xref: /linux/kernel/sched/core.c (revision 772b78c2abd85586bb90b23adff89f7303c704c7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 #include <linux/livepatch_sched.h>
70 
71 #ifdef CONFIG_PREEMPT_DYNAMIC
72 # ifdef CONFIG_GENERIC_ENTRY
73 #  include <linux/entry-common.h>
74 # endif
75 #endif
76 
77 #include <uapi/linux/sched/types.h>
78 
79 #include <asm/irq_regs.h>
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <linux/sched/rseq_api.h>
85 #include <trace/events/sched.h>
86 #include <trace/events/ipi.h>
87 #undef CREATE_TRACE_POINTS
88 
89 #include "sched.h"
90 #include "stats.h"
91 
92 #include "autogroup.h"
93 #include "pelt.h"
94 #include "smp.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 
103 /*
104  * Export tracepoints that act as a bare tracehook (ie: have no trace event
105  * associated with them) to allow external modules to probe them.
106  */
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
119 
120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
121 
122 /*
123  * Debugging: various feature bits
124  *
125  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
126  * sysctl_sched_features, defined in sched.h, to allow constants propagation
127  * at compile time and compiler optimization based on features default.
128  */
129 #define SCHED_FEAT(name, enabled)	\
130 	(1UL << __SCHED_FEAT_##name) * enabled |
131 __read_mostly unsigned int sysctl_sched_features =
132 #include "features.h"
133 	0;
134 #undef SCHED_FEAT
135 
136 /*
137  * Print a warning if need_resched is set for the given duration (if
138  * LATENCY_WARN is enabled).
139  *
140  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
141  * per boot.
142  */
143 __read_mostly int sysctl_resched_latency_warn_ms = 100;
144 __read_mostly int sysctl_resched_latency_warn_once = 1;
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (p->dl_server)
165 		return -1; /* deadline */
166 
167 	if (rt_or_dl_prio(p->prio))
168 		return p->prio; /* [-1, 99] */
169 
170 	if (p->sched_class == &idle_sched_class)
171 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
172 
173 	if (task_on_scx(p))
174 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
175 
176 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
177 }
178 
179 /*
180  * l(a,b)
181  * le(a,b) := !l(b,a)
182  * g(a,b)  := l(b,a)
183  * ge(a,b) := !l(a,b)
184  */
185 
186 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)187 static inline bool prio_less(const struct task_struct *a,
188 			     const struct task_struct *b, bool in_fi)
189 {
190 
191 	int pa = __task_prio(a), pb = __task_prio(b);
192 
193 	if (-pa < -pb)
194 		return true;
195 
196 	if (-pb < -pa)
197 		return false;
198 
199 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
200 		const struct sched_dl_entity *a_dl, *b_dl;
201 
202 		a_dl = &a->dl;
203 		/*
204 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
205 		 * __task_prio() can return -1 (for DL) even for those. In that
206 		 * case, get to the dl_server's DL entity.
207 		 */
208 		if (a->dl_server)
209 			a_dl = a->dl_server;
210 
211 		b_dl = &b->dl;
212 		if (b->dl_server)
213 			b_dl = b->dl_server;
214 
215 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
216 	}
217 
218 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
219 		return cfs_prio_less(a, b, in_fi);
220 
221 #ifdef CONFIG_SCHED_CLASS_EXT
222 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
223 		return scx_prio_less(a, b, in_fi);
224 #endif
225 
226 	return false;
227 }
228 
__sched_core_less(const struct task_struct * a,const struct task_struct * b)229 static inline bool __sched_core_less(const struct task_struct *a,
230 				     const struct task_struct *b)
231 {
232 	if (a->core_cookie < b->core_cookie)
233 		return true;
234 
235 	if (a->core_cookie > b->core_cookie)
236 		return false;
237 
238 	/* flip prio, so high prio is leftmost */
239 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
240 		return true;
241 
242 	return false;
243 }
244 
245 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
246 
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)247 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
248 {
249 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
250 }
251 
rb_sched_core_cmp(const void * key,const struct rb_node * node)252 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
253 {
254 	const struct task_struct *p = __node_2_sc(node);
255 	unsigned long cookie = (unsigned long)key;
256 
257 	if (cookie < p->core_cookie)
258 		return -1;
259 
260 	if (cookie > p->core_cookie)
261 		return 1;
262 
263 	return 0;
264 }
265 
sched_core_enqueue(struct rq * rq,struct task_struct * p)266 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
267 {
268 	if (p->se.sched_delayed)
269 		return;
270 
271 	rq->core->core_task_seq++;
272 
273 	if (!p->core_cookie)
274 		return;
275 
276 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
277 }
278 
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)279 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
280 {
281 	if (p->se.sched_delayed)
282 		return;
283 
284 	rq->core->core_task_seq++;
285 
286 	if (sched_core_enqueued(p)) {
287 		rb_erase(&p->core_node, &rq->core_tree);
288 		RB_CLEAR_NODE(&p->core_node);
289 	}
290 
291 	/*
292 	 * Migrating the last task off the cpu, with the cpu in forced idle
293 	 * state. Reschedule to create an accounting edge for forced idle,
294 	 * and re-examine whether the core is still in forced idle state.
295 	 */
296 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
297 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
298 		resched_curr(rq);
299 }
300 
sched_task_is_throttled(struct task_struct * p,int cpu)301 static int sched_task_is_throttled(struct task_struct *p, int cpu)
302 {
303 	if (p->sched_class->task_is_throttled)
304 		return p->sched_class->task_is_throttled(p, cpu);
305 
306 	return 0;
307 }
308 
sched_core_next(struct task_struct * p,unsigned long cookie)309 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
310 {
311 	struct rb_node *node = &p->core_node;
312 	int cpu = task_cpu(p);
313 
314 	do {
315 		node = rb_next(node);
316 		if (!node)
317 			return NULL;
318 
319 		p = __node_2_sc(node);
320 		if (p->core_cookie != cookie)
321 			return NULL;
322 
323 	} while (sched_task_is_throttled(p, cpu));
324 
325 	return p;
326 }
327 
328 /*
329  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
330  * If no suitable task is found, NULL will be returned.
331  */
sched_core_find(struct rq * rq,unsigned long cookie)332 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
333 {
334 	struct task_struct *p;
335 	struct rb_node *node;
336 
337 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
338 	if (!node)
339 		return NULL;
340 
341 	p = __node_2_sc(node);
342 	if (!sched_task_is_throttled(p, rq->cpu))
343 		return p;
344 
345 	return sched_core_next(p, cookie);
346 }
347 
348 /*
349  * Magic required such that:
350  *
351  *	raw_spin_rq_lock(rq);
352  *	...
353  *	raw_spin_rq_unlock(rq);
354  *
355  * ends up locking and unlocking the _same_ lock, and all CPUs
356  * always agree on what rq has what lock.
357  *
358  * XXX entirely possible to selectively enable cores, don't bother for now.
359  */
360 
361 static DEFINE_MUTEX(sched_core_mutex);
362 static atomic_t sched_core_count;
363 static struct cpumask sched_core_mask;
364 
sched_core_lock(int cpu,unsigned long * flags)365 static void sched_core_lock(int cpu, unsigned long *flags)
366 {
367 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
368 	int t, i = 0;
369 
370 	local_irq_save(*flags);
371 	for_each_cpu(t, smt_mask)
372 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
373 }
374 
sched_core_unlock(int cpu,unsigned long * flags)375 static void sched_core_unlock(int cpu, unsigned long *flags)
376 {
377 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
378 	int t;
379 
380 	for_each_cpu(t, smt_mask)
381 		raw_spin_unlock(&cpu_rq(t)->__lock);
382 	local_irq_restore(*flags);
383 }
384 
__sched_core_flip(bool enabled)385 static void __sched_core_flip(bool enabled)
386 {
387 	unsigned long flags;
388 	int cpu, t;
389 
390 	cpus_read_lock();
391 
392 	/*
393 	 * Toggle the online cores, one by one.
394 	 */
395 	cpumask_copy(&sched_core_mask, cpu_online_mask);
396 	for_each_cpu(cpu, &sched_core_mask) {
397 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
398 
399 		sched_core_lock(cpu, &flags);
400 
401 		for_each_cpu(t, smt_mask)
402 			cpu_rq(t)->core_enabled = enabled;
403 
404 		cpu_rq(cpu)->core->core_forceidle_start = 0;
405 
406 		sched_core_unlock(cpu, &flags);
407 
408 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
409 	}
410 
411 	/*
412 	 * Toggle the offline CPUs.
413 	 */
414 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
415 		cpu_rq(cpu)->core_enabled = enabled;
416 
417 	cpus_read_unlock();
418 }
419 
sched_core_assert_empty(void)420 static void sched_core_assert_empty(void)
421 {
422 	int cpu;
423 
424 	for_each_possible_cpu(cpu)
425 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
426 }
427 
__sched_core_enable(void)428 static void __sched_core_enable(void)
429 {
430 	static_branch_enable(&__sched_core_enabled);
431 	/*
432 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
433 	 * and future ones will observe !sched_core_disabled().
434 	 */
435 	synchronize_rcu();
436 	__sched_core_flip(true);
437 	sched_core_assert_empty();
438 }
439 
__sched_core_disable(void)440 static void __sched_core_disable(void)
441 {
442 	sched_core_assert_empty();
443 	__sched_core_flip(false);
444 	static_branch_disable(&__sched_core_enabled);
445 }
446 
sched_core_get(void)447 void sched_core_get(void)
448 {
449 	if (atomic_inc_not_zero(&sched_core_count))
450 		return;
451 
452 	mutex_lock(&sched_core_mutex);
453 	if (!atomic_read(&sched_core_count))
454 		__sched_core_enable();
455 
456 	smp_mb__before_atomic();
457 	atomic_inc(&sched_core_count);
458 	mutex_unlock(&sched_core_mutex);
459 }
460 
__sched_core_put(struct work_struct * work)461 static void __sched_core_put(struct work_struct *work)
462 {
463 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
464 		__sched_core_disable();
465 		mutex_unlock(&sched_core_mutex);
466 	}
467 }
468 
sched_core_put(void)469 void sched_core_put(void)
470 {
471 	static DECLARE_WORK(_work, __sched_core_put);
472 
473 	/*
474 	 * "There can be only one"
475 	 *
476 	 * Either this is the last one, or we don't actually need to do any
477 	 * 'work'. If it is the last *again*, we rely on
478 	 * WORK_STRUCT_PENDING_BIT.
479 	 */
480 	if (!atomic_add_unless(&sched_core_count, -1, 1))
481 		schedule_work(&_work);
482 }
483 
484 #else /* !CONFIG_SCHED_CORE */
485 
sched_core_enqueue(struct rq * rq,struct task_struct * p)486 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
487 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)488 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
489 
490 #endif /* CONFIG_SCHED_CORE */
491 
492 /* need a wrapper since we may need to trace from modules */
493 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
494 
495 /* Call via the helper macro trace_set_current_state. */
__trace_set_current_state(int state_value)496 void __trace_set_current_state(int state_value)
497 {
498 	trace_sched_set_state_tp(current, state_value);
499 }
500 EXPORT_SYMBOL(__trace_set_current_state);
501 
502 /*
503  * Serialization rules:
504  *
505  * Lock order:
506  *
507  *   p->pi_lock
508  *     rq->lock
509  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
510  *
511  *  rq1->lock
512  *    rq2->lock  where: rq1 < rq2
513  *
514  * Regular state:
515  *
516  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
517  * local CPU's rq->lock, it optionally removes the task from the runqueue and
518  * always looks at the local rq data structures to find the most eligible task
519  * to run next.
520  *
521  * Task enqueue is also under rq->lock, possibly taken from another CPU.
522  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
523  * the local CPU to avoid bouncing the runqueue state around [ see
524  * ttwu_queue_wakelist() ]
525  *
526  * Task wakeup, specifically wakeups that involve migration, are horribly
527  * complicated to avoid having to take two rq->locks.
528  *
529  * Special state:
530  *
531  * System-calls and anything external will use task_rq_lock() which acquires
532  * both p->pi_lock and rq->lock. As a consequence the state they change is
533  * stable while holding either lock:
534  *
535  *  - sched_setaffinity()/
536  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
537  *  - set_user_nice():		p->se.load, p->*prio
538  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
539  *				p->se.load, p->rt_priority,
540  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
541  *  - sched_setnuma():		p->numa_preferred_nid
542  *  - sched_move_task():	p->sched_task_group
543  *  - uclamp_update_active()	p->uclamp*
544  *
545  * p->state <- TASK_*:
546  *
547  *   is changed locklessly using set_current_state(), __set_current_state() or
548  *   set_special_state(), see their respective comments, or by
549  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
550  *   concurrent self.
551  *
552  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
553  *
554  *   is set by activate_task() and cleared by deactivate_task(), under
555  *   rq->lock. Non-zero indicates the task is runnable, the special
556  *   ON_RQ_MIGRATING state is used for migration without holding both
557  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
558  *
559  *   Additionally it is possible to be ->on_rq but still be considered not
560  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
561  *   but will be dequeued as soon as they get picked again. See the
562  *   task_is_runnable() helper.
563  *
564  * p->on_cpu <- { 0, 1 }:
565  *
566  *   is set by prepare_task() and cleared by finish_task() such that it will be
567  *   set before p is scheduled-in and cleared after p is scheduled-out, both
568  *   under rq->lock. Non-zero indicates the task is running on its CPU.
569  *
570  *   [ The astute reader will observe that it is possible for two tasks on one
571  *     CPU to have ->on_cpu = 1 at the same time. ]
572  *
573  * task_cpu(p): is changed by set_task_cpu(), the rules are:
574  *
575  *  - Don't call set_task_cpu() on a blocked task:
576  *
577  *    We don't care what CPU we're not running on, this simplifies hotplug,
578  *    the CPU assignment of blocked tasks isn't required to be valid.
579  *
580  *  - for try_to_wake_up(), called under p->pi_lock:
581  *
582  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
583  *
584  *  - for migration called under rq->lock:
585  *    [ see task_on_rq_migrating() in task_rq_lock() ]
586  *
587  *    o move_queued_task()
588  *    o detach_task()
589  *
590  *  - for migration called under double_rq_lock():
591  *
592  *    o __migrate_swap_task()
593  *    o push_rt_task() / pull_rt_task()
594  *    o push_dl_task() / pull_dl_task()
595  *    o dl_task_offline_migration()
596  *
597  */
598 
raw_spin_rq_lock_nested(struct rq * rq,int subclass)599 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
600 {
601 	raw_spinlock_t *lock;
602 
603 	/* Matches synchronize_rcu() in __sched_core_enable() */
604 	preempt_disable();
605 	if (sched_core_disabled()) {
606 		raw_spin_lock_nested(&rq->__lock, subclass);
607 		/* preempt_count *MUST* be > 1 */
608 		preempt_enable_no_resched();
609 		return;
610 	}
611 
612 	for (;;) {
613 		lock = __rq_lockp(rq);
614 		raw_spin_lock_nested(lock, subclass);
615 		if (likely(lock == __rq_lockp(rq))) {
616 			/* preempt_count *MUST* be > 1 */
617 			preempt_enable_no_resched();
618 			return;
619 		}
620 		raw_spin_unlock(lock);
621 	}
622 }
623 
raw_spin_rq_trylock(struct rq * rq)624 bool raw_spin_rq_trylock(struct rq *rq)
625 {
626 	raw_spinlock_t *lock;
627 	bool ret;
628 
629 	/* Matches synchronize_rcu() in __sched_core_enable() */
630 	preempt_disable();
631 	if (sched_core_disabled()) {
632 		ret = raw_spin_trylock(&rq->__lock);
633 		preempt_enable();
634 		return ret;
635 	}
636 
637 	for (;;) {
638 		lock = __rq_lockp(rq);
639 		ret = raw_spin_trylock(lock);
640 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
641 			preempt_enable();
642 			return ret;
643 		}
644 		raw_spin_unlock(lock);
645 	}
646 }
647 
raw_spin_rq_unlock(struct rq * rq)648 void raw_spin_rq_unlock(struct rq *rq)
649 {
650 	raw_spin_unlock(rq_lockp(rq));
651 }
652 
653 #ifdef CONFIG_SMP
654 /*
655  * double_rq_lock - safely lock two runqueues
656  */
double_rq_lock(struct rq * rq1,struct rq * rq2)657 void double_rq_lock(struct rq *rq1, struct rq *rq2)
658 {
659 	lockdep_assert_irqs_disabled();
660 
661 	if (rq_order_less(rq2, rq1))
662 		swap(rq1, rq2);
663 
664 	raw_spin_rq_lock(rq1);
665 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
666 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
667 
668 	double_rq_clock_clear_update(rq1, rq2);
669 }
670 #endif
671 
672 /*
673  * __task_rq_lock - lock the rq @p resides on.
674  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)675 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
676 	__acquires(rq->lock)
677 {
678 	struct rq *rq;
679 
680 	lockdep_assert_held(&p->pi_lock);
681 
682 	for (;;) {
683 		rq = task_rq(p);
684 		raw_spin_rq_lock(rq);
685 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
686 			rq_pin_lock(rq, rf);
687 			return rq;
688 		}
689 		raw_spin_rq_unlock(rq);
690 
691 		while (unlikely(task_on_rq_migrating(p)))
692 			cpu_relax();
693 	}
694 }
695 
696 /*
697  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
698  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)699 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
700 	__acquires(p->pi_lock)
701 	__acquires(rq->lock)
702 {
703 	struct rq *rq;
704 
705 	for (;;) {
706 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
707 		rq = task_rq(p);
708 		raw_spin_rq_lock(rq);
709 		/*
710 		 *	move_queued_task()		task_rq_lock()
711 		 *
712 		 *	ACQUIRE (rq->lock)
713 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
714 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
715 		 *	[S] ->cpu = new_cpu		[L] task_rq()
716 		 *					[L] ->on_rq
717 		 *	RELEASE (rq->lock)
718 		 *
719 		 * If we observe the old CPU in task_rq_lock(), the acquire of
720 		 * the old rq->lock will fully serialize against the stores.
721 		 *
722 		 * If we observe the new CPU in task_rq_lock(), the address
723 		 * dependency headed by '[L] rq = task_rq()' and the acquire
724 		 * will pair with the WMB to ensure we then also see migrating.
725 		 */
726 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
727 			rq_pin_lock(rq, rf);
728 			return rq;
729 		}
730 		raw_spin_rq_unlock(rq);
731 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
732 
733 		while (unlikely(task_on_rq_migrating(p)))
734 			cpu_relax();
735 	}
736 }
737 
738 /*
739  * RQ-clock updating methods:
740  */
741 
update_rq_clock_task(struct rq * rq,s64 delta)742 static void update_rq_clock_task(struct rq *rq, s64 delta)
743 {
744 /*
745  * In theory, the compile should just see 0 here, and optimize out the call
746  * to sched_rt_avg_update. But I don't trust it...
747  */
748 	s64 __maybe_unused steal = 0, irq_delta = 0;
749 
750 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
751 	if (irqtime_enabled()) {
752 		irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
753 
754 		/*
755 		 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 		 * this case when a previous update_rq_clock() happened inside a
757 		 * {soft,}IRQ region.
758 		 *
759 		 * When this happens, we stop ->clock_task and only update the
760 		 * prev_irq_time stamp to account for the part that fit, so that a next
761 		 * update will consume the rest. This ensures ->clock_task is
762 		 * monotonic.
763 		 *
764 		 * It does however cause some slight miss-attribution of {soft,}IRQ
765 		 * time, a more accurate solution would be to update the irq_time using
766 		 * the current rq->clock timestamp, except that would require using
767 		 * atomic ops.
768 		 */
769 		if (irq_delta > delta)
770 			irq_delta = delta;
771 
772 		rq->prev_irq_time += irq_delta;
773 		delta -= irq_delta;
774 		delayacct_irq(rq->curr, irq_delta);
775 	}
776 #endif
777 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
778 	if (static_key_false((&paravirt_steal_rq_enabled))) {
779 		u64 prev_steal;
780 
781 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
782 		steal -= rq->prev_steal_time_rq;
783 
784 		if (unlikely(steal > delta))
785 			steal = delta;
786 
787 		rq->prev_steal_time_rq = prev_steal;
788 		delta -= steal;
789 	}
790 #endif
791 
792 	rq->clock_task += delta;
793 
794 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
795 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
796 		update_irq_load_avg(rq, irq_delta + steal);
797 #endif
798 	update_rq_clock_pelt(rq, delta);
799 }
800 
update_rq_clock(struct rq * rq)801 void update_rq_clock(struct rq *rq)
802 {
803 	s64 delta;
804 	u64 clock;
805 
806 	lockdep_assert_rq_held(rq);
807 
808 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
809 		return;
810 
811 	if (sched_feat(WARN_DOUBLE_CLOCK))
812 		WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
813 	rq->clock_update_flags |= RQCF_UPDATED;
814 
815 	clock = sched_clock_cpu(cpu_of(rq));
816 	scx_rq_clock_update(rq, clock);
817 
818 	delta = clock - rq->clock;
819 	if (delta < 0)
820 		return;
821 	rq->clock += delta;
822 
823 	update_rq_clock_task(rq, delta);
824 }
825 
826 #ifdef CONFIG_SCHED_HRTICK
827 /*
828  * Use HR-timers to deliver accurate preemption points.
829  */
830 
hrtick_clear(struct rq * rq)831 static void hrtick_clear(struct rq *rq)
832 {
833 	if (hrtimer_active(&rq->hrtick_timer))
834 		hrtimer_cancel(&rq->hrtick_timer);
835 }
836 
837 /*
838  * High-resolution timer tick.
839  * Runs from hardirq context with interrupts disabled.
840  */
hrtick(struct hrtimer * timer)841 static enum hrtimer_restart hrtick(struct hrtimer *timer)
842 {
843 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
844 	struct rq_flags rf;
845 
846 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
847 
848 	rq_lock(rq, &rf);
849 	update_rq_clock(rq);
850 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
851 	rq_unlock(rq, &rf);
852 
853 	return HRTIMER_NORESTART;
854 }
855 
856 #ifdef CONFIG_SMP
857 
__hrtick_restart(struct rq * rq)858 static void __hrtick_restart(struct rq *rq)
859 {
860 	struct hrtimer *timer = &rq->hrtick_timer;
861 	ktime_t time = rq->hrtick_time;
862 
863 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
864 }
865 
866 /*
867  * called from hardirq (IPI) context
868  */
__hrtick_start(void * arg)869 static void __hrtick_start(void *arg)
870 {
871 	struct rq *rq = arg;
872 	struct rq_flags rf;
873 
874 	rq_lock(rq, &rf);
875 	__hrtick_restart(rq);
876 	rq_unlock(rq, &rf);
877 }
878 
879 /*
880  * Called to set the hrtick timer state.
881  *
882  * called with rq->lock held and IRQs disabled
883  */
hrtick_start(struct rq * rq,u64 delay)884 void hrtick_start(struct rq *rq, u64 delay)
885 {
886 	struct hrtimer *timer = &rq->hrtick_timer;
887 	s64 delta;
888 
889 	/*
890 	 * Don't schedule slices shorter than 10000ns, that just
891 	 * doesn't make sense and can cause timer DoS.
892 	 */
893 	delta = max_t(s64, delay, 10000LL);
894 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
895 
896 	if (rq == this_rq())
897 		__hrtick_restart(rq);
898 	else
899 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
900 }
901 
902 #else
903 /*
904  * Called to set the hrtick timer state.
905  *
906  * called with rq->lock held and IRQs disabled
907  */
hrtick_start(struct rq * rq,u64 delay)908 void hrtick_start(struct rq *rq, u64 delay)
909 {
910 	/*
911 	 * Don't schedule slices shorter than 10000ns, that just
912 	 * doesn't make sense. Rely on vruntime for fairness.
913 	 */
914 	delay = max_t(u64, delay, 10000LL);
915 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
916 		      HRTIMER_MODE_REL_PINNED_HARD);
917 }
918 
919 #endif /* CONFIG_SMP */
920 
hrtick_rq_init(struct rq * rq)921 static void hrtick_rq_init(struct rq *rq)
922 {
923 #ifdef CONFIG_SMP
924 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
925 #endif
926 	hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
927 }
928 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)929 static inline void hrtick_clear(struct rq *rq)
930 {
931 }
932 
hrtick_rq_init(struct rq * rq)933 static inline void hrtick_rq_init(struct rq *rq)
934 {
935 }
936 #endif	/* CONFIG_SCHED_HRTICK */
937 
938 /*
939  * try_cmpxchg based fetch_or() macro so it works for different integer types:
940  */
941 #define fetch_or(ptr, mask)						\
942 	({								\
943 		typeof(ptr) _ptr = (ptr);				\
944 		typeof(mask) _mask = (mask);				\
945 		typeof(*_ptr) _val = *_ptr;				\
946 									\
947 		do {							\
948 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
949 	_val;								\
950 })
951 
952 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
953 /*
954  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
955  * this avoids any races wrt polling state changes and thereby avoids
956  * spurious IPIs.
957  */
set_nr_and_not_polling(struct thread_info * ti,int tif)958 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
959 {
960 	return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
961 }
962 
963 /*
964  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
965  *
966  * If this returns true, then the idle task promises to call
967  * sched_ttwu_pending() and reschedule soon.
968  */
set_nr_if_polling(struct task_struct * p)969 static bool set_nr_if_polling(struct task_struct *p)
970 {
971 	struct thread_info *ti = task_thread_info(p);
972 	typeof(ti->flags) val = READ_ONCE(ti->flags);
973 
974 	do {
975 		if (!(val & _TIF_POLLING_NRFLAG))
976 			return false;
977 		if (val & _TIF_NEED_RESCHED)
978 			return true;
979 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
980 
981 	return true;
982 }
983 
984 #else
set_nr_and_not_polling(struct thread_info * ti,int tif)985 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
986 {
987 	set_ti_thread_flag(ti, tif);
988 	return true;
989 }
990 
991 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)992 static inline bool set_nr_if_polling(struct task_struct *p)
993 {
994 	return false;
995 }
996 #endif
997 #endif
998 
__wake_q_add(struct wake_q_head * head,struct task_struct * task)999 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
1000 {
1001 	struct wake_q_node *node = &task->wake_q;
1002 
1003 	/*
1004 	 * Atomically grab the task, if ->wake_q is !nil already it means
1005 	 * it's already queued (either by us or someone else) and will get the
1006 	 * wakeup due to that.
1007 	 *
1008 	 * In order to ensure that a pending wakeup will observe our pending
1009 	 * state, even in the failed case, an explicit smp_mb() must be used.
1010 	 */
1011 	smp_mb__before_atomic();
1012 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1013 		return false;
1014 
1015 	/*
1016 	 * The head is context local, there can be no concurrency.
1017 	 */
1018 	*head->lastp = node;
1019 	head->lastp = &node->next;
1020 	return true;
1021 }
1022 
1023 /**
1024  * wake_q_add() - queue a wakeup for 'later' waking.
1025  * @head: the wake_q_head to add @task to
1026  * @task: the task to queue for 'later' wakeup
1027  *
1028  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1029  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1030  * instantly.
1031  *
1032  * This function must be used as-if it were wake_up_process(); IOW the task
1033  * must be ready to be woken at this location.
1034  */
wake_q_add(struct wake_q_head * head,struct task_struct * task)1035 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1036 {
1037 	if (__wake_q_add(head, task))
1038 		get_task_struct(task);
1039 }
1040 
1041 /**
1042  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1043  * @head: the wake_q_head to add @task to
1044  * @task: the task to queue for 'later' wakeup
1045  *
1046  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1047  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1048  * instantly.
1049  *
1050  * This function must be used as-if it were wake_up_process(); IOW the task
1051  * must be ready to be woken at this location.
1052  *
1053  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1054  * that already hold reference to @task can call the 'safe' version and trust
1055  * wake_q to do the right thing depending whether or not the @task is already
1056  * queued for wakeup.
1057  */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1058 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1059 {
1060 	if (!__wake_q_add(head, task))
1061 		put_task_struct(task);
1062 }
1063 
wake_up_q(struct wake_q_head * head)1064 void wake_up_q(struct wake_q_head *head)
1065 {
1066 	struct wake_q_node *node = head->first;
1067 
1068 	while (node != WAKE_Q_TAIL) {
1069 		struct task_struct *task;
1070 
1071 		task = container_of(node, struct task_struct, wake_q);
1072 		node = node->next;
1073 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1074 		WRITE_ONCE(task->wake_q.next, NULL);
1075 		/* Task can safely be re-inserted now. */
1076 
1077 		/*
1078 		 * wake_up_process() executes a full barrier, which pairs with
1079 		 * the queueing in wake_q_add() so as not to miss wakeups.
1080 		 */
1081 		wake_up_process(task);
1082 		put_task_struct(task);
1083 	}
1084 }
1085 
1086 /*
1087  * resched_curr - mark rq's current task 'to be rescheduled now'.
1088  *
1089  * On UP this means the setting of the need_resched flag, on SMP it
1090  * might also involve a cross-CPU call to trigger the scheduler on
1091  * the target CPU.
1092  */
__resched_curr(struct rq * rq,int tif)1093 static void __resched_curr(struct rq *rq, int tif)
1094 {
1095 	struct task_struct *curr = rq->curr;
1096 	struct thread_info *cti = task_thread_info(curr);
1097 	int cpu;
1098 
1099 	lockdep_assert_rq_held(rq);
1100 
1101 	/*
1102 	 * Always immediately preempt the idle task; no point in delaying doing
1103 	 * actual work.
1104 	 */
1105 	if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1106 		tif = TIF_NEED_RESCHED;
1107 
1108 	if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1109 		return;
1110 
1111 	cpu = cpu_of(rq);
1112 
1113 	if (cpu == smp_processor_id()) {
1114 		set_ti_thread_flag(cti, tif);
1115 		if (tif == TIF_NEED_RESCHED)
1116 			set_preempt_need_resched();
1117 		return;
1118 	}
1119 
1120 	if (set_nr_and_not_polling(cti, tif)) {
1121 		if (tif == TIF_NEED_RESCHED)
1122 			smp_send_reschedule(cpu);
1123 	} else {
1124 		trace_sched_wake_idle_without_ipi(cpu);
1125 	}
1126 }
1127 
resched_curr(struct rq * rq)1128 void resched_curr(struct rq *rq)
1129 {
1130 	__resched_curr(rq, TIF_NEED_RESCHED);
1131 }
1132 
1133 #ifdef CONFIG_PREEMPT_DYNAMIC
1134 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
dynamic_preempt_lazy(void)1135 static __always_inline bool dynamic_preempt_lazy(void)
1136 {
1137 	return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1138 }
1139 #else
dynamic_preempt_lazy(void)1140 static __always_inline bool dynamic_preempt_lazy(void)
1141 {
1142 	return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1143 }
1144 #endif
1145 
get_lazy_tif_bit(void)1146 static __always_inline int get_lazy_tif_bit(void)
1147 {
1148 	if (dynamic_preempt_lazy())
1149 		return TIF_NEED_RESCHED_LAZY;
1150 
1151 	return TIF_NEED_RESCHED;
1152 }
1153 
resched_curr_lazy(struct rq * rq)1154 void resched_curr_lazy(struct rq *rq)
1155 {
1156 	__resched_curr(rq, get_lazy_tif_bit());
1157 }
1158 
resched_cpu(int cpu)1159 void resched_cpu(int cpu)
1160 {
1161 	struct rq *rq = cpu_rq(cpu);
1162 	unsigned long flags;
1163 
1164 	raw_spin_rq_lock_irqsave(rq, flags);
1165 	if (cpu_online(cpu) || cpu == smp_processor_id())
1166 		resched_curr(rq);
1167 	raw_spin_rq_unlock_irqrestore(rq, flags);
1168 }
1169 
1170 #ifdef CONFIG_SMP
1171 #ifdef CONFIG_NO_HZ_COMMON
1172 /*
1173  * In the semi idle case, use the nearest busy CPU for migrating timers
1174  * from an idle CPU.  This is good for power-savings.
1175  *
1176  * We don't do similar optimization for completely idle system, as
1177  * selecting an idle CPU will add more delays to the timers than intended
1178  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1179  */
get_nohz_timer_target(void)1180 int get_nohz_timer_target(void)
1181 {
1182 	int i, cpu = smp_processor_id(), default_cpu = -1;
1183 	struct sched_domain *sd;
1184 	const struct cpumask *hk_mask;
1185 
1186 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1187 		if (!idle_cpu(cpu))
1188 			return cpu;
1189 		default_cpu = cpu;
1190 	}
1191 
1192 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1193 
1194 	guard(rcu)();
1195 
1196 	for_each_domain(cpu, sd) {
1197 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1198 			if (cpu == i)
1199 				continue;
1200 
1201 			if (!idle_cpu(i))
1202 				return i;
1203 		}
1204 	}
1205 
1206 	if (default_cpu == -1)
1207 		default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1208 
1209 	return default_cpu;
1210 }
1211 
1212 /*
1213  * When add_timer_on() enqueues a timer into the timer wheel of an
1214  * idle CPU then this timer might expire before the next timer event
1215  * which is scheduled to wake up that CPU. In case of a completely
1216  * idle system the next event might even be infinite time into the
1217  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1218  * leaves the inner idle loop so the newly added timer is taken into
1219  * account when the CPU goes back to idle and evaluates the timer
1220  * wheel for the next timer event.
1221  */
wake_up_idle_cpu(int cpu)1222 static void wake_up_idle_cpu(int cpu)
1223 {
1224 	struct rq *rq = cpu_rq(cpu);
1225 
1226 	if (cpu == smp_processor_id())
1227 		return;
1228 
1229 	/*
1230 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1231 	 * part of the idle loop. This forces an exit from the idle loop
1232 	 * and a round trip to schedule(). Now this could be optimized
1233 	 * because a simple new idle loop iteration is enough to
1234 	 * re-evaluate the next tick. Provided some re-ordering of tick
1235 	 * nohz functions that would need to follow TIF_NR_POLLING
1236 	 * clearing:
1237 	 *
1238 	 * - On most architectures, a simple fetch_or on ti::flags with a
1239 	 *   "0" value would be enough to know if an IPI needs to be sent.
1240 	 *
1241 	 * - x86 needs to perform a last need_resched() check between
1242 	 *   monitor and mwait which doesn't take timers into account.
1243 	 *   There a dedicated TIF_TIMER flag would be required to
1244 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1245 	 *   before mwait().
1246 	 *
1247 	 * However, remote timer enqueue is not such a frequent event
1248 	 * and testing of the above solutions didn't appear to report
1249 	 * much benefits.
1250 	 */
1251 	if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1252 		smp_send_reschedule(cpu);
1253 	else
1254 		trace_sched_wake_idle_without_ipi(cpu);
1255 }
1256 
wake_up_full_nohz_cpu(int cpu)1257 static bool wake_up_full_nohz_cpu(int cpu)
1258 {
1259 	/*
1260 	 * We just need the target to call irq_exit() and re-evaluate
1261 	 * the next tick. The nohz full kick at least implies that.
1262 	 * If needed we can still optimize that later with an
1263 	 * empty IRQ.
1264 	 */
1265 	if (cpu_is_offline(cpu))
1266 		return true;  /* Don't try to wake offline CPUs. */
1267 	if (tick_nohz_full_cpu(cpu)) {
1268 		if (cpu != smp_processor_id() ||
1269 		    tick_nohz_tick_stopped())
1270 			tick_nohz_full_kick_cpu(cpu);
1271 		return true;
1272 	}
1273 
1274 	return false;
1275 }
1276 
1277 /*
1278  * Wake up the specified CPU.  If the CPU is going offline, it is the
1279  * caller's responsibility to deal with the lost wakeup, for example,
1280  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1281  */
wake_up_nohz_cpu(int cpu)1282 void wake_up_nohz_cpu(int cpu)
1283 {
1284 	if (!wake_up_full_nohz_cpu(cpu))
1285 		wake_up_idle_cpu(cpu);
1286 }
1287 
nohz_csd_func(void * info)1288 static void nohz_csd_func(void *info)
1289 {
1290 	struct rq *rq = info;
1291 	int cpu = cpu_of(rq);
1292 	unsigned int flags;
1293 
1294 	/*
1295 	 * Release the rq::nohz_csd.
1296 	 */
1297 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1298 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1299 
1300 	rq->idle_balance = idle_cpu(cpu);
1301 	if (rq->idle_balance) {
1302 		rq->nohz_idle_balance = flags;
1303 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1304 	}
1305 }
1306 
1307 #endif /* CONFIG_NO_HZ_COMMON */
1308 
1309 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1310 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1311 {
1312 	if (rq->nr_running != 1)
1313 		return false;
1314 
1315 	if (p->sched_class != &fair_sched_class)
1316 		return false;
1317 
1318 	if (!task_on_rq_queued(p))
1319 		return false;
1320 
1321 	return true;
1322 }
1323 
sched_can_stop_tick(struct rq * rq)1324 bool sched_can_stop_tick(struct rq *rq)
1325 {
1326 	int fifo_nr_running;
1327 
1328 	/* Deadline tasks, even if single, need the tick */
1329 	if (rq->dl.dl_nr_running)
1330 		return false;
1331 
1332 	/*
1333 	 * If there are more than one RR tasks, we need the tick to affect the
1334 	 * actual RR behaviour.
1335 	 */
1336 	if (rq->rt.rr_nr_running) {
1337 		if (rq->rt.rr_nr_running == 1)
1338 			return true;
1339 		else
1340 			return false;
1341 	}
1342 
1343 	/*
1344 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1345 	 * forced preemption between FIFO tasks.
1346 	 */
1347 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1348 	if (fifo_nr_running)
1349 		return true;
1350 
1351 	/*
1352 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1353 	 * left. For CFS, if there's more than one we need the tick for
1354 	 * involuntary preemption. For SCX, ask.
1355 	 */
1356 	if (scx_enabled() && !scx_can_stop_tick(rq))
1357 		return false;
1358 
1359 	if (rq->cfs.h_nr_queued > 1)
1360 		return false;
1361 
1362 	/*
1363 	 * If there is one task and it has CFS runtime bandwidth constraints
1364 	 * and it's on the cpu now we don't want to stop the tick.
1365 	 * This check prevents clearing the bit if a newly enqueued task here is
1366 	 * dequeued by migrating while the constrained task continues to run.
1367 	 * E.g. going from 2->1 without going through pick_next_task().
1368 	 */
1369 	if (__need_bw_check(rq, rq->curr)) {
1370 		if (cfs_task_bw_constrained(rq->curr))
1371 			return false;
1372 	}
1373 
1374 	return true;
1375 }
1376 #endif /* CONFIG_NO_HZ_FULL */
1377 #endif /* CONFIG_SMP */
1378 
1379 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1380 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1381 /*
1382  * Iterate task_group tree rooted at *from, calling @down when first entering a
1383  * node and @up when leaving it for the final time.
1384  *
1385  * Caller must hold rcu_lock or sufficient equivalent.
1386  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1387 int walk_tg_tree_from(struct task_group *from,
1388 			     tg_visitor down, tg_visitor up, void *data)
1389 {
1390 	struct task_group *parent, *child;
1391 	int ret;
1392 
1393 	parent = from;
1394 
1395 down:
1396 	ret = (*down)(parent, data);
1397 	if (ret)
1398 		goto out;
1399 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1400 		parent = child;
1401 		goto down;
1402 
1403 up:
1404 		continue;
1405 	}
1406 	ret = (*up)(parent, data);
1407 	if (ret || parent == from)
1408 		goto out;
1409 
1410 	child = parent;
1411 	parent = parent->parent;
1412 	if (parent)
1413 		goto up;
1414 out:
1415 	return ret;
1416 }
1417 
tg_nop(struct task_group * tg,void * data)1418 int tg_nop(struct task_group *tg, void *data)
1419 {
1420 	return 0;
1421 }
1422 #endif
1423 
set_load_weight(struct task_struct * p,bool update_load)1424 void set_load_weight(struct task_struct *p, bool update_load)
1425 {
1426 	int prio = p->static_prio - MAX_RT_PRIO;
1427 	struct load_weight lw;
1428 
1429 	if (task_has_idle_policy(p)) {
1430 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1431 		lw.inv_weight = WMULT_IDLEPRIO;
1432 	} else {
1433 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1434 		lw.inv_weight = sched_prio_to_wmult[prio];
1435 	}
1436 
1437 	/*
1438 	 * SCHED_OTHER tasks have to update their load when changing their
1439 	 * weight
1440 	 */
1441 	if (update_load && p->sched_class->reweight_task)
1442 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1443 	else
1444 		p->se.load = lw;
1445 }
1446 
1447 #ifdef CONFIG_UCLAMP_TASK
1448 /*
1449  * Serializes updates of utilization clamp values
1450  *
1451  * The (slow-path) user-space triggers utilization clamp value updates which
1452  * can require updates on (fast-path) scheduler's data structures used to
1453  * support enqueue/dequeue operations.
1454  * While the per-CPU rq lock protects fast-path update operations, user-space
1455  * requests are serialized using a mutex to reduce the risk of conflicting
1456  * updates or API abuses.
1457  */
1458 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1459 
1460 /* Max allowed minimum utilization */
1461 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1462 
1463 /* Max allowed maximum utilization */
1464 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1465 
1466 /*
1467  * By default RT tasks run at the maximum performance point/capacity of the
1468  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1469  * SCHED_CAPACITY_SCALE.
1470  *
1471  * This knob allows admins to change the default behavior when uclamp is being
1472  * used. In battery powered devices, particularly, running at the maximum
1473  * capacity and frequency will increase energy consumption and shorten the
1474  * battery life.
1475  *
1476  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1477  *
1478  * This knob will not override the system default sched_util_clamp_min defined
1479  * above.
1480  */
1481 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1482 
1483 /* All clamps are required to be less or equal than these values */
1484 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1485 
1486 /*
1487  * This static key is used to reduce the uclamp overhead in the fast path. It
1488  * primarily disables the call to uclamp_rq_{inc, dec}() in
1489  * enqueue/dequeue_task().
1490  *
1491  * This allows users to continue to enable uclamp in their kernel config with
1492  * minimum uclamp overhead in the fast path.
1493  *
1494  * As soon as userspace modifies any of the uclamp knobs, the static key is
1495  * enabled, since we have an actual users that make use of uclamp
1496  * functionality.
1497  *
1498  * The knobs that would enable this static key are:
1499  *
1500  *   * A task modifying its uclamp value with sched_setattr().
