1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83 #include <sys/zfs_events.h>
84 #include <sys/fs/zev.h>
85
86 /*
87 * Programming rules.
88 *
89 * Each vnode op performs some logical unit of work. To do this, the ZPL must
90 * properly lock its in-core state, create a DMU transaction, do the work,
91 * record this work in the intent log (ZIL), commit the DMU transaction,
92 * and wait for the intent log to commit if it is a synchronous operation.
93 * Moreover, the vnode ops must work in both normal and log replay context.
94 * The ordering of events is important to avoid deadlocks and references
95 * to freed memory. The example below illustrates the following Big Rules:
96 *
97 * (1) A check must be made in each zfs thread for a mounted file system.
98 * This is done avoiding races using ZFS_ENTER(zfsvfs).
99 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
100 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
101 * can return EIO from the calling function.
102 *
103 * (2) VN_RELE() should always be the last thing except for zil_commit()
104 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
105 * First, if it's the last reference, the vnode/znode
106 * can be freed, so the zp may point to freed memory. Second, the last
107 * reference will call zfs_zinactive(), which may induce a lot of work --
108 * pushing cached pages (which acquires range locks) and syncing out
109 * cached atime changes. Third, zfs_zinactive() may require a new tx,
110 * which could deadlock the system if you were already holding one.
111 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
112 *
113 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
114 * as they can span dmu_tx_assign() calls.
115 *
116 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
117 * dmu_tx_assign(). This is critical because we don't want to block
118 * while holding locks.
119 *
120 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
121 * reduces lock contention and CPU usage when we must wait (note that if
122 * throughput is constrained by the storage, nearly every transaction
123 * must wait).
124 *
125 * Note, in particular, that if a lock is sometimes acquired before
126 * the tx assigns, and sometimes after (e.g. z_lock), then failing
127 * to use a non-blocking assign can deadlock the system. The scenario:
128 *
129 * Thread A has grabbed a lock before calling dmu_tx_assign().
130 * Thread B is in an already-assigned tx, and blocks for this lock.
131 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
132 * forever, because the previous txg can't quiesce until B's tx commits.
133 *
134 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
135 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
136 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
137 * to indicate that this operation has already called dmu_tx_wait().
138 * This will ensure that we don't retry forever, waiting a short bit
139 * each time.
140 *
141 * (5) If the operation succeeded, generate the intent log entry for it
142 * before dropping locks. This ensures that the ordering of events
143 * in the intent log matches the order in which they actually occurred.
144 * During ZIL replay the zfs_log_* functions will update the sequence
145 * number to indicate the zil transaction has replayed.
146 *
147 * (6) At the end of each vnode op, the DMU tx must always commit,
148 * regardless of whether there were any errors.
149 *
150 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
151 * to ensure that synchronous semantics are provided when necessary.
152 *
153 * In general, this is how things should be ordered in each vnode op:
154 *
155 * ZFS_ENTER(zfsvfs); // exit if unmounted
156 * top:
157 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
158 * rw_enter(...); // grab any other locks you need
159 * tx = dmu_tx_create(...); // get DMU tx
160 * dmu_tx_hold_*(); // hold each object you might modify
161 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
162 * if (error) {
163 * rw_exit(...); // drop locks
164 * zfs_dirent_unlock(dl); // unlock directory entry
165 * VN_RELE(...); // release held vnodes
166 * if (error == ERESTART) {
167 * waited = B_TRUE;
168 * dmu_tx_wait(tx);
169 * dmu_tx_abort(tx);
170 * goto top;
171 * }
172 * dmu_tx_abort(tx); // abort DMU tx
173 * ZFS_EXIT(zfsvfs); // finished in zfs
174 * return (error); // really out of space
175 * }
176 * error = do_real_work(); // do whatever this VOP does
177 * if (error == 0)
178 * zfs_log_*(...); // on success, make ZIL entry
179 * dmu_tx_commit(tx); // commit DMU tx -- error or not
180 * rw_exit(...); // drop locks
181 * zfs_dirent_unlock(dl); // unlock directory entry
182 * VN_RELE(...); // release held vnodes
183 * zil_commit(zilog, foid); // synchronous when necessary
184 * ZFS_EXIT(zfsvfs); // finished in zfs
185 * return (error); // done, report error
186 */
187
188 /* ARGSUSED */
189 static int
zfs_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)190 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
191 {
192 znode_t *zp = VTOZ(*vpp);
193 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
194
195 ZFS_ENTER(zfsvfs);
196 ZFS_VERIFY_ZP(zp);
197
198 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
199 ((flag & FAPPEND) == 0)) {
200 ZFS_EXIT(zfsvfs);
201 return (SET_ERROR(EPERM));
202 }
203
204 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
205 ZTOV(zp)->v_type == VREG &&
206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
207 if (fs_vscan(*vpp, cr, 0) != 0) {
208 ZFS_EXIT(zfsvfs);
209 return (SET_ERROR(EACCES));
210 }
211 }
212
213 /* Keep a count of the synchronous opens in the znode */
214 if (flag & (FSYNC | FDSYNC))
215 atomic_inc_32(&zp->z_sync_cnt);
216
217 ZFS_EXIT(zfsvfs);
218 return (0);
219 }
220
221 /* ARGSUSED */
222 static int
zfs_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)223 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
224 caller_context_t *ct)
225 {
226 znode_t *zp = VTOZ(vp);
227 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
228
229 /*
230 * Clean up any locks held by this process on the vp.
231 */
232 cleanlocks(vp, ddi_get_pid(), 0);
233 cleanshares(vp, ddi_get_pid());
234
235 ZFS_ENTER(zfsvfs);
236 ZFS_VERIFY_ZP(zp);
237
238 /* Decrement the synchronous opens in the znode */
239 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
240 atomic_dec_32(&zp->z_sync_cnt);
241
242 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
243 ZTOV(zp)->v_type == VREG &&
244 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
245 VERIFY(fs_vscan(vp, cr, 1) == 0);
246
247 if (ZTOV(zp)->v_type == VREG && zp->z_new_content) {
248 zp->z_new_content = 0;
249 rw_enter(&rz_zev_rwlock, RW_READER);
250 if (rz_zev_callbacks &&
251 rz_zev_callbacks->rz_zev_znode_close_after_update)
252 rz_zev_callbacks->rz_zev_znode_close_after_update(zp);
253 rw_exit(&rz_zev_rwlock);
254 }
255
256 ZFS_EXIT(zfsvfs);
257 return (0);
258 }
259
260 /*
261 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
262 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
263 */
264 static int
zfs_holey(vnode_t * vp,int cmd,offset_t * off)265 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
266 {
267 znode_t *zp = VTOZ(vp);
268 uint64_t noff = (uint64_t)*off; /* new offset */
269 uint64_t file_sz;
270 int error;
271 boolean_t hole;
272
273 file_sz = zp->z_size;
274 if (noff >= file_sz) {
275 return (SET_ERROR(ENXIO));
276 }
277
278 if (cmd == _FIO_SEEK_HOLE)
279 hole = B_TRUE;
280 else
281 hole = B_FALSE;
282
283 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
284
285 if (error == ESRCH)
286 return (SET_ERROR(ENXIO));
287
288 /*
289 * We could find a hole that begins after the logical end-of-file,
290 * because dmu_offset_next() only works on whole blocks. If the
291 * EOF falls mid-block, then indicate that the "virtual hole"
292 * at the end of the file begins at the logical EOF, rather than
293 * at the end of the last block.
294 */
295 if (noff > file_sz) {
296 ASSERT(hole);
297 noff = file_sz;
298 }
299
300 if (noff < *off)
301 return (error);
302 *off = noff;
303 return (error);
304 }
305
306 /* ARGSUSED */
307 static int
zfs_ioctl(vnode_t * vp,int com,intptr_t data,int flag,cred_t * cred,int * rvalp,caller_context_t * ct)308 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
309 int *rvalp, caller_context_t *ct)
310 {
311 offset_t off;
312 offset_t ndata;
313 dmu_object_info_t doi;
314 int error;
315 zfsvfs_t *zfsvfs;
316 znode_t *zp;
317
318 switch (com) {
319 case _FIOFFS:
320 {
321 return (zfs_sync(vp->v_vfsp, 0, cred));
322
323 /*
324 * The following two ioctls are used by bfu. Faking out,
325 * necessary to avoid bfu errors.
326 */
327 }
328 case _FIOGDIO:
329 case _FIOSDIO:
330 {
331 return (0);
332 }
333
334 case _FIO_SEEK_DATA:
335 case _FIO_SEEK_HOLE:
336 {
337 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
338 return (SET_ERROR(EFAULT));
339
340 zp = VTOZ(vp);
341 zfsvfs = zp->z_zfsvfs;
342 ZFS_ENTER(zfsvfs);
343 ZFS_VERIFY_ZP(zp);
344
345 /* offset parameter is in/out */
346 error = zfs_holey(vp, com, &off);
347 ZFS_EXIT(zfsvfs);
348 if (error)
349 return (error);
350 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
351 return (SET_ERROR(EFAULT));
352 return (0);
353 }
354 case _FIO_COUNT_FILLED:
355 {
356 /*
357 * _FIO_COUNT_FILLED adds a new ioctl command which
358 * exposes the number of filled blocks in a
359 * ZFS object.
360 */
361 zp = VTOZ(vp);
362 zfsvfs = zp->z_zfsvfs;
363 ZFS_ENTER(zfsvfs);
364 ZFS_VERIFY_ZP(zp);
365
366 /*
367 * Wait for all dirty blocks for this object
368 * to get synced out to disk, and the DMU info
369 * updated.
370 */
371 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
372 if (error) {
373 ZFS_EXIT(zfsvfs);
374 return (error);
375 }
376
377 /*
378 * Retrieve fill count from DMU object.
379 */
380 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
381 if (error) {
382 ZFS_EXIT(zfsvfs);
383 return (error);
384 }
385
386 ndata = doi.doi_fill_count;
387
388 ZFS_EXIT(zfsvfs);
389 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
390 return (SET_ERROR(EFAULT));
391 return (0);
392 }
393 }
394 return (SET_ERROR(ENOTTY));
395 }
396
397 /*
398 * Utility functions to map and unmap a single physical page. These
399 * are used to manage the mappable copies of ZFS file data, and therefore
400 * do not update ref/mod bits.
401 */
402 caddr_t
zfs_map_page(page_t * pp,enum seg_rw rw)403 zfs_map_page(page_t *pp, enum seg_rw rw)
404 {
405 if (kpm_enable)
406 return (hat_kpm_mapin(pp, 0));
407 ASSERT(rw == S_READ || rw == S_WRITE);
408 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
409 (caddr_t)-1));
410 }
411
412 void
zfs_unmap_page(page_t * pp,caddr_t addr)413 zfs_unmap_page(page_t *pp, caddr_t addr)
414 {
415 if (kpm_enable) {
416 hat_kpm_mapout(pp, 0, addr);
417 } else {
418 ppmapout(addr);
419 }
420 }
421
422 /*
423 * When a file is memory mapped, we must keep the IO data synchronized
424 * between the DMU cache and the memory mapped pages. What this means:
425 *
426 * On Write: If we find a memory mapped page, we write to *both*
427 * the page and the dmu buffer.
428 */
429 static void
update_pages(vnode_t * vp,int64_t start,int len,objset_t * os,uint64_t oid)430 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
431 {
432 int64_t off;
433
434 off = start & PAGEOFFSET;
435 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
436 page_t *pp;
437 uint64_t nbytes = MIN(PAGESIZE - off, len);
438
439 if (pp = page_lookup(vp, start, SE_SHARED)) {
440 caddr_t va;
441
442 va = zfs_map_page(pp, S_WRITE);
443 (void) dmu_read(os, oid, start+off, nbytes, va+off,
444 DMU_READ_PREFETCH);
445 zfs_unmap_page(pp, va);
446 page_unlock(pp);
447 }
448 len -= nbytes;
449 off = 0;
450 }
451 }
452
453 /*
454 * When a file is memory mapped, we must keep the IO data synchronized
455 * between the DMU cache and the memory mapped pages. What this means:
456 *
457 * On Read: We "read" preferentially from memory mapped pages,
458 * else we default from the dmu buffer.
459 *
460 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
461 * the file is memory mapped.
462 */
463 static int
mappedread(vnode_t * vp,int nbytes,uio_t * uio)464 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
465 {
466 znode_t *zp = VTOZ(vp);
467 int64_t start, off;
468 int len = nbytes;
469 int error = 0;
470
471 start = uio->uio_loffset;
472 off = start & PAGEOFFSET;
473 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
474 page_t *pp;
475 uint64_t bytes = MIN(PAGESIZE - off, len);
476
477 if (pp = page_lookup(vp, start, SE_SHARED)) {
478 caddr_t va;
479
480 va = zfs_map_page(pp, S_READ);
481 error = uiomove(va + off, bytes, UIO_READ, uio);
482 zfs_unmap_page(pp, va);
483 page_unlock(pp);
484 } else {
485 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
486 uio, bytes);
487 }
488 len -= bytes;
489 off = 0;
490 if (error)
491 break;
492 }
493 return (error);
494 }
495
496 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
497
498 /*
499 * Read bytes from specified file into supplied buffer.
500 *
501 * IN: vp - vnode of file to be read from.
502 * uio - structure supplying read location, range info,
503 * and return buffer.
504 * ioflag - SYNC flags; used to provide FRSYNC semantics.
505 * cr - credentials of caller.
506 * ct - caller context
507 *
508 * OUT: uio - updated offset and range, buffer filled.
509 *
510 * RETURN: 0 on success, error code on failure.
511 *
512 * Side Effects:
513 * vp - atime updated if byte count > 0
514 */
515 /* ARGSUSED */
516 static int
zfs_read(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cr,caller_context_t * ct)517 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
518 {
519 znode_t *zp = VTOZ(vp);
520 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
521 ssize_t n, nbytes;
522 int error = 0;
523 rl_t *rl;
524 xuio_t *xuio = NULL;
525
526 ZFS_ENTER(zfsvfs);
527 ZFS_VERIFY_ZP(zp);
528
529 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
530 ZFS_EXIT(zfsvfs);
531 return (SET_ERROR(EACCES));
532 }
533
534 /*
535 * Validate file offset
536 */
537 if (uio->uio_loffset < (offset_t)0) {
538 ZFS_EXIT(zfsvfs);
539 return (SET_ERROR(EINVAL));
540 }
541
542 /*
543 * Fasttrack empty reads
544 */
545 if (uio->uio_resid == 0) {
546 ZFS_EXIT(zfsvfs);
547 return (0);
548 }
549
550 /*
551 * Check for mandatory locks
552 */
553 if (MANDMODE(zp->z_mode)) {
554 if (error = chklock(vp, FREAD,
555 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
556 ZFS_EXIT(zfsvfs);
557 return (error);
558 }
559 }
560
561 /*
562 * If we're in FRSYNC mode, sync out this znode before reading it.
563 */
564 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
565 zil_commit(zfsvfs->z_log, zp->z_id);
566
567 /*
568 * Lock the range against changes.
569 */
570 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
571
572 /*
573 * If we are reading past end-of-file we can skip
574 * to the end; but we might still need to set atime.
575 */
576 if (uio->uio_loffset >= zp->z_size) {
577 error = 0;
578 goto out;
579 }
580
581 ASSERT(uio->uio_loffset < zp->z_size);
582 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
583
584 if ((uio->uio_extflg == UIO_XUIO) &&
585 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
586 int nblk;
587 int blksz = zp->z_blksz;
588 uint64_t offset = uio->uio_loffset;
589
590 xuio = (xuio_t *)uio;
591 if ((ISP2(blksz))) {
592 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
593 blksz)) / blksz;
594 } else {
595 ASSERT(offset + n <= blksz);
596 nblk = 1;
597 }
598 (void) dmu_xuio_init(xuio, nblk);
599
600 if (vn_has_cached_data(vp)) {
601 /*
602 * For simplicity, we always allocate a full buffer
603 * even if we only expect to read a portion of a block.
604 */
605 while (--nblk >= 0) {
606 (void) dmu_xuio_add(xuio,
607 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
608 blksz), 0, blksz);
609 }
610 }
611 }
612
613 while (n > 0) {
614 nbytes = MIN(n, zfs_read_chunk_size -
615 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
616
617 if (vn_has_cached_data(vp)) {
618 error = mappedread(vp, nbytes, uio);
619 } else {
620 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
621 uio, nbytes);
622 }
623 if (error) {
624 /* convert checksum errors into IO errors */
625 if (error == ECKSUM)
626 error = SET_ERROR(EIO);
627 break;
628 }
629
630 n -= nbytes;
631 }
632 out:
633 zfs_range_unlock(rl);
634
635 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
636 ZFS_EXIT(zfsvfs);
637 return (error);
638 }
639
640 /*
641 * Write the bytes to a file.
642 *
643 * IN: vp - vnode of file to be written to.
644 * uio - structure supplying write location, range info,
645 * and data buffer.
646 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
647 * set if in append mode.
648 * cr - credentials of caller.
649 * ct - caller context (NFS/CIFS fem monitor only)
650 *
651 * OUT: uio - updated offset and range.
652 *
653 * RETURN: 0 on success, error code on failure.
654 *
655 * Timestamps:
656 * vp - ctime|mtime updated if byte count > 0
657 */
658
659 /* ARGSUSED */
660 static int
zfs_write(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cr,caller_context_t * ct)661 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
662 {
663 znode_t *zp = VTOZ(vp);
664 rlim64_t limit = uio->uio_llimit;
665 ssize_t start_resid = uio->uio_resid;
666 ssize_t tx_bytes;
667 uint64_t end_size;
668 dmu_tx_t *tx;
669 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
670 zilog_t *zilog;
671 offset_t woff;
672 ssize_t n, nbytes;
673 rl_t *rl;
674 int max_blksz = zfsvfs->z_max_blksz;
675 int error = 0;
676 arc_buf_t *abuf;
677 iovec_t *aiov = NULL;
678 xuio_t *xuio = NULL;
679 int i_iov = 0;
680 int iovcnt = uio->uio_iovcnt;
681 iovec_t *iovp = uio->uio_iov;
682 int write_eof;
683 int count = 0;
684 sa_bulk_attr_t bulk[4];
685 uint64_t mtime[2], ctime[2];
686 ssize_t lock_off, lock_len;
687
688 /*
689 * Fasttrack empty write
690 */
691 n = start_resid;
692 if (n == 0)
693 return (0);
694
695 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
696 limit = MAXOFFSET_T;
697
698 ZFS_ENTER(zfsvfs);
699 ZFS_VERIFY_ZP(zp);
700
701 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
702 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
703 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
704 &zp->z_size, 8);
705 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
706 &zp->z_pflags, 8);
707
708 /*
709 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
710 * callers might not be able to detect properly that we are read-only,
711 * so check it explicitly here.
712 */
713 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
714 ZFS_EXIT(zfsvfs);
715 return (SET_ERROR(EROFS));
716 }
717
718 /*
719 * If immutable or not appending then return EPERM
720 */
721 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
722 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
723 (uio->uio_loffset < zp->z_size))) {
724 ZFS_EXIT(zfsvfs);
725 return (SET_ERROR(EPERM));
726 }
727
728 zilog = zfsvfs->z_log;
729
730 /*
731 * Validate file offset
732 */
733 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
734 if (woff < 0) {
735 ZFS_EXIT(zfsvfs);
736 return (SET_ERROR(EINVAL));
737 }
738
739 /*
740 * Check for mandatory locks before calling zfs_range_lock()
741 * in order to prevent a deadlock with locks set via fcntl().
742 */
743 if (MANDMODE((mode_t)zp->z_mode) &&
744 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
745 ZFS_EXIT(zfsvfs);
746 return (error);
747 }
748
749 /*
750 * Pre-fault the pages to ensure slow (eg NFS) pages
751 * don't hold up txg.
