1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016 by Delphix. All rights reserved. 25 */ 26 27 #ifndef _REPCACHE_PROTOCOL_H 28 #define _REPCACHE_PROTOCOL_H 29 30 /* 31 * The Repository Cache Protocol 32 * ----------------------------- 33 * 34 * 1. Introduction 35 * --------------- 36 * This header file defines the private protocols between libscf(3lib) and 37 * svc.configd(8). There are two separate protocols: 38 * 39 * 1. The 'global' protocol, accessible via an fattach(3C)ed door located 40 * at REPOSITORY_DOOR_NAME. 41 * 42 * 2. The 'client' protocol, accessible through a door created using the 43 * global protocol, which allows access to the repository. 44 * 45 * 1.1 Design restrictions 46 * ----------------------- 47 * A basic constraint of the door IPC mechanism is that there is no reliable 48 * delivery. In particular: 49 * 50 * 1. If libscf(3lib) recieves an EINTR from door_call(), it doesn't know 51 * whether or not the server recieved (and is processing) its request. 52 * 53 * 2. When svc.configd(8) calls door_return(), the client may have already 54 * received an EINTR, aborting its door_call(). In this case, the 55 * returned values are dropped on the floor. 56 * 57 * The practical upshot of all of this is simple: 58 * 59 * Every individual protocol action must be idempotent. 60 * 61 * That is, a client must be able to retry any single request multiple times, 62 * and get the correct results. 63 * 64 * 1.2. Protocol shorthand 65 * ----------------------- 66 * We represent by "REQUEST(arg1, arg2) -> result, res1, [desc]" a request code 67 * of REP_PROTOCOL_REQUEST (or REPOSITORY_DOOR_REQUEST), which takes two 68 * additional arguments, arg1 and arg2, and returns a result code, res1, and 69 * a file descriptor desc. 70 * 71 * If an error occurs, the server will usually only send the result code. (a 72 * short return) 73 * 74 * Inside the protocol destription, <foo> indicates the type foo indicates. 75 * 76 * 2. The Global protocol 77 * ---------------------- 78 * Everything starting with "REPOSITORY_DOOR" or "repository_door" belongs 79 * to the global protocol. 80 * 81 * 2.1. Global requests 82 * -------------------- 83 * 84 * REQUEST_CONNECT(rdr_flags, ...) -> result, [new_door] 85 * Request a new Client door. rdr_flags determines attributes of the 86 * connection: 87 * 88 * FLAG_DEBUG 89 * Sets connection debugging flags to those in rdr_debug. 90 * 91 * The new door is returned with DOOR_RELEASE set, so if the client does 92 * not recieve the response, the new door will recieve an unref 93 * notification. This makes this request idempotent. 94 * 95 * 2.2. Global reponse codes 96 * ------------------------- 97 * GLXXX: This needs to be thought through. 98 * 99 * SUCCESS 100 * FAIL_BAD_REQUEST 101 * FAIL_VERSION_MISMATCH 102 * FAIL_BAD_FLAG 103 * FAIL_BAD_USER 104 * FAIL_NO_RESOURCES 105 * 106 * 3. The Client protocol 107 * ---------------------- 108 * Everything starting with "REP_PROTOCOL" or "rep_protocol" belongs to the 109 * client protocol. 110 * 111 * 3.1. Techniques used 112 * -------------------- 113 * 3.1.1. Client-controlled identifiers 114 * 115 * An idiom the protocol uses to lower the number of round trips is 116 * client-controlled identifiers. The basic idea is this: whenever a 117 * client wants to set up and use a piece of server state, it picks an 118 * integer *which it knows is not in use* to identify it. The server then 119 * maintains per-client, per-resource id->resource maps. This has a number 120 * of advantages: 121 * 122 * 1. Since the client allocates the identifiers, we don't need to do 123 * a round-trip just to allocate a number. 