1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/falloc.h>
8 #include <linux/fs.h>
9 #include <linux/file.h>
10 #include <linux/sort.h>
11 #include <linux/mount.h>
12 #include <linux/xattr.h>
13 #include <linux/posix_acl_xattr.h>
14 #include <linux/radix-tree.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/compat.h>
18 #include <linux/crc32c.h>
19 #include <linux/fsverity.h>
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
30 #include "dir-item.h"
31 #include "file-item.h"
32 #include "ioctl.h"
33 #include "verity.h"
34 #include "lru_cache.h"
35
36 /*
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
41 */
42 #define SEND_MAX_EXTENT_REFS 1024
43
44 /*
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
50 *
51 * The definition of struct fs_path relies on -fms-extensions to allow
52 * including a tagged struct as an anonymous member.
53 */
54 struct __fs_path {
55 char *start;
56 char *end;
57
58 char *buf;
59 unsigned short buf_len:15;
60 unsigned short reversed:1;
61 };
62 static_assert(sizeof(struct __fs_path) < 256);
63 struct fs_path {
64 struct __fs_path;
65 /*
66 * Average path length does not exceed 200 bytes, we'll have
67 * better packing in the slab and higher chance to satisfy
68 * an allocation later during send.
69 */
70 char inline_buf[256 - sizeof(struct __fs_path)];
71 };
72 #define FS_PATH_INLINE_SIZE \
73 sizeof_field(struct fs_path, inline_buf)
74
75
76 /* reused for each extent */
77 struct clone_root {
78 struct btrfs_root *root;
79 u64 ino;
80 u64 offset;
81 u64 num_bytes;
82 bool found_ref;
83 };
84
85 #define SEND_MAX_NAME_CACHE_SIZE 256
86
87 /*
88 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
89 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
90 * can be satisfied from the kmalloc-192 slab, without wasting any space.
91 * The most common case is to have a single root for cloning, which corresponds
92 * to the send root. Having the user specify more than 16 clone roots is not
93 * common, and in such rare cases we simply don't use caching if the number of
94 * cloning roots that lead down to a leaf is more than 17.
95 */
96 #define SEND_MAX_BACKREF_CACHE_ROOTS 17
97
98 /*
99 * Max number of entries in the cache.
100 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
101 * maple tree's internal nodes, is 24K.
102 */
103 #define SEND_MAX_BACKREF_CACHE_SIZE 128
104
105 /*
106 * A backref cache entry maps a leaf to a list of IDs of roots from which the
107 * leaf is accessible and we can use for clone operations.
108 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
109 * x86_64).
110 */
111 struct backref_cache_entry {
112 struct btrfs_lru_cache_entry entry;
113 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
114 /* Number of valid elements in the root_ids array. */
115 int num_roots;
116 };
117
118 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
119 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
120
121 /*
122 * Max number of entries in the cache that stores directories that were already
123 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
124 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
125 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
126 */
127 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
128
129 /*
130 * Max number of entries in the cache that stores directories that were already
131 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
132 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
133 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
134 */
135 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
136
137 struct send_ctx {
138 struct file *send_filp;
139 loff_t send_off;
140 char *send_buf;
141 u32 send_size;
142 u32 send_max_size;
143 /*
144 * Whether BTRFS_SEND_A_DATA attribute was already added to current
145 * command (since protocol v2, data must be the last attribute).
146 */
147 bool put_data;
148 struct page **send_buf_pages;
149 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
150 /* Protocol version compatibility requested */
151 u32 proto;
152
153 struct btrfs_root *send_root;
154 struct btrfs_root *parent_root;
155 struct clone_root *clone_roots;
156 int clone_roots_cnt;
157
158 /* current state of the compare_tree call */
159 struct btrfs_path *left_path;
160 struct btrfs_path *right_path;
161 struct btrfs_key *cmp_key;
162
163 /*
164 * Keep track of the generation of the last transaction that was used
165 * for relocating a block group. This is periodically checked in order
166 * to detect if a relocation happened since the last check, so that we
167 * don't operate on stale extent buffers for nodes (level >= 1) or on
168 * stale disk_bytenr values of file extent items.
169 */
170 u64 last_reloc_trans;
171
172 /*
173 * infos of the currently processed inode. In case of deleted inodes,
174 * these are the values from the deleted inode.
175 */
176 u64 cur_ino;
177 u64 cur_inode_gen;
178 u64 cur_inode_size;
179 u64 cur_inode_mode;
180 u64 cur_inode_rdev;
181 u64 cur_inode_last_extent;
182 u64 cur_inode_next_write_offset;
183 bool cur_inode_new;
184 bool cur_inode_new_gen;
185 bool cur_inode_deleted;
186 bool ignore_cur_inode;
187 bool cur_inode_needs_verity;
188 void *verity_descriptor;
189
190 u64 send_progress;
191
192 struct list_head new_refs;
193 struct list_head deleted_refs;
194
195 struct btrfs_lru_cache name_cache;
196
197 /*
198 * The inode we are currently processing. It's not NULL only when we
199 * need to issue write commands for data extents from this inode.
200 */
201 struct inode *cur_inode;
202 struct file_ra_state ra;
203 u64 page_cache_clear_start;
204 bool clean_page_cache;
205
206 /*
207 * We process inodes by their increasing order, so if before an
208 * incremental send we reverse the parent/child relationship of
209 * directories such that a directory with a lower inode number was
210 * the parent of a directory with a higher inode number, and the one
211 * becoming the new parent got renamed too, we can't rename/move the
212 * directory with lower inode number when we finish processing it - we
213 * must process the directory with higher inode number first, then
214 * rename/move it and then rename/move the directory with lower inode
215 * number. Example follows.
216 *
217 * Tree state when the first send was performed:
218 *
219 * .
220 * |-- a (ino 257)
221 * |-- b (ino 258)
222 * |
223 * |
224 * |-- c (ino 259)
225 * | |-- d (ino 260)
226 * |
227 * |-- c2 (ino 261)
228 *
229 * Tree state when the second (incremental) send is performed:
230 *
231 * .
232 * |-- a (ino 257)
233 * |-- b (ino 258)
234 * |-- c2 (ino 261)
235 * |-- d2 (ino 260)
236 * |-- cc (ino 259)
237 *
238 * The sequence of steps that lead to the second state was:
239 *
240 * mv /a/b/c/d /a/b/c2/d2
241 * mv /a/b/c /a/b/c2/d2/cc
242 *
243 * "c" has lower inode number, but we can't move it (2nd mv operation)
244 * before we move "d", which has higher inode number.
245 *
246 * So we just memorize which move/rename operations must be performed
247 * later when their respective parent is processed and moved/renamed.
248 */
249
250 /* Indexed by parent directory inode number. */
251 struct rb_root pending_dir_moves;
252
253 /*
254 * Reverse index, indexed by the inode number of a directory that
255 * is waiting for the move/rename of its immediate parent before its
256 * own move/rename can be performed.
257 */
258 struct rb_root waiting_dir_moves;
259
260 /*
261 * A directory that is going to be rm'ed might have a child directory
262 * which is in the pending directory moves index above. In this case,
263 * the directory can only be removed after the move/rename of its child
264 * is performed. Example:
265 *
266 * Parent snapshot:
267 *
268 * . (ino 256)
269 * |-- a/ (ino 257)
270 * |-- b/ (ino 258)
271 * |-- c/ (ino 259)
272 * | |-- x/ (ino 260)
273 * |
274 * |-- y/ (ino 261)
275 *
276 * Send snapshot:
277 *
278 * . (ino 256)
279 * |-- a/ (ino 257)
280 * |-- b/ (ino 258)
281 * |-- YY/ (ino 261)
282 * |-- x/ (ino 260)
283 *
284 * Sequence of steps that lead to the send snapshot:
285 * rm -f /a/b/c/foo.txt
286 * mv /a/b/y /a/b/YY
287 * mv /a/b/c/x /a/b/YY
288 * rmdir /a/b/c
289 *
290 * When the child is processed, its move/rename is delayed until its
291 * parent is processed (as explained above), but all other operations
292 * like update utimes, chown, chgrp, etc, are performed and the paths
293 * that it uses for those operations must use the orphanized name of
294 * its parent (the directory we're going to rm later), so we need to
295 * memorize that name.
296 *
297 * Indexed by the inode number of the directory to be deleted.
298 */
299 struct rb_root orphan_dirs;
300
301 struct rb_root rbtree_new_refs;
302 struct rb_root rbtree_deleted_refs;
303
304 struct btrfs_lru_cache backref_cache;
305 u64 backref_cache_last_reloc_trans;
306
307 struct btrfs_lru_cache dir_created_cache;
308 struct btrfs_lru_cache dir_utimes_cache;
309
310 struct fs_path cur_inode_path;
311 };
312
313 struct pending_dir_move {
314 struct rb_node node;
315 struct list_head list;
316 u64 parent_ino;
317 u64 ino;
318 u64 gen;
319 struct list_head update_refs;
320 };
321
322 struct waiting_dir_move {
323 struct rb_node node;
324 u64 ino;
325 /*
326 * There might be some directory that could not be removed because it
327 * was waiting for this directory inode to be moved first. Therefore
328 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
329 */
330 u64 rmdir_ino;
331 u64 rmdir_gen;
332 bool orphanized;
333 };
334
335 struct orphan_dir_info {
336 struct rb_node node;
337 u64 ino;
338 u64 gen;
339 u64 last_dir_index_offset;
340 u64 dir_high_seq_ino;
341 };
342
343 struct name_cache_entry {
344 /*
345 * The key in the entry is an inode number, and the generation matches
346 * the inode's generation.
347 */
348 struct btrfs_lru_cache_entry entry;
349 u64 parent_ino;
350 u64 parent_gen;
351 int ret;
352 int need_later_update;
353 /* Name length without NUL terminator. */
354 int name_len;
355 /* Not NUL terminated. */
356 char name[] __counted_by(name_len) __nonstring;
357 };
358
359 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
360 static_assert(offsetof(struct name_cache_entry, entry) == 0);
361
362 #define ADVANCE 1
363 #define ADVANCE_ONLY_NEXT -1
364
365 enum btrfs_compare_tree_result {
366 BTRFS_COMPARE_TREE_NEW,
367 BTRFS_COMPARE_TREE_DELETED,
368 BTRFS_COMPARE_TREE_CHANGED,
369 BTRFS_COMPARE_TREE_SAME,
370 };
371
372 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)373 static void inconsistent_snapshot_error(struct send_ctx *sctx,
374 enum btrfs_compare_tree_result result,
375 const char *what)
376 {
377 const char *result_string;
378
379 switch (result) {
380 case BTRFS_COMPARE_TREE_NEW:
381 result_string = "new";
382 break;
383 case BTRFS_COMPARE_TREE_DELETED:
384 result_string = "deleted";
385 break;
386 case BTRFS_COMPARE_TREE_CHANGED:
387 result_string = "updated";
388 break;
389 case BTRFS_COMPARE_TREE_SAME:
390 DEBUG_WARN("no change between trees");
391 result_string = "unchanged";
392 break;
393 default:
394 DEBUG_WARN("unexpected comparison result %d", result);
395 result_string = "unexpected";
396 }
397
398 btrfs_err(sctx->send_root->fs_info,
399 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
400 result_string, what, sctx->cmp_key->objectid,
401 btrfs_root_id(sctx->send_root),
402 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0));
403 }
404
405 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)406 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
407 {
408 switch (sctx->proto) {
409 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
410 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
411 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
412 default: return false;
413 }
414 }
415
416 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
417
418 static struct waiting_dir_move *
419 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
420
421 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
422
need_send_hole(struct send_ctx * sctx)423 static int need_send_hole(struct send_ctx *sctx)
424 {
425 return (sctx->parent_root && !sctx->cur_inode_new &&
426 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
427 S_ISREG(sctx->cur_inode_mode));
428 }
429
fs_path_reset(struct fs_path * p)430 static void fs_path_reset(struct fs_path *p)
431 {
432 if (p->reversed)
433 p->start = p->buf + p->buf_len - 1;
434 else
435 p->start = p->buf;
436
437 p->end = p->start;
438 *p->start = 0;
439 }
440
init_path(struct fs_path * p)441 static void init_path(struct fs_path *p)
442 {
443 p->reversed = 0;
444 p->buf = p->inline_buf;
445 p->buf_len = FS_PATH_INLINE_SIZE;
446 fs_path_reset(p);
447 }
448
fs_path_alloc(void)449 static struct fs_path *fs_path_alloc(void)
450 {
451 struct fs_path *p;
452
453 p = kmalloc(sizeof(*p), GFP_KERNEL);
454 if (!p)
455 return NULL;
456 init_path(p);
457 return p;
458 }
459
fs_path_alloc_reversed(void)460 static struct fs_path *fs_path_alloc_reversed(void)
461 {
462 struct fs_path *p;
463
464 p = fs_path_alloc();
465 if (!p)
466 return NULL;
467 p->reversed = 1;
468 fs_path_reset(p);
469 return p;
470 }
471
fs_path_free(struct fs_path * p)472 static void fs_path_free(struct fs_path *p)
473 {
474 if (!p)
475 return;
476 if (p->buf != p->inline_buf)
477 kfree(p->buf);
478 kfree(p);
479 }
480
fs_path_len(const struct fs_path * p)481 static inline int fs_path_len(const struct fs_path *p)
482 {
483 return p->end - p->start;
484 }
485
fs_path_ensure_buf(struct fs_path * p,int len)486 static int fs_path_ensure_buf(struct fs_path *p, int len)
487 {
488 char *tmp_buf;
489 int path_len;
490 int old_buf_len;
491
492 len++;
493
494 if (p->buf_len >= len)
495 return 0;
496
497 if (WARN_ON(len > PATH_MAX))
498 return -ENAMETOOLONG;
499
500 path_len = fs_path_len(p);
501 old_buf_len = p->buf_len;
502
503 /*
504 * Allocate to the next largest kmalloc bucket size, to let
505 * the fast path happen most of the time.