752 * Skip this if uio contains loaned arc_buf.
753 */
754 if ((uio->uio_extflg == UIO_XUIO) &&
755 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
756 xuio = (xuio_t *)uio;
757 else
758 uio_prefaultpages(MIN(n, max_blksz), uio);
759
760 /*
761 * If in append mode, set the io offset pointer to eof.
762 */
763 if (ioflag & FAPPEND) {
764 /*
765 * Obtain an appending range lock to guarantee file append
766 * semantics. We reset the write offset once we have the lock.
767 */
768 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
769 woff = rl->r_off;
770 if (rl->r_len == UINT64_MAX) {
771 /*
772 * We overlocked the file because this write will cause
773 * the file block size to increase.
774 * Note that zp_size cannot change with this lock held.
775 */
776 woff = zp->z_size;
777 }
778 uio->uio_loffset = woff;
779 } else {
780 /*
781 * Note that if the file block size will change as a result of
782 * this write, then this range lock will lock the entire file
783 * so that we can re-write the block safely.
784 */
785
786 /*
787 * If in zev mode, lock offsets are quantized to 1MB chunks
788 * so that we can calculate level 1 checksums later on.
789 */
790 if (rz_zev_active()) {
791 /* start of this megabyte */
792 lock_off = P2ALIGN(woff, ZEV_L1_SIZE);
793 /* full megabytes */
794 lock_len = n + (woff - lock_off);
795 lock_len = P2ROUNDUP(lock_len, ZEV_L1_SIZE);
796 } else {
797 lock_off = woff;
798 lock_len = n;
799 }
800
801 rl = zfs_range_lock(zp, lock_off, lock_len, RL_WRITER);
802 }
803
804 if (woff >= limit) {
805 zfs_range_unlock(rl);
806 ZFS_EXIT(zfsvfs);
807 return (SET_ERROR(EFBIG));
808 }
809
810 if ((woff + n) > limit || woff > (limit - n))
811 n = limit - woff;
812
813 /* Will this write extend the file length? */
814 write_eof = (woff + n > zp->z_size);
815
816 end_size = MAX(zp->z_size, woff + n);
817
818 /*
819 * Write the file in reasonable size chunks. Each chunk is written
820 * in a separate transaction; this keeps the intent log records small
821 * and allows us to do more fine-grained space accounting.
822 */
823 while (n > 0) {
824 abuf = NULL;
825 woff = uio->uio_loffset;
826 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
827 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
828 if (abuf != NULL)
829 dmu_return_arcbuf(abuf);
830 error = SET_ERROR(EDQUOT);
831 break;
832 }
833
834 if (xuio && abuf == NULL) {
835 ASSERT(i_iov < iovcnt);
836 aiov = &iovp[i_iov];
837 abuf = dmu_xuio_arcbuf(xuio, i_iov);
838 dmu_xuio_clear(xuio, i_iov);
839 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
840 iovec_t *, aiov, arc_buf_t *, abuf);
841 ASSERT((aiov->iov_base == abuf->b_data) ||
842 ((char *)aiov->iov_base - (char *)abuf->b_data +
843 aiov->iov_len == arc_buf_size(abuf)));
844 i_iov++;
845 } else if (abuf == NULL && n >= max_blksz &&
846 woff >= zp->z_size &&
847 P2PHASE(woff, max_blksz) == 0 &&
848 zp->z_blksz == max_blksz) {
849 /*
850 * This write covers a full block. "Borrow" a buffer
851 * from the dmu so that we can fill it before we enter
852 * a transaction. This avoids the possibility of
853 * holding up the transaction if the data copy hangs
854 * up on a pagefault (e.g., from an NFS server mapping).
855 */
856 size_t cbytes;
857
858 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
859 max_blksz);
860 ASSERT(abuf != NULL);
861 ASSERT(arc_buf_size(abuf) == max_blksz);
862 if (error = uiocopy(abuf->b_data, max_blksz,
863 UIO_WRITE, uio, &cbytes)) {
864 dmu_return_arcbuf(abuf);
865 break;
866 }
867 ASSERT(cbytes == max_blksz);
868 }
869
870 /*
871 * Start a transaction.
872 */
873 tx = dmu_tx_create(zfsvfs->z_os);
874 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
875 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
876 zfs_sa_upgrade_txholds(tx, zp);
877 error = dmu_tx_assign(tx, TXG_WAIT);
878 if (error) {
879 dmu_tx_abort(tx);
880 if (abuf != NULL)
881 dmu_return_arcbuf(abuf);
882 break;
883 }
884
885 /*
886 * If zfs_range_lock() over-locked we grow the blocksize
887 * and then reduce the lock range. This will only happen
888 * on the first iteration since zfs_range_reduce() will
889 * shrink down r_len to the appropriate size.
890 */
891 if (rl->r_len == UINT64_MAX) {
892 uint64_t new_blksz;
893
894 if (zp->z_blksz > max_blksz) {
895 /*
896 * File's blocksize is already larger than the
897 * "recordsize" property. Only let it grow to
898 * the next power of 2.
899 */
900 ASSERT(!ISP2(zp->z_blksz));
901 new_blksz = MIN(end_size,
902 1 << highbit64(zp->z_blksz));
903 } else {
904 new_blksz = MIN(end_size, max_blksz);
905 }
906 zfs_grow_blocksize(zp, new_blksz, tx);
907 zfs_range_reduce(rl, woff, n);
908 }
909
910 /*
911 * XXX - should we really limit each write to z_max_blksz?
912 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
913 */
914 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
915
916 if (abuf == NULL) {
917 tx_bytes = uio->uio_resid;
918 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
919 uio, nbytes, tx);
920 tx_bytes -= uio->uio_resid;
921 } else {
922 tx_bytes = nbytes;
923 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
924 /*
925 * If this is not a full block write, but we are
926 * extending the file past EOF and this data starts
927 * block-aligned, use assign_arcbuf(). Otherwise,
928 * write via dmu_write().
929 */
930 if (tx_bytes < max_blksz && (!write_eof ||
931 aiov->iov_base != abuf->b_data)) {
932 ASSERT(xuio);
933 dmu_write(zfsvfs->z_os, zp->z_id, woff,
934 aiov->iov_len, aiov->iov_base, tx);
935 dmu_return_arcbuf(abuf);
936 xuio_stat_wbuf_copied();
937 } else {
938 ASSERT(xuio || tx_bytes == max_blksz);
939 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
940 woff, abuf, tx);
941 }
942 ASSERT(tx_bytes <= uio->uio_resid);
943 uioskip(uio, tx_bytes);
944 }
945 if (tx_bytes && vn_has_cached_data(vp)) {
946 update_pages(vp, woff,
947 tx_bytes, zfsvfs->z_os, zp->z_id);
948 }
949
950 /*
951 * If we made no progress, we're done. If we made even
952 * partial progress, update the znode and ZIL accordingly.
953 */
954 if (tx_bytes == 0) {
955 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
956 (void *)&zp->z_size, sizeof (uint64_t), tx);
957 dmu_tx_commit(tx);
958 ASSERT(error != 0);
959 break;
960 }
961
962 /*
963 * Clear Set-UID/Set-GID bits on successful write if not
964 * privileged and at least one of the excute bits is set.
965 *
966 * It would be nice to to this after all writes have
967 * been done, but that would still expose the ISUID/ISGID
968 * to another app after the partial write is committed.
969 *
970 * Note: we don't call zfs_fuid_map_id() here because
971 * user 0 is not an ephemeral uid.
972 */
973 mutex_enter(&zp->z_acl_lock);
974 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
975 (S_IXUSR >> 6))) != 0 &&
976 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
977 secpolicy_vnode_setid_retain(cr,
978 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
979 uint64_t newmode;
980 zp->z_mode &= ~(S_ISUID | S_ISGID);
981 newmode = zp->z_mode;
982 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
983 (void *)&newmode, sizeof (uint64_t), tx);
984 }
985 mutex_exit(&zp->z_acl_lock);
986
987 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
988 B_TRUE);
989
990 /*
991 * Update the file size (zp_size) if it has changed;
992 * account for possible concurrent updates.
993 */
994 while ((end_size = zp->z_size) < uio->uio_loffset) {
995 (void) atomic_cas_64(&zp->z_size, end_size,
996 uio->uio_loffset);
997 ASSERT(error == 0);
998 }
999 /*
1000 * If we are replaying and eof is non zero then force
1001 * the file size to the specified eof. Note, there's no
1002 * concurrency during replay.
1003 */
1004 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1005 zp->z_size = zfsvfs->z_replay_eof;
1006
1007 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1008
1009 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1010 dmu_tx_commit(tx);
1011
1012 if (error != 0)
1013 break;
1014 ASSERT(tx_bytes == nbytes);
1015 n -= nbytes;
1016
1017 if (!xuio && n > 0)
1018 uio_prefaultpages(MIN(n, max_blksz), uio);
1019 }
1020
1021 zfs_range_unlock(rl);
1022
1023 /*
1024 * If we're in replay mode, or we made no progress, return error.
1025 * Otherwise, it's at least a partial write, so it's successful.
1026 */
1027 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1028 ZFS_EXIT(zfsvfs);
1029 return (error);
1030 }
1031
1032 if (ioflag & (FSYNC | FDSYNC) ||
1033 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1034 zil_commit(zilog, zp->z_id);
1035
1036 ZFS_EXIT(zfsvfs);
1037 return (0);
1038 }
1039
1040 void
zfs_get_done(zgd_t * zgd,int error)1041 zfs_get_done(zgd_t *zgd, int error)
1042 {
1043 znode_t *zp = zgd->zgd_private;
1044 objset_t *os = zp->z_zfsvfs->z_os;
1045
1046 if (zgd->zgd_db)
1047 dmu_buf_rele(zgd->zgd_db, zgd);
1048
1049 zfs_range_unlock(zgd->zgd_rl);
1050
1051 /*
1052 * Release the vnode asynchronously as we currently have the
1053 * txg stopped from syncing.
1054 */
1055 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1056
1057 if (error == 0 && zgd->zgd_bp)
1058 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1059
1060 kmem_free(zgd, sizeof (zgd_t));
1061 }
1062
1063 #ifdef DEBUG
1064 static int zil_fault_io = 0;
1065 #endif
1066
1067 /*
1068 * Get data to generate a TX_WRITE intent log record.
1069 */
1070 int
zfs_get_data(void * arg,lr_write_t * lr,char * buf,zio_t * zio)1071 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1072 {
1073 zfsvfs_t *zfsvfs = arg;
1074 objset_t *os = zfsvfs->z_os;
1075 znode_t *zp;
1076 uint64_t object = lr->lr_foid;
1077 uint64_t offset = lr->lr_offset;
1078 uint64_t size = lr->lr_length;
1079 blkptr_t *bp = &lr->lr_blkptr;
1080 dmu_buf_t *db;
1081 zgd_t *zgd;
1082 int error = 0;
1083
1084 ASSERT(zio != NULL);
1085 ASSERT(size != 0);
1086
1087 /*
1088 * Nothing to do if the file has been removed
1089 */
1090 if (zfs_zget(zfsvfs, object, &zp) != 0)
1091 return (SET_ERROR(ENOENT));
1092 if (zp->z_unlinked) {
1093 /*
1094 * Release the vnode asynchronously as we currently have the
1095 * txg stopped from syncing.
1096 */
1097 VN_RELE_ASYNC(ZTOV(zp),
1098 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1099 return (SET_ERROR(ENOENT));
1100 }
1101
1102 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1103 zgd->zgd_zilog = zfsvfs->z_log;
1104 zgd->zgd_private = zp;
1105
1106 /*
1107 * Write records come in two flavors: immediate and indirect.
1108 * For small writes it's cheaper to store the data with the
1109 * log record (immediate); for large writes it's cheaper to
1110 * sync the data and get a pointer to it (indirect) so that
1111 * we don't have to write the data twice.
1112 */
1113 if (buf != NULL) { /* immediate write */
1114 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1115 /* test for truncation needs to be done while range locked */
1116 if (offset >= zp->z_size) {
1117 error = SET_ERROR(ENOENT);
1118 } else {
1119 error = dmu_read(os, object, offset, size, buf,
1120 DMU_READ_NO_PREFETCH);
1121 }
1122 ASSERT(error == 0 || error == ENOENT);
1123 } else { /* indirect write */
1124 /*
1125 * Have to lock the whole block to ensure when it's
1126 * written out and it's checksum is being calculated
1127 * that no one can change the data. We need to re-check
1128 * blocksize after we get the lock in case it's changed!
1129 */
1130 for (;;) {
1131 uint64_t blkoff;
1132 size = zp->z_blksz;
1133 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1134 offset -= blkoff;
1135 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1136 RL_READER);
1137 if (zp->z_blksz == size)
1138 break;
1139 offset += blkoff;
1140 zfs_range_unlock(zgd->zgd_rl);
1141 }
1142 /* test for truncation needs to be done while range locked */
1143 if (lr->lr_offset >= zp->z_size)
1144 error = SET_ERROR(ENOENT);
1145 #ifdef DEBUG
1146 if (zil_fault_io) {
1147 error = SET_ERROR(EIO);
1148 zil_fault_io = 0;
1149 }
1150 #endif
1151 if (error == 0)
1152 error = dmu_buf_hold(os, object, offset, zgd, &db,
1153 DMU_READ_NO_PREFETCH);
1154
1155 if (error == 0) {
1156 blkptr_t *obp = dmu_buf_get_blkptr(db);
1157 if (obp) {
1158 ASSERT(BP_IS_HOLE(bp));
1159 *bp = *obp;
1160 }
1161
1162 zgd->zgd_db = db;
1163 zgd->zgd_bp = bp;
1164
1165 ASSERT(db->db_offset == offset);
1166 ASSERT(db->db_size == size);
1167
1168 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1169 zfs_get_done, zgd);
1170 ASSERT(error || lr->lr_length <= zp->z_blksz);
1171
1172 /*
1173 * On success, we need to wait for the write I/O
1174 * initiated by dmu_sync() to complete before we can
1175 * release this dbuf. We will finish everything up
1176 * in the zfs_get_done() callback.
1177 */
1178 if (error == 0)
1179 return (0);
1180
1181 if (error == EALREADY) {
1182 lr->lr_common.lrc_txtype = TX_WRITE2;
1183 error = 0;
1184 }
1185 }
1186 }
1187
1188 zfs_get_done(zgd, error);
1189
1190 return (error);
1191 }
1192
1193 /*ARGSUSED*/
1194 static int
zfs_access(vnode_t * vp,int mode,int flag,cred_t * cr,caller_context_t * ct)1195 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1196 caller_context_t *ct)
1197 {
1198 znode_t *zp = VTOZ(vp);
1199 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1200 int error;
1201
1202 ZFS_ENTER(zfsvfs);
1203 ZFS_VERIFY_ZP(zp);
1204
1205 if (flag & V_ACE_MASK)
1206 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1207 else
1208 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1209
1210 ZFS_EXIT(zfsvfs);
1211 return (error);
1212 }
1213
1214 /*
1215 * If vnode is for a device return a specfs vnode instead.
1216 */
1217 static int
specvp_check(vnode_t ** vpp,cred_t * cr)1218 specvp_check(vnode_t **vpp, cred_t *cr)
1219 {
1220 int error = 0;
1221
1222 if (IS_DEVVP(*vpp)) {
1223 struct vnode *svp;
1224
1225 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1226 VN_RELE(*vpp);
1227 if (svp == NULL)
1228 error = SET_ERROR(ENOSYS);
1229 *vpp = svp;
1230 }
1231 return (error);
1232 }
1233
1234
1235 /*
1236 * Lookup an entry in a directory, or an extended attribute directory.
1237 * If it exists, return a held vnode reference for it.
1238 *
1239 * IN: dvp - vnode of directory to search.
1240 * nm - name of entry to lookup.
1241 * pnp - full pathname to lookup [UNUSED].
1242 * flags - LOOKUP_XATTR set if looking for an attribute.
1243 * rdir - root directory vnode [UNUSED].
1244 * cr - credentials of caller.
1245 * ct - caller context
1246 * direntflags - directory lookup flags
1247 * realpnp - returned pathname.
1248 *
1249 * OUT: vpp - vnode of located entry, NULL if not found.
1250 *
1251 * RETURN: 0 on success, error code on failure.
1252 *
1253 * Timestamps:
1254 * NA
1255 */
1256 /* ARGSUSED */
1257 static int
zfs_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)1258 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1259 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1260 int *direntflags, pathname_t *realpnp)
1261 {
1262 znode_t *zdp = VTOZ(dvp);
1263 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1264 int error = 0;
1265
1266 /* fast path */
1267 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1268
1269 if (dvp->v_type != VDIR) {
1270 return (SET_ERROR(ENOTDIR));
1271 } else if (zdp->z_sa_hdl == NULL) {
1272 return (SET_ERROR(EIO));
1273 }
1274
1275 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1276 error = zfs_fastaccesschk_execute(zdp, cr);
1277 if (!error) {
1278 *vpp = dvp;
1279 VN_HOLD(*vpp);
1280 return (0);
1281 }
1282 return (error);
1283 } else {
1284 vnode_t *tvp = dnlc_lookup(dvp, nm);
1285
1286 if (tvp) {
1287 error = zfs_fastaccesschk_execute(zdp, cr);
1288 if (error) {
1289 VN_RELE(tvp);
1290 return (error);
1291 }
1292 if (tvp == DNLC_NO_VNODE) {
1293 VN_RELE(tvp);
1294 return (SET_ERROR(ENOENT));
1295 } else {
1296 *vpp = tvp;
1297 return (specvp_check(vpp, cr));
1298 }
1299 }
1300 }
1301 }
1302
1303 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1304
1305 ZFS_ENTER(zfsvfs);
1306 ZFS_VERIFY_ZP(zdp);
1307
1308 *vpp = NULL;
1309
1310 if (flags & LOOKUP_XATTR) {
1311 /*
1312 * If the xattr property is off, refuse the lookup request.
1313 */
1314 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1315 ZFS_EXIT(zfsvfs);
1316 return (SET_ERROR(EINVAL));
1317 }
1318
1319 /*
1320 * We don't allow recursive attributes..
1321 * Maybe someday we will.
1322 */
1323 if (zdp->z_pflags & ZFS_XATTR) {
1324 ZFS_EXIT(zfsvfs);
1325 return (SET_ERROR(EINVAL));
1326 }
1327
1328 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1329 ZFS_EXIT(zfsvfs);
1330 return (error);
1331 }
1332
1333 /*
1334 * Do we have permission to get into attribute directory?
1335 */
1336
1337 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1338 B_FALSE, cr)) {
1339 VN_RELE(*vpp);
1340 *vpp = NULL;
1341 }
1342
1343 ZFS_EXIT(zfsvfs);
1344 return (error);
1345 }
1346
1347 if (dvp->v_type != VDIR) {
1348 ZFS_EXIT(zfsvfs);
1349 return (SET_ERROR(ENOTDIR));
1350 }
1351
1352 /*
1353 * Check accessibility of directory.
1354 */
1355
1356 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1357 ZFS_EXIT(zfsvfs);
1358 return (error);
1359 }
1360
1361 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1362 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1363 ZFS_EXIT(zfsvfs);
1364 return (SET_ERROR(EILSEQ));
1365 }
1366
1367 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1368 if (error == 0)
1369 error = specvp_check(vpp, cr);
1370
1371 ZFS_EXIT(zfsvfs);
1372 return (error);
1373 }
1374
1375 /*
1376 * Attempt to create a new entry in a directory. If the entry
1377 * already exists, truncate the file if permissible, else return
1378 * an error. Return the vp of the created or trunc'd file.
1379 *
1380 * IN: dvp - vnode of directory to put new file entry in.
1381 * name - name of new file entry.
1382 * vap - attributes of new file.
1383 * excl - flag indicating exclusive or non-exclusive mode.