124 * 125 * 2. Since it is the client's job to make sure identifiers don't collide, 126 * idempotency for setup (destroy) are simple: If the identifier 127 * already exists (does not exist), we just return success. 128 * 129 * 3. Since the identifiers are per-client, the design automatically 130 * precludes clients being able to manipulate other client's state. 131 * 132 * 3.1.2 Sequence numbers 133 * 134 * A standard way of gaining idempotency is introducing sequence numbers. 135 * These are simply integers which get incremented at points in the protocol, 136 * and make sure the client and server are in sync. 137 * 138 * In this protocol, we use sequence numbers for requests (like ITER_READ) 139 * which are repeated, returning different data each time. Since requests 140 * can also be repeated due to unreliable dispatch, the client increments 141 * the sequence number after every successful request. This allows the server 142 * to differentiate the two cases. (note that this means that failing 143 * requests have no side effects and are repeatable) 144 * 145 * 3.2. Client abstractions 146 * ------------------------ 147 * 3.2.1 Entities 148 * 149 * An "entity" is a typed register which the client can manipulate. 150 * Entities are named in the protocol by client-controlled identifiers. 151 * They have a fixed type for their entire lifetime, and may be in one 152 * of two states: 153 * 154 * valid 155 * The entity has a valid value, and may be read from. This state 156 * is reached by a successful write to the entity by some protocol 157 * step. 158 * 159 * invalid 160 * The entity does not contain a valid value. There are a number 161 * of ways to reach this state: 162 * 163 * 1. The entity was just created. 164 * 2. The underlying object that this entity refers to was destroyed. 165 * 3. A protocol request which would have modified this entity 166 * failed. 167 * 168 * An entity is an element in the tree of repository data. Every entity 169 * (except for the most distant SCOPE) has exactly one parent. Entities 170 * can have multiple children of different types, restricted by its base 171 * type. 172 * 173 * The ENTITY_GET call is used to get the root of the tree (the most local 174 * scope) 175 * 176 * 3.2.2. The entity tree 177 * ---------------------- 178 * The structure of a scope is as follows: 179 * 180 * _______ 181 * | SCOPE | 182 * |_______| 183 * \ . 184 * \ . 185 * \_________ 186 * | SERVICE | 187 * |_________| 188 * /. \ . 189 * /. \ . 190 * ____/ \__________ 191 * | PG | | INSTANCE | 192 * |____| |__________| 193 * /. \ . 194 * /. \ . 195 * ____/ \__________ 196 * | PG | | SNAPSHOT | 197 * |____| |__________| 198 * \ . 199 * \ . 200 * \___________ 201 * | SNAPLEVEL | 202 * |___________| 203 * /. 204 * /. 205 * ____/ 206 * | PG | 207 * |____| 208 * 209 * Where the dots indicate an arbitrary number (including 0) of children. 210 * 211 * For a given scope, the next scope (in the sense of distance) is its 212 * TYPE_SCOPE parent. The furthest out scope has no parent. 213 * 214 * 3.2.2 Iterators 215 * 216 * GLXXX 217 * 218 * 3.3. Client requests 219 * -------------------- 220 * 221 * CLOSE() -> result 222 * Closes the connection, revoking the door. After this call completes, 223 * no further calls will succeed. 