
1898 /*
1899 * Initialize the hat layer.
1900 */
1901 hat_init();
1902
1903 /*
1904 * Do final allocations of HAT data structures that need to
1905 * be allocated before quiescing the boot loader.
1906 */
1907 PRM_POINT("Calling hat_kern_alloc()...");
1908 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap);
1909 PRM_POINT("hat_kern_alloc() done");
1910
1911 #ifndef __xpv
1912 /*
1913 * Setup Page Attribute Table
1914 */
1915 pat_sync();
1916 #endif
1917
1918 /*
1919 * The next two loops are done in distinct steps in order
1920 * to be sure that any page that is doubly mapped (both above
1921 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
1922 * Note this may never happen, but it might someday.
1923 */
1924 bootpages = NULL;
1925 PRM_POINT("Protecting boot pages");
1926
1927 /*
1928 * Protect any pages mapped above KERNEL_TEXT that somehow have
1929 * page_t's. This can only happen if something weird allocated
1930 * in this range (like kadb/kmdb).
1931 */
1932 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
1933
1934 /*
1935 * Before we can take over memory allocation/mapping from the boot
1936 * loader we must remove from our free page lists any boot allocated
1937 * pages that stay mapped until release_bootstrap().
1938 */
1939 protect_boot_range(0, kernelbase, 1);
1940
1941
1942 /*
1943 * Switch to running on regular HAT (not boot_mmu)
1944 */
1945 PRM_POINT("Calling hat_kern_setup()...");
1946 hat_kern_setup();
1947
1948 /*
1949 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
1950 */
1951 bop_no_more_mem();
1952
1953 PRM_POINT("hat_kern_setup() done");
1954
1955 hat_cpu_online(CPU);
1956
1957 /*
1958 * Initialize VM system
1959 */
1960 PRM_POINT("Calling kvm_init()...");
1961 kvm_init();
1962 PRM_POINT("kvm_init() done");
1963
1964 /*
1965 * Tell kmdb that the VM system is now working
1966 */
1967 if (boothowto & RB_DEBUG)
1968 kdi_dvec_vmready();
1969
1970 #if defined(__xpv)
1971 /*
1972 * Populate the I/O pool on domain 0
1973 */
1974 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1975 extern long populate_io_pool(void);
1976 long init_io_pool_cnt;
1977
1978 PRM_POINT("Populating reserve I/O page pool");
1979 init_io_pool_cnt = populate_io_pool();
1980 PRM_DEBUG(init_io_pool_cnt);
1981 }
1982 #endif
1983 /*
1984 * Mangle the brand string etc.
1985 */
1986 cpuid_pass3(CPU);
1987
1988 #if defined(__amd64)
1989
1990 /*
1991 * Create the device arena for toxic (to dtrace/kmdb) mappings.
1992 */
1993 device_arena = vmem_create("device", (void *)toxic_addr,
1994 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
1995
1996 #else /* __i386 */
1997
1998 /*
1999 * allocate the bit map that tracks toxic pages
2000 */
2001 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase));
2002 PRM_DEBUG(toxic_bit_map_len);
2003 toxic_bit_map =
2004 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
2005 ASSERT(toxic_bit_map != NULL);
2006 PRM_DEBUG(toxic_bit_map);
2007
2008 #endif /* __i386 */
2009
2010
2011 /*
2012 * Now that we've got more VA, as well as the ability to allocate from
2013 * it, tell the debugger.
2014 */
2015 if (boothowto & RB_DEBUG)
2016 kdi_dvec_memavail();
2017
2018 /*
2019 * The following code installs a special page fault handler (#pf)
2020 * to work around a pentium bug.
2021 */
2022 #if !defined(__amd64) && !defined(__xpv)
2023 if (x86_type == X86_TYPE_P5) {
2024 desctbr_t idtr;
2025 gate_desc_t *newidt;
2026
2027 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
2028 panic("failed to install pentium_pftrap");
2029
2030 bcopy(idt0, newidt, NIDT * sizeof (*idt0));
2031 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
2032 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
2033
2034 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
2035 PROT_READ | PROT_EXEC);
2036
2037 CPU->cpu_idt = newidt;
2038 idtr.dtr_base = (uintptr_t)CPU->cpu_idt;
2039 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1;
2040 wr_idtr(&idtr);
2041 }
2042 #endif /* !__amd64 */
2043
2044 #if !defined(__xpv)
2045 /*
2046 * Map page pfn=0 for drivers, such as kd, that need to pick up
2047 * parameters left there by controllers/BIOS.
2048 */
2049 PRM_POINT("setup up p0_va");
2050 p0_va = i86devmap(0, 1, PROT_READ);
2051 PRM_DEBUG(p0_va);
2052 #endif
2053
2054 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
2055 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
2056
2057 /*
2058 * disable automatic large pages for small memory systems or
2059 * when the disable flag is set.
2060 *
2061 * Do not yet consider page sizes larger than 2m/4m.
2062 */
2063 if (!auto_lpg_disable && mmu.max_page_level > 0) {
2064 max_uheap_lpsize = LEVEL_SIZE(1);
2065 max_ustack_lpsize = LEVEL_SIZE(1);
2066 max_privmap_lpsize = LEVEL_SIZE(1);
2067 max_uidata_lpsize = LEVEL_SIZE(1);
2068 max_utext_lpsize = LEVEL_SIZE(1);
2069 max_shm_lpsize = LEVEL_SIZE(1);
2070 }
2071 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 ||
2072 auto_lpg_disable) {
2073 use_brk_lpg = 0;
2074 use_stk_lpg = 0;
2075 }
2076 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level);
2077
2078 PRM_POINT("Calling hat_init_finish()...");
2079 hat_init_finish();
2080 PRM_POINT("hat_init_finish() done");
2081
2082 /*
2083 * Initialize the segkp segment type.