1384 * mode - mode to open file with.
1385 * cr - credentials of caller.
1386 * flag - large file flag [UNUSED].
1387 * ct - caller context
1388 * vsecp - ACL to be set
1389 *
1390 * OUT: vpp - vnode of created or trunc'd entry.
1391 *
1392 * RETURN: 0 on success, error code on failure.
1393 *
1394 * Timestamps:
1395 * dvp - ctime|mtime updated if new entry created
1396 * vp - ctime|mtime always, atime if new
1397 */
1398
1399 /* ARGSUSED */
1400 static int
zfs_create(vnode_t * dvp,char * name,vattr_t * vap,vcexcl_t excl,int mode,vnode_t ** vpp,cred_t * cr,int flag,caller_context_t * ct,vsecattr_t * vsecp)1401 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1402 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1403 vsecattr_t *vsecp)
1404 {
1405 znode_t *zp, *dzp = VTOZ(dvp);
1406 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1407 zilog_t *zilog;
1408 objset_t *os;
1409 zfs_dirlock_t *dl;
1410 dmu_tx_t *tx;
1411 int error;
1412 ksid_t *ksid;
1413 uid_t uid;
1414 gid_t gid = crgetgid(cr);
1415 zfs_acl_ids_t acl_ids;
1416 boolean_t fuid_dirtied;
1417 boolean_t have_acl = B_FALSE;
1418 boolean_t waited = B_FALSE;
1419
1420 /*
1421 * If we have an ephemeral id, ACL, or XVATTR then
1422 * make sure file system is at proper version
1423 */
1424
1425 ksid = crgetsid(cr, KSID_OWNER);
1426 if (ksid)
1427 uid = ksid_getid(ksid);
1428 else
1429 uid = crgetuid(cr);
1430
1431 if (zfsvfs->z_use_fuids == B_FALSE &&
1432 (vsecp || (vap->va_mask & AT_XVATTR) ||
1433 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1434 return (SET_ERROR(EINVAL));
1435
1436 ZFS_ENTER(zfsvfs);
1437 ZFS_VERIFY_ZP(dzp);
1438 os = zfsvfs->z_os;
1439 zilog = zfsvfs->z_log;
1440
1441 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1442 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1443 ZFS_EXIT(zfsvfs);
1444 return (SET_ERROR(EILSEQ));
1445 }
1446
1447 if (vap->va_mask & AT_XVATTR) {
1448 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1449 crgetuid(cr), cr, vap->va_type)) != 0) {
1450 ZFS_EXIT(zfsvfs);
1451 return (error);
1452 }
1453 }
1454 top:
1455 *vpp = NULL;
1456
1457 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1458 vap->va_mode &= ~VSVTX;
1459
1460 if (*name == '\0') {
1461 /*
1462 * Null component name refers to the directory itself.
1463 */
1464 VN_HOLD(dvp);
1465 zp = dzp;
1466 dl = NULL;
1467 error = 0;
1468 } else {
1469 /* possible VN_HOLD(zp) */
1470 int zflg = 0;
1471
1472 if (flag & FIGNORECASE)
1473 zflg |= ZCILOOK;
1474
1475 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1476 NULL, NULL);
1477 if (error) {
1478 if (have_acl)
1479 zfs_acl_ids_free(&acl_ids);
1480 if (strcmp(name, "..") == 0)
1481 error = SET_ERROR(EISDIR);
1482 ZFS_EXIT(zfsvfs);
1483 return (error);
1484 }
1485 }
1486
1487 if (zp == NULL) {
1488 uint64_t txtype;
1489
1490 /*
1491 * Create a new file object and update the directory
1492 * to reference it.
1493 */
1494 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1495 if (have_acl)
1496 zfs_acl_ids_free(&acl_ids);
1497 goto out;
1498 }
1499
1500 /*
1501 * We only support the creation of regular files in
1502 * extended attribute directories.
1503 */
1504
1505 if ((dzp->z_pflags & ZFS_XATTR) &&
1506 (vap->va_type != VREG)) {
1507 if (have_acl)
1508 zfs_acl_ids_free(&acl_ids);
1509 error = SET_ERROR(EINVAL);
1510 goto out;
1511 }
1512
1513 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1514 cr, vsecp, &acl_ids)) != 0)
1515 goto out;
1516 have_acl = B_TRUE;
1517
1518 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1519 zfs_acl_ids_free(&acl_ids);
1520 error = SET_ERROR(EDQUOT);
1521 goto out;
1522 }
1523
1524 tx = dmu_tx_create(os);
1525
1526 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1527 ZFS_SA_BASE_ATTR_SIZE);
1528
1529 fuid_dirtied = zfsvfs->z_fuid_dirty;
1530 if (fuid_dirtied)
1531 zfs_fuid_txhold(zfsvfs, tx);
1532 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1533 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1534 if (!zfsvfs->z_use_sa &&
1535 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1536 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1537 0, acl_ids.z_aclp->z_acl_bytes);
1538 }
1539 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1540 if (error) {
1541 zfs_dirent_unlock(dl);
1542 if (error == ERESTART) {
1543 waited = B_TRUE;
1544 dmu_tx_wait(tx);
1545 dmu_tx_abort(tx);
1546 goto top;
1547 }
1548 zfs_acl_ids_free(&acl_ids);
1549 dmu_tx_abort(tx);
1550 ZFS_EXIT(zfsvfs);
1551 return (error);
1552 }
1553 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1554
1555 if (fuid_dirtied)
1556 zfs_fuid_sync(zfsvfs, tx);
1557
1558 (void) zfs_link_create(dl, zp, tx, ZNEW);
1559 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1560 if (flag & FIGNORECASE)
1561 txtype |= TX_CI;
1562 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1563 vsecp, acl_ids.z_fuidp, vap);
1564 zfs_acl_ids_free(&acl_ids);
1565 dmu_tx_commit(tx);
1566 } else {
1567 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1568
1569 if (have_acl)
1570 zfs_acl_ids_free(&acl_ids);
1571 have_acl = B_FALSE;
1572
1573 /*
1574 * A directory entry already exists for this name.
1575 */
1576 /*
1577 * Can't truncate an existing file if in exclusive mode.
1578 */
1579 if (excl == EXCL) {
1580 error = SET_ERROR(EEXIST);
1581 goto out;
1582 }
1583 /*
1584 * Can't open a directory for writing.
1585 */
1586 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1587 error = SET_ERROR(EISDIR);
1588 goto out;
1589 }
1590 /*
1591 * Verify requested access to file.
1592 */
1593 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1594 goto out;
1595 }
1596
1597 mutex_enter(&dzp->z_lock);
1598 dzp->z_seq++;
1599 mutex_exit(&dzp->z_lock);
1600
1601 /*
1602 * Truncate regular files if requested.
1603 */
1604 if ((ZTOV(zp)->v_type == VREG) &&
1605 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1606 /* we can't hold any locks when calling zfs_freesp() */
1607 zfs_dirent_unlock(dl);
1608 dl = NULL;
1609 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1610 if (error == 0) {
1611 vnevent_create(ZTOV(zp), ct);
1612 }
1613 }
1614 }
1615 out:
1616
1617 if (dl)
1618 zfs_dirent_unlock(dl);
1619
1620 if (error) {
1621 if (zp)
1622 VN_RELE(ZTOV(zp));
1623 } else {
1624 *vpp = ZTOV(zp);
1625 error = specvp_check(vpp, cr);
1626 }
1627
1628 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1629 zil_commit(zilog, 0);
1630
1631 ZFS_EXIT(zfsvfs);
1632 return (error);
1633 }
1634
1635 /*
1636 * Remove an entry from a directory.
1637 *
1638 * IN: dvp - vnode of directory to remove entry from.
1639 * name - name of entry to remove.
1640 * cr - credentials of caller.
1641 * ct - caller context
1642 * flags - case flags
1643 *
1644 * RETURN: 0 on success, error code on failure.
1645 *
1646 * Timestamps:
1647 * dvp - ctime|mtime
1648 * vp - ctime (if nlink > 0)
1649 */
1650
1651 uint64_t null_xattr = 0;
1652
1653 /*ARGSUSED*/
1654 static int
zfs_remove(vnode_t * dvp,char * name,cred_t * cr,caller_context_t * ct,int flags)1655 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1656 int flags)
1657 {
1658 znode_t *zp, *dzp = VTOZ(dvp);
1659 znode_t *xzp;
1660 vnode_t *vp;
1661 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1662 zilog_t *zilog;
1663 uint64_t acl_obj, xattr_obj;
1664 uint64_t xattr_obj_unlinked = 0;
1665 uint64_t obj = 0;
1666 zfs_dirlock_t *dl;
1667 dmu_tx_t *tx;
1668 boolean_t may_delete_now, delete_now = FALSE;
1669 boolean_t unlinked, toobig = FALSE;
1670 uint64_t txtype;
1671 pathname_t *realnmp = NULL;
1672 pathname_t realnm;
1673 int error;
1674 int zflg = ZEXISTS;
1675 boolean_t waited = B_FALSE;
1676
1677 ZFS_ENTER(zfsvfs);
1678 ZFS_VERIFY_ZP(dzp);
1679 zilog = zfsvfs->z_log;
1680
1681 if (flags & FIGNORECASE) {
1682 zflg |= ZCILOOK;
1683 pn_alloc(&realnm);
1684 realnmp = &realnm;
1685 }
1686
1687 top:
1688 xattr_obj = 0;
1689 xzp = NULL;
1690 /*
1691 * Attempt to lock directory; fail if entry doesn't exist.
1692 */
1693 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1694 NULL, realnmp)) {
1695 if (realnmp)
1696 pn_free(realnmp);
1697 ZFS_EXIT(zfsvfs);
1698 return (error);
1699 }
1700
1701 vp = ZTOV(zp);
1702
1703 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1704 goto out;
1705 }
1706
1707 /*
1708 * Need to use rmdir for removing directories.
1709 */
1710 if (vp->v_type == VDIR) {
1711 error = SET_ERROR(EPERM);
1712 goto out;
1713 }
1714
1715 vnevent_remove(vp, dvp, name, ct);
1716
1717 if (realnmp)
1718 dnlc_remove(dvp, realnmp->pn_buf);
1719 else
1720 dnlc_remove(dvp, name);
1721
1722 mutex_enter(&vp->v_lock);
1723 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1724 mutex_exit(&vp->v_lock);
1725
1726 /*
1727 * We may delete the znode now, or we may put it in the unlinked set;
1728 * it depends on whether we're the last link, and on whether there are
1729 * other holds on the vnode. So we dmu_tx_hold() the right things to
1730 * allow for either case.
1731 */
1732 obj = zp->z_id;
1733 tx = dmu_tx_create(zfsvfs->z_os);
1734 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1735 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1736 zfs_sa_upgrade_txholds(tx, zp);
1737 zfs_sa_upgrade_txholds(tx, dzp);
1738 if (may_delete_now) {
1739 toobig =
1740 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1741 /* if the file is too big, only hold_free a token amount */
1742 dmu_tx_hold_free(tx, zp->z_id, 0,
1743 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1744 }
1745
1746 /* are there any extended attributes? */
1747 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1748 &xattr_obj, sizeof (xattr_obj));
1749 if (error == 0 && xattr_obj) {
1750 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1751 ASSERT0(error);
1752 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1753 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1754 }
1755
1756 mutex_enter(&zp->z_lock);
1757 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1758 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1759 mutex_exit(&zp->z_lock);
1760
1761 /* charge as an update -- would be nice not to charge at all */
1762 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1763
1764 /*
1765 * Mark this transaction as typically resulting in a net free of space
1766 */
1767 dmu_tx_mark_netfree(tx);
1768
1769 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1770 if (error) {
1771 zfs_dirent_unlock(dl);
1772 VN_RELE(vp);
1773 if (xzp)
1774 VN_RELE(ZTOV(xzp));
1775 if (error == ERESTART) {
1776 waited = B_TRUE;
1777 dmu_tx_wait(tx);
1778 dmu_tx_abort(tx);
1779 goto top;
1780 }
1781 if (realnmp)
1782 pn_free(realnmp);
1783 dmu_tx_abort(tx);
1784 ZFS_EXIT(zfsvfs);
1785 return (error);
1786 }
1787
1788 /*
1789 * Remove the directory entry.
1790 */
1791 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1792
1793 if (error) {
1794 dmu_tx_commit(tx);
1795 goto out;
1796 }
1797
1798 if (unlinked) {
1799 /*
1800 * Hold z_lock so that we can make sure that the ACL obj
1801 * hasn't changed. Could have been deleted due to
1802 * zfs_sa_upgrade().
1803 */
1804 mutex_enter(&zp->z_lock);
1805 mutex_enter(&vp->v_lock);
1806 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1807 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1808 delete_now = may_delete_now && !toobig &&
1809 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1810 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1811 acl_obj;
1812 mutex_exit(&vp->v_lock);
1813 }
1814
1815 txtype = TX_REMOVE;
1816 if (flags & FIGNORECASE)
1817 txtype |= TX_CI;
1818 rw_enter(&rz_zev_rwlock, RW_READER);
1819 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove)
1820 rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx,
1821 name, txtype);
1822 rw_exit(&rz_zev_rwlock);
1823
1824 if (delete_now) {
1825 if (xattr_obj_unlinked) {
1826 ASSERT3U(xzp->z_links, ==, 2);
1827 mutex_enter(&xzp->z_lock);
1828 xzp->z_unlinked = 1;
1829 xzp->z_links = 0;
1830 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1831 &xzp->z_links, sizeof (xzp->z_links), tx);
1832 ASSERT3U(error, ==, 0);
1833 mutex_exit(&xzp->z_lock);
1834 zfs_unlinked_add(xzp, tx);
1835
1836 if (zp->z_is_sa)
1837 error = sa_remove(zp->z_sa_hdl,
1838 SA_ZPL_XATTR(zfsvfs), tx);
1839 else
1840 error = sa_update(zp->z_sa_hdl,
1841 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1842 sizeof (uint64_t), tx);
1843 ASSERT0(error);
1844 }
1845 mutex_enter(&vp->v_lock);
1846 vp->v_count--;
1847 ASSERT0(vp->v_count);
1848 mutex_exit(&vp->v_lock);
1849 mutex_exit(&zp->z_lock);
1850 zfs_znode_delete(zp, tx);
1851 } else if (unlinked) {
1852 mutex_exit(&zp->z_lock);
1853 zfs_unlinked_add(zp, tx);
1854 }
1855
1856 txtype = TX_REMOVE;
1857 if (flags & FIGNORECASE)
1858 txtype |= TX_CI;
1859 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1860
1861 dmu_tx_commit(tx);
1862 out:
1863 if (realnmp)
1864 pn_free(realnmp);
1865
1866 zfs_dirent_unlock(dl);
1867
1868 if (!delete_now)
1869 VN_RELE(vp);
1870 if (xzp)
1871 VN_RELE(ZTOV(xzp));
1872
1873 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1874 zil_commit(zilog, 0);
1875
1876 ZFS_EXIT(zfsvfs);
1877 return (error);
1878 }
1879
1880 /*
1881 * Create a new directory and insert it into dvp using the name
1882 * provided. Return a pointer to the inserted directory.
1883 *
1884 * IN: dvp - vnode of directory to add subdir to.
1885 * dirname - name of new directory.
1886 * vap - attributes of new directory.
1887 * cr - credentials of caller.
1888 * ct - caller context
1889 * flags - case flags
1890 * vsecp - ACL to be set
1891 *
1892 * OUT: vpp - vnode of created directory.
1893 *
1894 * RETURN: 0 on success, error code on failure.
1895 *
1896 * Timestamps:
1897 * dvp - ctime|mtime updated
1898 * vp - ctime|mtime|atime updated
1899 */
1900 /*ARGSUSED*/
1901 static int
zfs_mkdir(vnode_t * dvp,char * dirname,vattr_t * vap,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)1902 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1903 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1904 {
1905 znode_t *zp, *dzp = VTOZ(dvp);
1906 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1907 zilog_t *zilog;
1908 zfs_dirlock_t *dl;
1909 uint64_t txtype;
1910 dmu_tx_t *tx;
1911 int error;
1912 int zf = ZNEW;
1913 ksid_t *ksid;
1914 uid_t uid;
1915 gid_t gid = crgetgid(cr);
1916 zfs_acl_ids_t acl_ids;
1917 boolean_t fuid_dirtied;
1918 boolean_t waited = B_FALSE;
1919
1920 ASSERT(vap->va_type == VDIR);
1921
1922 /*
1923 * If we have an ephemeral id, ACL, or XVATTR then
1924 * make sure file system is at proper version
1925 */
1926
1927 ksid = crgetsid(cr, KSID_OWNER);
1928 if (ksid)
1929 uid = ksid_getid(ksid);
1930 else
1931 uid = crgetuid(cr);
1932 if (zfsvfs->z_use_fuids == B_FALSE &&
1933 (vsecp || (vap->va_mask & AT_XVATTR) ||
1934 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1935 return (SET_ERROR(EINVAL));
1936
1937 ZFS_ENTER(zfsvfs);
1938 ZFS_VERIFY_ZP(dzp);
1939 zilog = zfsvfs->z_log;
1940
1941 if (dzp->z_pflags & ZFS_XATTR) {
1942 ZFS_EXIT(zfsvfs);
1943 return (SET_ERROR(EINVAL));
1944 }
1945
1946 if (zfsvfs->z_utf8 && u8_validate(dirname,
1947 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1948 ZFS_EXIT(zfsvfs);
1949 return (SET_ERROR(EILSEQ));
1950 }
1951 if (flags & FIGNORECASE)
1952 zf |= ZCILOOK;
1953
1954 if (vap->va_mask & AT_XVATTR) {
1955 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1956 crgetuid(cr), cr, vap->va_type)) != 0) {
1957 ZFS_EXIT(zfsvfs);
1958 return (error);
1959 }
1960 }
1961
1962 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1963 vsecp, &acl_ids)) != 0) {
1964 ZFS_EXIT(zfsvfs);
1965 return (error);
1966 }
1967 /*
1968 * First make sure the new directory doesn't exist.
1969 *
1970 * Existence is checked first to make sure we don't return
1971 * EACCES instead of EEXIST which can cause some applications
1972 * to fail.
1973 */
1974 top:
1975 *vpp = NULL;
1976
1977 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1978 NULL, NULL)) {
1979 zfs_acl_ids_free(&acl_ids);
1980 ZFS_EXIT(zfsvfs);
1981 return (error);
1982 }
1983
1984 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1985 zfs_acl_ids_free(&acl_ids);
1986 zfs_dirent_unlock(dl);
1987 ZFS_EXIT(zfsvfs);
1988 return (error);
1989 }
1990
1991 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1992 zfs_acl_ids_free(&acl_ids);
1993 zfs_dirent_unlock(dl);
1994 ZFS_EXIT(zfsvfs);
1995 return (SET_ERROR(EDQUOT));
1996 }
1997
1998 /*
1999 * Add a new entry to the directory.
2000 */
2001 tx = dmu_tx_create(zfsvfs->z_os);
2002 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2003 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2004 fuid_dirtied = zfsvfs->z_fuid_dirty;
2005 if (fuid_dirtied)
2006 zfs_fuid_txhold(zfsvfs, tx);
2007 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2008 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2009 acl_ids.z_aclp->z_acl_bytes);
2010 }
2011
2012 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2013 ZFS_SA_BASE_ATTR_SIZE);
2014
2015 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2016 if (error) {
2017 zfs_dirent_unlock(dl);
2018 if (error == ERESTART) {
2019 waited = B_TRUE;
2020 dmu_tx_wait(tx);
2021 dmu_tx_abort(tx);
2022 goto top;
2023 }
2024 zfs_acl_ids_free(&acl_ids);
2025 dmu_tx_abort(tx);
2026 ZFS_EXIT(zfsvfs);
2027 return (error);
2028 }
2029
2030 /*
2031 * Create new node.