1501  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1502  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1503  */
1504 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1505 
1506 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1507 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1508 		  unsigned int clamp_value)
1509 {
1510 	/*
1511 	 * Avoid blocked utilization pushing up the frequency when we go
1512 	 * idle (which drops the max-clamp) by retaining the last known
1513 	 * max-clamp.
1514 	 */
1515 	if (clamp_id == UCLAMP_MAX) {
1516 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1517 		return clamp_value;
1518 	}
1519 
1520 	return uclamp_none(UCLAMP_MIN);
1521 }
1522 
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1523 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1524 				     unsigned int clamp_value)
1525 {
1526 	/* Reset max-clamp retention only on idle exit */
1527 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1528 		return;
1529 
1530 	uclamp_rq_set(rq, clamp_id, clamp_value);
1531 }
1532 
1533 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1534 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1535 				   unsigned int clamp_value)
1536 {
1537 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1538 	int bucket_id = UCLAMP_BUCKETS - 1;
1539 
1540 	/*
1541 	 * Since both min and max clamps are max aggregated, find the
1542 	 * top most bucket with tasks in.
1543 	 */
1544 	for ( ; bucket_id >= 0; bucket_id--) {
1545 		if (!bucket[bucket_id].tasks)
1546 			continue;
1547 		return bucket[bucket_id].value;
1548 	}
1549 
1550 	/* No tasks -- default clamp values */
1551 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1552 }
1553 
__uclamp_update_util_min_rt_default(struct task_struct * p)1554 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1555 {
1556 	unsigned int default_util_min;
1557 	struct uclamp_se *uc_se;
1558 
1559 	lockdep_assert_held(&p->pi_lock);
1560 
1561 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1562 
1563 	/* Only sync if user didn't override the default */
1564 	if (uc_se->user_defined)
1565 		return;
1566 
1567 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1568 	uclamp_se_set(uc_se, default_util_min, false);
1569 }
1570 
uclamp_update_util_min_rt_default(struct task_struct * p)1571 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1572 {
1573 	if (!rt_task(p))
1574 		return;
1575 
1576 	/* Protect updates to p->uclamp_* */
1577 	guard(task_rq_lock)(p);
1578 	__uclamp_update_util_min_rt_default(p);
1579 }
1580 
1581 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1582 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1583 {
1584 	/* Copy by value as we could modify it */
1585 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1586 #ifdef CONFIG_UCLAMP_TASK_GROUP
1587 	unsigned int tg_min, tg_max, value;
1588 
1589 	/*
1590 	 * Tasks in autogroups or root task group will be
1591 	 * restricted by system defaults.
1592 	 */
1593 	if (task_group_is_autogroup(task_group(p)))
1594 		return uc_req;
1595 	if (task_group(p) == &root_task_group)
1596 		return uc_req;
1597 
1598 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1599 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1600 	value = uc_req.value;
1601 	value = clamp(value, tg_min, tg_max);
1602 	uclamp_se_set(&uc_req, value, false);
1603 #endif
1604 
1605 	return uc_req;
1606 }
1607 
1608 /*
1609  * The effective clamp bucket index of a task depends on, by increasing
1610  * priority:
1611  * - the task specific clamp value, when explicitly requested from userspace
1612  * - the task group effective clamp value, for tasks not either in the root
1613  *   group or in an autogroup
1614  * - the system default clamp value, defined by the sysadmin
1615  */
1616 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1617 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1618 {
1619 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1620 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1621 
1622 	/* System default restrictions always apply */
1623 	if (unlikely(uc_req.value > uc_max.value))
1624 		return uc_max;
1625 
1626 	return uc_req;
1627 }
1628 
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1629 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1630 {
1631 	struct uclamp_se uc_eff;
1632 
1633 	/* Task currently refcounted: use back-annotated (effective) value */
1634 	if (p->uclamp[clamp_id].active)
1635 		return (unsigned long)p->uclamp[clamp_id].value;
1636 
1637 	uc_eff = uclamp_eff_get(p, clamp_id);
1638 
1639 	return (unsigned long)uc_eff.value;
1640 }
1641 
1642 /*
1643  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1644  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1645  * updates the rq's clamp value if required.
1646  *
1647  * Tasks can have a task-specific value requested from user-space, track
1648  * within each bucket the maximum value for tasks refcounted in it.
1649  * This "local max aggregation" allows to track the exact "requested" value
1650  * for each bucket when all its RUNNABLE tasks require the same clamp.
1651  */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1652 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1653 				    enum uclamp_id clamp_id)
1654 {
1655 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1656 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1657 	struct uclamp_bucket *bucket;
1658 
1659 	lockdep_assert_rq_held(rq);
1660 
1661 	/* Update task effective clamp */
1662 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1663 
1664 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1665 	bucket->tasks++;
1666 	uc_se->active = true;
1667 
1668 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1669 
1670 	/*
1671 	 * Local max aggregation: rq buckets always track the max
1672 	 * "requested" clamp value of its RUNNABLE tasks.
1673 	 */
1674 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1675 		bucket->value = uc_se->value;
1676 
1677 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1678 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1679 }
1680 
1681 /*
1682  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1683  * is released. If this is the last task reference counting the rq's max
1684  * active clamp value, then the rq's clamp value is updated.
1685  *
1686  * Both refcounted tasks and rq's cached clamp values are expected to be
1687  * always valid. If it's detected they are not, as defensive programming,
1688  * enforce the expected state and warn.
1689  */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1690 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1691 				    enum uclamp_id clamp_id)
1692 {
1693 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1694 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1695 	struct uclamp_bucket *bucket;
1696 	unsigned int bkt_clamp;
1697 	unsigned int rq_clamp;
1698 
1699 	lockdep_assert_rq_held(rq);
1700 
1701 	/*
1702 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1703 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1704 	 *
1705 	 * In this case the uc_se->active flag should be false since no uclamp
1706 	 * accounting was performed at enqueue time and we can just return
1707 	 * here.
1708 	 *
1709 	 * Need to be careful of the following enqueue/dequeue ordering
1710 	 * problem too
1711 	 *
1712 	 *	enqueue(taskA)
1713 	 *	// sched_uclamp_used gets enabled
1714 	 *	enqueue(taskB)
1715 	 *	dequeue(taskA)
1716 	 *	// Must not decrement bucket->tasks here
1717 	 *	dequeue(taskB)
1718 	 *
1719 	 * where we could end up with stale data in uc_se and
1720 	 * bucket[uc_se->bucket_id].
1721 	 *
1722 	 * The following check here eliminates the possibility of such race.
1723 	 */
1724 	if (unlikely(!uc_se->active))
1725 		return;
1726 
1727 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1728 
1729 	WARN_ON_ONCE(!bucket->tasks);
1730 	if (likely(bucket->tasks))
1731 		bucket->tasks--;
1732 
1733 	uc_se->active = false;
1734 
1735 	/*
1736 	 * Keep "local max aggregation" simple and accept to (possibly)
1737 	 * overboost some RUNNABLE tasks in the same bucket.
1738 	 * The rq clamp bucket value is reset to its base value whenever
1739 	 * there are no more RUNNABLE tasks refcounting it.
1740 	 */
1741 	if (likely(bucket->tasks))
1742 		return;
1743 
1744 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1745 	/*
1746 	 * Defensive programming: this should never happen. If it happens,
1747 	 * e.g. due to future modification, warn and fix up the expected value.
1748 	 */
1749 	WARN_ON_ONCE(bucket->value > rq_clamp);
1750 	if (bucket->value >= rq_clamp) {
1751 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1752 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1753 	}
1754 }
1755 
uclamp_rq_inc(struct rq * rq,struct task_struct * p,int flags)1756 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
1757 {
1758 	enum uclamp_id clamp_id;
1759 
1760 	/*
1761 	 * Avoid any overhead until uclamp is actually used by the userspace.
1762 	 *
1763 	 * The condition is constructed such that a NOP is generated when
1764 	 * sched_uclamp_used is disabled.
1765 	 */
1766 	if (!uclamp_is_used())
1767 		return;
1768 
1769 	if (unlikely(!p->sched_class->uclamp_enabled))
1770 		return;
1771 
1772 	/* Only inc the delayed task which being woken up. */
1773 	if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
1774 		return;
1775 
1776 	for_each_clamp_id(clamp_id)
1777 		uclamp_rq_inc_id(rq, p, clamp_id);
1778 
1779 	/* Reset clamp idle holding when there is one RUNNABLE task */
1780 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1781 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1782 }
1783 
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1784 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1785 {
1786 	enum uclamp_id clamp_id;
1787 
1788 	/*
1789 	 * Avoid any overhead until uclamp is actually used by the userspace.
1790 	 *
1791 	 * The condition is constructed such that a NOP is generated when
1792 	 * sched_uclamp_used is disabled.
1793 	 */
1794 	if (!uclamp_is_used())
1795 		return;
1796 
1797 	if (unlikely(!p->sched_class->uclamp_enabled))
1798 		return;
1799 
1800 	if (p->se.sched_delayed)
1801 		return;
1802 
1803 	for_each_clamp_id(clamp_id)
1804 		uclamp_rq_dec_id(rq, p, clamp_id);
1805 }
1806 
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1807 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1808 				      enum uclamp_id clamp_id)
1809 {
1810 	if (!p->uclamp[clamp_id].active)
1811 		return;
1812 
1813 	uclamp_rq_dec_id(rq, p, clamp_id);
1814 	uclamp_rq_inc_id(rq, p, clamp_id);
1815 
1816 	/*
1817 	 * Make sure to clear the idle flag if we've transiently reached 0
1818 	 * active tasks on rq.
1819 	 */
1820 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1821 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1822 }
1823 
1824 static inline void
uclamp_update_active(struct task_struct * p)1825 uclamp_update_active(struct task_struct *p)
1826 {
1827 	enum uclamp_id clamp_id;
1828 	struct rq_flags rf;
1829 	struct rq *rq;
1830 
1831 	/*
1832 	 * Lock the task and the rq where the task is (or was) queued.
1833 	 *
1834 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1835 	 * price to pay to safely serialize util_{min,max} updates with
1836 	 * enqueues, dequeues and migration operations.
1837 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1838 	 */
1839 	rq = task_rq_lock(p, &rf);
1840 
1841 	/*
1842 	 * Setting the clamp bucket is serialized by task_rq_lock().
1843 	 * If the task is not yet RUNNABLE and its task_struct is not
1844 	 * affecting a valid clamp bucket, the next time it's enqueued,
1845 	 * it will already see the updated clamp bucket value.
1846 	 */
1847 	for_each_clamp_id(clamp_id)
1848 		uclamp_rq_reinc_id(rq, p, clamp_id);
1849 
1850 	task_rq_unlock(rq, p, &rf);
1851 }
1852 
1853 #ifdef CONFIG_UCLAMP_TASK_GROUP
1854 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1855 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1856 {
1857 	struct css_task_iter it;
1858 	struct task_struct *p;
1859 
1860 	css_task_iter_start(css, 0, &it);
1861 	while ((p = css_task_iter_next(&it)))
1862 		uclamp_update_active(p);
1863 	css_task_iter_end(&it);
1864 }
1865 
1866 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1867 #endif
1868 
1869 #ifdef CONFIG_SYSCTL
1870 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1871 static void uclamp_update_root_tg(void)
1872 {
1873 	struct task_group *tg = &root_task_group;
1874 
1875 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1876 		      sysctl_sched_uclamp_util_min, false);
1877 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1878 		      sysctl_sched_uclamp_util_max, false);
1879 
1880 	guard(rcu)();
1881 	cpu_util_update_eff(&root_task_group.css);
1882 }
1883 #else
uclamp_update_root_tg(void)1884 static void uclamp_update_root_tg(void) { }
1885 #endif
1886 
uclamp_sync_util_min_rt_default(void)1887 static void uclamp_sync_util_min_rt_default(void)
1888 {
1889 	struct task_struct *g, *p;
1890 
1891 	/*
1892 	 * copy_process()			sysctl_uclamp
1893 	 *					  uclamp_min_rt = X;
1894 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1895 	 *   // link thread			  smp_mb__after_spinlock()
1896 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1897 	 *   sched_post_fork()			  for_each_process_thread()
1898 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1899 	 *
1900 	 * Ensures that either sched_post_fork() will observe the new
1901 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1902 	 * task.
1903 	 */
1904 	read_lock(&tasklist_lock);
1905 	smp_mb__after_spinlock();
1906 	read_unlock(&tasklist_lock);
1907 
1908 	guard(rcu)();
1909 	for_each_process_thread(g, p)
1910 		uclamp_update_util_min_rt_default(p);
1911 }
1912 
sysctl_sched_uclamp_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1913 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1914 				void *buffer, size_t *lenp, loff_t *ppos)
1915 {
1916 	bool update_root_tg = false;
1917 	int old_min, old_max, old_min_rt;
1918 	int result;
1919 
1920 	guard(mutex)(&uclamp_mutex);
1921 
1922 	old_min = sysctl_sched_uclamp_util_min;
1923 	old_max = sysctl_sched_uclamp_util_max;
1924 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1925 
1926 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1927 	if (result)
1928 		goto undo;
1929 	if (!write)
1930 		return 0;
1931 
1932 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1933 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1934 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1935 
1936 		result = -EINVAL;
1937 		goto undo;
1938 	}
1939 
1940 	if (old_min != sysctl_sched_uclamp_util_min) {
1941 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1942 			      sysctl_sched_uclamp_util_min, false);
1943 		update_root_tg = true;
1944 	}
1945 	if (old_max != sysctl_sched_uclamp_util_max) {
1946 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1947 			      sysctl_sched_uclamp_util_max, false);
1948 		update_root_tg = true;
1949 	}
1950 
1951 	if (update_root_tg) {
1952 		sched_uclamp_enable();
1953 		uclamp_update_root_tg();
1954 	}
1955 
1956 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1957 		sched_uclamp_enable();
1958 		uclamp_sync_util_min_rt_default();
1959 	}
1960 
1961 	/*
1962 	 * We update all RUNNABLE tasks only when task groups are in use.
1963 	 * Otherwise, keep it simple and do just a lazy update at each next
1964 	 * task enqueue time.
1965 	 */
1966 	return 0;
1967 
1968 undo:
1969 	sysctl_sched_uclamp_util_min = old_min;
1970 	sysctl_sched_uclamp_util_max = old_max;
1971 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1972 	return result;
1973 }
1974 #endif
1975 
uclamp_fork(struct task_struct * p)1976 static void uclamp_fork(struct task_struct *p)
1977 {
1978 	enum uclamp_id clamp_id;
1979 
1980 	/*
1981 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1982 	 * as the task is still at its early fork stages.
1983 	 */
1984 	for_each_clamp_id(clamp_id)
1985 		p->uclamp[clamp_id].active = false;
1986 
1987 	if (likely(!p->sched_reset_on_fork))
1988 		return;
1989 
1990 	for_each_clamp_id(clamp_id) {
1991 		uclamp_se_set(&p->uclamp_req[clamp_id],
1992 			      uclamp_none(clamp_id), false);
1993 	}
1994 }
1995 
uclamp_post_fork(struct task_struct * p)1996 static void uclamp_post_fork(struct task_struct *p)
1997 {
1998 	uclamp_update_util_min_rt_default(p);
1999 }
2000 
init_uclamp_rq(struct rq * rq)2001 static void __init init_uclamp_rq(struct rq *rq)
2002 {
2003 	enum uclamp_id clamp_id;
2004 	struct uclamp_rq *uc_rq = rq->uclamp;
2005 
2006 	for_each_clamp_id(clamp_id) {
2007 		uc_rq[clamp_id] = (struct uclamp_rq) {
2008 			.value = uclamp_none(clamp_id)
2009 		};
2010 	}
2011 
2012 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2013 }
2014 
init_uclamp(void)2015 static void __init init_uclamp(void)
2016 {
2017 	struct uclamp_se uc_max = {};
2018 	enum uclamp_id clamp_id;
2019 	int cpu;
2020 
2021 	for_each_possible_cpu(cpu)
2022 		init_uclamp_rq(cpu_rq(cpu));
2023 
2024 	for_each_clamp_id(clamp_id) {
2025 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2026 			      uclamp_none(clamp_id), false);
2027 	}
2028 
2029 	/* System defaults allow max clamp values for both indexes */
2030 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2031 	for_each_clamp_id(clamp_id) {
2032 		uclamp_default[clamp_id] = uc_max;
2033 #ifdef CONFIG_UCLAMP_TASK_GROUP
2034 		root_task_group.uclamp_req[clamp_id] = uc_max;
2035 		root_task_group.uclamp[clamp_id] = uc_max;
2036 #endif
2037 	}
2038 }
2039 
2040 #else /* !CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p,int flags)2041 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2042 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_fork(struct task_struct * p)2043 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2044 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2045 static inline void init_uclamp(void) { }
2046 #endif /* CONFIG_UCLAMP_TASK */
2047 
sched_task_on_rq(struct task_struct * p)2048 bool sched_task_on_rq(struct task_struct *p)
2049 {
2050 	return task_on_rq_queued(p);
2051 }
2052 
get_wchan(struct task_struct * p)2053 unsigned long get_wchan(struct task_struct *p)
2054 {
2055 	unsigned long ip = 0;
2056 	unsigned int state;
2057 
2058 	if (!p || p == current)
2059 		return 0;
2060 
2061 	/* Only get wchan if task is blocked and we can keep it that way. */
2062 	raw_spin_lock_irq(&p->pi_lock);
2063 	state = READ_ONCE(p->__state);
2064 	smp_rmb(); /* see try_to_wake_up() */
2065 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2066 		ip = __get_wchan(p);
2067 	raw_spin_unlock_irq(&p->pi_lock);
2068 
2069 	return ip;
2070 }
2071 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2072 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2073 {
2074 	if (!(flags & ENQUEUE_NOCLOCK))
2075 		update_rq_clock(rq);
2076 
2077 	/*
2078 	 * Can be before ->enqueue_task() because uclamp considers the
2079 	 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
2080 	 * in ->enqueue_task().
2081 	 */
2082 	uclamp_rq_inc(rq, p, flags);
2083 
2084 	p->sched_class->enqueue_task(rq, p, flags);
2085 
2086 	psi_enqueue(p, flags);
2087 
2088 	if (!(flags & ENQUEUE_RESTORE))
2089 		sched_info_enqueue(rq, p);
2090 
2091 	if (sched_core_enabled(rq))
2092 		sched_core_enqueue(rq, p);
2093 }
2094 
2095 /*
2096  * Must only return false when DEQUEUE_SLEEP.
2097  */
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2098 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2099 {
2100 	if (sched_core_enabled(rq))
2101 		sched_core_dequeue(rq, p, flags);
2102 
2103 	if (!(flags & DEQUEUE_NOCLOCK))
2104 		update_rq_clock(rq);
2105 
2106 	if (!(flags & DEQUEUE_SAVE))
2107 		sched_info_dequeue(rq, p);
2108 
2109 	psi_dequeue(p, flags);
2110 
2111 	/*
2112 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2113 	 * and mark the task ->sched_delayed.
2114 	 */
2115 	uclamp_rq_dec(rq, p);
2116 	return p->sched_class->dequeue_task(rq, p, flags);
2117 }
2118 
activate_task(struct rq * rq,struct task_struct * p,int flags)2119 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2120 {
2121 	if (task_on_rq_migrating(p))
2122 		flags |= ENQUEUE_MIGRATED;
2123 	if (flags & ENQUEUE_MIGRATED)
2124 		sched_mm_cid_migrate_to(rq, p);
2125 
2126 	enqueue_task(rq, p, flags);
2127 
2128 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2129 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2130 }
2131 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2132 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2133 {
2134 	WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2135 
2136 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2137 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2138 
2139 	/*
2140 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2141 	 * dequeue_task() and cleared *after* enqueue_task().
2142 	 */
2143 
2144 	dequeue_task(rq, p, flags);
2145 }
2146 
block_task(struct rq * rq,struct task_struct * p,int flags)2147 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2148 {
2149 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2150 		__block_task(rq, p);
2151 }
2152 
2153 /**
2154  * task_curr - is this task currently executing on a CPU?
2155  * @p: the task in question.
2156  *
2157  * Return: 1 if the task is currently executing. 0 otherwise.
2158  */
task_curr(const struct task_struct * p)2159 inline int task_curr(const struct task_struct *p)
2160 {
2161 	return cpu_curr(task_cpu(p)) == p;
2162 }
2163 
2164 /*
2165  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2166  * mess with locking.
2167  */
check_class_changing(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class)2168 void check_class_changing(struct rq *rq, struct task_struct *p,
2169 			  const struct sched_class *prev_class)
2170 {
2171 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2172 		p->sched_class->switching_to(rq, p);
2173 }
2174 
2175 /*
2176  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2177  * use the balance_callback list if you want balancing.
2178  *
2179  * this means any call to check_class_changed() must be followed by a call to
2180  * balance_callback().
2181  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2182 void check_class_changed(struct rq *rq, struct task_struct *p,
2183 			 const struct sched_class *prev_class,
2184 			 int oldprio)
2185 {
2186 	if (prev_class != p->sched_class) {
2187 		if (prev_class->switched_from)
2188 			prev_class->switched_from(rq, p);
2189 
2190 		p->sched_class->switched_to(rq, p);
2191 	} else if (oldprio != p->prio || dl_task(p))
2192 		p->sched_class->prio_changed(rq, p, oldprio);
2193 }
2194 
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2195 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2196 {
2197 	struct task_struct *donor = rq->donor;
2198 
2199 	if (p->sched_class == donor->sched_class)
2200 		donor->sched_class->wakeup_preempt(rq, p, flags);
2201 	else if (sched_class_above(p->sched_class, donor->sched_class))
2202 		resched_curr(rq);
2203 
2204 	/*
2205 	 * A queue event has occurred, and we're going to schedule.  In
2206 	 * this case, we can save a useless back to back clock update.
2207 	 */
2208 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2209 		rq_clock_skip_update(rq);
2210 }
2211 
2212 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2213 int __task_state_match(struct task_struct *p, unsigned int state)
2214 {
2215 	if (READ_ONCE(p->__state) & state)
2216 		return 1;
2217 
2218 	if (READ_ONCE(p->saved_state) & state)
2219 		return -1;
2220 
2221 	return 0;
2222 }
2223 
2224 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2225 int task_state_match(struct task_struct *p, unsigned int state)
2226 {
2227 	/*
2228 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2229 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2230 	 */
2231 	guard(raw_spinlock_irq)(&p->pi_lock);
2232 	return __task_state_match(p, state);
2233 }
2234 
2235 /*
2236  * wait_task_inactive - wait for a thread to unschedule.
2237  *
2238  * Wait for the thread to block in any of the states set in @match_state.
2239  * If it changes, i.e. @p might have woken up, then return zero.  When we
2240  * succeed in waiting for @p to be off its CPU, we return a positive number
2241  * (its total switch count).  If a second call a short while later returns the
2242  * same number, the caller can be sure that @p has remained unscheduled the
2243  * whole time.
2244  *
2245  * The caller must ensure that the task *will* unschedule sometime soon,
2246  * else this function might spin for a *long* time. This function can't
2247  * be called with interrupts off, or it may introduce deadlock with
2248  * smp_call_function() if an IPI is sent by the same process we are
2249  * waiting to become inactive.
2250  */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2251 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2252 {
2253 	int running, queued, match;
2254 	struct rq_flags rf;
2255 	unsigned long ncsw;
2256 	struct rq *rq;
2257 
2258 	for (;;) {
2259 		/*
2260 		 * We do the initial early heuristics without holding
2261 		 * any task-queue locks at all. We'll only try to get
2262 		 * the runqueue lock when things look like they will
2263 		 * work out!
2264 		 */
2265 		rq = task_rq(p);
2266 
2267 		/*
2268 		 * If the task is actively running on another CPU
2269 		 * still, just relax and busy-wait without holding
2270 		 * any locks.
2271 		 *
2272 		 * NOTE! Since we don't hold any locks, it's not
2273 		 * even sure that "rq" stays as the right runqueue!
2274 		 * But we don't care, since "task_on_cpu()" will
2275 		 * return false if the runqueue has changed and p
2276 		 * is actually now running somewhere else!
2277 		 */
2278 		while (task_on_cpu(rq, p)) {
2279 			if (!task_state_match(p, match_state))
2280 				return 0;
2281 			cpu_relax();
2282 		}
2283 
2284 		/*
2285 		 * Ok, time to look more closely! We need the rq
2286 		 * lock now, to be *sure*. If we're wrong, we'll
2287 		 * just go back and repeat.
2288 		 */
2289 		rq = task_rq_lock(p, &rf);
2290 		/*
2291 		 * If task is sched_delayed, force dequeue it, to avoid always
2292 		 * hitting the tick timeout in the queued case
2293 		 */
2294 		if (p->se.sched_delayed)
2295 			dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
2296 		trace_sched_wait_task(p);
2297 		running = task_on_cpu(rq, p);
2298 		queued = task_on_rq_queued(p);
2299 		ncsw = 0;
2300 		if ((match = __task_state_match(p, match_state))) {
2301 			/*
2302 			 * When matching on p->saved_state, consider this task
2303 			 * still queued so it will wait.
2304 			 */
2305 			if (match < 0)
2306 				queued = 1;
2307 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2308 		}
2309 		task_rq_unlock(rq, p, &rf);
2310 
2311 		/*
2312 		 * If it changed from the expected state, bail out now.
2313 		 */
2314 		if (unlikely(!ncsw))
2315 			break;
2316 
2317 		/*
2318 		 * Was it really running after all now that we
2319 		 * checked with the proper locks actually held?
2320 		 *
2321 		 * Oops. Go back and try again..
2322 		 */
2323 		if (unlikely(running)) {
2324 			cpu_relax();
2325 			continue;
2326 		}
2327 
2328 		/*
2329 		 * It's not enough that it's not actively running,
2330 		 * it must be off the runqueue _entirely_, and not
2331 		 * preempted!
2332 		 *
2333 		 * So if it was still runnable (but just not actively
2334 		 * running right now), it's preempted, and we should
2335 		 * yield - it could be a while.
2336 		 */
2337 		if (unlikely(queued)) {
2338 			ktime_t to = NSEC_PER_SEC / HZ;
2339 
2340 			set_current_state(TASK_UNINTERRUPTIBLE);
2341 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2342 			continue;
2343 		}
2344 
2345 		/*
2346 		 * Ahh, all good. It wasn't running, and it wasn't
2347 		 * runnable, which means that it will never become
2348 		 * running in the future either. We're all done!
2349 		 */
2350 		break;
2351 	}
2352 
2353 	return ncsw;
2354 }
2355 
2356 #ifdef CONFIG_SMP
2357 
2358 static void
2359 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2360 
migrate_disable_switch(struct rq * rq,struct task_struct * p)2361 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2362 {
2363 	struct affinity_context ac = {
2364 		.new_mask  = cpumask_of(rq->cpu),
2365 		.flags     = SCA_MIGRATE_DISABLE,
2366 	};
2367 
2368 	if (likely(!p->migration_disabled))
2369 		return;
2370 
2371 	if (p->cpus_ptr != &p->cpus_mask)
2372 		return;
2373 
2374 	/*
2375 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2376 	 */
2377 	__do_set_cpus_allowed(p, &ac);
2378 }
2379 
migrate_disable(void)2380 void migrate_disable(void)
2381 {
2382 	struct task_struct *p = current;
2383 
2384 	if (p->migration_disabled) {
2385 #ifdef CONFIG_DEBUG_PREEMPT
2386 		/*
2387 		 *Warn about overflow half-way through the range.
2388 		 */
2389 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2390 #endif
2391 		p->migration_disabled++;
2392 		return;
2393 	}
2394 
2395 	guard(preempt)();
2396 	this_rq()->nr_pinned++;
2397 	p->migration_disabled = 1;
2398 }
2399 EXPORT_SYMBOL_GPL(migrate_disable);
2400 
migrate_enable(void)2401 void migrate_enable(void)
2402 {
2403 	struct task_struct *p = current;
2404 	struct affinity_context ac = {
2405 		.new_mask  = &p->cpus_mask,
2406 		.flags     = SCA_MIGRATE_ENABLE,
2407 	};
2408 
2409 #ifdef CONFIG_DEBUG_PREEMPT
2410 	/*
2411 	 * Check both overflow from migrate_disable() and superfluous
2412 	 * migrate_enable().
2413 	 */
2414 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2415 		return;
2416 #endif
2417 
2418 	if (p->migration_disabled > 1) {
2419 		p->migration_disabled--;
2420 		return;
2421 	}
2422 
2423 	/*
2424 	 * Ensure stop_task runs either before or after this, and that
2425 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2426 	 */
2427 	guard(preempt)();
2428 	if (p->cpus_ptr != &p->cpus_mask)
2429 		__set_cpus_allowed_ptr(p, &ac);
2430 	/*
2431 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2432 	 * regular cpus_mask, otherwise things that race (eg.
2433 	 * select_fallback_rq) get confused.
2434 	 */
2435 	barrier();
2436 	p->migration_disabled = 0;
2437 	this_rq()->nr_pinned--;
2438 }
2439 EXPORT_SYMBOL_GPL(migrate_enable);
2440 
rq_has_pinned_tasks(struct rq * rq)2441 static inline bool rq_has_pinned_tasks(struct rq *rq)
2442 {
2443 	return rq->nr_pinned;
2444 }
2445 
2446 /*
2447  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2448  * __set_cpus_allowed_ptr() and select_fallback_rq().
2449  */
is_cpu_allowed(struct task_struct * p,int cpu)2450 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2451 {
2452 	/* When not in the task's cpumask, no point in looking further. */
2453 	if (!task_allowed_on_cpu(p, cpu))
2454 		return false;
2455 
2456 	/* migrate_disabled() must be allowed to finish. */
2457 	if (is_migration_disabled(p))
2458 		return cpu_online(cpu);
2459 
2460 	/* Non kernel threads are not allowed during either online or offline. */
2461 	if (!(p->flags & PF_KTHREAD))
2462 		return cpu_active(cpu);
2463 
2464 	/* KTHREAD_IS_PER_CPU is always allowed. */
2465 	if (kthread_is_per_cpu(p))
2466 		return cpu_online(cpu);
2467 
2468 	/* Regular kernel threads don't get to stay during offline. */
2469 	if (cpu_dying(cpu))
2470 		return false;
2471 
2472 	/* But are allowed during online. */
2473 	return cpu_online(cpu);
2474 }
2475 
2476 /*
2477  * This is how migration works:
2478  *
2479  * 1) we invoke migration_cpu_stop() on the target CPU using
2480  *    stop_one_cpu().
2481  * 2) stopper starts to run (implicitly forcing the migrated thread
2482  *    off the CPU)
2483  * 3) it checks whether the migrated task is still in the wrong runqueue.
2484  * 4) if it's in the wrong runqueue then the migration thread removes
2485  *    it and puts it into the right queue.
2486  * 5) stopper completes and stop_one_cpu() returns and the migration
2487  *    is done.
2488  */
2489 
2490 /*
2491  * move_queued_task - move a queued task to new rq.
2492  *
2493  * Returns (locked) new rq. Old rq's lock is released.
2494  */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2495 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2496 				   struct task_struct *p, int new_cpu)
2497 {
2498 	lockdep_assert_rq_held(rq);
2499 
2500 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2501 	set_task_cpu(p, new_cpu);
2502 	rq_unlock(rq, rf);
2503 
2504 	rq = cpu_rq(new_cpu);
2505 
2506 	rq_lock(rq, rf);
2507 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2508 	activate_task(rq, p, 0);
2509 	wakeup_preempt(rq, p, 0);
2510 
2511 	return rq;
2512 }
2513 
2514 struct migration_arg {
2515 	struct task_struct		*task;
2516 	int				dest_cpu;
2517 	struct set_affinity_pending	*pending;
2518 };
2519 
2520 /*
2521  * @refs: number of wait_for_completion()
2522  * @stop_pending: is @stop_work in use
2523  */
2524 struct set_affinity_pending {
2525 	refcount_t		refs;
2526 	unsigned int		stop_pending;
2527 	struct completion	done;
2528 	struct cpu_stop_work	stop_work;
2529 	struct migration_arg	arg;
2530 };
2531 
2532 /*
2533  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2534  * this because either it can't run here any more (set_cpus_allowed()
2535  * away from this CPU, or CPU going down), or because we're
2536  * attempting to rebalance this task on exec (sched_exec).
2537  *
2538  * So we race with normal scheduler movements, but that's OK, as long
2539  * as the task is no longer on this CPU.
2540  */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2541 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2542 				 struct task_struct *p, int dest_cpu)
2543 {
2544 	/* Affinity changed (again). */
2545 	if (!is_cpu_allowed(p, dest_cpu))
2546 		return rq;
2547 
2548 	rq = move_queued_task(rq, rf, p, dest_cpu);
2549 
2550 	return rq;
2551 }
2552 
2553 /*
2554  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2555  * and performs thread migration by bumping thread off CPU then
2556  * 'pushing' onto another runqueue.
2557  */
migration_cpu_stop(void * data)2558 static int migration_cpu_stop(void *data)
2559 {
2560 	struct migration_arg *arg = data;
2561 	struct set_affinity_pending *pending = arg->pending;
2562 	struct task_struct *p = arg->task;
2563 	struct rq *rq = this_rq();
2564 	bool complete = false;
2565 	struct rq_flags rf;
2566 
2567 	/*
2568 	 * The original target CPU might have gone down and we might
2569 	 * be on another CPU but it doesn't matter.
2570 	 */
2571 	local_irq_save(rf.flags);
2572 	/*
2573 	 * We need to explicitly wake pending tasks before running
2574 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2575 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2576 	 */
2577 	flush_smp_call_function_queue();
2578 
2579 	raw_spin_lock(&p->pi_lock);
2580 	rq_lock(rq, &rf);
2581 
2582 	/*
2583 	 * If we were passed a pending, then ->stop_pending was set, thus
2584 	 * p->migration_pending must have remained stable.
2585 	 */
2586 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2587 
2588 	/*
2589 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2590 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2591 	 * we're holding p->pi_lock.
2592 	 */
2593 	if (task_rq(p) == rq) {
2594 		if (is_migration_disabled(p))
2595 			goto out;
2596 
2597 		if (pending) {
2598 			p->migration_pending = NULL;
2599 			complete = true;
2600 
2601 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2602 				goto out;
2603 		}
2604 
2605 		if (task_on_rq_queued(p)) {
2606 			update_rq_clock(rq);
2607 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2608 		} else {
2609 			p->wake_cpu = arg->dest_cpu;
2610 		}
2611 
2612 		/*
2613 		 * XXX __migrate_task() can fail, at which point we might end
2614 		 * up running on a dodgy CPU, AFAICT this can only happen
2615 		 * during CPU hotplug, at which point we'll get pushed out
2616 		 * anyway, so it's probably not a big deal.
2617 		 */
2618 
2619 	} else if (pending) {
2620 		/*
2621 		 * This happens when we get migrated between migrate_enable()'s
2622 		 * preempt_enable() and scheduling the stopper task. At that
2623 		 * point we're a regular task again and not current anymore.
2624 		 *
2625 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2626 		 * more likely.
2627 		 */
2628 
2629 		/*
2630 		 * The task moved before the stopper got to run. We're holding
2631 		 * ->pi_lock, so the allowed mask is stable - if it got
2632 		 * somewhere allowed, we're done.
2633 		 */
2634 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2635 			p->migration_pending = NULL;
2636 			complete = true;
2637 			goto out;
2638 		}
2639 
2640 		/*
2641 		 * When migrate_enable() hits a rq mis-match we can't reliably
2642 		 * determine is_migration_disabled() and so have to chase after
2643 		 * it.
2644 		 */
2645 		WARN_ON_ONCE(!pending->stop_pending);
2646 		preempt_disable();
2647 		task_rq_unlock(rq, p, &rf);
2648 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2649 				    &pending->arg, &pending->stop_work);
2650 		preempt_enable();
2651 		return 0;
2652 	}
2653 out:
2654 	if (pending)
2655 		pending->stop_pending = false;
2656 	task_rq_unlock(rq, p, &rf);
2657 
2658 	if (complete)
2659 		complete_all(&pending->done);
2660 
2661 	return 0;
2662 }
2663 
push_cpu_stop(void * arg)2664 int push_cpu_stop(void *arg)
2665 {
2666 	struct rq *lowest_rq = NULL, *rq = this_rq();
2667 	struct task_struct *p = arg;
2668 
2669 	raw_spin_lock_irq(&p->pi_lock);
2670 	raw_spin_rq_lock(rq);
2671 
2672 	if (task_rq(p) != rq)
2673 		goto out_unlock;
2674 
2675 	if (is_migration_disabled(p)) {
2676 		p->migration_flags |= MDF_PUSH;
2677 		goto out_unlock;
2678 	}
2679 
2680 	p->migration_flags &= ~MDF_PUSH;
2681 
2682 	if (p->sched_class->find_lock_rq)
2683 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2684 
2685 	if (!lowest_rq)
2686 		goto out_unlock;
2687 
2688 	// XXX validate p is still the highest prio task
2689 	if (task_rq(p) == rq) {
2690 		move_queued_task_locked(rq, lowest_rq, p);
2691 		resched_curr(lowest_rq);
2692 	}
2693 
2694 	double_unlock_balance(rq, lowest_rq);
2695 
2696 out_unlock:
2697 	rq->push_busy = false;
2698 	raw_spin_rq_unlock(rq);
2699 	raw_spin_unlock_irq(&p->pi_lock);
2700 
2701 	put_task_struct(p);
2702 	return 0;
2703 }
2704 
2705 /*
2706  * sched_class::set_cpus_allowed must do the below, but is not required to
2707  * actually call this function.
2708  */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2709 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2710 {
2711 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2712 		p->cpus_ptr = ctx->new_mask;
2713 		return;
2714 	}
2715 
2716 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2717 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2718 
2719 	/*
2720 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2721 	 */
2722 	if (ctx->flags & SCA_USER)
2723 		swap(p->user_cpus_ptr, ctx->user_mask);
2724 }
2725 
2726 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2727 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2728 {
2729 	struct rq *rq = task_rq(p);
2730 	bool queued, running;
2731 
2732 	/*
2733 	 * This here violates the locking rules for affinity, since we're only
2734 	 * supposed to change these variables while holding both rq->lock and
2735 	 * p->pi_lock.
2736 	 *
2737 	 * HOWEVER, it magically works, because ttwu() is the only code that
2738 	 * accesses these variables under p->pi_lock and only does so after
2739 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2740 	 * before finish_task().
2741 	 *
2742 	 * XXX do further audits, this smells like something putrid.
2743 	 */
2744 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2745 		WARN_ON_ONCE(!p->on_cpu);
2746 	else
2747 		lockdep_assert_held(&p->pi_lock);
2748 
2749 	queued = task_on_rq_queued(p);
2750 	running = task_current_donor(rq, p);
2751 
2752 	if (queued) {
2753 		/*
2754 		 * Because __kthread_bind() calls this on blocked tasks without
2755 		 * holding rq->lock.
2756 		 */
2757 		lockdep_assert_rq_held(rq);
2758 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2759 	}
2760 	if (running)
2761 		put_prev_task(rq, p);
2762 
2763 	p->sched_class->set_cpus_allowed(p, ctx);
2764 	mm_set_cpus_allowed(p->mm, ctx->new_mask);
2765 
2766 	if (queued)
2767 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2768 	if (running)
2769 		set_next_task(rq, p);
2770 }
2771 
2772 /*
2773  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2774  * affinity (if any) should be destroyed too.
2775  */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2776 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2777 {
2778 	struct affinity_context ac = {
2779 		.new_mask  = new_mask,
2780 		.user_mask = NULL,
2781 		.flags     = SCA_USER,	/* clear the user requested mask */
2782 	};
2783 	union cpumask_rcuhead {
2784 		cpumask_t cpumask;
2785 		struct rcu_head rcu;
2786 	};
2787 
2788 	__do_set_cpus_allowed(p, &ac);
2789 
2790 	/*
2791 	 * Because this is called with p->pi_lock held, it is not possible
2792 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2793 	 * kfree_rcu().
2794 	 */
2795 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2796 }
2797 
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2798 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2799 		      int node)
2800 {
2801 	cpumask_t *user_mask;
2802 	unsigned long flags;
2803 
2804 	/*
2805 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2806 	 * may differ by now due to racing.
2807 	 */
2808 	dst->user_cpus_ptr = NULL;
2809 
2810 	/*
2811 	 * This check is racy and losing the race is a valid situation.
2812 	 * It is not worth the extra overhead of taking the pi_lock on
2813 	 * every fork/clone.
2814 	 */
2815 	if (data_race(!src->user_cpus_ptr))
2816 		return 0;
2817 
2818 	user_mask = alloc_user_cpus_ptr(node);
2819 	if (!user_mask)
2820 		return -ENOMEM;
2821 
2822 	/*
2823 	 * Use pi_lock to protect content of user_cpus_ptr
2824 	 *
2825 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2826 	 * do_set_cpus_allowed().
2827 	 */
2828 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2829 	if (src->user_cpus_ptr) {
2830 		swap(dst->user_cpus_ptr, user_mask);
2831 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2832 	}
2833 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2834 
2835 	if (unlikely(user_mask))
2836 		kfree(user_mask);
2837 
2838 	return 0;
2839 }
2840 
clear_user_cpus_ptr(struct task_struct * p)2841 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2842 {
2843 	struct cpumask *user_mask = NULL;
2844 
2845 	swap(p->user_cpus_ptr, user_mask);
2846 
2847 	return user_mask;
2848 }
2849 
release_user_cpus_ptr(struct task_struct * p)2850 void release_user_cpus_ptr(struct task_struct *p)
2851 {
2852 	kfree(clear_user_cpus_ptr(p));
2853 }
2854 
2855 /*
2856  * This function is wildly self concurrent; here be dragons.
2857  *
2858  *
2859  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2860  * designated task is enqueued on an allowed CPU. If that task is currently
2861  * running, we have to kick it out using the CPU stopper.
2862  *
2863  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2864  * Consider:
2865  *
2866  *     Initial conditions: P0->cpus_mask = [0, 1]
2867  *
2868  *     P0@CPU0                  P1
2869  *
2870  *     migrate_disable();
2871  *     <preempted>
2872  *                              set_cpus_allowed_ptr(P0, [1]);
2873  *
2874  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2875  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2876  * This means we need the following scheme:
2877  *
2878  *     P0@CPU0                  P1
2879  *
2880  *     migrate_disable();
2881  *     <preempted>
2882  *                              set_cpus_allowed_ptr(P0, [1]);
2883  *                                <blocks>
2884  *     <resumes>
2885  *     migrate_enable();
2886  *       __set_cpus_allowed_ptr();
2887  *       <wakes local stopper>
2888  *                         `--> <woken on migration completion>
2889  *
2890  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2891  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2892  * task p are serialized by p->pi_lock, which we can leverage: the one that
2893  * should come into effect at the end of the Migrate-Disable region is the last
2894  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2895  * but we still need to properly signal those waiting tasks at the appropriate
2896  * moment.