2084 */
2085 rw_enter(&kas.a_lock, RW_WRITER);
2086 PRM_POINT("Attaching segkp");
2087 if (segkp_fromheap) {
2088 segkp->s_as = &kas;
2089 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
2090 segkp) < 0) {
2091 panic("startup: cannot attach segkp");
2092 /*NOTREACHED*/
2093 }
2094 PRM_POINT("Doing segkp_create()");
2095 if (segkp_create(segkp) != 0) {
2096 panic("startup: segkp_create failed");
2097 /*NOTREACHED*/
2098 }
2099 PRM_DEBUG(segkp);
2100 rw_exit(&kas.a_lock);
2101
2102 /*
2103 * kpm segment
2104 */
2105 segmap_kpm = 0;
2106 if (kpm_desired) {
2107 kpm_init();
2108 kpm_enable = 1;
2109 }
2110
2111 /*
2112 * Now create segmap segment.
2113 */
2114 rw_enter(&kas.a_lock, RW_WRITER);
2115 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) {
2116 panic("cannot attach segmap");
2117 /*NOTREACHED*/
2118 }
2119 PRM_DEBUG(segmap);
2120
2121 a.prot = PROT_READ | PROT_WRITE;
2122 a.shmsize = 0;
2123 a.nfreelist = segmapfreelists;
2124
2125 if (segmap_create(segmap, (caddr_t)&a) != 0)
2126 panic("segmap_create segmap");
2127 rw_exit(&kas.a_lock);
2128
2129 setup_vaddr_for_ppcopy(CPU);
2130
2131 segdev_init();
2132 #if defined(__xpv)
2133 if (DOMAIN_IS_INITDOMAIN(xen_info))
2134 #endif
2135 pmem_init();
2136
2137 PRM_POINT("startup_vm() done");
2138 }
2139
2140 /*
2141 * Load a tod module for the non-standard tod part found on this system.
2142 */
2143 static void
load_tod_module(char * todmod)2144 load_tod_module(char *todmod)
2145 {
2146 if (modload("tod", todmod) == -1)
2147 halt("Can't load TOD module");
2148 }
2149
2150 static void
startup_end(void)2151 startup_end(void)
2152 {
2153 int i;
2154 extern void setx86isalist(void);
2155 extern void cpu_event_init(void);
2156
2157 PRM_POINT("startup_end() starting...");
2158
2159 /*
2160 * Perform tasks that get done after most of the VM
2161 * initialization has been done but before the clock
2162 * and other devices get started.
2163 */
2164 kern_setup1();
2165
2166 /*
2167 * Perform CPC initialization for this CPU.
2168 */
2169 kcpc_hw_init(CPU);
2170
2171 /*
2172 * Initialize cpu event framework.
2173 */
2174 cpu_event_init();
2175
2176 #if defined(OPTERON_WORKAROUND_6323525)
2177 if (opteron_workaround_6323525)
2178 patch_workaround_6323525();
2179 #endif
2180 /*
2181 * If needed, load TOD module now so that ddi_get_time(9F) etc. work
2182 * (For now, "needed" is defined as set tod_module_name in /etc/system)
2183 */
2184 if (tod_module_name != NULL) {
2185 PRM_POINT("load_tod_module()");
2186 load_tod_module(tod_module_name);
2187 }
2188
2189 #if defined(__xpv)
2190 /*
2191 * Forceload interposing TOD module for the hypervisor.
2192 */
2193 PRM_POINT("load_tod_module()");
2194 load_tod_module("xpvtod");
2195 #endif
2196
2197 /*
2198 * Configure the system.
2199 */
2200 PRM_POINT("Calling configure()...");
2201 configure(); /* set up devices */
2202 PRM_POINT("configure() done");
2203
2204 /*
2205 * We can now setup for XSAVE because fpu_probe is done in configure().
2206 */
2207 if (fp_save_mech == FP_XSAVE) {
2208 xsave_setup_msr(CPU);
2209 }
2210
2211 /*
2212 * Set the isa_list string to the defined instruction sets we
2213 * support.
2214 */
2215 setx86isalist();
2216 cpu_intr_alloc(CPU, NINTR_THREADS);
2217 psm_install();
2218
2219 /*
2220 * We're done with bootops. We don't unmap the bootstrap yet because
2221 * we're still using bootsvcs.
2222 */
2223 PRM_POINT("NULLing out bootops");
2224 *bootopsp = (struct bootops *)NULL;
2225 bootops = (struct bootops *)NULL;
2226
2227 #if defined(__xpv)
2228 ec_init_debug_irq();
2229 xs_domu_init();
2230 #endif
2231
2232 #if defined(__amd64) && !defined(__xpv)
2233 /*
2234 * Intel IOMMU has been setup/initialized in ddi_impl.c
2235 * Start it up now.
2236 */
2237 immu_startup();
2238 #endif
2239
2240 PRM_POINT("Enabling interrupts");
2241 (*picinitf)();
2242 sti();
2243 #if defined(__xpv)
2244 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0);
2245 xen_late_startup();
2246 #endif
2247
2248 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
2249 "softlevel1", NULL, NULL); /* XXX to be moved later */
2250
2251 /*
2252 * Register software interrupt handlers for ddi_periodic_add(9F).
2253 * Software interrupts up to the level 10 are supported.
2254 */
2255 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
2256 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i,
2257 (avfunc)ddi_periodic_softintr, "ddi_periodic",
2258 (caddr_t)(uintptr_t)i, NULL);
2259 }
2260
2261 #if !defined(__xpv)
2262 if (modload("drv", "amd_iommu") < 0) {
2263 PRM_POINT("No AMD IOMMU present\n");
2264 } else if (ddi_hold_installed_driver(ddi_name_to_major(
2265 "amd_iommu")) == NULL) {
2266 prom_printf("ERROR: failed to attach AMD IOMMU\n");
2267 }
2268 #endif
2269 post_startup_cpu_fixups();
2270
2271 PRM_POINT("startup_end() done");
2272 }
2273
2274 /*
2275 * Don't remove the following 2 variables. They are necessary
2276 * for reading the hostid from the legacy file (/kernel/misc/sysinit).