224 * 225 * ENTITY_SETUP(entity_id, type) -> result 226 * Sets up an entity, identified by entity_id, to identify a single 227 * <type>. <type> may not be TYPE_NONE. 228 * 229 * ENTITY_NAME(entity_id, name_type) -> result, name 230 * Returns the name of entity_id. name_type determines which type of 231 * name to get. 232 * 233 * ENTITY_PARENT_TYPE(entity_id) -> result, parent_type 234 * Retrieves the type of entity_id's parent 235 * 236 * ENTITY_GET_CHILD(entity_id, child_id, name) -> result 237 * Puts entity_id's child (of child_id's type) named 'name' into child_id. 238 * 239 * ENTITY_GET_PARENT(entity_id, out_id) -> result 240 * Puts entity_id's parent into out_id. 241 * 242 * ENTITY_GET(entity_id, number) -> result 243 * Makes entity_id point to a particular object. If any error 244 * occurs, dest_id will be invalid. 245 * 246 * ENTITY_UPDATE(entity_id, changeid) -> result 247 * Updates the entity to pick up any new changes. 248 * 249 * ENTITY_CREATE_CHILD(entity_id, type, name, child_id, changeid) -> result 250 * Attaches the object of type /type/ in child_id as the child of 251 * entity_id named 'name'. 252 * 253 * ENTITY_CREATE_PG(entity_id, name, type, flags, child_id, changeid) -> result 254 * Creates a property group child of entity_id named 'name', type 'type' 255 * and flags 'flags', and puts the resulting object in child_id. 256 * 257 * ENTITY_DELETE(entity_id, changeid) -> result 258 * Deletes the entity represented by entity_id. 259 * 260 * ENTITY_RESET(entity_id) -> result 261 * Resets the entity. 262 * 263 * ENTITY_TEARDOWN(entity_id) -> result 264 * Destroys the entity entity_id. 265 * 266 * ITER_SETUP(iter_id) -> result 267 * Sets up an iterator id. 268 * 269 * ITER_START(iter_id, entity_id, itertype, flags, pattern) -> result 270 * Sets up an iterator, identified by iter_id, which will iterate the 271 * <itertype> children of entity_id whose names match 'pattern', 272 * with the matching controlled by flags. Initializing an iterator 273 * counts as the first sequence number (1). 274 * 275 * ITER_READ(iter_id, sequence, entity_id) -> result 276 * Retrieves the next element of iterator iter_id. Sequence starts at 2, 277 * and is incremented by the client after each successful iteration. 278 * The result is written to entity_id, which must be of the same type 279 * as the iterator result. The iterator must not be iterating values. 280 * 281 * ITER_READ_VALUE(iter_id, sequence) -> result, type, value 282 * Retrieves the next value for iterator iter_id. Sequence starts at 2, 283 * and is incremented by the client after each successful iteration. 284 * The iterator must be iterating a property's values. 285 * 286 * ITER_RESET(iter_id) -> result 287 * Throws away any accumulated state. 288 * 289 * ITER_TEARDOWN(iter_id) -> result 290 * Destroys the iterator iter_id. 291 * 292 * NEXT_SNAPLEVEL(entity_src, entity_dst) -> result 293 * If entity_src is a snapshot, set entity_dst to the first snaplevel 294 * in it. If entity_src is a snaplevel, set entity_dst to the next 295 * snaplevel, or fail if there isn't one. 296 * 297 * SNAPSHOT_TAKE(entity_id, name, dest_id, flags) -> result 298 * Takes a snapshot of entity_id, creating snaplevels for the instance and 299 * its parent service. If flags is REP_SNAPSHOT_NEW, a new snapshot named 300 * 'name' is created as a child of entity_id, dest_id is pointed to it, 301 * and the new snaplevels are attached to it. If flags is 302 * REP_SNAPSHOT_ATTACH, name must be empty, and the new snaplevels are 303 * attached to the snapshot dest_id points to. 304 * 305 * SNAPSHOT_TAKE_NAMED(entity_id, instname, svcname, name, dest_id) -> result 306 * Like SNAPSHOT_TAKE, but always acts as if REP_SNAPSHOT_NEW is 307 * specified, and instname and svcname override the actual service and 308 * instance names, respectively, written into the snaplevels. 