2897  *
2898  * This is implemented using struct set_affinity_pending. The first
2899  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2900  * setup an instance of that struct and install it on the targeted task_struct.
2901  * Any and all further callers will reuse that instance. Those then wait for
2902  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2903  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2904  *
2905  *
2906  * (1) In the cases covered above. There is one more where the completion is
2907  * signaled within affine_move_task() itself: when a subsequent affinity request
2908  * occurs after the stopper bailed out due to the targeted task still being
2909  * Migrate-Disable. Consider:
2910  *
2911  *     Initial conditions: P0->cpus_mask = [0, 1]
2912  *
2913  *     CPU0		  P1				P2
2914  *     <P0>
2915  *       migrate_disable();
2916  *       <preempted>
2917  *                        set_cpus_allowed_ptr(P0, [1]);
2918  *                          <blocks>
2919  *     <migration/0>
2920  *       migration_cpu_stop()
2921  *         is_migration_disabled()
2922  *           <bails>
2923  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2924  *                                                         <signal completion>
2925  *                          <awakes>
2926  *
2927  * Note that the above is safe vs a concurrent migrate_enable(), as any
2928  * pending affinity completion is preceded by an uninstallation of
2929  * p->migration_pending done with p->pi_lock held.
2930  */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2931 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2932 			    int dest_cpu, unsigned int flags)
2933 	__releases(rq->lock)
2934 	__releases(p->pi_lock)
2935 {
2936 	struct set_affinity_pending my_pending = { }, *pending = NULL;
2937 	bool stop_pending, complete = false;
2938 
2939 	/* Can the task run on the task's current CPU? If so, we're done */
2940 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2941 		struct task_struct *push_task = NULL;
2942 
2943 		if ((flags & SCA_MIGRATE_ENABLE) &&
2944 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2945 			rq->push_busy = true;
2946 			push_task = get_task_struct(p);
2947 		}
2948 
2949 		/*
2950 		 * If there are pending waiters, but no pending stop_work,
2951 		 * then complete now.
2952 		 */
2953 		pending = p->migration_pending;
2954 		if (pending && !pending->stop_pending) {
2955 			p->migration_pending = NULL;
2956 			complete = true;
2957 		}
2958 
2959 		preempt_disable();
2960 		task_rq_unlock(rq, p, rf);
2961 		if (push_task) {
2962 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2963 					    p, &rq->push_work);
2964 		}
2965 		preempt_enable();
2966 
2967 		if (complete)
2968 			complete_all(&pending->done);
2969 
2970 		return 0;
2971 	}
2972 
2973 	if (!(flags & SCA_MIGRATE_ENABLE)) {
2974 		/* serialized by p->pi_lock */
2975 		if (!p->migration_pending) {
2976 			/* Install the request */
2977 			refcount_set(&my_pending.refs, 1);
2978 			init_completion(&my_pending.done);
2979 			my_pending.arg = (struct migration_arg) {
2980 				.task = p,
2981 				.dest_cpu = dest_cpu,
2982 				.pending = &my_pending,
2983 			};
2984 
2985 			p->migration_pending = &my_pending;
2986 		} else {
2987 			pending = p->migration_pending;
2988 			refcount_inc(&pending->refs);
2989 			/*
2990 			 * Affinity has changed, but we've already installed a
2991 			 * pending. migration_cpu_stop() *must* see this, else
2992 			 * we risk a completion of the pending despite having a
2993 			 * task on a disallowed CPU.
2994 			 *
2995 			 * Serialized by p->pi_lock, so this is safe.
2996 			 */
2997 			pending->arg.dest_cpu = dest_cpu;
2998 		}
2999 	}
3000 	pending = p->migration_pending;
3001 	/*
3002 	 * - !MIGRATE_ENABLE:
3003 	 *   we'll have installed a pending if there wasn't one already.
3004 	 *
3005 	 * - MIGRATE_ENABLE:
3006 	 *   we're here because the current CPU isn't matching anymore,
3007 	 *   the only way that can happen is because of a concurrent
3008 	 *   set_cpus_allowed_ptr() call, which should then still be
3009 	 *   pending completion.
3010 	 *
3011 	 * Either way, we really should have a @pending here.
3012 	 */
3013 	if (WARN_ON_ONCE(!pending)) {
3014 		task_rq_unlock(rq, p, rf);
3015 		return -EINVAL;
3016 	}
3017 
3018 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3019 		/*
3020 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3021 		 * anything else we cannot do is_migration_disabled(), punt
3022 		 * and have the stopper function handle it all race-free.
3023 		 */
3024 		stop_pending = pending->stop_pending;
3025 		if (!stop_pending)
3026 			pending->stop_pending = true;
3027 
3028 		if (flags & SCA_MIGRATE_ENABLE)
3029 			p->migration_flags &= ~MDF_PUSH;
3030 
3031 		preempt_disable();
3032 		task_rq_unlock(rq, p, rf);
3033 		if (!stop_pending) {
3034 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3035 					    &pending->arg, &pending->stop_work);
3036 		}
3037 		preempt_enable();
3038 
3039 		if (flags & SCA_MIGRATE_ENABLE)
3040 			return 0;
3041 	} else {
3042 
3043 		if (!is_migration_disabled(p)) {
3044 			if (task_on_rq_queued(p))
3045 				rq = move_queued_task(rq, rf, p, dest_cpu);
3046 
3047 			if (!pending->stop_pending) {
3048 				p->migration_pending = NULL;
3049 				complete = true;
3050 			}
3051 		}
3052 		task_rq_unlock(rq, p, rf);
3053 
3054 		if (complete)
3055 			complete_all(&pending->done);
3056 	}
3057 
3058 	wait_for_completion(&pending->done);
3059 
3060 	if (refcount_dec_and_test(&pending->refs))
3061 		wake_up_var(&pending->refs); /* No UaF, just an address */
3062 
3063 	/*
3064 	 * Block the original owner of &pending until all subsequent callers
3065 	 * have seen the completion and decremented the refcount
3066 	 */
3067 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3068 
3069 	/* ARGH */
3070 	WARN_ON_ONCE(my_pending.stop_pending);
3071 
3072 	return 0;
3073 }
3074 
3075 /*
3076  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3077  */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3078 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3079 					 struct affinity_context *ctx,
3080 					 struct rq *rq,
3081 					 struct rq_flags *rf)
3082 	__releases(rq->lock)
3083 	__releases(p->pi_lock)
3084 {
3085 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3086 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3087 	bool kthread = p->flags & PF_KTHREAD;
3088 	unsigned int dest_cpu;
3089 	int ret = 0;
3090 
3091 	update_rq_clock(rq);
3092 
3093 	if (kthread || is_migration_disabled(p)) {
3094 		/*
3095 		 * Kernel threads are allowed on online && !active CPUs,
3096 		 * however, during cpu-hot-unplug, even these might get pushed
3097 		 * away if not KTHREAD_IS_PER_CPU.
3098 		 *
3099 		 * Specifically, migration_disabled() tasks must not fail the
3100 		 * cpumask_any_and_distribute() pick below, esp. so on
3101 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3102 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3103 		 */
3104 		cpu_valid_mask = cpu_online_mask;
3105 	}
3106 
3107 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3108 		ret = -EINVAL;
3109 		goto out;
3110 	}
3111 
3112 	/*
3113 	 * Must re-check here, to close a race against __kthread_bind(),
3114 	 * sched_setaffinity() is not guaranteed to observe the flag.
3115 	 */
3116 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3117 		ret = -EINVAL;
3118 		goto out;
3119 	}
3120 
3121 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3122 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3123 			if (ctx->flags & SCA_USER)
3124 				swap(p->user_cpus_ptr, ctx->user_mask);
3125 			goto out;
3126 		}
3127 
3128 		if (WARN_ON_ONCE(p == current &&
3129 				 is_migration_disabled(p) &&
3130 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3131 			ret = -EBUSY;
3132 			goto out;
3133 		}
3134 	}
3135 
3136 	/*
3137 	 * Picking a ~random cpu helps in cases where we are changing affinity
3138 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3139 	 * immediately required to distribute the tasks within their new mask.
3140 	 */
3141 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3142 	if (dest_cpu >= nr_cpu_ids) {
3143 		ret = -EINVAL;
3144 		goto out;
3145 	}
3146 
3147 	__do_set_cpus_allowed(p, ctx);
3148 
3149 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3150 
3151 out:
3152 	task_rq_unlock(rq, p, rf);
3153 
3154 	return ret;
3155 }
3156 
3157 /*
3158  * Change a given task's CPU affinity. Migrate the thread to a
3159  * proper CPU and schedule it away if the CPU it's executing on
3160  * is removed from the allowed bitmask.
3161  *
3162  * NOTE: the caller must have a valid reference to the task, the
3163  * task must not exit() & deallocate itself prematurely. The
3164  * call is not atomic; no spinlocks may be held.
3165  */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3166 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3167 {
3168 	struct rq_flags rf;
3169 	struct rq *rq;
3170 
3171 	rq = task_rq_lock(p, &rf);
3172 	/*
3173 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3174 	 * flags are set.
3175 	 */
3176 	if (p->user_cpus_ptr &&
3177 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3178 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3179 		ctx->new_mask = rq->scratch_mask;
3180 
3181 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3182 }
3183 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3184 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3185 {
3186 	struct affinity_context ac = {
3187 		.new_mask  = new_mask,
3188 		.flags     = 0,
3189 	};
3190 
3191 	return __set_cpus_allowed_ptr(p, &ac);
3192 }
3193 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3194 
3195 /*
3196  * Change a given task's CPU affinity to the intersection of its current
3197  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3198  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3199  * affinity or use cpu_online_mask instead.
3200  *
3201  * If the resulting mask is empty, leave the affinity unchanged and return
3202  * -EINVAL.
3203  */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3204 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3205 				     struct cpumask *new_mask,
3206 				     const struct cpumask *subset_mask)
3207 {
3208 	struct affinity_context ac = {
3209 		.new_mask  = new_mask,
3210 		.flags     = 0,
3211 	};
3212 	struct rq_flags rf;
3213 	struct rq *rq;
3214 	int err;
3215 
3216 	rq = task_rq_lock(p, &rf);
3217 
3218 	/*
3219 	 * Forcefully restricting the affinity of a deadline task is
3220 	 * likely to cause problems, so fail and noisily override the
3221 	 * mask entirely.
3222 	 */
3223 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3224 		err = -EPERM;
3225 		goto err_unlock;
3226 	}
3227 
3228 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3229 		err = -EINVAL;
3230 		goto err_unlock;
3231 	}
3232 
3233 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3234 
3235 err_unlock:
3236 	task_rq_unlock(rq, p, &rf);
3237 	return err;
3238 }
3239 
3240 /*
3241  * Restrict the CPU affinity of task @p so that it is a subset of
3242  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3243  * old affinity mask. If the resulting mask is empty, we warn and walk
3244  * up the cpuset hierarchy until we find a suitable mask.
3245  */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3246 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3247 {
3248 	cpumask_var_t new_mask;
3249 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3250 
3251 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3252 
3253 	/*
3254 	 * __migrate_task() can fail silently in the face of concurrent
3255 	 * offlining of the chosen destination CPU, so take the hotplug
3256 	 * lock to ensure that the migration succeeds.
3257 	 */
3258 	cpus_read_lock();
3259 	if (!cpumask_available(new_mask))
3260 		goto out_set_mask;
3261 
3262 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3263 		goto out_free_mask;
3264 
3265 	/*
3266 	 * We failed to find a valid subset of the affinity mask for the
3267 	 * task, so override it based on its cpuset hierarchy.
3268 	 */
3269 	cpuset_cpus_allowed(p, new_mask);
3270 	override_mask = new_mask;
3271 
3272 out_set_mask:
3273 	if (printk_ratelimit()) {
3274 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3275 				task_pid_nr(p), p->comm,
3276 				cpumask_pr_args(override_mask));
3277 	}
3278 
3279 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3280 out_free_mask:
3281 	cpus_read_unlock();
3282 	free_cpumask_var(new_mask);
3283 }
3284 
3285 /*
3286  * Restore the affinity of a task @p which was previously restricted by a
3287  * call to force_compatible_cpus_allowed_ptr().
3288  *
3289  * It is the caller's responsibility to serialise this with any calls to
3290  * force_compatible_cpus_allowed_ptr(@p).
3291  */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3292 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3293 {
3294 	struct affinity_context ac = {
3295 		.new_mask  = task_user_cpus(p),
3296 		.flags     = 0,
3297 	};
3298 	int ret;
3299 
3300 	/*
3301 	 * Try to restore the old affinity mask with __sched_setaffinity().
3302 	 * Cpuset masking will be done there too.
3303 	 */
3304 	ret = __sched_setaffinity(p, &ac);
3305 	WARN_ON_ONCE(ret);
3306 }
3307 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3308 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3309 {
3310 	unsigned int state = READ_ONCE(p->__state);
3311 
3312 	/*
3313 	 * We should never call set_task_cpu() on a blocked task,
3314 	 * ttwu() will sort out the placement.
3315 	 */
3316 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3317 
3318 	/*
3319 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3320 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3321 	 * time relying on p->on_rq.
3322 	 */
3323 	WARN_ON_ONCE(state == TASK_RUNNING &&
3324 		     p->sched_class == &fair_sched_class &&
3325 		     (p->on_rq && !task_on_rq_migrating(p)));
3326 
3327 #ifdef CONFIG_LOCKDEP
3328 	/*
3329 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3330 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3331 	 *
3332 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3333 	 * see task_group().
3334 	 *
3335 	 * Furthermore, all task_rq users should acquire both locks, see
3336 	 * task_rq_lock().
3337 	 */
3338 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3339 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3340 #endif
3341 	/*
3342 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3343 	 */
3344 	WARN_ON_ONCE(!cpu_online(new_cpu));
3345 
3346 	WARN_ON_ONCE(is_migration_disabled(p));
3347 
3348 	trace_sched_migrate_task(p, new_cpu);
3349 
3350 	if (task_cpu(p) != new_cpu) {
3351 		if (p->sched_class->migrate_task_rq)
3352 			p->sched_class->migrate_task_rq(p, new_cpu);
3353 		p->se.nr_migrations++;
3354 		rseq_migrate(p);
3355 		sched_mm_cid_migrate_from(p);
3356 		perf_event_task_migrate(p);
3357 	}
3358 
3359 	__set_task_cpu(p, new_cpu);
3360 }
3361 
3362 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3363 static void __migrate_swap_task(struct task_struct *p, int cpu)
3364 {
3365 	__schedstat_inc(p->stats.numa_task_swapped);
3366 	count_vm_numa_event(NUMA_TASK_SWAP);
3367 	count_memcg_event_mm(p->mm, NUMA_TASK_SWAP);
3368 
3369 	if (task_on_rq_queued(p)) {
3370 		struct rq *src_rq, *dst_rq;
3371 		struct rq_flags srf, drf;
3372 
3373 		src_rq = task_rq(p);
3374 		dst_rq = cpu_rq(cpu);
3375 
3376 		rq_pin_lock(src_rq, &srf);
3377 		rq_pin_lock(dst_rq, &drf);
3378 
3379 		move_queued_task_locked(src_rq, dst_rq, p);
3380 		wakeup_preempt(dst_rq, p, 0);
3381 
3382 		rq_unpin_lock(dst_rq, &drf);
3383 		rq_unpin_lock(src_rq, &srf);
3384 
3385 	} else {
3386 		/*
3387 		 * Task isn't running anymore; make it appear like we migrated
3388 		 * it before it went to sleep. This means on wakeup we make the
3389 		 * previous CPU our target instead of where it really is.
3390 		 */
3391 		p->wake_cpu = cpu;
3392 	}
3393 }
3394 
3395 struct migration_swap_arg {
3396 	struct task_struct *src_task, *dst_task;
3397 	int src_cpu, dst_cpu;
3398 };
3399 
migrate_swap_stop(void * data)3400 static int migrate_swap_stop(void *data)
3401 {
3402 	struct migration_swap_arg *arg = data;
3403 	struct rq *src_rq, *dst_rq;
3404 
3405 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3406 		return -EAGAIN;
3407 
3408 	src_rq = cpu_rq(arg->src_cpu);
3409 	dst_rq = cpu_rq(arg->dst_cpu);
3410 
3411 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3412 	guard(double_rq_lock)(src_rq, dst_rq);
3413 
3414 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3415 		return -EAGAIN;
3416 
3417 	if (task_cpu(arg->src_task) != arg->src_cpu)
3418 		return -EAGAIN;
3419 
3420 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3421 		return -EAGAIN;
3422 
3423 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3424 		return -EAGAIN;
3425 
3426 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3427 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3428 
3429 	return 0;
3430 }
3431 
3432 /*
3433  * Cross migrate two tasks
3434  */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3435 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3436 		int target_cpu, int curr_cpu)
3437 {
3438 	struct migration_swap_arg arg;
3439 	int ret = -EINVAL;
3440 
3441 	arg = (struct migration_swap_arg){
3442 		.src_task = cur,
3443 		.src_cpu = curr_cpu,
3444 		.dst_task = p,
3445 		.dst_cpu = target_cpu,
3446 	};
3447 
3448 	if (arg.src_cpu == arg.dst_cpu)
3449 		goto out;
3450 
3451 	/*
3452 	 * These three tests are all lockless; this is OK since all of them
3453 	 * will be re-checked with proper locks held further down the line.
3454 	 */
3455 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3456 		goto out;
3457 
3458 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3459 		goto out;
3460 
3461 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3462 		goto out;
3463 
3464 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3465 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3466 
3467 out:
3468 	return ret;
3469 }
3470 #endif /* CONFIG_NUMA_BALANCING */
3471 
3472 /***
3473  * kick_process - kick a running thread to enter/exit the kernel
3474  * @p: the to-be-kicked thread
3475  *
3476  * Cause a process which is running on another CPU to enter
3477  * kernel-mode, without any delay. (to get signals handled.)
3478  *
3479  * NOTE: this function doesn't have to take the runqueue lock,
3480  * because all it wants to ensure is that the remote task enters
3481  * the kernel. If the IPI races and the task has been migrated
3482  * to another CPU then no harm is done and the purpose has been
3483  * achieved as well.
3484  */
kick_process(struct task_struct * p)3485 void kick_process(struct task_struct *p)
3486 {
3487 	guard(preempt)();
3488 	int cpu = task_cpu(p);
3489 
3490 	if ((cpu != smp_processor_id()) && task_curr(p))
3491 		smp_send_reschedule(cpu);
3492 }
3493 EXPORT_SYMBOL_GPL(kick_process);
3494 
3495 /*
3496  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3497  *
3498  * A few notes on cpu_active vs cpu_online:
3499  *
3500  *  - cpu_active must be a subset of cpu_online
3501  *
3502  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3503  *    see __set_cpus_allowed_ptr(). At this point the newly online
3504  *    CPU isn't yet part of the sched domains, and balancing will not
3505  *    see it.
3506  *
3507  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3508  *    avoid the load balancer to place new tasks on the to be removed
3509  *    CPU. Existing tasks will remain running there and will be taken
3510  *    off.
3511  *
3512  * This means that fallback selection must not select !active CPUs.
3513  * And can assume that any active CPU must be online. Conversely
3514  * select_task_rq() below may allow selection of !active CPUs in order
3515  * to satisfy the above rules.
3516  */
select_fallback_rq(int cpu,struct task_struct * p)3517 static int select_fallback_rq(int cpu, struct task_struct *p)
3518 {
3519 	int nid = cpu_to_node(cpu);
3520 	const struct cpumask *nodemask = NULL;
3521 	enum { cpuset, possible, fail } state = cpuset;
3522 	int dest_cpu;
3523 
3524 	/*
3525 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3526 	 * will return -1. There is no CPU on the node, and we should
3527 	 * select the CPU on the other node.
3528 	 */
3529 	if (nid != -1) {
3530 		nodemask = cpumask_of_node(nid);
3531 
3532 		/* Look for allowed, online CPU in same node. */
3533 		for_each_cpu(dest_cpu, nodemask) {
3534 			if (is_cpu_allowed(p, dest_cpu))
3535 				return dest_cpu;
3536 		}
3537 	}
3538 
3539 	for (;;) {
3540 		/* Any allowed, online CPU? */
3541 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3542 			if (!is_cpu_allowed(p, dest_cpu))
3543 				continue;
3544 
3545 			goto out;
3546 		}
3547 
3548 		/* No more Mr. Nice Guy. */
3549 		switch (state) {
3550 		case cpuset:
3551 			if (cpuset_cpus_allowed_fallback(p)) {
3552 				state = possible;
3553 				break;
3554 			}
3555 			fallthrough;
3556 		case possible:
3557 			/*
3558 			 * XXX When called from select_task_rq() we only
3559 			 * hold p->pi_lock and again violate locking order.
3560 			 *
3561 			 * More yuck to audit.
3562 			 */
3563 			do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3564 			state = fail;
3565 			break;
3566 		case fail:
3567 			BUG();
3568 			break;
3569 		}
3570 	}
3571 
3572 out:
3573 	if (state != cpuset) {
3574 		/*
3575 		 * Don't tell them about moving exiting tasks or
3576 		 * kernel threads (both mm NULL), since they never
3577 		 * leave kernel.
3578 		 */
3579 		if (p->mm && printk_ratelimit()) {
3580 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3581 					task_pid_nr(p), p->comm, cpu);
3582 		}
3583 	}
3584 
3585 	return dest_cpu;
3586 }
3587 
3588 /*
3589  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3590  */
3591 static inline
select_task_rq(struct task_struct * p,int cpu,int * wake_flags)3592 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3593 {
3594 	lockdep_assert_held(&p->pi_lock);
3595 
3596 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3597 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3598 		*wake_flags |= WF_RQ_SELECTED;
3599 	} else {
3600 		cpu = cpumask_any(p->cpus_ptr);
3601 	}
3602 
3603 	/*
3604 	 * In order not to call set_task_cpu() on a blocking task we need
3605 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3606 	 * CPU.
3607 	 *
3608 	 * Since this is common to all placement strategies, this lives here.
3609 	 *
3610 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3611 	 *   not worry about this generic constraint ]
3612 	 */
3613 	if (unlikely(!is_cpu_allowed(p, cpu)))
3614 		cpu = select_fallback_rq(task_cpu(p), p);
3615 
3616 	return cpu;
3617 }
3618 
sched_set_stop_task(int cpu,struct task_struct * stop)3619 void sched_set_stop_task(int cpu, struct task_struct *stop)
3620 {
3621 	static struct lock_class_key stop_pi_lock;
3622 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3623 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3624 
3625 	if (stop) {
3626 		/*
3627 		 * Make it appear like a SCHED_FIFO task, its something
3628 		 * userspace knows about and won't get confused about.
3629 		 *
3630 		 * Also, it will make PI more or less work without too
3631 		 * much confusion -- but then, stop work should not
3632 		 * rely on PI working anyway.
3633 		 */
3634 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3635 
3636 		stop->sched_class = &stop_sched_class;
3637 
3638 		/*
3639 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3640 		 * adjust the effective priority of a task. As a result,
3641 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3642 		 * which can then trigger wakeups of the stop thread to push
3643 		 * around the current task.
3644 		 *
3645 		 * The stop task itself will never be part of the PI-chain, it
3646 		 * never blocks, therefore that ->pi_lock recursion is safe.
3647 		 * Tell lockdep about this by placing the stop->pi_lock in its
3648 		 * own class.
3649 		 */
3650 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3651 	}
3652 
3653 	cpu_rq(cpu)->stop = stop;
3654 
3655 	if (old_stop) {
3656 		/*
3657 		 * Reset it back to a normal scheduling class so that
3658 		 * it can die in pieces.
3659 		 */
3660 		old_stop->sched_class = &rt_sched_class;
3661 	}
3662 }
3663 
3664 #else /* CONFIG_SMP */
3665 
migrate_disable_switch(struct rq * rq,struct task_struct * p)3666 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3667 
rq_has_pinned_tasks(struct rq * rq)3668 static inline bool rq_has_pinned_tasks(struct rq *rq)
3669 {
3670 	return false;
3671 }
3672 
3673 #endif /* !CONFIG_SMP */
3674 
3675 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3676 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3677 {
3678 	struct rq *rq;
3679 
3680 	if (!schedstat_enabled())
3681 		return;
3682 
3683 	rq = this_rq();
3684 
3685 #ifdef CONFIG_SMP
3686 	if (cpu == rq->cpu) {
3687 		__schedstat_inc(rq->ttwu_local);
3688 		__schedstat_inc(p->stats.nr_wakeups_local);
3689 	} else {
3690 		struct sched_domain *sd;
3691 
3692 		__schedstat_inc(p->stats.nr_wakeups_remote);
3693 
3694 		guard(rcu)();
3695 		for_each_domain(rq->cpu, sd) {
3696 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3697 				__schedstat_inc(sd->ttwu_wake_remote);
3698 				break;
3699 			}
3700 		}
3701 	}
3702 
3703 	if (wake_flags & WF_MIGRATED)
3704 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3705 #endif /* CONFIG_SMP */
3706 
3707 	__schedstat_inc(rq->ttwu_count);
3708 	__schedstat_inc(p->stats.nr_wakeups);
3709 
3710 	if (wake_flags & WF_SYNC)
3711 		__schedstat_inc(p->stats.nr_wakeups_sync);
3712 }
3713 
3714 /*
3715  * Mark the task runnable.
3716  */
ttwu_do_wakeup(struct task_struct * p)3717 static inline void ttwu_do_wakeup(struct task_struct *p)
3718 {
3719 	WRITE_ONCE(p->__state, TASK_RUNNING);
3720 	trace_sched_wakeup(p);
3721 }
3722 
3723 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3724 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3725 		 struct rq_flags *rf)
3726 {
3727 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3728 
3729 	lockdep_assert_rq_held(rq);
3730 
3731 	if (p->sched_contributes_to_load)
3732 		rq->nr_uninterruptible--;
3733 
3734 #ifdef CONFIG_SMP
3735 	if (wake_flags & WF_RQ_SELECTED)
3736 		en_flags |= ENQUEUE_RQ_SELECTED;
3737 	if (wake_flags & WF_MIGRATED)
3738 		en_flags |= ENQUEUE_MIGRATED;
3739 	else
3740 #endif
3741 	if (p->in_iowait) {
3742 		delayacct_blkio_end(p);
3743 		atomic_dec(&task_rq(p)->nr_iowait);
3744 	}
3745 
3746 	activate_task(rq, p, en_flags);
3747 	wakeup_preempt(rq, p, wake_flags);
3748 
3749 	ttwu_do_wakeup(p);
3750 
3751 #ifdef CONFIG_SMP
3752 	if (p->sched_class->task_woken) {
3753 		/*
3754 		 * Our task @p is fully woken up and running; so it's safe to
3755 		 * drop the rq->lock, hereafter rq is only used for statistics.
3756 		 */
3757 		rq_unpin_lock(rq, rf);
3758 		p->sched_class->task_woken(rq, p);
3759 		rq_repin_lock(rq, rf);
3760 	}
3761 
3762 	if (rq->idle_stamp) {
3763 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3764 		u64 max = 2*rq->max_idle_balance_cost;
3765 
3766 		update_avg(&rq->avg_idle, delta);
3767 
3768 		if (rq->avg_idle > max)
3769 			rq->avg_idle = max;
3770 
3771 		rq->idle_stamp = 0;
3772 	}
3773 #endif
3774 }
3775 
3776 /*
3777  * Consider @p being inside a wait loop:
3778  *
3779  *   for (;;) {
3780  *      set_current_state(TASK_UNINTERRUPTIBLE);
3781  *
3782  *      if (CONDITION)
3783  *         break;
3784  *
3785  *      schedule();
3786  *   }
3787  *   __set_current_state(TASK_RUNNING);
3788  *
3789  * between set_current_state() and schedule(). In this case @p is still
3790  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3791  * an atomic manner.
3792  *
3793  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3794  * then schedule() must still happen and p->state can be changed to
3795  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3796  * need to do a full wakeup with enqueue.
3797  *
3798  * Returns: %true when the wakeup is done,
3799  *          %false otherwise.
3800  */
ttwu_runnable(struct task_struct * p,int wake_flags)3801 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3802 {
3803 	struct rq_flags rf;
3804 	struct rq *rq;
3805 	int ret = 0;
3806 
3807 	rq = __task_rq_lock(p, &rf);
3808 	if (task_on_rq_queued(p)) {
3809 		update_rq_clock(rq);
3810 		if (p->se.sched_delayed)
3811 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3812 		if (!task_on_cpu(rq, p)) {
3813 			/*
3814 			 * When on_rq && !on_cpu the task is preempted, see if
3815 			 * it should preempt the task that is current now.
3816 			 */
3817 			wakeup_preempt(rq, p, wake_flags);
3818 		}
3819 		ttwu_do_wakeup(p);
3820 		ret = 1;
3821 	}
3822 	__task_rq_unlock(rq, &rf);
3823 
3824 	return ret;
3825 }
3826 
3827 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3828 void sched_ttwu_pending(void *arg)
3829 {
3830 	struct llist_node *llist = arg;
3831 	struct rq *rq = this_rq();
3832 	struct task_struct *p, *t;
3833 	struct rq_flags rf;
3834 
3835 	if (!llist)
3836 		return;
3837 
3838 	rq_lock_irqsave(rq, &rf);
3839 	update_rq_clock(rq);
3840 
3841 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3842 		if (WARN_ON_ONCE(p->on_cpu))
3843 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3844 
3845 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3846 			set_task_cpu(p, cpu_of(rq));
3847 
3848 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3849 	}
3850 
3851 	/*
3852 	 * Must be after enqueueing at least once task such that
3853 	 * idle_cpu() does not observe a false-negative -- if it does,
3854 	 * it is possible for select_idle_siblings() to stack a number
3855 	 * of tasks on this CPU during that window.
3856 	 *
3857 	 * It is OK to clear ttwu_pending when another task pending.
3858 	 * We will receive IPI after local IRQ enabled and then enqueue it.
3859 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3860 	 */
3861 	WRITE_ONCE(rq->ttwu_pending, 0);
3862 	rq_unlock_irqrestore(rq, &rf);
3863 }
3864 
3865 /*
3866  * Prepare the scene for sending an IPI for a remote smp_call
3867  *
3868  * Returns true if the caller can proceed with sending the IPI.
3869  * Returns false otherwise.
3870  */
call_function_single_prep_ipi(int cpu)3871 bool call_function_single_prep_ipi(int cpu)
3872 {
3873 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3874 		trace_sched_wake_idle_without_ipi(cpu);
3875 		return false;
3876 	}
3877 
3878 	return true;
3879 }
3880 
3881 /*
3882  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3883  * necessary. The wakee CPU on receipt of the IPI will queue the task
3884  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3885  * of the wakeup instead of the waker.
3886  */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3887 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3888 {
3889 	struct rq *rq = cpu_rq(cpu);
3890 
3891 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3892 
3893 	WRITE_ONCE(rq->ttwu_pending, 1);
3894 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3895 }
3896 
wake_up_if_idle(int cpu)3897 void wake_up_if_idle(int cpu)
3898 {
3899 	struct rq *rq = cpu_rq(cpu);
3900 
3901 	guard(rcu)();
3902 	if (is_idle_task(rcu_dereference(rq->curr))) {
3903 		guard(rq_lock_irqsave)(rq);
3904 		if (is_idle_task(rq->curr))
3905 			resched_curr(rq);
3906 	}
3907 }
3908 
cpus_equal_capacity(int this_cpu,int that_cpu)3909 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3910 {
3911 	if (!sched_asym_cpucap_active())
3912 		return true;
3913 
3914 	if (this_cpu == that_cpu)
3915 		return true;
3916 
3917 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3918 }
3919 
cpus_share_cache(int this_cpu,int that_cpu)3920 bool cpus_share_cache(int this_cpu, int that_cpu)
3921 {
3922 	if (this_cpu == that_cpu)
3923 		return true;
3924 
3925 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3926 }
3927 
3928 /*
3929  * Whether CPUs are share cache resources, which means LLC on non-cluster
3930  * machines and LLC tag or L2 on machines with clusters.
3931  */
cpus_share_resources(int this_cpu,int that_cpu)3932 bool cpus_share_resources(int this_cpu, int that_cpu)
3933 {
3934 	if (this_cpu == that_cpu)
3935 		return true;
3936 
3937 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3938 }
3939 
ttwu_queue_cond(struct task_struct * p,int cpu)3940 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3941 {
3942 	/* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3943 	if (!scx_allow_ttwu_queue(p))
3944 		return false;
3945 
3946 #ifdef CONFIG_SMP
3947 	if (p->sched_class == &stop_sched_class)
3948 		return false;
3949 #endif
3950 
3951 	/*
3952 	 * Do not complicate things with the async wake_list while the CPU is
3953 	 * in hotplug state.
3954 	 */
3955 	if (!cpu_active(cpu))
3956 		return false;
3957 
3958 	/* Ensure the task will still be allowed to run on the CPU. */
3959 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3960 		return false;
3961 
3962 	/*
3963 	 * If the CPU does not share cache, then queue the task on the
3964 	 * remote rqs wakelist to avoid accessing remote data.
3965 	 */
3966 	if (!cpus_share_cache(smp_processor_id(), cpu))
3967 		return true;
3968 
3969 	if (cpu == smp_processor_id())
3970 		return false;
3971 
3972 	/*
3973 	 * If the wakee cpu is idle, or the task is descheduling and the
3974 	 * only running task on the CPU, then use the wakelist to offload
3975 	 * the task activation to the idle (or soon-to-be-idle) CPU as
3976 	 * the current CPU is likely busy. nr_running is checked to
3977 	 * avoid unnecessary task stacking.
3978 	 *
3979 	 * Note that we can only get here with (wakee) p->on_rq=0,
3980 	 * p->on_cpu can be whatever, we've done the dequeue, so
3981 	 * the wakee has been accounted out of ->nr_running.
3982 	 */
3983 	if (!cpu_rq(cpu)->nr_running)
3984 		return true;
3985 
3986 	return false;
3987 }
3988 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3989 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3990 {
3991 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3992 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3993 		__ttwu_queue_wakelist(p, cpu, wake_flags);
3994 		return true;
3995 	}
3996 
3997 	return false;
3998 }
3999 
4000 #else /* !CONFIG_SMP */
4001 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4002 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4003 {
4004 	return false;
4005 }
4006 
4007 #endif /* CONFIG_SMP */
4008 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4009 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4010 {
4011 	struct rq *rq = cpu_rq(cpu);
4012 	struct rq_flags rf;
4013 
4014 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4015 		return;
4016 
4017 	rq_lock(rq, &rf);
4018 	update_rq_clock(rq);
4019 	ttwu_do_activate(rq, p, wake_flags, &rf);
4020 	rq_unlock(rq, &rf);
4021 }
4022 
4023 /*
4024  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4025  *
4026  * The caller holds p::pi_lock if p != current or has preemption
4027  * disabled when p == current.
4028  *
4029  * The rules of saved_state:
4030  *
4031  *   The related locking code always holds p::pi_lock when updating
4032  *   p::saved_state, which means the code is fully serialized in both cases.
4033  *
4034  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4035  *   No other bits set. This allows to distinguish all wakeup scenarios.
4036  *
4037  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4038  *   allows us to prevent early wakeup of tasks before they can be run on
4039  *   asymmetric ISA architectures (eg ARMv9).
4040  */
4041 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4042 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4043 {
4044 	int match;
4045 
4046 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4047 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4048 			     state != TASK_RTLOCK_WAIT);
4049 	}
4050 
4051 	*success = !!(match = __task_state_match(p, state));
4052 
4053 	/*
4054 	 * Saved state preserves the task state across blocking on
4055 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4056 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4057 	 * because it waits for a lock wakeup or __thaw_task(). Also
4058 	 * indicate success because from the regular waker's point of
4059 	 * view this has succeeded.
4060 	 *
4061 	 * After acquiring the lock the task will restore p::__state
4062 	 * from p::saved_state which ensures that the regular
4063 	 * wakeup is not lost. The restore will also set
4064 	 * p::saved_state to TASK_RUNNING so any further tests will
4065 	 * not result in false positives vs. @success
4066 	 */
4067 	if (match < 0)
4068 		p->saved_state = TASK_RUNNING;
4069 
4070 	return match > 0;
4071 }
4072 
4073 /*
4074  * Notes on Program-Order guarantees on SMP systems.
4075  *
4076  *  MIGRATION
4077  *
4078  * The basic program-order guarantee on SMP systems is that when a task [t]
4079  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4080  * execution on its new CPU [c1].
4081  *
4082  * For migration (of runnable tasks) this is provided by the following means:
4083  *
4084  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4085  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4086  *     rq(c1)->lock (if not at the same time, then in that order).
4087  *  C) LOCK of the rq(c1)->lock scheduling in task
4088  *
4089  * Release/acquire chaining guarantees that B happens after A and C after B.
4090  * Note: the CPU doing B need not be c0 or c1
4091  *
4092  * Example:
4093  *
4094  *   CPU0            CPU1            CPU2
4095  *
4096  *   LOCK rq(0)->lock
4097  *   sched-out X
4098  *   sched-in Y
4099  *   UNLOCK rq(0)->lock
4100  *
4101  *                                   LOCK rq(0)->lock // orders against CPU0
4102  *                                   dequeue X
4103  *                                   UNLOCK rq(0)->lock
4104  *
4105  *                                   LOCK rq(1)->lock
4106  *                                   enqueue X
4107  *                                   UNLOCK rq(1)->lock
4108  *
4109  *                   LOCK rq(1)->lock // orders against CPU2
4110  *                   sched-out Z
4111  *                   sched-in X
4112  *                   UNLOCK rq(1)->lock
4113  *
4114  *
4115  *  BLOCKING -- aka. SLEEP + WAKEUP
4116  *
4117  * For blocking we (obviously) need to provide the same guarantee as for
4118  * migration. However the means are completely different as there is no lock
4119  * chain to provide order. Instead we do:
4120  *
4121  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4122  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4123  *
4124  * Example:
4125  *
4126  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4127  *
4128  *   LOCK rq(0)->lock LOCK X->pi_lock
4129  *   dequeue X
4130  *   sched-out X
4131  *   smp_store_release(X->on_cpu, 0);
4132  *
4133  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4134  *                    X->state = WAKING
4135  *                    set_task_cpu(X,2)
4136  *
4137  *                    LOCK rq(2)->lock
4138  *                    enqueue X
4139  *                    X->state = RUNNING
4140  *                    UNLOCK rq(2)->lock
4141  *
4142  *                                          LOCK rq(2)->lock // orders against CPU1
4143  *                                          sched-out Z
4144  *                                          sched-in X
4145  *                                          UNLOCK rq(2)->lock
4146  *
4147  *                    UNLOCK X->pi_lock
4148  *   UNLOCK rq(0)->lock
4149  *
4150  *
4151  * However, for wakeups there is a second guarantee we must provide, namely we
4152  * must ensure that CONDITION=1 done by the caller can not be reordered with
4153  * accesses to the task state; see try_to_wake_up() and set_current_state().
4154  */
4155 
4156 /**
4157  * try_to_wake_up - wake up a thread
4158  * @p: the thread to be awakened
4159  * @state: the mask of task states that can be woken
4160  * @wake_flags: wake modifier flags (WF_*)
4161  *
4162  * Conceptually does:
4163  *
4164  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4165  *
4166  * If the task was not queued/runnable, also place it back on a runqueue.
4167  *
4168  * This function is atomic against schedule() which would dequeue the task.
4169  *
4170  * It issues a full memory barrier before accessing @p->state, see the comment
4171  * with set_current_state().
4172  *
4173  * Uses p->pi_lock to serialize against concurrent wake-ups.
4174  *
4175  * Relies on p->pi_lock stabilizing:
4176  *  - p->sched_class
4177  *  - p->cpus_ptr
4178  *  - p->sched_task_group
4179  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4180  *
4181  * Tries really hard to only take one task_rq(p)->lock for performance.
4182  * Takes rq->lock in:
4183  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4184  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4185  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4186  *
4187  * As a consequence we race really badly with just about everything. See the
4188  * many memory barriers and their comments for details.
4189  *
4190  * Return: %true if @p->state changes (an actual wakeup was done),
4191  *	   %false otherwise.
4192  */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4193 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4194 {
4195 	guard(preempt)();
4196 	int cpu, success = 0;
4197 
4198 	wake_flags |= WF_TTWU;
4199 
4200 	if (p == current) {
4201 		/*
4202 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4203 		 * == smp_processor_id()'. Together this means we can special
4204 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4205 		 * without taking any locks.
4206 		 *
4207 		 * Specifically, given current runs ttwu() we must be before
4208 		 * schedule()'s block_task(), as such this must not observe
4209 		 * sched_delayed.
4210 		 *
4211 		 * In particular:
4212 		 *  - we rely on Program-Order guarantees for all the ordering,
4213 		 *  - we're serialized against set_special_state() by virtue of
4214 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4215 		 */
4216 		WARN_ON_ONCE(p->se.sched_delayed);
4217 		if (!ttwu_state_match(p, state, &success))
4218 			goto out;
4219 
4220 		trace_sched_waking(p);
4221 		ttwu_do_wakeup(p);
4222 		goto out;
4223 	}
4224 
4225 	/*
4226 	 * If we are going to wake up a thread waiting for CONDITION we
4227 	 * need to ensure that CONDITION=1 done by the caller can not be
4228 	 * reordered with p->state check below. This pairs with smp_store_mb()
4229 	 * in set_current_state() that the waiting thread does.
4230 	 */
4231 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4232 		smp_mb__after_spinlock();
4233 		if (!ttwu_state_match(p, state, &success))
4234 			break;
4235 
4236 		trace_sched_waking(p);
4237 
4238 		/*
4239 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4240 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4241 		 * in smp_cond_load_acquire() below.
4242 		 *
4243 		 * sched_ttwu_pending()			try_to_wake_up()
4244 		 *   STORE p->on_rq = 1			  LOAD p->state
4245 		 *   UNLOCK rq->lock
4246 		 *
4247 		 * __schedule() (switch to task 'p')
4248 		 *   LOCK rq->lock			  smp_rmb();
4249 		 *   smp_mb__after_spinlock();
4250 		 *   UNLOCK rq->lock
4251 		 *
4252 		 * [task p]
4253 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4254 		 *
4255 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4256 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4257 		 *
4258 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4259 		 */
4260 		smp_rmb();
4261 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4262 			break;
4263 
4264 #ifdef CONFIG_SMP
4265 		/*
4266 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4267 		 * possible to, falsely, observe p->on_cpu == 0.