2277 */
2278 char *_hs1107 = hw_serial;
2279 ulong_t _bdhs34;
2280
2281 void
post_startup(void)2282 post_startup(void)
2283 {
2284 extern void cpupm_init(cpu_t *);
2285 extern void cpu_event_init_cpu(cpu_t *);
2286
2287 /*
2288 * Set the system wide, processor-specific flags to be passed
2289 * to userland via the aux vector for performance hints and
2290 * instruction set extensions.
2291 */
2292 bind_hwcap();
2293
2294 #ifdef __xpv
2295 if (DOMAIN_IS_INITDOMAIN(xen_info))
2296 #endif
2297 {
2298 #if defined(__xpv)
2299 xpv_panic_init();
2300 #else
2301 /*
2302 * Startup the memory scrubber.
2303 * XXPV This should be running somewhere ..
2304 */
2305 if ((get_hwenv() & HW_VIRTUAL) == 0)
2306 memscrub_init();
2307 #endif
2308 }
2309
2310 /*
2311 * Complete CPU module initialization
2312 */
2313 cmi_post_startup();
2314
2315 /*
2316 * Perform forceloading tasks for /etc/system.
2317 */
2318 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2319
2320 /*
2321 * ON4.0: Force /proc module in until clock interrupt handle fixed
2322 * ON4.0: This must be fixed or restated in /etc/systems.
2323 */
2324 (void) modload("fs", "procfs");
2325
2326 (void) i_ddi_attach_hw_nodes("pit_beep");
2327
2328 #if defined(__i386)
2329 /*
2330 * Check for required functional Floating Point hardware,
2331 * unless FP hardware explicitly disabled.
2332 */
2333 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
2334 halt("No working FP hardware found");
2335 #endif
2336
2337 maxmem = freemem;
2338
2339 cpu_event_init_cpu(CPU);
2340 cpupm_init(CPU);
2341 (void) mach_cpu_create_device_node(CPU, NULL);
2342
2343 pg_init();
2344 }
2345
2346 static int
pp_in_range(page_t * pp,uint64_t low_addr,uint64_t high_addr)2347 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr)
2348 {
2349 return ((pp->p_pagenum >= btop(low_addr)) &&
2350 (pp->p_pagenum < btopr(high_addr)));
2351 }
2352
2353 static int
pp_in_module(page_t * pp,const rd_existing_t * modranges)2354 pp_in_module(page_t *pp, const rd_existing_t *modranges)
2355 {
2356 uint_t i;
2357
2358 for (i = 0; modranges[i].phys != 0; i++) {
2359 if (pp_in_range(pp, modranges[i].phys,
2360 modranges[i].phys + modranges[i].size))
2361 return (1);
2362 }
2363
2364 return (0);
2365 }
2366
2367 void
release_bootstrap(void)2368 release_bootstrap(void)
2369 {
2370 int root_is_ramdisk;
2371 page_t *pp;
2372 extern void kobj_boot_unmountroot(void);
2373 extern dev_t rootdev;
2374 uint_t i;
2375 char propname[32];
2376 rd_existing_t *modranges;
2377 #if !defined(__xpv)
2378 pfn_t pfn;
2379 #endif
2380
2381 /*
2382 * Save the bootfs module ranges so that we can reserve them below
2383 * for the real bootfs.
2384 */
2385 modranges = kmem_alloc(sizeof (rd_existing_t) * MAX_BOOT_MODULES,
2386 KM_SLEEP);
2387 for (i = 0; ; i++) {
2388 uint64_t start, size;
2389
2390 modranges[i].phys = 0;
2391
2392 (void) snprintf(propname, sizeof (propname),
2393 "module-addr-%u", i);
2394 if (do_bsys_getproplen(NULL, propname) <= 0)
2395 break;
2396 (void) do_bsys_getprop(NULL, propname, &start);
2397
2398 (void) snprintf(propname, sizeof (propname),
2399 "module-size-%u", i);
2400 if (do_bsys_getproplen(NULL, propname) <= 0)
2401 break;
2402 (void) do_bsys_getprop(NULL, propname, &size);
2403
2404 modranges[i].phys = start;
2405 modranges[i].size = size;
2406 }
2407
2408 /* unmount boot ramdisk and release kmem usage */
2409 kobj_boot_unmountroot();
2410
2411 /*
2412 * We're finished using the boot loader so free its pages.
2413 */
2414 PRM_POINT("Unmapping lower boot pages");
2415
2416 clear_boot_mappings(0, _userlimit);
2417
2418 postbootkernelbase = kernelbase;
2419
2420 /*
2421 * If root isn't on ramdisk, destroy the hardcoded
2422 * ramdisk node now and release the memory. Else,
2423 * ramdisk memory is kept in rd_pages.