309 * 310 * Note that this is only useful for writing snapshots which will later 311 * be transferred to another instance (svc:/svcname:instname/) 312 * 313 * SNAPSHOT_ATTACH(source_id, dest_id) -> result 314 * The snaplevels attached to the snapshot referenced by source_id are 315 * attached to the snapshot dest_id is pointed at. 316 * 317 * PROPERTY_GET_TYPE(entity_id) -> result, value type 318 * Finds the value type of entity_id, which must be a property. 319 * 320 * PROPERTY_GET_VALUE(entity_id) -> result, type, value 321 * If the property contains a single value, returns it and its type. 322 * 323 * PROPERTYGRP_SETUP_WAIT(entity_id) -> result, [pipe fd] 324 * Sets up a notification for changes to the object entity_id currently 325 * references. On success, returns one side of a pipe -- when there 326 * has been a change (or the daemon dies), the other end of the pipe will 327 * be closed. 328 * 329 * Only one of these can be set up per client -- attempts to set up more 330 * than one will cause the previous one to get closed. 331 * 332 * PROPERTYGRP_TX_START(entity_id_tx, entity_id) -> result 333 * Makes entity_id_tx point to the same property group as entity_id, 334 * then attempts to set up entity_id_tx as a transaction on that group. 335 * entity_id and entity_id_tx must be distinct. On failure, entity_id_tx 336 * is reset. 337 * 338 * PROPERTYGRP_TX_COMMIT(entity_id, data) -> result 339 * Gives the actual steps to follow, and attempts to commit them. 340 * 341 * CLIENT_ADD_NOTIFY(type, pattern) -> result 342 * Adds a new property group name or type pattern to the notify list 343 * (see CLIENT_WAIT). If successful, takes effect immediately. 344 * 345 * CLIENT_WAIT(entity_id) -> result, fmri 346 * Waits for a change to a propertygroup that matches the patterns 347 * set up using CLIENT_ADD_NOTIFY, and puts the resultant propertygroup 348 * in entity_id. Note that if an error occurs, you can loose 349 * notifications. Either entity_id is set to a changed propertygroup, 350 * or fmri is a non-zero-length string identifying a deleted thing. 351 * 352 * BACKUP(name) -> result 353 * Backs up the persistant repository with a particular name. 354 * 355 * SET_ANNOTATION(operation, file) 356 * Set up a security audit annotation event. operation is the name of 357 * the operation that is being annotated, and file is the file being 358 * processed. This will be used to mark operations which comprise 359 * multiple primitive operations such as svccfg import. 360 * 361 * SWITCH(flag) -> result 362 * The flag is used to indicate the direction of the switch operation. 363 * When the flag is set to 'fast', move the main repository from the 364 * default location (/etc/svc) to the tmpfs locationa (/etc/svc/volatile). 365 * When it is set to 'perm', the switch is reversed. 366 */ 367 368 #include <door.h> 369 #include <stddef.h> 370 #include <sys/sysmacros.h> 371 372 #ifdef __cplusplus 373 extern "C" { 374 #endif 375 376 /* 377 * svc.configd initial protocol details 378 */ 379 #define REPOSITORY_DOOR_BASEVER (('R' << 24) | ('e' << 16) | ('p' << 8)) 380 #define REPOSITORY_DOOR_NAME "/etc/svc/volatile/repository_door" 381 #define REPOSITORY_DOOR_COOKIE ((void *)REPOSITORY_DOOR_BASEVER) 382 383 #define REPOSITORY_BOOT_BACKUP ((const char *)"boot") 384 385 /* 386 * This value should be incremented any time the protocol changes. When in 387 * doubt, bump it. 388 */ 389 #define REPOSITORY_DOOR_VERSION (21 + REPOSITORY_DOOR_BASEVER) 390 391 /* 392 * flags for rdr_flags 393 */ 394 #define REPOSITORY_DOOR_FLAG_DEBUG 0x00000001 /* rdr_debug */ 395 396 #define REPOSITORY_DOOR_FLAG_ALL 0x00000001 /* all flags */ 397 398 /* 399 * Request IDs 400 */ 401 enum repository_door_requestid { 402 REPOSITORY_DOOR_REQUEST_CONNECT = (('M' << 8) | 1) 403 }; 404 405 enum repository_door_statusid { 406 REPOSITORY_DOOR_SUCCESS = 0, 407 REPOSITORY_DOOR_FAIL_BAD_REQUEST = 1, 408 REPOSITORY_DOOR_FAIL_VERSION_MISMATCH = 2, 409 REPOSITORY_DOOR_FAIL_BAD_FLAG = 3, 410 REPOSITORY_DOOR_FAIL_NO_RESOURCES = 4, 411 REPOSITORY_DOOR_FAIL_PERMISSION_DENIED = 5 412 }; 413 414 /* 415 * You may only add elements to the end of this structure. 