506 */
507 len = kmalloc_size_roundup(len);
508 /*
509 * First time the inline_buf does not suffice
510 */
511 if (p->buf == p->inline_buf) {
512 tmp_buf = kmalloc(len, GFP_KERNEL);
513 if (tmp_buf)
514 memcpy(tmp_buf, p->buf, old_buf_len);
515 } else {
516 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
517 }
518 if (!tmp_buf)
519 return -ENOMEM;
520 p->buf = tmp_buf;
521 p->buf_len = len;
522
523 if (p->reversed) {
524 tmp_buf = p->buf + old_buf_len - path_len - 1;
525 p->end = p->buf + p->buf_len - 1;
526 p->start = p->end - path_len;
527 memmove(p->start, tmp_buf, path_len + 1);
528 } else {
529 p->start = p->buf;
530 p->end = p->start + path_len;
531 }
532 return 0;
533 }
534
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)535 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
536 char **prepared)
537 {
538 int ret;
539 int new_len;
540
541 new_len = fs_path_len(p) + name_len;
542 if (p->start != p->end)
543 new_len++;
544 ret = fs_path_ensure_buf(p, new_len);
545 if (ret < 0)
546 return ret;
547
548 if (p->reversed) {
549 if (p->start != p->end)
550 *--p->start = '/';
551 p->start -= name_len;
552 *prepared = p->start;
553 } else {
554 if (p->start != p->end)
555 *p->end++ = '/';
556 *prepared = p->end;
557 p->end += name_len;
558 *p->end = 0;
559 }
560
561 return 0;
562 }
563
fs_path_add(struct fs_path * p,const char * name,int name_len)564 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
565 {
566 int ret;
567 char *prepared;
568
569 ret = fs_path_prepare_for_add(p, name_len, &prepared);
570 if (ret < 0)
571 return ret;
572 memcpy(prepared, name, name_len);
573
574 return 0;
575 }
576
fs_path_add_path(struct fs_path * p,const struct fs_path * p2)577 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2)
578 {
579 return fs_path_add(p, p2->start, fs_path_len(p2));
580 }
581
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)582 static int fs_path_add_from_extent_buffer(struct fs_path *p,
583 struct extent_buffer *eb,
584 unsigned long off, int len)
585 {
586 int ret;
587 char *prepared;
588
589 ret = fs_path_prepare_for_add(p, len, &prepared);
590 if (ret < 0)
591 return ret;
592
593 read_extent_buffer(eb, prepared, off, len);
594
595 return 0;
596 }
597
fs_path_copy(struct fs_path * p,struct fs_path * from)598 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
599 {
600 p->reversed = from->reversed;
601 fs_path_reset(p);
602
603 return fs_path_add_path(p, from);
604 }
605
fs_path_unreverse(struct fs_path * p)606 static void fs_path_unreverse(struct fs_path *p)
607 {
608 char *tmp;
609 int len;
610
611 if (!p->reversed)
612 return;
613
614 tmp = p->start;
615 len = fs_path_len(p);
616 p->start = p->buf;
617 p->end = p->start + len;
618 memmove(p->start, tmp, len + 1);
619 p->reversed = 0;
620 }
621
is_current_inode_path(const struct send_ctx * sctx,const struct fs_path * path)622 static inline bool is_current_inode_path(const struct send_ctx *sctx,
623 const struct fs_path *path)
624 {
625 const struct fs_path *cur = &sctx->cur_inode_path;
626
627 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0);
628 }
629
alloc_path_for_send(void)630 static struct btrfs_path *alloc_path_for_send(void)
631 {
632 struct btrfs_path *path;
633
634 path = btrfs_alloc_path();
635 if (!path)
636 return NULL;
637 path->search_commit_root = 1;
638 path->skip_locking = 1;
639 path->need_commit_sem = 1;
640 return path;
641 }
642
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)643 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
644 {
645 int ret;
646 u32 pos = 0;
647
648 while (pos < len) {
649 ret = kernel_write(filp, buf + pos, len - pos, off);
650 if (ret < 0)
651 return ret;
652 if (unlikely(ret == 0))
653 return -EIO;
654 pos += ret;
655 }
656
657 return 0;
658 }
659
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)660 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
661 {
662 struct btrfs_tlv_header *hdr;
663 int total_len = sizeof(*hdr) + len;
664 int left = sctx->send_max_size - sctx->send_size;
665
666 if (WARN_ON_ONCE(sctx->put_data))
667 return -EINVAL;
668
669 if (unlikely(left < total_len))
670 return -EOVERFLOW;
671
672 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
673 put_unaligned_le16(attr, &hdr->tlv_type);
674 put_unaligned_le16(len, &hdr->tlv_len);
675 memcpy(hdr + 1, data, len);
676 sctx->send_size += total_len;
677
678 return 0;
679 }
680
681 #define TLV_PUT_DEFINE_INT(bits) \
682 static int tlv_put_u##bits(struct send_ctx *sctx, \
683 u##bits attr, u##bits value) \
684 { \
685 __le##bits __tmp = cpu_to_le##bits(value); \
686 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
687 }
688
689 TLV_PUT_DEFINE_INT(8)
690 TLV_PUT_DEFINE_INT(32)
691 TLV_PUT_DEFINE_INT(64)
692
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)693 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
694 const char *str, int len)
695 {
696 if (len == -1)
697 len = strlen(str);
698 return tlv_put(sctx, attr, str, len);
699 }
700
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)701 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
702 const u8 *uuid)
703 {
704 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
705 }
706
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)707 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
708 struct extent_buffer *eb,
709 struct btrfs_timespec *ts)
710 {
711 struct btrfs_timespec bts;
712 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
713 return tlv_put(sctx, attr, &bts, sizeof(bts));
714 }
715
716
717 #define TLV_PUT(sctx, attrtype, data, attrlen) \
718 do { \
719 ret = tlv_put(sctx, attrtype, data, attrlen); \
720 if (ret < 0) \
721 goto tlv_put_failure; \
722 } while (0)
723
724 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
725 do { \
726 ret = tlv_put_u##bits(sctx, attrtype, value); \
727 if (ret < 0) \
728 goto tlv_put_failure; \
729 } while (0)
730
731 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
732 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
733 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
734 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
735 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
736 do { \
737 ret = tlv_put_string(sctx, attrtype, str, len); \
738 if (ret < 0) \
739 goto tlv_put_failure; \
740 } while (0)
741 #define TLV_PUT_PATH(sctx, attrtype, p) \
742 do { \
743 ret = tlv_put_string(sctx, attrtype, p->start, \
744 fs_path_len((p))); \
745 if (ret < 0) \
746 goto tlv_put_failure; \
747 } while(0)
748 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
749 do { \
750 ret = tlv_put_uuid(sctx, attrtype, uuid); \
751 if (ret < 0) \
752 goto tlv_put_failure; \
753 } while (0)
754 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
755 do { \
756 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
757 if (ret < 0) \
758 goto tlv_put_failure; \
759 } while (0)
760
send_header(struct send_ctx * sctx)761 static int send_header(struct send_ctx *sctx)
762 {
763 struct btrfs_stream_header hdr;
764
765 strscpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
766 hdr.version = cpu_to_le32(sctx->proto);
767 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
768 &sctx->send_off);
769 }
770
771 /*
772 * For each command/item we want to send to userspace, we call this function.
773 */
begin_cmd(struct send_ctx * sctx,int cmd)774 static int begin_cmd(struct send_ctx *sctx, int cmd)
775 {
776 struct btrfs_cmd_header *hdr;
777
778 if (WARN_ON(!sctx->send_buf))
779 return -EINVAL;
780
781 if (unlikely(sctx->send_size != 0)) {
782 btrfs_err(sctx->send_root->fs_info,
783 "send: command header buffer not empty cmd %d offset %llu",
784 cmd, sctx->send_off);
785 return -EINVAL;
786 }
787
788 sctx->send_size += sizeof(*hdr);
789 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
790 put_unaligned_le16(cmd, &hdr->cmd);
791
792 return 0;
793 }
794
send_cmd(struct send_ctx * sctx)795 static int send_cmd(struct send_ctx *sctx)
796 {
797 int ret;
798 struct btrfs_cmd_header *hdr;
799 u32 crc;
800
801 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
802 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
803 put_unaligned_le32(0, &hdr->crc);
804
805 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
806 put_unaligned_le32(crc, &hdr->crc);
807
808 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
809 &sctx->send_off);
810
811 sctx->send_size = 0;
812 sctx->put_data = false;
813
814 return ret;
815 }
816
817 /*
818 * Sends a move instruction to user space
819 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)820 static int send_rename(struct send_ctx *sctx,
821 struct fs_path *from, struct fs_path *to)
822 {
823 int ret;
824
825 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
826 if (ret < 0)
827 return ret;
828
829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
830 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
831
832 ret = send_cmd(sctx);
833
834 tlv_put_failure:
835 return ret;
836 }
837
838 /*
839 * Sends a link instruction to user space
840 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)841 static int send_link(struct send_ctx *sctx,
842 struct fs_path *path, struct fs_path *lnk)
843 {
844 int ret;
845
846 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
847 if (ret < 0)
848 return ret;
849
850 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
851 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
852
853 ret = send_cmd(sctx);
854
855 tlv_put_failure:
856 return ret;
857 }
858
859 /*
860 * Sends an unlink instruction to user space
861 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)862 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
863 {
864 int ret;
865
866 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
867 if (ret < 0)
868 return ret;
869
870 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
871
872 ret = send_cmd(sctx);
873
874 tlv_put_failure:
875 return ret;
876 }
877
878 /*
879 * Sends a rmdir instruction to user space
880 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)881 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
882 {
883 int ret;
884
885 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
886 if (ret < 0)
887 return ret;
888
889 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
890
891 ret = send_cmd(sctx);
892
893 tlv_put_failure:
894 return ret;
895 }
896
897 struct btrfs_inode_info {
898 u64 size;
899 u64 gen;
900 u64 mode;
901 u64 uid;
902 u64 gid;
903 u64 rdev;
904 u64 fileattr;
905 u64 nlink;
906 };
907
908 /*
909 * Helper function to retrieve some fields from an inode item.
910 */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)911 static int get_inode_info(struct btrfs_root *root, u64 ino,
912 struct btrfs_inode_info *info)
913 {
914 int ret;
915 BTRFS_PATH_AUTO_FREE(path);
916 struct btrfs_inode_item *ii;
917 struct btrfs_key key;
918
919 path = alloc_path_for_send();
920 if (!path)
921 return -ENOMEM;
922
923 key.objectid = ino;
924 key.type = BTRFS_INODE_ITEM_KEY;
925 key.offset = 0;
926 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
927 if (ret) {
928 if (ret > 0)
929 ret = -ENOENT;
930 return ret;
931 }
932
933 if (!info)
934 return 0;
935
936 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
937 struct btrfs_inode_item);
938 info->size = btrfs_inode_size(path->nodes[0], ii);
939 info->gen = btrfs_inode_generation(path->nodes[0], ii);
940 info->mode = btrfs_inode_mode(path->nodes[0], ii);
941 info->uid = btrfs_inode_uid(path->nodes[0], ii);
942 info->gid = btrfs_inode_gid(path->nodes[0], ii);
943 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
944 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
945 /*
946 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
947 * otherwise logically split to 32/32 parts.
948 */
949 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
950
951 return 0;
952 }
953
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)954 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
955 {
956 int ret;
957 struct btrfs_inode_info info = { 0 };
958
959 ASSERT(gen);
960
961 ret = get_inode_info(root, ino, &info);
962 *gen = info.gen;
963 return ret;
964 }
965
966 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx);
967
968 /*
969 * Helper function to iterate the entries in ONE btrfs_inode_ref or
970 * btrfs_inode_extref.
971 * The iterate callback may return a non zero value to stop iteration. This can
972 * be a negative value for error codes or 1 to simply stop it.
973 *
974 * path must point to the INODE_REF or INODE_EXTREF when called.
975 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,bool resolve,iterate_inode_ref_t iterate,void * ctx)976 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
977 struct btrfs_key *found_key, bool resolve,
978 iterate_inode_ref_t iterate, void *ctx)
979 {
980 struct extent_buffer *eb = path->nodes[0];
981 struct btrfs_inode_ref *iref;
982 struct btrfs_inode_extref *extref;
983 BTRFS_PATH_AUTO_FREE(tmp_path);
984 struct fs_path *p;
985 u32 cur = 0;
986 u32 total;
987 int slot = path->slots[0];
988 u32 name_len;
989 char *start;
990 int ret = 0;
991 u64 dir;
992 unsigned long name_off;
993 unsigned long elem_size;
994 unsigned long ptr;
995
996 p = fs_path_alloc_reversed();
997 if (!p)
998 return -ENOMEM;
999
1000 tmp_path = alloc_path_for_send();
1001 if (!tmp_path) {
1002 fs_path_free(p);
1003 return -ENOMEM;
1004 }
1005
1006
1007 if (found_key->type == BTRFS_INODE_REF_KEY) {
1008 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1009 struct btrfs_inode_ref);
1010 total = btrfs_item_size(eb, slot);
1011 elem_size = sizeof(*iref);
1012 } else {
1013 ptr = btrfs_item_ptr_offset(eb, slot);
1014 total = btrfs_item_size(eb, slot);
1015 elem_size = sizeof(*extref);
1016 }
1017
1018 while (cur < total) {
1019 fs_path_reset(p);
1020
1021 if (found_key->type == BTRFS_INODE_REF_KEY) {
1022 iref = (struct btrfs_inode_ref *)(ptr + cur);
1023 name_len = btrfs_inode_ref_name_len(eb, iref);
1024 name_off = (unsigned long)(iref + 1);
1025 dir = found_key->offset;
1026 } else {
1027 extref = (struct btrfs_inode_extref *)(ptr + cur);
1028 name_len = btrfs_inode_extref_name_len(eb, extref);
1029 name_off = (unsigned long)&extref->name;
1030 dir = btrfs_inode_extref_parent(eb, extref);
1031 }
1032
1033 if (resolve) {
1034 start = btrfs_ref_to_path(root, tmp_path, name_len,
1035 name_off, eb, dir,
1036 p->buf, p->buf_len);
1037 if (IS_ERR(start)) {
1038 ret = PTR_ERR(start);
1039 goto out;
1040 }
1041 if (start < p->buf) {
1042 /* overflow , try again with larger buffer */
1043 ret = fs_path_ensure_buf(p,
1044 p->buf_len + p->buf - start);
1045 if (ret < 0)
1046 goto out;
1047 start = btrfs_ref_to_path(root, tmp_path,
1048 name_len, name_off,
1049 eb, dir,
1050 p->buf, p->buf_len);
1051 if (IS_ERR(start)) {
1052 ret = PTR_ERR(start);
1053 goto out;
1054 }
1055 if (unlikely(start < p->buf)) {
1056 btrfs_err(root->fs_info,
1057 "send: path ref buffer underflow for key (%llu %u %llu)",
1058 found_key->objectid,
1059 found_key->type,
1060 found_key->offset);
1061 ret = -EINVAL;
1062 goto out;
1063 }
1064 }
1065 p->start = start;
1066 } else {
1067 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1068 name_len);
1069 if (ret < 0)
1070 goto out;
1071 }
1072
1073 cur += elem_size + name_len;
1074 ret = iterate(dir, p, ctx);
1075 if (ret)
1076 goto out;
1077 }
1078
1079 out:
1080 fs_path_free(p);
1081 return ret;
1082 }
1083
1084 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1085 const char *name, int name_len,
1086 const char *data, int data_len,
1087 void *ctx);
1088
1089 /*
1090 * Helper function to iterate the entries in ONE btrfs_dir_item.
1091 * The iterate callback may return a non zero value to stop iteration. This can
1092 * be a negative value for error codes or 1 to simply stop it.
1093 *
1094 * path must point to the dir item when called.
1095 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1096 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1097 iterate_dir_item_t iterate, void *ctx)
1098 {
1099 int ret = 0;
1100 struct extent_buffer *eb;
1101 struct btrfs_dir_item *di;
1102 struct btrfs_key di_key;
1103 char *buf = NULL;
1104 int buf_len;
1105 u32 name_len;
1106 u32 data_len;
1107 u32 cur;
1108 u32 len;
1109 u32 total;
1110 int slot;
1111 int num;
1112
1113 /*
1114 * Start with a small buffer (1 page). If later we end up needing more
1115 * space, which can happen for xattrs on a fs with a leaf size greater
1116 * than the page size, attempt to increase the buffer. Typically xattr
1117 * values are small.
1118 */
1119 buf_len = PATH_MAX;
1120 buf = kmalloc(buf_len, GFP_KERNEL);
1121 if (!buf) {
1122 ret = -ENOMEM;
1123 goto out;
1124 }
1125
1126 eb = path->nodes[0];
1127 slot = path->slots[0];
1128 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1129 cur = 0;
1130 len = 0;
1131 total = btrfs_item_size(eb, slot);
1132
1133 num = 0;
1134 while (cur < total) {
1135 name_len = btrfs_dir_name_len(eb, di);
1136 data_len = btrfs_dir_data_len(eb, di);
1137 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1138
1139 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1140 if (name_len > XATTR_NAME_MAX) {
1141 ret = -ENAMETOOLONG;
1142 goto out;
1143 }
1144 if (name_len + data_len >
1145 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1146 ret = -E2BIG;
1147 goto out;
1148 }
1149 } else {
1150 /*
1151 * Path too long
1152 */
1153 if (name_len + data_len > PATH_MAX) {
1154 ret = -ENAMETOOLONG;
1155 goto out;
1156 }
1157 }
1158
1159 if (name_len + data_len > buf_len) {
1160 buf_len = name_len + data_len;
1161 if (is_vmalloc_addr(buf)) {
1162 vfree(buf);
1163 buf = NULL;
1164 } else {
1165 char *tmp = krealloc(buf, buf_len,
1166 GFP_KERNEL | __GFP_NOWARN);
1167
1168 if (!tmp)
1169 kfree(buf);
1170 buf = tmp;
1171 }
1172 if (!buf) {
1173 buf = kvmalloc(buf_len, GFP_KERNEL);
1174 if (!buf) {
1175 ret = -ENOMEM;
1176 goto out;
1177 }
1178 }
1179 }
1180
1181 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1182 name_len + data_len);
1183
1184 len = sizeof(*di) + name_len + data_len;
1185 di = (struct btrfs_dir_item *)((char *)di + len);
1186 cur += len;
1187
1188 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1189 data_len, ctx);
1190 if (ret < 0)
1191 goto out;
1192 if (ret) {
1193 ret = 0;
1194 goto out;
1195 }
1196
1197 num++;
1198 }
1199
1200 out:
1201 kvfree(buf);
1202 return ret;
1203 }
1204
__copy_first_ref(u64 dir,struct fs_path * p,void * ctx)1205 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx)
1206 {
1207 int ret;
1208 struct fs_path *pt = ctx;
1209
1210 ret = fs_path_copy(pt, p);
1211 if (ret < 0)
1212 return ret;
1213
1214 /* we want the first only */
1215 return 1;
1216 }
1217
1218 /*
1219 * Retrieve the first path of an inode. If an inode has more then one
1220 * ref/hardlink, this is ignored.