2424 */
2425 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
2426 if (!root_is_ramdisk) {
2427 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
2428 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
2429 ndi_rele_devi(dip); /* held from ddi_find_devinfo */
2430 (void) ddi_remove_child(dip, 0);
2431 }
2432
2433 PRM_POINT("Releasing boot pages");
2434 while (bootpages) {
2435 extern uint64_t ramdisk_start, ramdisk_end;
2436 pp = bootpages;
2437 bootpages = pp->p_next;
2438
2439
2440 /* Keep pages for the lower 64K */
2441 if (pp_in_range(pp, 0, 0x40000)) {
2442 pp->p_next = lower_pages;
2443 lower_pages = pp;
2444 lower_pages_count++;
2445 continue;
2446 }
2447
2448 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start,
2449 ramdisk_end) || pp_in_module(pp, modranges)) {
2450 pp->p_next = rd_pages;
2451 rd_pages = pp;
2452 continue;
2453 }
2454 pp->p_next = (struct page *)0;
2455 pp->p_prev = (struct page *)0;
2456 PP_CLRBOOTPAGES(pp);
2457 page_free(pp, 1);
2458 }
2459 PRM_POINT("Boot pages released");
2460
2461 kmem_free(modranges, sizeof (rd_existing_t) * 99);
2462
2463 #if !defined(__xpv)
2464 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */
2465 /*
2466 * Find 1 page below 1 MB so that other processors can boot up or
2467 * so that any processor can resume.
2468 * Make sure it has a kernel VA as well as a 1:1 mapping.
2469 * We should have just free'd one up.
2470 */
2471
2472 /*
2473 * 0x10 pages is 64K. Leave the bottom 64K alone
2474 * for BIOS.
2475 */
2476 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) {
2477 if (page_numtopp_alloc(pfn) == NULL)
2478 continue;
2479 rm_platter_va = i86devmap(pfn, 1,
2480 PROT_READ | PROT_WRITE | PROT_EXEC);
2481 rm_platter_pa = ptob(pfn);
2482 break;
2483 }
2484 if (pfn == btop(1*1024*1024) && use_mp)
2485 panic("No page below 1M available for starting "
2486 "other processors or for resuming from system-suspend");
2487 #endif /* !__xpv */
2488 }
2489
2490 /*
2491 * Initialize the platform-specific parts of a page_t.
2492 */
2493 void
add_physmem_cb(page_t * pp,pfn_t pnum)2494 add_physmem_cb(page_t *pp, pfn_t pnum)
2495 {
2496 pp->p_pagenum = pnum;
2497 pp->p_mapping = NULL;
2498 pp->p_embed = 0;
2499 pp->p_share = 0;
2500 pp->p_mlentry = 0;
2501 }
2502
2503 /*
2504 * kphysm_init() initializes physical memory.
2505 */
2506 static pgcnt_t
kphysm_init(page_t * pp,pgcnt_t npages)2507 kphysm_init(
2508 page_t *pp,
2509 pgcnt_t npages)
2510 {
2511 struct memlist *pmem;
2512 struct memseg *cur_memseg;
2513 pfn_t base_pfn;
2514 pfn_t end_pfn;
2515 pgcnt_t num;
2516 pgcnt_t pages_done = 0;
2517 uint64_t addr;
2518 uint64_t size;
2519 extern pfn_t ddiphysmin;
2520 extern int mnode_xwa;
2521 int ms = 0, me = 0;
2522
2523 ASSERT(page_hash != NULL && page_hashsz != 0);
2524
2525 cur_memseg = memseg_base;
2526 for (pmem = phys_avail; pmem && npages; pmem = pmem->ml_next) {
2527 /*
2528 * In a 32 bit kernel can't use higher memory if we're
2529 * not booting in PAE mode. This check takes care of that.
2530 */
2531 addr = pmem->ml_address;
2532 size = pmem->ml_size;
2533 if (btop(addr) > physmax)
2534 continue;
2535
2536 /*
2537 * align addr and size - they may not be at page boundaries
2538 */
2539 if ((addr & MMU_PAGEOFFSET) != 0) {
2540 addr += MMU_PAGEOFFSET;
2541 addr &= ~(uint64_t)MMU_PAGEOFFSET;
2542 size -= addr - pmem->ml_address;
2543 }
2544
2545 /* only process pages below or equal to physmax */
2546 if ((btop(addr + size) - 1) > physmax)
2547 size = ptob(physmax - btop(addr) + 1);
2548
2549 num = btop(size);
2550 if (num == 0)
2551 continue;
2552
2553 if (num > npages)
2554 num = npages;
2555
2556 npages -= num;
2557 pages_done += num;
2558 base_pfn = btop(addr);
2559
2560 if (prom_debug)
2561 prom_printf("MEMSEG addr=0x%" PRIx64
2562 " pgs=0x%lx pfn 0x%lx-0x%lx\n",
2563 addr, num, base_pfn, base_pfn + num);
2564
2565 /*
2566 * Ignore pages below ddiphysmin to simplify ddi memory
2567 * allocation with non-zero addr_lo requests.
2568 */
2569 if (base_pfn < ddiphysmin) {
2570 if (base_pfn + num <= ddiphysmin)
2571 continue;
2572 pp += (ddiphysmin - base_pfn);
2573 num -= (ddiphysmin - base_pfn);
2574 base_pfn = ddiphysmin;
2575 }
2576
2577 /*
2578 * mnode_xwa is greater than 1 when large pages regions can
2579 * cross memory node boundaries. To prevent the formation
2580 * of these large pages, configure the memsegs based on the
2581 * memory node ranges which had been made non-contiguous.
2582 */
2583 if (mnode_xwa > 1) {
2584
2585 end_pfn = base_pfn + num - 1;
2586 ms = PFN_2_MEM_NODE(base_pfn);
2587 me = PFN_2_MEM_NODE(end_pfn);
2588
2589 if (ms != me) {
2590 /*
2591 * current range spans more than 1 memory node.
2592 * Set num to only the pfn range in the start
2593 * memory node.
2594 */
2595 num = mem_node_config[ms].physmax - base_pfn
2596 + 1;
2597 ASSERT(end_pfn > mem_node_config[ms].physmax);
2598 }
2599 }
2600
2601 for (;;) {
2602 /*
2603 * Build the memsegs entry
2604 */
2605 cur_memseg->pages = pp;
2606 cur_memseg->epages = pp + num;
2607 cur_memseg->pages_base = base_pfn;
2608 cur_memseg->pages_end = base_pfn + num;
2609
2610 /*
2611 * Insert into memseg list in decreasing pfn range
2612 * order. Low memory is typically more fragmented such
2613 * that this ordering keeps the larger ranges at the
2614 * front of the list for code that searches memseg.