2032 */
2033 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2034
2035 if (fuid_dirtied)
2036 zfs_fuid_sync(zfsvfs, tx);
2037
2038 /*
2039 * Now put new name in parent dir.
2040 */
2041 (void) zfs_link_create(dl, zp, tx, ZNEW);
2042
2043 *vpp = ZTOV(zp);
2044
2045 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2046 if (flags & FIGNORECASE)
2047 txtype |= TX_CI;
2048 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2049 acl_ids.z_fuidp, vap);
2050
2051 zfs_acl_ids_free(&acl_ids);
2052
2053 dmu_tx_commit(tx);
2054
2055 zfs_dirent_unlock(dl);
2056
2057 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2058 zil_commit(zilog, 0);
2059
2060 ZFS_EXIT(zfsvfs);
2061 return (0);
2062 }
2063
2064 /*
2065 * Remove a directory subdir entry. If the current working
2066 * directory is the same as the subdir to be removed, the
2067 * remove will fail.
2068 *
2069 * IN: dvp - vnode of directory to remove from.
2070 * name - name of directory to be removed.
2071 * cwd - vnode of current working directory.
2072 * cr - credentials of caller.
2073 * ct - caller context
2074 * flags - case flags
2075 *
2076 * RETURN: 0 on success, error code on failure.
2077 *
2078 * Timestamps:
2079 * dvp - ctime|mtime updated
2080 */
2081 /*ARGSUSED*/
2082 static int
zfs_rmdir(vnode_t * dvp,char * name,vnode_t * cwd,cred_t * cr,caller_context_t * ct,int flags)2083 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2084 caller_context_t *ct, int flags)
2085 {
2086 znode_t *dzp = VTOZ(dvp);
2087 znode_t *zp;
2088 vnode_t *vp;
2089 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2090 zilog_t *zilog;
2091 zfs_dirlock_t *dl;
2092 dmu_tx_t *tx;
2093 int error;
2094 int zflg = ZEXISTS;
2095 boolean_t waited = B_FALSE;
2096
2097 ZFS_ENTER(zfsvfs);
2098 ZFS_VERIFY_ZP(dzp);
2099 zilog = zfsvfs->z_log;
2100
2101 if (flags & FIGNORECASE)
2102 zflg |= ZCILOOK;
2103 top:
2104 zp = NULL;
2105
2106 /*
2107 * Attempt to lock directory; fail if entry doesn't exist.
2108 */
2109 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2110 NULL, NULL)) {
2111 ZFS_EXIT(zfsvfs);
2112 return (error);
2113 }
2114
2115 vp = ZTOV(zp);
2116
2117 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2118 goto out;
2119 }
2120
2121 if (vp->v_type != VDIR) {
2122 error = SET_ERROR(ENOTDIR);
2123 goto out;
2124 }
2125
2126 if (vp == cwd) {
2127 error = SET_ERROR(EINVAL);
2128 goto out;
2129 }
2130
2131 vnevent_rmdir(vp, dvp, name, ct);
2132
2133 /*
2134 * Grab a lock on the directory to make sure that noone is
2135 * trying to add (or lookup) entries while we are removing it.
2136 */
2137 rw_enter(&zp->z_name_lock, RW_WRITER);
2138
2139 /*
2140 * Grab a lock on the parent pointer to make sure we play well
2141 * with the treewalk and directory rename code.
2142 */
2143 rw_enter(&zp->z_parent_lock, RW_WRITER);
2144
2145 tx = dmu_tx_create(zfsvfs->z_os);
2146 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2147 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2148 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2149 zfs_sa_upgrade_txholds(tx, zp);
2150 zfs_sa_upgrade_txholds(tx, dzp);
2151 dmu_tx_mark_netfree(tx);
2152 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2153 if (error) {
2154 rw_exit(&zp->z_parent_lock);
2155 rw_exit(&zp->z_name_lock);
2156 zfs_dirent_unlock(dl);
2157 VN_RELE(vp);
2158 if (error == ERESTART) {
2159 waited = B_TRUE;
2160 dmu_tx_wait(tx);
2161 dmu_tx_abort(tx);
2162 goto top;
2163 }
2164 dmu_tx_abort(tx);
2165 ZFS_EXIT(zfsvfs);
2166 return (error);
2167 }
2168
2169 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2170
2171 if (error == 0) {
2172 uint64_t txtype = TX_RMDIR;
2173 if (flags & FIGNORECASE)
2174 txtype |= TX_CI;
2175
2176 rw_enter(&rz_zev_rwlock, RW_READER);
2177 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_remove)
2178 rz_zev_callbacks->rz_zev_znode_remove(dzp, zp, tx,
2179 name, txtype);
2180 rw_exit(&rz_zev_rwlock);
2181
2182 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2183 }
2184
2185 dmu_tx_commit(tx);
2186
2187 rw_exit(&zp->z_parent_lock);
2188 rw_exit(&zp->z_name_lock);
2189 out:
2190 zfs_dirent_unlock(dl);
2191
2192 VN_RELE(vp);
2193
2194 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2195 zil_commit(zilog, 0);
2196
2197 ZFS_EXIT(zfsvfs);
2198 return (error);
2199 }
2200
2201 /*
2202 * Read as many directory entries as will fit into the provided
2203 * buffer from the given directory cursor position (specified in
2204 * the uio structure).
2205 *
2206 * IN: vp - vnode of directory to read.
2207 * uio - structure supplying read location, range info,
2208 * and return buffer.
2209 * cr - credentials of caller.
2210 * ct - caller context
2211 * flags - case flags
2212 *
2213 * OUT: uio - updated offset and range, buffer filled.
2214 * eofp - set to true if end-of-file detected.
2215 *
2216 * RETURN: 0 on success, error code on failure.
2217 *
2218 * Timestamps:
2219 * vp - atime updated
2220 *
2221 * Note that the low 4 bits of the cookie returned by zap is always zero.
2222 * This allows us to use the low range for "special" directory entries:
2223 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2224 * we use the offset 2 for the '.zfs' directory.
2225 */
2226 /* ARGSUSED */
2227 static int
zfs_readdir(vnode_t * vp,uio_t * uio,cred_t * cr,int * eofp,caller_context_t * ct,int flags)2228 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2229 caller_context_t *ct, int flags)
2230 {
2231 znode_t *zp = VTOZ(vp);
2232 iovec_t *iovp;
2233 edirent_t *eodp;
2234 dirent64_t *odp;
2235 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2236 objset_t *os;
2237 caddr_t outbuf;
2238 size_t bufsize;
2239 zap_cursor_t zc;
2240 zap_attribute_t zap;
2241 uint_t bytes_wanted;
2242 uint64_t offset; /* must be unsigned; checks for < 1 */
2243 uint64_t parent;
2244 int local_eof;
2245 int outcount;
2246 int error;
2247 uint8_t prefetch;
2248 boolean_t check_sysattrs;
2249
2250 ZFS_ENTER(zfsvfs);
2251 ZFS_VERIFY_ZP(zp);
2252
2253 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2254 &parent, sizeof (parent))) != 0) {
2255 ZFS_EXIT(zfsvfs);
2256 return (error);
2257 }
2258
2259 /*
2260 * If we are not given an eof variable,
2261 * use a local one.
2262 */
2263 if (eofp == NULL)
2264 eofp = &local_eof;
2265
2266 /*
2267 * Check for valid iov_len.
2268 */
2269 if (uio->uio_iov->iov_len <= 0) {
2270 ZFS_EXIT(zfsvfs);
2271 return (SET_ERROR(EINVAL));
2272 }
2273
2274 /*
2275 * Quit if directory has been removed (posix)
2276 */
2277 if ((*eofp = zp->z_unlinked) != 0) {
2278 ZFS_EXIT(zfsvfs);
2279 return (0);
2280 }
2281
2282 error = 0;
2283 os = zfsvfs->z_os;
2284 offset = uio->uio_loffset;
2285 prefetch = zp->z_zn_prefetch;
2286
2287 /*
2288 * Initialize the iterator cursor.
2289 */
2290 if (offset <= 3) {
2291 /*
2292 * Start iteration from the beginning of the directory.
2293 */
2294 zap_cursor_init(&zc, os, zp->z_id);
2295 } else {
2296 /*
2297 * The offset is a serialized cursor.
2298 */
2299 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2300 }
2301
2302 /*
2303 * Get space to change directory entries into fs independent format.
2304 */
2305 iovp = uio->uio_iov;
2306 bytes_wanted = iovp->iov_len;
2307 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2308 bufsize = bytes_wanted;
2309 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2310 odp = (struct dirent64 *)outbuf;
2311 } else {
2312 bufsize = bytes_wanted;
2313 outbuf = NULL;
2314 odp = (struct dirent64 *)iovp->iov_base;
2315 }
2316 eodp = (struct edirent *)odp;
2317
2318 /*
2319 * If this VFS supports the system attribute view interface; and
2320 * we're looking at an extended attribute directory; and we care
2321 * about normalization conflicts on this vfs; then we must check
2322 * for normalization conflicts with the sysattr name space.
2323 */
2324 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2325 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2326 (flags & V_RDDIR_ENTFLAGS);
2327
2328 /*
2329 * Transform to file-system independent format
2330 */
2331 outcount = 0;
2332 while (outcount < bytes_wanted) {
2333 ino64_t objnum;
2334 ushort_t reclen;
2335 off64_t *next = NULL;
2336
2337 /*
2338 * Special case `.', `..', and `.zfs'.
2339 */
2340 if (offset == 0) {
2341 (void) strcpy(zap.za_name, ".");
2342 zap.za_normalization_conflict = 0;
2343 objnum = zp->z_id;
2344 } else if (offset == 1) {
2345 (void) strcpy(zap.za_name, "..");
2346 zap.za_normalization_conflict = 0;
2347 objnum = parent;
2348 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2349 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2350 zap.za_normalization_conflict = 0;
2351 objnum = ZFSCTL_INO_ROOT;
2352 } else {
2353 /*
2354 * Grab next entry.
2355 */
2356 if (error = zap_cursor_retrieve(&zc, &zap)) {
2357 if ((*eofp = (error == ENOENT)) != 0)
2358 break;
2359 else
2360 goto update;
2361 }
2362
2363 if (zap.za_integer_length != 8 ||
2364 zap.za_num_integers != 1) {
2365 cmn_err(CE_WARN, "zap_readdir: bad directory "
2366 "entry, obj = %lld, offset = %lld\n",
2367 (u_longlong_t)zp->z_id,
2368 (u_longlong_t)offset);
2369 error = SET_ERROR(ENXIO);
2370 goto update;
2371 }
2372
2373 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2374 /*
2375 * MacOS X can extract the object type here such as:
2376 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2377 */
2378
2379 if (check_sysattrs && !zap.za_normalization_conflict) {
2380 zap.za_normalization_conflict =
2381 xattr_sysattr_casechk(zap.za_name);
2382 }
2383 }
2384
2385 if (flags & V_RDDIR_ACCFILTER) {
2386 /*
2387 * If we have no access at all, don't include
2388 * this entry in the returned information
2389 */
2390 znode_t *ezp;
2391 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2392 goto skip_entry;
2393 if (!zfs_has_access(ezp, cr)) {
2394 VN_RELE(ZTOV(ezp));
2395 goto skip_entry;
2396 }
2397 VN_RELE(ZTOV(ezp));
2398 }
2399
2400 if (flags & V_RDDIR_ENTFLAGS)
2401 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2402 else
2403 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2404
2405 /*
2406 * Will this entry fit in the buffer?
2407 */
2408 if (outcount + reclen > bufsize) {
2409 /*
2410 * Did we manage to fit anything in the buffer?
2411 */
2412 if (!outcount) {
2413 error = SET_ERROR(EINVAL);
2414 goto update;
2415 }
2416 break;
2417 }
2418 if (flags & V_RDDIR_ENTFLAGS) {
2419 /*
2420 * Add extended flag entry:
2421 */
2422 eodp->ed_ino = objnum;
2423 eodp->ed_reclen = reclen;
2424 /* NOTE: ed_off is the offset for the *next* entry */
2425 next = &(eodp->ed_off);
2426 eodp->ed_eflags = zap.za_normalization_conflict ?
2427 ED_CASE_CONFLICT : 0;
2428 (void) strncpy(eodp->ed_name, zap.za_name,
2429 EDIRENT_NAMELEN(reclen));
2430 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2431 } else {
2432 /*
2433 * Add normal entry:
2434 */
2435 odp->d_ino = objnum;
2436 odp->d_reclen = reclen;
2437 /* NOTE: d_off is the offset for the *next* entry */
2438 next = &(odp->d_off);
2439 (void) strncpy(odp->d_name, zap.za_name,
2440 DIRENT64_NAMELEN(reclen));
2441 odp = (dirent64_t *)((intptr_t)odp + reclen);
2442 }
2443 outcount += reclen;
2444
2445 ASSERT(outcount <= bufsize);
2446
2447 /* Prefetch znode */
2448 if (prefetch)
2449 dmu_prefetch(os, objnum, 0, 0, 0,
2450 ZIO_PRIORITY_SYNC_READ);
2451
2452 skip_entry:
2453 /*
2454 * Move to the next entry, fill in the previous offset.
2455 */
2456 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2457 zap_cursor_advance(&zc);
2458 offset = zap_cursor_serialize(&zc);
2459 } else {
2460 offset += 1;
2461 }
2462 if (next)
2463 *next = offset;
2464 }
2465 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2466
2467 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2468 iovp->iov_base += outcount;
2469 iovp->iov_len -= outcount;
2470 uio->uio_resid -= outcount;
2471 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2472 /*
2473 * Reset the pointer.
2474 */
2475 offset = uio->uio_loffset;
2476 }
2477
2478 update:
2479 zap_cursor_fini(&zc);
2480 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2481 kmem_free(outbuf, bufsize);
2482
2483 if (error == ENOENT)
2484 error = 0;
2485
2486 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2487
2488 uio->uio_loffset = offset;
2489 ZFS_EXIT(zfsvfs);
2490 return (error);
2491 }
2492
2493 ulong_t zfs_fsync_sync_cnt = 4;
2494
2495 static int
zfs_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)2496 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2497 {
2498 znode_t *zp = VTOZ(vp);
2499 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2500
2501 /*
2502 * Regardless of whether this is required for standards conformance,
2503 * this is the logical behavior when fsync() is called on a file with
2504 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2505 * going to be pushed out as part of the zil_commit().
2506 */
2507 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2508 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2509 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2510
2511 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2512
2513 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2514 ZFS_ENTER(zfsvfs);
2515 ZFS_VERIFY_ZP(zp);
2516 zil_commit(zfsvfs->z_log, zp->z_id);
2517 ZFS_EXIT(zfsvfs);
2518 }
2519 return (0);
2520 }
2521
2522
2523 /*
2524 * Get the requested file attributes and place them in the provided
2525 * vattr structure.
2526 *
2527 * IN: vp - vnode of file.
2528 * vap - va_mask identifies requested attributes.
2529 * If AT_XVATTR set, then optional attrs are requested
2530 * flags - ATTR_NOACLCHECK (CIFS server context)
2531 * cr - credentials of caller.
2532 * ct - caller context
2533 *
2534 * OUT: vap - attribute values.
2535 *
2536 * RETURN: 0 (always succeeds).
2537 */
2538 /* ARGSUSED */
2539 static int
zfs_getattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2540 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2541 caller_context_t *ct)
2542 {
2543 znode_t *zp = VTOZ(vp);
2544 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2545 int error = 0;
2546 uint64_t links;
2547 uint64_t mtime[2], ctime[2];
2548 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2549 xoptattr_t *xoap = NULL;
2550 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2551 sa_bulk_attr_t bulk[2];
2552 int count = 0;
2553
2554 ZFS_ENTER(zfsvfs);
2555 ZFS_VERIFY_ZP(zp);
2556
2557 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2558
2559 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2560 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2561
2562 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2563 ZFS_EXIT(zfsvfs);
2564 return (error);
2565 }
2566
2567 /*
2568 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2569 * Also, if we are the owner don't bother, since owner should
2570 * always be allowed to read basic attributes of file.
2571 */
2572 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2573 (vap->va_uid != crgetuid(cr))) {
2574 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2575 skipaclchk, cr)) {
2576 ZFS_EXIT(zfsvfs);
2577 return (error);
2578 }
2579 }
2580
2581 /*
2582 * Return all attributes. It's cheaper to provide the answer
2583 * than to determine whether we were asked the question.
2584 */
2585
2586 mutex_enter(&zp->z_lock);
2587 vap->va_type = vp->v_type;
2588 vap->va_mode = zp->z_mode & MODEMASK;
2589 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2590 vap->va_nodeid = zp->z_id;
2591 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2592 links = zp->z_links + 1;
2593 else
2594 links = zp->z_links;
2595 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2596 vap->va_size = zp->z_size;
2597 vap->va_rdev = vp->v_rdev;
2598 vap->va_seq = zp->z_seq;
2599
2600 /*
2601 * Add in any requested optional attributes and the create time.
2602 * Also set the corresponding bits in the returned attribute bitmap.
2603 */
2604 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2605 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2606 xoap->xoa_archive =
2607 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2608 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2609 }
2610
2611 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2612 xoap->xoa_readonly =
2613 ((zp->z_pflags & ZFS_READONLY) != 0);
2614 XVA_SET_RTN(xvap, XAT_READONLY);
2615 }
2616
2617 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2618 xoap->xoa_system =
2619 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2620 XVA_SET_RTN(xvap, XAT_SYSTEM);
2621 }
2622
2623 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2624 xoap->xoa_hidden =
2625 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2626 XVA_SET_RTN(xvap, XAT_HIDDEN);
2627 }
2628
2629 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2630 xoap->xoa_nounlink =
2631 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2632 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2633 }
2634
2635 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2636 xoap->xoa_immutable =
2637 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2638 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2639 }
2640
2641 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2642 xoap->xoa_appendonly =
2643 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2644 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2645 }
2646
2647 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2648 xoap->xoa_nodump =
2649 ((zp->z_pflags & ZFS_NODUMP) != 0);
2650 XVA_SET_RTN(xvap, XAT_NODUMP);
2651 }
2652
2653 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2654 xoap->xoa_opaque =
2655 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2656 XVA_SET_RTN(xvap, XAT_OPAQUE);
2657 }
2658
2659 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2660 xoap->xoa_av_quarantined =
2661 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2662 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2663 }
2664
2665 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2666 xoap->xoa_av_modified =
2667 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2668 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2669 }
2670
2671 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2672 vp->v_type == VREG) {
2673 zfs_sa_get_scanstamp(zp, xvap);
2674 }
2675
2676 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2677 uint64_t times[2];
2678
2679 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2680 times, sizeof (times));
2681 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2682 XVA_SET_RTN(xvap, XAT_CREATETIME);
2683 }
2684
2685 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2686 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2687 XVA_SET_RTN(xvap, XAT_REPARSE);
2688 }
2689 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2690 xoap->xoa_generation = zp->z_gen;
2691 XVA_SET_RTN(xvap, XAT_GEN);
2692 }
2693
2694 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2695 xoap->xoa_offline =
2696 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2697 XVA_SET_RTN(xvap, XAT_OFFLINE);
2698 }
2699
2700 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2701 xoap->xoa_sparse =
2702 ((zp->z_pflags & ZFS_SPARSE) != 0);
2703 XVA_SET_RTN(xvap, XAT_SPARSE);
2704 }
2705 }
2706
2707 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2708 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2709 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2710
2711 mutex_exit(&zp->z_lock);
2712
2713 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2714
2715 if (zp->z_blksz == 0) {
2716 /*
2717 * Block size hasn't been set; suggest maximal I/O transfers.
2718 */
2719 vap->va_blksize = zfsvfs->z_max_blksz;
2720 }
2721
2722 ZFS_EXIT(zfsvfs);
2723 return (0);
2724 }
2725
2726 /*
2727 * Set the file attributes to the values contained in the
2728 * vattr structure.