4268 		 *
4269 		 * One must be running (->on_cpu == 1) in order to remove oneself
4270 		 * from the runqueue.
4271 		 *
4272 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4273 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4274 		 *   UNLOCK rq->lock
4275 		 *
4276 		 * __schedule() (put 'p' to sleep)
4277 		 *   LOCK rq->lock			  smp_rmb();
4278 		 *   smp_mb__after_spinlock();
4279 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4280 		 *
4281 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4282 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4283 		 *
4284 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4285 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4286 		 * care about it's own p->state. See the comment in __schedule().
4287 		 */
4288 		smp_acquire__after_ctrl_dep();
4289 
4290 		/*
4291 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4292 		 * == 0), which means we need to do an enqueue, change p->state to
4293 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4294 		 * enqueue, such as ttwu_queue_wakelist().
4295 		 */
4296 		WRITE_ONCE(p->__state, TASK_WAKING);
4297 
4298 		/*
4299 		 * If the owning (remote) CPU is still in the middle of schedule() with
4300 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4301 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4302 		 * let the waker make forward progress. This is safe because IRQs are
4303 		 * disabled and the IPI will deliver after on_cpu is cleared.
4304 		 *
4305 		 * Ensure we load task_cpu(p) after p->on_cpu:
4306 		 *
4307 		 * set_task_cpu(p, cpu);
4308 		 *   STORE p->cpu = @cpu
4309 		 * __schedule() (switch to task 'p')
4310 		 *   LOCK rq->lock
4311 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4312 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4313 		 *
4314 		 * to ensure we observe the correct CPU on which the task is currently
4315 		 * scheduling.
4316 		 */
4317 		if (smp_load_acquire(&p->on_cpu) &&
4318 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4319 			break;
4320 
4321 		/*
4322 		 * If the owning (remote) CPU is still in the middle of schedule() with
4323 		 * this task as prev, wait until it's done referencing the task.
4324 		 *
4325 		 * Pairs with the smp_store_release() in finish_task().
4326 		 *
4327 		 * This ensures that tasks getting woken will be fully ordered against
4328 		 * their previous state and preserve Program Order.
4329 		 */
4330 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4331 
4332 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4333 		if (task_cpu(p) != cpu) {
4334 			if (p->in_iowait) {
4335 				delayacct_blkio_end(p);
4336 				atomic_dec(&task_rq(p)->nr_iowait);
4337 			}
4338 
4339 			wake_flags |= WF_MIGRATED;
4340 			psi_ttwu_dequeue(p);
4341 			set_task_cpu(p, cpu);
4342 		}
4343 #else
4344 		cpu = task_cpu(p);
4345 #endif /* CONFIG_SMP */
4346 
4347 		ttwu_queue(p, cpu, wake_flags);
4348 	}
4349 out:
4350 	if (success)
4351 		ttwu_stat(p, task_cpu(p), wake_flags);
4352 
4353 	return success;
4354 }
4355 
__task_needs_rq_lock(struct task_struct * p)4356 static bool __task_needs_rq_lock(struct task_struct *p)
4357 {
4358 	unsigned int state = READ_ONCE(p->__state);
4359 
4360 	/*
4361 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4362 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4363 	 * locks at the end, see ttwu_queue_wakelist().
4364 	 */
4365 	if (state == TASK_RUNNING || state == TASK_WAKING)
4366 		return true;
4367 
4368 	/*
4369 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4370 	 * possible to, falsely, observe p->on_rq == 0.
4371 	 *
4372 	 * See try_to_wake_up() for a longer comment.
4373 	 */
4374 	smp_rmb();
4375 	if (p->on_rq)
4376 		return true;
4377 
4378 #ifdef CONFIG_SMP
4379 	/*
4380 	 * Ensure the task has finished __schedule() and will not be referenced
4381 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4382 	 */
4383 	smp_rmb();
4384 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4385 #endif
4386 
4387 	return false;
4388 }
4389 
4390 /**
4391  * task_call_func - Invoke a function on task in fixed state
4392  * @p: Process for which the function is to be invoked, can be @current.
4393  * @func: Function to invoke.
4394  * @arg: Argument to function.
4395  *
4396  * Fix the task in it's current state by avoiding wakeups and or rq operations
4397  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4398  * task_curr() to work out what the state is, if required.  Given that @func
4399  * can be invoked with a runqueue lock held, it had better be quite
4400  * lightweight.
4401  *
4402  * Returns:
4403  *   Whatever @func returns
4404  */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4405 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4406 {
4407 	struct rq *rq = NULL;
4408 	struct rq_flags rf;
4409 	int ret;
4410 
4411 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4412 
4413 	if (__task_needs_rq_lock(p))
4414 		rq = __task_rq_lock(p, &rf);
4415 
4416 	/*
4417 	 * At this point the task is pinned; either:
4418 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4419 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4420 	 *  - queued, and we're holding off schedule	 (rq->lock)
4421 	 *  - running, and we're holding off de-schedule (rq->lock)
4422 	 *
4423 	 * The called function (@func) can use: task_curr(), p->on_rq and
4424 	 * p->__state to differentiate between these states.
4425 	 */
4426 	ret = func(p, arg);
4427 
4428 	if (rq)
4429 		rq_unlock(rq, &rf);
4430 
4431 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4432 	return ret;
4433 }
4434 
4435 /**
4436  * cpu_curr_snapshot - Return a snapshot of the currently running task
4437  * @cpu: The CPU on which to snapshot the task.
4438  *
4439  * Returns the task_struct pointer of the task "currently" running on
4440  * the specified CPU.
4441  *
4442  * If the specified CPU was offline, the return value is whatever it
4443  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4444  * task, but there is no guarantee.  Callers wishing a useful return
4445  * value must take some action to ensure that the specified CPU remains
4446  * online throughout.
4447  *
4448  * This function executes full memory barriers before and after fetching
4449  * the pointer, which permits the caller to confine this function's fetch
4450  * with respect to the caller's accesses to other shared variables.
4451  */
cpu_curr_snapshot(int cpu)4452 struct task_struct *cpu_curr_snapshot(int cpu)
4453 {
4454 	struct rq *rq = cpu_rq(cpu);
4455 	struct task_struct *t;
4456 	struct rq_flags rf;
4457 
4458 	rq_lock_irqsave(rq, &rf);
4459 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4460 	t = rcu_dereference(cpu_curr(cpu));
4461 	rq_unlock_irqrestore(rq, &rf);
4462 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4463 
4464 	return t;
4465 }
4466 
4467 /**
4468  * wake_up_process - Wake up a specific process
4469  * @p: The process to be woken up.
4470  *
4471  * Attempt to wake up the nominated process and move it to the set of runnable
4472  * processes.
4473  *
4474  * Return: 1 if the process was woken up, 0 if it was already running.
4475  *
4476  * This function executes a full memory barrier before accessing the task state.
4477  */
wake_up_process(struct task_struct * p)4478 int wake_up_process(struct task_struct *p)
4479 {
4480 	return try_to_wake_up(p, TASK_NORMAL, 0);
4481 }
4482 EXPORT_SYMBOL(wake_up_process);
4483 
wake_up_state(struct task_struct * p,unsigned int state)4484 int wake_up_state(struct task_struct *p, unsigned int state)
4485 {
4486 	return try_to_wake_up(p, state, 0);
4487 }
4488 
4489 /*
4490  * Perform scheduler related setup for a newly forked process p.
4491  * p is forked by current.
4492  *
4493  * __sched_fork() is basic setup which is also used by sched_init() to
4494  * initialize the boot CPU's idle task.
4495  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4496 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4497 {
4498 	p->on_rq			= 0;
4499 
4500 	p->se.on_rq			= 0;
4501 	p->se.exec_start		= 0;
4502 	p->se.sum_exec_runtime		= 0;
4503 	p->se.prev_sum_exec_runtime	= 0;
4504 	p->se.nr_migrations		= 0;
4505 	p->se.vruntime			= 0;
4506 	p->se.vlag			= 0;
4507 	INIT_LIST_HEAD(&p->se.group_node);
4508 
4509 	/* A delayed task cannot be in clone(). */
4510 	WARN_ON_ONCE(p->se.sched_delayed);
4511 
4512 #ifdef CONFIG_FAIR_GROUP_SCHED
4513 	p->se.cfs_rq			= NULL;
4514 #endif
4515 
4516 #ifdef CONFIG_SCHEDSTATS
4517 	/* Even if schedstat is disabled, there should not be garbage */
4518 	memset(&p->stats, 0, sizeof(p->stats));
4519 #endif
4520 
4521 	init_dl_entity(&p->dl);
4522 
4523 	INIT_LIST_HEAD(&p->rt.run_list);
4524 	p->rt.timeout		= 0;
4525 	p->rt.time_slice	= sched_rr_timeslice;
4526 	p->rt.on_rq		= 0;
4527 	p->rt.on_list		= 0;
4528 
4529 #ifdef CONFIG_SCHED_CLASS_EXT
4530 	init_scx_entity(&p->scx);
4531 #endif
4532 
4533 #ifdef CONFIG_PREEMPT_NOTIFIERS
4534 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4535 #endif
4536 
4537 #ifdef CONFIG_COMPACTION
4538 	p->capture_control = NULL;
4539 #endif
4540 	init_numa_balancing(clone_flags, p);
4541 #ifdef CONFIG_SMP
4542 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4543 	p->migration_pending = NULL;
4544 #endif
4545 	init_sched_mm_cid(p);
4546 }
4547 
4548 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4549 
4550 #ifdef CONFIG_NUMA_BALANCING
4551 
4552 int sysctl_numa_balancing_mode;
4553 
__set_numabalancing_state(bool enabled)4554 static void __set_numabalancing_state(bool enabled)
4555 {
4556 	if (enabled)
4557 		static_branch_enable(&sched_numa_balancing);
4558 	else
4559 		static_branch_disable(&sched_numa_balancing);
4560 }
4561 
set_numabalancing_state(bool enabled)4562 void set_numabalancing_state(bool enabled)
4563 {
4564 	if (enabled)
4565 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4566 	else
4567 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4568 	__set_numabalancing_state(enabled);
4569 }
4570 
4571 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4572 static void reset_memory_tiering(void)
4573 {
4574 	struct pglist_data *pgdat;
4575 
4576 	for_each_online_pgdat(pgdat) {
4577 		pgdat->nbp_threshold = 0;
4578 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4579 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4580 	}
4581 }
4582 
sysctl_numa_balancing(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4583 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4584 			  void *buffer, size_t *lenp, loff_t *ppos)
4585 {
4586 	struct ctl_table t;
4587 	int err;
4588 	int state = sysctl_numa_balancing_mode;
4589 
4590 	if (write && !capable(CAP_SYS_ADMIN))
4591 		return -EPERM;
4592 
4593 	t = *table;
4594 	t.data = &state;
4595 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4596 	if (err < 0)
4597 		return err;
4598 	if (write) {
4599 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4600 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4601 			reset_memory_tiering();
4602 		sysctl_numa_balancing_mode = state;
4603 		__set_numabalancing_state(state);
4604 	}
4605 	return err;
4606 }
4607 #endif
4608 #endif
4609 
4610 #ifdef CONFIG_SCHEDSTATS
4611 
4612 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4613 
set_schedstats(bool enabled)4614 static void set_schedstats(bool enabled)
4615 {
4616 	if (enabled)
4617 		static_branch_enable(&sched_schedstats);
4618 	else
4619 		static_branch_disable(&sched_schedstats);
4620 }
4621 
force_schedstat_enabled(void)4622 void force_schedstat_enabled(void)
4623 {
4624 	if (!schedstat_enabled()) {
4625 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4626 		static_branch_enable(&sched_schedstats);
4627 	}
4628 }
4629 
setup_schedstats(char * str)4630 static int __init setup_schedstats(char *str)
4631 {
4632 	int ret = 0;
4633 	if (!str)
4634 		goto out;
4635 
4636 	if (!strcmp(str, "enable")) {
4637 		set_schedstats(true);
4638 		ret = 1;
4639 	} else if (!strcmp(str, "disable")) {
4640 		set_schedstats(false);
4641 		ret = 1;
4642 	}
4643 out:
4644 	if (!ret)
4645 		pr_warn("Unable to parse schedstats=\n");
4646 
4647 	return ret;
4648 }
4649 __setup("schedstats=", setup_schedstats);
4650 
4651 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4652 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4653 		size_t *lenp, loff_t *ppos)
4654 {
4655 	struct ctl_table t;
4656 	int err;
4657 	int state = static_branch_likely(&sched_schedstats);
4658 
4659 	if (write && !capable(CAP_SYS_ADMIN))
4660 		return -EPERM;
4661 
4662 	t = *table;
4663 	t.data = &state;
4664 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4665 	if (err < 0)
4666 		return err;
4667 	if (write)
4668 		set_schedstats(state);
4669 	return err;
4670 }
4671 #endif /* CONFIG_PROC_SYSCTL */
4672 #endif /* CONFIG_SCHEDSTATS */
4673 
4674 #ifdef CONFIG_SYSCTL
4675 static const struct ctl_table sched_core_sysctls[] = {
4676 #ifdef CONFIG_SCHEDSTATS
4677 	{
4678 		.procname       = "sched_schedstats",
4679 		.data           = NULL,
4680 		.maxlen         = sizeof(unsigned int),
4681 		.mode           = 0644,
4682 		.proc_handler   = sysctl_schedstats,
4683 		.extra1         = SYSCTL_ZERO,
4684 		.extra2         = SYSCTL_ONE,
4685 	},
4686 #endif /* CONFIG_SCHEDSTATS */
4687 #ifdef CONFIG_UCLAMP_TASK
4688 	{
4689 		.procname       = "sched_util_clamp_min",
4690 		.data           = &sysctl_sched_uclamp_util_min,
4691 		.maxlen         = sizeof(unsigned int),
4692 		.mode           = 0644,
4693 		.proc_handler   = sysctl_sched_uclamp_handler,
4694 	},
4695 	{
4696 		.procname       = "sched_util_clamp_max",
4697 		.data           = &sysctl_sched_uclamp_util_max,
4698 		.maxlen         = sizeof(unsigned int),
4699 		.mode           = 0644,
4700 		.proc_handler   = sysctl_sched_uclamp_handler,
4701 	},
4702 	{
4703 		.procname       = "sched_util_clamp_min_rt_default",
4704 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4705 		.maxlen         = sizeof(unsigned int),
4706 		.mode           = 0644,
4707 		.proc_handler   = sysctl_sched_uclamp_handler,
4708 	},
4709 #endif /* CONFIG_UCLAMP_TASK */
4710 #ifdef CONFIG_NUMA_BALANCING
4711 	{
4712 		.procname	= "numa_balancing",
4713 		.data		= NULL, /* filled in by handler */
4714 		.maxlen		= sizeof(unsigned int),
4715 		.mode		= 0644,
4716 		.proc_handler	= sysctl_numa_balancing,
4717 		.extra1		= SYSCTL_ZERO,
4718 		.extra2		= SYSCTL_FOUR,
4719 	},
4720 #endif /* CONFIG_NUMA_BALANCING */
4721 };
sched_core_sysctl_init(void)4722 static int __init sched_core_sysctl_init(void)
4723 {
4724 	register_sysctl_init("kernel", sched_core_sysctls);
4725 	return 0;
4726 }
4727 late_initcall(sched_core_sysctl_init);
4728 #endif /* CONFIG_SYSCTL */
4729 
4730 /*
4731  * fork()/clone()-time setup:
4732  */
sched_fork(unsigned long clone_flags,struct task_struct * p)4733 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4734 {
4735 	__sched_fork(clone_flags, p);
4736 	/*
4737 	 * We mark the process as NEW here. This guarantees that
4738 	 * nobody will actually run it, and a signal or other external
4739 	 * event cannot wake it up and insert it on the runqueue either.
4740 	 */
4741 	p->__state = TASK_NEW;
4742 
4743 	/*
4744 	 * Make sure we do not leak PI boosting priority to the child.
4745 	 */
4746 	p->prio = current->normal_prio;
4747 
4748 	uclamp_fork(p);
4749 
4750 	/*
4751 	 * Revert to default priority/policy on fork if requested.
4752 	 */
4753 	if (unlikely(p->sched_reset_on_fork)) {
4754 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4755 			p->policy = SCHED_NORMAL;
4756 			p->static_prio = NICE_TO_PRIO(0);
4757 			p->rt_priority = 0;
4758 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4759 			p->static_prio = NICE_TO_PRIO(0);
4760 
4761 		p->prio = p->normal_prio = p->static_prio;
4762 		set_load_weight(p, false);
4763 		p->se.custom_slice = 0;
4764 		p->se.slice = sysctl_sched_base_slice;
4765 
4766 		/*
4767 		 * We don't need the reset flag anymore after the fork. It has
4768 		 * fulfilled its duty:
4769 		 */
4770 		p->sched_reset_on_fork = 0;
4771 	}
4772 
4773 	if (dl_prio(p->prio))
4774 		return -EAGAIN;
4775 
4776 	scx_pre_fork(p);
4777 
4778 	if (rt_prio(p->prio)) {
4779 		p->sched_class = &rt_sched_class;
4780 #ifdef CONFIG_SCHED_CLASS_EXT
4781 	} else if (task_should_scx(p->policy)) {
4782 		p->sched_class = &ext_sched_class;
4783 #endif
4784 	} else {
4785 		p->sched_class = &fair_sched_class;
4786 	}
4787 
4788 	init_entity_runnable_average(&p->se);
4789 
4790 
4791 #ifdef CONFIG_SCHED_INFO
4792 	if (likely(sched_info_on()))
4793 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4794 #endif
4795 #if defined(CONFIG_SMP)
4796 	p->on_cpu = 0;
4797 #endif
4798 	init_task_preempt_count(p);
4799 #ifdef CONFIG_SMP
4800 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4801 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4802 #endif
4803 	return 0;
4804 }
4805 
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4806 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4807 {
4808 	unsigned long flags;
4809 
4810 	/*
4811 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4812 	 * required yet, but lockdep gets upset if rules are violated.
4813 	 */
4814 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4815 #ifdef CONFIG_CGROUP_SCHED
4816 	if (1) {
4817 		struct task_group *tg;
4818 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4819 				  struct task_group, css);
4820 		tg = autogroup_task_group(p, tg);
4821 		p->sched_task_group = tg;
4822 	}
4823 #endif
4824 	rseq_migrate(p);
4825 	/*
4826 	 * We're setting the CPU for the first time, we don't migrate,
4827 	 * so use __set_task_cpu().
4828 	 */
4829 	__set_task_cpu(p, smp_processor_id());
4830 	if (p->sched_class->task_fork)
4831 		p->sched_class->task_fork(p);
4832 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4833 
4834 	return scx_fork(p);
4835 }
4836 
sched_cancel_fork(struct task_struct * p)4837 void sched_cancel_fork(struct task_struct *p)
4838 {
4839 	scx_cancel_fork(p);
4840 }
4841 
sched_post_fork(struct task_struct * p)4842 void sched_post_fork(struct task_struct *p)
4843 {
4844 	uclamp_post_fork(p);
4845 	scx_post_fork(p);
4846 }
4847 
to_ratio(u64 period,u64 runtime)4848 unsigned long to_ratio(u64 period, u64 runtime)
4849 {
4850 	if (runtime == RUNTIME_INF)
4851 		return BW_UNIT;
4852 
4853 	/*
4854 	 * Doing this here saves a lot of checks in all
4855 	 * the calling paths, and returning zero seems
4856 	 * safe for them anyway.
4857 	 */
4858 	if (period == 0)
4859 		return 0;
4860 
4861 	return div64_u64(runtime << BW_SHIFT, period);
4862 }
4863 
4864 /*
4865  * wake_up_new_task - wake up a newly created task for the first time.
4866  *
4867  * This function will do some initial scheduler statistics housekeeping
4868  * that must be done for every newly created context, then puts the task
4869  * on the runqueue and wakes it.
4870  */
wake_up_new_task(struct task_struct * p)4871 void wake_up_new_task(struct task_struct *p)
4872 {
4873 	struct rq_flags rf;
4874 	struct rq *rq;
4875 	int wake_flags = WF_FORK;
4876 
4877 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4878 	WRITE_ONCE(p->__state, TASK_RUNNING);
4879 #ifdef CONFIG_SMP
4880 	/*
4881 	 * Fork balancing, do it here and not earlier because:
4882 	 *  - cpus_ptr can change in the fork path
4883 	 *  - any previously selected CPU might disappear through hotplug
4884 	 *
4885 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4886 	 * as we're not fully set-up yet.
4887 	 */
4888 	p->recent_used_cpu = task_cpu(p);
4889 	rseq_migrate(p);
4890 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4891 #endif
4892 	rq = __task_rq_lock(p, &rf);
4893 	update_rq_clock(rq);
4894 	post_init_entity_util_avg(p);
4895 
4896 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4897 	trace_sched_wakeup_new(p);
4898 	wakeup_preempt(rq, p, wake_flags);
4899 #ifdef CONFIG_SMP
4900 	if (p->sched_class->task_woken) {
4901 		/*
4902 		 * Nothing relies on rq->lock after this, so it's fine to
4903 		 * drop it.
4904 		 */
4905 		rq_unpin_lock(rq, &rf);
4906 		p->sched_class->task_woken(rq, p);
4907 		rq_repin_lock(rq, &rf);
4908 	}
4909 #endif
4910 	task_rq_unlock(rq, p, &rf);
4911 }
4912 
4913 #ifdef CONFIG_PREEMPT_NOTIFIERS
4914 
4915 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4916 
preempt_notifier_inc(void)4917 void preempt_notifier_inc(void)
4918 {
4919 	static_branch_inc(&preempt_notifier_key);
4920 }
4921 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4922 
preempt_notifier_dec(void)4923 void preempt_notifier_dec(void)
4924 {
4925 	static_branch_dec(&preempt_notifier_key);
4926 }
4927 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4928 
4929 /**
4930  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4931  * @notifier: notifier struct to register
4932  */
preempt_notifier_register(struct preempt_notifier * notifier)4933 void preempt_notifier_register(struct preempt_notifier *notifier)
4934 {
4935 	if (!static_branch_unlikely(&preempt_notifier_key))
4936 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4937 
4938 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4939 }
4940 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4941 
4942 /**
4943  * preempt_notifier_unregister - no longer interested in preemption notifications
4944  * @notifier: notifier struct to unregister
4945  *
4946  * This is *not* safe to call from within a preemption notifier.
4947  */
preempt_notifier_unregister(struct preempt_notifier * notifier)4948 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4949 {
4950 	hlist_del(&notifier->link);
4951 }
4952 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4953 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4954 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4955 {
4956 	struct preempt_notifier *notifier;
4957 
4958 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4959 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4960 }
4961 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4962 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4963 {
4964 	if (static_branch_unlikely(&preempt_notifier_key))
4965 		__fire_sched_in_preempt_notifiers(curr);
4966 }
4967 
4968 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4969 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4970 				   struct task_struct *next)
4971 {
4972 	struct preempt_notifier *notifier;
4973 
4974 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4975 		notifier->ops->sched_out(notifier, next);
4976 }
4977 
4978 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4979 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4980 				 struct task_struct *next)
4981 {
4982 	if (static_branch_unlikely(&preempt_notifier_key))
4983 		__fire_sched_out_preempt_notifiers(curr, next);
4984 }
4985 
4986 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4987 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4988 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4989 {
4990 }
4991 
4992 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4993 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4994 				 struct task_struct *next)
4995 {
4996 }
4997 
4998 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4999 
prepare_task(struct task_struct * next)5000 static inline void prepare_task(struct task_struct *next)
5001 {
5002 #ifdef CONFIG_SMP
5003 	/*
5004 	 * Claim the task as running, we do this before switching to it
5005 	 * such that any running task will have this set.
5006 	 *
5007 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5008 	 * its ordering comment.
5009 	 */
5010 	WRITE_ONCE(next->on_cpu, 1);
5011 #endif
5012 }
5013 
finish_task(struct task_struct * prev)5014 static inline void finish_task(struct task_struct *prev)
5015 {
5016 #ifdef CONFIG_SMP
5017 	/*
5018 	 * This must be the very last reference to @prev from this CPU. After
5019 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5020 	 * must ensure this doesn't happen until the switch is completely
5021 	 * finished.
5022 	 *
5023 	 * In particular, the load of prev->state in finish_task_switch() must
5024 	 * happen before this.
5025 	 *
5026 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5027 	 */
5028 	smp_store_release(&prev->on_cpu, 0);
5029 #endif
5030 }
5031 
5032 #ifdef CONFIG_SMP
5033 
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5034 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5035 {
5036 	void (*func)(struct rq *rq);
5037 	struct balance_callback *next;
5038 
5039 	lockdep_assert_rq_held(rq);
5040 
5041 	while (head) {
5042 		func = (void (*)(struct rq *))head->func;
5043 		next = head->next;
5044 		head->next = NULL;
5045 		head = next;
5046 
5047 		func(rq);
5048 	}
5049 }
5050 
5051 static void balance_push(struct rq *rq);
5052 
5053 /*
5054  * balance_push_callback is a right abuse of the callback interface and plays
5055  * by significantly different rules.
5056  *
5057  * Where the normal balance_callback's purpose is to be ran in the same context
5058  * that queued it (only later, when it's safe to drop rq->lock again),
5059  * balance_push_callback is specifically targeted at __schedule().
5060  *
5061  * This abuse is tolerated because it places all the unlikely/odd cases behind
5062  * a single test, namely: rq->balance_callback == NULL.
5063  */
5064 struct balance_callback balance_push_callback = {
5065 	.next = NULL,
5066 	.func = balance_push,
5067 };
5068 
5069 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5070 __splice_balance_callbacks(struct rq *rq, bool split)
5071 {
5072 	struct balance_callback *head = rq->balance_callback;
5073 
5074 	if (likely(!head))
5075 		return NULL;
5076 
5077 	lockdep_assert_rq_held(rq);
5078 	/*
5079 	 * Must not take balance_push_callback off the list when
5080 	 * splice_balance_callbacks() and balance_callbacks() are not
5081 	 * in the same rq->lock section.
5082 	 *
5083 	 * In that case it would be possible for __schedule() to interleave
5084 	 * and observe the list empty.
5085 	 */
5086 	if (split && head == &balance_push_callback)
5087 		head = NULL;
5088 	else
5089 		rq->balance_callback = NULL;
5090 
5091 	return head;
5092 }
5093 
splice_balance_callbacks(struct rq * rq)5094 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5095 {
5096 	return __splice_balance_callbacks(rq, true);
5097 }
5098 
__balance_callbacks(struct rq * rq)5099 static void __balance_callbacks(struct rq *rq)
5100 {
5101 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5102 }
5103 
balance_callbacks(struct rq * rq,struct balance_callback * head)5104 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5105 {
5106 	unsigned long flags;
5107 
5108 	if (unlikely(head)) {
5109 		raw_spin_rq_lock_irqsave(rq, flags);
5110 		do_balance_callbacks(rq, head);
5111 		raw_spin_rq_unlock_irqrestore(rq, flags);
5112 	}
5113 }
5114 
5115 #else
5116 
__balance_callbacks(struct rq * rq)5117 static inline void __balance_callbacks(struct rq *rq)
5118 {
5119 }
5120 
5121 #endif
5122 
5123 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5124 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5125 {
5126 	/*
5127 	 * Since the runqueue lock will be released by the next
5128 	 * task (which is an invalid locking op but in the case
5129 	 * of the scheduler it's an obvious special-case), so we
5130 	 * do an early lockdep release here:
5131 	 */
5132 	rq_unpin_lock(rq, rf);
5133 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5134 #ifdef CONFIG_DEBUG_SPINLOCK
5135 	/* this is a valid case when another task releases the spinlock */
5136 	rq_lockp(rq)->owner = next;
5137 #endif
5138 }
5139 
finish_lock_switch(struct rq * rq)5140 static inline void finish_lock_switch(struct rq *rq)
5141 {
5142 	/*
5143 	 * If we are tracking spinlock dependencies then we have to
5144 	 * fix up the runqueue lock - which gets 'carried over' from
5145 	 * prev into current:
5146 	 */
5147 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5148 	__balance_callbacks(rq);
5149 	raw_spin_rq_unlock_irq(rq);
5150 }
5151 
5152 /*
5153  * NOP if the arch has not defined these:
5154  */
5155 
5156 #ifndef prepare_arch_switch
5157 # define prepare_arch_switch(next)	do { } while (0)
5158 #endif
5159 
5160 #ifndef finish_arch_post_lock_switch
5161 # define finish_arch_post_lock_switch()	do { } while (0)
5162 #endif
5163 
kmap_local_sched_out(void)5164 static inline void kmap_local_sched_out(void)
5165 {
5166 #ifdef CONFIG_KMAP_LOCAL
5167 	if (unlikely(current->kmap_ctrl.idx))
5168 		__kmap_local_sched_out();
5169 #endif
5170 }
5171 
kmap_local_sched_in(void)5172 static inline void kmap_local_sched_in(void)
5173 {
5174 #ifdef CONFIG_KMAP_LOCAL
5175 	if (unlikely(current->kmap_ctrl.idx))
5176 		__kmap_local_sched_in();
5177 #endif
5178 }
5179 
5180 /**
5181  * prepare_task_switch - prepare to switch tasks
5182  * @rq: the runqueue preparing to switch
5183  * @prev: the current task that is being switched out
5184  * @next: the task we are going to switch to.
5185  *
5186  * This is called with the rq lock held and interrupts off. It must
5187  * be paired with a subsequent finish_task_switch after the context
5188  * switch.
5189  *
5190  * prepare_task_switch sets up locking and calls architecture specific
5191  * hooks.
5192  */
5193 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5194 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5195 		    struct task_struct *next)
5196 {
5197 	kcov_prepare_switch(prev);
5198 	sched_info_switch(rq, prev, next);
5199 	perf_event_task_sched_out(prev, next);
5200 	rseq_preempt(prev);
5201 	fire_sched_out_preempt_notifiers(prev, next);
5202 	kmap_local_sched_out();
5203 	prepare_task(next);
5204 	prepare_arch_switch(next);
5205 }
5206 
5207 /**
5208  * finish_task_switch - clean up after a task-switch
5209  * @prev: the thread we just switched away from.
5210  *
5211  * finish_task_switch must be called after the context switch, paired
5212  * with a prepare_task_switch call before the context switch.
5213  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5214  * and do any other architecture-specific cleanup actions.
5215  *
5216  * Note that we may have delayed dropping an mm in context_switch(). If
5217  * so, we finish that here outside of the runqueue lock. (Doing it
5218  * with the lock held can cause deadlocks; see schedule() for
5219  * details.)
5220  *
5221  * The context switch have flipped the stack from under us and restored the
5222  * local variables which were saved when this task called schedule() in the
5223  * past. 'prev == current' is still correct but we need to recalculate this_rq
5224  * because prev may have moved to another CPU.
5225  */
finish_task_switch(struct task_struct * prev)5226 static struct rq *finish_task_switch(struct task_struct *prev)
5227 	__releases(rq->lock)
5228 {
5229 	struct rq *rq = this_rq();
5230 	struct mm_struct *mm = rq->prev_mm;
5231 	unsigned int prev_state;
5232 
5233 	/*
5234 	 * The previous task will have left us with a preempt_count of 2
5235 	 * because it left us after:
5236 	 *
5237 	 *	schedule()
5238 	 *	  preempt_disable();			// 1
5239 	 *	  __schedule()
5240 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5241 	 *
5242 	 * Also, see FORK_PREEMPT_COUNT.
5243 	 */
5244 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5245 		      "corrupted preempt_count: %s/%d/0x%x\n",
5246 		      current->comm, current->pid, preempt_count()))
5247 		preempt_count_set(FORK_PREEMPT_COUNT);
5248 
5249 	rq->prev_mm = NULL;
5250 
5251 	/*
5252 	 * A task struct has one reference for the use as "current".
5253 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5254 	 * schedule one last time. The schedule call will never return, and
5255 	 * the scheduled task must drop that reference.
5256 	 *
5257 	 * We must observe prev->state before clearing prev->on_cpu (in
5258 	 * finish_task), otherwise a concurrent wakeup can get prev
5259 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5260 	 * transition, resulting in a double drop.
5261 	 */
5262 	prev_state = READ_ONCE(prev->__state);
5263 	vtime_task_switch(prev);
5264 	perf_event_task_sched_in(prev, current);
5265 	finish_task(prev);
5266 	tick_nohz_task_switch();
5267 	finish_lock_switch(rq);
5268 	finish_arch_post_lock_switch();
5269 	kcov_finish_switch(current);
5270 	/*
5271 	 * kmap_local_sched_out() is invoked with rq::lock held and
5272 	 * interrupts disabled. There is no requirement for that, but the
5273 	 * sched out code does not have an interrupt enabled section.
5274 	 * Restoring the maps on sched in does not require interrupts being
5275 	 * disabled either.
5276 	 */
5277 	kmap_local_sched_in();
5278 
5279 	fire_sched_in_preempt_notifiers(current);
5280 	/*
5281 	 * When switching through a kernel thread, the loop in
5282 	 * membarrier_{private,global}_expedited() may have observed that
5283 	 * kernel thread and not issued an IPI. It is therefore possible to
5284 	 * schedule between user->kernel->user threads without passing though
5285 	 * switch_mm(). Membarrier requires a barrier after storing to
5286 	 * rq->curr, before returning to userspace, so provide them here:
5287 	 *
5288 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5289 	 *   provided by mmdrop_lazy_tlb(),
5290 	 * - a sync_core for SYNC_CORE.
5291 	 */
5292 	if (mm) {
5293 		membarrier_mm_sync_core_before_usermode(mm);
5294 		mmdrop_lazy_tlb_sched(mm);
5295 	}
5296 
5297 	if (unlikely(prev_state == TASK_DEAD)) {
5298 		if (prev->sched_class->task_dead)
5299 			prev->sched_class->task_dead(prev);
5300 
5301 		/* Task is done with its stack. */
5302 		put_task_stack(prev);
5303 
5304 		put_task_struct_rcu_user(prev);
5305 	}
5306 
5307 	return rq;
5308 }
5309 
5310 /**
5311  * schedule_tail - first thing a freshly forked thread must call.
5312  * @prev: the thread we just switched away from.
5313  */
schedule_tail(struct task_struct * prev)5314 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5315 	__releases(rq->lock)
5316 {
5317 	/*
5318 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5319 	 * finish_task_switch() for details.
5320 	 *
5321 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5322 	 * and the preempt_enable() will end up enabling preemption (on
5323 	 * PREEMPT_COUNT kernels).
5324 	 */
5325 
5326 	finish_task_switch(prev);
5327 	/*
5328 	 * This is a special case: the newly created task has just
5329 	 * switched the context for the first time. It is returning from
5330 	 * schedule for the first time in this path.
5331 	 */
5332 	trace_sched_exit_tp(true, CALLER_ADDR0);
5333 	preempt_enable();
5334 
5335 	if (current->set_child_tid)
5336 		put_user(task_pid_vnr(current), current->set_child_tid);
5337 
5338 	calculate_sigpending();
5339 }
5340 
5341 /*
5342  * context_switch - switch to the new MM and the new thread's register state.
5343  */
5344 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5345 context_switch(struct rq *rq, struct task_struct *prev,
5346 	       struct task_struct *next, struct rq_flags *rf)
5347 {
5348 	prepare_task_switch(rq, prev, next);
5349 
5350 	/*
5351 	 * For paravirt, this is coupled with an exit in switch_to to
5352 	 * combine the page table reload and the switch backend into
5353 	 * one hypercall.
5354 	 */
5355 	arch_start_context_switch(prev);
5356 
5357 	/*
5358 	 * kernel -> kernel   lazy + transfer active
5359 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5360 	 *
5361 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5362 	 *   user ->   user   switch
5363 	 *
5364 	 * switch_mm_cid() needs to be updated if the barriers provided
5365 	 * by context_switch() are modified.
5366 	 */
5367 	if (!next->mm) {                                // to kernel
5368 		enter_lazy_tlb(prev->active_mm, next);
5369 
5370 		next->active_mm = prev->active_mm;
5371 		if (prev->mm)                           // from user
5372 			mmgrab_lazy_tlb(prev->active_mm);
5373 		else
5374 			prev->active_mm = NULL;
5375 	} else {                                        // to user
5376 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5377 		/*
5378 		 * sys_membarrier() requires an smp_mb() between setting
5379 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5380 		 *
5381 		 * The below provides this either through switch_mm(), or in
5382 		 * case 'prev->active_mm == next->mm' through
5383 		 * finish_task_switch()'s mmdrop().
5384 		 */
5385 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5386 		lru_gen_use_mm(next->mm);
5387 
5388 		if (!prev->mm) {                        // from kernel
5389 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5390 			rq->prev_mm = prev->active_mm;
5391 			prev->active_mm = NULL;
5392 		}
5393 	}
5394 
5395 	/* switch_mm_cid() requires the memory barriers above. */
5396 	switch_mm_cid(rq, prev, next);
5397 
5398 	prepare_lock_switch(rq, next, rf);
5399 
5400 	/* Here we just switch the register state and the stack. */
5401 	switch_to(prev, next, prev);
5402 	barrier();
5403 
5404 	return finish_task_switch(prev);
5405 }
5406 
5407 /*
5408  * nr_running and nr_context_switches:
5409  *
5410  * externally visible scheduler statistics: current number of runnable
5411  * threads, total number of context switches performed since bootup.
5412  */
nr_running(void)5413 unsigned int nr_running(void)
5414 {
5415 	unsigned int i, sum = 0;
5416 
5417 	for_each_online_cpu(i)
5418 		sum += cpu_rq(i)->nr_running;
5419 
5420 	return sum;
5421 }
5422 
5423 /*
5424  * Check if only the current task is running on the CPU.
5425  *
5426  * Caution: this function does not check that the caller has disabled
5427  * preemption, thus the result might have a time-of-check-to-time-of-use
5428  * race.  The caller is responsible to use it correctly, for example:
5429  *
5430  * - from a non-preemptible section (of course)
5431  *
5432  * - from a thread that is bound to a single CPU
5433  *
5434  * - in a loop with very short iterations (e.g. a polling loop)
5435  */
single_task_running(void)5436 bool single_task_running(void)
5437 {
5438 	return raw_rq()->nr_running == 1;
5439 }
5440 EXPORT_SYMBOL(single_task_running);
5441 
nr_context_switches_cpu(int cpu)5442 unsigned long long nr_context_switches_cpu(int cpu)
5443 {
5444 	return cpu_rq(cpu)->nr_switches;
5445 }
5446 
nr_context_switches(void)5447 unsigned long long nr_context_switches(void)
5448 {
5449 	int i;
5450 	unsigned long long sum = 0;
5451 
5452 	for_each_possible_cpu(i)
5453 		sum += cpu_rq(i)->nr_switches;
5454 
5455 	return sum;
5456 }
5457 
5458 /*
5459  * Consumers of these two interfaces, like for example the cpuidle menu
5460  * governor, are using nonsensical data. Preferring shallow idle state selection
5461  * for a CPU that has IO-wait which might not even end up running the task when
5462  * it does become runnable.
5463  */
5464 
nr_iowait_cpu(int cpu)5465 unsigned int nr_iowait_cpu(int cpu)
5466 {
5467 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5468 }
5469 
5470 /*
5471  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5472  *
5473  * The idea behind IO-wait account is to account the idle time that we could
5474  * have spend running if it were not for IO. That is, if we were to improve the
5475  * storage performance, we'd have a proportional reduction in IO-wait time.
5476  *
5477  * This all works nicely on UP, where, when a task blocks on IO, we account
5478  * idle time as IO-wait, because if the storage were faster, it could've been
5479  * running and we'd not be idle.
5480  *
5481  * This has been extended to SMP, by doing the same for each CPU. This however
5482  * is broken.
5483  *
5484  * Imagine for instance the case where two tasks block on one CPU, only the one
5485  * CPU will have IO-wait accounted, while the other has regular idle. Even
5486  * though, if the storage were faster, both could've ran at the same time,
5487  * utilising both CPUs.
5488  *
5489  * This means, that when looking globally, the current IO-wait accounting on
5490  * SMP is a lower bound, by reason of under accounting.
5491  *
5492  * Worse, since the numbers are provided per CPU, they are sometimes
5493  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5494  * associated with any one particular CPU, it can wake to another CPU than it
5495  * blocked on. This means the per CPU IO-wait number is meaningless.
5496  *
5497  * Task CPU affinities can make all that even more 'interesting'.
5498  */
5499 
nr_iowait(void)5500 unsigned int nr_iowait(void)
5501 {
5502 	unsigned int i, sum = 0;
5503 
5504 	for_each_possible_cpu(i)
5505 		sum += nr_iowait_cpu(i);
5506 
5507 	return sum;
5508 }
5509 
5510 #ifdef CONFIG_SMP
5511 
5512 /*
5513  * sched_exec - execve() is a valuable balancing opportunity, because at
5514  * this point the task has the smallest effective memory and cache footprint.
5515  */
sched_exec(void)5516 void sched_exec(void)
5517 {
5518 	struct task_struct *p = current;
5519 	struct migration_arg arg;
5520 	int dest_cpu;
5521 
5522 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5523 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5524 		if (dest_cpu == smp_processor_id())
5525 			return;
5526 
5527 		if (unlikely(!cpu_active(dest_cpu)))
5528 			return;
5529 
5530 		arg = (struct migration_arg){ p, dest_cpu };
5531 	}
5532 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5533 }
5534 
5535 #endif
5536 
5537 DEFINE_PER_CPU(struct kernel_stat, kstat);
5538 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5539 
5540 EXPORT_PER_CPU_SYMBOL(kstat);
5541 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5542 
5543 /*
5544  * The function fair_sched_class.update_curr accesses the struct curr
5545  * and its field curr->exec_start; when called from task_sched_runtime(),
5546  * we observe a high rate of cache misses in practice.
5547  * Prefetching this data results in improved performance.
5548  */
prefetch_curr_exec_start(struct task_struct * p)5549 static inline void prefetch_curr_exec_start(struct task_struct *p)
5550 {
5551 #ifdef CONFIG_FAIR_GROUP_SCHED
5552 	struct sched_entity *curr = p->se.cfs_rq->curr;
5553 #else
5554 	struct sched_entity *curr = task_rq(p)->cfs.curr;
5555 #endif
5556 	prefetch(curr);
5557 	prefetch(&curr->exec_start);
5558 }
5559 
5560 /*
5561  * Return accounted runtime for the task.