2615 * This ASSERTS that the memsegs coming in from boot
2616 * are in increasing physical address order and not
2617 * contiguous.
2618 */
2619 if (memsegs != NULL) {
2620 ASSERT(cur_memseg->pages_base >=
2621 memsegs->pages_end);
2622 cur_memseg->next = memsegs;
2623 }
2624 memsegs = cur_memseg;
2625
2626 /*
2627 * add_physmem() initializes the PSM part of the page
2628 * struct by calling the PSM back with add_physmem_cb().
2629 * In addition it coalesces pages into larger pages as
2630 * it initializes them.
2631 */
2632 add_physmem(pp, num, base_pfn);
2633 cur_memseg++;
2634 availrmem_initial += num;
2635 availrmem += num;
2636
2637 pp += num;
2638 if (ms >= me)
2639 break;
2640
2641 /* process next memory node range */
2642 ms++;
2643 base_pfn = mem_node_config[ms].physbase;
2644 num = MIN(mem_node_config[ms].physmax,
2645 end_pfn) - base_pfn + 1;
2646 }
2647 }
2648
2649 PRM_DEBUG(availrmem_initial);
2650 PRM_DEBUG(availrmem);
2651 PRM_DEBUG(freemem);
2652 build_pfn_hash();
2653 return (pages_done);
2654 }
2655
2656 /*
2657 * Kernel VM initialization.
2658 */
2659 static void
kvm_init(void)2660 kvm_init(void)
2661 {
2662 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
2663
2664 /*
2665 * Put the kernel segments in kernel address space.
2666 */
2667 rw_enter(&kas.a_lock, RW_WRITER);
2668 as_avlinit(&kas);
2669
2670 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
2671 (void) segkmem_create(&ktextseg);
2672
2673 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
2674 (void) segkmem_create(&kvalloc);
2675
2676 (void) seg_attach(&kas, kernelheap,
2677 ekernelheap - kernelheap, &kvseg);
2678 (void) segkmem_create(&kvseg);
2679
2680 if (core_size > 0) {
2681 PRM_POINT("attaching kvseg_core");
2682 (void) seg_attach(&kas, (caddr_t)core_base, core_size,
2683 &kvseg_core);
2684 (void) segkmem_create(&kvseg_core);
2685 }
2686
2687 if (segziosize > 0) {
2688 PRM_POINT("attaching segzio");
2689 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2690 &kzioseg);
2691 (void) segkmem_zio_create(&kzioseg);
2692
2693 /* create zio area covering new segment */
2694 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2695 }
2696
2697 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2698 (void) segkmem_create(&kdebugseg);
2699
2700 rw_exit(&kas.a_lock);
2701
2702 /*
2703 * Ensure that the red zone at kernelbase is never accessible.
2704 */
2705 PRM_POINT("protecting redzone");
2706 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
2707
2708 /*
2709 * Make the text writable so that it can be hot patched by DTrace.
2710 */
2711 (void) as_setprot(&kas, s_text, e_modtext - s_text,
2712 PROT_READ | PROT_WRITE | PROT_EXEC);
2713
2714 /*
2715 * Make data writable until end.
2716 */
2717 (void) as_setprot(&kas, s_data, e_moddata - s_data,
2718 PROT_READ | PROT_WRITE | PROT_EXEC);
2719 }
2720
2721 #ifndef __xpv
2722 /*
2723 * Solaris adds an entry for Write Combining caching to the PAT
2724 */
2725 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
2726
2727 void
pat_sync(void)2728 pat_sync(void)
2729 {
2730 ulong_t cr0, cr0_orig, cr4;
2731
2732 if (!is_x86_feature(x86_featureset, X86FSET_PAT))
2733 return;
2734 cr0_orig = cr0 = getcr0();
2735 cr4 = getcr4();
2736
2737 /* disable caching and flush all caches and TLBs */
2738 cr0 |= CR0_CD;
2739 cr0 &= ~CR0_NW;
2740 setcr0(cr0);
2741 invalidate_cache();
2742 if (cr4 & CR4_PGE) {
2743 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2744 setcr4(cr4);
2745 } else {
2746 reload_cr3();
2747 }
2748
2749 /* add our entry to the PAT */
2750 wrmsr(REG_PAT, pat_attr_reg);
2751
2752 /* flush TLBs and cache again, then reenable cr0 caching */
2753 if (cr4 & CR4_PGE) {
2754 setcr4(cr4 & ~(ulong_t)CR4_PGE);
2755 setcr4(cr4);
2756 } else {
2757 reload_cr3();
2758 }
2759 invalidate_cache();
2760 setcr0(cr0_orig);
2761 }
2762
2763 #endif /* !__xpv */
2764
2765 #if defined(_SOFT_HOSTID)
2766 /*
2767 * On platforms that do not have a hardware serial number, attempt
2768 * to set one based on the contents of /etc/hostid. If this file does
2769 * not exist, assume that we are to generate a new hostid and set
2770 * it in the kernel, for subsequent saving by a userland process
2771 * once the system is up and the root filesystem is mounted r/w.
2772 *
2773 * In order to gracefully support upgrade on OpenSolaris, if
2774 * /etc/hostid does not exist, we will attempt to get a serial number
2775 * using the legacy method (/kernel/misc/sysinit).
2776 *
2777 * If that isn't present, we attempt to use an SMBIOS UUID, which is
2778 * a hardware serial number. Note that we don't automatically trust
2779 * all SMBIOS UUIDs (some older platforms are defective and ship duplicate
2780 * UUIDs in violation of the standard), we check against a blacklist.