2729 *
2730 * IN: vp - vnode of file to be modified.
2731 * vap - new attribute values.
2732 * If AT_XVATTR set, then optional attrs are being set
2733 * flags - ATTR_UTIME set if non-default time values provided.
2734 * - ATTR_NOACLCHECK (CIFS context only).
2735 * cr - credentials of caller.
2736 * ct - caller context
2737 *
2738 * RETURN: 0 on success, error code on failure.
2739 *
2740 * Timestamps:
2741 * vp - ctime updated, mtime updated if size changed.
2742 */
2743 /* ARGSUSED */
2744 static int
zfs_setattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2745 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2746 caller_context_t *ct)
2747 {
2748 znode_t *zp = VTOZ(vp);
2749 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2750 zilog_t *zilog;
2751 dmu_tx_t *tx;
2752 vattr_t oldva;
2753 xvattr_t tmpxvattr;
2754 uint_t mask = vap->va_mask;
2755 uint_t saved_mask = 0;
2756 int trim_mask = 0;
2757 uint64_t new_mode;
2758 uint64_t new_uid, new_gid;
2759 uint64_t xattr_obj;
2760 uint64_t mtime[2], ctime[2];
2761 znode_t *attrzp;
2762 int need_policy = FALSE;
2763 int err, err2;
2764 zfs_fuid_info_t *fuidp = NULL;
2765 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2766 xoptattr_t *xoap;
2767 zfs_acl_t *aclp;
2768 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2769 boolean_t fuid_dirtied = B_FALSE;
2770 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2771 int count = 0, xattr_count = 0;
2772
2773 if (mask == 0)
2774 return (0);
2775
2776 if (mask & AT_NOSET)
2777 return (SET_ERROR(EINVAL));
2778
2779 ZFS_ENTER(zfsvfs);
2780 ZFS_VERIFY_ZP(zp);
2781
2782 zilog = zfsvfs->z_log;
2783
2784 /*
2785 * Make sure that if we have ephemeral uid/gid or xvattr specified
2786 * that file system is at proper version level
2787 */
2788
2789 if (zfsvfs->z_use_fuids == B_FALSE &&
2790 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2791 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2792 (mask & AT_XVATTR))) {
2793 ZFS_EXIT(zfsvfs);
2794 return (SET_ERROR(EINVAL));
2795 }
2796
2797 if (mask & AT_SIZE && vp->v_type == VDIR) {
2798 ZFS_EXIT(zfsvfs);
2799 return (SET_ERROR(EISDIR));
2800 }
2801
2802 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2803 ZFS_EXIT(zfsvfs);
2804 return (SET_ERROR(EINVAL));
2805 }
2806
2807 /*
2808 * If this is an xvattr_t, then get a pointer to the structure of
2809 * optional attributes. If this is NULL, then we have a vattr_t.
2810 */
2811 xoap = xva_getxoptattr(xvap);
2812
2813 xva_init(&tmpxvattr);
2814
2815 /*
2816 * Immutable files can only alter immutable bit and atime
2817 */
2818 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2819 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2820 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2821 ZFS_EXIT(zfsvfs);
2822 return (SET_ERROR(EPERM));
2823 }
2824
2825 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2826 ZFS_EXIT(zfsvfs);
2827 return (SET_ERROR(EPERM));
2828 }
2829
2830 /*
2831 * Verify timestamps doesn't overflow 32 bits.
2832 * ZFS can handle large timestamps, but 32bit syscalls can't
2833 * handle times greater than 2039. This check should be removed
2834 * once large timestamps are fully supported.
2835 */
2836 if (mask & (AT_ATIME | AT_MTIME)) {
2837 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2838 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2839 ZFS_EXIT(zfsvfs);
2840 return (SET_ERROR(EOVERFLOW));
2841 }
2842 }
2843
2844 top:
2845 attrzp = NULL;
2846 aclp = NULL;
2847
2848 /* Can this be moved to before the top label? */
2849 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2850 ZFS_EXIT(zfsvfs);
2851 return (SET_ERROR(EROFS));
2852 }
2853
2854 /*
2855 * First validate permissions
2856 */
2857
2858 if (mask & AT_SIZE) {
2859 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2860 if (err) {
2861 ZFS_EXIT(zfsvfs);
2862 return (err);
2863 }
2864 /*
2865 * XXX - Note, we are not providing any open
2866 * mode flags here (like FNDELAY), so we may
2867 * block if there are locks present... this
2868 * should be addressed in openat().
2869 */
2870 /* XXX - would it be OK to generate a log record here? */
2871 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2872 if (err) {
2873 ZFS_EXIT(zfsvfs);
2874 return (err);
2875 }
2876
2877 if (vap->va_size == 0)
2878 vnevent_truncate(ZTOV(zp), ct);
2879 }
2880
2881 if (mask & (AT_ATIME|AT_MTIME) ||
2882 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2883 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2884 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2885 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2886 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2887 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2888 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2889 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2890 skipaclchk, cr);
2891 }
2892
2893 if (mask & (AT_UID|AT_GID)) {
2894 int idmask = (mask & (AT_UID|AT_GID));
2895 int take_owner;
2896 int take_group;
2897
2898 /*
2899 * NOTE: even if a new mode is being set,
2900 * we may clear S_ISUID/S_ISGID bits.
2901 */
2902
2903 if (!(mask & AT_MODE))
2904 vap->va_mode = zp->z_mode;
2905
2906 /*
2907 * Take ownership or chgrp to group we are a member of
2908 */
2909
2910 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2911 take_group = (mask & AT_GID) &&
2912 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2913
2914 /*
2915 * If both AT_UID and AT_GID are set then take_owner and
2916 * take_group must both be set in order to allow taking
2917 * ownership.
2918 *
2919 * Otherwise, send the check through secpolicy_vnode_setattr()
2920 *
2921 */
2922
2923 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2924 ((idmask == AT_UID) && take_owner) ||
2925 ((idmask == AT_GID) && take_group)) {
2926 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2927 skipaclchk, cr) == 0) {
2928 /*
2929 * Remove setuid/setgid for non-privileged users
2930 */
2931 secpolicy_setid_clear(vap, cr);
2932 trim_mask = (mask & (AT_UID|AT_GID));
2933 } else {
2934 need_policy = TRUE;
2935 }
2936 } else {
2937 need_policy = TRUE;
2938 }
2939 }
2940
2941 mutex_enter(&zp->z_lock);
2942 oldva.va_mode = zp->z_mode;
2943 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2944 if (mask & AT_XVATTR) {
2945 /*
2946 * Update xvattr mask to include only those attributes
2947 * that are actually changing.
2948 *
2949 * the bits will be restored prior to actually setting
2950 * the attributes so the caller thinks they were set.
2951 */
2952 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2953 if (xoap->xoa_appendonly !=
2954 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2955 need_policy = TRUE;
2956 } else {
2957 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2958 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2959 }
2960 }
2961
2962 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2963 if (xoap->xoa_nounlink !=
2964 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2965 need_policy = TRUE;
2966 } else {
2967 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2968 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2969 }
2970 }
2971
2972 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2973 if (xoap->xoa_immutable !=
2974 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2975 need_policy = TRUE;
2976 } else {
2977 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2978 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2979 }
2980 }
2981
2982 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2983 if (xoap->xoa_nodump !=
2984 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2985 need_policy = TRUE;
2986 } else {
2987 XVA_CLR_REQ(xvap, XAT_NODUMP);
2988 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2989 }
2990 }
2991
2992 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2993 if (xoap->xoa_av_modified !=
2994 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2995 need_policy = TRUE;
2996 } else {
2997 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2998 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2999 }
3000 }
3001
3002 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3003 if ((vp->v_type != VREG &&
3004 xoap->xoa_av_quarantined) ||
3005 xoap->xoa_av_quarantined !=
3006 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3007 need_policy = TRUE;
3008 } else {
3009 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3010 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3011 }
3012 }
3013
3014 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3015 mutex_exit(&zp->z_lock);
3016 ZFS_EXIT(zfsvfs);
3017 return (SET_ERROR(EPERM));
3018 }
3019
3020 if (need_policy == FALSE &&
3021 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3022 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3023 need_policy = TRUE;
3024 }
3025 }
3026
3027 mutex_exit(&zp->z_lock);
3028
3029 if (mask & AT_MODE) {
3030 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3031 err = secpolicy_setid_setsticky_clear(vp, vap,
3032 &oldva, cr);
3033 if (err) {
3034 ZFS_EXIT(zfsvfs);
3035 return (err);
3036 }
3037 trim_mask |= AT_MODE;
3038 } else {
3039 need_policy = TRUE;
3040 }
3041 }
3042
3043 if (need_policy) {
3044 /*
3045 * If trim_mask is set then take ownership
3046 * has been granted or write_acl is present and user
3047 * has the ability to modify mode. In that case remove
3048 * UID|GID and or MODE from mask so that
3049 * secpolicy_vnode_setattr() doesn't revoke it.
3050 */
3051
3052 if (trim_mask) {
3053 saved_mask = vap->va_mask;
3054 vap->va_mask &= ~trim_mask;
3055 }
3056 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3057 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3058 if (err) {
3059 ZFS_EXIT(zfsvfs);
3060 return (err);
3061 }
3062
3063 if (trim_mask)
3064 vap->va_mask |= saved_mask;
3065 }
3066
3067 /*
3068 * secpolicy_vnode_setattr, or take ownership may have
3069 * changed va_mask
3070 */
3071 mask = vap->va_mask;
3072
3073 if ((mask & (AT_UID | AT_GID))) {
3074 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3075 &xattr_obj, sizeof (xattr_obj));
3076
3077 if (err == 0 && xattr_obj) {
3078 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3079 if (err)
3080 goto out2;
3081 }
3082 if (mask & AT_UID) {
3083 new_uid = zfs_fuid_create(zfsvfs,
3084 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3085 if (new_uid != zp->z_uid &&
3086 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3087 if (attrzp)
3088 VN_RELE(ZTOV(attrzp));
3089 err = SET_ERROR(EDQUOT);
3090 goto out2;
3091 }
3092 }
3093
3094 if (mask & AT_GID) {
3095 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3096 cr, ZFS_GROUP, &fuidp);
3097 if (new_gid != zp->z_gid &&
3098 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3099 if (attrzp)
3100 VN_RELE(ZTOV(attrzp));
3101 err = SET_ERROR(EDQUOT);
3102 goto out2;
3103 }
3104 }
3105 }
3106 tx = dmu_tx_create(zfsvfs->z_os);
3107
3108 if (mask & AT_MODE) {
3109 uint64_t pmode = zp->z_mode;
3110 uint64_t acl_obj;
3111 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3112
3113 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3114 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3115 err = SET_ERROR(EPERM);
3116 goto out;
3117 }
3118
3119 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3120 goto out;
3121
3122 mutex_enter(&zp->z_lock);
3123 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3124 /*
3125 * Are we upgrading ACL from old V0 format
3126 * to V1 format?
3127 */
3128 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3129 zfs_znode_acl_version(zp) ==
3130 ZFS_ACL_VERSION_INITIAL) {
3131 dmu_tx_hold_free(tx, acl_obj, 0,
3132 DMU_OBJECT_END);
3133 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3134 0, aclp->z_acl_bytes);
3135 } else {
3136 dmu_tx_hold_write(tx, acl_obj, 0,
3137 aclp->z_acl_bytes);
3138 }
3139 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3140 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3141 0, aclp->z_acl_bytes);
3142 }
3143 mutex_exit(&zp->z_lock);
3144 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3145 } else {
3146 if ((mask & AT_XVATTR) &&
3147 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3148 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3149 else
3150 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3151 }
3152
3153 if (attrzp) {
3154 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3155 }
3156
3157 fuid_dirtied = zfsvfs->z_fuid_dirty;
3158 if (fuid_dirtied)
3159 zfs_fuid_txhold(zfsvfs, tx);
3160
3161 zfs_sa_upgrade_txholds(tx, zp);
3162
3163 err = dmu_tx_assign(tx, TXG_WAIT);
3164 if (err)
3165 goto out;
3166
3167 count = 0;
3168 /*
3169 * Set each attribute requested.
3170 * We group settings according to the locks they need to acquire.
3171 *
3172 * Note: you cannot set ctime directly, although it will be
3173 * updated as a side-effect of calling this function.
3174 */
3175
3176
3177 if (mask & (AT_UID|AT_GID|AT_MODE))
3178 mutex_enter(&zp->z_acl_lock);
3179 mutex_enter(&zp->z_lock);
3180
3181 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3182 &zp->z_pflags, sizeof (zp->z_pflags));
3183
3184 if (attrzp) {
3185 if (mask & (AT_UID|AT_GID|AT_MODE))
3186 mutex_enter(&attrzp->z_acl_lock);
3187 mutex_enter(&attrzp->z_lock);
3188 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3189 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3190 sizeof (attrzp->z_pflags));
3191 }
3192
3193 if (mask & (AT_UID|AT_GID)) {
3194
3195 if (mask & AT_UID) {
3196 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3197 &new_uid, sizeof (new_uid));
3198 zp->z_uid = new_uid;
3199 if (attrzp) {
3200 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3201 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3202 sizeof (new_uid));
3203 attrzp->z_uid = new_uid;
3204 }
3205 }
3206
3207 if (mask & AT_GID) {
3208 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3209 NULL, &new_gid, sizeof (new_gid));
3210 zp->z_gid = new_gid;
3211 if (attrzp) {
3212 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3213 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3214 sizeof (new_gid));
3215 attrzp->z_gid = new_gid;
3216 }
3217 }
3218 if (!(mask & AT_MODE)) {
3219 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3220 NULL, &new_mode, sizeof (new_mode));
3221 new_mode = zp->z_mode;
3222 }
3223 err = zfs_acl_chown_setattr(zp);
3224 ASSERT(err == 0);
3225 if (attrzp) {
3226 err = zfs_acl_chown_setattr(attrzp);
3227 ASSERT(err == 0);
3228 }
3229 }
3230
3231 if (mask & AT_MODE) {
3232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3233 &new_mode, sizeof (new_mode));
3234 zp->z_mode = new_mode;
3235 ASSERT3U((uintptr_t)aclp, !=, NULL);
3236 err = zfs_aclset_common(zp, aclp, cr, tx);
3237 ASSERT0(err);
3238 if (zp->z_acl_cached)
3239 zfs_acl_free(zp->z_acl_cached);
3240 zp->z_acl_cached = aclp;
3241 aclp = NULL;
3242 }
3243
3244
3245 if (mask & AT_ATIME) {
3246 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3247 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3248 &zp->z_atime, sizeof (zp->z_atime));
3249 }
3250
3251 if (mask & AT_MTIME) {
3252 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3253 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3254 mtime, sizeof (mtime));
3255 }
3256
3257 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3258 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3259 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3260 NULL, mtime, sizeof (mtime));
3261 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3262 &ctime, sizeof (ctime));
3263 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3264 B_TRUE);
3265 } else if (mask != 0) {
3266 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3267 &ctime, sizeof (ctime));
3268 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3269 B_TRUE);
3270 if (attrzp) {
3271 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3272 SA_ZPL_CTIME(zfsvfs), NULL,
3273 &ctime, sizeof (ctime));
3274 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3275 mtime, ctime, B_TRUE);
3276 }
3277 }
3278 /*
3279 * Do this after setting timestamps to prevent timestamp
3280 * update from toggling bit
3281 */
3282
3283 if (xoap && (mask & AT_XVATTR)) {
3284
3285 /*
3286 * restore trimmed off masks
3287 * so that return masks can be set for caller.
3288 */
3289
3290 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3291 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3292 }
3293 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3294 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3295 }
3296 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3297 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3298 }
3299 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3300 XVA_SET_REQ(xvap, XAT_NODUMP);
3301 }
3302 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3303 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3304 }
3305 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3306 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3307 }
3308
3309 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3310 ASSERT(vp->v_type == VREG);
3311
3312 zfs_xvattr_set(zp, xvap, tx);
3313 }
3314
3315 if (fuid_dirtied)
3316 zfs_fuid_sync(zfsvfs, tx);
3317
3318 if (mask != 0)
3319 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3320
3321 mutex_exit(&zp->z_lock);
3322 if (mask & (AT_UID|AT_GID|AT_MODE))
3323 mutex_exit(&zp->z_acl_lock);
3324
3325 if (attrzp) {
3326 if (mask & (AT_UID|AT_GID|AT_MODE))
3327 mutex_exit(&attrzp->z_acl_lock);
3328 mutex_exit(&attrzp->z_lock);
3329 }
3330 out:
3331 if (err == 0 && attrzp) {
3332 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3333 xattr_count, tx);
3334 ASSERT(err2 == 0);
3335 }
3336
3337 if (attrzp)
3338 VN_RELE(ZTOV(attrzp));
3339
3340 if (aclp)
3341 zfs_acl_free(aclp);
3342
3343 if (fuidp) {
3344 zfs_fuid_info_free(fuidp);
3345 fuidp = NULL;
3346 }
3347
3348 if (err) {
3349 dmu_tx_abort(tx);
3350 if (err == ERESTART)
3351 goto top;
3352 } else {
3353 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3354 rw_enter(&rz_zev_rwlock, RW_READER);
3355 if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_znode_setattr)
3356 rz_zev_callbacks->rz_zev_znode_setattr(zp, tx);
3357 rw_exit(&rz_zev_rwlock);
3358 dmu_tx_commit(tx);
3359 }
3360
3361 out2:
3362 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3363 zil_commit(zilog, 0);
3364
3365 ZFS_EXIT(zfsvfs);
3366 return (err);
3367 }
3368
3369 typedef struct zfs_zlock {
3370 krwlock_t *zl_rwlock; /* lock we acquired */
3371 znode_t *zl_znode; /* znode we held */
3372 struct zfs_zlock *zl_next; /* next in list */
3373 } zfs_zlock_t;
3374
3375 /*
3376 * Drop locks and release vnodes that were held by zfs_rename_lock().
3377 */
3378 static void
zfs_rename_unlock(zfs_zlock_t ** zlpp)3379 zfs_rename_unlock(zfs_zlock_t **zlpp)
3380 {
3381 zfs_zlock_t *zl;
3382
3383 while ((zl = *zlpp) != NULL) {
3384 if (zl->zl_znode != NULL)
3385 VN_RELE(ZTOV(zl->zl_znode));
3386 rw_exit(zl->zl_rwlock);
3387 *zlpp = zl->zl_next;
3388 kmem_free(zl, sizeof (*zl));
3389 }
3390 }
3391
3392 /*
3393 * Search back through the directory tree, using the ".." entries.
3394 * Lock each directory in the chain to prevent concurrent renames.
3395 * Fail any attempt to move a directory into one of its own descendants.
3396 * XXX - z_parent_lock can overlap with map or grow locks
3397 */
3398 static int
zfs_rename_lock(znode_t * szp,znode_t * tdzp,znode_t * sdzp,zfs_zlock_t ** zlpp)3399 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3400 {
3401 zfs_zlock_t *zl;
3402 znode_t *zp = tdzp;
3403 uint64_t rootid = zp->z_zfsvfs->z_root;
3404 uint64_t oidp = zp->z_id;
3405 krwlock_t *rwlp = &szp->z_parent_lock;
3406 krw_t rw = RW_WRITER;
3407
3408 /*
3409 * First pass write-locks szp and compares to zp->z_id.
3410 * Later passes read-lock zp and compare to zp->z_parent.
3411 */
3412 do {
3413 if (!rw_tryenter(rwlp, rw)) {
3414 /*
3415 * Another thread is renaming in this path.
3416 * Note that if we are a WRITER, we don't have any
3417 * parent_locks held yet.