1221 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1222 static int get_inode_path(struct btrfs_root *root,
1223 u64 ino, struct fs_path *path)
1224 {
1225 int ret;
1226 struct btrfs_key key, found_key;
1227 BTRFS_PATH_AUTO_FREE(p);
1228
1229 p = alloc_path_for_send();
1230 if (!p)
1231 return -ENOMEM;
1232
1233 fs_path_reset(path);
1234
1235 key.objectid = ino;
1236 key.type = BTRFS_INODE_REF_KEY;
1237 key.offset = 0;
1238
1239 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1240 if (ret < 0)
1241 return ret;
1242 if (ret)
1243 return 1;
1244
1245 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1246 if (found_key.objectid != ino ||
1247 (found_key.type != BTRFS_INODE_REF_KEY &&
1248 found_key.type != BTRFS_INODE_EXTREF_KEY))
1249 return -ENOENT;
1250
1251 ret = iterate_inode_ref(root, p, &found_key, true, __copy_first_ref, path);
1252 if (ret < 0)
1253 return ret;
1254 return 0;
1255 }
1256
1257 struct backref_ctx {
1258 struct send_ctx *sctx;
1259
1260 /* number of total found references */
1261 u64 found;
1262
1263 /*
1264 * used for clones found in send_root. clones found behind cur_objectid
1265 * and cur_offset are not considered as allowed clones.
1266 */
1267 u64 cur_objectid;
1268 u64 cur_offset;
1269
1270 /* may be truncated in case it's the last extent in a file */
1271 u64 extent_len;
1272
1273 /* The bytenr the file extent item we are processing refers to. */
1274 u64 bytenr;
1275 /* The owner (root id) of the data backref for the current extent. */
1276 u64 backref_owner;
1277 /* The offset of the data backref for the current extent. */
1278 u64 backref_offset;
1279 };
1280
__clone_root_cmp_bsearch(const void * key,const void * elt)1281 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1282 {
1283 u64 root = (u64)(uintptr_t)key;
1284 const struct clone_root *cr = elt;
1285
1286 if (root < btrfs_root_id(cr->root))
1287 return -1;
1288 if (root > btrfs_root_id(cr->root))
1289 return 1;
1290 return 0;
1291 }
1292
__clone_root_cmp_sort(const void * e1,const void * e2)1293 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1294 {
1295 const struct clone_root *cr1 = e1;
1296 const struct clone_root *cr2 = e2;
1297
1298 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1299 return -1;
1300 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1301 return 1;
1302 return 0;
1303 }
1304
1305 /*
1306 * Called for every backref that is found for the current extent.
1307 * Results are collected in sctx->clone_roots->ino/offset.
1308 */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1309 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1310 void *ctx_)
1311 {
1312 struct backref_ctx *bctx = ctx_;
1313 struct clone_root *clone_root;
1314
1315 /* First check if the root is in the list of accepted clone sources */
1316 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1317 bctx->sctx->clone_roots_cnt,
1318 sizeof(struct clone_root),
1319 __clone_root_cmp_bsearch);
1320 if (!clone_root)
1321 return 0;
1322
1323 /* This is our own reference, bail out as we can't clone from it. */
1324 if (clone_root->root == bctx->sctx->send_root &&
1325 ino == bctx->cur_objectid &&
1326 offset == bctx->cur_offset)
1327 return 0;
1328
1329 /*
1330 * Make sure we don't consider clones from send_root that are
1331 * behind the current inode/offset.
1332 */
1333 if (clone_root->root == bctx->sctx->send_root) {
1334 /*
1335 * If the source inode was not yet processed we can't issue a
1336 * clone operation, as the source extent does not exist yet at
1337 * the destination of the stream.
1338 */
1339 if (ino > bctx->cur_objectid)
1340 return 0;
1341 /*
1342 * We clone from the inode currently being sent as long as the
1343 * source extent is already processed, otherwise we could try
1344 * to clone from an extent that does not exist yet at the
1345 * destination of the stream.
1346 */
1347 if (ino == bctx->cur_objectid &&
1348 offset + bctx->extent_len >
1349 bctx->sctx->cur_inode_next_write_offset)
1350 return 0;
1351 }
1352
1353 bctx->found++;
1354 clone_root->found_ref = true;
1355
1356 /*
1357 * If the given backref refers to a file extent item with a larger
1358 * number of bytes than what we found before, use the new one so that
1359 * we clone more optimally and end up doing less writes and getting
1360 * less exclusive, non-shared extents at the destination.
1361 */
1362 if (num_bytes > clone_root->num_bytes) {
1363 clone_root->ino = ino;
1364 clone_root->offset = offset;
1365 clone_root->num_bytes = num_bytes;
1366
1367 /*
1368 * Found a perfect candidate, so there's no need to continue
1369 * backref walking.
1370 */
1371 if (num_bytes >= bctx->extent_len)
1372 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1373 }
1374
1375 return 0;
1376 }
1377
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1378 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1379 const u64 **root_ids_ret, int *root_count_ret)
1380 {
1381 struct backref_ctx *bctx = ctx;
1382 struct send_ctx *sctx = bctx->sctx;
1383 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1384 const u64 key = leaf_bytenr >> fs_info->nodesize_bits;
1385 struct btrfs_lru_cache_entry *raw_entry;
1386 struct backref_cache_entry *entry;
1387
1388 if (sctx->backref_cache.size == 0)
1389 return false;
1390
1391 /*
1392 * If relocation happened since we first filled the cache, then we must
1393 * empty the cache and can not use it, because even though we operate on
1394 * read-only roots, their leaves and nodes may have been reallocated and
1395 * now be used for different nodes/leaves of the same tree or some other
1396 * tree.
1397 *
1398 * We are called from iterate_extent_inodes() while either holding a
1399 * transaction handle or holding fs_info->commit_root_sem, so no need
1400 * to take any lock here.
1401 */
1402 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1403 btrfs_lru_cache_clear(&sctx->backref_cache);
1404 return false;
1405 }
1406
1407 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1408 if (!raw_entry)
1409 return false;
1410
1411 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1412 *root_ids_ret = entry->root_ids;
1413 *root_count_ret = entry->num_roots;
1414
1415 return true;
1416 }
1417
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1418 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1419 void *ctx)
1420 {
1421 struct backref_ctx *bctx = ctx;
1422 struct send_ctx *sctx = bctx->sctx;
1423 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1424 struct backref_cache_entry *new_entry;
1425 struct ulist_iterator uiter;
1426 struct ulist_node *node;
1427 int ret;
1428
1429 /*
1430 * We're called while holding a transaction handle or while holding
1431 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1432 * NOFS allocation.
1433 */
1434 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1435 /* No worries, cache is optional. */
1436 if (!new_entry)
1437 return;
1438
1439 new_entry->entry.key = leaf_bytenr >> fs_info->nodesize_bits;
1440 new_entry->entry.gen = 0;
1441 new_entry->num_roots = 0;
1442 ULIST_ITER_INIT(&uiter);
1443 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1444 const u64 root_id = node->val;
1445 struct clone_root *root;
1446
1447 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1448 sctx->clone_roots_cnt, sizeof(struct clone_root),
1449 __clone_root_cmp_bsearch);
1450 if (!root)
1451 continue;
1452
1453 /* Too many roots, just exit, no worries as caching is optional. */
1454 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1455 kfree(new_entry);
1456 return;
1457 }
1458
1459 new_entry->root_ids[new_entry->num_roots] = root_id;
1460 new_entry->num_roots++;
1461 }
1462
1463 /*
1464 * We may have not added any roots to the new cache entry, which means
1465 * none of the roots is part of the list of roots from which we are
1466 * allowed to clone. Cache the new entry as it's still useful to avoid
1467 * backref walking to determine which roots have a path to the leaf.
1468 *
1469 * Also use GFP_NOFS because we're called while holding a transaction
1470 * handle or while holding fs_info->commit_root_sem.
1471 */
1472 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1473 GFP_NOFS);
1474 ASSERT(ret == 0 || ret == -ENOMEM);
1475 if (ret) {
1476 /* Caching is optional, no worries. */
1477 kfree(new_entry);
1478 return;
1479 }
1480
1481 /*
1482 * We are called from iterate_extent_inodes() while either holding a
1483 * transaction handle or holding fs_info->commit_root_sem, so no need
1484 * to take any lock here.
1485 */
1486 if (sctx->backref_cache.size == 1)
1487 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1488 }
1489
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1490 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1491 const struct extent_buffer *leaf, void *ctx)
1492 {
1493 const u64 refs = btrfs_extent_refs(leaf, ei);
1494 const struct backref_ctx *bctx = ctx;
1495 const struct send_ctx *sctx = bctx->sctx;
1496
1497 if (bytenr == bctx->bytenr) {
1498 const u64 flags = btrfs_extent_flags(leaf, ei);
1499
1500 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1501 return -EUCLEAN;
1502
1503 /*
1504 * If we have only one reference and only the send root as a
1505 * clone source - meaning no clone roots were given in the
1506 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1507 * it's our reference and there's no point in doing backref
1508 * walking which is expensive, so exit early.
1509 */
1510 if (refs == 1 && sctx->clone_roots_cnt == 1)
1511 return -ENOENT;
1512 }
1513
1514 /*
1515 * Backreference walking (iterate_extent_inodes() below) is currently
1516 * too expensive when an extent has a large number of references, both
1517 * in time spent and used memory. So for now just fallback to write
1518 * operations instead of clone operations when an extent has more than
1519 * a certain amount of references.
1520 */
1521 if (refs > SEND_MAX_EXTENT_REFS)
1522 return -ENOENT;
1523
1524 return 0;
1525 }
1526
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1527 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1528 {
1529 const struct backref_ctx *bctx = ctx;
1530
1531 if (ino == bctx->cur_objectid &&
1532 root == bctx->backref_owner &&
1533 offset == bctx->backref_offset)
1534 return true;
1535
1536 return false;
1537 }
1538
1539 /*
1540 * Given an inode, offset and extent item, it finds a good clone for a clone
1541 * instruction. Returns -ENOENT when none could be found. The function makes
1542 * sure that the returned clone is usable at the point where sending is at the
1543 * moment. This means, that no clones are accepted which lie behind the current
1544 * inode+offset.
1545 *
1546 * path must point to the extent item when called.
1547 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1548 static int find_extent_clone(struct send_ctx *sctx,
1549 struct btrfs_path *path,
1550 u64 ino, u64 data_offset,
1551 u64 ino_size,
1552 struct clone_root **found)
1553 {
1554 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1555 int ret;
1556 int extent_type;
1557 u64 disk_byte;
1558 u64 num_bytes;
1559 struct btrfs_file_extent_item *fi;
1560 struct extent_buffer *eb = path->nodes[0];
1561 struct backref_ctx backref_ctx = { 0 };
1562 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1563 struct clone_root *cur_clone_root;
1564 int compressed;
1565 u32 i;
1566
1567 /*
1568 * With fallocate we can get prealloc extents beyond the inode's i_size,
1569 * so we don't do anything here because clone operations can not clone
1570 * to a range beyond i_size without increasing the i_size of the
1571 * destination inode.
1572 */
1573 if (data_offset >= ino_size)
1574 return 0;
1575
1576 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1577 extent_type = btrfs_file_extent_type(eb, fi);
1578 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1579 return -ENOENT;
1580
1581 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1582 if (disk_byte == 0)
1583 return -ENOENT;
1584
1585 compressed = btrfs_file_extent_compression(eb, fi);
1586 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1587
1588 /*
1589 * Setup the clone roots.
1590 */
1591 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1592 cur_clone_root = sctx->clone_roots + i;
1593 cur_clone_root->ino = (u64)-1;
1594 cur_clone_root->offset = 0;
1595 cur_clone_root->num_bytes = 0;
1596 cur_clone_root->found_ref = false;
1597 }
1598
1599 backref_ctx.sctx = sctx;
1600 backref_ctx.cur_objectid = ino;
1601 backref_ctx.cur_offset = data_offset;
1602 backref_ctx.bytenr = disk_byte;
1603 /*
1604 * Use the header owner and not the send root's id, because in case of a
1605 * snapshot we can have shared subtrees.
1606 */
1607 backref_ctx.backref_owner = btrfs_header_owner(eb);
1608 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1609
1610 /*
1611 * The last extent of a file may be too large due to page alignment.
1612 * We need to adjust extent_len in this case so that the checks in
1613 * iterate_backrefs() work.
1614 */
1615 if (data_offset + num_bytes >= ino_size)
1616 backref_ctx.extent_len = ino_size - data_offset;
1617 else
1618 backref_ctx.extent_len = num_bytes;
1619
1620 /*
1621 * Now collect all backrefs.
1622 */
1623 backref_walk_ctx.bytenr = disk_byte;
1624 if (compressed == BTRFS_COMPRESS_NONE)
1625 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1626 backref_walk_ctx.fs_info = fs_info;
1627 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1628 backref_walk_ctx.cache_store = store_backref_cache;
1629 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1630 backref_walk_ctx.check_extent_item = check_extent_item;
1631 backref_walk_ctx.user_ctx = &backref_ctx;
1632
1633 /*
1634 * If have a single clone root, then it's the send root and we can tell
1635 * the backref walking code to skip our own backref and not resolve it,
1636 * since we can not use it for cloning - the source and destination
1637 * ranges can't overlap and in case the leaf is shared through a subtree
1638 * due to snapshots, we can't use those other roots since they are not
1639 * in the list of clone roots.
1640 */
1641 if (sctx->clone_roots_cnt == 1)
1642 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1643
1644 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1645 &backref_ctx);
1646 if (ret < 0)
1647 return ret;
1648
1649 down_read(&fs_info->commit_root_sem);
1650 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1651 /*
1652 * A transaction commit for a transaction in which block group
1653 * relocation was done just happened.
1654 * The disk_bytenr of the file extent item we processed is
1655 * possibly stale, referring to the extent's location before
1656 * relocation. So act as if we haven't found any clone sources
1657 * and fallback to write commands, which will read the correct
1658 * data from the new extent location. Otherwise we will fail
1659 * below because we haven't found our own back reference or we
1660 * could be getting incorrect sources in case the old extent
1661 * was already reallocated after the relocation.
1662 */
1663 up_read(&fs_info->commit_root_sem);
1664 return -ENOENT;
1665 }
1666 up_read(&fs_info->commit_root_sem);
1667
1668 if (!backref_ctx.found)
1669 return -ENOENT;
1670
1671 cur_clone_root = NULL;
1672 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1673 struct clone_root *clone_root = &sctx->clone_roots[i];
1674
1675 if (!clone_root->found_ref)
1676 continue;
1677
1678 /*
1679 * Choose the root from which we can clone more bytes, to
1680 * minimize write operations and therefore have more extent
1681 * sharing at the destination (the same as in the source).
1682 */
1683 if (!cur_clone_root ||
1684 clone_root->num_bytes > cur_clone_root->num_bytes) {
1685 cur_clone_root = clone_root;
1686
1687 /*
1688 * We found an optimal clone candidate (any inode from
1689 * any root is fine), so we're done.