2781 *
2782 * In an attempt to make the hostid less prone to abuse
2783 * (for license circumvention, etc), we store it in /etc/hostid
2784 * in rot47 format.
2785 */
2786 extern volatile unsigned long tenmicrodata;
2787 static int atoi(char *);
2788
2789 /*
2790 * Set this to non-zero in /etc/system if you think your SMBIOS returns a
2791 * UUID that is not unique. (Also report it so that the smbios_uuid_blacklist
2792 * array can be updated.)
2793 */
2794 int smbios_broken_uuid = 0;
2795
2796 /*
2797 * List of known bad UUIDs. This is just the lower 32-bit values, since
2798 * that's what we use for the host id. If your hostid falls here, you need
2799 * to contact your hardware OEM for a fix for your BIOS.
2800 */
2801 static unsigned char
2802 smbios_uuid_blacklist[][16] = {
2803
2804 { /* Reported bad UUID (Google search) */
2805 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05,
2806 0x00, 0x06, 0x00, 0x07, 0x00, 0x08, 0x00, 0x09,
2807 },
2808 { /* Known bad DELL UUID */
2809 0x4C, 0x4C, 0x45, 0x44, 0x00, 0x00, 0x20, 0x10,
2810 0x80, 0x20, 0x80, 0xC0, 0x4F, 0x20, 0x20, 0x20,
2811 },
2812 { /* Uninitialized flash */
2813 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
2814 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2815 },
2816 { /* All zeros */
2817 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2818 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
2819 },
2820 };
2821
2822 static int32_t
uuid_to_hostid(const uint8_t * uuid)2823 uuid_to_hostid(const uint8_t *uuid)
2824 {
2825 /*
2826 * Although the UUIDs are 128-bits, they may not distribute entropy
2827 * evenly. We would like to use SHA or MD5, but those are located
2828 * in loadable modules and not available this early in boot. As we
2829 * don't need the values to be cryptographically strong, we just
2830 * generate 32-bit vaue by xor'ing the various sequences together,
2831 * which ensures that the entire UUID contributes to the hostid.
2832 */
2833 uint32_t id = 0;
2834
2835 /* first check against the blacklist */
2836 for (int i = 0; i < (sizeof (smbios_uuid_blacklist) / 16); i++) {
2837 if (bcmp(smbios_uuid_blacklist[0], uuid, 16) == 0) {
2838 cmn_err(CE_CONT, "?Broken SMBIOS UUID. "
2839 "Contact BIOS manufacturer for repair.\n");
2840 return ((int32_t)HW_INVALID_HOSTID);
2841 }
2842 }
2843
2844 for (int i = 0; i < 16; i++)
2845 id ^= ((uuid[i]) << (8 * (i % sizeof (id))));
2846
2847 /* Make sure return value is positive */
2848 return (id & 0x7fffffff);
2849 }
2850
2851 static int32_t
set_soft_hostid(void)2852 set_soft_hostid(void)
2853 {
2854 struct _buf *file;
2855 char tokbuf[MAXNAMELEN];
2856 token_t token;
2857 int done = 0;
2858 u_longlong_t tmp;
2859 int i;
2860 int32_t hostid = (int32_t)HW_INVALID_HOSTID;
2861 unsigned char *c;
2862 hrtime_t tsc;
2863 smbios_system_t smsys;
2864
2865 /*
2866 * If /etc/hostid file not found, we'd like to get a pseudo
2867 * random number to use at the hostid. A nice way to do this
2868 * is to read the real time clock. To remain xen-compatible,
2869 * we can't poke the real hardware, so we use tsc_read() to
2870 * read the real time clock. However, there is an ominous
2871 * warning in tsc_read that says it can return zero, so we
2872 * deal with that possibility by falling back to using the
2873 * (hopefully random enough) value in tenmicrodata.
2874 */
2875
2876 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) {
2877 /*
2878 * hostid file not found - try to load sysinit module
2879 * and see if it has a nonzero hostid value...use that
2880 * instead of generating a new hostid here if so.
2881 */
2882 if ((i = modload("misc", "sysinit")) != -1) {
2883 if (strlen(hw_serial) > 0)
2884 hostid = (int32_t)atoi(hw_serial);
2885 (void) modunload(i);
2886 }
2887
2888 /*
2889 * We try to use the SMBIOS UUID. But not if it is blacklisted
2890 * in /etc/system.
2891 */
2892 if ((hostid == HW_INVALID_HOSTID) &&
2893 (smbios_broken_uuid == 0) &&
2894 (ksmbios != NULL) &&
2895 (smbios_info_system(ksmbios, &smsys) != SMB_ERR) &&
2896 (smsys.smbs_uuidlen >= 16)) {
2897 hostid = uuid_to_hostid(smsys.smbs_uuid);
2898 }
2899
2900 /*
2901 * Generate a "random" hostid using the clock. These
2902 * hostids will change on each boot if the value is not
2903 * saved to a persistent /etc/hostid file.
2904 */
2905 if (hostid == HW_INVALID_HOSTID) {
2906 tsc = tsc_read();
2907 if (tsc == 0) /* tsc_read can return zero sometimes */
2908 hostid = (int32_t)tenmicrodata & 0x0CFFFFF;
2909 else
2910 hostid = (int32_t)tsc & 0x0CFFFFF;
2911 }
2912 } else {
2913 /* hostid file found */
2914 while (!done) {
2915 token = kobj_lex(file, tokbuf, sizeof (tokbuf));
2916
2917 switch (token) {
2918 case POUND:
2919 /*
2920 * skip comments
2921 */
2922 kobj_find_eol(file);
2923 break;
2924 case STRING:
2925 /*
2926 * un-rot47 - obviously this
2927 * nonsense is ascii-specific
2928 */
2929 for (c = (unsigned char *)tokbuf;
2930 *c != '\0'; c++) {
2931 *c += 47;
2932 if (*c > '~')
2933 *c -= 94;
2934 else if (*c < '!')