5562  * In case the task is currently running, return the runtime plus current's
5563  * pending runtime that have not been accounted yet.
5564  */
task_sched_runtime(struct task_struct * p)5565 unsigned long long task_sched_runtime(struct task_struct *p)
5566 {
5567 	struct rq_flags rf;
5568 	struct rq *rq;
5569 	u64 ns;
5570 
5571 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5572 	/*
5573 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5574 	 * So we have a optimization chance when the task's delta_exec is 0.
5575 	 * Reading ->on_cpu is racy, but this is OK.
5576 	 *
5577 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5578 	 * If we race with it entering CPU, unaccounted time is 0. This is
5579 	 * indistinguishable from the read occurring a few cycles earlier.
5580 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5581 	 * been accounted, so we're correct here as well.
5582 	 */
5583 	if (!p->on_cpu || !task_on_rq_queued(p))
5584 		return p->se.sum_exec_runtime;
5585 #endif
5586 
5587 	rq = task_rq_lock(p, &rf);
5588 	/*
5589 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5590 	 * project cycles that may never be accounted to this
5591 	 * thread, breaking clock_gettime().
5592 	 */
5593 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5594 		prefetch_curr_exec_start(p);
5595 		update_rq_clock(rq);
5596 		p->sched_class->update_curr(rq);
5597 	}
5598 	ns = p->se.sum_exec_runtime;
5599 	task_rq_unlock(rq, p, &rf);
5600 
5601 	return ns;
5602 }
5603 
cpu_resched_latency(struct rq * rq)5604 static u64 cpu_resched_latency(struct rq *rq)
5605 {
5606 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5607 	u64 resched_latency, now = rq_clock(rq);
5608 	static bool warned_once;
5609 
5610 	if (sysctl_resched_latency_warn_once && warned_once)
5611 		return 0;
5612 
5613 	if (!need_resched() || !latency_warn_ms)
5614 		return 0;
5615 
5616 	if (system_state == SYSTEM_BOOTING)
5617 		return 0;
5618 
5619 	if (!rq->last_seen_need_resched_ns) {
5620 		rq->last_seen_need_resched_ns = now;
5621 		rq->ticks_without_resched = 0;
5622 		return 0;
5623 	}
5624 
5625 	rq->ticks_without_resched++;
5626 	resched_latency = now - rq->last_seen_need_resched_ns;
5627 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5628 		return 0;
5629 
5630 	warned_once = true;
5631 
5632 	return resched_latency;
5633 }
5634 
setup_resched_latency_warn_ms(char * str)5635 static int __init setup_resched_latency_warn_ms(char *str)
5636 {
5637 	long val;
5638 
5639 	if ((kstrtol(str, 0, &val))) {
5640 		pr_warn("Unable to set resched_latency_warn_ms\n");
5641 		return 1;
5642 	}
5643 
5644 	sysctl_resched_latency_warn_ms = val;
5645 	return 1;
5646 }
5647 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5648 
5649 /*
5650  * This function gets called by the timer code, with HZ frequency.
5651  * We call it with interrupts disabled.
5652  */
sched_tick(void)5653 void sched_tick(void)
5654 {
5655 	int cpu = smp_processor_id();
5656 	struct rq *rq = cpu_rq(cpu);
5657 	/* accounting goes to the donor task */
5658 	struct task_struct *donor;
5659 	struct rq_flags rf;
5660 	unsigned long hw_pressure;
5661 	u64 resched_latency;
5662 
5663 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5664 		arch_scale_freq_tick();
5665 
5666 	sched_clock_tick();
5667 
5668 	rq_lock(rq, &rf);
5669 	donor = rq->donor;
5670 
5671 	psi_account_irqtime(rq, donor, NULL);
5672 
5673 	update_rq_clock(rq);
5674 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5675 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5676 
5677 	if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5678 		resched_curr(rq);
5679 
5680 	donor->sched_class->task_tick(rq, donor, 0);
5681 	if (sched_feat(LATENCY_WARN))
5682 		resched_latency = cpu_resched_latency(rq);
5683 	calc_global_load_tick(rq);
5684 	sched_core_tick(rq);
5685 	task_tick_mm_cid(rq, donor);
5686 	scx_tick(rq);
5687 
5688 	rq_unlock(rq, &rf);
5689 
5690 	if (sched_feat(LATENCY_WARN) && resched_latency)
5691 		resched_latency_warn(cpu, resched_latency);
5692 
5693 	perf_event_task_tick();
5694 
5695 	if (donor->flags & PF_WQ_WORKER)
5696 		wq_worker_tick(donor);
5697 
5698 #ifdef CONFIG_SMP
5699 	if (!scx_switched_all()) {
5700 		rq->idle_balance = idle_cpu(cpu);
5701 		sched_balance_trigger(rq);
5702 	}
5703 #endif
5704 }
5705 
5706 #ifdef CONFIG_NO_HZ_FULL
5707 
5708 struct tick_work {
5709 	int			cpu;
5710 	atomic_t		state;
5711 	struct delayed_work	work;
5712 };
5713 /* Values for ->state, see diagram below. */
5714 #define TICK_SCHED_REMOTE_OFFLINE	0
5715 #define TICK_SCHED_REMOTE_OFFLINING	1
5716 #define TICK_SCHED_REMOTE_RUNNING	2
5717 
5718 /*
5719  * State diagram for ->state:
5720  *
5721  *
5722  *          TICK_SCHED_REMOTE_OFFLINE
5723  *                    |   ^
5724  *                    |   |
5725  *                    |   | sched_tick_remote()
5726  *                    |   |
5727  *                    |   |
5728  *                    +--TICK_SCHED_REMOTE_OFFLINING
5729  *                    |   ^
5730  *                    |   |
5731  * sched_tick_start() |   | sched_tick_stop()
5732  *                    |   |
5733  *                    V   |
5734  *          TICK_SCHED_REMOTE_RUNNING
5735  *
5736  *
5737  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5738  * and sched_tick_start() are happy to leave the state in RUNNING.
5739  */
5740 
5741 static struct tick_work __percpu *tick_work_cpu;
5742 
sched_tick_remote(struct work_struct * work)5743 static void sched_tick_remote(struct work_struct *work)
5744 {
5745 	struct delayed_work *dwork = to_delayed_work(work);
5746 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5747 	int cpu = twork->cpu;
5748 	struct rq *rq = cpu_rq(cpu);
5749 	int os;
5750 
5751 	/*
5752 	 * Handle the tick only if it appears the remote CPU is running in full
5753 	 * dynticks mode. The check is racy by nature, but missing a tick or
5754 	 * having one too much is no big deal because the scheduler tick updates
5755 	 * statistics and checks timeslices in a time-independent way, regardless
5756 	 * of when exactly it is running.
5757 	 */
5758 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5759 		guard(rq_lock_irq)(rq);
5760 		struct task_struct *curr = rq->curr;
5761 
5762 		if (cpu_online(cpu)) {
5763 			/*
5764 			 * Since this is a remote tick for full dynticks mode,
5765 			 * we are always sure that there is no proxy (only a
5766 			 * single task is running).
5767 			 */
5768 			WARN_ON_ONCE(rq->curr != rq->donor);
5769 			update_rq_clock(rq);
5770 
5771 			if (!is_idle_task(curr)) {
5772 				/*
5773 				 * Make sure the next tick runs within a
5774 				 * reasonable amount of time.
5775 				 */
5776 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5777 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5778 			}
5779 			curr->sched_class->task_tick(rq, curr, 0);
5780 
5781 			calc_load_nohz_remote(rq);
5782 		}
5783 	}
5784 
5785 	/*
5786 	 * Run the remote tick once per second (1Hz). This arbitrary
5787 	 * frequency is large enough to avoid overload but short enough
5788 	 * to keep scheduler internal stats reasonably up to date.  But
5789 	 * first update state to reflect hotplug activity if required.
5790 	 */
5791 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5792 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5793 	if (os == TICK_SCHED_REMOTE_RUNNING)
5794 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5795 }
5796 
sched_tick_start(int cpu)5797 static void sched_tick_start(int cpu)
5798 {
5799 	int os;
5800 	struct tick_work *twork;
5801 
5802 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5803 		return;
5804 
5805 	WARN_ON_ONCE(!tick_work_cpu);
5806 
5807 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5808 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5809 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5810 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5811 		twork->cpu = cpu;
5812 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5813 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5814 	}
5815 }
5816 
5817 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5818 static void sched_tick_stop(int cpu)
5819 {
5820 	struct tick_work *twork;
5821 	int os;
5822 
5823 	if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5824 		return;
5825 
5826 	WARN_ON_ONCE(!tick_work_cpu);
5827 
5828 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5829 	/* There cannot be competing actions, but don't rely on stop-machine. */
5830 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5831 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5832 	/* Don't cancel, as this would mess up the state machine. */
5833 }
5834 #endif /* CONFIG_HOTPLUG_CPU */
5835 
sched_tick_offload_init(void)5836 int __init sched_tick_offload_init(void)
5837 {
5838 	tick_work_cpu = alloc_percpu(struct tick_work);
5839 	BUG_ON(!tick_work_cpu);
5840 	return 0;
5841 }
5842 
5843 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5844 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5845 static inline void sched_tick_stop(int cpu) { }
5846 #endif
5847 
5848 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5849 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5850 /*
5851  * If the value passed in is equal to the current preempt count
5852  * then we just disabled preemption. Start timing the latency.
5853  */
preempt_latency_start(int val)5854 static inline void preempt_latency_start(int val)
5855 {
5856 	if (preempt_count() == val) {
5857 		unsigned long ip = get_lock_parent_ip();
5858 #ifdef CONFIG_DEBUG_PREEMPT
5859 		current->preempt_disable_ip = ip;
5860 #endif
5861 		trace_preempt_off(CALLER_ADDR0, ip);
5862 	}
5863 }
5864 
preempt_count_add(int val)5865 void preempt_count_add(int val)
5866 {
5867 #ifdef CONFIG_DEBUG_PREEMPT
5868 	/*
5869 	 * Underflow?
5870 	 */
5871 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5872 		return;
5873 #endif
5874 	__preempt_count_add(val);
5875 #ifdef CONFIG_DEBUG_PREEMPT
5876 	/*
5877 	 * Spinlock count overflowing soon?
5878 	 */
5879 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5880 				PREEMPT_MASK - 10);
5881 #endif
5882 	preempt_latency_start(val);
5883 }
5884 EXPORT_SYMBOL(preempt_count_add);
5885 NOKPROBE_SYMBOL(preempt_count_add);
5886 
5887 /*
5888  * If the value passed in equals to the current preempt count
5889  * then we just enabled preemption. Stop timing the latency.
5890  */
preempt_latency_stop(int val)5891 static inline void preempt_latency_stop(int val)
5892 {
5893 	if (preempt_count() == val)
5894 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5895 }
5896 
preempt_count_sub(int val)5897 void preempt_count_sub(int val)
5898 {
5899 #ifdef CONFIG_DEBUG_PREEMPT
5900 	/*
5901 	 * Underflow?
5902 	 */
5903 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5904 		return;
5905 	/*
5906 	 * Is the spinlock portion underflowing?
5907 	 */
5908 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5909 			!(preempt_count() & PREEMPT_MASK)))
5910 		return;
5911 #endif
5912 
5913 	preempt_latency_stop(val);
5914 	__preempt_count_sub(val);
5915 }
5916 EXPORT_SYMBOL(preempt_count_sub);
5917 NOKPROBE_SYMBOL(preempt_count_sub);
5918 
5919 #else
preempt_latency_start(int val)5920 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5921 static inline void preempt_latency_stop(int val) { }
5922 #endif
5923 
get_preempt_disable_ip(struct task_struct * p)5924 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5925 {
5926 #ifdef CONFIG_DEBUG_PREEMPT
5927 	return p->preempt_disable_ip;
5928 #else
5929 	return 0;
5930 #endif
5931 }
5932 
5933 /*
5934  * Print scheduling while atomic bug:
5935  */
__schedule_bug(struct task_struct * prev)5936 static noinline void __schedule_bug(struct task_struct *prev)
5937 {
5938 	/* Save this before calling printk(), since that will clobber it */
5939 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5940 
5941 	if (oops_in_progress)
5942 		return;
5943 
5944 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5945 		prev->comm, prev->pid, preempt_count());
5946 
5947 	debug_show_held_locks(prev);
5948 	print_modules();
5949 	if (irqs_disabled())
5950 		print_irqtrace_events(prev);
5951 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5952 		pr_err("Preemption disabled at:");
5953 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5954 	}
5955 	check_panic_on_warn("scheduling while atomic");
5956 
5957 	dump_stack();
5958 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5959 }
5960 
5961 /*
5962  * Various schedule()-time debugging checks and statistics:
5963  */
schedule_debug(struct task_struct * prev,bool preempt)5964 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5965 {
5966 #ifdef CONFIG_SCHED_STACK_END_CHECK
5967 	if (task_stack_end_corrupted(prev))
5968 		panic("corrupted stack end detected inside scheduler\n");
5969 
5970 	if (task_scs_end_corrupted(prev))
5971 		panic("corrupted shadow stack detected inside scheduler\n");
5972 #endif
5973 
5974 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5975 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5976 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5977 			prev->comm, prev->pid, prev->non_block_count);
5978 		dump_stack();
5979 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5980 	}
5981 #endif
5982 
5983 	if (unlikely(in_atomic_preempt_off())) {
5984 		__schedule_bug(prev);
5985 		preempt_count_set(PREEMPT_DISABLED);
5986 	}
5987 	rcu_sleep_check();
5988 	WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5989 
5990 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5991 
5992 	schedstat_inc(this_rq()->sched_count);
5993 }
5994 
prev_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5995 static void prev_balance(struct rq *rq, struct task_struct *prev,
5996 			 struct rq_flags *rf)
5997 {
5998 	const struct sched_class *start_class = prev->sched_class;
5999 	const struct sched_class *class;
6000 
6001 #ifdef CONFIG_SCHED_CLASS_EXT
6002 	/*
6003 	 * SCX requires a balance() call before every pick_task() including when
6004 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
6005 	 * SCX instead. Also, set a flag to detect missing balance() call.
6006 	 */
6007 	if (scx_enabled()) {
6008 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
6009 		if (sched_class_above(&ext_sched_class, start_class))
6010 			start_class = &ext_sched_class;
6011 	}
6012 #endif
6013 
6014 	/*
6015 	 * We must do the balancing pass before put_prev_task(), such
6016 	 * that when we release the rq->lock the task is in the same
6017 	 * state as before we took rq->lock.
6018 	 *
6019 	 * We can terminate the balance pass as soon as we know there is
6020 	 * a runnable task of @class priority or higher.
6021 	 */
6022 	for_active_class_range(class, start_class, &idle_sched_class) {
6023 		if (class->balance && class->balance(rq, prev, rf))
6024 			break;
6025 	}
6026 }
6027 
6028 /*
6029  * Pick up the highest-prio task:
6030  */
6031 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6032 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6033 {
6034 	const struct sched_class *class;
6035 	struct task_struct *p;
6036 
6037 	rq->dl_server = NULL;
6038 
6039 	if (scx_enabled())
6040 		goto restart;
6041 
6042 	/*
6043 	 * Optimization: we know that if all tasks are in the fair class we can
6044 	 * call that function directly, but only if the @prev task wasn't of a
6045 	 * higher scheduling class, because otherwise those lose the
6046 	 * opportunity to pull in more work from other CPUs.
6047 	 */
6048 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6049 		   rq->nr_running == rq->cfs.h_nr_queued)) {
6050 
6051 		p = pick_next_task_fair(rq, prev, rf);
6052 		if (unlikely(p == RETRY_TASK))
6053 			goto restart;
6054 
6055 		/* Assume the next prioritized class is idle_sched_class */
6056 		if (!p) {
6057 			p = pick_task_idle(rq);
6058 			put_prev_set_next_task(rq, prev, p);
6059 		}
6060 
6061 		return p;
6062 	}
6063 
6064 restart:
6065 	prev_balance(rq, prev, rf);
6066 
6067 	for_each_active_class(class) {
6068 		if (class->pick_next_task) {
6069 			p = class->pick_next_task(rq, prev);
6070 			if (p)
6071 				return p;
6072 		} else {
6073 			p = class->pick_task(rq);
6074 			if (p) {
6075 				put_prev_set_next_task(rq, prev, p);
6076 				return p;
6077 			}
6078 		}
6079 	}
6080 
6081 	BUG(); /* The idle class should always have a runnable task. */
6082 }
6083 
6084 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6085 static inline bool is_task_rq_idle(struct task_struct *t)
6086 {
6087 	return (task_rq(t)->idle == t);
6088 }
6089 
cookie_equals(struct task_struct * a,unsigned long cookie)6090 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6091 {
6092 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6093 }
6094 
cookie_match(struct task_struct * a,struct task_struct * b)6095 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6096 {
6097 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6098 		return true;
6099 
6100 	return a->core_cookie == b->core_cookie;
6101 }
6102 
pick_task(struct rq * rq)6103 static inline struct task_struct *pick_task(struct rq *rq)
6104 {
6105 	const struct sched_class *class;
6106 	struct task_struct *p;
6107 
6108 	rq->dl_server = NULL;
6109 
6110 	for_each_active_class(class) {
6111 		p = class->pick_task(rq);
6112 		if (p)
6113 			return p;
6114 	}
6115 
6116 	BUG(); /* The idle class should always have a runnable task. */
6117 }
6118 
6119 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6120 
6121 static void queue_core_balance(struct rq *rq);
6122 
6123 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6124 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6125 {
6126 	struct task_struct *next, *p, *max = NULL;
6127 	const struct cpumask *smt_mask;
6128 	bool fi_before = false;
6129 	bool core_clock_updated = (rq == rq->core);
6130 	unsigned long cookie;
6131 	int i, cpu, occ = 0;
6132 	struct rq *rq_i;
6133 	bool need_sync;
6134 
6135 	if (!sched_core_enabled(rq))
6136 		return __pick_next_task(rq, prev, rf);
6137 
6138 	cpu = cpu_of(rq);
6139 
6140 	/* Stopper task is switching into idle, no need core-wide selection. */
6141 	if (cpu_is_offline(cpu)) {
6142 		/*
6143 		 * Reset core_pick so that we don't enter the fastpath when
6144 		 * coming online. core_pick would already be migrated to
6145 		 * another cpu during offline.
6146 		 */
6147 		rq->core_pick = NULL;
6148 		rq->core_dl_server = NULL;
6149 		return __pick_next_task(rq, prev, rf);
6150 	}
6151 
6152 	/*
6153 	 * If there were no {en,de}queues since we picked (IOW, the task
6154 	 * pointers are all still valid), and we haven't scheduled the last
6155 	 * pick yet, do so now.
6156 	 *
6157 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6158 	 * it was either offline or went offline during a sibling's core-wide
6159 	 * selection. In this case, do a core-wide selection.
6160 	 */
6161 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6162 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6163 	    rq->core_pick) {
6164 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6165 
6166 		next = rq->core_pick;
6167 		rq->dl_server = rq->core_dl_server;
6168 		rq->core_pick = NULL;
6169 		rq->core_dl_server = NULL;
6170 		goto out_set_next;
6171 	}
6172 
6173 	prev_balance(rq, prev, rf);
6174 
6175 	smt_mask = cpu_smt_mask(cpu);
6176 	need_sync = !!rq->core->core_cookie;
6177 
6178 	/* reset state */
6179 	rq->core->core_cookie = 0UL;
6180 	if (rq->core->core_forceidle_count) {
6181 		if (!core_clock_updated) {
6182 			update_rq_clock(rq->core);
6183 			core_clock_updated = true;
6184 		}
6185 		sched_core_account_forceidle(rq);
6186 		/* reset after accounting force idle */
6187 		rq->core->core_forceidle_start = 0;
6188 		rq->core->core_forceidle_count = 0;
6189 		rq->core->core_forceidle_occupation = 0;
6190 		need_sync = true;
6191 		fi_before = true;
6192 	}
6193 
6194 	/*
6195 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6196 	 *
6197 	 * @task_seq guards the task state ({en,de}queues)
6198 	 * @pick_seq is the @task_seq we did a selection on
6199 	 * @sched_seq is the @pick_seq we scheduled
6200 	 *
6201 	 * However, preemptions can cause multiple picks on the same task set.
6202 	 * 'Fix' this by also increasing @task_seq for every pick.
6203 	 */
6204 	rq->core->core_task_seq++;
6205 
6206 	/*
6207 	 * Optimize for common case where this CPU has no cookies
6208 	 * and there are no cookied tasks running on siblings.
6209 	 */
6210 	if (!need_sync) {
6211 		next = pick_task(rq);
6212 		if (!next->core_cookie) {
6213 			rq->core_pick = NULL;
6214 			rq->core_dl_server = NULL;
6215 			/*
6216 			 * For robustness, update the min_vruntime_fi for
6217 			 * unconstrained picks as well.
6218 			 */
6219 			WARN_ON_ONCE(fi_before);
6220 			task_vruntime_update(rq, next, false);
6221 			goto out_set_next;
6222 		}
6223 	}
6224 
6225 	/*
6226 	 * For each thread: do the regular task pick and find the max prio task
6227 	 * amongst them.
6228 	 *
6229 	 * Tie-break prio towards the current CPU
6230 	 */
6231 	for_each_cpu_wrap(i, smt_mask, cpu) {
6232 		rq_i = cpu_rq(i);
6233 
6234 		/*
6235 		 * Current cpu always has its clock updated on entrance to
6236 		 * pick_next_task(). If the current cpu is not the core,
6237 		 * the core may also have been updated above.
6238 		 */
6239 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6240 			update_rq_clock(rq_i);
6241 
6242 		rq_i->core_pick = p = pick_task(rq_i);
6243 		rq_i->core_dl_server = rq_i->dl_server;
6244 
6245 		if (!max || prio_less(max, p, fi_before))
6246 			max = p;
6247 	}
6248 
6249 	cookie = rq->core->core_cookie = max->core_cookie;
6250 
6251 	/*
6252 	 * For each thread: try and find a runnable task that matches @max or
6253 	 * force idle.
6254 	 */
6255 	for_each_cpu(i, smt_mask) {
6256 		rq_i = cpu_rq(i);
6257 		p = rq_i->core_pick;
6258 
6259 		if (!cookie_equals(p, cookie)) {
6260 			p = NULL;
6261 			if (cookie)
6262 				p = sched_core_find(rq_i, cookie);
6263 			if (!p)
6264 				p = idle_sched_class.pick_task(rq_i);
6265 		}
6266 
6267 		rq_i->core_pick = p;
6268 		rq_i->core_dl_server = NULL;
6269 
6270 		if (p == rq_i->idle) {
6271 			if (rq_i->nr_running) {
6272 				rq->core->core_forceidle_count++;
6273 				if (!fi_before)
6274 					rq->core->core_forceidle_seq++;
6275 			}
6276 		} else {
6277 			occ++;
6278 		}
6279 	}
6280 
6281 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6282 		rq->core->core_forceidle_start = rq_clock(rq->core);
6283 		rq->core->core_forceidle_occupation = occ;
6284 	}
6285 
6286 	rq->core->core_pick_seq = rq->core->core_task_seq;
6287 	next = rq->core_pick;
6288 	rq->core_sched_seq = rq->core->core_pick_seq;
6289 
6290 	/* Something should have been selected for current CPU */
6291 	WARN_ON_ONCE(!next);
6292 
6293 	/*
6294 	 * Reschedule siblings
6295 	 *
6296 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6297 	 * sending an IPI (below) ensures the sibling will no longer be running
6298 	 * their task. This ensures there is no inter-sibling overlap between
6299 	 * non-matching user state.
6300 	 */
6301 	for_each_cpu(i, smt_mask) {
6302 		rq_i = cpu_rq(i);
6303 
6304 		/*
6305 		 * An online sibling might have gone offline before a task
6306 		 * could be picked for it, or it might be offline but later
6307 		 * happen to come online, but its too late and nothing was
6308 		 * picked for it.  That's Ok - it will pick tasks for itself,
6309 		 * so ignore it.
6310 		 */
6311 		if (!rq_i->core_pick)
6312 			continue;
6313 
6314 		/*
6315 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6316 		 * fi_before     fi      update?
6317 		 *  0            0       1
6318 		 *  0            1       1
6319 		 *  1            0       1
6320 		 *  1            1       0
6321 		 */
6322 		if (!(fi_before && rq->core->core_forceidle_count))
6323 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6324 
6325 		rq_i->core_pick->core_occupation = occ;
6326 
6327 		if (i == cpu) {
6328 			rq_i->core_pick = NULL;
6329 			rq_i->core_dl_server = NULL;
6330 			continue;
6331 		}
6332 
6333 		/* Did we break L1TF mitigation requirements? */
6334 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6335 
6336 		if (rq_i->curr == rq_i->core_pick) {
6337 			rq_i->core_pick = NULL;
6338 			rq_i->core_dl_server = NULL;
6339 			continue;
6340 		}
6341 
6342 		resched_curr(rq_i);
6343 	}
6344 
6345 out_set_next:
6346 	put_prev_set_next_task(rq, prev, next);
6347 	if (rq->core->core_forceidle_count && next == rq->idle)
6348 		queue_core_balance(rq);
6349 
6350 	return next;
6351 }
6352 
try_steal_cookie(int this,int that)6353 static bool try_steal_cookie(int this, int that)
6354 {
6355 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6356 	struct task_struct *p;
6357 	unsigned long cookie;
6358 	bool success = false;
6359 
6360 	guard(irq)();
6361 	guard(double_rq_lock)(dst, src);
6362 
6363 	cookie = dst->core->core_cookie;
6364 	if (!cookie)
6365 		return false;
6366 
6367 	if (dst->curr != dst->idle)
6368 		return false;
6369 
6370 	p = sched_core_find(src, cookie);
6371 	if (!p)
6372 		return false;
6373 
6374 	do {
6375 		if (p == src->core_pick || p == src->curr)
6376 			goto next;
6377 
6378 		if (!is_cpu_allowed(p, this))
6379 			goto next;
6380 
6381 		if (p->core_occupation > dst->idle->core_occupation)
6382 			goto next;
6383 		/*
6384 		 * sched_core_find() and sched_core_next() will ensure
6385 		 * that task @p is not throttled now, we also need to
6386 		 * check whether the runqueue of the destination CPU is
6387 		 * being throttled.
6388 		 */
6389 		if (sched_task_is_throttled(p, this))
6390 			goto next;
6391 
6392 		move_queued_task_locked(src, dst, p);
6393 		resched_curr(dst);
6394 
6395 		success = true;
6396 		break;
6397 
6398 next:
6399 		p = sched_core_next(p, cookie);
6400 	} while (p);
6401 
6402 	return success;
6403 }
6404 
steal_cookie_task(int cpu,struct sched_domain * sd)6405 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6406 {
6407 	int i;
6408 
6409 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6410 		if (i == cpu)
6411 			continue;
6412 
6413 		if (need_resched())
6414 			break;
6415 
6416 		if (try_steal_cookie(cpu, i))
6417 			return true;
6418 	}
6419 
6420 	return false;
6421 }
6422 
sched_core_balance(struct rq * rq)6423 static void sched_core_balance(struct rq *rq)
6424 {
6425 	struct sched_domain *sd;
6426 	int cpu = cpu_of(rq);
6427 
6428 	guard(preempt)();
6429 	guard(rcu)();
6430 
6431 	raw_spin_rq_unlock_irq(rq);
6432 	for_each_domain(cpu, sd) {
6433 		if (need_resched())
6434 			break;
6435 
6436 		if (steal_cookie_task(cpu, sd))
6437 			break;
6438 	}
6439 	raw_spin_rq_lock_irq(rq);
6440 }
6441 
6442 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6443 
queue_core_balance(struct rq * rq)6444 static void queue_core_balance(struct rq *rq)
6445 {
6446 	if (!sched_core_enabled(rq))
6447 		return;
6448 
6449 	if (!rq->core->core_cookie)
6450 		return;
6451 
6452 	if (!rq->nr_running) /* not forced idle */
6453 		return;
6454 
6455 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6456 }
6457 
6458 DEFINE_LOCK_GUARD_1(core_lock, int,
6459 		    sched_core_lock(*_T->lock, &_T->flags),
6460 		    sched_core_unlock(*_T->lock, &_T->flags),
6461 		    unsigned long flags)
6462 
sched_core_cpu_starting(unsigned int cpu)6463 static void sched_core_cpu_starting(unsigned int cpu)
6464 {
6465 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6466 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6467 	int t;
6468 
6469 	guard(core_lock)(&cpu);
6470 
6471 	WARN_ON_ONCE(rq->core != rq);
6472 
6473 	/* if we're the first, we'll be our own leader */
6474 	if (cpumask_weight(smt_mask) == 1)
6475 		return;
6476 
6477 	/* find the leader */
6478 	for_each_cpu(t, smt_mask) {
6479 		if (t == cpu)
6480 			continue;
6481 		rq = cpu_rq(t);
6482 		if (rq->core == rq) {
6483 			core_rq = rq;
6484 			break;
6485 		}
6486 	}
6487 
6488 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6489 		return;
6490 
6491 	/* install and validate core_rq */
6492 	for_each_cpu(t, smt_mask) {
6493 		rq = cpu_rq(t);
6494 
6495 		if (t == cpu)
6496 			rq->core = core_rq;
6497 
6498 		WARN_ON_ONCE(rq->core != core_rq);
6499 	}
6500 }
6501 
sched_core_cpu_deactivate(unsigned int cpu)6502 static void sched_core_cpu_deactivate(unsigned int cpu)
6503 {
6504 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6505 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6506 	int t;
6507 
6508 	guard(core_lock)(&cpu);
6509 
6510 	/* if we're the last man standing, nothing to do */
6511 	if (cpumask_weight(smt_mask) == 1) {
6512 		WARN_ON_ONCE(rq->core != rq);
6513 		return;
6514 	}
6515 
6516 	/* if we're not the leader, nothing to do */
6517 	if (rq->core != rq)
6518 		return;
6519 
6520 	/* find a new leader */
6521 	for_each_cpu(t, smt_mask) {
6522 		if (t == cpu)
6523 			continue;
6524 		core_rq = cpu_rq(t);
6525 		break;
6526 	}
6527 
6528 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6529 		return;
6530 
6531 	/* copy the shared state to the new leader */
6532 	core_rq->core_task_seq             = rq->core_task_seq;
6533 	core_rq->core_pick_seq             = rq->core_pick_seq;
6534 	core_rq->core_cookie               = rq->core_cookie;
6535 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6536 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6537 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6538 
6539 	/*
6540 	 * Accounting edge for forced idle is handled in pick_next_task().
6541 	 * Don't need another one here, since the hotplug thread shouldn't
6542 	 * have a cookie.
6543 	 */
6544 	core_rq->core_forceidle_start = 0;
6545 
6546 	/* install new leader */
6547 	for_each_cpu(t, smt_mask) {
6548 		rq = cpu_rq(t);
6549 		rq->core = core_rq;
6550 	}
6551 }
6552 
sched_core_cpu_dying(unsigned int cpu)6553 static inline void sched_core_cpu_dying(unsigned int cpu)
6554 {
6555 	struct rq *rq = cpu_rq(cpu);
6556 
6557 	if (rq->core != rq)
6558 		rq->core = rq;
6559 }
6560 
6561 #else /* !CONFIG_SCHED_CORE */
6562 
sched_core_cpu_starting(unsigned int cpu)6563 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6564 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6565 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6566 
6567 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6568 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6569 {
6570 	return __pick_next_task(rq, prev, rf);
6571 }
6572 
6573 #endif /* CONFIG_SCHED_CORE */
6574 
6575 /*
6576  * Constants for the sched_mode argument of __schedule().
6577  *
6578  * The mode argument allows RT enabled kernels to differentiate a
6579  * preemption from blocking on an 'sleeping' spin/rwlock.
6580  */
6581 #define SM_IDLE			(-1)
6582 #define SM_NONE			0
6583 #define SM_PREEMPT		1
6584 #define SM_RTLOCK_WAIT		2
6585 
6586 /*
6587  * Helper function for __schedule()
6588  *
6589  * If a task does not have signals pending, deactivate it
6590  * Otherwise marks the task's __state as RUNNING
6591  */
try_to_block_task(struct rq * rq,struct task_struct * p,unsigned long * task_state_p)6592 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6593 			      unsigned long *task_state_p)
6594 {
6595 	unsigned long task_state = *task_state_p;
6596 	int flags = DEQUEUE_NOCLOCK;
6597 
6598 	if (signal_pending_state(task_state, p)) {
6599 		WRITE_ONCE(p->__state, TASK_RUNNING);
6600 		*task_state_p = TASK_RUNNING;
6601 		return false;
6602 	}
6603 
6604 	p->sched_contributes_to_load =
6605 		(task_state & TASK_UNINTERRUPTIBLE) &&
6606 		!(task_state & TASK_NOLOAD) &&
6607 		!(task_state & TASK_FROZEN);
6608 
6609 	if (unlikely(is_special_task_state(task_state)))
6610 		flags |= DEQUEUE_SPECIAL;
6611 
6612 	/*
6613 	 * __schedule()			ttwu()
6614 	 *   prev_state = prev->state;    if (p->on_rq && ...)
6615 	 *   if (prev_state)		    goto out;
6616 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6617 	 *				  p->state = TASK_WAKING
6618 	 *
6619 	 * Where __schedule() and ttwu() have matching control dependencies.
6620 	 *
6621 	 * After this, schedule() must not care about p->state any more.
6622 	 */
6623 	block_task(rq, p, flags);
6624 	return true;
6625 }
6626 
6627 /*
6628  * __schedule() is the main scheduler function.
6629  *
6630  * The main means of driving the scheduler and thus entering this function are:
6631  *
6632  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6633  *
6634  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6635  *      paths. For example, see arch/x86/entry_64.S.
6636  *
6637  *      To drive preemption between tasks, the scheduler sets the flag in timer
6638  *      interrupt handler sched_tick().
6639  *
6640  *   3. Wakeups don't really cause entry into schedule(). They add a
6641  *      task to the run-queue and that's it.
6642  *
6643  *      Now, if the new task added to the run-queue preempts the current
6644  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6645  *      called on the nearest possible occasion:
6646  *
6647  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6648  *
6649  *         - in syscall or exception context, at the next outmost
6650  *           preempt_enable(). (this might be as soon as the wake_up()'s
6651  *           spin_unlock()!)
6652  *
6653  *         - in IRQ context, return from interrupt-handler to
6654  *           preemptible context
6655  *
6656  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6657  *         then at the next:
6658  *
6659  *          - cond_resched() call
6660  *          - explicit schedule() call
6661  *          - return from syscall or exception to user-space
6662  *          - return from interrupt-handler to user-space
6663  *
6664  * WARNING: must be called with preemption disabled!
6665  */
__schedule(int sched_mode)6666 static void __sched notrace __schedule(int sched_mode)
6667 {
6668 	struct task_struct *prev, *next;
6669 	/*
6670 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6671 	 * as a preemption by schedule_debug() and RCU.
6672 	 */
6673 	bool preempt = sched_mode > SM_NONE;
6674 	bool is_switch = false;
6675 	unsigned long *switch_count;
6676 	unsigned long prev_state;
6677 	struct rq_flags rf;
6678 	struct rq *rq;
6679 	int cpu;
6680 
6681 	trace_sched_entry_tp(preempt, CALLER_ADDR0);
6682 
6683 	cpu = smp_processor_id();
6684 	rq = cpu_rq(cpu);
6685 	prev = rq->curr;
6686 
6687 	schedule_debug(prev, preempt);
6688 
6689 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6690 		hrtick_clear(rq);
6691 
6692 	klp_sched_try_switch(prev);
6693 
6694 	local_irq_disable();
6695 	rcu_note_context_switch(preempt);
6696 
6697 	/*
6698 	 * Make sure that signal_pending_state()->signal_pending() below
6699 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6700 	 * done by the caller to avoid the race with signal_wake_up():
6701 	 *
6702 	 * __set_current_state(@state)		signal_wake_up()
6703 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6704 	 *					  wake_up_state(p, state)
6705 	 *   LOCK rq->lock			    LOCK p->pi_state
6706 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6707 	 *     if (signal_pending_state())	    if (p->state & @state)
6708 	 *
6709 	 * Also, the membarrier system call requires a full memory barrier
6710 	 * after coming from user-space, before storing to rq->curr; this
6711 	 * barrier matches a full barrier in the proximity of the membarrier
6712 	 * system call exit.
6713 	 */
6714 	rq_lock(rq, &rf);
6715 	smp_mb__after_spinlock();
6716 
6717 	/* Promote REQ to ACT */
6718 	rq->clock_update_flags <<= 1;
6719 	update_rq_clock(rq);
6720 	rq->clock_update_flags = RQCF_UPDATED;
6721 
6722 	switch_count = &prev->nivcsw;
6723 
6724 	/* Task state changes only considers SM_PREEMPT as preemption */
6725 	preempt = sched_mode == SM_PREEMPT;
6726 
6727 	/*
6728 	 * We must load prev->state once (task_struct::state is volatile), such
6729 	 * that we form a control dependency vs deactivate_task() below.
6730 	 */
6731 	prev_state = READ_ONCE(prev->__state);
6732 	if (sched_mode == SM_IDLE) {
6733 		/* SCX must consult the BPF scheduler to tell if rq is empty */
6734 		if (!rq->nr_running && !scx_enabled()) {
6735 			next = prev;
6736 			goto picked;
6737 		}
6738 	} else if (!preempt && prev_state) {
6739 		try_to_block_task(rq, prev, &prev_state);
6740 		switch_count = &prev->nvcsw;
6741 	}
6742 
6743 	next = pick_next_task(rq, prev, &rf);
6744 	rq_set_donor(rq, next);
6745 picked:
6746 	clear_tsk_need_resched(prev);
6747 	clear_preempt_need_resched();
6748 	rq->last_seen_need_resched_ns = 0;
6749 
6750 	is_switch = prev != next;
6751 	if (likely(is_switch)) {
6752 		rq->nr_switches++;
6753 		/*
6754 		 * RCU users of rcu_dereference(rq->curr) may not see
6755 		 * changes to task_struct made by pick_next_task().
6756 		 */
6757 		RCU_INIT_POINTER(rq->curr, next);
6758 		/*
6759 		 * The membarrier system call requires each architecture
6760 		 * to have a full memory barrier after updating
6761 		 * rq->curr, before returning to user-space.
6762 		 *
6763 		 * Here are the schemes providing that barrier on the
6764 		 * various architectures:
6765 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6766 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
6767 		 *   on PowerPC and on RISC-V.
6768 		 * - finish_lock_switch() for weakly-ordered
6769 		 *   architectures where spin_unlock is a full barrier,
6770 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6771 		 *   is a RELEASE barrier),
6772 		 *
6773 		 * The barrier matches a full barrier in the proximity of
6774 		 * the membarrier system call entry.
6775 		 *
6776 		 * On RISC-V, this barrier pairing is also needed for the
6777 		 * SYNC_CORE command when switching between processes, cf.
6778 		 * the inline comments in membarrier_arch_switch_mm().
6779 		 */
6780 		++*switch_count;
6781 
6782 		migrate_disable_switch(rq, prev);
6783 		psi_account_irqtime(rq, prev, next);
6784 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6785 					     prev->se.sched_delayed);
6786 
6787 		trace_sched_switch(preempt, prev, next, prev_state);
6788 
6789 		/* Also unlocks the rq: */
6790 		rq = context_switch(rq, prev, next, &rf);
6791 	} else {
6792 		rq_unpin_lock(rq, &rf);
6793 		__balance_callbacks(rq);
6794 		raw_spin_rq_unlock_irq(rq);
6795 	}
6796 	trace_sched_exit_tp(is_switch, CALLER_ADDR0);
6797 }
6798 
do_task_dead(void)6799 void __noreturn do_task_dead(void)
6800 {
6801 	/* Causes final put_task_struct in finish_task_switch(): */
6802 	set_special_state(TASK_DEAD);
6803 
6804 	/* Tell freezer to ignore us: */
6805 	current->flags |= PF_NOFREEZE;
6806 
6807 	__schedule(SM_NONE);
6808 	BUG();
6809 
6810 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6811 	for (;;)
6812 		cpu_relax();
6813 }
6814 
sched_submit_work(struct task_struct * tsk)6815 static inline void sched_submit_work(struct task_struct *tsk)
6816 {
6817 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6818 	unsigned int task_flags;
6819 
6820 	/*
6821 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6822 	 * will use a blocking primitive -- which would lead to recursion.
6823 	 */
6824 	lock_map_acquire_try(&sched_map);
6825 
6826 	task_flags = tsk->flags;
6827 	/*
6828 	 * If a worker goes to sleep, notify and ask workqueue whether it
6829 	 * wants to wake up a task to maintain concurrency.
6830 	 */
6831 	if (task_flags & PF_WQ_WORKER)
6832 		wq_worker_sleeping(tsk);
6833 	else if (task_flags & PF_IO_WORKER)
6834 		io_wq_worker_sleeping(tsk);
6835 
6836 	/*
6837 	 * spinlock and rwlock must not flush block requests.  This will
6838 	 * deadlock if the callback attempts to acquire a lock which is
6839 	 * already acquired.
6840 	 */
6841 	WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
6842 
6843 	/*
6844 	 * If we are going to sleep and we have plugged IO queued,
6845 	 * make sure to submit it to avoid deadlocks.
6846 	 */
6847 	blk_flush_plug(tsk->plug, true);
6848 
6849 	lock_map_release(&sched_map);
6850 }
6851 
sched_update_worker(struct task_struct * tsk)6852 static void sched_update_worker(struct task_struct *tsk)
6853 {
6854 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
6855 		if (tsk->flags & PF_BLOCK_TS)
6856 			blk_plug_invalidate_ts(tsk);
6857 		if (tsk->flags & PF_WQ_WORKER)
6858 			wq_worker_running(tsk);
6859 		else if (tsk->flags & PF_IO_WORKER)
6860 			io_wq_worker_running(tsk);
6861 	}
6862 }
6863 
__schedule_loop(int sched_mode)6864 static __always_inline void __schedule_loop(int sched_mode)
6865 {
6866 	do {
6867 		preempt_disable();
6868 		__schedule(sched_mode);
6869 		sched_preempt_enable_no_resched();
6870 	} while (need_resched());
6871 }
6872 
schedule(void)6873 asmlinkage __visible void __sched schedule(void)
6874 {
6875 	struct task_struct *tsk = current;
6876 
6877 #ifdef CONFIG_RT_MUTEXES
6878 	lockdep_assert(!tsk->sched_rt_mutex);
6879 #endif
6880 
6881 	if (!task_is_running(tsk))
6882 		sched_submit_work(tsk);
6883 	__schedule_loop(SM_NONE);
6884 	sched_update_worker(tsk);
6885 }
6886 EXPORT_SYMBOL(schedule);
6887 
6888 /*
6889  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6890  * state (have scheduled out non-voluntarily) by making sure that all
6891  * tasks have either left the run queue or have gone into user space.