3418 */
3419 if (rw == RW_READER && zp->z_id > szp->z_id) {
3420 /*
3421 * Drop our locks and restart
3422 */
3423 zfs_rename_unlock(&zl);
3424 *zlpp = NULL;
3425 zp = tdzp;
3426 oidp = zp->z_id;
3427 rwlp = &szp->z_parent_lock;
3428 rw = RW_WRITER;
3429 continue;
3430 } else {
3431 /*
3432 * Wait for other thread to drop its locks
3433 */
3434 rw_enter(rwlp, rw);
3435 }
3436 }
3437
3438 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3439 zl->zl_rwlock = rwlp;
3440 zl->zl_znode = NULL;
3441 zl->zl_next = *zlpp;
3442 *zlpp = zl;
3443
3444 if (oidp == szp->z_id) /* We're a descendant of szp */
3445 return (SET_ERROR(EINVAL));
3446
3447 if (oidp == rootid) /* We've hit the top */
3448 return (0);
3449
3450 if (rw == RW_READER) { /* i.e. not the first pass */
3451 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3452 if (error)
3453 return (error);
3454 zl->zl_znode = zp;
3455 }
3456 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3457 &oidp, sizeof (oidp));
3458 rwlp = &zp->z_parent_lock;
3459 rw = RW_READER;
3460
3461 } while (zp->z_id != sdzp->z_id);
3462
3463 return (0);
3464 }
3465
3466 /*
3467 * Move an entry from the provided source directory to the target
3468 * directory. Change the entry name as indicated.
3469 *
3470 * IN: sdvp - Source directory containing the "old entry".
3471 * snm - Old entry name.
3472 * tdvp - Target directory to contain the "new entry".
3473 * tnm - New entry name.
3474 * cr - credentials of caller.
3475 * ct - caller context
3476 * flags - case flags
3477 *
3478 * RETURN: 0 on success, error code on failure.
3479 *
3480 * Timestamps:
3481 * sdvp,tdvp - ctime|mtime updated
3482 */
3483 /*ARGSUSED*/
3484 static int
zfs_rename(vnode_t * sdvp,char * snm,vnode_t * tdvp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)3485 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3486 caller_context_t *ct, int flags)
3487 {
3488 znode_t *tdzp, *szp, *tzp;
3489 znode_t *sdzp = VTOZ(sdvp);
3490 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3491 zilog_t *zilog;
3492 vnode_t *realvp;
3493 zfs_dirlock_t *sdl, *tdl;
3494 dmu_tx_t *tx;
3495 zfs_zlock_t *zl;
3496 int cmp, serr, terr;
3497 int error = 0;
3498 int zflg = 0;
3499 boolean_t waited = B_FALSE;
3500
3501 ZFS_ENTER(zfsvfs);
3502 ZFS_VERIFY_ZP(sdzp);
3503 zilog = zfsvfs->z_log;
3504
3505 /*
3506 * Make sure we have the real vp for the target directory.
3507 */
3508 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3509 tdvp = realvp;
3510
3511 tdzp = VTOZ(tdvp);
3512 ZFS_VERIFY_ZP(tdzp);
3513
3514 /*
3515 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3516 * ctldir appear to have the same v_vfsp.
3517 */
3518 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3519 ZFS_EXIT(zfsvfs);
3520 return (SET_ERROR(EXDEV));
3521 }
3522
3523 if (zfsvfs->z_utf8 && u8_validate(tnm,
3524 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3525 ZFS_EXIT(zfsvfs);
3526 return (SET_ERROR(EILSEQ));
3527 }
3528
3529 if (flags & FIGNORECASE)
3530 zflg |= ZCILOOK;
3531
3532 top:
3533 szp = NULL;
3534 tzp = NULL;
3535 zl = NULL;
3536
3537 /*
3538 * This is to prevent the creation of links into attribute space
3539 * by renaming a linked file into/outof an attribute directory.
3540 * See the comment in zfs_link() for why this is considered bad.
3541 */
3542 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3543 ZFS_EXIT(zfsvfs);
3544 return (SET_ERROR(EINVAL));
3545 }
3546
3547 /*
3548 * Lock source and target directory entries. To prevent deadlock,
3549 * a lock ordering must be defined. We lock the directory with
3550 * the smallest object id first, or if it's a tie, the one with
3551 * the lexically first name.
3552 */
3553 if (sdzp->z_id < tdzp->z_id) {
3554 cmp = -1;
3555 } else if (sdzp->z_id > tdzp->z_id) {
3556 cmp = 1;
3557 } else {
3558 /*
3559 * First compare the two name arguments without
3560 * considering any case folding.
3561 */
3562 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3563
3564 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3565 ASSERT(error == 0 || !zfsvfs->z_utf8);
3566 if (cmp == 0) {
3567 /*
3568 * POSIX: "If the old argument and the new argument
3569 * both refer to links to the same existing file,
3570 * the rename() function shall return successfully
3571 * and perform no other action."
3572 */
3573 ZFS_EXIT(zfsvfs);
3574 return (0);
3575 }
3576 /*
3577 * If the file system is case-folding, then we may
3578 * have some more checking to do. A case-folding file
3579 * system is either supporting mixed case sensitivity
3580 * access or is completely case-insensitive. Note
3581 * that the file system is always case preserving.
3582 *
3583 * In mixed sensitivity mode case sensitive behavior
3584 * is the default. FIGNORECASE must be used to
3585 * explicitly request case insensitive behavior.
3586 *
3587 * If the source and target names provided differ only
3588 * by case (e.g., a request to rename 'tim' to 'Tim'),
3589 * we will treat this as a special case in the
3590 * case-insensitive mode: as long as the source name
3591 * is an exact match, we will allow this to proceed as
3592 * a name-change request.
3593 */
3594 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3595 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3596 flags & FIGNORECASE)) &&
3597 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3598 &error) == 0) {
3599 /*
3600 * case preserving rename request, require exact
3601 * name matches
3602 */
3603 zflg |= ZCIEXACT;
3604 zflg &= ~ZCILOOK;
3605 }
3606 }
3607
3608 /*
3609 * If the source and destination directories are the same, we should
3610 * grab the z_name_lock of that directory only once.
3611 */
3612 if (sdzp == tdzp) {
3613 zflg |= ZHAVELOCK;
3614 rw_enter(&sdzp->z_name_lock, RW_READER);
3615 }
3616
3617 if (cmp < 0) {
3618 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3619 ZEXISTS | zflg, NULL, NULL);
3620 terr = zfs_dirent_lock(&tdl,
3621 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3622 } else {
3623 terr = zfs_dirent_lock(&tdl,
3624 tdzp, tnm, &tzp, zflg, NULL, NULL);
3625 serr = zfs_dirent_lock(&sdl,
3626 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3627 NULL, NULL);
3628 }
3629
3630 if (serr) {
3631 /*
3632 * Source entry invalid or not there.
3633 */
3634 if (!terr) {
3635 zfs_dirent_unlock(tdl);
3636 if (tzp)
3637 VN_RELE(ZTOV(tzp));
3638 }
3639
3640 if (sdzp == tdzp)
3641 rw_exit(&sdzp->z_name_lock);
3642
3643 if (strcmp(snm, "..") == 0)
3644 serr = SET_ERROR(EINVAL);
3645 ZFS_EXIT(zfsvfs);
3646 return (serr);
3647 }
3648 if (terr) {
3649 zfs_dirent_unlock(sdl);
3650 VN_RELE(ZTOV(szp));
3651
3652 if (sdzp == tdzp)
3653 rw_exit(&sdzp->z_name_lock);
3654
3655 if (strcmp(tnm, "..") == 0)
3656 terr = SET_ERROR(EINVAL);
3657 ZFS_EXIT(zfsvfs);
3658 return (terr);
3659 }
3660
3661 /*
3662 * Must have write access at the source to remove the old entry
3663 * and write access at the target to create the new entry.
3664 * Note that if target and source are the same, this can be
3665 * done in a single check.
3666 */
3667
3668 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3669 goto out;
3670
3671 if (ZTOV(szp)->v_type == VDIR) {
3672 /*
3673 * Check to make sure rename is valid.
3674 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3675 */
3676 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3677 goto out;
3678 }
3679
3680 /*
3681 * Does target exist?
3682 */
3683 if (tzp) {
3684 /*
3685 * Source and target must be the same type.
3686 */
3687 if (ZTOV(szp)->v_type == VDIR) {
3688 if (ZTOV(tzp)->v_type != VDIR) {
3689 error = SET_ERROR(ENOTDIR);
3690 goto out;
3691 }
3692 } else {
3693 if (ZTOV(tzp)->v_type == VDIR) {
3694 error = SET_ERROR(EISDIR);
3695 goto out;
3696 }
3697 }
3698 /*
3699 * POSIX dictates that when the source and target
3700 * entries refer to the same file object, rename
3701 * must do nothing and exit without error.
3702 */
3703 if (szp->z_id == tzp->z_id) {
3704 error = 0;
3705 goto out;
3706 }
3707 }
3708
3709 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3710 if (tzp)
3711 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3712
3713 /*
3714 * notify the target directory if it is not the same
3715 * as source directory.
3716 */
3717 if (tdvp != sdvp) {
3718 vnevent_rename_dest_dir(tdvp, ct);
3719 }
3720
3721 tx = dmu_tx_create(zfsvfs->z_os);
3722 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3723 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3724 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3725 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3726 if (sdzp != tdzp) {
3727 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3728 zfs_sa_upgrade_txholds(tx, tdzp);
3729 }
3730 if (tzp) {
3731 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3732 zfs_sa_upgrade_txholds(tx, tzp);
3733 }
3734
3735 zfs_sa_upgrade_txholds(tx, szp);
3736 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3737 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3738 if (error) {
3739 if (zl != NULL)
3740 zfs_rename_unlock(&zl);
3741 zfs_dirent_unlock(sdl);
3742 zfs_dirent_unlock(tdl);
3743
3744 if (sdzp == tdzp)
3745 rw_exit(&sdzp->z_name_lock);
3746
3747 VN_RELE(ZTOV(szp));
3748 if (tzp)
3749 VN_RELE(ZTOV(tzp));
3750 if (error == ERESTART) {
3751 waited = B_TRUE;
3752 dmu_tx_wait(tx);
3753 dmu_tx_abort(tx);
3754 goto top;
3755 }
3756 dmu_tx_abort(tx);
3757 ZFS_EXIT(zfsvfs);
3758 return (error);
3759 }
3760
3761 if (tzp) /* Attempt to remove the existing target */
3762 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3763
3764 if (error == 0) {
3765 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3766 if (error == 0) {
3767 szp->z_pflags |= ZFS_AV_MODIFIED;
3768
3769 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3770 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3771 ASSERT0(error);
3772
3773 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3774 if (error == 0) {
3775 zfs_log_rename(zilog, tx, TX_RENAME |
3776 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3777 sdl->dl_name, tdzp, tdl->dl_name, szp, tzp);
3778
3779 /*
3780 * Update path information for the target vnode
3781 */
3782 vn_renamepath(tdvp, ZTOV(szp), tnm,
3783 strlen(tnm));
3784 } else {
3785 /*
3786 * At this point, we have successfully created
3787 * the target name, but have failed to remove
3788 * the source name. Since the create was done
3789 * with the ZRENAMING flag, there are
3790 * complications; for one, the link count is
3791 * wrong. The easiest way to deal with this
3792 * is to remove the newly created target, and
3793 * return the original error. This must
3794 * succeed; fortunately, it is very unlikely to
3795 * fail, since we just created it.
3796 */
3797 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3798 ZRENAMING, NULL), ==, 0);
3799 }
3800 }
3801 }
3802
3803 dmu_tx_commit(tx);
3804 out:
3805 if (zl != NULL)
3806 zfs_rename_unlock(&zl);
3807
3808 zfs_dirent_unlock(sdl);
3809 zfs_dirent_unlock(tdl);
3810
3811 if (sdzp == tdzp)
3812 rw_exit(&sdzp->z_name_lock);
3813
3814
3815 VN_RELE(ZTOV(szp));
3816 if (tzp)
3817 VN_RELE(ZTOV(tzp));
3818
3819 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3820 zil_commit(zilog, 0);
3821
3822 ZFS_EXIT(zfsvfs);
3823 return (error);
3824 }
3825
3826 /*
3827 * Insert the indicated symbolic reference entry into the directory.
3828 *
3829 * IN: dvp - Directory to contain new symbolic link.
3830 * link - Name for new symlink entry.
3831 * vap - Attributes of new entry.
3832 * cr - credentials of caller.
3833 * ct - caller context
3834 * flags - case flags
3835 *
3836 * RETURN: 0 on success, error code on failure.
3837 *
3838 * Timestamps:
3839 * dvp - ctime|mtime updated
3840 */
3841 /*ARGSUSED*/
3842 static int
zfs_symlink(vnode_t * dvp,char * name,vattr_t * vap,char * link,cred_t * cr,caller_context_t * ct,int flags)3843 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3844 caller_context_t *ct, int flags)
3845 {
3846 znode_t *zp, *dzp = VTOZ(dvp);
3847 zfs_dirlock_t *dl;
3848 dmu_tx_t *tx;
3849 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3850 zilog_t *zilog;
3851 uint64_t len = strlen(link);
3852 int error;
3853 int zflg = ZNEW;
3854 zfs_acl_ids_t acl_ids;
3855 boolean_t fuid_dirtied;
3856 uint64_t txtype = TX_SYMLINK;
3857 boolean_t waited = B_FALSE;
3858
3859 ASSERT(vap->va_type == VLNK);
3860
3861 ZFS_ENTER(zfsvfs);
3862 ZFS_VERIFY_ZP(dzp);
3863 zilog = zfsvfs->z_log;
3864
3865 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3866 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3867 ZFS_EXIT(zfsvfs);
3868 return (SET_ERROR(EILSEQ));
3869 }
3870 if (flags & FIGNORECASE)
3871 zflg |= ZCILOOK;
3872
3873 if (len > MAXPATHLEN) {
3874 ZFS_EXIT(zfsvfs);
3875 return (SET_ERROR(ENAMETOOLONG));
3876 }
3877
3878 if ((error = zfs_acl_ids_create(dzp, 0,
3879 vap, cr, NULL, &acl_ids)) != 0) {
3880 ZFS_EXIT(zfsvfs);
3881 return (error);
3882 }
3883 top:
3884 /*
3885 * Attempt to lock directory; fail if entry already exists.
3886 */
3887 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3888 if (error) {
3889 zfs_acl_ids_free(&acl_ids);
3890 ZFS_EXIT(zfsvfs);
3891 return (error);
3892 }
3893
3894 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3895 zfs_acl_ids_free(&acl_ids);
3896 zfs_dirent_unlock(dl);
3897 ZFS_EXIT(zfsvfs);
3898 return (error);
3899 }
3900
3901 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3902 zfs_acl_ids_free(&acl_ids);
3903 zfs_dirent_unlock(dl);
3904 ZFS_EXIT(zfsvfs);
3905 return (SET_ERROR(EDQUOT));
3906 }
3907 tx = dmu_tx_create(zfsvfs->z_os);
3908 fuid_dirtied = zfsvfs->z_fuid_dirty;
3909 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3910 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3911 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3912 ZFS_SA_BASE_ATTR_SIZE + len);
3913 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3914 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3915 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3916 acl_ids.z_aclp->z_acl_bytes);
3917 }
3918 if (fuid_dirtied)
3919 zfs_fuid_txhold(zfsvfs, tx);
3920 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3921 if (error) {
3922 zfs_dirent_unlock(dl);
3923 if (error == ERESTART) {
3924 waited = B_TRUE;
3925 dmu_tx_wait(tx);
3926 dmu_tx_abort(tx);
3927 goto top;
3928 }
3929 zfs_acl_ids_free(&acl_ids);
3930 dmu_tx_abort(tx);
3931 ZFS_EXIT(zfsvfs);
3932 return (error);
3933 }
3934
3935 /*
3936 * Create a new object for the symlink.
3937 * for version 4 ZPL datsets the symlink will be an SA attribute
3938 */
3939 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3940
3941 if (fuid_dirtied)
3942 zfs_fuid_sync(zfsvfs, tx);
3943
3944 mutex_enter(&zp->z_lock);
3945 if (zp->z_is_sa)
3946 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3947 link, len, tx);
3948 else
3949 zfs_sa_symlink(zp, link, len, tx);
3950 mutex_exit(&zp->z_lock);
3951
3952 zp->z_size = len;
3953 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3954 &zp->z_size, sizeof (zp->z_size), tx);
3955 /*
3956 * Insert the new object into the directory.
3957 */
3958 (void) zfs_link_create(dl, zp, tx, ZNEW);
3959
3960 if (flags & FIGNORECASE)
3961 txtype |= TX_CI;
3962 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3963
3964 zfs_acl_ids_free(&acl_ids);
3965
3966 dmu_tx_commit(tx);
3967
3968 zfs_dirent_unlock(dl);
3969
3970 VN_RELE(ZTOV(zp));
3971
3972 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3973 zil_commit(zilog, 0);
3974
3975 ZFS_EXIT(zfsvfs);
3976 return (error);
3977 }
3978
3979 /*
3980 * Return, in the buffer contained in the provided uio structure,
3981 * the symbolic path referred to by vp.
3982 *
3983 * IN: vp - vnode of symbolic link.
3984 * uio - structure to contain the link path.
3985 * cr - credentials of caller.
3986 * ct - caller context
3987 *
3988 * OUT: uio - structure containing the link path.
3989 *
3990 * RETURN: 0 on success, error code on failure.
3991 *
3992 * Timestamps:
3993 * vp - atime updated
3994 */
3995 /* ARGSUSED */
3996 static int
zfs_readlink(vnode_t * vp,uio_t * uio,cred_t * cr,caller_context_t * ct)3997 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3998 {
3999 znode_t *zp = VTOZ(vp);
4000 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4001 int error;
4002
4003 ZFS_ENTER(zfsvfs);
4004 ZFS_VERIFY_ZP(zp);
4005
4006 mutex_enter(&zp->z_lock);
4007 if (zp->z_is_sa)
4008 error = sa_lookup_uio(zp->z_sa_hdl,
4009 SA_ZPL_SYMLINK(zfsvfs), uio);
4010 else
4011 error = zfs_sa_readlink(zp, uio);
4012 mutex_exit(&zp->z_lock);
4013
4014 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4015
4016 ZFS_EXIT(zfsvfs);
4017 return (error);
4018 }
4019
4020 /*
4021 * Insert a new entry into directory tdvp referencing svp.
4022 *
4023 * IN: tdvp - Directory to contain new entry.
4024 * svp - vnode of new entry.
4025 * name - name of new entry.
4026 * cr - credentials of caller.
4027 * ct - caller context
4028 *
4029 * RETURN: 0 on success, error code on failure.
4030 *
4031 * Timestamps:
4032 * tdvp - ctime|mtime updated
4033 * svp - ctime updated
4034 */
4035 /* ARGSUSED */
4036 static int
zfs_link(vnode_t * tdvp,vnode_t * svp,char * name,cred_t * cr,caller_context_t * ct,int flags)4037 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4038 caller_context_t *ct, int flags)
4039 {
4040 znode_t *dzp = VTOZ(tdvp);
4041 znode_t *tzp, *szp;
4042 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4043 zilog_t *zilog;
4044 zfs_dirlock_t *dl;
4045 dmu_tx_t *tx;
4046 vnode_t *realvp;
4047 int error;
4048 int zf = ZNEW;
4049 uint64_t parent;
4050 uid_t owner;
4051 boolean_t waited = B_FALSE;
4052
4053 ASSERT(tdvp->v_type == VDIR);
4054
4055 ZFS_ENTER(zfsvfs);
4056 ZFS_VERIFY_ZP(dzp);
4057 zilog = zfsvfs->z_log;
4058
4059 if (VOP_REALVP(svp, &realvp, ct) == 0)
4060 svp = realvp;
4061
4062 /*
4063 * POSIX dictates that we return EPERM here.