2935 *c += 94;
2936 }
2937 /*
2938 * now we should have a real number
2939 */
2940
2941 if (kobj_getvalue(tokbuf, &tmp) != 0)
2942 kobj_file_err(CE_WARN, file,
2943 "Bad value %s for hostid",
2944 tokbuf);
2945 else
2946 hostid = (int32_t)tmp;
2947
2948 break;
2949 case EOF:
2950 done = 1;
2951 /* FALLTHROUGH */
2952 case NEWLINE:
2953 kobj_newline(file);
2954 break;
2955 default:
2956 break;
2957
2958 }
2959 }
2960 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */
2961 kobj_file_err(CE_WARN, file,
2962 "hostid missing or corrupt");
2963
2964 kobj_close_file(file);
2965 }
2966 /*
2967 * hostid is now the value read from /etc/hostid, or the
2968 * new hostid we generated in this routine or HW_INVALID_HOSTID if not
2969 * set.
2970 */
2971 return (hostid);
2972 }
2973
2974 static int
atoi(char * p)2975 atoi(char *p)
2976 {
2977 int i = 0;
2978
2979 while (*p != '\0')
2980 i = 10 * i + (*p++ - '0');
2981
2982 return (i);
2983 }
2984
2985 #endif /* _SOFT_HOSTID */
2986
2987 void
get_system_configuration(void)2988 get_system_configuration(void)
2989 {
2990 char prop[32];
2991 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
2992
2993 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) ||
2994 BOP_GETPROP(bootops, "nodes", prop) < 0 ||
2995 kobj_getvalue(prop, &nodes_ll) == -1 ||
2996 nodes_ll > MAXNODES ||
2997 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) ||
2998 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 ||
2999 kobj_getvalue(prop, &cpus_pernode_ll) == -1) {
3000 system_hardware.hd_nodes = 1;
3001 system_hardware.hd_cpus_per_node = 0;
3002 } else {
3003 system_hardware.hd_nodes = (int)nodes_ll;
3004 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
3005 }
3006
3007 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) ||
3008 BOP_GETPROP(bootops, "kernelbase", prop) < 0 ||
3009 kobj_getvalue(prop, &lvalue) == -1)
3010 eprom_kernelbase = NULL;
3011 else
3012 eprom_kernelbase = (uintptr_t)lvalue;
3013
3014 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) ||
3015 BOP_GETPROP(bootops, "segmapsize", prop) < 0 ||
3016 kobj_getvalue(prop, &lvalue) == -1)
3017 segmapsize = SEGMAPDEFAULT;
3018 else
3019 segmapsize = (uintptr_t)lvalue;
3020
3021 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) ||
3022 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 ||
3023 kobj_getvalue(prop, &lvalue) == -1)
3024 segmapfreelists = 0; /* use segmap driver default */
3025 else
3026 segmapfreelists = (int)lvalue;
3027
3028 /* physmem used to be here, but moved much earlier to fakebop.c */
3029 }
3030
3031 /*
3032 * Add to a memory list.
3033 * start = start of new memory segment
3034 * len = length of new memory segment in bytes
3035 * new = pointer to a new struct memlist
3036 * memlistp = memory list to which to add segment.
3037 */
3038 void
memlist_add(uint64_t start,uint64_t len,struct memlist * new,struct memlist ** memlistp)3039 memlist_add(
3040 uint64_t start,
3041 uint64_t len,
3042 struct memlist *new,
3043 struct memlist **memlistp)
3044 {
3045 struct memlist *cur;
3046 uint64_t end = start + len;
3047
3048 new->ml_address = start;
3049 new->ml_size = len;
3050
3051 cur = *memlistp;
3052
3053 while (cur) {
3054 if (cur->ml_address >= end) {
3055 new->ml_next = cur;
3056 *memlistp = new;
3057 new->ml_prev = cur->ml_prev;
3058 cur->ml_prev = new;
3059 return;
3060 }
3061 ASSERT(cur->ml_address + cur->ml_size <= start);
3062 if (cur->ml_next == NULL) {
3063 cur->ml_next = new;
3064 new->ml_prev = cur;
3065 new->ml_next = NULL;
3066 return;
3067 }
3068 memlistp = &cur->ml_next;
3069 cur = cur->ml_next;
3070 }
3071 }
3072
3073 void
kobj_vmem_init(vmem_t ** text_arena,vmem_t ** data_arena)3074 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3075 {
3076 size_t tsize = e_modtext - modtext;
3077 size_t dsize = e_moddata - moddata;
3078
3079 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
3080 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
3081 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
3082 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3083 }
3084
3085 caddr_t
kobj_text_alloc(vmem_t * arena,size_t size)3086 kobj_text_alloc(vmem_t *arena, size_t size)
3087 {
3088 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
3089 }
3090
3091 /*ARGSUSED*/
3092 caddr_t
kobj_texthole_alloc(caddr_t addr,size_t size)3093 kobj_texthole_alloc(caddr_t addr, size_t size)
3094 {
3095 panic("unexpected call to kobj_texthole_alloc()");
3096 /*NOTREACHED*/
3097 return (0);
3098 }
3099
3100 /*ARGSUSED*/
3101 void
kobj_texthole_free(caddr_t addr,size_t size)3102 kobj_texthole_free(caddr_t addr, size_t size)
3103 {
3104 panic("unexpected call to kobj_texthole_free()");
3105 }
3106
3107 /*
3108 * This is called just after configure() in startup().
3109 *
3110 * The ISALIST concept is a bit hopeless on Intel, because
3111 * there's no guarantee of an ever-more-capable processor
3112 * given that various parts of the instruction set may appear
3113 * and disappear between different implementations.