6892  * As idle tasks do not do either, they must not ever be preempted
6893  * (schedule out non-voluntarily).
6894  *
6895  * schedule_idle() is similar to schedule_preempt_disable() except that it
6896  * never enables preemption because it does not call sched_submit_work().
6897  */
schedule_idle(void)6898 void __sched schedule_idle(void)
6899 {
6900 	/*
6901 	 * As this skips calling sched_submit_work(), which the idle task does
6902 	 * regardless because that function is a NOP when the task is in a
6903 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6904 	 * current task can be in any other state. Note, idle is always in the
6905 	 * TASK_RUNNING state.
6906 	 */
6907 	WARN_ON_ONCE(current->__state);
6908 	do {
6909 		__schedule(SM_IDLE);
6910 	} while (need_resched());
6911 }
6912 
6913 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6914 asmlinkage __visible void __sched schedule_user(void)
6915 {
6916 	/*
6917 	 * If we come here after a random call to set_need_resched(),
6918 	 * or we have been woken up remotely but the IPI has not yet arrived,
6919 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6920 	 * we find a better solution.
6921 	 *
6922 	 * NB: There are buggy callers of this function.  Ideally we
6923 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
6924 	 * too frequently to make sense yet.
6925 	 */
6926 	enum ctx_state prev_state = exception_enter();
6927 	schedule();
6928 	exception_exit(prev_state);
6929 }
6930 #endif
6931 
6932 /**
6933  * schedule_preempt_disabled - called with preemption disabled
6934  *
6935  * Returns with preemption disabled. Note: preempt_count must be 1
6936  */
schedule_preempt_disabled(void)6937 void __sched schedule_preempt_disabled(void)
6938 {
6939 	sched_preempt_enable_no_resched();
6940 	schedule();
6941 	preempt_disable();
6942 }
6943 
6944 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6945 void __sched notrace schedule_rtlock(void)
6946 {
6947 	__schedule_loop(SM_RTLOCK_WAIT);
6948 }
6949 NOKPROBE_SYMBOL(schedule_rtlock);
6950 #endif
6951 
preempt_schedule_common(void)6952 static void __sched notrace preempt_schedule_common(void)
6953 {
6954 	do {
6955 		/*
6956 		 * Because the function tracer can trace preempt_count_sub()
6957 		 * and it also uses preempt_enable/disable_notrace(), if
6958 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6959 		 * by the function tracer will call this function again and
6960 		 * cause infinite recursion.
6961 		 *
6962 		 * Preemption must be disabled here before the function
6963 		 * tracer can trace. Break up preempt_disable() into two
6964 		 * calls. One to disable preemption without fear of being
6965 		 * traced. The other to still record the preemption latency,
6966 		 * which can also be traced by the function tracer.
6967 		 */
6968 		preempt_disable_notrace();
6969 		preempt_latency_start(1);
6970 		__schedule(SM_PREEMPT);
6971 		preempt_latency_stop(1);
6972 		preempt_enable_no_resched_notrace();
6973 
6974 		/*
6975 		 * Check again in case we missed a preemption opportunity
6976 		 * between schedule and now.
6977 		 */
6978 	} while (need_resched());
6979 }
6980 
6981 #ifdef CONFIG_PREEMPTION
6982 /*
6983  * This is the entry point to schedule() from in-kernel preemption
6984  * off of preempt_enable.
6985  */
preempt_schedule(void)6986 asmlinkage __visible void __sched notrace preempt_schedule(void)
6987 {
6988 	/*
6989 	 * If there is a non-zero preempt_count or interrupts are disabled,
6990 	 * we do not want to preempt the current task. Just return..
6991 	 */
6992 	if (likely(!preemptible()))
6993 		return;
6994 	preempt_schedule_common();
6995 }
6996 NOKPROBE_SYMBOL(preempt_schedule);
6997 EXPORT_SYMBOL(preempt_schedule);
6998 
6999 #ifdef CONFIG_PREEMPT_DYNAMIC
7000 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7001 #ifndef preempt_schedule_dynamic_enabled
7002 #define preempt_schedule_dynamic_enabled	preempt_schedule
7003 #define preempt_schedule_dynamic_disabled	NULL
7004 #endif
7005 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7006 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7007 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7008 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)7009 void __sched notrace dynamic_preempt_schedule(void)
7010 {
7011 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7012 		return;
7013 	preempt_schedule();
7014 }
7015 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7016 EXPORT_SYMBOL(dynamic_preempt_schedule);
7017 #endif
7018 #endif
7019 
7020 /**
7021  * preempt_schedule_notrace - preempt_schedule called by tracing
7022  *
7023  * The tracing infrastructure uses preempt_enable_notrace to prevent
7024  * recursion and tracing preempt enabling caused by the tracing
7025  * infrastructure itself. But as tracing can happen in areas coming
7026  * from userspace or just about to enter userspace, a preempt enable
7027  * can occur before user_exit() is called. This will cause the scheduler
7028  * to be called when the system is still in usermode.
7029  *
7030  * To prevent this, the preempt_enable_notrace will use this function
7031  * instead of preempt_schedule() to exit user context if needed before
7032  * calling the scheduler.
7033  */
preempt_schedule_notrace(void)7034 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7035 {
7036 	enum ctx_state prev_ctx;
7037 
7038 	if (likely(!preemptible()))
7039 		return;
7040 
7041 	do {
7042 		/*
7043 		 * Because the function tracer can trace preempt_count_sub()
7044 		 * and it also uses preempt_enable/disable_notrace(), if
7045 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7046 		 * by the function tracer will call this function again and
7047 		 * cause infinite recursion.
7048 		 *
7049 		 * Preemption must be disabled here before the function
7050 		 * tracer can trace. Break up preempt_disable() into two
7051 		 * calls. One to disable preemption without fear of being
7052 		 * traced. The other to still record the preemption latency,
7053 		 * which can also be traced by the function tracer.
7054 		 */
7055 		preempt_disable_notrace();
7056 		preempt_latency_start(1);
7057 		/*
7058 		 * Needs preempt disabled in case user_exit() is traced
7059 		 * and the tracer calls preempt_enable_notrace() causing
7060 		 * an infinite recursion.
7061 		 */
7062 		prev_ctx = exception_enter();
7063 		__schedule(SM_PREEMPT);
7064 		exception_exit(prev_ctx);
7065 
7066 		preempt_latency_stop(1);
7067 		preempt_enable_no_resched_notrace();
7068 	} while (need_resched());
7069 }
7070 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7071 
7072 #ifdef CONFIG_PREEMPT_DYNAMIC
7073 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7074 #ifndef preempt_schedule_notrace_dynamic_enabled
7075 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7076 #define preempt_schedule_notrace_dynamic_disabled	NULL
7077 #endif
7078 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7079 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7080 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7081 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)7082 void __sched notrace dynamic_preempt_schedule_notrace(void)
7083 {
7084 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7085 		return;
7086 	preempt_schedule_notrace();
7087 }
7088 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7089 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7090 #endif
7091 #endif
7092 
7093 #endif /* CONFIG_PREEMPTION */
7094 
7095 /*
7096  * This is the entry point to schedule() from kernel preemption
7097  * off of IRQ context.
7098  * Note, that this is called and return with IRQs disabled. This will
7099  * protect us against recursive calling from IRQ contexts.
7100  */
preempt_schedule_irq(void)7101 asmlinkage __visible void __sched preempt_schedule_irq(void)
7102 {
7103 	enum ctx_state prev_state;
7104 
7105 	/* Catch callers which need to be fixed */
7106 	BUG_ON(preempt_count() || !irqs_disabled());
7107 
7108 	prev_state = exception_enter();
7109 
7110 	do {
7111 		preempt_disable();
7112 		local_irq_enable();
7113 		__schedule(SM_PREEMPT);
7114 		local_irq_disable();
7115 		sched_preempt_enable_no_resched();
7116 	} while (need_resched());
7117 
7118 	exception_exit(prev_state);
7119 }
7120 
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7121 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7122 			  void *key)
7123 {
7124 	WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7125 	return try_to_wake_up(curr->private, mode, wake_flags);
7126 }
7127 EXPORT_SYMBOL(default_wake_function);
7128 
__setscheduler_class(int policy,int prio)7129 const struct sched_class *__setscheduler_class(int policy, int prio)
7130 {
7131 	if (dl_prio(prio))
7132 		return &dl_sched_class;
7133 
7134 	if (rt_prio(prio))
7135 		return &rt_sched_class;
7136 
7137 #ifdef CONFIG_SCHED_CLASS_EXT
7138 	if (task_should_scx(policy))
7139 		return &ext_sched_class;
7140 #endif
7141 
7142 	return &fair_sched_class;
7143 }
7144 
7145 #ifdef CONFIG_RT_MUTEXES
7146 
7147 /*
7148  * Would be more useful with typeof()/auto_type but they don't mix with
7149  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7150  * name such that if someone were to implement this function we get to compare
7151  * notes.
7152  */
7153 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7154 
rt_mutex_pre_schedule(void)7155 void rt_mutex_pre_schedule(void)
7156 {
7157 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7158 	sched_submit_work(current);
7159 }
7160 
rt_mutex_schedule(void)7161 void rt_mutex_schedule(void)
7162 {
7163 	lockdep_assert(current->sched_rt_mutex);
7164 	__schedule_loop(SM_NONE);
7165 }
7166 
rt_mutex_post_schedule(void)7167 void rt_mutex_post_schedule(void)
7168 {
7169 	sched_update_worker(current);
7170 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7171 }
7172 
7173 /*
7174  * rt_mutex_setprio - set the current priority of a task
7175  * @p: task to boost
7176  * @pi_task: donor task
7177  *
7178  * This function changes the 'effective' priority of a task. It does
7179  * not touch ->normal_prio like __setscheduler().
7180  *
7181  * Used by the rt_mutex code to implement priority inheritance
7182  * logic. Call site only calls if the priority of the task changed.
7183  */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7184 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7185 {
7186 	int prio, oldprio, queued, running, queue_flag =
7187 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7188 	const struct sched_class *prev_class, *next_class;
7189 	struct rq_flags rf;
7190 	struct rq *rq;
7191 
7192 	/* XXX used to be waiter->prio, not waiter->task->prio */
7193 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7194 
7195 	/*
7196 	 * If nothing changed; bail early.
7197 	 */
7198 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7199 		return;
7200 
7201 	rq = __task_rq_lock(p, &rf);
7202 	update_rq_clock(rq);
7203 	/*
7204 	 * Set under pi_lock && rq->lock, such that the value can be used under
7205 	 * either lock.
7206 	 *
7207 	 * Note that there is loads of tricky to make this pointer cache work
7208 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7209 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7210 	 * task is allowed to run again (and can exit). This ensures the pointer
7211 	 * points to a blocked task -- which guarantees the task is present.
7212 	 */
7213 	p->pi_top_task = pi_task;
7214 
7215 	/*
7216 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7217 	 */
7218 	if (prio == p->prio && !dl_prio(prio))
7219 		goto out_unlock;
7220 
7221 	/*
7222 	 * Idle task boosting is a no-no in general. There is one
7223 	 * exception, when PREEMPT_RT and NOHZ is active:
7224 	 *
7225 	 * The idle task calls get_next_timer_interrupt() and holds
7226 	 * the timer wheel base->lock on the CPU and another CPU wants
7227 	 * to access the timer (probably to cancel it). We can safely
7228 	 * ignore the boosting request, as the idle CPU runs this code
7229 	 * with interrupts disabled and will complete the lock
7230 	 * protected section without being interrupted. So there is no
7231 	 * real need to boost.
7232 	 */
7233 	if (unlikely(p == rq->idle)) {
7234 		WARN_ON(p != rq->curr);
7235 		WARN_ON(p->pi_blocked_on);
7236 		goto out_unlock;
7237 	}
7238 
7239 	trace_sched_pi_setprio(p, pi_task);
7240 	oldprio = p->prio;
7241 
7242 	if (oldprio == prio)
7243 		queue_flag &= ~DEQUEUE_MOVE;
7244 
7245 	prev_class = p->sched_class;
7246 	next_class = __setscheduler_class(p->policy, prio);
7247 
7248 	if (prev_class != next_class && p->se.sched_delayed)
7249 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7250 
7251 	queued = task_on_rq_queued(p);
7252 	running = task_current_donor(rq, p);
7253 	if (queued)
7254 		dequeue_task(rq, p, queue_flag);
7255 	if (running)
7256 		put_prev_task(rq, p);
7257 
7258 	/*
7259 	 * Boosting condition are:
7260 	 * 1. -rt task is running and holds mutex A
7261 	 *      --> -dl task blocks on mutex A
7262 	 *
7263 	 * 2. -dl task is running and holds mutex A
7264 	 *      --> -dl task blocks on mutex A and could preempt the
7265 	 *          running task
7266 	 */
7267 	if (dl_prio(prio)) {
7268 		if (!dl_prio(p->normal_prio) ||
7269 		    (pi_task && dl_prio(pi_task->prio) &&
7270 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7271 			p->dl.pi_se = pi_task->dl.pi_se;
7272 			queue_flag |= ENQUEUE_REPLENISH;
7273 		} else {
7274 			p->dl.pi_se = &p->dl;
7275 		}
7276 	} else if (rt_prio(prio)) {
7277 		if (dl_prio(oldprio))
7278 			p->dl.pi_se = &p->dl;
7279 		if (oldprio < prio)
7280 			queue_flag |= ENQUEUE_HEAD;
7281 	} else {
7282 		if (dl_prio(oldprio))
7283 			p->dl.pi_se = &p->dl;
7284 		if (rt_prio(oldprio))
7285 			p->rt.timeout = 0;
7286 	}
7287 
7288 	p->sched_class = next_class;
7289 	p->prio = prio;
7290 
7291 	check_class_changing(rq, p, prev_class);
7292 
7293 	if (queued)
7294 		enqueue_task(rq, p, queue_flag);
7295 	if (running)
7296 		set_next_task(rq, p);
7297 
7298 	check_class_changed(rq, p, prev_class, oldprio);
7299 out_unlock:
7300 	/* Avoid rq from going away on us: */
7301 	preempt_disable();
7302 
7303 	rq_unpin_lock(rq, &rf);
7304 	__balance_callbacks(rq);
7305 	raw_spin_rq_unlock(rq);
7306 
7307 	preempt_enable();
7308 }
7309 #endif
7310 
7311 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)7312 int __sched __cond_resched(void)
7313 {
7314 	if (should_resched(0) && !irqs_disabled()) {
7315 		preempt_schedule_common();
7316 		return 1;
7317 	}
7318 	/*
7319 	 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7320 	 * whether the current CPU is in an RCU read-side critical section,
7321 	 * so the tick can report quiescent states even for CPUs looping
7322 	 * in kernel context.  In contrast, in non-preemptible kernels,
7323 	 * RCU readers leave no in-memory hints, which means that CPU-bound
7324 	 * processes executing in kernel context might never report an
7325 	 * RCU quiescent state.  Therefore, the following code causes
7326 	 * cond_resched() to report a quiescent state, but only when RCU
7327 	 * is in urgent need of one.
7328 	 * A third case, preemptible, but non-PREEMPT_RCU provides for
7329 	 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7330 	 */
7331 #ifndef CONFIG_PREEMPT_RCU
7332 	rcu_all_qs();
7333 #endif
7334 	return 0;
7335 }
7336 EXPORT_SYMBOL(__cond_resched);
7337 #endif
7338 
7339 #ifdef CONFIG_PREEMPT_DYNAMIC
7340 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7341 #define cond_resched_dynamic_enabled	__cond_resched
7342 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
7343 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7344 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7345 
7346 #define might_resched_dynamic_enabled	__cond_resched
7347 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
7348 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7349 EXPORT_STATIC_CALL_TRAMP(might_resched);
7350 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7351 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)7352 int __sched dynamic_cond_resched(void)
7353 {
7354 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7355 		return 0;
7356 	return __cond_resched();
7357 }
7358 EXPORT_SYMBOL(dynamic_cond_resched);
7359 
7360 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)7361 int __sched dynamic_might_resched(void)
7362 {
7363 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
7364 		return 0;
7365 	return __cond_resched();
7366 }
7367 EXPORT_SYMBOL(dynamic_might_resched);
7368 #endif
7369 #endif
7370 
7371 /*
7372  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7373  * call schedule, and on return reacquire the lock.
7374  *
7375  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7376  * operations here to prevent schedule() from being called twice (once via
7377  * spin_unlock(), once by hand).
7378  */
__cond_resched_lock(spinlock_t * lock)7379 int __cond_resched_lock(spinlock_t *lock)
7380 {
7381 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7382 	int ret = 0;
7383 
7384 	lockdep_assert_held(lock);
7385 
7386 	if (spin_needbreak(lock) || resched) {
7387 		spin_unlock(lock);
7388 		if (!_cond_resched())
7389 			cpu_relax();
7390 		ret = 1;
7391 		spin_lock(lock);
7392 	}
7393 	return ret;
7394 }
7395 EXPORT_SYMBOL(__cond_resched_lock);
7396 
__cond_resched_rwlock_read(rwlock_t * lock)7397 int __cond_resched_rwlock_read(rwlock_t *lock)
7398 {
7399 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7400 	int ret = 0;
7401 
7402 	lockdep_assert_held_read(lock);
7403 
7404 	if (rwlock_needbreak(lock) || resched) {
7405 		read_unlock(lock);
7406 		if (!_cond_resched())
7407 			cpu_relax();
7408 		ret = 1;
7409 		read_lock(lock);
7410 	}
7411 	return ret;
7412 }
7413 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7414 
__cond_resched_rwlock_write(rwlock_t * lock)7415 int __cond_resched_rwlock_write(rwlock_t *lock)
7416 {
7417 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
7418 	int ret = 0;
7419 
7420 	lockdep_assert_held_write(lock);
7421 
7422 	if (rwlock_needbreak(lock) || resched) {
7423 		write_unlock(lock);
7424 		if (!_cond_resched())
7425 			cpu_relax();
7426 		ret = 1;
7427 		write_lock(lock);
7428 	}
7429 	return ret;
7430 }
7431 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7432 
7433 #ifdef CONFIG_PREEMPT_DYNAMIC
7434 
7435 #ifdef CONFIG_GENERIC_ENTRY
7436 #include <linux/entry-common.h>
7437 #endif
7438 
7439 /*
7440  * SC:cond_resched
7441  * SC:might_resched
7442  * SC:preempt_schedule
7443  * SC:preempt_schedule_notrace
7444  * SC:irqentry_exit_cond_resched
7445  *
7446  *
7447  * NONE:
7448  *   cond_resched               <- __cond_resched
7449  *   might_resched              <- RET0
7450  *   preempt_schedule           <- NOP
7451  *   preempt_schedule_notrace   <- NOP
7452  *   irqentry_exit_cond_resched <- NOP
7453  *   dynamic_preempt_lazy       <- false
7454  *
7455  * VOLUNTARY:
7456  *   cond_resched               <- __cond_resched
7457  *   might_resched              <- __cond_resched
7458  *   preempt_schedule           <- NOP
7459  *   preempt_schedule_notrace   <- NOP
7460  *   irqentry_exit_cond_resched <- NOP
7461  *   dynamic_preempt_lazy       <- false
7462  *
7463  * FULL:
7464  *   cond_resched               <- RET0
7465  *   might_resched              <- RET0
7466  *   preempt_schedule           <- preempt_schedule
7467  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7468  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7469  *   dynamic_preempt_lazy       <- false
7470  *
7471  * LAZY:
7472  *   cond_resched               <- RET0
7473  *   might_resched              <- RET0
7474  *   preempt_schedule           <- preempt_schedule
7475  *   preempt_schedule_notrace   <- preempt_schedule_notrace
7476  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7477  *   dynamic_preempt_lazy       <- true
7478  */
7479 
7480 enum {
7481 	preempt_dynamic_undefined = -1,
7482 	preempt_dynamic_none,
7483 	preempt_dynamic_voluntary,
7484 	preempt_dynamic_full,
7485 	preempt_dynamic_lazy,
7486 };
7487 
7488 int preempt_dynamic_mode = preempt_dynamic_undefined;
7489 
sched_dynamic_mode(const char * str)7490 int sched_dynamic_mode(const char *str)
7491 {
7492 #ifndef CONFIG_PREEMPT_RT
7493 	if (!strcmp(str, "none"))
7494 		return preempt_dynamic_none;
7495 
7496 	if (!strcmp(str, "voluntary"))
7497 		return preempt_dynamic_voluntary;
7498 #endif
7499 
7500 	if (!strcmp(str, "full"))
7501 		return preempt_dynamic_full;
7502 
7503 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7504 	if (!strcmp(str, "lazy"))
7505 		return preempt_dynamic_lazy;
7506 #endif
7507 
7508 	return -EINVAL;
7509 }
7510 
7511 #define preempt_dynamic_key_enable(f)	static_key_enable(&sk_dynamic_##f.key)
7512 #define preempt_dynamic_key_disable(f)	static_key_disable(&sk_dynamic_##f.key)
7513 
7514 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7515 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
7516 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
7517 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7518 #define preempt_dynamic_enable(f)	preempt_dynamic_key_enable(f)
7519 #define preempt_dynamic_disable(f)	preempt_dynamic_key_disable(f)
7520 #else
7521 #error "Unsupported PREEMPT_DYNAMIC mechanism"
7522 #endif
7523 
7524 static DEFINE_MUTEX(sched_dynamic_mutex);
7525 
__sched_dynamic_update(int mode)7526 static void __sched_dynamic_update(int mode)
7527 {
7528 	/*
7529 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7530 	 * the ZERO state, which is invalid.
7531 	 */
7532 	preempt_dynamic_enable(cond_resched);
7533 	preempt_dynamic_enable(might_resched);
7534 	preempt_dynamic_enable(preempt_schedule);
7535 	preempt_dynamic_enable(preempt_schedule_notrace);
7536 	preempt_dynamic_enable(irqentry_exit_cond_resched);
7537 	preempt_dynamic_key_disable(preempt_lazy);
7538 
7539 	switch (mode) {
7540 	case preempt_dynamic_none:
7541 		preempt_dynamic_enable(cond_resched);
7542 		preempt_dynamic_disable(might_resched);
7543 		preempt_dynamic_disable(preempt_schedule);
7544 		preempt_dynamic_disable(preempt_schedule_notrace);
7545 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7546 		preempt_dynamic_key_disable(preempt_lazy);
7547 		if (mode != preempt_dynamic_mode)
7548 			pr_info("Dynamic Preempt: none\n");
7549 		break;
7550 
7551 	case preempt_dynamic_voluntary:
7552 		preempt_dynamic_enable(cond_resched);
7553 		preempt_dynamic_enable(might_resched);
7554 		preempt_dynamic_disable(preempt_schedule);
7555 		preempt_dynamic_disable(preempt_schedule_notrace);
7556 		preempt_dynamic_disable(irqentry_exit_cond_resched);
7557 		preempt_dynamic_key_disable(preempt_lazy);
7558 		if (mode != preempt_dynamic_mode)
7559 			pr_info("Dynamic Preempt: voluntary\n");
7560 		break;
7561 
7562 	case preempt_dynamic_full:
7563 		preempt_dynamic_disable(cond_resched);
7564 		preempt_dynamic_disable(might_resched);
7565 		preempt_dynamic_enable(preempt_schedule);
7566 		preempt_dynamic_enable(preempt_schedule_notrace);
7567 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7568 		preempt_dynamic_key_disable(preempt_lazy);
7569 		if (mode != preempt_dynamic_mode)
7570 			pr_info("Dynamic Preempt: full\n");
7571 		break;
7572 
7573 	case preempt_dynamic_lazy:
7574 		preempt_dynamic_disable(cond_resched);
7575 		preempt_dynamic_disable(might_resched);
7576 		preempt_dynamic_enable(preempt_schedule);
7577 		preempt_dynamic_enable(preempt_schedule_notrace);
7578 		preempt_dynamic_enable(irqentry_exit_cond_resched);
7579 		preempt_dynamic_key_enable(preempt_lazy);
7580 		if (mode != preempt_dynamic_mode)
7581 			pr_info("Dynamic Preempt: lazy\n");
7582 		break;
7583 	}
7584 
7585 	preempt_dynamic_mode = mode;
7586 }
7587 
sched_dynamic_update(int mode)7588 void sched_dynamic_update(int mode)
7589 {
7590 	mutex_lock(&sched_dynamic_mutex);
7591 	__sched_dynamic_update(mode);
7592 	mutex_unlock(&sched_dynamic_mutex);
7593 }
7594 
setup_preempt_mode(char * str)7595 static int __init setup_preempt_mode(char *str)
7596 {
7597 	int mode = sched_dynamic_mode(str);
7598 	if (mode < 0) {
7599 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7600 		return 0;
7601 	}
7602 
7603 	sched_dynamic_update(mode);
7604 	return 1;
7605 }
7606 __setup("preempt=", setup_preempt_mode);
7607 
preempt_dynamic_init(void)7608 static void __init preempt_dynamic_init(void)
7609 {
7610 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7611 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7612 			sched_dynamic_update(preempt_dynamic_none);
7613 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7614 			sched_dynamic_update(preempt_dynamic_voluntary);
7615 		} else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7616 			sched_dynamic_update(preempt_dynamic_lazy);
7617 		} else {
7618 			/* Default static call setting, nothing to do */
7619 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7620 			preempt_dynamic_mode = preempt_dynamic_full;
7621 			pr_info("Dynamic Preempt: full\n");
7622 		}
7623 	}
7624 }
7625 
7626 #define PREEMPT_MODEL_ACCESSOR(mode) \
7627 	bool preempt_model_##mode(void)						 \
7628 	{									 \
7629 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7630 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
7631 	}									 \
7632 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
7633 
7634 PREEMPT_MODEL_ACCESSOR(none);
7635 PREEMPT_MODEL_ACCESSOR(voluntary);
7636 PREEMPT_MODEL_ACCESSOR(full);
7637 PREEMPT_MODEL_ACCESSOR(lazy);
7638 
7639 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7640 
7641 #define preempt_dynamic_mode -1
7642 
preempt_dynamic_init(void)7643 static inline void preempt_dynamic_init(void) { }
7644 
7645 #endif /* CONFIG_PREEMPT_DYNAMIC */
7646 
7647 const char *preempt_modes[] = {
7648 	"none", "voluntary", "full", "lazy", NULL,
7649 };
7650 
preempt_model_str(void)7651 const char *preempt_model_str(void)
7652 {
7653 	bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7654 		(IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7655 		 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7656 	static char buf[128];
7657 
7658 	if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7659 		struct seq_buf s;
7660 
7661 		seq_buf_init(&s, buf, sizeof(buf));
7662 		seq_buf_puts(&s, "PREEMPT");
7663 
7664 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
7665 			seq_buf_printf(&s, "%sRT%s",
7666 				       brace ? "_{" : "_",
7667 				       brace ? "," : "");
7668 
7669 		if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7670 			seq_buf_printf(&s, "(%s)%s",
7671 				       preempt_dynamic_mode >= 0 ?
7672 				       preempt_modes[preempt_dynamic_mode] : "undef",
7673 				       brace ? "}" : "");
7674 			return seq_buf_str(&s);
7675 		}
7676 
7677 		if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7678 			seq_buf_printf(&s, "LAZY%s",
7679 				       brace ? "}" : "");
7680 			return seq_buf_str(&s);
7681 		}
7682 
7683 		return seq_buf_str(&s);
7684 	}
7685 
7686 	if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7687 		return "VOLUNTARY";
7688 
7689 	return "NONE";
7690 }
7691 
io_schedule_prepare(void)7692 int io_schedule_prepare(void)
7693 {
7694 	int old_iowait = current->in_iowait;
7695 
7696 	current->in_iowait = 1;
7697 	blk_flush_plug(current->plug, true);
7698 	return old_iowait;
7699 }
7700 
io_schedule_finish(int token)7701 void io_schedule_finish(int token)
7702 {
7703 	current->in_iowait = token;
7704 }
7705 
7706 /*
7707  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7708  * that process accounting knows that this is a task in IO wait state.
7709  */
io_schedule_timeout(long timeout)7710 long __sched io_schedule_timeout(long timeout)
7711 {
7712 	int token;
7713 	long ret;
7714 
7715 	token = io_schedule_prepare();
7716 	ret = schedule_timeout(timeout);
7717 	io_schedule_finish(token);
7718 
7719 	return ret;
7720 }
7721 EXPORT_SYMBOL(io_schedule_timeout);
7722 
io_schedule(void)7723 void __sched io_schedule(void)
7724 {
7725 	int token;
7726 
7727 	token = io_schedule_prepare();
7728 	schedule();
7729 	io_schedule_finish(token);
7730 }
7731 EXPORT_SYMBOL(io_schedule);
7732 
sched_show_task(struct task_struct * p)7733 void sched_show_task(struct task_struct *p)
7734 {
7735 	unsigned long free;
7736 	int ppid;
7737 
7738 	if (!try_get_task_stack(p))
7739 		return;
7740 
7741 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7742 
7743 	if (task_is_running(p))
7744 		pr_cont("  running task    ");
7745 	free = stack_not_used(p);
7746 	ppid = 0;
7747 	rcu_read_lock();
7748 	if (pid_alive(p))
7749 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
7750 	rcu_read_unlock();
7751 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7752 		free, task_pid_nr(p), task_tgid_nr(p),
7753 		ppid, p->flags, read_task_thread_flags(p));
7754 
7755 	print_worker_info(KERN_INFO, p);
7756 	print_stop_info(KERN_INFO, p);
7757 	print_scx_info(KERN_INFO, p);
7758 	show_stack(p, NULL, KERN_INFO);
7759 	put_task_stack(p);
7760 }
7761 EXPORT_SYMBOL_GPL(sched_show_task);
7762 
7763 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)7764 state_filter_match(unsigned long state_filter, struct task_struct *p)
7765 {
7766 	unsigned int state = READ_ONCE(p->__state);
7767 
7768 	/* no filter, everything matches */
7769 	if (!state_filter)
7770 		return true;
7771 
7772 	/* filter, but doesn't match */
7773 	if (!(state & state_filter))
7774 		return false;
7775 
7776 	/*
7777 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7778 	 * TASK_KILLABLE).
7779 	 */
7780 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7781 		return false;
7782 
7783 	return true;
7784 }
7785 
7786 
show_state_filter(unsigned int state_filter)7787 void show_state_filter(unsigned int state_filter)
7788 {
7789 	struct task_struct *g, *p;
7790 
7791 	rcu_read_lock();
7792 	for_each_process_thread(g, p) {
7793 		/*
7794 		 * reset the NMI-timeout, listing all files on a slow
7795 		 * console might take a lot of time:
7796 		 * Also, reset softlockup watchdogs on all CPUs, because
7797 		 * another CPU might be blocked waiting for us to process
7798 		 * an IPI.
7799 		 */
7800 		touch_nmi_watchdog();
7801 		touch_all_softlockup_watchdogs();
7802 		if (state_filter_match(state_filter, p))
7803 			sched_show_task(p);
7804 	}
7805 
7806 	if (!state_filter)
7807 		sysrq_sched_debug_show();
7808 
7809 	rcu_read_unlock();
7810 	/*
7811 	 * Only show locks if all tasks are dumped:
7812 	 */
7813 	if (!state_filter)
7814 		debug_show_all_locks();
7815 }
7816 
7817 /**
7818  * init_idle - set up an idle thread for a given CPU
7819  * @idle: task in question
7820  * @cpu: CPU the idle task belongs to
7821  *
7822  * NOTE: this function does not set the idle thread's NEED_RESCHED
7823  * flag, to make booting more robust.
7824  */
init_idle(struct task_struct * idle,int cpu)7825 void __init init_idle(struct task_struct *idle, int cpu)
7826 {
7827 #ifdef CONFIG_SMP
7828 	struct affinity_context ac = (struct affinity_context) {
7829 		.new_mask  = cpumask_of(cpu),
7830 		.flags     = 0,
7831 	};
7832 #endif
7833 	struct rq *rq = cpu_rq(cpu);
7834 	unsigned long flags;
7835 
7836 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
7837 	raw_spin_rq_lock(rq);
7838 
7839 	idle->__state = TASK_RUNNING;
7840 	idle->se.exec_start = sched_clock();
7841 	/*
7842 	 * PF_KTHREAD should already be set at this point; regardless, make it
7843 	 * look like a proper per-CPU kthread.
7844 	 */
7845 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
7846 	kthread_set_per_cpu(idle, cpu);
7847 
7848 #ifdef CONFIG_SMP
7849 	/*
7850 	 * No validation and serialization required at boot time and for
7851 	 * setting up the idle tasks of not yet online CPUs.
7852 	 */
7853 	set_cpus_allowed_common(idle, &ac);
7854 #endif
7855 	/*
7856 	 * We're having a chicken and egg problem, even though we are
7857 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
7858 	 * lockdep check in task_group() will fail.
7859 	 *
7860 	 * Similar case to sched_fork(). / Alternatively we could
7861 	 * use task_rq_lock() here and obtain the other rq->lock.
7862 	 *
7863 	 * Silence PROVE_RCU
7864 	 */
7865 	rcu_read_lock();
7866 	__set_task_cpu(idle, cpu);
7867 	rcu_read_unlock();
7868 
7869 	rq->idle = idle;
7870 	rq_set_donor(rq, idle);
7871 	rcu_assign_pointer(rq->curr, idle);
7872 	idle->on_rq = TASK_ON_RQ_QUEUED;
7873 #ifdef CONFIG_SMP
7874 	idle->on_cpu = 1;
7875 #endif
7876 	raw_spin_rq_unlock(rq);
7877 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7878 
7879 	/* Set the preempt count _outside_ the spinlocks! */
7880 	init_idle_preempt_count(idle, cpu);
7881 
7882 	/*
7883 	 * The idle tasks have their own, simple scheduling class:
7884 	 */
7885 	idle->sched_class = &idle_sched_class;
7886 	ftrace_graph_init_idle_task(idle, cpu);
7887 	vtime_init_idle(idle, cpu);
7888 #ifdef CONFIG_SMP
7889 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7890 #endif
7891 }
7892 
7893 #ifdef CONFIG_SMP
7894 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)7895 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7896 			      const struct cpumask *trial)
7897 {
7898 	int ret = 1;
7899 
7900 	if (cpumask_empty(cur))
7901 		return ret;
7902 
7903 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7904 
7905 	return ret;
7906 }
7907 
task_can_attach(struct task_struct * p)7908 int task_can_attach(struct task_struct *p)
7909 {
7910 	int ret = 0;
7911 
7912 	/*
7913 	 * Kthreads which disallow setaffinity shouldn't be moved
7914 	 * to a new cpuset; we don't want to change their CPU
7915 	 * affinity and isolating such threads by their set of
7916 	 * allowed nodes is unnecessary.  Thus, cpusets are not
7917 	 * applicable for such threads.  This prevents checking for
7918 	 * success of set_cpus_allowed_ptr() on all attached tasks
7919 	 * before cpus_mask may be changed.
7920 	 */
7921 	if (p->flags & PF_NO_SETAFFINITY)
7922 		ret = -EINVAL;
7923 
7924 	return ret;
7925 }
7926 
7927 bool sched_smp_initialized __read_mostly;
7928 
7929 #ifdef CONFIG_NUMA_BALANCING
7930 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)7931 int migrate_task_to(struct task_struct *p, int target_cpu)
7932 {
7933 	struct migration_arg arg = { p, target_cpu };
7934 	int curr_cpu = task_cpu(p);
7935 
7936 	if (curr_cpu == target_cpu)
7937 		return 0;
7938 
7939 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7940 		return -EINVAL;
7941 
7942 	__schedstat_inc(p->stats.numa_task_migrated);
7943 	count_vm_numa_event(NUMA_TASK_MIGRATE);
7944 	count_memcg_event_mm(p->mm, NUMA_TASK_MIGRATE);
7945 	trace_sched_move_numa(p, curr_cpu, target_cpu);
7946 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7947 }
7948 
7949 /*
7950  * Requeue a task on a given node and accurately track the number of NUMA
7951  * tasks on the runqueues
7952  */
sched_setnuma(struct task_struct * p,int nid)7953 void sched_setnuma(struct task_struct *p, int nid)
7954 {
7955 	bool queued, running;
7956 	struct rq_flags rf;
7957 	struct rq *rq;
7958 
7959 	rq = task_rq_lock(p, &rf);
7960 	queued = task_on_rq_queued(p);
7961 	running = task_current_donor(rq, p);
7962 
7963 	if (queued)
7964 		dequeue_task(rq, p, DEQUEUE_SAVE);
7965 	if (running)
7966 		put_prev_task(rq, p);
7967 
7968 	p->numa_preferred_nid = nid;
7969 
7970 	if (queued)
7971 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7972 	if (running)
7973 		set_next_task(rq, p);
7974 	task_rq_unlock(rq, p, &rf);
7975 }
7976 #endif /* CONFIG_NUMA_BALANCING */
7977 
7978 #ifdef CONFIG_HOTPLUG_CPU
7979 /*
7980  * Invoked on the outgoing CPU in context of the CPU hotplug thread
7981  * after ensuring that there are no user space tasks left on the CPU.
7982  *
7983  * If there is a lazy mm in use on the hotplug thread, drop it and
7984  * switch to init_mm.
7985  *
7986  * The reference count on init_mm is dropped in finish_cpu().
7987  */
sched_force_init_mm(void)7988 static void sched_force_init_mm(void)
7989 {
7990 	struct mm_struct *mm = current->active_mm;
7991 
7992 	if (mm != &init_mm) {
7993 		mmgrab_lazy_tlb(&init_mm);
7994 		local_irq_disable();
7995 		current->active_mm = &init_mm;
7996 		switch_mm_irqs_off(mm, &init_mm, current);
7997 		local_irq_enable();
7998 		finish_arch_post_lock_switch();
7999 		mmdrop_lazy_tlb(mm);
8000 	}
8001 
8002 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8003 }
8004 
__balance_push_cpu_stop(void * arg)8005 static int __balance_push_cpu_stop(void *arg)
8006 {
8007 	struct task_struct *p = arg;
8008 	struct rq *rq = this_rq();
8009 	struct rq_flags rf;
8010 	int cpu;
8011 
8012 	raw_spin_lock_irq(&p->pi_lock);
8013 	rq_lock(rq, &rf);
8014 
8015 	update_rq_clock(rq);
8016 
8017 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8018 		cpu = select_fallback_rq(rq->cpu, p);
8019 		rq = __migrate_task(rq, &rf, p, cpu);
8020 	}
8021 
8022 	rq_unlock(rq, &rf);
8023 	raw_spin_unlock_irq(&p->pi_lock);
8024 
8025 	put_task_struct(p);
8026 
8027 	return 0;
8028 }
8029 
8030 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8031 
8032 /*
8033  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8034  *
8035  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8036  * effective when the hotplug motion is down.
8037  */
balance_push(struct rq * rq)8038 static void balance_push(struct rq *rq)
8039 {
8040 	struct task_struct *push_task = rq->curr;
8041 
8042 	lockdep_assert_rq_held(rq);
8043 
8044 	/*
8045 	 * Ensure the thing is persistent until balance_push_set(.on = false);
8046 	 */
8047 	rq->balance_callback = &balance_push_callback;
8048 
8049 	/*
8050 	 * Only active while going offline and when invoked on the outgoing
8051 	 * CPU.
8052 	 */
8053 	if (!cpu_dying(rq->cpu) || rq != this_rq())
8054 		return;
8055 
8056 	/*
8057 	 * Both the cpu-hotplug and stop task are in this case and are
8058 	 * required to complete the hotplug process.
8059 	 */
8060 	if (kthread_is_per_cpu(push_task) ||
8061 	    is_migration_disabled(push_task)) {
8062 
8063 		/*
8064 		 * If this is the idle task on the outgoing CPU try to wake
8065 		 * up the hotplug control thread which might wait for the
8066 		 * last task to vanish. The rcuwait_active() check is
8067 		 * accurate here because the waiter is pinned on this CPU
8068 		 * and can't obviously be running in parallel.
8069 		 *
8070 		 * On RT kernels this also has to check whether there are
8071 		 * pinned and scheduled out tasks on the runqueue. They
8072 		 * need to leave the migrate disabled section first.
8073 		 */
8074 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8075 		    rcuwait_active(&rq->hotplug_wait)) {
8076 			raw_spin_rq_unlock(rq);
8077 			rcuwait_wake_up(&rq->hotplug_wait);
8078 			raw_spin_rq_lock(rq);
8079 		}
8080 		return;
8081 	}
8082 
8083 	get_task_struct(push_task);
8084 	/*
8085 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
8086 	 * Both preemption and IRQs are still disabled.
8087 	 */
8088 	preempt_disable();
8089 	raw_spin_rq_unlock(rq);
8090 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8091 			    this_cpu_ptr(&push_work));
8092 	preempt_enable();
8093 	/*
8094 	 * At this point need_resched() is true and we'll take the loop in
8095 	 * schedule(). The next pick is obviously going to be the stop task
8096 	 * which kthread_is_per_cpu() and will push this task away.
8097 	 */
8098 	raw_spin_rq_lock(rq);
8099 }
8100 
balance_push_set(int cpu,bool on)8101 static void balance_push_set(int cpu, bool on)
8102 {
8103 	struct rq *rq = cpu_rq(cpu);
8104 	struct rq_flags rf;
8105 
8106 	rq_lock_irqsave(rq, &rf);
8107 	if (on) {
8108 		WARN_ON_ONCE(rq->balance_callback);
8109 		rq->balance_callback = &balance_push_callback;
8110 	} else if (rq->balance_callback == &balance_push_callback) {
8111 		rq->balance_callback = NULL;
8112 	}
8113 	rq_unlock_irqrestore(rq, &rf);
8114 }
8115 
8116 /*
8117  * Invoked from a CPUs hotplug control thread after the CPU has been marked
8118  * inactive. All tasks which are not per CPU kernel threads are either
8119  * pushed off this CPU now via balance_push() or placed on a different CPU
8120  * during wakeup. Wait until the CPU is quiescent.