1690 */
1691 if (clone_root->num_bytes >= backref_ctx.extent_len)
1692 break;
1693 }
1694 }
1695
1696 if (cur_clone_root) {
1697 *found = cur_clone_root;
1698 ret = 0;
1699 } else {
1700 ret = -ENOENT;
1701 }
1702
1703 return ret;
1704 }
1705
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1706 static int read_symlink(struct btrfs_root *root,
1707 u64 ino,
1708 struct fs_path *dest)
1709 {
1710 int ret;
1711 BTRFS_PATH_AUTO_FREE(path);
1712 struct btrfs_key key;
1713 struct btrfs_file_extent_item *ei;
1714 u8 type;
1715 u8 compression;
1716 unsigned long off;
1717 int len;
1718
1719 path = alloc_path_for_send();
1720 if (!path)
1721 return -ENOMEM;
1722
1723 key.objectid = ino;
1724 key.type = BTRFS_EXTENT_DATA_KEY;
1725 key.offset = 0;
1726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1727 if (ret < 0)
1728 return ret;
1729 if (unlikely(ret)) {
1730 /*
1731 * An empty symlink inode. Can happen in rare error paths when
1732 * creating a symlink (transaction committed before the inode
1733 * eviction handler removed the symlink inode items and a crash
1734 * happened in between or the subvol was snapshotted in between).
1735 * Print an informative message to dmesg/syslog so that the user
1736 * can delete the symlink.
1737 */
1738 btrfs_err(root->fs_info,
1739 "Found empty symlink inode %llu at root %llu",
1740 ino, btrfs_root_id(root));
1741 return -EIO;
1742 }
1743
1744 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1745 struct btrfs_file_extent_item);
1746 type = btrfs_file_extent_type(path->nodes[0], ei);
1747 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1748 ret = -EUCLEAN;
1749 btrfs_crit(root->fs_info,
1750 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1751 ino, btrfs_root_id(root), type);
1752 return ret;
1753 }
1754 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1755 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1756 ret = -EUCLEAN;
1757 btrfs_crit(root->fs_info,
1758 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1759 ino, btrfs_root_id(root), compression);
1760 return ret;
1761 }
1762
1763 off = btrfs_file_extent_inline_start(ei);
1764 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1765
1766 return fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1767 }
1768
1769 /*
1770 * Helper function to generate a file name that is unique in the root of
1771 * send_root and parent_root. This is used to generate names for orphan inodes.
1772 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1773 static int gen_unique_name(struct send_ctx *sctx,
1774 u64 ino, u64 gen,
1775 struct fs_path *dest)
1776 {
1777 BTRFS_PATH_AUTO_FREE(path);
1778 struct btrfs_dir_item *di;
1779 char tmp[64];
1780 int len;
1781 u64 idx = 0;
1782
1783 path = alloc_path_for_send();
1784 if (!path)
1785 return -ENOMEM;
1786
1787 while (1) {
1788 struct fscrypt_str tmp_name;
1789
1790 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1791 ino, gen, idx);
1792 ASSERT(len < sizeof(tmp));
1793 tmp_name.name = tmp;
1794 tmp_name.len = len;
1795
1796 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1797 path, BTRFS_FIRST_FREE_OBJECTID,
1798 &tmp_name, 0);
1799 btrfs_release_path(path);
1800 if (IS_ERR(di))
1801 return PTR_ERR(di);
1802
1803 if (di) {
1804 /* not unique, try again */
1805 idx++;
1806 continue;
1807 }
1808
1809 if (!sctx->parent_root) {
1810 /* unique */
1811 break;
1812 }
1813
1814 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1815 path, BTRFS_FIRST_FREE_OBJECTID,
1816 &tmp_name, 0);
1817 btrfs_release_path(path);
1818 if (IS_ERR(di))
1819 return PTR_ERR(di);
1820
1821 if (di) {
1822 /* not unique, try again */
1823 idx++;
1824 continue;
1825 }
1826 /* unique */
1827 break;
1828 }
1829
1830 return fs_path_add(dest, tmp, len);
1831 }
1832
1833 enum inode_state {
1834 inode_state_no_change,
1835 inode_state_will_create,
1836 inode_state_did_create,
1837 inode_state_will_delete,
1838 inode_state_did_delete,
1839 };
1840
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1841 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1842 u64 *send_gen, u64 *parent_gen)
1843 {
1844 int ret;
1845 int left_ret;
1846 int right_ret;
1847 u64 left_gen;
1848 u64 right_gen = 0;
1849 struct btrfs_inode_info info;
1850
1851 ret = get_inode_info(sctx->send_root, ino, &info);
1852 if (ret < 0 && ret != -ENOENT)
1853 return ret;
1854 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1855 left_gen = info.gen;
1856 if (send_gen)
1857 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1858
1859 if (!sctx->parent_root) {
1860 right_ret = -ENOENT;
1861 } else {
1862 ret = get_inode_info(sctx->parent_root, ino, &info);
1863 if (ret < 0 && ret != -ENOENT)
1864 return ret;
1865 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1866 right_gen = info.gen;
1867 if (parent_gen)
1868 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1869 }
1870
1871 if (!left_ret && !right_ret) {
1872 if (left_gen == gen && right_gen == gen) {
1873 ret = inode_state_no_change;
1874 } else if (left_gen == gen) {
1875 if (ino < sctx->send_progress)
1876 ret = inode_state_did_create;
1877 else
1878 ret = inode_state_will_create;
1879 } else if (right_gen == gen) {
1880 if (ino < sctx->send_progress)
1881 ret = inode_state_did_delete;
1882 else
1883 ret = inode_state_will_delete;
1884 } else {
1885 ret = -ENOENT;
1886 }
1887 } else if (!left_ret) {
1888 if (left_gen == gen) {
1889 if (ino < sctx->send_progress)
1890 ret = inode_state_did_create;
1891 else
1892 ret = inode_state_will_create;
1893 } else {
1894 ret = -ENOENT;
1895 }
1896 } else if (!right_ret) {
1897 if (right_gen == gen) {
1898 if (ino < sctx->send_progress)
1899 ret = inode_state_did_delete;
1900 else
1901 ret = inode_state_will_delete;
1902 } else {
1903 ret = -ENOENT;
1904 }
1905 } else {
1906 ret = -ENOENT;
1907 }
1908
1909 return ret;
1910 }
1911
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1912 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1913 u64 *send_gen, u64 *parent_gen)
1914 {
1915 int ret;
1916
1917 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1918 return 1;
1919
1920 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1921 if (ret < 0)
1922 return ret;
1923
1924 if (ret == inode_state_no_change ||
1925 ret == inode_state_did_create ||
1926 ret == inode_state_will_delete)
1927 return 1;
1928
1929 return 0;
1930 }
1931
1932 /*
1933 * Helper function to lookup a dir item in a dir.
1934 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1935 static int lookup_dir_item_inode(struct btrfs_root *root,
1936 u64 dir, const char *name, int name_len,
1937 u64 *found_inode)
1938 {
1939 int ret = 0;
1940 struct btrfs_dir_item *di;
1941 struct btrfs_key key;
1942 BTRFS_PATH_AUTO_FREE(path);
1943 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1944
1945 path = alloc_path_for_send();
1946 if (!path)
1947 return -ENOMEM;
1948
1949 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1950 if (IS_ERR_OR_NULL(di))
1951 return di ? PTR_ERR(di) : -ENOENT;
1952
1953 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1954 if (key.type == BTRFS_ROOT_ITEM_KEY)
1955 return -ENOENT;
1956
1957 *found_inode = key.objectid;
1958
1959 return ret;
1960 }
1961
1962 /*
1963 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1964 * generation of the parent dir and the name of the dir entry.
1965 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)1966 static int get_first_ref(struct btrfs_root *root, u64 ino,
1967 u64 *dir, u64 *dir_gen, struct fs_path *name)
1968 {
1969 int ret;
1970 struct btrfs_key key;
1971 struct btrfs_key found_key;
1972 BTRFS_PATH_AUTO_FREE(path);
1973 int len;
1974 u64 parent_dir;
1975
1976 path = alloc_path_for_send();
1977 if (!path)
1978 return -ENOMEM;
1979
1980 key.objectid = ino;
1981 key.type = BTRFS_INODE_REF_KEY;
1982 key.offset = 0;
1983
1984 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1985 if (ret < 0)
1986 return ret;
1987 if (!ret)
1988 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1989 path->slots[0]);
1990 if (ret || found_key.objectid != ino ||
1991 (found_key.type != BTRFS_INODE_REF_KEY &&
1992 found_key.type != BTRFS_INODE_EXTREF_KEY))
1993 return -ENOENT;
1994
1995 if (found_key.type == BTRFS_INODE_REF_KEY) {
1996 struct btrfs_inode_ref *iref;
1997 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1998 struct btrfs_inode_ref);
1999 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2000 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2001 (unsigned long)(iref + 1),
2002 len);
2003 parent_dir = found_key.offset;
2004 } else {
2005 struct btrfs_inode_extref *extref;
2006 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2007 struct btrfs_inode_extref);
2008 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2009 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2010 (unsigned long)&extref->name, len);
2011 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2012 }
2013 if (ret < 0)
2014 return ret;
2015 btrfs_release_path(path);
2016
2017 if (dir_gen) {
2018 ret = get_inode_gen(root, parent_dir, dir_gen);
2019 if (ret < 0)
2020 return ret;
2021 }
2022
2023 *dir = parent_dir;
2024
2025 return ret;
2026 }
2027
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2028 static int is_first_ref(struct btrfs_root *root,
2029 u64 ino, u64 dir,
2030 const char *name, int name_len)
2031 {
2032 int ret;
2033 struct fs_path *tmp_name;
2034 u64 tmp_dir;
2035
2036 tmp_name = fs_path_alloc();
2037 if (!tmp_name)
2038 return -ENOMEM;
2039
2040 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2041 if (ret < 0)
2042 goto out;
2043
2044 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2045 ret = 0;
2046 goto out;
2047 }
2048
2049 ret = !memcmp(tmp_name->start, name, name_len);
2050
2051 out:
2052 fs_path_free(tmp_name);
2053 return ret;
2054 }
2055
2056 /*
2057 * Used by process_recorded_refs to determine if a new ref would overwrite an
2058 * already existing ref. In case it detects an overwrite, it returns the
2059 * inode/gen in who_ino/who_gen.
2060 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2061 * to make sure later references to the overwritten inode are possible.
2062 * Orphanizing is however only required for the first ref of an inode.
2063 * process_recorded_refs does an additional is_first_ref check to see if
2064 * orphanizing is really required.
2065 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2066 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2067 const char *name, int name_len,
2068 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2069 {
2070 int ret;
2071 u64 parent_root_dir_gen;
2072 u64 other_inode = 0;
2073 struct btrfs_inode_info info;
2074
2075 if (!sctx->parent_root)
2076 return 0;
2077
2078 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2079 if (ret <= 0)
2080 return 0;
2081
2082 /*
2083 * If we have a parent root we need to verify that the parent dir was
2084 * not deleted and then re-created, if it was then we have no overwrite
2085 * and we can just unlink this entry.
2086 *
2087 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2088 * parent root.
2089 */
2090 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2091 parent_root_dir_gen != dir_gen)
2092 return 0;
2093
2094 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2095 &other_inode);
2096 if (ret == -ENOENT)
2097 return 0;
2098 else if (ret < 0)
2099 return ret;
2100
2101 /*
2102 * Check if the overwritten ref was already processed. If yes, the ref
2103 * was already unlinked/moved, so we can safely assume that we will not
2104 * overwrite anything at this point in time.
2105 */
2106 if (other_inode > sctx->send_progress ||
2107 is_waiting_for_move(sctx, other_inode)) {
2108 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2109 if (ret < 0)
2110 return ret;
2111
2112 *who_ino = other_inode;
2113 *who_gen = info.gen;
2114 *who_mode = info.mode;
2115 return 1;
2116 }
2117
2118 return 0;
2119 }
2120
2121 /*
2122 * Checks if the ref was overwritten by an already processed inode. This is
2123 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2124 * thus the orphan name needs be used.
2125 * process_recorded_refs also uses it to avoid unlinking of refs that were
2126 * overwritten.
2127 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2128 static int did_overwrite_ref(struct send_ctx *sctx,
2129 u64 dir, u64 dir_gen,
2130 u64 ino, u64 ino_gen,
2131 const char *name, int name_len)
2132 {
2133 int ret;
2134 u64 ow_inode;
2135 u64 ow_gen = 0;
2136 u64 send_root_dir_gen;
2137
2138 if (!sctx->parent_root)
2139 return 0;
2140
2141 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2142 if (ret <= 0)
2143 return ret;
2144
2145 /*
2146 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2147 * send root.
2148 */
2149 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2150 return 0;
2151
2152 /* check if the ref was overwritten by another ref */
2153 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2154 &ow_inode);
2155 if (ret == -ENOENT) {
2156 /* was never and will never be overwritten */
2157 return 0;
2158 } else if (ret < 0) {
2159 return ret;
2160 }
2161
2162 if (ow_inode == ino) {
2163 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2164 if (ret < 0)
2165 return ret;
2166
2167 /* It's the same inode, so no overwrite happened. */
2168 if (ow_gen == ino_gen)
2169 return 0;
2170 }
2171
2172 /*
2173 * We know that it is or will be overwritten. Check this now.
2174 * The current inode being processed might have been the one that caused
2175 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2176 * the current inode being processed.
2177 */
2178 if (ow_inode < sctx->send_progress)
2179 return 1;
2180
2181 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2182 if (ow_gen == 0) {
2183 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2184 if (ret < 0)
2185 return ret;
2186 }
2187 if (ow_gen == sctx->cur_inode_gen)
2188 return 1;
2189 }
2190
2191 return 0;
2192 }
2193
2194 /*
2195 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2196 * that got overwritten. This is used by process_recorded_refs to determine
2197 * if it has to use the path as returned by get_cur_path or the orphan name.
2198 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2199 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2200 {
2201 int ret = 0;
2202 struct fs_path *name = NULL;
2203 u64 dir;
2204 u64 dir_gen;
2205
2206 if (!sctx->parent_root)
2207 goto out;
2208
2209 name = fs_path_alloc();
2210 if (!name)
2211 return -ENOMEM;
2212
2213 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2214 if (ret < 0)
2215 goto out;
2216
2217 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2218 name->start, fs_path_len(name));
2219
2220 out:
2221 fs_path_free(name);
2222 return ret;
2223 }
2224
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2225 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2226 u64 ino, u64 gen)
2227 {
2228 struct btrfs_lru_cache_entry *entry;
2229
2230 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2231 if (!entry)
2232 return NULL;
2233
2234 return container_of(entry, struct name_cache_entry, entry);
2235 }
2236
2237 /*
2238 * Used by get_cur_path for each ref up to the root.
2239 * Returns 0 if it succeeded.
2240 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2241 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2242 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2243 * Returns <0 in case of error.
2244 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2245 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2246 u64 ino, u64 gen,
2247 u64 *parent_ino,
2248 u64 *parent_gen,
2249 struct fs_path *dest)
2250 {
2251 int ret;
2252 int nce_ret;
2253 struct name_cache_entry *nce;
2254
2255 /*
2256 * First check if we already did a call to this function with the same
2257 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2258 * return the cached result.
2259 */
2260 nce = name_cache_search(sctx, ino, gen);
2261 if (nce) {
2262 if (ino < sctx->send_progress && nce->need_later_update) {
2263 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2264 nce = NULL;
2265 } else {
2266 *parent_ino = nce->parent_ino;
2267 *parent_gen = nce->parent_gen;
2268 ret = fs_path_add(dest, nce->name, nce->name_len);
2269 if (ret < 0)
2270 return ret;
2271 return nce->ret;
2272 }
2273 }
2274
2275 /*
2276 * If the inode is not existent yet, add the orphan name and return 1.
2277 * This should only happen for the parent dir that we determine in
2278 * record_new_ref_if_needed().
2279 */
2280 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2281 if (ret < 0)
2282 return ret;
2283
2284 if (!ret) {
2285 ret = gen_unique_name(sctx, ino, gen, dest);
2286 if (ret < 0)
2287 return ret;
2288 ret = 1;
2289 goto out_cache;
2290 }
2291
2292 /*
2293 * Depending on whether the inode was already processed or not, use
2294 * send_root or parent_root for ref lookup.
2295 */
2296 if (ino < sctx->send_progress)
2297 ret = get_first_ref(sctx->send_root, ino,
2298 parent_ino, parent_gen, dest);
2299 else
2300 ret = get_first_ref(sctx->parent_root, ino,
2301 parent_ino, parent_gen, dest);
2302 if (ret < 0)
2303 return ret;
2304
2305 /*
2306 * Check if the ref was overwritten by an inode's ref that was processed
2307 * earlier. If yes, treat as orphan and return 1.