4064 * Better choices include ENOTSUP or EISDIR.
4065 */
4066 if (svp->v_type == VDIR) {
4067 ZFS_EXIT(zfsvfs);
4068 return (SET_ERROR(EPERM));
4069 }
4070
4071 szp = VTOZ(svp);
4072 ZFS_VERIFY_ZP(szp);
4073
4074 /*
4075 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4076 * ctldir appear to have the same v_vfsp.
4077 */
4078 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4079 ZFS_EXIT(zfsvfs);
4080 return (SET_ERROR(EXDEV));
4081 }
4082
4083 /* Prevent links to .zfs/shares files */
4084
4085 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4086 &parent, sizeof (uint64_t))) != 0) {
4087 ZFS_EXIT(zfsvfs);
4088 return (error);
4089 }
4090 if (parent == zfsvfs->z_shares_dir) {
4091 ZFS_EXIT(zfsvfs);
4092 return (SET_ERROR(EPERM));
4093 }
4094
4095 if (zfsvfs->z_utf8 && u8_validate(name,
4096 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4097 ZFS_EXIT(zfsvfs);
4098 return (SET_ERROR(EILSEQ));
4099 }
4100 if (flags & FIGNORECASE)
4101 zf |= ZCILOOK;
4102
4103 /*
4104 * We do not support links between attributes and non-attributes
4105 * because of the potential security risk of creating links
4106 * into "normal" file space in order to circumvent restrictions
4107 * imposed in attribute space.
4108 */
4109 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4110 ZFS_EXIT(zfsvfs);
4111 return (SET_ERROR(EINVAL));
4112 }
4113
4114
4115 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4116 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4117 ZFS_EXIT(zfsvfs);
4118 return (SET_ERROR(EPERM));
4119 }
4120
4121 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4122 ZFS_EXIT(zfsvfs);
4123 return (error);
4124 }
4125
4126 top:
4127 /*
4128 * Attempt to lock directory; fail if entry already exists.
4129 */
4130 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4131 if (error) {
4132 ZFS_EXIT(zfsvfs);
4133 return (error);
4134 }
4135
4136 tx = dmu_tx_create(zfsvfs->z_os);
4137 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4138 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4139 zfs_sa_upgrade_txholds(tx, szp);
4140 zfs_sa_upgrade_txholds(tx, dzp);
4141 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4142 if (error) {
4143 zfs_dirent_unlock(dl);
4144 if (error == ERESTART) {
4145 waited = B_TRUE;
4146 dmu_tx_wait(tx);
4147 dmu_tx_abort(tx);
4148 goto top;
4149 }
4150 dmu_tx_abort(tx);
4151 ZFS_EXIT(zfsvfs);
4152 return (error);
4153 }
4154
4155 error = zfs_link_create(dl, szp, tx, 0);
4156
4157 if (error == 0) {
4158 uint64_t txtype = TX_LINK;
4159 if (flags & FIGNORECASE)
4160 txtype |= TX_CI;
4161 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4162 }
4163
4164 dmu_tx_commit(tx);
4165
4166 zfs_dirent_unlock(dl);
4167
4168 if (error == 0) {
4169 vnevent_link(svp, ct);
4170 }
4171
4172 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4173 zil_commit(zilog, 0);
4174
4175 ZFS_EXIT(zfsvfs);
4176 return (error);
4177 }
4178
4179 /*
4180 * zfs_null_putapage() is used when the file system has been force
4181 * unmounted. It just drops the pages.
4182 */
4183 /* ARGSUSED */
4184 static int
zfs_null_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)4185 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4186 size_t *lenp, int flags, cred_t *cr)
4187 {
4188 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4189 return (0);
4190 }
4191
4192 /*
4193 * Push a page out to disk, klustering if possible.
4194 *
4195 * IN: vp - file to push page to.
4196 * pp - page to push.
4197 * flags - additional flags.
4198 * cr - credentials of caller.
4199 *
4200 * OUT: offp - start of range pushed.
4201 * lenp - len of range pushed.
4202 *
4203 * RETURN: 0 on success, error code on failure.
4204 *
4205 * NOTE: callers must have locked the page to be pushed. On
4206 * exit, the page (and all other pages in the kluster) must be
4207 * unlocked.
4208 */
4209 /* ARGSUSED */
4210 static int
zfs_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)4211 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4212 size_t *lenp, int flags, cred_t *cr)
4213 {
4214 znode_t *zp = VTOZ(vp);
4215 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4216 dmu_tx_t *tx;
4217 u_offset_t off, koff;
4218 size_t len, klen;
4219 int err;
4220
4221 off = pp->p_offset;
4222 len = PAGESIZE;
4223 /*
4224 * If our blocksize is bigger than the page size, try to kluster
4225 * multiple pages so that we write a full block (thus avoiding
4226 * a read-modify-write).
4227 */
4228 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4229 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4230 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4231 ASSERT(koff <= zp->z_size);
4232 if (koff + klen > zp->z_size)
4233 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4234 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4235 }
4236 ASSERT3U(btop(len), ==, btopr(len));
4237
4238 /*
4239 * Can't push pages past end-of-file.
4240 */
4241 if (off >= zp->z_size) {
4242 /* ignore all pages */
4243 err = 0;
4244 goto out;
4245 } else if (off + len > zp->z_size) {
4246 int npages = btopr(zp->z_size - off);
4247 page_t *trunc;
4248
4249 page_list_break(&pp, &trunc, npages);
4250 /* ignore pages past end of file */
4251 if (trunc)
4252 pvn_write_done(trunc, flags);
4253 len = zp->z_size - off;
4254 }
4255
4256 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4257 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4258 err = SET_ERROR(EDQUOT);
4259 goto out;
4260 }
4261 tx = dmu_tx_create(zfsvfs->z_os);
4262 dmu_tx_hold_write(tx, zp->z_id, off, len);
4263
4264 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4265 zfs_sa_upgrade_txholds(tx, zp);
4266 err = dmu_tx_assign(tx, TXG_WAIT);
4267 if (err != 0) {
4268 dmu_tx_abort(tx);
4269 goto out;
4270 }
4271
4272 if (zp->z_blksz <= PAGESIZE) {
4273 caddr_t va = zfs_map_page(pp, S_READ);
4274 ASSERT3U(len, <=, PAGESIZE);
4275 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4276 zfs_unmap_page(pp, va);
4277 } else {
4278 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4279 }
4280
4281 if (err == 0) {
4282 uint64_t mtime[2], ctime[2];
4283 sa_bulk_attr_t bulk[3];
4284 int count = 0;
4285
4286 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4287 &mtime, 16);
4288 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4289 &ctime, 16);
4290 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4291 &zp->z_pflags, 8);
4292 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4293 B_TRUE);
4294 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4295 }
4296 dmu_tx_commit(tx);
4297
4298 out:
4299 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4300 if (offp)
4301 *offp = off;
4302 if (lenp)
4303 *lenp = len;
4304
4305 return (err);
4306 }
4307
4308 /*
4309 * Copy the portion of the file indicated from pages into the file.
4310 * The pages are stored in a page list attached to the files vnode.
4311 *
4312 * IN: vp - vnode of file to push page data to.
4313 * off - position in file to put data.
4314 * len - amount of data to write.
4315 * flags - flags to control the operation.
4316 * cr - credentials of caller.
4317 * ct - caller context.
4318 *
4319 * RETURN: 0 on success, error code on failure.
4320 *
4321 * Timestamps:
4322 * vp - ctime|mtime updated
4323 */
4324 /*ARGSUSED*/
4325 static int
zfs_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)4326 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4327 caller_context_t *ct)
4328 {
4329 znode_t *zp = VTOZ(vp);
4330 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4331 page_t *pp;
4332 size_t io_len;
4333 u_offset_t io_off;
4334 uint_t blksz;
4335 rl_t *rl;
4336 int error = 0;
4337
4338 ZFS_ENTER(zfsvfs);
4339 ZFS_VERIFY_ZP(zp);
4340
4341 /*
4342 * There's nothing to do if no data is cached.
4343 */
4344 if (!vn_has_cached_data(vp)) {
4345 ZFS_EXIT(zfsvfs);
4346 return (0);
4347 }
4348
4349 /*
4350 * Align this request to the file block size in case we kluster.
4351 * XXX - this can result in pretty aggresive locking, which can
4352 * impact simultanious read/write access. One option might be
4353 * to break up long requests (len == 0) into block-by-block
4354 * operations to get narrower locking.
4355 */
4356 blksz = zp->z_blksz;
4357 if (ISP2(blksz))
4358 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4359 else
4360 io_off = 0;
4361 if (len > 0 && ISP2(blksz))
4362 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4363 else
4364 io_len = 0;
4365
4366 if (io_len == 0) {
4367 /*
4368 * Search the entire vp list for pages >= io_off.
4369 */
4370 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4371 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4372 goto out;
4373 }
4374 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4375
4376 if (off > zp->z_size) {
4377 /* past end of file */
4378 zfs_range_unlock(rl);
4379 ZFS_EXIT(zfsvfs);
4380 return (0);
4381 }
4382
4383 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4384
4385 for (off = io_off; io_off < off + len; io_off += io_len) {
4386 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4387 pp = page_lookup(vp, io_off,
4388 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4389 } else {
4390 pp = page_lookup_nowait(vp, io_off,
4391 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4392 }
4393
4394 if (pp != NULL && pvn_getdirty(pp, flags)) {
4395 int err;
4396
4397 /*
4398 * Found a dirty page to push
4399 */
4400 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4401 if (err)
4402 error = err;
4403 } else {
4404 io_len = PAGESIZE;
4405 }
4406 }
4407 out:
4408 zfs_range_unlock(rl);
4409 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4410 zil_commit(zfsvfs->z_log, zp->z_id);
4411 ZFS_EXIT(zfsvfs);
4412 return (error);
4413 }
4414
4415 /*ARGSUSED*/
4416 void
zfs_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)4417 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4418 {
4419 znode_t *zp = VTOZ(vp);
4420 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4421 int error;
4422
4423 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4424 if (zp->z_sa_hdl == NULL) {
4425 /*
4426 * The fs has been unmounted, or we did a
4427 * suspend/resume and this file no longer exists.
4428 */
4429 if (vn_has_cached_data(vp)) {
4430 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4431 B_INVAL, cr);
4432 }
4433
4434 mutex_enter(&zp->z_lock);
4435 mutex_enter(&vp->v_lock);
4436 ASSERT(vp->v_count == 1);
4437 vp->v_count = 0;
4438 mutex_exit(&vp->v_lock);
4439 mutex_exit(&zp->z_lock);
4440 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4441 zfs_znode_free(zp);
4442 return;
4443 }
4444
4445 /*
4446 * Attempt to push any data in the page cache. If this fails
4447 * we will get kicked out later in zfs_zinactive().
4448 */
4449 if (vn_has_cached_data(vp)) {
4450 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4451 cr);
4452 }
4453
4454 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4455 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4456
4457 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4458 zfs_sa_upgrade_txholds(tx, zp);
4459 error = dmu_tx_assign(tx, TXG_WAIT);
4460 if (error) {
4461 dmu_tx_abort(tx);
4462 } else {
4463 mutex_enter(&zp->z_lock);
4464 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4465 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4466 zp->z_atime_dirty = 0;
4467 mutex_exit(&zp->z_lock);
4468 dmu_tx_commit(tx);
4469 }
4470 }
4471
4472 zfs_zinactive(zp);
4473 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4474 }
4475
4476 /*
4477 * Bounds-check the seek operation.
4478 *
4479 * IN: vp - vnode seeking within
4480 * ooff - old file offset
4481 * noffp - pointer to new file offset
4482 * ct - caller context
4483 *
4484 * RETURN: 0 on success, EINVAL if new offset invalid.
4485 */
4486 /* ARGSUSED */
4487 static int
zfs_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)4488 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4489 caller_context_t *ct)
4490 {
4491 if (vp->v_type == VDIR)
4492 return (0);
4493 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4494 }
4495
4496 /*
4497 * Pre-filter the generic locking function to trap attempts to place
4498 * a mandatory lock on a memory mapped file.
4499 */
4500 static int
zfs_frlock(vnode_t * vp,int cmd,flock64_t * bfp,int flag,offset_t offset,flk_callback_t * flk_cbp,cred_t * cr,caller_context_t * ct)4501 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4502 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4503 {
4504 znode_t *zp = VTOZ(vp);
4505 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4506
4507 ZFS_ENTER(zfsvfs);
4508 ZFS_VERIFY_ZP(zp);
4509
4510 /*
4511 * We are following the UFS semantics with respect to mapcnt
4512 * here: If we see that the file is mapped already, then we will
4513 * return an error, but we don't worry about races between this
4514 * function and zfs_map().
4515 */
4516 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4517 ZFS_EXIT(zfsvfs);
4518 return (SET_ERROR(EAGAIN));
4519 }
4520 ZFS_EXIT(zfsvfs);
4521 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4522 }
4523
4524 /*
4525 * If we can't find a page in the cache, we will create a new page
4526 * and fill it with file data. For efficiency, we may try to fill
4527 * multiple pages at once (klustering) to fill up the supplied page
4528 * list. Note that the pages to be filled are held with an exclusive
4529 * lock to prevent access by other threads while they are being filled.
4530 */
4531 static int
zfs_fillpage(vnode_t * vp,u_offset_t off,struct seg * seg,caddr_t addr,page_t * pl[],size_t plsz,enum seg_rw rw)4532 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4533 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4534 {
4535 znode_t *zp = VTOZ(vp);
4536 page_t *pp, *cur_pp;
4537 objset_t *os = zp->z_zfsvfs->z_os;
4538 u_offset_t io_off, total;
4539 size_t io_len;
4540 int err;
4541
4542 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4543 /*
4544 * We only have a single page, don't bother klustering
4545 */
4546 io_off = off;
4547 io_len = PAGESIZE;
4548 pp = page_create_va(vp, io_off, io_len,
4549 PG_EXCL | PG_WAIT, seg, addr);
4550 } else {
4551 /*
4552 * Try to find enough pages to fill the page list
4553 */
4554 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4555 &io_len, off, plsz, 0);
4556 }
4557 if (pp == NULL) {
4558 /*
4559 * The page already exists, nothing to do here.
4560 */
4561 *pl = NULL;
4562 return (0);
4563 }
4564
4565 /*
4566 * Fill the pages in the kluster.
4567 */
4568 cur_pp = pp;
4569 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4570 caddr_t va;
4571
4572 ASSERT3U(io_off, ==, cur_pp->p_offset);
4573 va = zfs_map_page(cur_pp, S_WRITE);
4574 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4575 DMU_READ_PREFETCH);
4576 zfs_unmap_page(cur_pp, va);
4577 if (err) {
4578 /* On error, toss the entire kluster */
4579 pvn_read_done(pp, B_ERROR);
4580 /* convert checksum errors into IO errors */
4581 if (err == ECKSUM)
4582 err = SET_ERROR(EIO);
4583 return (err);
4584 }
4585 cur_pp = cur_pp->p_next;
4586 }
4587
4588 /*
4589 * Fill in the page list array from the kluster starting
4590 * from the desired offset `off'.
4591 * NOTE: the page list will always be null terminated.
4592 */
4593 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4594 ASSERT(pl == NULL || (*pl)->p_offset == off);
4595
4596 return (0);
4597 }
4598
4599 /*
4600 * Return pointers to the pages for the file region [off, off + len]
4601 * in the pl array. If plsz is greater than len, this function may
4602 * also return page pointers from after the specified region
4603 * (i.e. the region [off, off + plsz]). These additional pages are
4604 * only returned if they are already in the cache, or were created as
4605 * part of a klustered read.
4606 *
4607 * IN: vp - vnode of file to get data from.
4608 * off - position in file to get data from.
4609 * len - amount of data to retrieve.
4610 * plsz - length of provided page list.
4611 * seg - segment to obtain pages for.
4612 * addr - virtual address of fault.
4613 * rw - mode of created pages.
4614 * cr - credentials of caller.
4615 * ct - caller context.
4616 *
4617 * OUT: protp - protection mode of created pages.
4618 * pl - list of pages created.
4619 *
4620 * RETURN: 0 on success, error code on failure.
4621 *
4622 * Timestamps:
4623 * vp - atime updated
4624 */
4625 /* ARGSUSED */
4626 static int
zfs_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)4627 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4628 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4629 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4630 {
4631 znode_t *zp = VTOZ(vp);
4632 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4633 page_t **pl0 = pl;
4634 int err = 0;
4635
4636 /* we do our own caching, faultahead is unnecessary */
4637 if (pl == NULL)
4638 return (0);
4639 else if (len > plsz)
4640 len = plsz;
4641 else
4642 len = P2ROUNDUP(len, PAGESIZE);
4643 ASSERT(plsz >= len);
4644
4645 ZFS_ENTER(zfsvfs);
4646 ZFS_VERIFY_ZP(zp);
4647
4648 if (protp)
4649 *protp = PROT_ALL;
4650
4651 /*
4652 * Loop through the requested range [off, off + len) looking
4653 * for pages. If we don't find a page, we will need to create
4654 * a new page and fill it with data from the file.
4655 */
4656 while (len > 0) {
4657 if (*pl = page_lookup(vp, off, SE_SHARED))
4658 *(pl+1) = NULL;
4659 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4660 goto out;
4661 while (*pl) {
4662 ASSERT3U((*pl)->p_offset, ==, off);
4663 off += PAGESIZE;
4664 addr += PAGESIZE;
4665 if (len > 0) {
4666 ASSERT3U(len, >=, PAGESIZE);
4667 len -= PAGESIZE;
4668 }
4669 ASSERT3U(plsz, >=, PAGESIZE);
4670 plsz -= PAGESIZE;
4671 pl++;
4672 }
4673 }
4674
4675 /*
4676 * Fill out the page array with any pages already in the cache.
4677 */
4678 while (plsz > 0 &&
4679 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4680 off += PAGESIZE;
4681 plsz -= PAGESIZE;
4682 }
4683 out:
4684 if (err) {
4685 /*
4686 * Release any pages we have previously locked.
4687 */
4688 while (pl > pl0)
4689 page_unlock(*--pl);
4690 } else {
4691 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4692 }
4693
4694 *pl = NULL;
4695
4696 ZFS_EXIT(zfsvfs);
4697 return (err);
4698 }
4699
4700 /*
4701 * Request a memory map for a section of a file. This code interacts
4702 * with common code and the VM system as follows:
4703 *
4704 * - common code calls mmap(), which ends up in smmap_common()
4705 * - this calls VOP_MAP(), which takes you into (say) zfs
4706 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4707 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4708 * - zfs_addmap() updates z_mapcnt
4709 */
4710 /*ARGSUSED*/
4711 static int
zfs_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4712 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4713 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4714 caller_context_t *ct)
4715 {
4716 znode_t *zp = VTOZ(vp);
4717 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4718 segvn_crargs_t vn_a;
4719 int error;
4720
4721 ZFS_ENTER(zfsvfs);
4722 ZFS_VERIFY_ZP(zp);
4723
4724 if ((prot & PROT_WRITE) && (zp->z_pflags &
4725 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4726 ZFS_EXIT(zfsvfs);
4727 return (SET_ERROR(EPERM));
4728 }
4729
4730 if ((prot & (PROT_READ | PROT_EXEC)) &&
4731 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4732 ZFS_EXIT(zfsvfs);
4733 return (SET_ERROR(EACCES));
4734 }
4735
4736 if (vp->v_flag & VNOMAP) {
4737 ZFS_EXIT(zfsvfs);
4738 return (SET_ERROR(ENOSYS));
4739 }
4740
4741 if (off < 0 || len > MAXOFFSET_T - off) {
4742 ZFS_EXIT(zfsvfs);
4743 return (SET_ERROR(ENXIO));
4744 }
4745
4746 if (vp->v_type != VREG) {
4747 ZFS_EXIT(zfsvfs);
4748 return (SET_ERROR(ENODEV));
4749 }
4750
4751 /*
4752 * If file is locked, disallow mapping.