8121  */
balance_hotplug_wait(void)8122 static void balance_hotplug_wait(void)
8123 {
8124 	struct rq *rq = this_rq();
8125 
8126 	rcuwait_wait_event(&rq->hotplug_wait,
8127 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8128 			   TASK_UNINTERRUPTIBLE);
8129 }
8130 
8131 #else
8132 
balance_push(struct rq * rq)8133 static inline void balance_push(struct rq *rq)
8134 {
8135 }
8136 
balance_push_set(int cpu,bool on)8137 static inline void balance_push_set(int cpu, bool on)
8138 {
8139 }
8140 
balance_hotplug_wait(void)8141 static inline void balance_hotplug_wait(void)
8142 {
8143 }
8144 
8145 #endif /* CONFIG_HOTPLUG_CPU */
8146 
set_rq_online(struct rq * rq)8147 void set_rq_online(struct rq *rq)
8148 {
8149 	if (!rq->online) {
8150 		const struct sched_class *class;
8151 
8152 		cpumask_set_cpu(rq->cpu, rq->rd->online);
8153 		rq->online = 1;
8154 
8155 		for_each_class(class) {
8156 			if (class->rq_online)
8157 				class->rq_online(rq);
8158 		}
8159 	}
8160 }
8161 
set_rq_offline(struct rq * rq)8162 void set_rq_offline(struct rq *rq)
8163 {
8164 	if (rq->online) {
8165 		const struct sched_class *class;
8166 
8167 		update_rq_clock(rq);
8168 		for_each_class(class) {
8169 			if (class->rq_offline)
8170 				class->rq_offline(rq);
8171 		}
8172 
8173 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
8174 		rq->online = 0;
8175 	}
8176 }
8177 
sched_set_rq_online(struct rq * rq,int cpu)8178 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8179 {
8180 	struct rq_flags rf;
8181 
8182 	rq_lock_irqsave(rq, &rf);
8183 	if (rq->rd) {
8184 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8185 		set_rq_online(rq);
8186 	}
8187 	rq_unlock_irqrestore(rq, &rf);
8188 }
8189 
sched_set_rq_offline(struct rq * rq,int cpu)8190 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8191 {
8192 	struct rq_flags rf;
8193 
8194 	rq_lock_irqsave(rq, &rf);
8195 	if (rq->rd) {
8196 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8197 		set_rq_offline(rq);
8198 	}
8199 	rq_unlock_irqrestore(rq, &rf);
8200 }
8201 
8202 /*
8203  * used to mark begin/end of suspend/resume:
8204  */
8205 static int num_cpus_frozen;
8206 
8207 /*
8208  * Update cpusets according to cpu_active mask.  If cpusets are
8209  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8210  * around partition_sched_domains().
8211  *
8212  * If we come here as part of a suspend/resume, don't touch cpusets because we
8213  * want to restore it back to its original state upon resume anyway.
8214  */
cpuset_cpu_active(void)8215 static void cpuset_cpu_active(void)
8216 {
8217 	if (cpuhp_tasks_frozen) {
8218 		/*
8219 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
8220 		 * resume sequence. As long as this is not the last online
8221 		 * operation in the resume sequence, just build a single sched
8222 		 * domain, ignoring cpusets.
8223 		 */
8224 		cpuset_reset_sched_domains();
8225 		if (--num_cpus_frozen)
8226 			return;
8227 		/*
8228 		 * This is the last CPU online operation. So fall through and
8229 		 * restore the original sched domains by considering the
8230 		 * cpuset configurations.
8231 		 */
8232 		cpuset_force_rebuild();
8233 	}
8234 	cpuset_update_active_cpus();
8235 }
8236 
cpuset_cpu_inactive(unsigned int cpu)8237 static void cpuset_cpu_inactive(unsigned int cpu)
8238 {
8239 	if (!cpuhp_tasks_frozen) {
8240 		cpuset_update_active_cpus();
8241 	} else {
8242 		num_cpus_frozen++;
8243 		cpuset_reset_sched_domains();
8244 	}
8245 }
8246 
sched_smt_present_inc(int cpu)8247 static inline void sched_smt_present_inc(int cpu)
8248 {
8249 #ifdef CONFIG_SCHED_SMT
8250 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8251 		static_branch_inc_cpuslocked(&sched_smt_present);
8252 #endif
8253 }
8254 
sched_smt_present_dec(int cpu)8255 static inline void sched_smt_present_dec(int cpu)
8256 {
8257 #ifdef CONFIG_SCHED_SMT
8258 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8259 		static_branch_dec_cpuslocked(&sched_smt_present);
8260 #endif
8261 }
8262 
sched_cpu_activate(unsigned int cpu)8263 int sched_cpu_activate(unsigned int cpu)
8264 {
8265 	struct rq *rq = cpu_rq(cpu);
8266 
8267 	/*
8268 	 * Clear the balance_push callback and prepare to schedule
8269 	 * regular tasks.
8270 	 */
8271 	balance_push_set(cpu, false);
8272 
8273 	/*
8274 	 * When going up, increment the number of cores with SMT present.
8275 	 */
8276 	sched_smt_present_inc(cpu);
8277 	set_cpu_active(cpu, true);
8278 
8279 	if (sched_smp_initialized) {
8280 		sched_update_numa(cpu, true);
8281 		sched_domains_numa_masks_set(cpu);
8282 		cpuset_cpu_active();
8283 	}
8284 
8285 	scx_rq_activate(rq);
8286 
8287 	/*
8288 	 * Put the rq online, if not already. This happens:
8289 	 *
8290 	 * 1) In the early boot process, because we build the real domains
8291 	 *    after all CPUs have been brought up.
8292 	 *
8293 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8294 	 *    domains.
8295 	 */
8296 	sched_set_rq_online(rq, cpu);
8297 
8298 	return 0;
8299 }
8300 
sched_cpu_deactivate(unsigned int cpu)8301 int sched_cpu_deactivate(unsigned int cpu)
8302 {
8303 	struct rq *rq = cpu_rq(cpu);
8304 	int ret;
8305 
8306 	ret = dl_bw_deactivate(cpu);
8307 
8308 	if (ret)
8309 		return ret;
8310 
8311 	/*
8312 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8313 	 * load balancing when not active
8314 	 */
8315 	nohz_balance_exit_idle(rq);
8316 
8317 	set_cpu_active(cpu, false);
8318 
8319 	/*
8320 	 * From this point forward, this CPU will refuse to run any task that
8321 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8322 	 * push those tasks away until this gets cleared, see
8323 	 * sched_cpu_dying().
8324 	 */
8325 	balance_push_set(cpu, true);
8326 
8327 	/*
8328 	 * We've cleared cpu_active_mask / set balance_push, wait for all
8329 	 * preempt-disabled and RCU users of this state to go away such that
8330 	 * all new such users will observe it.
8331 	 *
8332 	 * Specifically, we rely on ttwu to no longer target this CPU, see
8333 	 * ttwu_queue_cond() and is_cpu_allowed().
8334 	 *
8335 	 * Do sync before park smpboot threads to take care the RCU boost case.
8336 	 */
8337 	synchronize_rcu();
8338 
8339 	sched_set_rq_offline(rq, cpu);
8340 
8341 	scx_rq_deactivate(rq);
8342 
8343 	/*
8344 	 * When going down, decrement the number of cores with SMT present.
8345 	 */
8346 	sched_smt_present_dec(cpu);
8347 
8348 #ifdef CONFIG_SCHED_SMT
8349 	sched_core_cpu_deactivate(cpu);
8350 #endif
8351 
8352 	if (!sched_smp_initialized)
8353 		return 0;
8354 
8355 	sched_update_numa(cpu, false);
8356 	cpuset_cpu_inactive(cpu);
8357 	sched_domains_numa_masks_clear(cpu);
8358 	return 0;
8359 }
8360 
sched_rq_cpu_starting(unsigned int cpu)8361 static void sched_rq_cpu_starting(unsigned int cpu)
8362 {
8363 	struct rq *rq = cpu_rq(cpu);
8364 
8365 	rq->calc_load_update = calc_load_update;
8366 	update_max_interval();
8367 }
8368 
sched_cpu_starting(unsigned int cpu)8369 int sched_cpu_starting(unsigned int cpu)
8370 {
8371 	sched_core_cpu_starting(cpu);
8372 	sched_rq_cpu_starting(cpu);
8373 	sched_tick_start(cpu);
8374 	return 0;
8375 }
8376 
8377 #ifdef CONFIG_HOTPLUG_CPU
8378 
8379 /*
8380  * Invoked immediately before the stopper thread is invoked to bring the
8381  * CPU down completely. At this point all per CPU kthreads except the
8382  * hotplug thread (current) and the stopper thread (inactive) have been
8383  * either parked or have been unbound from the outgoing CPU. Ensure that
8384  * any of those which might be on the way out are gone.
8385  *
8386  * If after this point a bound task is being woken on this CPU then the
8387  * responsible hotplug callback has failed to do it's job.
8388  * sched_cpu_dying() will catch it with the appropriate fireworks.
8389  */
sched_cpu_wait_empty(unsigned int cpu)8390 int sched_cpu_wait_empty(unsigned int cpu)
8391 {
8392 	balance_hotplug_wait();
8393 	sched_force_init_mm();
8394 	return 0;
8395 }
8396 
8397 /*
8398  * Since this CPU is going 'away' for a while, fold any nr_active delta we
8399  * might have. Called from the CPU stopper task after ensuring that the
8400  * stopper is the last running task on the CPU, so nr_active count is
8401  * stable. We need to take the tear-down thread which is calling this into
8402  * account, so we hand in adjust = 1 to the load calculation.
8403  *
8404  * Also see the comment "Global load-average calculations".
8405  */
calc_load_migrate(struct rq * rq)8406 static void calc_load_migrate(struct rq *rq)
8407 {
8408 	long delta = calc_load_fold_active(rq, 1);
8409 
8410 	if (delta)
8411 		atomic_long_add(delta, &calc_load_tasks);
8412 }
8413 
dump_rq_tasks(struct rq * rq,const char * loglvl)8414 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8415 {
8416 	struct task_struct *g, *p;
8417 	int cpu = cpu_of(rq);
8418 
8419 	lockdep_assert_rq_held(rq);
8420 
8421 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8422 	for_each_process_thread(g, p) {
8423 		if (task_cpu(p) != cpu)
8424 			continue;
8425 
8426 		if (!task_on_rq_queued(p))
8427 			continue;
8428 
8429 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8430 	}
8431 }
8432 
sched_cpu_dying(unsigned int cpu)8433 int sched_cpu_dying(unsigned int cpu)
8434 {
8435 	struct rq *rq = cpu_rq(cpu);
8436 	struct rq_flags rf;
8437 
8438 	/* Handle pending wakeups and then migrate everything off */
8439 	sched_tick_stop(cpu);
8440 
8441 	rq_lock_irqsave(rq, &rf);
8442 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8443 		WARN(true, "Dying CPU not properly vacated!");
8444 		dump_rq_tasks(rq, KERN_WARNING);
8445 	}
8446 	rq_unlock_irqrestore(rq, &rf);
8447 
8448 	calc_load_migrate(rq);
8449 	update_max_interval();
8450 	hrtick_clear(rq);
8451 	sched_core_cpu_dying(cpu);
8452 	return 0;
8453 }
8454 #endif
8455 
sched_init_smp(void)8456 void __init sched_init_smp(void)
8457 {
8458 	sched_init_numa(NUMA_NO_NODE);
8459 
8460 	/*
8461 	 * There's no userspace yet to cause hotplug operations; hence all the
8462 	 * CPU masks are stable and all blatant races in the below code cannot
8463 	 * happen.
8464 	 */
8465 	sched_domains_mutex_lock();
8466 	sched_init_domains(cpu_active_mask);
8467 	sched_domains_mutex_unlock();
8468 
8469 	/* Move init over to a non-isolated CPU */
8470 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8471 		BUG();
8472 	current->flags &= ~PF_NO_SETAFFINITY;
8473 	sched_init_granularity();
8474 
8475 	init_sched_rt_class();
8476 	init_sched_dl_class();
8477 
8478 	sched_smp_initialized = true;
8479 }
8480 
migration_init(void)8481 static int __init migration_init(void)
8482 {
8483 	sched_cpu_starting(smp_processor_id());
8484 	return 0;
8485 }
8486 early_initcall(migration_init);
8487 
8488 #else
sched_init_smp(void)8489 void __init sched_init_smp(void)
8490 {
8491 	sched_init_granularity();
8492 }
8493 #endif /* CONFIG_SMP */
8494 
in_sched_functions(unsigned long addr)8495 int in_sched_functions(unsigned long addr)
8496 {
8497 	return in_lock_functions(addr) ||
8498 		(addr >= (unsigned long)__sched_text_start
8499 		&& addr < (unsigned long)__sched_text_end);
8500 }
8501 
8502 #ifdef CONFIG_CGROUP_SCHED
8503 /*
8504  * Default task group.
8505  * Every task in system belongs to this group at bootup.
8506  */
8507 struct task_group root_task_group;
8508 LIST_HEAD(task_groups);
8509 
8510 /* Cacheline aligned slab cache for task_group */
8511 static struct kmem_cache *task_group_cache __ro_after_init;
8512 #endif
8513 
sched_init(void)8514 void __init sched_init(void)
8515 {
8516 	unsigned long ptr = 0;
8517 	int i;
8518 
8519 	/* Make sure the linker didn't screw up */
8520 #ifdef CONFIG_SMP
8521 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8522 #endif
8523 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8524 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8525 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8526 #ifdef CONFIG_SCHED_CLASS_EXT
8527 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8528 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8529 #endif
8530 
8531 	wait_bit_init();
8532 
8533 #ifdef CONFIG_FAIR_GROUP_SCHED
8534 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8535 #endif
8536 #ifdef CONFIG_RT_GROUP_SCHED
8537 	ptr += 2 * nr_cpu_ids * sizeof(void **);
8538 #endif
8539 	if (ptr) {
8540 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8541 
8542 #ifdef CONFIG_FAIR_GROUP_SCHED
8543 		root_task_group.se = (struct sched_entity **)ptr;
8544 		ptr += nr_cpu_ids * sizeof(void **);
8545 
8546 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8547 		ptr += nr_cpu_ids * sizeof(void **);
8548 
8549 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8550 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8551 #endif /* CONFIG_FAIR_GROUP_SCHED */
8552 #ifdef CONFIG_EXT_GROUP_SCHED
8553 		scx_tg_init(&root_task_group);
8554 #endif /* CONFIG_EXT_GROUP_SCHED */
8555 #ifdef CONFIG_RT_GROUP_SCHED
8556 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8557 		ptr += nr_cpu_ids * sizeof(void **);
8558 
8559 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8560 		ptr += nr_cpu_ids * sizeof(void **);
8561 
8562 #endif /* CONFIG_RT_GROUP_SCHED */
8563 	}
8564 
8565 #ifdef CONFIG_SMP
8566 	init_defrootdomain();
8567 #endif
8568 
8569 #ifdef CONFIG_RT_GROUP_SCHED
8570 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8571 			global_rt_period(), global_rt_runtime());
8572 #endif /* CONFIG_RT_GROUP_SCHED */
8573 
8574 #ifdef CONFIG_CGROUP_SCHED
8575 	task_group_cache = KMEM_CACHE(task_group, 0);
8576 
8577 	list_add(&root_task_group.list, &task_groups);
8578 	INIT_LIST_HEAD(&root_task_group.children);
8579 	INIT_LIST_HEAD(&root_task_group.siblings);
8580 	autogroup_init(&init_task);
8581 #endif /* CONFIG_CGROUP_SCHED */
8582 
8583 	for_each_possible_cpu(i) {
8584 		struct rq *rq;
8585 
8586 		rq = cpu_rq(i);
8587 		raw_spin_lock_init(&rq->__lock);
8588 		rq->nr_running = 0;
8589 		rq->calc_load_active = 0;
8590 		rq->calc_load_update = jiffies + LOAD_FREQ;
8591 		init_cfs_rq(&rq->cfs);
8592 		init_rt_rq(&rq->rt);
8593 		init_dl_rq(&rq->dl);
8594 #ifdef CONFIG_FAIR_GROUP_SCHED
8595 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8596 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8597 		/*
8598 		 * How much CPU bandwidth does root_task_group get?
8599 		 *
8600 		 * In case of task-groups formed through the cgroup filesystem, it
8601 		 * gets 100% of the CPU resources in the system. This overall
8602 		 * system CPU resource is divided among the tasks of
8603 		 * root_task_group and its child task-groups in a fair manner,
8604 		 * based on each entity's (task or task-group's) weight
8605 		 * (se->load.weight).
8606 		 *
8607 		 * In other words, if root_task_group has 10 tasks of weight
8608 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8609 		 * then A0's share of the CPU resource is:
8610 		 *
8611 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8612 		 *
8613 		 * We achieve this by letting root_task_group's tasks sit
8614 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8615 		 */
8616 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8617 #endif /* CONFIG_FAIR_GROUP_SCHED */
8618 
8619 #ifdef CONFIG_RT_GROUP_SCHED
8620 		/*
8621 		 * This is required for init cpu because rt.c:__enable_runtime()
8622 		 * starts working after scheduler_running, which is not the case
8623 		 * yet.
8624 		 */
8625 		rq->rt.rt_runtime = global_rt_runtime();
8626 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8627 #endif
8628 #ifdef CONFIG_SMP
8629 		rq->sd = NULL;
8630 		rq->rd = NULL;
8631 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8632 		rq->balance_callback = &balance_push_callback;
8633 		rq->active_balance = 0;
8634 		rq->next_balance = jiffies;
8635 		rq->push_cpu = 0;
8636 		rq->cpu = i;
8637 		rq->online = 0;
8638 		rq->idle_stamp = 0;
8639 		rq->avg_idle = 2*sysctl_sched_migration_cost;
8640 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8641 
8642 		INIT_LIST_HEAD(&rq->cfs_tasks);
8643 
8644 		rq_attach_root(rq, &def_root_domain);
8645 #ifdef CONFIG_NO_HZ_COMMON
8646 		rq->last_blocked_load_update_tick = jiffies;
8647 		atomic_set(&rq->nohz_flags, 0);
8648 
8649 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8650 #endif
8651 #ifdef CONFIG_HOTPLUG_CPU
8652 		rcuwait_init(&rq->hotplug_wait);
8653 #endif
8654 #endif /* CONFIG_SMP */
8655 		hrtick_rq_init(rq);
8656 		atomic_set(&rq->nr_iowait, 0);
8657 		fair_server_init(rq);
8658 
8659 #ifdef CONFIG_SCHED_CORE
8660 		rq->core = rq;
8661 		rq->core_pick = NULL;
8662 		rq->core_dl_server = NULL;
8663 		rq->core_enabled = 0;
8664 		rq->core_tree = RB_ROOT;
8665 		rq->core_forceidle_count = 0;
8666 		rq->core_forceidle_occupation = 0;
8667 		rq->core_forceidle_start = 0;
8668 
8669 		rq->core_cookie = 0UL;
8670 #endif
8671 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8672 	}
8673 
8674 	set_load_weight(&init_task, false);
8675 	init_task.se.slice = sysctl_sched_base_slice,
8676 
8677 	/*
8678 	 * The boot idle thread does lazy MMU switching as well:
8679 	 */
8680 	mmgrab_lazy_tlb(&init_mm);
8681 	enter_lazy_tlb(&init_mm, current);
8682 
8683 	/*
8684 	 * The idle task doesn't need the kthread struct to function, but it
8685 	 * is dressed up as a per-CPU kthread and thus needs to play the part
8686 	 * if we want to avoid special-casing it in code that deals with per-CPU
8687 	 * kthreads.
8688 	 */
8689 	WARN_ON(!set_kthread_struct(current));
8690 
8691 	/*
8692 	 * Make us the idle thread. Technically, schedule() should not be
8693 	 * called from this thread, however somewhere below it might be,
8694 	 * but because we are the idle thread, we just pick up running again
8695 	 * when this runqueue becomes "idle".
8696 	 */
8697 	__sched_fork(0, current);
8698 	init_idle(current, smp_processor_id());
8699 
8700 	calc_load_update = jiffies + LOAD_FREQ;
8701 
8702 #ifdef CONFIG_SMP
8703 	idle_thread_set_boot_cpu();
8704 	balance_push_set(smp_processor_id(), false);
8705 #endif
8706 	init_sched_fair_class();
8707 	init_sched_ext_class();
8708 
8709 	psi_init();
8710 
8711 	init_uclamp();
8712 
8713 	preempt_dynamic_init();
8714 
8715 	scheduler_running = 1;
8716 }
8717 
8718 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8719 
__might_sleep(const char * file,int line)8720 void __might_sleep(const char *file, int line)
8721 {
8722 	unsigned int state = get_current_state();
8723 	/*
8724 	 * Blocking primitives will set (and therefore destroy) current->state,
8725 	 * since we will exit with TASK_RUNNING make sure we enter with it,
8726 	 * otherwise we will destroy state.
8727 	 */
8728 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8729 			"do not call blocking ops when !TASK_RUNNING; "
8730 			"state=%x set at [<%p>] %pS\n", state,
8731 			(void *)current->task_state_change,
8732 			(void *)current->task_state_change);
8733 
8734 	__might_resched(file, line, 0);
8735 }
8736 EXPORT_SYMBOL(__might_sleep);
8737 
print_preempt_disable_ip(int preempt_offset,unsigned long ip)8738 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8739 {
8740 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8741 		return;
8742 
8743 	if (preempt_count() == preempt_offset)
8744 		return;
8745 
8746 	pr_err("Preemption disabled at:");
8747 	print_ip_sym(KERN_ERR, ip);
8748 }
8749 
resched_offsets_ok(unsigned int offsets)8750 static inline bool resched_offsets_ok(unsigned int offsets)
8751 {
8752 	unsigned int nested = preempt_count();
8753 
8754 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8755 
8756 	return nested == offsets;
8757 }
8758 
__might_resched(const char * file,int line,unsigned int offsets)8759 void __might_resched(const char *file, int line, unsigned int offsets)
8760 {
8761 	/* Ratelimiting timestamp: */
8762 	static unsigned long prev_jiffy;
8763 
8764 	unsigned long preempt_disable_ip;
8765 
8766 	/* WARN_ON_ONCE() by default, no rate limit required: */
8767 	rcu_sleep_check();
8768 
8769 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8770 	     !is_idle_task(current) && !current->non_block_count) ||
8771 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8772 	    oops_in_progress)
8773 		return;
8774 
8775 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8776 		return;
8777 	prev_jiffy = jiffies;
8778 
8779 	/* Save this before calling printk(), since that will clobber it: */
8780 	preempt_disable_ip = get_preempt_disable_ip(current);
8781 
8782 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8783 	       file, line);
8784 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8785 	       in_atomic(), irqs_disabled(), current->non_block_count,
8786 	       current->pid, current->comm);
8787 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8788 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
8789 
8790 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8791 		pr_err("RCU nest depth: %d, expected: %u\n",
8792 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8793 	}
8794 
8795 	if (task_stack_end_corrupted(current))
8796 		pr_emerg("Thread overran stack, or stack corrupted\n");
8797 
8798 	debug_show_held_locks(current);
8799 	if (irqs_disabled())
8800 		print_irqtrace_events(current);
8801 
8802 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8803 				 preempt_disable_ip);
8804 
8805 	dump_stack();
8806 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8807 }
8808 EXPORT_SYMBOL(__might_resched);
8809 
__cant_sleep(const char * file,int line,int preempt_offset)8810 void __cant_sleep(const char *file, int line, int preempt_offset)
8811 {
8812 	static unsigned long prev_jiffy;
8813 
8814 	if (irqs_disabled())
8815 		return;
8816 
8817 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8818 		return;
8819 
8820 	if (preempt_count() > preempt_offset)
8821 		return;
8822 
8823 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8824 		return;
8825 	prev_jiffy = jiffies;
8826 
8827 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8828 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8829 			in_atomic(), irqs_disabled(),
8830 			current->pid, current->comm);
8831 
8832 	debug_show_held_locks(current);
8833 	dump_stack();
8834 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8835 }
8836 EXPORT_SYMBOL_GPL(__cant_sleep);
8837 
8838 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)8839 void __cant_migrate(const char *file, int line)
8840 {
8841 	static unsigned long prev_jiffy;
8842 
8843 	if (irqs_disabled())
8844 		return;
8845 
8846 	if (is_migration_disabled(current))
8847 		return;
8848 
8849 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8850 		return;
8851 
8852 	if (preempt_count() > 0)
8853 		return;
8854 
8855 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8856 		return;
8857 	prev_jiffy = jiffies;
8858 
8859 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8860 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8861 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
8862 	       current->pid, current->comm);
8863 
8864 	debug_show_held_locks(current);
8865 	dump_stack();
8866 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8867 }
8868 EXPORT_SYMBOL_GPL(__cant_migrate);
8869 #endif
8870 #endif
8871 
8872 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)8873 void normalize_rt_tasks(void)
8874 {
8875 	struct task_struct *g, *p;
8876 	struct sched_attr attr = {
8877 		.sched_policy = SCHED_NORMAL,
8878 	};
8879 
8880 	read_lock(&tasklist_lock);
8881 	for_each_process_thread(g, p) {
8882 		/*
8883 		 * Only normalize user tasks:
8884 		 */
8885 		if (p->flags & PF_KTHREAD)
8886 			continue;
8887 
8888 		p->se.exec_start = 0;
8889 		schedstat_set(p->stats.wait_start,  0);
8890 		schedstat_set(p->stats.sleep_start, 0);
8891 		schedstat_set(p->stats.block_start, 0);
8892 
8893 		if (!rt_or_dl_task(p)) {
8894 			/*
8895 			 * Renice negative nice level userspace
8896 			 * tasks back to 0:
8897 			 */
8898 			if (task_nice(p) < 0)
8899 				set_user_nice(p, 0);
8900 			continue;
8901 		}
8902 
8903 		__sched_setscheduler(p, &attr, false, false);
8904 	}
8905 	read_unlock(&tasklist_lock);
8906 }
8907 
8908 #endif /* CONFIG_MAGIC_SYSRQ */
8909 
8910 #if defined(CONFIG_KGDB_KDB)
8911 /*
8912  * These functions are only useful for KDB.
8913  *
8914  * They can only be called when the whole system has been
8915  * stopped - every CPU needs to be quiescent, and no scheduling
8916  * activity can take place. Using them for anything else would
8917  * be a serious bug, and as a result, they aren't even visible
8918  * under any other configuration.
8919  */
8920 
8921 /**
8922  * curr_task - return the current task for a given CPU.
8923  * @cpu: the processor in question.
8924  *
8925  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8926  *
8927  * Return: The current task for @cpu.
8928  */
curr_task(int cpu)8929 struct task_struct *curr_task(int cpu)
8930 {
8931 	return cpu_curr(cpu);
8932 }
8933 
8934 #endif /* defined(CONFIG_KGDB_KDB) */
8935 
8936 #ifdef CONFIG_CGROUP_SCHED
8937 /* task_group_lock serializes the addition/removal of task groups */
8938 static DEFINE_SPINLOCK(task_group_lock);
8939 
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)8940 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8941 					    struct task_group *parent)
8942 {
8943 #ifdef CONFIG_UCLAMP_TASK_GROUP
8944 	enum uclamp_id clamp_id;
8945 
8946 	for_each_clamp_id(clamp_id) {
8947 		uclamp_se_set(&tg->uclamp_req[clamp_id],
8948 			      uclamp_none(clamp_id), false);
8949 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8950 	}
8951 #endif
8952 }
8953 
sched_free_group(struct task_group * tg)8954 static void sched_free_group(struct task_group *tg)
8955 {
8956 	free_fair_sched_group(tg);
8957 	free_rt_sched_group(tg);
8958 	autogroup_free(tg);
8959 	kmem_cache_free(task_group_cache, tg);
8960 }
8961 
sched_free_group_rcu(struct rcu_head * rcu)8962 static void sched_free_group_rcu(struct rcu_head *rcu)
8963 {
8964 	sched_free_group(container_of(rcu, struct task_group, rcu));
8965 }
8966 
sched_unregister_group(struct task_group * tg)8967 static void sched_unregister_group(struct task_group *tg)
8968 {
8969 	unregister_fair_sched_group(tg);
8970 	unregister_rt_sched_group(tg);
8971 	/*
8972 	 * We have to wait for yet another RCU grace period to expire, as
8973 	 * print_cfs_stats() might run concurrently.
8974 	 */
8975 	call_rcu(&tg->rcu, sched_free_group_rcu);
8976 }
8977 
8978 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8979 struct task_group *sched_create_group(struct task_group *parent)
8980 {
8981 	struct task_group *tg;
8982 
8983 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8984 	if (!tg)
8985 		return ERR_PTR(-ENOMEM);
8986 
8987 	if (!alloc_fair_sched_group(tg, parent))
8988 		goto err;
8989 
8990 	if (!alloc_rt_sched_group(tg, parent))
8991 		goto err;
8992 
8993 	scx_tg_init(tg);
8994 	alloc_uclamp_sched_group(tg, parent);
8995 
8996 	return tg;
8997 
8998 err:
8999 	sched_free_group(tg);
9000 	return ERR_PTR(-ENOMEM);
9001 }
9002 
sched_online_group(struct task_group * tg,struct task_group * parent)9003 void sched_online_group(struct task_group *tg, struct task_group *parent)
9004 {
9005 	unsigned long flags;
9006 
9007 	spin_lock_irqsave(&task_group_lock, flags);
9008 	list_add_tail_rcu(&tg->list, &task_groups);
9009 
9010 	/* Root should already exist: */
9011 	WARN_ON(!parent);
9012 
9013 	tg->parent = parent;
9014 	INIT_LIST_HEAD(&tg->children);
9015 	list_add_rcu(&tg->siblings, &parent->children);
9016 	spin_unlock_irqrestore(&task_group_lock, flags);
9017 
9018 	online_fair_sched_group(tg);
9019 }
9020 
9021 /* RCU callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)9022 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9023 {
9024 	/* Now it should be safe to free those cfs_rqs: */
9025 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
9026 }
9027 
sched_destroy_group(struct task_group * tg)9028 void sched_destroy_group(struct task_group *tg)
9029 {
9030 	/* Wait for possible concurrent references to cfs_rqs complete: */
9031 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
9032 }
9033 
sched_release_group(struct task_group * tg)9034 void sched_release_group(struct task_group *tg)
9035 {
9036 	unsigned long flags;
9037 
9038 	/*
9039 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9040 	 * sched_cfs_period_timer()).
9041 	 *
9042 	 * For this to be effective, we have to wait for all pending users of
9043 	 * this task group to leave their RCU critical section to ensure no new
9044 	 * user will see our dying task group any more. Specifically ensure
9045 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9046 	 *
9047 	 * We therefore defer calling unregister_fair_sched_group() to
9048 	 * sched_unregister_group() which is guarantied to get called only after the
9049 	 * current RCU grace period has expired.
9050 	 */
9051 	spin_lock_irqsave(&task_group_lock, flags);
9052 	list_del_rcu(&tg->list);
9053 	list_del_rcu(&tg->siblings);
9054 	spin_unlock_irqrestore(&task_group_lock, flags);
9055 }
9056 
sched_change_group(struct task_struct * tsk)9057 static void sched_change_group(struct task_struct *tsk)
9058 {
9059 	struct task_group *tg;
9060 
9061 	/*
9062 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
9063 	 * which is pointless here. Thus, we pass "true" to task_css_check()
9064 	 * to prevent lockdep warnings.
9065 	 */
9066 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9067 			  struct task_group, css);
9068 	tg = autogroup_task_group(tsk, tg);
9069 	tsk->sched_task_group = tg;
9070 
9071 #ifdef CONFIG_FAIR_GROUP_SCHED
9072 	if (tsk->sched_class->task_change_group)
9073 		tsk->sched_class->task_change_group(tsk);
9074 	else
9075 #endif
9076 		set_task_rq(tsk, task_cpu(tsk));
9077 }
9078 
9079 /*
9080  * Change task's runqueue when it moves between groups.
9081  *
9082  * The caller of this function should have put the task in its new group by
9083  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9084  * its new group.
9085  */
sched_move_task(struct task_struct * tsk,bool for_autogroup)9086 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9087 {
9088 	int queued, running, queue_flags =
9089 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9090 	struct rq *rq;
9091 
9092 	CLASS(task_rq_lock, rq_guard)(tsk);
9093 	rq = rq_guard.rq;
9094 
9095 	update_rq_clock(rq);
9096 
9097 	running = task_current_donor(rq, tsk);
9098 	queued = task_on_rq_queued(tsk);
9099 
9100 	if (queued)
9101 		dequeue_task(rq, tsk, queue_flags);
9102 	if (running)
9103 		put_prev_task(rq, tsk);
9104 
9105 	sched_change_group(tsk);
9106 	if (!for_autogroup)
9107 		scx_cgroup_move_task(tsk);
9108 
9109 	if (queued)
9110 		enqueue_task(rq, tsk, queue_flags);
9111 	if (running) {
9112 		set_next_task(rq, tsk);
9113 		/*
9114 		 * After changing group, the running task may have joined a
9115 		 * throttled one but it's still the running task. Trigger a
9116 		 * resched to make sure that task can still run.
9117 		 */
9118 		resched_curr(rq);
9119 	}
9120 }
9121 
9122 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)9123 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9124 {
9125 	struct task_group *parent = css_tg(parent_css);
9126 	struct task_group *tg;
9127 
9128 	if (!parent) {
9129 		/* This is early initialization for the top cgroup */
9130 		return &root_task_group.css;
9131 	}
9132 
9133 	tg = sched_create_group(parent);
9134 	if (IS_ERR(tg))
9135 		return ERR_PTR(-ENOMEM);
9136 
9137 	return &tg->css;
9138 }
9139 
9140 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)9141 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9142 {
9143 	struct task_group *tg = css_tg(css);
9144 	struct task_group *parent = css_tg(css->parent);
9145 	int ret;
9146 
9147 	ret = scx_tg_online(tg);
9148 	if (ret)
9149 		return ret;
9150 
9151 	if (parent)
9152 		sched_online_group(tg, parent);
9153 
9154 #ifdef CONFIG_UCLAMP_TASK_GROUP
9155 	/* Propagate the effective uclamp value for the new group */
9156 	guard(mutex)(&uclamp_mutex);
9157 	guard(rcu)();
9158 	cpu_util_update_eff(css);
9159 #endif
9160 
9161 	return 0;
9162 }
9163 
cpu_cgroup_css_offline(struct cgroup_subsys_state * css)9164 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9165 {
9166 	struct task_group *tg = css_tg(css);
9167 
9168 	scx_tg_offline(tg);
9169 }
9170 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)9171 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9172 {
9173 	struct task_group *tg = css_tg(css);
9174 
9175 	sched_release_group(tg);
9176 }
9177 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)9178 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9179 {
9180 	struct task_group *tg = css_tg(css);
9181 
9182 	/*
9183 	 * Relies on the RCU grace period between css_released() and this.
9184 	 */
9185 	sched_unregister_group(tg);
9186 }
9187 
cpu_cgroup_can_attach(struct cgroup_taskset * tset)9188 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9189 {
9190 #ifdef CONFIG_RT_GROUP_SCHED
9191 	struct task_struct *task;
9192 	struct cgroup_subsys_state *css;
9193 
9194 	if (!rt_group_sched_enabled())
9195 		goto scx_check;
9196 
9197 	cgroup_taskset_for_each(task, css, tset) {
9198 		if (!sched_rt_can_attach(css_tg(css), task))
9199 			return -EINVAL;
9200 	}
9201 scx_check:
9202 #endif /* CONFIG_RT_GROUP_SCHED */
9203 	return scx_cgroup_can_attach(tset);
9204 }
9205 
cpu_cgroup_attach(struct cgroup_taskset * tset)9206 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9207 {
9208 	struct task_struct *task;
9209 	struct cgroup_subsys_state *css;
9210 
9211 	cgroup_taskset_for_each(task, css, tset)
9212 		sched_move_task(task, false);
9213 
9214 	scx_cgroup_finish_attach();
9215 }
9216 
cpu_cgroup_cancel_attach(struct cgroup_taskset * tset)9217 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9218 {
9219 	scx_cgroup_cancel_attach(tset);
9220 }
9221 
9222 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)9223 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9224 {
9225 	struct cgroup_subsys_state *top_css = css;
9226 	struct uclamp_se *uc_parent = NULL;
9227 	struct uclamp_se *uc_se = NULL;
9228 	unsigned int eff[UCLAMP_CNT];
9229 	enum uclamp_id clamp_id;
9230 	unsigned int clamps;
9231 
9232 	lockdep_assert_held(&uclamp_mutex);
9233 	WARN_ON_ONCE(!rcu_read_lock_held());
9234 
9235 	css_for_each_descendant_pre(css, top_css) {
9236 		uc_parent = css_tg(css)->parent
9237 			? css_tg(css)->parent->uclamp : NULL;
9238 
9239 		for_each_clamp_id(clamp_id) {
9240 			/* Assume effective clamps matches requested clamps */
9241 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9242 			/* Cap effective clamps with parent's effective clamps */
9243 			if (uc_parent &&
9244 			    eff[clamp_id] > uc_parent[clamp_id].value) {
9245 				eff[clamp_id] = uc_parent[clamp_id].value;
9246 			}
9247 		}
9248 		/* Ensure protection is always capped by limit */
9249 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9250 
9251 		/* Propagate most restrictive effective clamps */
9252 		clamps = 0x0;
9253 		uc_se = css_tg(css)->uclamp;
9254 		for_each_clamp_id(clamp_id) {
9255 			if (eff[clamp_id] == uc_se[clamp_id].value)
9256 				continue;
9257 			uc_se[clamp_id].value = eff[clamp_id];
9258 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9259 			clamps |= (0x1 << clamp_id);
9260 		}
9261 		if (!clamps) {
9262 			css = css_rightmost_descendant(css);
9263 			continue;
9264 		}
9265 
9266 		/* Immediately update descendants RUNNABLE tasks */
9267 		uclamp_update_active_tasks(css);
9268 	}
9269 }
9270 
9271 /*
9272  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9273  * C expression. Since there is no way to convert a macro argument (N) into a
9274  * character constant, use two levels of macros.
9275  */
9276 #define _POW10(exp) ((unsigned int)1e##exp)
9277 #define POW10(exp) _POW10(exp)
9278 
9279 struct uclamp_request {
9280 #define UCLAMP_PERCENT_SHIFT	2
9281 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
9282 	s64 percent;
9283 	u64 util;
9284 	int ret;
9285 };
9286 
9287 static inline struct uclamp_request
capacity_from_percent(char * buf)9288 capacity_from_percent(char *buf)
9289 {
9290 	struct uclamp_request req = {
9291 		.percent = UCLAMP_PERCENT_SCALE,
9292 		.util = SCHED_CAPACITY_SCALE,
9293 		.ret = 0,
9294 	};
9295 
9296 	buf = strim(buf);
9297 	if (strcmp(buf, "max")) {
9298 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9299 					     &req.percent);
9300 		if (req.ret)
9301 			return req;
9302 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9303 			req.ret = -ERANGE;
9304 			return req;
9305 		}
9306 
9307 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
9308 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9309 	}
9310 
9311 	return req;
9312 }
9313 
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)9314 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9315 				size_t nbytes, loff_t off,
9316 				enum uclamp_id clamp_id)
9317 {
9318 	struct uclamp_request req;
9319 	struct task_group *tg;
9320 
9321 	req = capacity_from_percent(buf);
9322 	if (req.ret)
9323 		return req.ret;
9324 
9325 	sched_uclamp_enable();
9326 
9327 	guard(mutex)(&uclamp_mutex);
9328 	guard(rcu)();
9329 
9330 	tg = css_tg(of_css(of));
9331 	if (tg->uclamp_req[clamp_id].value != req.util)
9332 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9333 
9334 	/*
9335 	 * Because of not recoverable conversion rounding we keep track of the
9336 	 * exact requested value
9337 	 */
9338 	tg->uclamp_pct[clamp_id] = req.percent;
9339 
9340 	/* Update effective clamps to track the most restrictive value */
9341 	cpu_util_update_eff(of_css(of));
9342 
9343 	return nbytes;
9344 }
9345 
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9346 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9347 				    char *buf, size_t nbytes,
9348 				    loff_t off)
9349 {
9350 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9351 }
9352 
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9353 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9354 				    char *buf, size_t nbytes,
9355 				    loff_t off)
9356 {
9357 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9358 }
9359 
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)9360 static inline void cpu_uclamp_print(struct seq_file *sf,
9361 				    enum uclamp_id clamp_id)
9362 {
9363 	struct task_group *tg;
9364 	u64 util_clamp;
9365 	u64 percent;
9366 	u32 rem;
9367 
9368 	scoped_guard (rcu) {
9369 		tg = css_tg(seq_css(sf));
9370 		util_clamp = tg->uclamp_req[clamp_id].value;
9371 	}
9372 
9373 	if (util_clamp == SCHED_CAPACITY_SCALE) {
9374 		seq_puts(sf, "max\n");
9375 		return;
9376 	}
9377 
9378 	percent = tg->uclamp_pct[clamp_id];
9379 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9380 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9381 }
9382 
cpu_uclamp_min_show(struct seq_file * sf,void * v)9383 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9384 {
9385 	cpu_uclamp_print(sf, UCLAMP_MIN);
9386 	return 0;
9387 }
9388 
cpu_uclamp_max_show(struct seq_file * sf,void * v)9389 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9390 {
9391 	cpu_uclamp_print(sf, UCLAMP_MAX);
9392 	return 0;
9393 }
9394 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9395 
9396 #ifdef CONFIG_GROUP_SCHED_WEIGHT
tg_weight(struct task_group * tg)9397 static unsigned long tg_weight(struct task_group *tg)
9398 {
9399 #ifdef CONFIG_FAIR_GROUP_SCHED
9400 	return scale_load_down(tg->shares);
9401 #else
9402 	return sched_weight_from_cgroup(tg->scx_weight);
9403 #endif
9404 }
9405 
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)9406 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9407 				struct cftype *cftype, u64 shareval)
9408 {
9409 	int ret;
9410 
9411 	if (shareval > scale_load_down(ULONG_MAX))
9412 		shareval = MAX_SHARES;
9413 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9414 	if (!ret)
9415 		scx_group_set_weight(css_tg(css),
9416 				     sched_weight_to_cgroup(shareval));
9417 	return ret;
9418 }
9419 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9420 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9421 			       struct cftype *cft)
9422 {
9423 	return tg_weight(css_tg(css));
9424 }
9425 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9426 
9427 #ifdef CONFIG_CFS_BANDWIDTH
9428 static DEFINE_MUTEX(cfs_constraints_mutex);
9429 
9430 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9431 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9432 /* More than 203 days if BW_SHIFT equals 20. */
9433 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9434 
9435 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9436 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)9437 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9438 				u64 burst)
9439 {
9440 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
9441 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9442 
9443 	if (tg == &root_task_group)
9444 		return -EINVAL;
9445 
9446 	/*
9447 	 * Ensure we have at some amount of bandwidth every period.  This is
9448 	 * to prevent reaching a state of large arrears when throttled via
9449 	 * entity_tick() resulting in prolonged exit starvation.