2308 */
2309 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2310 dest->start, fs_path_len(dest));
2311 if (ret < 0)
2312 return ret;
2313 if (ret) {
2314 fs_path_reset(dest);
2315 ret = gen_unique_name(sctx, ino, gen, dest);
2316 if (ret < 0)
2317 return ret;
2318 ret = 1;
2319 }
2320
2321 out_cache:
2322 /*
2323 * Store the result of the lookup in the name cache.
2324 */
2325 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2326 if (!nce)
2327 return -ENOMEM;
2328
2329 nce->entry.key = ino;
2330 nce->entry.gen = gen;
2331 nce->parent_ino = *parent_ino;
2332 nce->parent_gen = *parent_gen;
2333 nce->name_len = fs_path_len(dest);
2334 nce->ret = ret;
2335 memcpy(nce->name, dest->start, nce->name_len);
2336
2337 if (ino < sctx->send_progress)
2338 nce->need_later_update = 0;
2339 else
2340 nce->need_later_update = 1;
2341
2342 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2343 if (nce_ret < 0) {
2344 kfree(nce);
2345 return nce_ret;
2346 }
2347
2348 return ret;
2349 }
2350
2351 /*
2352 * Magic happens here. This function returns the first ref to an inode as it
2353 * would look like while receiving the stream at this point in time.
2354 * We walk the path up to the root. For every inode in between, we check if it
2355 * was already processed/sent. If yes, we continue with the parent as found
2356 * in send_root. If not, we continue with the parent as found in parent_root.
2357 * If we encounter an inode that was deleted at this point in time, we use the
2358 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2359 * that were not created yet and overwritten inodes/refs.
2360 *
2361 * When do we have orphan inodes:
2362 * 1. When an inode is freshly created and thus no valid refs are available yet
2363 * 2. When a directory lost all it's refs (deleted) but still has dir items
2364 * inside which were not processed yet (pending for move/delete). If anyone
2365 * tried to get the path to the dir items, it would get a path inside that
2366 * orphan directory.
2367 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2368 * of an unprocessed inode. If in that case the first ref would be
2369 * overwritten, the overwritten inode gets "orphanized". Later when we
2370 * process this overwritten inode, it is restored at a new place by moving
2371 * the orphan inode.
2372 *
2373 * sctx->send_progress tells this function at which point in time receiving
2374 * would be.
2375 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2376 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2377 struct fs_path *dest)
2378 {
2379 int ret = 0;
2380 struct fs_path *name = NULL;
2381 u64 parent_inode = 0;
2382 u64 parent_gen = 0;
2383 int stop = 0;
2384 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen);
2385
2386 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) {
2387 if (dest != &sctx->cur_inode_path)
2388 return fs_path_copy(dest, &sctx->cur_inode_path);
2389
2390 return 0;
2391 }
2392
2393 name = fs_path_alloc();
2394 if (!name) {
2395 ret = -ENOMEM;
2396 goto out;
2397 }
2398
2399 dest->reversed = 1;
2400 fs_path_reset(dest);
2401
2402 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2403 struct waiting_dir_move *wdm;
2404
2405 fs_path_reset(name);
2406
2407 if (is_waiting_for_rm(sctx, ino, gen)) {
2408 ret = gen_unique_name(sctx, ino, gen, name);
2409 if (ret < 0)
2410 goto out;
2411 ret = fs_path_add_path(dest, name);
2412 break;
2413 }
2414
2415 wdm = get_waiting_dir_move(sctx, ino);
2416 if (wdm && wdm->orphanized) {
2417 ret = gen_unique_name(sctx, ino, gen, name);
2418 stop = 1;
2419 } else if (wdm) {
2420 ret = get_first_ref(sctx->parent_root, ino,
2421 &parent_inode, &parent_gen, name);
2422 } else {
2423 ret = __get_cur_name_and_parent(sctx, ino, gen,
2424 &parent_inode,
2425 &parent_gen, name);
2426 if (ret)
2427 stop = 1;
2428 }
2429
2430 if (ret < 0)
2431 goto out;
2432
2433 ret = fs_path_add_path(dest, name);
2434 if (ret < 0)
2435 goto out;
2436
2437 ino = parent_inode;
2438 gen = parent_gen;
2439 }
2440
2441 out:
2442 fs_path_free(name);
2443 if (!ret) {
2444 fs_path_unreverse(dest);
2445 if (is_cur_inode && dest != &sctx->cur_inode_path)
2446 ret = fs_path_copy(&sctx->cur_inode_path, dest);
2447 }
2448
2449 return ret;
2450 }
2451
2452 /*
2453 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2454 */
send_subvol_begin(struct send_ctx * sctx)2455 static int send_subvol_begin(struct send_ctx *sctx)
2456 {
2457 int ret;
2458 struct btrfs_root *send_root = sctx->send_root;
2459 struct btrfs_root *parent_root = sctx->parent_root;
2460 BTRFS_PATH_AUTO_FREE(path);
2461 struct btrfs_key key;
2462 struct btrfs_root_ref *ref;
2463 struct extent_buffer *leaf;
2464 char *name = NULL;
2465 int namelen;
2466
2467 path = btrfs_alloc_path();
2468 if (!path)
2469 return -ENOMEM;
2470
2471 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2472 if (!name)
2473 return -ENOMEM;
2474
2475 key.objectid = btrfs_root_id(send_root);
2476 key.type = BTRFS_ROOT_BACKREF_KEY;
2477 key.offset = 0;
2478
2479 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2480 &key, path, 1, 0);
2481 if (ret < 0)
2482 goto out;
2483 if (ret) {
2484 ret = -ENOENT;
2485 goto out;
2486 }
2487
2488 leaf = path->nodes[0];
2489 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2490 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2491 key.objectid != btrfs_root_id(send_root)) {
2492 ret = -ENOENT;
2493 goto out;
2494 }
2495 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2496 namelen = btrfs_root_ref_name_len(leaf, ref);
2497 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2498 btrfs_release_path(path);
2499
2500 if (parent_root) {
2501 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2502 if (ret < 0)
2503 goto out;
2504 } else {
2505 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2506 if (ret < 0)
2507 goto out;
2508 }
2509
2510 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2511
2512 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2513 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2514 sctx->send_root->root_item.received_uuid);
2515 else
2516 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2517 sctx->send_root->root_item.uuid);
2518
2519 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2520 btrfs_root_ctransid(&sctx->send_root->root_item));
2521 if (parent_root) {
2522 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2523 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2524 parent_root->root_item.received_uuid);
2525 else
2526 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2527 parent_root->root_item.uuid);
2528 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2529 btrfs_root_ctransid(&sctx->parent_root->root_item));
2530 }
2531
2532 ret = send_cmd(sctx);
2533
2534 tlv_put_failure:
2535 out:
2536 kfree(name);
2537 return ret;
2538 }
2539
get_cur_inode_path(struct send_ctx * sctx)2540 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx)
2541 {
2542 if (fs_path_len(&sctx->cur_inode_path) == 0) {
2543 int ret;
2544
2545 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2546 &sctx->cur_inode_path);
2547 if (ret < 0)
2548 return ERR_PTR(ret);
2549 }
2550
2551 return &sctx->cur_inode_path;
2552 }
2553
get_path_for_command(struct send_ctx * sctx,u64 ino,u64 gen)2554 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen)
2555 {
2556 struct fs_path *path;
2557 int ret;
2558
2559 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
2560 return get_cur_inode_path(sctx);
2561
2562 path = fs_path_alloc();
2563 if (!path)
2564 return ERR_PTR(-ENOMEM);
2565
2566 ret = get_cur_path(sctx, ino, gen, path);
2567 if (ret < 0) {
2568 fs_path_free(path);
2569 return ERR_PTR(ret);
2570 }
2571
2572 return path;
2573 }
2574
free_path_for_command(const struct send_ctx * sctx,struct fs_path * path)2575 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path)
2576 {
2577 if (path != &sctx->cur_inode_path)
2578 fs_path_free(path);
2579 }
2580
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2581 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2582 {
2583 int ret = 0;
2584 struct fs_path *p;
2585
2586 p = get_path_for_command(sctx, ino, gen);
2587 if (IS_ERR(p))
2588 return PTR_ERR(p);
2589
2590 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2591 if (ret < 0)
2592 goto out;
2593
2594 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2595 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2596
2597 ret = send_cmd(sctx);
2598
2599 tlv_put_failure:
2600 out:
2601 free_path_for_command(sctx, p);
2602 return ret;
2603 }
2604
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2605 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2606 {
2607 int ret = 0;
2608 struct fs_path *p;
2609
2610 p = get_path_for_command(sctx, ino, gen);
2611 if (IS_ERR(p))
2612 return PTR_ERR(p);
2613
2614 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2615 if (ret < 0)
2616 goto out;
2617
2618 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2619 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2620
2621 ret = send_cmd(sctx);
2622
2623 tlv_put_failure:
2624 out:
2625 free_path_for_command(sctx, p);
2626 return ret;
2627 }
2628
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2629 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2630 {
2631 int ret = 0;
2632 struct fs_path *p;
2633
2634 if (sctx->proto < 2)
2635 return 0;
2636
2637 p = get_path_for_command(sctx, ino, gen);
2638 if (IS_ERR(p))
2639 return PTR_ERR(p);
2640
2641 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2642 if (ret < 0)
2643 goto out;
2644
2645 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2646 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2647
2648 ret = send_cmd(sctx);
2649
2650 tlv_put_failure:
2651 out:
2652 free_path_for_command(sctx, p);
2653 return ret;
2654 }
2655
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2656 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2657 {
2658 int ret = 0;
2659 struct fs_path *p;
2660
2661 p = get_path_for_command(sctx, ino, gen);
2662 if (IS_ERR(p))
2663 return PTR_ERR(p);
2664
2665 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2666 if (ret < 0)
2667 goto out;
2668
2669 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2670 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2671 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2672
2673 ret = send_cmd(sctx);
2674
2675 tlv_put_failure:
2676 out:
2677 free_path_for_command(sctx, p);
2678 return ret;
2679 }
2680
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2681 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2682 {
2683 int ret = 0;
2684 struct fs_path *p = NULL;
2685 struct btrfs_inode_item *ii;
2686 BTRFS_PATH_AUTO_FREE(path);
2687 struct extent_buffer *eb;
2688 struct btrfs_key key;
2689 int slot;
2690
2691 p = get_path_for_command(sctx, ino, gen);
2692 if (IS_ERR(p))
2693 return PTR_ERR(p);
2694
2695 path = alloc_path_for_send();
2696 if (!path) {
2697 ret = -ENOMEM;
2698 goto out;
2699 }
2700
2701 key.objectid = ino;
2702 key.type = BTRFS_INODE_ITEM_KEY;
2703 key.offset = 0;
2704 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2705 if (ret > 0)
2706 ret = -ENOENT;
2707 if (ret < 0)
2708 goto out;
2709
2710 eb = path->nodes[0];
2711 slot = path->slots[0];
2712 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2713
2714 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2715 if (ret < 0)
2716 goto out;
2717
2718 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2719 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2720 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2721 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2722 if (sctx->proto >= 2)
2723 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2724
2725 ret = send_cmd(sctx);
2726
2727 tlv_put_failure:
2728 out:
2729 free_path_for_command(sctx, p);
2730 return ret;
2731 }
2732
2733 /*
2734 * If the cache is full, we can't remove entries from it and do a call to
2735 * send_utimes() for each respective inode, because we might be finishing
2736 * processing an inode that is a directory and it just got renamed, and existing
2737 * entries in the cache may refer to inodes that have the directory in their
2738 * full path - in which case we would generate outdated paths (pre-rename)
2739 * for the inodes that the cache entries point to. Instead of pruning the
2740 * cache when inserting, do it after we finish processing each inode at
2741 * finish_inode_if_needed().
2742 */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2743 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2744 {
2745 struct btrfs_lru_cache_entry *entry;
2746 int ret;
2747
2748 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2749 if (entry != NULL)
2750 return 0;
2751
2752 /* Caching is optional, don't fail if we can't allocate memory. */
2753 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2754 if (!entry)
2755 return send_utimes(sctx, dir, gen);
2756
2757 entry->key = dir;
2758 entry->gen = gen;
2759
2760 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2761 ASSERT(ret != -EEXIST);
2762 if (ret) {
2763 kfree(entry);
2764 return send_utimes(sctx, dir, gen);
2765 }
2766
2767 return 0;
2768 }
2769
trim_dir_utimes_cache(struct send_ctx * sctx)2770 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2771 {
2772 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2773 struct btrfs_lru_cache_entry *lru;
2774 int ret;
2775
2776 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2777 ASSERT(lru != NULL);
2778
2779 ret = send_utimes(sctx, lru->key, lru->gen);
2780 if (ret)
2781 return ret;
2782
2783 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2784 }
2785
2786 return 0;
2787 }
2788
2789 /*
2790 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2791 * a valid path yet because we did not process the refs yet. So, the inode
2792 * is created as orphan.
2793 */
send_create_inode(struct send_ctx * sctx,u64 ino)2794 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2795 {
2796 int ret = 0;
2797 struct fs_path *p;
2798 int cmd;
2799 struct btrfs_inode_info info;
2800 u64 gen;
2801 u64 mode;
2802 u64 rdev;
2803
2804 p = fs_path_alloc();
2805 if (!p)
2806 return -ENOMEM;
2807
2808 if (ino != sctx->cur_ino) {
2809 ret = get_inode_info(sctx->send_root, ino, &info);
2810 if (ret < 0)
2811 goto out;
2812 gen = info.gen;
2813 mode = info.mode;
2814 rdev = info.rdev;
2815 } else {
2816 gen = sctx->cur_inode_gen;
2817 mode = sctx->cur_inode_mode;
2818 rdev = sctx->cur_inode_rdev;
2819 }
2820
2821 if (S_ISREG(mode)) {
2822 cmd = BTRFS_SEND_C_MKFILE;
2823 } else if (S_ISDIR(mode)) {
2824 cmd = BTRFS_SEND_C_MKDIR;
2825 } else if (S_ISLNK(mode)) {
2826 cmd = BTRFS_SEND_C_SYMLINK;
2827 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2828 cmd = BTRFS_SEND_C_MKNOD;
2829 } else if (S_ISFIFO(mode)) {
2830 cmd = BTRFS_SEND_C_MKFIFO;
2831 } else if (S_ISSOCK(mode)) {
2832 cmd = BTRFS_SEND_C_MKSOCK;
2833 } else {
2834 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2835 (int)(mode & S_IFMT));
2836 ret = -EOPNOTSUPP;
2837 goto out;
2838 }
2839
2840 ret = begin_cmd(sctx, cmd);
2841 if (ret < 0)
2842 goto out;
2843
2844 ret = gen_unique_name(sctx, ino, gen, p);
2845 if (ret < 0)
2846 goto out;
2847
2848 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2849 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2850
2851 if (S_ISLNK(mode)) {
2852 fs_path_reset(p);
2853 ret = read_symlink(sctx->send_root, ino, p);
2854 if (ret < 0)
2855 goto out;
2856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2857 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2858 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2859 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2860 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2861 }
2862
2863 ret = send_cmd(sctx);
2864 if (ret < 0)
2865 goto out;
2866
2867
2868 tlv_put_failure:
2869 out:
2870 fs_path_free(p);
2871 return ret;
2872 }
2873
cache_dir_created(struct send_ctx * sctx,u64 dir)2874 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2875 {
2876 struct btrfs_lru_cache_entry *entry;
2877 int ret;
2878
2879 /* Caching is optional, ignore any failures. */
2880 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2881 if (!entry)
2882 return;
2883
2884 entry->key = dir;
2885 entry->gen = 0;
2886 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2887 if (ret < 0)
2888 kfree(entry);
2889 }
2890
2891 /*
2892 * We need some special handling for inodes that get processed before the parent
2893 * directory got created. See process_recorded_refs for details.
2894 * This function does the check if we already created the dir out of order.