4753 */
4754 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4755 ZFS_EXIT(zfsvfs);
4756 return (SET_ERROR(EAGAIN));
4757 }
4758
4759 as_rangelock(as);
4760 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4761 if (error != 0) {
4762 as_rangeunlock(as);
4763 ZFS_EXIT(zfsvfs);
4764 return (error);
4765 }
4766
4767 vn_a.vp = vp;
4768 vn_a.offset = (u_offset_t)off;
4769 vn_a.type = flags & MAP_TYPE;
4770 vn_a.prot = prot;
4771 vn_a.maxprot = maxprot;
4772 vn_a.cred = cr;
4773 vn_a.amp = NULL;
4774 vn_a.flags = flags & ~MAP_TYPE;
4775 vn_a.szc = 0;
4776 vn_a.lgrp_mem_policy_flags = 0;
4777
4778 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4779
4780 as_rangeunlock(as);
4781 ZFS_EXIT(zfsvfs);
4782 return (error);
4783 }
4784
4785 /* ARGSUSED */
4786 static int
zfs_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4787 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4788 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4789 caller_context_t *ct)
4790 {
4791 uint64_t pages = btopr(len);
4792
4793 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4794 return (0);
4795 }
4796
4797 /*
4798 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4799 * more accurate mtime for the associated file. Since we don't have a way of
4800 * detecting when the data was actually modified, we have to resort to
4801 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4802 * last page is pushed. The problem occurs when the msync() call is omitted,
4803 * which by far the most common case:
4804 *
4805 * open()
4806 * mmap()
4807 * <modify memory>
4808 * munmap()
4809 * close()
4810 * <time lapse>
4811 * putpage() via fsflush
4812 *
4813 * If we wait until fsflush to come along, we can have a modification time that
4814 * is some arbitrary point in the future. In order to prevent this in the
4815 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4816 * torn down.
4817 */
4818 /* ARGSUSED */
4819 static int
zfs_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4820 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4821 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4822 caller_context_t *ct)
4823 {
4824 uint64_t pages = btopr(len);
4825
4826 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4827 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4828
4829 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4830 vn_has_cached_data(vp))
4831 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4832
4833 return (0);
4834 }
4835
4836 /*
4837 * Free or allocate space in a file. Currently, this function only
4838 * supports the `F_FREESP' command. However, this command is somewhat
4839 * misnamed, as its functionality includes the ability to allocate as
4840 * well as free space.
4841 *
4842 * IN: vp - vnode of file to free data in.
4843 * cmd - action to take (only F_FREESP supported).
4844 * bfp - section of file to free/alloc.
4845 * flag - current file open mode flags.
4846 * offset - current file offset.
4847 * cr - credentials of caller [UNUSED].
4848 * ct - caller context.
4849 *
4850 * RETURN: 0 on success, error code on failure.
4851 *
4852 * Timestamps:
4853 * vp - ctime|mtime updated
4854 */
4855 /* ARGSUSED */
4856 static int
zfs_space(vnode_t * vp,int cmd,flock64_t * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)4857 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4858 offset_t offset, cred_t *cr, caller_context_t *ct)
4859 {
4860 znode_t *zp = VTOZ(vp);
4861 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4862 uint64_t off, len;
4863 int error;
4864
4865 ZFS_ENTER(zfsvfs);
4866 ZFS_VERIFY_ZP(zp);
4867
4868 if (cmd != F_FREESP) {
4869 ZFS_EXIT(zfsvfs);
4870 return (SET_ERROR(EINVAL));
4871 }
4872
4873 /*
4874 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4875 * callers might not be able to detect properly that we are read-only,
4876 * so check it explicitly here.
4877 */
4878 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4879 ZFS_EXIT(zfsvfs);
4880 return (SET_ERROR(EROFS));
4881 }
4882
4883 if (error = convoff(vp, bfp, 0, offset)) {
4884 ZFS_EXIT(zfsvfs);
4885 return (error);
4886 }
4887
4888 if (bfp->l_len < 0) {
4889 ZFS_EXIT(zfsvfs);
4890 return (SET_ERROR(EINVAL));
4891 }
4892
4893 off = bfp->l_start;
4894 len = bfp->l_len; /* 0 means from off to end of file */
4895
4896 error = zfs_freesp(zp, off, len, flag, TRUE);
4897
4898 if (error == 0 && off == 0 && len == 0)
4899 vnevent_truncate(ZTOV(zp), ct);
4900
4901 ZFS_EXIT(zfsvfs);
4902 return (error);
4903 }
4904
4905 /*ARGSUSED*/
4906 static int
zfs_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)4907 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4908 {
4909 znode_t *zp = VTOZ(vp);
4910 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4911 uint32_t gen;
4912 uint64_t gen64;
4913 uint64_t object = zp->z_id;
4914 zfid_short_t *zfid;
4915 int size, i, error;
4916
4917 ZFS_ENTER(zfsvfs);
4918 ZFS_VERIFY_ZP(zp);
4919
4920 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4921 &gen64, sizeof (uint64_t))) != 0) {
4922 ZFS_EXIT(zfsvfs);
4923 return (error);
4924 }
4925
4926 gen = (uint32_t)gen64;
4927
4928 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4929 if (fidp->fid_len < size) {
4930 fidp->fid_len = size;
4931 ZFS_EXIT(zfsvfs);
4932 return (SET_ERROR(ENOSPC));
4933 }
4934
4935 zfid = (zfid_short_t *)fidp;
4936
4937 zfid->zf_len = size;
4938
4939 for (i = 0; i < sizeof (zfid->zf_object); i++)
4940 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4941
4942 /* Must have a non-zero generation number to distinguish from .zfs */
4943 if (gen == 0)
4944 gen = 1;
4945 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4946 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4947
4948 if (size == LONG_FID_LEN) {
4949 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4950 zfid_long_t *zlfid;
4951
4952 zlfid = (zfid_long_t *)fidp;
4953
4954 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4955 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4956
4957 /* XXX - this should be the generation number for the objset */
4958 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4959 zlfid->zf_setgen[i] = 0;
4960 }
4961
4962 ZFS_EXIT(zfsvfs);
4963 return (0);
4964 }
4965
4966 static int
zfs_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)4967 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4968 caller_context_t *ct)
4969 {
4970 znode_t *zp, *xzp;
4971 zfsvfs_t *zfsvfs;
4972 zfs_dirlock_t *dl;
4973 int error;
4974
4975 switch (cmd) {
4976 case _PC_LINK_MAX:
4977 *valp = ULONG_MAX;
4978 return (0);
4979
4980 case _PC_FILESIZEBITS:
4981 *valp = 64;
4982 return (0);
4983
4984 case _PC_XATTR_EXISTS:
4985 zp = VTOZ(vp);
4986 zfsvfs = zp->z_zfsvfs;
4987 ZFS_ENTER(zfsvfs);
4988 ZFS_VERIFY_ZP(zp);
4989 *valp = 0;
4990 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4991 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4992 if (error == 0) {
4993 zfs_dirent_unlock(dl);
4994 if (!zfs_dirempty(xzp))
4995 *valp = 1;
4996 VN_RELE(ZTOV(xzp));
4997 } else if (error == ENOENT) {
4998 /*
4999 * If there aren't extended attributes, it's the
5000 * same as having zero of them.
5001 */
5002 error = 0;
5003 }
5004 ZFS_EXIT(zfsvfs);
5005 return (error);
5006
5007 case _PC_SATTR_ENABLED:
5008 case _PC_SATTR_EXISTS:
5009 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5010 (vp->v_type == VREG || vp->v_type == VDIR);
5011 return (0);
5012
5013 case _PC_ACCESS_FILTERING:
5014 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5015 vp->v_type == VDIR;
5016 return (0);
5017
5018 case _PC_ACL_ENABLED:
5019 *valp = _ACL_ACE_ENABLED;
5020 return (0);
5021
5022 case _PC_MIN_HOLE_SIZE:
5023 *valp = (ulong_t)SPA_MINBLOCKSIZE;
5024 return (0);
5025
5026 case _PC_TIMESTAMP_RESOLUTION:
5027 /* nanosecond timestamp resolution */
5028 *valp = 1L;
5029 return (0);
5030
5031 default:
5032 return (fs_pathconf(vp, cmd, valp, cr, ct));
5033 }
5034 }
5035
5036 /*ARGSUSED*/
5037 static int
zfs_getsecattr(vnode_t * vp,vsecattr_t * vsecp,int flag,cred_t * cr,caller_context_t * ct)5038 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5039 caller_context_t *ct)
5040 {
5041 znode_t *zp = VTOZ(vp);
5042 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5043 int error;
5044 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5045
5046 ZFS_ENTER(zfsvfs);
5047 ZFS_VERIFY_ZP(zp);
5048 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5049 ZFS_EXIT(zfsvfs);
5050
5051 return (error);
5052 }
5053
5054 /*ARGSUSED*/
5055 static int
zfs_setsecattr(vnode_t * vp,vsecattr_t * vsecp,int flag,cred_t * cr,caller_context_t * ct)5056 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5057 caller_context_t *ct)
5058 {
5059 znode_t *zp = VTOZ(vp);
5060 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5061 int error;
5062 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5063 zilog_t *zilog = zfsvfs->z_log;
5064
5065 ZFS_ENTER(zfsvfs);
5066 ZFS_VERIFY_ZP(zp);
5067
5068 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5069
5070 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5071 zil_commit(zilog, 0);
5072
5073 ZFS_EXIT(zfsvfs);
5074 return (error);
5075 }
5076
5077 /*
5078 * The smallest read we may consider to loan out an arcbuf.
5079 * This must be a power of 2.
5080 */
5081 int zcr_blksz_min = (1 << 10); /* 1K */
5082 /*
5083 * If set to less than the file block size, allow loaning out of an
5084 * arcbuf for a partial block read. This must be a power of 2.
5085 */
5086 int zcr_blksz_max = (1 << 17); /* 128K */
5087
5088 /*ARGSUSED*/
5089 static int
zfs_reqzcbuf(vnode_t * vp,enum uio_rw ioflag,xuio_t * xuio,cred_t * cr,caller_context_t * ct)5090 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5091 caller_context_t *ct)
5092 {
5093 znode_t *zp = VTOZ(vp);
5094 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5095 int max_blksz = zfsvfs->z_max_blksz;
5096 uio_t *uio = &xuio->xu_uio;
5097 ssize_t size = uio->uio_resid;
5098 offset_t offset = uio->uio_loffset;
5099 int blksz;
5100 int fullblk, i;
5101 arc_buf_t *abuf;
5102 ssize_t maxsize;
5103 int preamble, postamble;
5104
5105 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5106 return (SET_ERROR(EINVAL));
5107
5108 ZFS_ENTER(zfsvfs);
5109 ZFS_VERIFY_ZP(zp);
5110 switch (ioflag) {
5111 case UIO_WRITE:
5112 /*
5113 * Loan out an arc_buf for write if write size is bigger than
5114 * max_blksz, and the file's block size is also max_blksz.
5115 */
5116 blksz = max_blksz;
5117 if (size < blksz || zp->z_blksz != blksz) {
5118 ZFS_EXIT(zfsvfs);
5119 return (SET_ERROR(EINVAL));
5120 }
5121 /*
5122 * Caller requests buffers for write before knowing where the
5123 * write offset might be (e.g. NFS TCP write).
5124 */
5125 if (offset == -1) {
5126 preamble = 0;
5127 } else {
5128 preamble = P2PHASE(offset, blksz);
5129 if (preamble) {
5130 preamble = blksz - preamble;
5131 size -= preamble;
5132 }
5133 }
5134
5135 postamble = P2PHASE(size, blksz);
5136 size -= postamble;
5137
5138 fullblk = size / blksz;
5139 (void) dmu_xuio_init(xuio,
5140 (preamble != 0) + fullblk + (postamble != 0));
5141 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5142 int, postamble, int,
5143 (preamble != 0) + fullblk + (postamble != 0));
5144
5145 /*
5146 * Have to fix iov base/len for partial buffers. They
5147 * currently represent full arc_buf's.
5148 */
5149 if (preamble) {
5150 /* data begins in the middle of the arc_buf */
5151 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5152 blksz);
5153 ASSERT(abuf);
5154 (void) dmu_xuio_add(xuio, abuf,
5155 blksz - preamble, preamble);
5156 }
5157
5158 for (i = 0; i < fullblk; i++) {
5159 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5160 blksz);
5161 ASSERT(abuf);
5162 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5163 }
5164
5165 if (postamble) {
5166 /* data ends in the middle of the arc_buf */
5167 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5168 blksz);
5169 ASSERT(abuf);
5170 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5171 }
5172 break;
5173 case UIO_READ:
5174 /*
5175 * Loan out an arc_buf for read if the read size is larger than
5176 * the current file block size. Block alignment is not
5177 * considered. Partial arc_buf will be loaned out for read.
5178 */
5179 blksz = zp->z_blksz;
5180 if (blksz < zcr_blksz_min)
5181 blksz = zcr_blksz_min;
5182 if (blksz > zcr_blksz_max)
5183 blksz = zcr_blksz_max;
5184 /* avoid potential complexity of dealing with it */
5185 if (blksz > max_blksz) {
5186 ZFS_EXIT(zfsvfs);
5187 return (SET_ERROR(EINVAL));
5188 }
5189
5190 maxsize = zp->z_size - uio->uio_loffset;
5191 if (size > maxsize)
5192 size = maxsize;
5193
5194 if (size < blksz || vn_has_cached_data(vp)) {
5195 ZFS_EXIT(zfsvfs);
5196 return (SET_ERROR(EINVAL));
5197 }
5198 break;
5199 default:
5200 ZFS_EXIT(zfsvfs);
5201 return (SET_ERROR(EINVAL));
5202 }
5203
5204 uio->uio_extflg = UIO_XUIO;
5205 XUIO_XUZC_RW(xuio) = ioflag;
5206 ZFS_EXIT(zfsvfs);
5207 return (0);
5208 }
5209
5210 /*ARGSUSED*/
5211 static int
zfs_retzcbuf(vnode_t * vp,xuio_t * xuio,cred_t * cr,caller_context_t * ct)5212 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5213 {
5214 int i;
5215 arc_buf_t *abuf;
5216 int ioflag = XUIO_XUZC_RW(xuio);
5217
5218 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5219
5220 i = dmu_xuio_cnt(xuio);
5221 while (i-- > 0) {
5222 abuf = dmu_xuio_arcbuf(xuio, i);
5223 /*
5224 * if abuf == NULL, it must be a write buffer
5225 * that has been returned in zfs_write().
5226 */
5227 if (abuf)
5228 dmu_return_arcbuf(abuf);
5229 ASSERT(abuf || ioflag == UIO_WRITE);
5230 }
5231
5232 dmu_xuio_fini(xuio);
5233 return (0);
5234 }
5235
5236 /*
5237 * Predeclare these here so that the compiler assumes that
5238 * this is an "old style" function declaration that does
5239 * not include arguments => we won't get type mismatch errors
5240 * in the initializations that follow.
5241 */
5242 static int zfs_inval();
5243 static int zfs_isdir();
5244
5245 static int
zfs_inval()5246 zfs_inval()
5247 {
5248 return (SET_ERROR(EINVAL));
5249 }
5250
5251 static int
zfs_isdir()5252 zfs_isdir()
5253 {
5254 return (SET_ERROR(EISDIR));
5255 }
5256 /*
5257 * Directory vnode operations template
5258 */
5259 vnodeops_t *zfs_dvnodeops;
5260 const fs_operation_def_t zfs_dvnodeops_template[] = {
5261 VOPNAME_OPEN, { .vop_open = zfs_open },
5262 VOPNAME_CLOSE, { .vop_close = zfs_close },
5263 VOPNAME_READ, { .error = zfs_isdir },
5264 VOPNAME_WRITE, { .error = zfs_isdir },
5265 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5266 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5267 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5268 VOPNAME_ACCESS, { .vop_access = zfs_access },
5269 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5270 VOPNAME_CREATE, { .vop_create = zfs_create },
5271 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5272 VOPNAME_LINK, { .vop_link = zfs_link },
5273 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5274 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5275 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5276 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5277 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5278 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5279 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5280 VOPNAME_FID, { .vop_fid = zfs_fid },
5281 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5282 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5283 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5284 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5285 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5286 NULL, NULL
5287 };
5288
5289 /*
5290 * Regular file vnode operations template
5291 */
5292 vnodeops_t *zfs_fvnodeops;
5293 const fs_operation_def_t zfs_fvnodeops_template[] = {
5294 VOPNAME_OPEN, { .vop_open = zfs_open },
5295 VOPNAME_CLOSE, { .vop_close = zfs_close },
5296 VOPNAME_READ, { .vop_read = zfs_read },
5297 VOPNAME_WRITE, { .vop_write = zfs_write },
5298 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5299 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5300 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5301 VOPNAME_ACCESS, { .vop_access = zfs_access },
5302 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5303 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5304 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5305 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5306 VOPNAME_FID, { .vop_fid = zfs_fid },
5307 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5308 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5309 VOPNAME_SPACE, { .vop_space = zfs_space },
5310 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5311 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5312 VOPNAME_MAP, { .vop_map = zfs_map },
5313 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5314 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5315 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5316 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5317 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5318 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5319 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5320 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5321 NULL, NULL
5322 };
5323
5324 /*
5325 * Symbolic link vnode operations template
5326 */
5327 vnodeops_t *zfs_symvnodeops;
5328 const fs_operation_def_t zfs_symvnodeops_template[] = {
5329 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5330 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5331 VOPNAME_ACCESS, { .vop_access = zfs_access },
5332 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5333 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5334 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5335 VOPNAME_FID, { .vop_fid = zfs_fid },
5336 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5337 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5338 NULL, NULL
5339 };
5340
5341 /*
5342 * special share hidden files vnode operations template
5343 */
5344 vnodeops_t *zfs_sharevnodeops;
5345 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5346 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5347 VOPNAME_ACCESS, { .vop_access = zfs_access },
5348 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5349 VOPNAME_FID, { .vop_fid = zfs_fid },
5350 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5351 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5352 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5353 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5354 NULL, NULL
5355 };
5356
5357 /*
5358 * Extended attribute directory vnode operations template
5359 *
5360 * This template is identical to the directory vnodes
5361 * operation template except for restricted operations:
5362 * VOP_MKDIR()
5363 * VOP_SYMLINK()
5364 *
5365 * Note that there are other restrictions embedded in:
5366 * zfs_create() - restrict type to VREG
5367 * zfs_link() - no links into/out of attribute space
5368 * zfs_rename() - no moves into/out of attribute space
5369 */
5370 vnodeops_t *zfs_xdvnodeops;
5371 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5372 VOPNAME_OPEN, { .vop_open = zfs_open },
5373 VOPNAME_CLOSE, { .vop_close = zfs_close },
5374 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5375 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5376 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5377 VOPNAME_ACCESS, { .vop_access = zfs_access },
5378 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5379 VOPNAME_CREATE, { .vop_create = zfs_create },
5380 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5381 VOPNAME_LINK, { .vop_link = zfs_link },
5382 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5383 VOPNAME_MKDIR, { .error = zfs_inval },
5384 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5385 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5386 VOPNAME_SYMLINK, { .error = zfs_inval },
5387 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5388 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5389 VOPNAME_FID, { .vop_fid = zfs_fid },
5390 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5391 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5392 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5393 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5394 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5395 NULL, NULL
5396 };
5397
5398 /*
5399 * Error vnode operations template
5400 */
5401 vnodeops_t *zfs_evnodeops;
5402 const fs_operation_def_t zfs_evnodeops_template[] = {
5403 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5404 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5405 NULL, NULL
5406 };
5407