416 */ 417 typedef struct repository_door_request { 418 uint32_t rdr_version; /* must be first element */ 419 enum repository_door_requestid rdr_request; 420 uint32_t rdr_flags; 421 uint32_t rdr_debug; 422 } repository_door_request_t; 423 424 typedef struct repository_door_response { 425 enum repository_door_statusid rdr_status; 426 } repository_door_response_t; 427 428 /* 429 * Client interface. Used on doors returned by REQUEST_CONNECT 430 */ 431 432 #define REP_PROTOCOL_NAME_LEN 120 /* maximum name length */ 433 #define REP_PROTOCOL_VALUE_LEN 4096 /* maximum value length */ 434 435 #define REP_PROTOCOL_FMRI_LEN (6 * REP_PROTOCOL_NAME_LEN) 436 437 #define REP_PROTOCOL_BASE ('C' << 8) 438 439 /* 440 * Request codes 441 */ 442 enum rep_protocol_requestid { 443 REP_PROTOCOL_CLOSE = REP_PROTOCOL_BASE, 444 445 REP_PROTOCOL_ENTITY_SETUP, 446 REP_PROTOCOL_ENTITY_NAME, 447 REP_PROTOCOL_ENTITY_PARENT_TYPE, 448 REP_PROTOCOL_ENTITY_GET_CHILD, 449 REP_PROTOCOL_ENTITY_GET_PARENT, 450 REP_PROTOCOL_ENTITY_GET, 451 REP_PROTOCOL_ENTITY_UPDATE, 452 REP_PROTOCOL_ENTITY_CREATE_CHILD, 453 REP_PROTOCOL_ENTITY_CREATE_PG, 454 REP_PROTOCOL_ENTITY_DELETE, 455 REP_PROTOCOL_ENTITY_RESET, 456 REP_PROTOCOL_ENTITY_TEARDOWN, 457 458 REP_PROTOCOL_ITER_SETUP, 459 REP_PROTOCOL_ITER_START, 460 REP_PROTOCOL_ITER_READ, 461 REP_PROTOCOL_ITER_READ_VALUE, 462 REP_PROTOCOL_ITER_RESET, 463 REP_PROTOCOL_ITER_TEARDOWN, 464 465 REP_PROTOCOL_NEXT_SNAPLEVEL, 466 467 REP_PROTOCOL_SNAPSHOT_TAKE, 468 REP_PROTOCOL_SNAPSHOT_TAKE_NAMED, 469 REP_PROTOCOL_SNAPSHOT_ATTACH, 470 471 REP_PROTOCOL_PROPERTY_GET_TYPE, 472 REP_PROTOCOL_PROPERTY_GET_VALUE, 473 474 REP_PROTOCOL_PROPERTYGRP_SETUP_WAIT, 475 REP_PROTOCOL_PROPERTYGRP_TX_START, 476 REP_PROTOCOL_PROPERTYGRP_TX_COMMIT, 477 478 REP_PROTOCOL_CLIENT_ADD_NOTIFY, 479 REP_PROTOCOL_CLIENT_WAIT, 480 481 REP_PROTOCOL_BACKUP, 482 483 REP_PROTOCOL_SET_AUDIT_ANNOTATION, 484 485 REP_PROTOCOL_SWITCH, 486 487 REP_PROTOCOL_MAX_REQUEST 488 }; 489 490 /* 491 * Response codes. These are returned to the client, and the errors are 492 * translated into scf_error_t's by libscf (see proto_error()). 493 */ 494 typedef int32_t rep_protocol_responseid_t; 495 enum rep_protocol_responseid { 496 REP_PROTOCOL_SUCCESS = 0, 497 /* iterators: No more values. */ 498 REP_PROTOCOL_DONE = 1, 499 500 /* Request from client was malformed. */ 501 REP_PROTOCOL_FAIL_BAD_REQUEST = -1, 502 /* Prerequisite call has not been made. */ 503 REP_PROTOCOL_FAIL_MISORDERED = -2, 504 /* Register for ID has not been created. */ 505 REP_PROTOCOL_FAIL_UNKNOWN_ID = -3, 506 /* Out of memory or other resource. */ 507 REP_PROTOCOL_FAIL_NO_RESOURCES = -4, 508 /* Type argument is invalid. */ 509 REP_PROTOCOL_FAIL_INVALID_TYPE = -5, 510 /* Requested object does not exist. */ 511 REP_PROTOCOL_FAIL_NOT_FOUND = -6, 512 /* Register for given ID does not point to an object. */ 513 REP_PROTOCOL_FAIL_NOT_SET = -7, 514 515 /* Requested name is longer than supplied buffer. */ 516 REP_PROTOCOL_FAIL_TRUNCATED = -8, 517 /* Operation requires different type. */ 518 REP_PROTOCOL_FAIL_TYPE_MISMATCH = -9, 519 520 /* Changeable object has been changed since last update. */ 521 REP_PROTOCOL_FAIL_NOT_LATEST = -10, 522 /* Creation failed because object with given name exists. */ 523 REP_PROTOCOL_FAIL_EXISTS = -11, 524 /* Transaction is invalid. */ 525 REP_PROTOCOL_FAIL_BAD_TX = -12, 526 /* Operation is not applicable to indicated object. */ 527 REP_PROTOCOL_FAIL_NOT_APPLICABLE = -13, 528 /* Two IDs for operation were unexpectedly equal. */ 529 REP_PROTOCOL_FAIL_DUPLICATE_ID = -14, 530 531 /* Permission denied. */ 532 REP_PROTOCOL_FAIL_PERMISSION_DENIED = -15, 533 /* Backend does not exist or otherwise refused access. */ 534 REP_PROTOCOL_FAIL_BACKEND_ACCESS = -16, 535 /* Backend is read-only. */ 536 REP_PROTOCOL_FAIL_BACKEND_READONLY = -17, 537 538 /* Object has been deleted. */ 539 REP_PROTOCOL_FAIL_DELETED = -18, 540 541 REP_PROTOCOL_FAIL_UNKNOWN = -0xfd 542 }; 543 544 /* 545 * Types 546 */ 547 typedef enum rep_protocol_entity { 548 REP_PROTOCOL_ENTITY_NONE, 549 REP_PROTOCOL_ENTITY_SCOPE, 550 REP_PROTOCOL_ENTITY_SERVICE, 551 REP_PROTOCOL_ENTITY_INSTANCE, 552 REP_PROTOCOL_ENTITY_SNAPSHOT, 553 REP_PROTOCOL_ENTITY_SNAPLEVEL, 554 REP_PROTOCOL_ENTITY_PROPERTYGRP, 555 REP_PROTOCOL_ENTITY_CPROPERTYGRP, /* "composed" property group */ 556 REP_PROTOCOL_ENTITY_PROPERTY, 557 REP_PROTOCOL_ENTITY_VALUE, 558 559 REP_PROTOCOL_ENTITY_MAX 560 } rep_protocol_entity_t; 561 562 typedef enum rep_protocol_value_type { 563 REP_PROTOCOL_TYPE_INVALID = '\0', 564 REP_PROTOCOL_TYPE_BOOLEAN = 'b', 565 REP_PROTOCOL_TYPE_COUNT = 'c', 566 REP_PROTOCOL_TYPE_INTEGER = 'i', 567 REP_PROTOCOL_TYPE_TIME = 't', 568 REP_PROTOCOL_TYPE_STRING = 's', 569 REP_PROTOCOL_TYPE_OPAQUE = 'o', 570 571 REP_PROTOCOL_SUBTYPE_USTRING = REP_PROTOCOL_TYPE_STRING|('u' << 8), 572 REP_PROTOCOL_SUBTYPE_URI = REP_PROTOCOL_TYPE_STRING|('U' << 8), 573 REP_PROTOCOL_SUBTYPE_FMRI = REP_PROTOCOL_TYPE_STRING|('f' << 8), 574 575 REP_PROTOCOL_SUBTYPE_HOST = REP_PROTOCOL_TYPE_STRING|('h' << 8), 576 REP_PROTOCOL_SUBTYPE_HOSTNAME = REP_PROTOCOL_TYPE_STRING|('N' << 8), 577 REP_PROTOCOL_SUBTYPE_NETADDR = REP_PROTOCOL_TYPE_STRING|('n' << 8), 578 REP_PROTOCOL_SUBTYPE_NETADDR_V4 = REP_PROTOCOL_TYPE_STRING|('4' << 8), 579 REP_PROTOCOL_SUBTYPE_NETADDR_V6 = REP_PROTOCOL_TYPE_STRING|('6' << 8) 580 } rep_protocol_value_type_t; 581 582 583 #define REP_PROTOCOL_BASE_TYPE(t) ((t) & 0x00ff) 584 #define REP_PROTOCOL_SUBTYPE(t) (((t) & 0xff00) >> 8) 585 586 /* 587 * Request structures 588 */ 589 typedef struct rep_protocol_request { 590 enum rep_protocol_requestid rpr_request; 591 } rep_protocol_request_t; 592 593 struct rep_protocol_iter_request { 594 enum rep_protocol_requestid rpr_request; 595 uint32_t rpr_iterid; 596 }; 597 598 struct rep_protocol_iter_start { 599 enum rep_protocol_requestid rpr_request; /* ITER_START */ 600 uint32_t rpr_iterid; 601 602 uint32_t rpr_entity; 603 uint32_t rpr_itertype; 604 uint32_t rpr_flags; 605 char rpr_pattern[REP_PROTOCOL_NAME_LEN]; 606 }; 607 #define RP_ITER_START_ALL 0x00000001 /* ignore pattern, match all */ 608 #define RP_ITER_START_EXACT 0x00000002 /* exact match with pattern */ 609 #define RP_ITER_START_PGTYPE 0x00000003 /* exact match pg type */ 610 #define RP_ITER_START_FILT_MASK 0x00000003 611 #define RP_ITER_START_COMPOSED 0x00000004 /* composed */ 612 613 struct rep_protocol_iter_read { 614 enum rep_protocol_requestid rpr_request; /* ITER_READ */ 615 uint32_t rpr_iterid; 616 uint32_t rpr_sequence; /* client increments upon success */ 617 uint32_t rpr_entityid; /* entity to write result to */ 618 }; 619 620 struct rep_protocol_iter_read_value { 621 enum rep_protocol_requestid rpr_request; /* ITER_READ_VALUE */ 622 uint32_t rpr_iterid; 623 uint32_t rpr_sequence; /* client increments upon success */ 624 }; 625 626 struct rep_protocol_entity_setup { 627 enum rep_protocol_requestid rpr_request; /* ENTITY_SETUP */ 628 uint32_t rpr_entityid; 629 uint32_t rpr_entitytype; 630 }; 631 632 struct rep_protocol_entity_name { 633 enum rep_protocol_requestid rpr_request; /* ENTITY_NAME */ 634 uint32_t rpr_entityid; 635 uint32_t rpr_answertype; 636 }; 637 #define RP_ENTITY_NAME_NAME 0 638 #define RP_ENTITY_NAME_PGTYPE 1 639 #define RP_ENTITY_NAME_PGFLAGS 2 640 #define RP_ENTITY_NAME_SNAPLEVEL_SCOPE 3 641 #define RP_ENTITY_NAME_SNAPLEVEL_SERVICE 4 642 #define RP_ENTITY_NAME_SNAPLEVEL_INSTANCE 5 643 #define RP_ENTITY_NAME_PGREADPROT 6 644 645 struct rep_protocol_entity_update { 646 enum rep_protocol_requestid rpr_request; /* ENTITY_UPDATE */ 647 uint32_t rpr_entityid; 648 uint32_t rpr_changeid; 649 }; 650 651 struct rep_protocol_entity_parent_type { 652 enum rep_protocol_requestid rpr_request; /* ENTITY_PARENT_TYPE */ 653 uint32_t rpr_entityid; 654 }; 655 656 struct rep_protocol_entity_parent { 657 enum rep_protocol_requestid rpr_request; /* ENTITY_GET_PARENT */ 658 uint32_t rpr_entityid; 659 uint32_t rpr_outid; 660 }; 661 662 struct rep_protocol_entity_get { 663 enum rep_protocol_requestid rpr_request; /* ENTITY_SET */ 664 uint32_t rpr_entityid; 665 uint32_t rpr_object; 666 }; 667 #define RP_ENTITY_GET_INVALIDATE 1 668 #define RP_ENTITY_GET_MOST_LOCAL_SCOPE 2 669 670 struct rep_protocol_entity_create_child { 671 enum rep_protocol_requestid rpr_request; /* ENTITY_CREATE_CHILD */ 672 uint32_t rpr_entityid; 673 uint32_t rpr_childtype; 674 uint32_t rpr_childid; 675 uint32_t rpr_changeid; 676 char rpr_name[REP_PROTOCOL_NAME_LEN]; 677 }; 678 679 struct rep_protocol_entity_create_pg { 680 enum rep_protocol_requestid rpr_request; /* ENTITY_CREATE_PG */ 681 uint32_t rpr_entityid; 682 uint32_t rpr_childtype; 683 uint32_t rpr_childid; 684 uint32_t rpr_changeid; 685 char rpr_name[REP_PROTOCOL_NAME_LEN]; 686 char rpr_type[REP_PROTOCOL_NAME_LEN]; 687 uint32_t rpr_flags; 688 }; 689 690 struct rep_protocol_entity_get_child { 691 enum rep_protocol_requestid rpr_request; /* ENTITY_GET_CHILD */ 692 uint32_t rpr_entityid; 693 uint32_t rpr_childid; 694 char rpr_name[REP_PROTOCOL_NAME_LEN]; 695 }; 696 697 struct rep_protocol_entity_delete { 698 enum rep_protocol_requestid rpr_request; /* ENTITY_DELETE_CHILD */ 699 uint32_t rpr_entityid; 700 uint32_t rpr_changeid; 701 }; 702 703 struct rep_protocol_entity_reset { 704 enum rep_protocol_requestid rpr_request; /* ENTITY_NAME */ 705 uint32_t rpr_entityid; 706 }; 707 708 struct rep_protocol_entity_request { 709 enum rep_protocol_requestid rpr_request; /* ENTITY_NAME */ 710 uint32_t rpr_entityid; 711 }; 712 713 struct rep_protocol_entity_teardown { 714 enum rep_protocol_requestid rpr_request; /* ENTITY_TEARDOWN */ 715 uint32_t rpr_entityid; 716 }; 717 718 struct rep_protocol_entity_pair { 719 enum rep_protocol_requestid rpr_request; /* NEXT_SNAPLEVEL */ 720 uint32_t rpr_entity_src; 721 uint32_t rpr_entity_dst; 722 }; 723 724 struct rep_protocol_transaction_start { 725 enum rep_protocol_requestid rpr_request; /* TX_SETUP */ 726 uint32_t rpr_entityid_tx; /* property group tx entity */ 727 uint32_t rpr_entityid; /* property group entity */ 728 }; 729 730 struct rep_protocol_transaction_commit { 731 enum rep_protocol_requestid rpr_request; /* TX_COMMIT */ 732 uint32_t rpr_entityid; 733 uint32_t rpr_size; /* size of entire structure */ 734 uint8_t rpr_cmd[1]; 735 }; 736 737 #define REP_PROTOCOL_TRANSACTION_COMMIT_SIZE(sz) \ 738 (offsetof(struct rep_protocol_transaction_commit, rpr_cmd[sz])) 739 740 #define REP_PROTOCOL_TRANSACTION_COMMIT_MIN_SIZE \ 741 REP_PROTOCOL_TRANSACTION_COMMIT_SIZE(0) 742 743 enum rep_protocol_transaction_action { 744 REP_PROTOCOL_TX_ENTRY_INVALID, /* N/A */ 745 REP_PROTOCOL_TX_ENTRY_NEW, /* new property */ 746 REP_PROTOCOL_TX_ENTRY_CLEAR, /* clear old property */ 747 