2895 */
did_create_dir(struct send_ctx * sctx,u64 dir)2896 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2897 {
2898 int ret = 0;
2899 int iter_ret = 0;
2900 BTRFS_PATH_AUTO_FREE(path);
2901 struct btrfs_key key;
2902 struct btrfs_key found_key;
2903 struct btrfs_key di_key;
2904 struct btrfs_dir_item *di;
2905
2906 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2907 return 1;
2908
2909 path = alloc_path_for_send();
2910 if (!path)
2911 return -ENOMEM;
2912
2913 key.objectid = dir;
2914 key.type = BTRFS_DIR_INDEX_KEY;
2915 key.offset = 0;
2916
2917 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2918 struct extent_buffer *eb = path->nodes[0];
2919
2920 if (found_key.objectid != key.objectid ||
2921 found_key.type != key.type) {
2922 ret = 0;
2923 break;
2924 }
2925
2926 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2927 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2928
2929 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2930 di_key.objectid < sctx->send_progress) {
2931 ret = 1;
2932 cache_dir_created(sctx, dir);
2933 break;
2934 }
2935 }
2936 /* Catch error found during iteration */
2937 if (iter_ret < 0)
2938 ret = iter_ret;
2939
2940 return ret;
2941 }
2942
2943 /*
2944 * Only creates the inode if it is:
2945 * 1. Not a directory
2946 * 2. Or a directory which was not created already due to out of order
2947 * directories. See did_create_dir and process_recorded_refs for details.
2948 */
send_create_inode_if_needed(struct send_ctx * sctx)2949 static int send_create_inode_if_needed(struct send_ctx *sctx)
2950 {
2951 int ret;
2952
2953 if (S_ISDIR(sctx->cur_inode_mode)) {
2954 ret = did_create_dir(sctx, sctx->cur_ino);
2955 if (ret < 0)
2956 return ret;
2957 else if (ret > 0)
2958 return 0;
2959 }
2960
2961 ret = send_create_inode(sctx, sctx->cur_ino);
2962
2963 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
2964 cache_dir_created(sctx, sctx->cur_ino);
2965
2966 return ret;
2967 }
2968
2969 struct recorded_ref {
2970 struct list_head list;
2971 char *name;
2972 struct fs_path *full_path;
2973 u64 dir;
2974 u64 dir_gen;
2975 int name_len;
2976 struct rb_node node;
2977 struct rb_root *root;
2978 };
2979
recorded_ref_alloc(void)2980 static struct recorded_ref *recorded_ref_alloc(void)
2981 {
2982 struct recorded_ref *ref;
2983
2984 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
2985 if (!ref)
2986 return NULL;
2987 RB_CLEAR_NODE(&ref->node);
2988 INIT_LIST_HEAD(&ref->list);
2989 return ref;
2990 }
2991
recorded_ref_free(struct recorded_ref * ref)2992 static void recorded_ref_free(struct recorded_ref *ref)
2993 {
2994 if (!ref)
2995 return;
2996 if (!RB_EMPTY_NODE(&ref->node))
2997 rb_erase(&ref->node, ref->root);
2998 list_del(&ref->list);
2999 fs_path_free(ref->full_path);
3000 kfree(ref);
3001 }
3002
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3003 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3004 {
3005 ref->full_path = path;
3006 ref->name = (char *)kbasename(ref->full_path->start);
3007 ref->name_len = ref->full_path->end - ref->name;
3008 }
3009
dup_ref(struct recorded_ref * ref,struct list_head * list)3010 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3011 {
3012 struct recorded_ref *new;
3013
3014 new = recorded_ref_alloc();
3015 if (!new)
3016 return -ENOMEM;
3017
3018 new->dir = ref->dir;
3019 new->dir_gen = ref->dir_gen;
3020 list_add_tail(&new->list, list);
3021 return 0;
3022 }
3023
__free_recorded_refs(struct list_head * head)3024 static void __free_recorded_refs(struct list_head *head)
3025 {
3026 struct recorded_ref *cur;
3027
3028 while (!list_empty(head)) {
3029 cur = list_first_entry(head, struct recorded_ref, list);
3030 recorded_ref_free(cur);
3031 }
3032 }
3033
free_recorded_refs(struct send_ctx * sctx)3034 static void free_recorded_refs(struct send_ctx *sctx)
3035 {
3036 __free_recorded_refs(&sctx->new_refs);
3037 __free_recorded_refs(&sctx->deleted_refs);
3038 }
3039
3040 /*
3041 * Renames/moves a file/dir to its orphan name. Used when the first
3042 * ref of an unprocessed inode gets overwritten and for all non empty
3043 * directories.
3044 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3045 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3046 struct fs_path *path)
3047 {
3048 int ret;
3049 struct fs_path *orphan;
3050
3051 orphan = fs_path_alloc();
3052 if (!orphan)
3053 return -ENOMEM;
3054
3055 ret = gen_unique_name(sctx, ino, gen, orphan);
3056 if (ret < 0)
3057 goto out;
3058
3059 ret = send_rename(sctx, path, orphan);
3060 if (ret < 0)
3061 goto out;
3062
3063 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen)
3064 ret = fs_path_copy(&sctx->cur_inode_path, orphan);
3065
3066 out:
3067 fs_path_free(orphan);
3068 return ret;
3069 }
3070
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3071 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3072 u64 dir_ino, u64 dir_gen)
3073 {
3074 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3075 struct rb_node *parent = NULL;
3076 struct orphan_dir_info *entry, *odi;
3077
3078 while (*p) {
3079 parent = *p;
3080 entry = rb_entry(parent, struct orphan_dir_info, node);
3081 if (dir_ino < entry->ino)
3082 p = &(*p)->rb_left;
3083 else if (dir_ino > entry->ino)
3084 p = &(*p)->rb_right;
3085 else if (dir_gen < entry->gen)
3086 p = &(*p)->rb_left;
3087 else if (dir_gen > entry->gen)
3088 p = &(*p)->rb_right;
3089 else
3090 return entry;
3091 }
3092
3093 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3094 if (!odi)
3095 return ERR_PTR(-ENOMEM);
3096 odi->ino = dir_ino;
3097 odi->gen = dir_gen;
3098 odi->last_dir_index_offset = 0;
3099 odi->dir_high_seq_ino = 0;
3100
3101 rb_link_node(&odi->node, parent, p);
3102 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3103 return odi;
3104 }
3105
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3106 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3107 u64 dir_ino, u64 gen)
3108 {
3109 struct rb_node *n = sctx->orphan_dirs.rb_node;
3110 struct orphan_dir_info *entry;
3111
3112 while (n) {
3113 entry = rb_entry(n, struct orphan_dir_info, node);
3114 if (dir_ino < entry->ino)
3115 n = n->rb_left;
3116 else if (dir_ino > entry->ino)
3117 n = n->rb_right;
3118 else if (gen < entry->gen)
3119 n = n->rb_left;
3120 else if (gen > entry->gen)
3121 n = n->rb_right;
3122 else
3123 return entry;
3124 }
3125 return NULL;
3126 }
3127
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3128 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3129 {
3130 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3131
3132 return odi != NULL;
3133 }
3134
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3135 static void free_orphan_dir_info(struct send_ctx *sctx,
3136 struct orphan_dir_info *odi)
3137 {
3138 if (!odi)
3139 return;
3140 rb_erase(&odi->node, &sctx->orphan_dirs);
3141 kfree(odi);
3142 }
3143
3144 /*
3145 * Returns 1 if a directory can be removed at this point in time.
3146 * We check this by iterating all dir items and checking if the inode behind
3147 * the dir item was already processed.
3148 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3149 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3150 {
3151 int ret = 0;
3152 int iter_ret = 0;
3153 struct btrfs_root *root = sctx->parent_root;
3154 struct btrfs_path *path;
3155 struct btrfs_key key;
3156 struct btrfs_key found_key;
3157 struct btrfs_key loc;
3158 struct btrfs_dir_item *di;
3159 struct orphan_dir_info *odi = NULL;
3160 u64 dir_high_seq_ino = 0;
3161 u64 last_dir_index_offset = 0;
3162
3163 /*
3164 * Don't try to rmdir the top/root subvolume dir.
3165 */
3166 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3167 return 0;
3168
3169 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3170 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3171 return 0;
3172
3173 path = alloc_path_for_send();
3174 if (!path)
3175 return -ENOMEM;
3176
3177 if (!odi) {
3178 /*
3179 * Find the inode number associated with the last dir index
3180 * entry. This is very likely the inode with the highest number
3181 * of all inodes that have an entry in the directory. We can
3182 * then use it to avoid future calls to can_rmdir(), when
3183 * processing inodes with a lower number, from having to search
3184 * the parent root b+tree for dir index keys.
3185 */
3186 key.objectid = dir;
3187 key.type = BTRFS_DIR_INDEX_KEY;
3188 key.offset = (u64)-1;
3189
3190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3191 if (ret < 0) {
3192 goto out;
3193 } else if (ret > 0) {
3194 /* Can't happen, the root is never empty. */
3195 ASSERT(path->slots[0] > 0);
3196 if (WARN_ON(path->slots[0] == 0)) {
3197 ret = -EUCLEAN;
3198 goto out;
3199 }
3200 path->slots[0]--;
3201 }
3202
3203 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3204 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3205 /* No index keys, dir can be removed. */
3206 ret = 1;
3207 goto out;
3208 }
3209
3210 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3211 struct btrfs_dir_item);
3212 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3213 dir_high_seq_ino = loc.objectid;
3214 if (sctx->cur_ino < dir_high_seq_ino) {
3215 ret = 0;
3216 goto out;
3217 }
3218
3219 btrfs_release_path(path);
3220 }
3221
3222 key.objectid = dir;
3223 key.type = BTRFS_DIR_INDEX_KEY;
3224 key.offset = (odi ? odi->last_dir_index_offset : 0);
3225
3226 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3227 struct waiting_dir_move *dm;
3228
3229 if (found_key.objectid != key.objectid ||
3230 found_key.type != key.type)
3231 break;
3232
3233 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3234 struct btrfs_dir_item);
3235 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3236
3237 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3238 last_dir_index_offset = found_key.offset;
3239
3240 dm = get_waiting_dir_move(sctx, loc.objectid);
3241 if (dm) {
3242 dm->rmdir_ino = dir;
3243 dm->rmdir_gen = dir_gen;
3244 ret = 0;
3245 goto out;
3246 }
3247
3248 if (loc.objectid > sctx->cur_ino) {
3249 ret = 0;
3250 goto out;
3251 }
3252 }
3253 if (iter_ret < 0) {
3254 ret = iter_ret;
3255 goto out;
3256 }
3257 free_orphan_dir_info(sctx, odi);
3258
3259 ret = 1;
3260
3261 out:
3262 btrfs_free_path(path);
3263
3264 if (ret)
3265 return ret;
3266
3267 if (!odi) {
3268 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3269 if (IS_ERR(odi))
3270 return PTR_ERR(odi);
3271
3272 odi->gen = dir_gen;
3273 }
3274
3275 odi->last_dir_index_offset = last_dir_index_offset;
3276 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3277
3278 return 0;
3279 }
3280
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3281 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3282 {
3283 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3284
3285 return entry != NULL;
3286 }
3287
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3288 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3289 {
3290 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3291 struct rb_node *parent = NULL;
3292 struct waiting_dir_move *entry, *dm;
3293
3294 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3295 if (!dm)
3296 return -ENOMEM;
3297 dm->ino = ino;
3298 dm->rmdir_ino = 0;
3299 dm->rmdir_gen = 0;
3300 dm->orphanized = orphanized;
3301
3302 while (*p) {
3303 parent = *p;
3304 entry = rb_entry(parent, struct waiting_dir_move, node);
3305 if (ino < entry->ino) {
3306 p = &(*p)->rb_left;
3307 } else if (ino > entry->ino) {
3308 p = &(*p)->rb_right;
3309 } else {
3310 kfree(dm);
3311 return -EEXIST;
3312 }
3313 }
3314
3315 rb_link_node(&dm->node, parent, p);
3316 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3317 return 0;
3318 }
3319
3320 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3321 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3322 {
3323 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3324 struct waiting_dir_move *entry;
3325
3326 while (n) {
3327 entry = rb_entry(n, struct waiting_dir_move, node);
3328 if (ino < entry->ino)
3329 n = n->rb_left;
3330 else if (ino > entry->ino)
3331 n = n->rb_right;
3332 else
3333 return entry;
3334 }
3335 return NULL;
3336 }
3337
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3338 static void free_waiting_dir_move(struct send_ctx *sctx,
3339 struct waiting_dir_move *dm)
3340 {
3341 if (!dm)
3342 return;
3343 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3344 kfree(dm);
3345 }
3346
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3347 static int add_pending_dir_move(struct send_ctx *sctx,
3348 u64 ino,
3349 u64 ino_gen,
3350 u64 parent_ino,
3351 struct list_head *new_refs,
3352 struct list_head *deleted_refs,
3353 const bool is_orphan)
3354 {
3355 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3356 struct rb_node *parent = NULL;
3357 struct pending_dir_move *entry = NULL, *pm;
3358 struct recorded_ref *cur;
3359 int exists = 0;
3360 int ret;
3361
3362 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3363 if (!pm)
3364 return -ENOMEM;
3365 pm->parent_ino = parent_ino;
3366 pm->ino = ino;
3367 pm->gen = ino_gen;
3368 INIT_LIST_HEAD(&pm->list);
3369 INIT_LIST_HEAD(&pm->update_refs);
3370 RB_CLEAR_NODE(&pm->node);
3371
3372 while (*p) {
3373 parent = *p;
3374 entry = rb_entry(parent, struct pending_dir_move, node);
3375 if (parent_ino < entry->parent_ino) {
3376 p = &(*p)->rb_left;
3377 } else if (parent_ino > entry->parent_ino) {
3378 p = &(*p)->rb_right;
3379 } else {
3380 exists = 1;
3381 break;
3382 }
3383 }
3384
3385 list_for_each_entry(cur, deleted_refs, list) {
3386 ret = dup_ref(cur, &pm->update_refs);
3387 if (ret < 0)
3388 goto out;
3389 }
3390 list_for_each_entry(cur, new_refs, list) {
3391 ret = dup_ref(cur, &pm->update_refs);
3392 if (ret < 0)
3393 goto out;
3394 }
3395
3396 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3397 if (ret)
3398 goto out;
3399
3400 if (exists) {
3401 list_add_tail(&pm->list, &entry->list);
3402 } else {
3403 rb_link_node(&pm->node, parent, p);
3404 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3405 }
3406 ret = 0;
3407 out:
3408 if (ret) {
3409 __free_recorded_refs(&pm->update_refs);
3410 kfree(pm);
3411 }
3412 return ret;
3413 }
3414
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3415 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3416 u64 parent_ino)
3417 {
3418 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3419 struct pending_dir_move *entry;
3420
3421 while (n) {
3422 entry = rb_entry(n, struct pending_dir_move, node);
3423 if (parent_ino < entry->parent_ino)
3424 n = n->rb_left;
3425 else if (parent_ino > entry->parent_ino)
3426 n = n->rb_right;
3427 else
3428 return entry;
3429 }
3430 return NULL;
3431 }
3432
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3433 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3434 u64 ino, u64 gen, u64 *ancestor_ino)
3435 {
3436 int ret = 0;
3437 u64 parent_inode = 0;
3438 u64 parent_gen = 0;
3439 u64 start_ino = ino;
3440
3441 *ancestor_ino = 0;
3442 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3443 fs_path_reset(name);
3444
3445 if (is_waiting_for_rm(sctx, ino, gen))
3446 break;
3447 if (is_waiting_for_move(sctx, ino)) {
3448 if (*ancestor_ino == 0)
3449 *ancestor_ino = ino;
3450 ret = get_first_ref(sctx->parent_root, ino,
3451 &parent_inode, &parent_gen, name);
3452 } else {
3453 ret = __get_cur_name_and_parent(sctx, ino, gen,
3454 &parent_inode,
3455 &parent_gen, name);
3456 if (ret > 0) {
3457 ret = 0;
3458 break;
3459 }
3460 }
3461 if (ret < 0)
3462 break;
3463 if (parent_inode == start_ino) {
3464 ret = 1;
3465 if (*ancestor_ino == 0)
3466 *ancestor_ino = ino;
3467 break;
3468 }
3469 ino = parent_inode;
3470 gen = parent_gen;
3471 }
3472 return ret;
3473 }
3474
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3475 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3476 {
3477 struct fs_path *from_path = NULL;
3478 struct fs_path *to_path = NULL;
3479 struct fs_path *name = NULL;
3480 u64 orig_progress = sctx->send_progress;
3481 struct recorded_ref *cur;
3482 u64 parent_ino, parent_gen;
3483 struct waiting_dir_move *dm = NULL;
3484 u64 rmdir_ino = 0;
3485 u64 rmdir_gen;
3486 u64 ancestor;
3487 bool is_orphan;
3488 int ret;
3489
3490 name = fs_path_alloc();
3491 from_path = fs_path_alloc();
3492 if (!name || !from_path) {
3493 ret = -ENOMEM;
3494 goto out;
3495 }
3496
3497 dm = get_waiting_dir_move(sctx, pm->ino);
3498 ASSERT(dm);
3499 rmdir_ino = dm->rmdir_ino;
3500 rmdir_gen = dm->rmdir_gen;
3501 is_orphan = dm->orphanized;
3502 free_waiting_dir_move(sctx, dm);
3503
3504 if (is_orphan) {
3505 ret = gen_unique_name(sctx, pm->ino,
3506 pm->gen, from_path);
3507 } else {
3508 ret = get_first_ref(sctx->parent_root, pm->ino,
3509 &parent_ino, &parent_gen, name);
3510 if (ret < 0)
3511 goto out;
3512 ret = get_cur_path(sctx, parent_ino, parent_gen,
3513 from_path);
3514 if (ret < 0)
3515 goto out;
3516 ret = fs_path_add_path(from_path, name);
3517 }
3518 if (ret < 0)
3519 goto out;
3520
3521 sctx->send_progress = sctx->cur_ino + 1;
3522 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3523 if (ret < 0)
3524 goto out;
3525 if (ret) {
3526 LIST_HEAD(deleted_refs);
3527 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3528 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3529 &pm->update_refs, &deleted_refs,
3530 is_orphan);
3531 if (ret < 0)
3532 goto out;
3533 if (rmdir_ino) {
3534 dm = get_waiting_dir_move(sctx, pm->ino);
3535 ASSERT(dm);
3536 dm->rmdir_ino = rmdir_ino;
3537 dm->rmdir_gen = rmdir_gen;
3538 }
3539 goto out;
3540 }
3541 fs_path_reset(name);
3542 to_path = name;
3543 name = NULL;
3544 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3545 if (ret < 0)
3546 goto out;
3547
3548 ret = send_rename(sctx, from_path, to_path);
3549 if (ret < 0)
3550 goto out;
3551
3552 if (rmdir_ino) {
3553 struct orphan_dir_info *odi;
3554 u64 gen;
3555
3556 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3557 if (!odi) {
3558 /* already deleted */
3559 goto finish;
3560 }
3561 gen = odi->gen;
3562
3563 ret = can_rmdir(sctx, rmdir_ino, gen);
3564 if (ret < 0)
3565 goto out;
3566 if (!ret)
3567 goto finish;
3568
3569 name = fs_path_alloc();
3570 if (!name) {
3571 ret = -ENOMEM;
3572 goto out;
3573 }
3574 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3575 if (ret < 0)
3576 goto out;
3577 ret = send_rmdir(sctx, name);
3578 if (ret < 0)
3579 goto out;
3580 }
3581
3582 finish:
3583 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3584 if (ret < 0)
3585 goto out;
3586
3587 /*
3588 * After rename/move, need to update the utimes of both new parent(s)
3589 * and old parent(s).