9450 	 */
9451 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9452 		return -EINVAL;
9453 
9454 	/*
9455 	 * Likewise, bound things on the other side by preventing insane quota
9456 	 * periods.  This also allows us to normalize in computing quota
9457 	 * feasibility.
9458 	 */
9459 	if (period > max_cfs_quota_period)
9460 		return -EINVAL;
9461 
9462 	/*
9463 	 * Bound quota to defend quota against overflow during bandwidth shift.
9464 	 */
9465 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9466 		return -EINVAL;
9467 
9468 	if (quota != RUNTIME_INF && (burst > quota ||
9469 				     burst + quota > max_cfs_runtime))
9470 		return -EINVAL;
9471 
9472 	/*
9473 	 * Prevent race between setting of cfs_rq->runtime_enabled and
9474 	 * unthrottle_offline_cfs_rqs().
9475 	 */
9476 	guard(cpus_read_lock)();
9477 	guard(mutex)(&cfs_constraints_mutex);
9478 
9479 	ret = __cfs_schedulable(tg, period, quota);
9480 	if (ret)
9481 		return ret;
9482 
9483 	runtime_enabled = quota != RUNTIME_INF;
9484 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9485 	/*
9486 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
9487 	 * before making related changes, and on->off must occur afterwards
9488 	 */
9489 	if (runtime_enabled && !runtime_was_enabled)
9490 		cfs_bandwidth_usage_inc();
9491 
9492 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9493 		cfs_b->period = ns_to_ktime(period);
9494 		cfs_b->quota = quota;
9495 		cfs_b->burst = burst;
9496 
9497 		__refill_cfs_bandwidth_runtime(cfs_b);
9498 
9499 		/*
9500 		 * Restart the period timer (if active) to handle new
9501 		 * period expiry:
9502 		 */
9503 		if (runtime_enabled)
9504 			start_cfs_bandwidth(cfs_b);
9505 	}
9506 
9507 	for_each_online_cpu(i) {
9508 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9509 		struct rq *rq = cfs_rq->rq;
9510 
9511 		guard(rq_lock_irq)(rq);
9512 		cfs_rq->runtime_enabled = runtime_enabled;
9513 		cfs_rq->runtime_remaining = 0;
9514 
9515 		if (cfs_rq->throttled)
9516 			unthrottle_cfs_rq(cfs_rq);
9517 	}
9518 
9519 	if (runtime_was_enabled && !runtime_enabled)
9520 		cfs_bandwidth_usage_dec();
9521 
9522 	return 0;
9523 }
9524 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)9525 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9526 {
9527 	u64 quota, period, burst;
9528 
9529 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9530 	burst = tg->cfs_bandwidth.burst;
9531 	if (cfs_quota_us < 0)
9532 		quota = RUNTIME_INF;
9533 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9534 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9535 	else
9536 		return -EINVAL;
9537 
9538 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9539 }
9540 
tg_get_cfs_quota(struct task_group * tg)9541 static long tg_get_cfs_quota(struct task_group *tg)
9542 {
9543 	u64 quota_us;
9544 
9545 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9546 		return -1;
9547 
9548 	quota_us = tg->cfs_bandwidth.quota;
9549 	do_div(quota_us, NSEC_PER_USEC);
9550 
9551 	return quota_us;
9552 }
9553 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)9554 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9555 {
9556 	u64 quota, period, burst;
9557 
9558 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9559 		return -EINVAL;
9560 
9561 	period = (u64)cfs_period_us * NSEC_PER_USEC;
9562 	quota = tg->cfs_bandwidth.quota;
9563 	burst = tg->cfs_bandwidth.burst;
9564 
9565 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9566 }
9567 
tg_get_cfs_period(struct task_group * tg)9568 static long tg_get_cfs_period(struct task_group *tg)
9569 {
9570 	u64 cfs_period_us;
9571 
9572 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9573 	do_div(cfs_period_us, NSEC_PER_USEC);
9574 
9575 	return cfs_period_us;
9576 }
9577 
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)9578 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
9579 {
9580 	u64 quota, period, burst;
9581 
9582 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
9583 		return -EINVAL;
9584 
9585 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
9586 	period = ktime_to_ns(tg->cfs_bandwidth.period);
9587 	quota = tg->cfs_bandwidth.quota;
9588 
9589 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
9590 }
9591 
tg_get_cfs_burst(struct task_group * tg)9592 static long tg_get_cfs_burst(struct task_group *tg)
9593 {
9594 	u64 burst_us;
9595 
9596 	burst_us = tg->cfs_bandwidth.burst;
9597 	do_div(burst_us, NSEC_PER_USEC);
9598 
9599 	return burst_us;
9600 }
9601 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9602 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9603 				  struct cftype *cft)
9604 {
9605 	return tg_get_cfs_quota(css_tg(css));
9606 }
9607 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)9608 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9609 				   struct cftype *cftype, s64 cfs_quota_us)
9610 {
9611 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9612 }
9613 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9614 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9615 				   struct cftype *cft)
9616 {
9617 	return tg_get_cfs_period(css_tg(css));
9618 }
9619 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)9620 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9621 				    struct cftype *cftype, u64 cfs_period_us)
9622 {
9623 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
9624 }
9625 
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9626 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
9627 				  struct cftype *cft)
9628 {
9629 	return tg_get_cfs_burst(css_tg(css));
9630 }
9631 
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)9632 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
9633 				   struct cftype *cftype, u64 cfs_burst_us)
9634 {
9635 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
9636 }
9637 
9638 struct cfs_schedulable_data {
9639 	struct task_group *tg;
9640 	u64 period, quota;
9641 };
9642 
9643 /*
9644  * normalize group quota/period to be quota/max_period
9645  * note: units are usecs
9646  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)9647 static u64 normalize_cfs_quota(struct task_group *tg,
9648 			       struct cfs_schedulable_data *d)
9649 {
9650 	u64 quota, period;
9651 
9652 	if (tg == d->tg) {
9653 		period = d->period;
9654 		quota = d->quota;
9655 	} else {
9656 		period = tg_get_cfs_period(tg);
9657 		quota = tg_get_cfs_quota(tg);
9658 	}
9659 
9660 	/* note: these should typically be equivalent */
9661 	if (quota == RUNTIME_INF || quota == -1)
9662 		return RUNTIME_INF;
9663 
9664 	return to_ratio(period, quota);
9665 }
9666 
tg_cfs_schedulable_down(struct task_group * tg,void * data)9667 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9668 {
9669 	struct cfs_schedulable_data *d = data;
9670 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9671 	s64 quota = 0, parent_quota = -1;
9672 
9673 	if (!tg->parent) {
9674 		quota = RUNTIME_INF;
9675 	} else {
9676 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9677 
9678 		quota = normalize_cfs_quota(tg, d);
9679 		parent_quota = parent_b->hierarchical_quota;
9680 
9681 		/*
9682 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
9683 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
9684 		 * inherit when no limit is set. In both cases this is used
9685 		 * by the scheduler to determine if a given CFS task has a
9686 		 * bandwidth constraint at some higher level.
9687 		 */
9688 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9689 			if (quota == RUNTIME_INF)
9690 				quota = parent_quota;
9691 			else if (parent_quota != RUNTIME_INF)
9692 				quota = min(quota, parent_quota);
9693 		} else {
9694 			if (quota == RUNTIME_INF)
9695 				quota = parent_quota;
9696 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9697 				return -EINVAL;
9698 		}
9699 	}
9700 	cfs_b->hierarchical_quota = quota;
9701 
9702 	return 0;
9703 }
9704 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)9705 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9706 {
9707 	struct cfs_schedulable_data data = {
9708 		.tg = tg,
9709 		.period = period,
9710 		.quota = quota,
9711 	};
9712 
9713 	if (quota != RUNTIME_INF) {
9714 		do_div(data.period, NSEC_PER_USEC);
9715 		do_div(data.quota, NSEC_PER_USEC);
9716 	}
9717 
9718 	guard(rcu)();
9719 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9720 }
9721 
cpu_cfs_stat_show(struct seq_file * sf,void * v)9722 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9723 {
9724 	struct task_group *tg = css_tg(seq_css(sf));
9725 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9726 
9727 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9728 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9729 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9730 
9731 	if (schedstat_enabled() && tg != &root_task_group) {
9732 		struct sched_statistics *stats;
9733 		u64 ws = 0;
9734 		int i;
9735 
9736 		for_each_possible_cpu(i) {
9737 			stats = __schedstats_from_se(tg->se[i]);
9738 			ws += schedstat_val(stats->wait_sum);
9739 		}
9740 
9741 		seq_printf(sf, "wait_sum %llu\n", ws);
9742 	}
9743 
9744 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9745 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9746 
9747 	return 0;
9748 }
9749 
throttled_time_self(struct task_group * tg)9750 static u64 throttled_time_self(struct task_group *tg)
9751 {
9752 	int i;
9753 	u64 total = 0;
9754 
9755 	for_each_possible_cpu(i) {
9756 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9757 	}
9758 
9759 	return total;
9760 }
9761 
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)9762 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9763 {
9764 	struct task_group *tg = css_tg(seq_css(sf));
9765 
9766 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9767 
9768 	return 0;
9769 }
9770 #endif /* CONFIG_CFS_BANDWIDTH */
9771 
9772 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)9773 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9774 				struct cftype *cft, s64 val)
9775 {
9776 	return sched_group_set_rt_runtime(css_tg(css), val);
9777 }
9778 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)9779 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9780 			       struct cftype *cft)
9781 {
9782 	return sched_group_rt_runtime(css_tg(css));
9783 }
9784 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)9785 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9786 				    struct cftype *cftype, u64 rt_period_us)
9787 {
9788 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
9789 }
9790 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)9791 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9792 				   struct cftype *cft)
9793 {
9794 	return sched_group_rt_period(css_tg(css));
9795 }
9796 #endif /* CONFIG_RT_GROUP_SCHED */
9797 
9798 #ifdef CONFIG_GROUP_SCHED_WEIGHT
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9799 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9800 			       struct cftype *cft)
9801 {
9802 	return css_tg(css)->idle;
9803 }
9804 
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)9805 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9806 				struct cftype *cft, s64 idle)
9807 {
9808 	int ret;
9809 
9810 	ret = sched_group_set_idle(css_tg(css), idle);
9811 	if (!ret)
9812 		scx_group_set_idle(css_tg(css), idle);
9813 	return ret;
9814 }
9815 #endif
9816 
9817 static struct cftype cpu_legacy_files[] = {
9818 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9819 	{
9820 		.name = "shares",
9821 		.read_u64 = cpu_shares_read_u64,
9822 		.write_u64 = cpu_shares_write_u64,
9823 	},
9824 	{
9825 		.name = "idle",
9826 		.read_s64 = cpu_idle_read_s64,
9827 		.write_s64 = cpu_idle_write_s64,
9828 	},
9829 #endif
9830 #ifdef CONFIG_CFS_BANDWIDTH
9831 	{
9832 		.name = "cfs_quota_us",
9833 		.read_s64 = cpu_cfs_quota_read_s64,
9834 		.write_s64 = cpu_cfs_quota_write_s64,
9835 	},
9836 	{
9837 		.name = "cfs_period_us",
9838 		.read_u64 = cpu_cfs_period_read_u64,
9839 		.write_u64 = cpu_cfs_period_write_u64,
9840 	},
9841 	{
9842 		.name = "cfs_burst_us",
9843 		.read_u64 = cpu_cfs_burst_read_u64,
9844 		.write_u64 = cpu_cfs_burst_write_u64,
9845 	},
9846 	{
9847 		.name = "stat",
9848 		.seq_show = cpu_cfs_stat_show,
9849 	},
9850 	{
9851 		.name = "stat.local",
9852 		.seq_show = cpu_cfs_local_stat_show,
9853 	},
9854 #endif
9855 #ifdef CONFIG_UCLAMP_TASK_GROUP
9856 	{
9857 		.name = "uclamp.min",
9858 		.flags = CFTYPE_NOT_ON_ROOT,
9859 		.seq_show = cpu_uclamp_min_show,
9860 		.write = cpu_uclamp_min_write,
9861 	},
9862 	{
9863 		.name = "uclamp.max",
9864 		.flags = CFTYPE_NOT_ON_ROOT,
9865 		.seq_show = cpu_uclamp_max_show,
9866 		.write = cpu_uclamp_max_write,
9867 	},
9868 #endif
9869 	{ }	/* Terminate */
9870 };
9871 
9872 #ifdef CONFIG_RT_GROUP_SCHED
9873 static struct cftype rt_group_files[] = {
9874 	{
9875 		.name = "rt_runtime_us",
9876 		.read_s64 = cpu_rt_runtime_read,
9877 		.write_s64 = cpu_rt_runtime_write,
9878 	},
9879 	{
9880 		.name = "rt_period_us",
9881 		.read_u64 = cpu_rt_period_read_uint,
9882 		.write_u64 = cpu_rt_period_write_uint,
9883 	},
9884 	{ }	/* Terminate */
9885 };
9886 
9887 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
9888 DEFINE_STATIC_KEY_FALSE(rt_group_sched);
9889 # else
9890 DEFINE_STATIC_KEY_TRUE(rt_group_sched);
9891 # endif
9892 
setup_rt_group_sched(char * str)9893 static int __init setup_rt_group_sched(char *str)
9894 {
9895 	long val;
9896 
9897 	if (kstrtol(str, 0, &val) || val < 0 || val > 1) {
9898 		pr_warn("Unable to set rt_group_sched\n");
9899 		return 1;
9900 	}
9901 	if (val)
9902 		static_branch_enable(&rt_group_sched);
9903 	else
9904 		static_branch_disable(&rt_group_sched);
9905 
9906 	return 1;
9907 }
9908 __setup("rt_group_sched=", setup_rt_group_sched);
9909 
cpu_rt_group_init(void)9910 static int __init cpu_rt_group_init(void)
9911 {
9912 	if (!rt_group_sched_enabled())
9913 		return 0;
9914 
9915 	WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files));
9916 	return 0;
9917 }
9918 subsys_initcall(cpu_rt_group_init);
9919 #endif /* CONFIG_RT_GROUP_SCHED */
9920 
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)9921 static int cpu_extra_stat_show(struct seq_file *sf,
9922 			       struct cgroup_subsys_state *css)
9923 {
9924 #ifdef CONFIG_CFS_BANDWIDTH
9925 	{
9926 		struct task_group *tg = css_tg(css);
9927 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9928 		u64 throttled_usec, burst_usec;
9929 
9930 		throttled_usec = cfs_b->throttled_time;
9931 		do_div(throttled_usec, NSEC_PER_USEC);
9932 		burst_usec = cfs_b->burst_time;
9933 		do_div(burst_usec, NSEC_PER_USEC);
9934 
9935 		seq_printf(sf, "nr_periods %d\n"
9936 			   "nr_throttled %d\n"
9937 			   "throttled_usec %llu\n"
9938 			   "nr_bursts %d\n"
9939 			   "burst_usec %llu\n",
9940 			   cfs_b->nr_periods, cfs_b->nr_throttled,
9941 			   throttled_usec, cfs_b->nr_burst, burst_usec);
9942 	}
9943 #endif
9944 	return 0;
9945 }
9946 
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)9947 static int cpu_local_stat_show(struct seq_file *sf,
9948 			       struct cgroup_subsys_state *css)
9949 {
9950 #ifdef CONFIG_CFS_BANDWIDTH
9951 	{
9952 		struct task_group *tg = css_tg(css);
9953 		u64 throttled_self_usec;
9954 
9955 		throttled_self_usec = throttled_time_self(tg);
9956 		do_div(throttled_self_usec, NSEC_PER_USEC);
9957 
9958 		seq_printf(sf, "throttled_usec %llu\n",
9959 			   throttled_self_usec);
9960 	}
9961 #endif
9962 	return 0;
9963 }
9964 
9965 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9966 
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9967 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9968 			       struct cftype *cft)
9969 {
9970 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
9971 }
9972 
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 cgrp_weight)9973 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9974 				struct cftype *cft, u64 cgrp_weight)
9975 {
9976 	unsigned long weight;
9977 	int ret;
9978 
9979 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
9980 		return -ERANGE;
9981 
9982 	weight = sched_weight_from_cgroup(cgrp_weight);
9983 
9984 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
9985 	if (!ret)
9986 		scx_group_set_weight(css_tg(css), cgrp_weight);
9987 	return ret;
9988 }
9989 
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9990 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9991 				    struct cftype *cft)
9992 {
9993 	unsigned long weight = tg_weight(css_tg(css));
9994 	int last_delta = INT_MAX;
9995 	int prio, delta;
9996 
9997 	/* find the closest nice value to the current weight */
9998 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9999 		delta = abs(sched_prio_to_weight[prio] - weight);
10000 		if (delta >= last_delta)
10001 			break;
10002 		last_delta = delta;
10003 	}
10004 
10005 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10006 }
10007 
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)10008 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10009 				     struct cftype *cft, s64 nice)
10010 {
10011 	unsigned long weight;
10012 	int idx, ret;
10013 
10014 	if (nice < MIN_NICE || nice > MAX_NICE)
10015 		return -ERANGE;
10016 
10017 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10018 	idx = array_index_nospec(idx, 40);
10019 	weight = sched_prio_to_weight[idx];
10020 
10021 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10022 	if (!ret)
10023 		scx_group_set_weight(css_tg(css),
10024 				     sched_weight_to_cgroup(weight));
10025 	return ret;
10026 }
10027 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
10028 
cpu_period_quota_print(struct seq_file * sf,long period,long quota)10029 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10030 						  long period, long quota)
10031 {
10032 	if (quota < 0)
10033 		seq_puts(sf, "max");
10034 	else
10035 		seq_printf(sf, "%ld", quota);
10036 
10037 	seq_printf(sf, " %ld\n", period);
10038 }
10039 
10040 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)10041 static int __maybe_unused cpu_period_quota_parse(char *buf,
10042 						 u64 *periodp, u64 *quotap)
10043 {
10044 	char tok[21];	/* U64_MAX */
10045 
10046 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10047 		return -EINVAL;
10048 
10049 	*periodp *= NSEC_PER_USEC;
10050 
10051 	if (sscanf(tok, "%llu", quotap))
10052 		*quotap *= NSEC_PER_USEC;
10053 	else if (!strcmp(tok, "max"))
10054 		*quotap = RUNTIME_INF;
10055 	else
10056 		return -EINVAL;
10057 
10058 	return 0;
10059 }
10060 
10061 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)10062 static int cpu_max_show(struct seq_file *sf, void *v)
10063 {
10064 	struct task_group *tg = css_tg(seq_css(sf));
10065 
10066 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10067 	return 0;
10068 }
10069 
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10070 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10071 			     char *buf, size_t nbytes, loff_t off)
10072 {
10073 	struct task_group *tg = css_tg(of_css(of));
10074 	u64 period = tg_get_cfs_period(tg);
10075 	u64 burst = tg->cfs_bandwidth.burst;
10076 	u64 quota;
10077 	int ret;
10078 
10079 	ret = cpu_period_quota_parse(buf, &period, &quota);
10080 	if (!ret)
10081 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10082 	return ret ?: nbytes;
10083 }
10084 #endif
10085 
10086 static struct cftype cpu_files[] = {
10087 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10088 	{
10089 		.name = "weight",
10090 		.flags = CFTYPE_NOT_ON_ROOT,
10091 		.read_u64 = cpu_weight_read_u64,
10092 		.write_u64 = cpu_weight_write_u64,
10093 	},
10094 	{
10095 		.name = "weight.nice",
10096 		.flags = CFTYPE_NOT_ON_ROOT,
10097 		.read_s64 = cpu_weight_nice_read_s64,
10098 		.write_s64 = cpu_weight_nice_write_s64,
10099 	},
10100 	{
10101 		.name = "idle",
10102 		.flags = CFTYPE_NOT_ON_ROOT,
10103 		.read_s64 = cpu_idle_read_s64,
10104 		.write_s64 = cpu_idle_write_s64,
10105 	},
10106 #endif
10107 #ifdef CONFIG_CFS_BANDWIDTH
10108 	{
10109 		.name = "max",
10110 		.flags = CFTYPE_NOT_ON_ROOT,
10111 		.seq_show = cpu_max_show,
10112 		.write = cpu_max_write,
10113 	},
10114 	{
10115 		.name = "max.burst",
10116 		.flags = CFTYPE_NOT_ON_ROOT,
10117 		.read_u64 = cpu_cfs_burst_read_u64,
10118 		.write_u64 = cpu_cfs_burst_write_u64,
10119 	},
10120 #endif
10121 #ifdef CONFIG_UCLAMP_TASK_GROUP
10122 	{
10123 		.name = "uclamp.min",
10124 		.flags = CFTYPE_NOT_ON_ROOT,
10125 		.seq_show = cpu_uclamp_min_show,
10126 		.write = cpu_uclamp_min_write,
10127 	},
10128 	{
10129 		.name = "uclamp.max",
10130 		.flags = CFTYPE_NOT_ON_ROOT,
10131 		.seq_show = cpu_uclamp_max_show,
10132 		.write = cpu_uclamp_max_write,
10133 	},
10134 #endif
10135 	{ }	/* terminate */
10136 };
10137 
10138 struct cgroup_subsys cpu_cgrp_subsys = {
10139 	.css_alloc	= cpu_cgroup_css_alloc,
10140 	.css_online	= cpu_cgroup_css_online,
10141 	.css_offline	= cpu_cgroup_css_offline,
10142 	.css_released	= cpu_cgroup_css_released,
10143 	.css_free	= cpu_cgroup_css_free,
10144 	.css_extra_stat_show = cpu_extra_stat_show,
10145 	.css_local_stat_show = cpu_local_stat_show,
10146 	.can_attach	= cpu_cgroup_can_attach,
10147 	.attach		= cpu_cgroup_attach,
10148 	.cancel_attach	= cpu_cgroup_cancel_attach,
10149 	.legacy_cftypes	= cpu_legacy_files,
10150 	.dfl_cftypes	= cpu_files,
10151 	.early_init	= true,
10152 	.threaded	= true,
10153 };
10154 
10155 #endif	/* CONFIG_CGROUP_SCHED */
10156 
dump_cpu_task(int cpu)10157 void dump_cpu_task(int cpu)
10158 {
10159 	if (in_hardirq() && cpu == smp_processor_id()) {
10160 		struct pt_regs *regs;
10161 
10162 		regs = get_irq_regs();
10163 		if (regs) {
10164 			show_regs(regs);
10165 			return;
10166 		}
10167 	}
10168 
10169 	if (trigger_single_cpu_backtrace(cpu))
10170 		return;
10171 
10172 	pr_info("Task dump for CPU %d:\n", cpu);
10173 	sched_show_task(cpu_curr(cpu));
10174 }
10175 
10176 /*
10177  * Nice levels are multiplicative, with a gentle 10% change for every
10178  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10179  * nice 1, it will get ~10% less CPU time than another CPU-bound task
10180  * that remained on nice 0.
10181  *
10182  * The "10% effect" is relative and cumulative: from _any_ nice level,
10183  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10184  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10185  * If a task goes up by ~10% and another task goes down by ~10% then
10186  * the relative distance between them is ~25%.)
10187  */
10188 const int sched_prio_to_weight[40] = {
10189  /* -20 */     88761,     71755,     56483,     46273,     36291,
10190  /* -15 */     29154,     23254,     18705,     14949,     11916,
10191  /* -10 */      9548,      7620,      6100,      4904,      3906,
10192  /*  -5 */      3121,      2501,      1991,      1586,      1277,
10193  /*   0 */      1024,       820,       655,       526,       423,
10194  /*   5 */       335,       272,       215,       172,       137,
10195  /*  10 */       110,        87,        70,        56,        45,
10196  /*  15 */        36,        29,        23,        18,        15,
10197 };
10198 
10199 /*
10200  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10201  *
10202  * In cases where the weight does not change often, we can use the
10203  * pre-calculated inverse to speed up arithmetics by turning divisions
10204  * into multiplications:
10205  */
10206 const u32 sched_prio_to_wmult[40] = {
10207  /* -20 */     48388,     59856,     76040,     92818,    118348,
10208  /* -15 */    147320,    184698,    229616,    287308,    360437,
10209  /* -10 */    449829,    563644,    704093,    875809,   1099582,
10210  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
10211  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
10212  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
10213  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
10214  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10215 };
10216 
call_trace_sched_update_nr_running(struct rq * rq,int count)10217 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10218 {
10219         trace_sched_update_nr_running_tp(rq, count);
10220 }
10221 
10222 #ifdef CONFIG_SCHED_MM_CID
10223 
10224 /*
10225  * @cid_lock: Guarantee forward-progress of cid allocation.
10226  *
10227  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10228  * is only used when contention is detected by the lock-free allocation so
10229  * forward progress can be guaranteed.
10230  */
10231 DEFINE_RAW_SPINLOCK(cid_lock);
10232 
10233 /*
10234  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10235  *
10236  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10237  * detected, it is set to 1 to ensure that all newly coming allocations are
10238  * serialized by @cid_lock until the allocation which detected contention
10239  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10240  * of a cid allocation.
10241  */
10242 int use_cid_lock;
10243 
10244 /*
10245  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10246  * concurrently with respect to the execution of the source runqueue context
10247  * switch.
10248  *
10249  * There is one basic properties we want to guarantee here:
10250  *
10251  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10252  * used by a task. That would lead to concurrent allocation of the cid and
10253  * userspace corruption.
10254  *
10255  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10256  * that a pair of loads observe at least one of a pair of stores, which can be
10257  * shown as:
10258  *
10259  *      X = Y = 0
10260  *
10261  *      w[X]=1          w[Y]=1
10262  *      MB              MB
10263  *      r[Y]=y          r[X]=x
10264  *
10265  * Which guarantees that x==0 && y==0 is impossible. But rather than using
10266  * values 0 and 1, this algorithm cares about specific state transitions of the
10267  * runqueue current task (as updated by the scheduler context switch), and the
10268  * per-mm/cpu cid value.
10269  *
10270  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10271  * task->mm != mm for the rest of the discussion. There are two scheduler state
10272  * transitions on context switch we care about:
10273  *
10274  * (TSA) Store to rq->curr with transition from (N) to (Y)
10275  *
10276  * (TSB) Store to rq->curr with transition from (Y) to (N)
10277  *
10278  * On the remote-clear side, there is one transition we care about:
10279  *
10280  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10281  *
10282  * There is also a transition to UNSET state which can be performed from all
10283  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10284  * guarantees that only a single thread will succeed:
10285  *
10286  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10287  *
10288  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10289  * when a thread is actively using the cid (property (1)).
10290  *
10291  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10292  *
10293  * Scenario A) (TSA)+(TMA) (from next task perspective)
10294  *
10295  * CPU0                                      CPU1
10296  *
10297  * Context switch CS-1                       Remote-clear
10298  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
10299  *                                             (implied barrier after cmpxchg)
10300  *   - switch_mm_cid()
10301  *     - memory barrier (see switch_mm_cid()
10302  *       comment explaining how this barrier
10303  *       is combined with other scheduler
10304  *       barriers)
10305  *     - mm_cid_get (next)
10306  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
10307  *
10308  * This Dekker ensures that either task (Y) is observed by the
10309  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10310  * observed.
10311  *
10312  * If task (Y) store is observed by rcu_dereference(), it means that there is
10313  * still an active task on the cpu. Remote-clear will therefore not transition
10314  * to UNSET, which fulfills property (1).
10315  *
10316  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10317  * it will move its state to UNSET, which clears the percpu cid perhaps
10318  * uselessly (which is not an issue for correctness). Because task (Y) is not
10319  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10320  * state to UNSET is done with a cmpxchg expecting that the old state has the
10321  * LAZY flag set, only one thread will successfully UNSET.
10322  *
10323  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10324  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10325  * CPU1 will observe task (Y) and do nothing more, which is fine.
10326  *
10327  * What we are effectively preventing with this Dekker is a scenario where
10328  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10329  * because this would UNSET a cid which is actively used.
10330  */
10331 
sched_mm_cid_migrate_from(struct task_struct * t)10332 void sched_mm_cid_migrate_from(struct task_struct *t)
10333 {
10334 	t->migrate_from_cpu = task_cpu(t);
10335 }
10336 
10337 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)10338 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10339 					  struct task_struct *t,
10340 					  struct mm_cid *src_pcpu_cid)
10341 {
10342 	struct mm_struct *mm = t->mm;
10343 	struct task_struct *src_task;
10344 	int src_cid, last_mm_cid;
10345 
10346 	if (!mm)
10347 		return -1;
10348 
10349 	last_mm_cid = t->last_mm_cid;
10350 	/*
10351 	 * If the migrated task has no last cid, or if the current
10352 	 * task on src rq uses the cid, it means the source cid does not need
10353 	 * to be moved to the destination cpu.
10354 	 */
10355 	if (last_mm_cid == -1)
10356 		return -1;
10357 	src_cid = READ_ONCE(src_pcpu_cid->cid);
10358 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10359 		return -1;
10360 
10361 	/*
10362 	 * If we observe an active task using the mm on this rq, it means we
10363 	 * are not the last task to be migrated from this cpu for this mm, so
10364 	 * there is no need to move src_cid to the destination cpu.
10365 	 */
10366 	guard(rcu)();
10367 	src_task = rcu_dereference(src_rq->curr);
10368 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10369 		t->last_mm_cid = -1;
10370 		return -1;
10371 	}
10372 
10373 	return src_cid;
10374 }
10375 
10376 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)10377 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10378 					      struct task_struct *t,
10379 					      struct mm_cid *src_pcpu_cid,
10380 					      int src_cid)
10381 {
10382 	struct task_struct *src_task;
10383 	struct mm_struct *mm = t->mm;
10384 	int lazy_cid;
10385 
10386 	if (src_cid == -1)
10387 		return -1;
10388 
10389 	/*
10390 	 * Attempt to clear the source cpu cid to move it to the destination
10391 	 * cpu.
10392 	 */
10393 	lazy_cid = mm_cid_set_lazy_put(src_cid);
10394 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10395 		return -1;
10396 
10397 	/*
10398 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10399 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10400 	 * between store to rq->curr and load of prev and next task's
10401 	 * per-mm/cpu cid.
10402 	 *
10403 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10404 	 * rq->curr->mm_cid_active matches the barrier in
10405 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10406 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10407 	 * load of per-mm/cpu cid.
10408 	 */
10409 
10410 	/*
10411 	 * If we observe an active task using the mm on this rq after setting
10412 	 * the lazy-put flag, this task will be responsible for transitioning
10413 	 * from lazy-put flag set to MM_CID_UNSET.
10414 	 */
10415 	scoped_guard (rcu) {
10416 		src_task = rcu_dereference(src_rq->curr);
10417 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10418 			/*
10419 			 * We observed an active task for this mm, there is therefore
10420 			 * no point in moving this cid to the destination cpu.
10421 			 */
10422 			t->last_mm_cid = -1;
10423 			return -1;
10424 		}
10425 	}
10426 
10427 	/*
10428 	 * The src_cid is unused, so it can be unset.
10429 	 */
10430 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10431 		return -1;
10432 	WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10433 	return src_cid;
10434 }
10435 
10436 /*
10437  * Migration to dst cpu. Called with dst_rq lock held.
10438  * Interrupts are disabled, which keeps the window of cid ownership without the
10439  * source rq lock held small.
10440  */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)10441 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10442 {
10443 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10444 	struct mm_struct *mm = t->mm;
10445 	int src_cid, src_cpu;
10446 	bool dst_cid_is_set;
10447 	struct rq *src_rq;
10448 
10449 	lockdep_assert_rq_held(dst_rq);
10450 
10451 	if (!mm)
10452 		return;
10453 	src_cpu = t->migrate_from_cpu;
10454 	if (src_cpu == -1) {
10455 		t->last_mm_cid = -1;
10456 		return;
10457 	}
10458 	/*
10459 	 * Move the src cid if the dst cid is unset. This keeps id
10460 	 * allocation closest to 0 in cases where few threads migrate around
10461 	 * many CPUs.
10462 	 *
10463 	 * If destination cid or recent cid is already set, we may have
10464 	 * to just clear the src cid to ensure compactness in frequent
10465 	 * migrations scenarios.
10466 	 *
10467 	 * It is not useful to clear the src cid when the number of threads is
10468 	 * greater or equal to the number of allowed CPUs, because user-space
10469 	 * can expect that the number of allowed cids can reach the number of
10470 	 * allowed CPUs.
10471 	 */
10472 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10473 	dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10474 			 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10475 	if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10476 		return;
10477 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10478 	src_rq = cpu_rq(src_cpu);
10479 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10480 	if (src_cid == -1)
10481 		return;
10482 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10483 							    src_cid);
10484 	if (src_cid == -1)
10485 		return;
10486 	if (dst_cid_is_set) {
10487 		__mm_cid_put(mm, src_cid);
10488 		return;
10489 	}
10490 	/* Move src_cid to dst cpu. */
10491 	mm_cid_snapshot_time(dst_rq, mm);
10492 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10493 	WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10494 }
10495 
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)10496 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10497 				      int cpu)
10498 {
10499 	struct rq *rq = cpu_rq(cpu);
10500 	struct task_struct *t;
10501 	int cid, lazy_cid;
10502 
10503 	cid = READ_ONCE(pcpu_cid->cid);
10504 	if (!mm_cid_is_valid(cid))
10505 		return;
10506 
10507 	/*
10508 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
10509 	 * there happens to be other tasks left on the source cpu using this
10510 	 * mm, the next task using this mm will reallocate its cid on context
10511 	 * switch.
10512 	 */
10513 	lazy_cid = mm_cid_set_lazy_put(cid);
10514 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10515 		return;
10516 
10517 	/*
10518 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10519 	 * rq->curr->mm matches the scheduler barrier in context_switch()
10520 	 * between store to rq->curr and load of prev and next task's
10521 	 * per-mm/cpu cid.
10522 	 *
10523 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10524 	 * rq->curr->mm_cid_active matches the barrier in
10525 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10526 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10527 	 * load of per-mm/cpu cid.
10528 	 */
10529 
10530 	/*
10531 	 * If we observe an active task using the mm on this rq after setting
10532 	 * the lazy-put flag, that task will be responsible for transitioning
10533 	 * from lazy-put flag set to MM_CID_UNSET.
10534 	 */
10535 	scoped_guard (rcu) {
10536 		t = rcu_dereference(rq->curr);
10537 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10538 			return;
10539 	}
10540 
10541 	/*
10542 	 * The cid is unused, so it can be unset.
10543 	 * Disable interrupts to keep the window of cid ownership without rq
10544 	 * lock small.
10545 	 */
10546 	scoped_guard (irqsave) {
10547 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10548 			__mm_cid_put(mm, cid);
10549 	}
10550 }
10551 
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)10552 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10553 {
10554 	struct rq *rq = cpu_rq(cpu);
10555 	struct mm_cid *pcpu_cid;
10556 	struct task_struct *curr;
10557 	u64 rq_clock;
10558 
10559 	/*
10560 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
10561 	 * while is irrelevant.
10562 	 */
10563 	rq_clock = READ_ONCE(rq->clock);
10564 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10565 
10566 	/*
10567 	 * In order to take care of infrequently scheduled tasks, bump the time
10568 	 * snapshot associated with this cid if an active task using the mm is
10569 	 * observed on this rq.
10570 	 */
10571 	scoped_guard (rcu) {
10572 		curr = rcu_dereference(rq->curr);
10573 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10574 			WRITE_ONCE(pcpu_cid->time, rq_clock);
10575 			return;
10576 		}
10577 	}
10578 
10579 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10580 		return;
10581 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10582 }
10583 
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)10584 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10585 					     int weight)
10586 {
10587 	struct mm_cid *pcpu_cid;
10588 	int cid;
10589 
10590 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10591 	cid = READ_ONCE(pcpu_cid->cid);
10592 	if (!mm_cid_is_valid(cid) || cid < weight)
10593 		return;
10594 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10595 }
10596 
task_mm_cid_work(struct callback_head * work)10597 static void task_mm_cid_work(struct callback_head *work)
10598 {
10599 	unsigned long now = jiffies, old_scan, next_scan;
10600 	struct task_struct *t = current;
10601 	struct cpumask *cidmask;
10602 	struct mm_struct *mm;
10603 	int weight, cpu;
10604 
10605 	WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work));
10606 
10607 	work->next = work;	/* Prevent double-add */
10608 	if (t->flags & PF_EXITING)
10609 		return;
10610 	mm = t->mm;
10611 	if (!mm)
10612 		return;
10613 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
10614 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10615 	if (!old_scan) {
10616 		unsigned long res;
10617 
10618 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10619 		if (res != old_scan)
10620 			old_scan = res;
10621 		else
10622 			old_scan = next_scan;
10623 	}
10624 	if (time_before(now, old_scan))
10625 		return;
10626 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10627 		return;
10628 	cidmask = mm_cidmask(mm);
10629 	/* Clear cids that were not recently used. */
10630 	for_each_possible_cpu(cpu)
10631 		sched_mm_cid_remote_clear_old(mm, cpu);
10632 	weight = cpumask_weight(cidmask);
10633 	/*
10634 	 * Clear cids that are greater or equal to the cidmask weight to
10635 	 * recompact it.
10636 	 */
10637 	for_each_possible_cpu(cpu)
10638 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10639 }
10640 
init_sched_mm_cid(struct task_struct * t)10641 void init_sched_mm_cid(struct task_struct *t)
10642 {
10643 	struct mm_struct *mm = t->mm;
10644 	int mm_users = 0;
10645 
10646 	if (mm) {
10647 		mm_users = atomic_read(&mm->mm_users);
10648 		if (mm_users == 1)
10649 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10650 	}
10651 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
10652 	init_task_work(&t->cid_work, task_mm_cid_work);
10653 }
10654 
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)10655 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10656 {
10657 	struct callback_head *work = &curr->cid_work;
10658 	unsigned long now = jiffies;
10659 
10660 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10661 	    work->next != work)
10662 		return;
10663 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10664 		return;
10665 
10666 	/* No page allocation under rq lock */
10667 	task_work_add(curr, work, TWA_RESUME);
10668 }
10669 
sched_mm_cid_exit_signals(struct task_struct * t)10670 void sched_mm_cid_exit_signals(struct task_struct *t)
10671 {
10672 	struct mm_struct *mm = t->mm;
10673 	struct rq *rq;
10674 
10675 	if (!mm)
10676 		return;
10677 
10678 	preempt_disable();
10679 	rq = this_rq();
10680 	guard(rq_lock_irqsave)(rq);
10681 	preempt_enable_no_resched();	/* holding spinlock */
10682 	WRITE_ONCE(t->mm_cid_active, 0);
10683 	/*
10684 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10685 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10686 	 */
10687 	smp_mb();
10688 	mm_cid_put(mm);
10689 	t->last_mm_cid = t->mm_cid = -1;
10690 }
10691 
sched_mm_cid_before_execve(struct task_struct * t)10692 void sched_mm_cid_before_execve(struct task_struct *t)
10693 {
10694 	struct mm_struct *mm = t->mm;
10695 	struct rq *rq;
10696 
10697 	if (!mm)
10698 		return;
10699 
10700 	preempt_disable();
10701 	rq = this_rq();
10702 	guard(rq_lock_irqsave)(rq);
10703 	preempt_enable_no_resched();	/* holding spinlock */
10704 	WRITE_ONCE(t->mm_cid_active, 0);
10705 	/*
10706 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
10707 	 * Matches barrier in sched_mm_cid_remote_clear_old().
10708 	 */
10709 	smp_mb();
10710 	mm_cid_put(mm);
10711 	t->last_mm_cid = t->mm_cid = -1;
10712 }
10713 
sched_mm_cid_after_execve(struct task_struct * t)10714 void sched_mm_cid_after_execve(struct task_struct *t)
10715 {
10716 	struct mm_struct *mm = t->mm;
10717 	struct rq *rq;
10718 
10719 	if (!mm)
10720 		return;
10721 
10722 	preempt_disable();
10723 	rq = this_rq();
10724 	scoped_guard (rq_lock_irqsave, rq) {
10725 		preempt_enable_no_resched();	/* holding spinlock */
10726 		WRITE_ONCE(t->mm_cid_active, 1);
10727 		/*
10728 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
10729 		 * Matches barrier in sched_mm_cid_remote_clear_old().
10730 		 */
10731 		smp_mb();
10732 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10733 	}
10734 }
10735 
sched_mm_cid_fork(struct task_struct * t)10736 void sched_mm_cid_fork(struct task_struct *t)
10737 {
10738 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10739 	t->mm_cid_active = 1;
10740 }
10741 #endif
10742 
10743 #ifdef CONFIG_SCHED_CLASS_EXT
sched_deq_and_put_task(struct task_struct * p,int queue_flags,struct sched_enq_and_set_ctx * ctx)10744 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10745 			    struct sched_enq_and_set_ctx *ctx)
10746 {
10747 	struct rq *rq = task_rq(p);
10748 
10749 	lockdep_assert_rq_held(rq);
10750 
10751 	*ctx = (struct sched_enq_and_set_ctx){
10752 		.p = p,
10753 		.queue_flags = queue_flags,
10754 		.queued = task_on_rq_queued(p),
10755 		.running = task_current(rq, p),
10756 	};
10757 
10758 	update_rq_clock(rq);
10759 	if (ctx->queued)
10760 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10761 	if (ctx->running)
10762 		put_prev_task(rq, p);
10763 }
10764 
sched_enq_and_set_task(struct sched_enq_and_set_ctx * ctx)10765 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10766 {
10767 	struct rq *rq = task_rq(ctx->p);
10768 
10769 	lockdep_assert_rq_held(rq);
10770 
10771 	if (ctx->queued)
10772 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10773 	if (ctx->running)
10774 		set_next_task(rq, ctx->p);
10775 }
10776 #endif	/* CONFIG_SCHED_CLASS_EXT */
10777