3114 *
3115 * While it would be possible to correct it and even enhance
3116 * it somewhat, the explicit hardware capability bitmask allows
3117 * more flexibility.
3118 *
3119 * So, we just leave this alone.
3120 */
3121 void
setx86isalist(void)3122 setx86isalist(void)
3123 {
3124 char *tp;
3125 size_t len;
3126 extern char *isa_list;
3127
3128 #define TBUFSIZE 1024
3129
3130 tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
3131 *tp = '\0';
3132
3133 #if defined(__amd64)
3134 (void) strcpy(tp, "amd64 ");
3135 #endif
3136
3137 switch (x86_vendor) {
3138 case X86_VENDOR_Intel:
3139 case X86_VENDOR_AMD:
3140 case X86_VENDOR_TM:
3141 if (is_x86_feature(x86_featureset, X86FSET_CMOV)) {
3142 /*
3143 * Pentium Pro or later
3144 */
3145 (void) strcat(tp, "pentium_pro");
3146 (void) strcat(tp,
3147 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3148 "+mmx pentium_pro " : " ");
3149 }
3150 /*FALLTHROUGH*/
3151 case X86_VENDOR_Cyrix:
3152 /*
3153 * The Cyrix 6x86 does not have any Pentium features
3154 * accessible while not at privilege level 0.
3155 */
3156 if (is_x86_feature(x86_featureset, X86FSET_CPUID)) {
3157 (void) strcat(tp, "pentium");
3158 (void) strcat(tp,
3159 is_x86_feature(x86_featureset, X86FSET_MMX) ?
3160 "+mmx pentium " : " ");
3161 }
3162 break;
3163 default:
3164 break;
3165 }
3166 (void) strcat(tp, "i486 i386 i86");
3167 len = strlen(tp) + 1; /* account for NULL at end of string */
3168 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
3169 kmem_free(tp, TBUFSIZE);
3170
3171 #undef TBUFSIZE
3172 }
3173
3174
3175 #ifdef __amd64
3176
3177 void *
device_arena_alloc(size_t size,int vm_flag)3178 device_arena_alloc(size_t size, int vm_flag)
3179 {
3180 return (vmem_alloc(device_arena, size, vm_flag));
3181 }
3182
3183 void
device_arena_free(void * vaddr,size_t size)3184 device_arena_free(void *vaddr, size_t size)
3185 {
3186 vmem_free(device_arena, vaddr, size);
3187 }
3188
3189 #else /* __i386 */
3190
3191 void *
device_arena_alloc(size_t size,int vm_flag)3192 device_arena_alloc(size_t size, int vm_flag)
3193 {
3194 caddr_t vaddr;
3195 uintptr_t v;
3196 size_t start;
3197 size_t end;
3198
3199 vaddr = vmem_alloc(heap_arena, size, vm_flag);
3200 if (vaddr == NULL)
3201 return (NULL);
3202
3203 v = (uintptr_t)vaddr;
3204 ASSERT(v >= kernelbase);
3205 ASSERT(v + size <= valloc_base);
3206
3207 start = btop(v - kernelbase);
3208 end = btop(v + size - 1 - kernelbase);
3209 ASSERT(start < toxic_bit_map_len);
3210 ASSERT(end < toxic_bit_map_len);
3211
3212 while (start <= end) {
3213 BT_ATOMIC_SET(toxic_bit_map, start);
3214 ++start;
3215 }
3216 return (vaddr);
3217 }
3218
3219 void
device_arena_free(void * vaddr,size_t size)3220 device_arena_free(void *vaddr, size_t size)
3221 {
3222 uintptr_t v = (uintptr_t)vaddr;
3223 size_t start;
3224 size_t end;
3225
3226 ASSERT(v >= kernelbase);
3227 ASSERT(v + size <= valloc_base);
3228
3229 start = btop(v - kernelbase);
3230 end = btop(v + size - 1 - kernelbase);
3231 ASSERT(start < toxic_bit_map_len);
3232 ASSERT(end < toxic_bit_map_len);
3233
3234 while (start <= end) {
3235 ASSERT(BT_TEST(toxic_bit_map, start) != 0);
3236 BT_ATOMIC_CLEAR(toxic_bit_map, start);
3237 ++start;
3238 }
3239 vmem_free(heap_arena, vaddr, size);
3240 }
3241
3242 /*
3243 * returns 1st address in range that is in device arena, or NULL
3244 * if len is not NULL it returns the length of the toxic range
3245 */
3246 void *
device_arena_contains(void * vaddr,size_t size,size_t * len)3247 device_arena_contains(void *vaddr, size_t size, size_t *len)
3248 {
3249 uintptr_t v = (uintptr_t)vaddr;
3250 uintptr_t eaddr = v + size;
3251 size_t start;
3252 size_t end;
3253
3254 /*
3255 * if called very early by kmdb, just return NULL
3256 */
3257 if (toxic_bit_map == NULL)
3258 return (NULL);
3259
3260 /*
3261 * First check if we're completely outside the bitmap range.
3262 */
3263 if (v >= valloc_base || eaddr < kernelbase)
3264 return (NULL);
3265
3266 /*
3267 * Trim ends of search to look at only what the bitmap covers.
3268 */
3269 if (v < kernelbase)
3270 v = kernelbase;
3271 start = btop(v - kernelbase);
3272 end = btop(eaddr - kernelbase);
3273 if (end >= toxic_bit_map_len)
3274 end = toxic_bit_map_len;
3275
3276 if (bt_range(toxic_bit_map, &start, &end, end) == 0)
3277 return (NULL);
3278
3279 v = kernelbase + ptob(start);
3280 if (len != NULL)
3281 *len = ptob(end - start);
3282 return ((void *)v);
3283 }
3284
3285 #endif /* __i386 */
3286