3590 */
3591 list_for_each_entry(cur, &pm->update_refs, list) {
3592 /*
3593 * The parent inode might have been deleted in the send snapshot
3594 */
3595 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3596 if (ret == -ENOENT) {
3597 ret = 0;
3598 continue;
3599 }
3600 if (ret < 0)
3601 goto out;
3602
3603 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3604 if (ret < 0)
3605 goto out;
3606 }
3607
3608 out:
3609 fs_path_free(name);
3610 fs_path_free(from_path);
3611 fs_path_free(to_path);
3612 sctx->send_progress = orig_progress;
3613
3614 return ret;
3615 }
3616
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3617 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3618 {
3619 if (!list_empty(&m->list))
3620 list_del(&m->list);
3621 if (!RB_EMPTY_NODE(&m->node))
3622 rb_erase(&m->node, &sctx->pending_dir_moves);
3623 __free_recorded_refs(&m->update_refs);
3624 kfree(m);
3625 }
3626
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3627 static void tail_append_pending_moves(struct send_ctx *sctx,
3628 struct pending_dir_move *moves,
3629 struct list_head *stack)
3630 {
3631 if (list_empty(&moves->list)) {
3632 list_add_tail(&moves->list, stack);
3633 } else {
3634 LIST_HEAD(list);
3635 list_splice_init(&moves->list, &list);
3636 list_add_tail(&moves->list, stack);
3637 list_splice_tail(&list, stack);
3638 }
3639 if (!RB_EMPTY_NODE(&moves->node)) {
3640 rb_erase(&moves->node, &sctx->pending_dir_moves);
3641 RB_CLEAR_NODE(&moves->node);
3642 }
3643 }
3644
apply_children_dir_moves(struct send_ctx * sctx)3645 static int apply_children_dir_moves(struct send_ctx *sctx)
3646 {
3647 struct pending_dir_move *pm;
3648 LIST_HEAD(stack);
3649 u64 parent_ino = sctx->cur_ino;
3650 int ret = 0;
3651
3652 pm = get_pending_dir_moves(sctx, parent_ino);
3653 if (!pm)
3654 return 0;
3655
3656 tail_append_pending_moves(sctx, pm, &stack);
3657
3658 while (!list_empty(&stack)) {
3659 pm = list_first_entry(&stack, struct pending_dir_move, list);
3660 parent_ino = pm->ino;
3661 ret = apply_dir_move(sctx, pm);
3662 free_pending_move(sctx, pm);
3663 if (ret)
3664 goto out;
3665 pm = get_pending_dir_moves(sctx, parent_ino);
3666 if (pm)
3667 tail_append_pending_moves(sctx, pm, &stack);
3668 }
3669 return 0;
3670
3671 out:
3672 while (!list_empty(&stack)) {
3673 pm = list_first_entry(&stack, struct pending_dir_move, list);
3674 free_pending_move(sctx, pm);
3675 }
3676 return ret;
3677 }
3678
3679 /*
3680 * We might need to delay a directory rename even when no ancestor directory
3681 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3682 * renamed. This happens when we rename a directory to the old name (the name
3683 * in the parent root) of some other unrelated directory that got its rename
3684 * delayed due to some ancestor with higher number that got renamed.
3685 *
3686 * Example:
3687 *
3688 * Parent snapshot:
3689 * . (ino 256)
3690 * |---- a/ (ino 257)
3691 * | |---- file (ino 260)
3692 * |
3693 * |---- b/ (ino 258)
3694 * |---- c/ (ino 259)
3695 *
3696 * Send snapshot:
3697 * . (ino 256)
3698 * |---- a/ (ino 258)
3699 * |---- x/ (ino 259)
3700 * |---- y/ (ino 257)
3701 * |----- file (ino 260)
3702 *
3703 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3704 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3705 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3706 * must issue is:
3707 *
3708 * 1 - rename 259 from 'c' to 'x'
3709 * 2 - rename 257 from 'a' to 'x/y'
3710 * 3 - rename 258 from 'b' to 'a'
3711 *
3712 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3713 * be done right away and < 0 on error.
3714 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3715 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3716 struct recorded_ref *parent_ref,
3717 const bool is_orphan)
3718 {
3719 BTRFS_PATH_AUTO_FREE(path);
3720 struct btrfs_key key;
3721 struct btrfs_key di_key;
3722 struct btrfs_dir_item *di;
3723 u64 left_gen;
3724 u64 right_gen;
3725 int ret = 0;
3726 struct waiting_dir_move *wdm;
3727
3728 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3729 return 0;
3730
3731 path = alloc_path_for_send();
3732 if (!path)
3733 return -ENOMEM;
3734
3735 key.objectid = parent_ref->dir;
3736 key.type = BTRFS_DIR_ITEM_KEY;
3737 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3738
3739 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3740 if (ret < 0)
3741 return ret;
3742 if (ret > 0)
3743 return 0;
3744
3745 di = btrfs_match_dir_item_name(path, parent_ref->name,
3746 parent_ref->name_len);
3747 if (!di)
3748 return 0;
3749 /*
3750 * di_key.objectid has the number of the inode that has a dentry in the
3751 * parent directory with the same name that sctx->cur_ino is being
3752 * renamed to. We need to check if that inode is in the send root as
3753 * well and if it is currently marked as an inode with a pending rename,
3754 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3755 * that it happens after that other inode is renamed.
3756 */
3757 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3758 if (di_key.type != BTRFS_INODE_ITEM_KEY)
3759 return 0;
3760
3761 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3762 if (ret < 0)
3763 return ret;
3764 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3765 if (ret < 0) {
3766 if (ret == -ENOENT)
3767 ret = 0;
3768 return ret;
3769 }
3770
3771 /* Different inode, no need to delay the rename of sctx->cur_ino */
3772 if (right_gen != left_gen)
3773 return 0;
3774
3775 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3776 if (wdm && !wdm->orphanized) {
3777 ret = add_pending_dir_move(sctx,
3778 sctx->cur_ino,
3779 sctx->cur_inode_gen,
3780 di_key.objectid,
3781 &sctx->new_refs,
3782 &sctx->deleted_refs,
3783 is_orphan);
3784 if (!ret)
3785 ret = 1;
3786 }
3787 return ret;
3788 }
3789
3790 /*
3791 * Check if inode ino2, or any of its ancestors, is inode ino1.
3792 * Return 1 if true, 0 if false and < 0 on error.
3793 */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3794 static int check_ino_in_path(struct btrfs_root *root,
3795 const u64 ino1,
3796 const u64 ino1_gen,
3797 const u64 ino2,
3798 const u64 ino2_gen,
3799 struct fs_path *fs_path)
3800 {
3801 u64 ino = ino2;
3802
3803 if (ino1 == ino2)
3804 return ino1_gen == ino2_gen;
3805
3806 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3807 u64 parent;
3808 u64 parent_gen;
3809 int ret;
3810
3811 fs_path_reset(fs_path);
3812 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3813 if (ret < 0)
3814 return ret;
3815 if (parent == ino1)
3816 return parent_gen == ino1_gen;
3817 ino = parent;
3818 }
3819 return 0;
3820 }
3821
3822 /*
3823 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3824 * possible path (in case ino2 is not a directory and has multiple hard links).
3825 * Return 1 if true, 0 if false and < 0 on error.
3826 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3827 static int is_ancestor(struct btrfs_root *root,
3828 const u64 ino1,
3829 const u64 ino1_gen,
3830 const u64 ino2,
3831 struct fs_path *fs_path)
3832 {
3833 bool free_fs_path = false;
3834 int ret = 0;
3835 int iter_ret = 0;
3836 BTRFS_PATH_AUTO_FREE(path);
3837 struct btrfs_key key;
3838
3839 if (!fs_path) {
3840 fs_path = fs_path_alloc();
3841 if (!fs_path)
3842 return -ENOMEM;
3843 free_fs_path = true;
3844 }
3845
3846 path = alloc_path_for_send();
3847 if (!path) {
3848 ret = -ENOMEM;
3849 goto out;
3850 }
3851
3852 key.objectid = ino2;
3853 key.type = BTRFS_INODE_REF_KEY;
3854 key.offset = 0;
3855
3856 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3857 struct extent_buffer *leaf = path->nodes[0];
3858 int slot = path->slots[0];
3859 u32 cur_offset = 0;
3860 u32 item_size;
3861
3862 if (key.objectid != ino2)
3863 break;
3864 if (key.type != BTRFS_INODE_REF_KEY &&
3865 key.type != BTRFS_INODE_EXTREF_KEY)
3866 break;
3867
3868 item_size = btrfs_item_size(leaf, slot);
3869 while (cur_offset < item_size) {
3870 u64 parent;
3871 u64 parent_gen;
3872
3873 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3874 unsigned long ptr;
3875 struct btrfs_inode_extref *extref;
3876
3877 ptr = btrfs_item_ptr_offset(leaf, slot);
3878 extref = (struct btrfs_inode_extref *)
3879 (ptr + cur_offset);
3880 parent = btrfs_inode_extref_parent(leaf,
3881 extref);
3882 cur_offset += sizeof(*extref);
3883 cur_offset += btrfs_inode_extref_name_len(leaf,
3884 extref);
3885 } else {
3886 parent = key.offset;
3887 cur_offset = item_size;
3888 }
3889
3890 ret = get_inode_gen(root, parent, &parent_gen);
3891 if (ret < 0)
3892 goto out;
3893 ret = check_ino_in_path(root, ino1, ino1_gen,
3894 parent, parent_gen, fs_path);
3895 if (ret)
3896 goto out;
3897 }
3898 }
3899 ret = 0;
3900 if (iter_ret < 0)
3901 ret = iter_ret;
3902
3903 out:
3904 if (free_fs_path)
3905 fs_path_free(fs_path);
3906 return ret;
3907 }
3908
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3909 static int wait_for_parent_move(struct send_ctx *sctx,
3910 struct recorded_ref *parent_ref,
3911 const bool is_orphan)
3912 {
3913 int ret = 0;
3914 u64 ino = parent_ref->dir;
3915 u64 ino_gen = parent_ref->dir_gen;
3916 u64 parent_ino_before, parent_ino_after;
3917 struct fs_path *path_before = NULL;
3918 struct fs_path *path_after = NULL;
3919 int len1, len2;
3920
3921 path_after = fs_path_alloc();
3922 path_before = fs_path_alloc();
3923 if (!path_after || !path_before) {
3924 ret = -ENOMEM;
3925 goto out;
3926 }
3927
3928 /*
3929 * Our current directory inode may not yet be renamed/moved because some
3930 * ancestor (immediate or not) has to be renamed/moved first. So find if
3931 * such ancestor exists and make sure our own rename/move happens after
3932 * that ancestor is processed to avoid path build infinite loops (done
3933 * at get_cur_path()).
3934 */
3935 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3936 u64 parent_ino_after_gen;
3937
3938 if (is_waiting_for_move(sctx, ino)) {
3939 /*
3940 * If the current inode is an ancestor of ino in the
3941 * parent root, we need to delay the rename of the
3942 * current inode, otherwise don't delayed the rename
3943 * because we can end up with a circular dependency
3944 * of renames, resulting in some directories never
3945 * getting the respective rename operations issued in
3946 * the send stream or getting into infinite path build
3947 * loops.
3948 */
3949 ret = is_ancestor(sctx->parent_root,
3950 sctx->cur_ino, sctx->cur_inode_gen,
3951 ino, path_before);
3952 if (ret)
3953 break;
3954 }
3955
3956 fs_path_reset(path_before);
3957 fs_path_reset(path_after);
3958
3959 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3960 &parent_ino_after_gen, path_after);
3961 if (ret < 0)
3962 goto out;
3963 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3964 NULL, path_before);
3965 if (ret < 0 && ret != -ENOENT) {
3966 goto out;
3967 } else if (ret == -ENOENT) {
3968 ret = 0;
3969 break;
3970 }
3971
3972 len1 = fs_path_len(path_before);
3973 len2 = fs_path_len(path_after);
3974 if (ino > sctx->cur_ino &&
3975 (parent_ino_before != parent_ino_after || len1 != len2 ||
3976 memcmp(path_before->start, path_after->start, len1))) {
3977 u64 parent_ino_gen;
3978
3979 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
3980 if (ret < 0)
3981 goto out;
3982 if (ino_gen == parent_ino_gen) {
3983 ret = 1;
3984 break;
3985 }
3986 }
3987 ino = parent_ino_after;
3988 ino_gen = parent_ino_after_gen;
3989 }
3990
3991 out:
3992 fs_path_free(path_before);
3993 fs_path_free(path_after);
3994
3995 if (ret == 1) {
3996 ret = add_pending_dir_move(sctx,
3997 sctx->cur_ino,
3998 sctx->cur_inode_gen,
3999 ino,
4000 &sctx->new_refs,
4001 &sctx->deleted_refs,
4002 is_orphan);
4003 if (!ret)
4004 ret = 1;
4005 }
4006
4007 return ret;
4008 }
4009
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4010 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4011 {
4012 int ret;
4013 struct fs_path *new_path;
4014
4015 /*
4016 * Our reference's name member points to its full_path member string, so
4017 * we use here a new path.