REP_PROTOCOL_TX_ENTRY_REPLACE, /* change type of old property */ 748 REP_PROTOCOL_TX_ENTRY_DELETE /* delete property (no values) */ 749 }; 750 751 struct rep_protocol_transaction_cmd { 752 enum rep_protocol_transaction_action rptc_action; 753 uint32_t rptc_type; 754 uint32_t rptc_size; /* size of entire structure */ 755 uint32_t rptc_name_len; 756 uint8_t rptc_data[1]; 757 }; 758 759 #define REP_PROTOCOL_TRANSACTION_CMD_SIZE(sz) \ 760 (offsetof(struct rep_protocol_transaction_cmd, rptc_data[sz])) 761 762 #define REP_PROTOCOL_TRANSACTION_CMD_MIN_SIZE \ 763 REP_PROTOCOL_TRANSACTION_CMD_SIZE(0) 764 765 #define TX_SIZE(x) P2ROUNDUP((x), sizeof (uint32_t)) 766 767 struct rep_protocol_transaction_request { 768 enum rep_protocol_requestid rpr_request; /* SETUP, ABORT or TEARDOWN */ 769 uint32_t rpr_txid; 770 }; 771 772 struct rep_protocol_property_request { 773 enum rep_protocol_requestid rpr_request; 774 uint32_t rpr_entityid; 775 }; 776 777 struct rep_protocol_propertygrp_request { 778 enum rep_protocol_requestid rpr_request; 779 uint32_t rpr_entityid; 780 }; 781 782 struct rep_protocol_notify_request { 783 enum rep_protocol_requestid rpr_request; 784 uint32_t rpr_type; 785 char rpr_pattern[REP_PROTOCOL_NAME_LEN]; 786 }; 787 #define REP_PROTOCOL_NOTIFY_PGNAME 1 788 #define REP_PROTOCOL_NOTIFY_PGTYPE 2 789 790 struct rep_protocol_wait_request { 791 enum rep_protocol_requestid rpr_request; 792 uint32_t rpr_entityid; 793 }; 794 795 struct rep_protocol_snapshot_take { 796 enum rep_protocol_requestid rpr_request; /* SNAPSHOT_TAKE */ 797 uint32_t rpr_entityid_src; 798 uint32_t rpr_entityid_dest; 799 int rpr_flags; 800 char rpr_name[REP_PROTOCOL_NAME_LEN]; 801 }; 802 #define REP_SNAPSHOT_NEW 0x00000001 803 #define REP_SNAPSHOT_ATTACH 0x00000002 804 805 struct rep_protocol_snapshot_take_named { 806 enum rep_protocol_requestid rpr_request; /* SNAPSHOT_TAKE_NAMED */ 807 uint32_t rpr_entityid_src; 808 uint32_t rpr_entityid_dest; 809 char rpr_svcname[REP_PROTOCOL_NAME_LEN]; 810 char rpr_instname[REP_PROTOCOL_NAME_LEN]; 811 char rpr_name[REP_PROTOCOL_NAME_LEN]; 812 }; 813 814 struct rep_protocol_snapshot_attach { 815 enum rep_protocol_requestid rpr_request; /* SNAPSHOT_ATTACH */ 816 uint32_t rpr_entityid_src; 817 uint32_t rpr_entityid_dest; 818 }; 819 820 struct rep_protocol_backup_request { 821 enum rep_protocol_requestid rpr_request; /* BACKUP */ 822 uint32_t rpr_changeid; 823 char rpr_name[REP_PROTOCOL_NAME_LEN]; 824 }; 825 826 struct rep_protocol_annotation { 827 enum rep_protocol_requestid rpr_request; /* SET_ANNOTATION */ 828 char rpr_operation[REP_PROTOCOL_NAME_LEN]; 829 char rpr_file[MAXPATHLEN]; 830 }; 831 832 struct rep_protocol_switch_request { 833 enum rep_protocol_requestid rpr_request; /* SWITCH */ 834 uint32_t rpr_changeid; 835 int rpr_flag; 836 }; 837 838 /* 839 * Response structures 840 */ 841 typedef struct rep_protocol_response { 842 rep_protocol_responseid_t rpr_response; 843 } rep_protocol_response_t; 844 845 struct rep_protocol_integer_response { 846 rep_protocol_responseid_t rpr_response; 847 uint32_t rpr_value; 848 }; 849 850 struct rep_protocol_name_response { /* response to ENTITY_NAME */ 851 rep_protocol_responseid_t rpr_response; 852 char rpr_name[REP_PROTOCOL_NAME_LEN]; 853 }; 854 855 struct rep_protocol_fmri_response { 856 rep_protocol_responseid_t rpr_response; 857 char rpr_fmri[REP_PROTOCOL_FMRI_LEN]; 858 }; 859 860 struct rep_protocol_value_response { 861 rep_protocol_responseid_t rpr_response; 862 rep_protocol_value_type_t rpr_type; 863 char rpr_value[2 * REP_PROTOCOL_VALUE_LEN + 1]; 864 }; 865 866 #ifdef __cplusplus 867 } 868 #endif 869 870 #endif /* _REPCACHE_PROTOCOL_H */ 871