4018 */
4019 new_path = fs_path_alloc();
4020 if (!new_path)
4021 return -ENOMEM;
4022
4023 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4024 if (ret < 0) {
4025 fs_path_free(new_path);
4026 return ret;
4027 }
4028 ret = fs_path_add(new_path, ref->name, ref->name_len);
4029 if (ret < 0) {
4030 fs_path_free(new_path);
4031 return ret;
4032 }
4033
4034 fs_path_free(ref->full_path);
4035 set_ref_path(ref, new_path);
4036
4037 return 0;
4038 }
4039
4040 /*
4041 * When processing the new references for an inode we may orphanize an existing
4042 * directory inode because its old name conflicts with one of the new references
4043 * of the current inode. Later, when processing another new reference of our
4044 * inode, we might need to orphanize another inode, but the path we have in the
4045 * reference reflects the pre-orphanization name of the directory we previously
4046 * orphanized. For example:
4047 *
4048 * parent snapshot looks like:
4049 *
4050 * . (ino 256)
4051 * |----- f1 (ino 257)
4052 * |----- f2 (ino 258)
4053 * |----- d1/ (ino 259)
4054 * |----- d2/ (ino 260)
4055 *
4056 * send snapshot looks like:
4057 *
4058 * . (ino 256)
4059 * |----- d1 (ino 258)
4060 * |----- f2/ (ino 259)
4061 * |----- f2_link/ (ino 260)
4062 * | |----- f1 (ino 257)
4063 * |
4064 * |----- d2 (ino 258)
4065 *
4066 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4067 * cache it in the name cache. Later when we start processing inode 258, when
4068 * collecting all its new references we set a full path of "d1/d2" for its new
4069 * reference with name "d2". When we start processing the new references we
4070 * start by processing the new reference with name "d1", and this results in
4071 * orphanizing inode 259, since its old reference causes a conflict. Then we
4072 * move on the next new reference, with name "d2", and we find out we must
4073 * orphanize inode 260, as its old reference conflicts with ours - but for the
4074 * orphanization we use a source path corresponding to the path we stored in the
4075 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4076 * receiver fail since the path component "d1/" no longer exists, it was renamed
4077 * to "o259-6-0/" when processing the previous new reference. So in this case we
4078 * must recompute the path in the new reference and use it for the new
4079 * orphanization operation.
4080 */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4081 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4082 {
4083 char *name;
4084 int ret;
4085
4086 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4087 if (!name)
4088 return -ENOMEM;
4089
4090 fs_path_reset(ref->full_path);
4091 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4092 if (ret < 0)
4093 goto out;
4094
4095 ret = fs_path_add(ref->full_path, name, ref->name_len);
4096 if (ret < 0)
4097 goto out;
4098
4099 /* Update the reference's base name pointer. */
4100 set_ref_path(ref, ref->full_path);
4101 out:
4102 kfree(name);
4103 return ret;
4104 }
4105
rbtree_check_dir_ref_comp(const void * k,const struct rb_node * node)4106 static int rbtree_check_dir_ref_comp(const void *k, const struct rb_node *node)
4107 {
4108 const struct recorded_ref *data = k;
4109 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4110
4111 if (data->dir > ref->dir)
4112 return 1;
4113 if (data->dir < ref->dir)
4114 return -1;
4115 if (data->dir_gen > ref->dir_gen)
4116 return 1;
4117 if (data->dir_gen < ref->dir_gen)
4118 return -1;
4119 return 0;
4120 }
4121
rbtree_check_dir_ref_less(struct rb_node * node,const struct rb_node * parent)4122 static bool rbtree_check_dir_ref_less(struct rb_node *node, const struct rb_node *parent)
4123 {
4124 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4125
4126 return rbtree_check_dir_ref_comp(entry, parent) < 0;
4127 }
4128
record_check_dir_ref_in_tree(struct rb_root * root,struct recorded_ref * ref,struct list_head * list)4129 static int record_check_dir_ref_in_tree(struct rb_root *root,
4130 struct recorded_ref *ref, struct list_head *list)
4131 {
4132 struct recorded_ref *tmp_ref;
4133 int ret;
4134
4135 if (rb_find(ref, root, rbtree_check_dir_ref_comp))
4136 return 0;
4137
4138 ret = dup_ref(ref, list);
4139 if (ret < 0)
4140 return ret;
4141
4142 tmp_ref = list_last_entry(list, struct recorded_ref, list);
4143 rb_add(&tmp_ref->node, root, rbtree_check_dir_ref_less);
4144 tmp_ref->root = root;
4145 return 0;
4146 }
4147
rename_current_inode(struct send_ctx * sctx,struct fs_path * current_path,struct fs_path * new_path)4148 static int rename_current_inode(struct send_ctx *sctx,
4149 struct fs_path *current_path,
4150 struct fs_path *new_path)
4151 {
4152 int ret;
4153
4154 ret = send_rename(sctx, current_path, new_path);
4155 if (ret < 0)
4156 return ret;
4157
4158 ret = fs_path_copy(&sctx->cur_inode_path, new_path);
4159 if (ret < 0)
4160 return ret;
4161
4162 return fs_path_copy(current_path, new_path);
4163 }
4164
4165 /*
4166 * This does all the move/link/unlink/rmdir magic.
4167 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4168 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4169 {
4170 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4171 int ret = 0;
4172 struct recorded_ref *cur;
4173 struct recorded_ref *cur2;
4174 LIST_HEAD(check_dirs);
4175 struct rb_root rbtree_check_dirs = RB_ROOT;
4176 struct fs_path *valid_path = NULL;
4177 u64 ow_inode = 0;
4178 u64 ow_gen;
4179 u64 ow_mode;
4180 bool did_overwrite = false;
4181 bool is_orphan = false;
4182 bool can_rename = true;
4183 bool orphanized_dir = false;
4184 bool orphanized_ancestor = false;
4185
4186 /*
4187 * This should never happen as the root dir always has the same ref
4188 * which is always '..'
4189 */
4190 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4191 btrfs_err(fs_info,
4192 "send: unexpected inode %llu in process_recorded_refs()",
4193 sctx->cur_ino);
4194 ret = -EINVAL;
4195 goto out;
4196 }
4197
4198 valid_path = fs_path_alloc();
4199 if (!valid_path) {
4200 ret = -ENOMEM;
4201 goto out;
4202 }
4203
4204 /*
4205 * First, check if the first ref of the current inode was overwritten
4206 * before. If yes, we know that the current inode was already orphanized
4207 * and thus use the orphan name. If not, we can use get_cur_path to
4208 * get the path of the first ref as it would like while receiving at
4209 * this point in time.
4210 * New inodes are always orphan at the beginning, so force to use the
4211 * orphan name in this case.
4212 * The first ref is stored in valid_path and will be updated if it
4213 * gets moved around.
4214 */
4215 if (!sctx->cur_inode_new) {
4216 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4217 sctx->cur_inode_gen);
4218 if (ret < 0)
4219 goto out;
4220 if (ret)
4221 did_overwrite = true;
4222 }
4223 if (sctx->cur_inode_new || did_overwrite) {
4224 ret = gen_unique_name(sctx, sctx->cur_ino,
4225 sctx->cur_inode_gen, valid_path);
4226 if (ret < 0)
4227 goto out;
4228 is_orphan = true;
4229 } else {
4230 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4231 valid_path);
4232 if (ret < 0)
4233 goto out;
4234 }
4235
4236 /*
4237 * Before doing any rename and link operations, do a first pass on the
4238 * new references to orphanize any unprocessed inodes that may have a
4239 * reference that conflicts with one of the new references of the current
4240 * inode. This needs to happen first because a new reference may conflict
4241 * with the old reference of a parent directory, so we must make sure
4242 * that the path used for link and rename commands don't use an
4243 * orphanized name when an ancestor was not yet orphanized.
4244 *
4245 * Example:
4246 *
4247 * Parent snapshot:
4248 *
4249 * . (ino 256)
4250 * |----- testdir/ (ino 259)
4251 * | |----- a (ino 257)
4252 * |
4253 * |----- b (ino 258)
4254 *
4255 * Send snapshot:
4256 *
4257 * . (ino 256)
4258 * |----- testdir_2/ (ino 259)
4259 * | |----- a (ino 260)
4260 * |
4261 * |----- testdir (ino 257)
4262 * |----- b (ino 257)
4263 * |----- b2 (ino 258)
4264 *
4265 * Processing the new reference for inode 257 with name "b" may happen
4266 * before processing the new reference with name "testdir". If so, we
4267 * must make sure that by the time we send a link command to create the
4268 * hard link "b", inode 259 was already orphanized, since the generated
4269 * path in "valid_path" already contains the orphanized name for 259.
4270 * We are processing inode 257, so only later when processing 259 we do
4271 * the rename operation to change its temporary (orphanized) name to
4272 * "testdir_2".
4273 */
4274 list_for_each_entry(cur, &sctx->new_refs, list) {
4275 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4276 if (ret < 0)
4277 goto out;
4278 if (ret == inode_state_will_create)
4279 continue;
4280
4281 /*
4282 * Check if this new ref would overwrite the first ref of another
4283 * unprocessed inode. If yes, orphanize the overwritten inode.
4284 * If we find an overwritten ref that is not the first ref,
4285 * simply unlink it.
4286 */
4287 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4288 cur->name, cur->name_len,
4289 &ow_inode, &ow_gen, &ow_mode);
4290 if (ret < 0)
4291 goto out;
4292 if (ret) {
4293 ret = is_first_ref(sctx->parent_root,
4294 ow_inode, cur->dir, cur->name,
4295 cur->name_len);
4296 if (ret < 0)
4297 goto out;
4298 if (ret) {
4299 struct name_cache_entry *nce;
4300 struct waiting_dir_move *wdm;
4301
4302 if (orphanized_dir) {
4303 ret = refresh_ref_path(sctx, cur);
4304 if (ret < 0)
4305 goto out;
4306 }
4307
4308 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4309 cur->full_path);
4310 if (ret < 0)
4311 goto out;
4312 if (S_ISDIR(ow_mode))
4313 orphanized_dir = true;
4314
4315 /*
4316 * If ow_inode has its rename operation delayed
4317 * make sure that its orphanized name is used in
4318 * the source path when performing its rename
4319 * operation.
4320 */
4321 wdm = get_waiting_dir_move(sctx, ow_inode);
4322 if (wdm)
4323 wdm->orphanized = true;
4324
4325 /*
4326 * Make sure we clear our orphanized inode's
4327 * name from the name cache. This is because the
4328 * inode ow_inode might be an ancestor of some
4329 * other inode that will be orphanized as well
4330 * later and has an inode number greater than
4331 * sctx->send_progress. We need to prevent
4332 * future name lookups from using the old name
4333 * and get instead the orphan name.
4334 */
4335 nce = name_cache_search(sctx, ow_inode, ow_gen);
4336 if (nce)
4337 btrfs_lru_cache_remove(&sctx->name_cache,
4338 &nce->entry);
4339
4340 /*
4341 * ow_inode might currently be an ancestor of
4342 * cur_ino, therefore compute valid_path (the
4343 * current path of cur_ino) again because it
4344 * might contain the pre-orphanization name of
4345 * ow_inode, which is no longer valid.
4346 */
4347 ret = is_ancestor(sctx->parent_root,
4348 ow_inode, ow_gen,
4349 sctx->cur_ino, NULL);
4350 if (ret > 0) {
4351 orphanized_ancestor = true;
4352 fs_path_reset(valid_path);
4353 fs_path_reset(&sctx->cur_inode_path);
4354 ret = get_cur_path(sctx, sctx->cur_ino,
4355 sctx->cur_inode_gen,
4356 valid_path);
4357 }
4358 if (ret < 0)
4359 goto out;
4360 } else {
4361 /*
4362 * If we previously orphanized a directory that
4363 * collided with a new reference that we already
4364 * processed, recompute the current path because
4365 * that directory may be part of the path.
4366 */
4367 if (orphanized_dir) {
4368 ret = refresh_ref_path(sctx, cur);
4369 if (ret < 0)
4370 goto out;
4371 }
4372 ret = send_unlink(sctx, cur->full_path);
4373 if (ret < 0)
4374 goto out;
4375 }
4376 }
4377
4378 }
4379
4380 list_for_each_entry(cur, &sctx->new_refs, list) {
4381 /*
4382 * We may have refs where the parent directory does not exist
4383 * yet. This happens if the parent directories inum is higher
4384 * than the current inum. To handle this case, we create the
4385 * parent directory out of order. But we need to check if this
4386 * did already happen before due to other refs in the same dir.
4387 */
4388 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4389 if (ret < 0)
4390 goto out;
4391 if (ret == inode_state_will_create) {
4392 ret = 0;
4393 /*
4394 * First check if any of the current inodes refs did
4395 * already create the dir.
4396 */
4397 list_for_each_entry(cur2, &sctx->new_refs, list) {
4398 if (cur == cur2)
4399 break;
4400 if (cur2->dir == cur->dir) {
4401 ret = 1;
4402 break;
4403 }
4404 }
4405
4406 /*
4407 * If that did not happen, check if a previous inode
4408 * did already create the dir.
4409 */
4410 if (!ret)
4411 ret = did_create_dir(sctx, cur->dir);
4412 if (ret < 0)
4413 goto out;
4414 if (!ret) {
4415 ret = send_create_inode(sctx, cur->dir);
4416 if (ret < 0)
4417 goto out;
4418 cache_dir_created(sctx, cur->dir);
4419 }
4420 }
4421
4422 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4423 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4424 if (ret < 0)
4425 goto out;
4426 if (ret == 1) {
4427 can_rename = false;
4428 *pending_move = 1;
4429 }
4430 }
4431
4432 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4433 can_rename) {
4434 ret = wait_for_parent_move(sctx, cur, is_orphan);
4435 if (ret < 0)
4436 goto out;
4437 if (ret == 1) {
4438 can_rename = false;
4439 *pending_move = 1;
4440 }
4441 }
4442
4443 /*
4444 * link/move the ref to the new place. If we have an orphan
4445 * inode, move it and update valid_path. If not, link or move
4446 * it depending on the inode mode.
4447 */
4448 if (is_orphan && can_rename) {
4449 ret = rename_current_inode(sctx, valid_path, cur->full_path);
4450 if (ret < 0)
4451 goto out;
4452 is_orphan = false;
4453 } else if (can_rename) {
4454 if (S_ISDIR(sctx->cur_inode_mode)) {
4455 /*
4456 * Dirs can't be linked, so move it. For moved
4457 * dirs, we always have one new and one deleted
4458 * ref. The deleted ref is ignored later.
4459 */
4460 ret = rename_current_inode(sctx, valid_path,
4461 cur->full_path);
4462 if (ret < 0)
4463 goto out;
4464 } else {
4465 /*
4466 * We might have previously orphanized an inode
4467 * which is an ancestor of our current inode,
4468 * so our reference's full path, which was
4469 * computed before any such orphanizations, must
4470 * be updated.
4471 */
4472 if (orphanized_dir) {
4473 ret = update_ref_path(sctx, cur);
4474 if (ret < 0)
4475 goto out;
4476 }
4477 ret = send_link(sctx, cur->full_path,
4478 valid_path);
4479 if (ret < 0)
4480 goto out;
4481 }
4482 }
4483 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4484 if (ret < 0)
4485 goto out;
4486 }
4487
4488 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4489 /*
4490 * Check if we can already rmdir the directory. If not,
4491 * orphanize it. For every dir item inside that gets deleted
4492 * later, we do this check again and rmdir it then if possible.
4493 * See the use of check_dirs for more details.
4494 */
4495 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4496 if (ret < 0)
4497 goto out;
4498 if (ret) {
4499 ret = send_rmdir(sctx, valid_path);
4500 if (ret < 0)
4501 goto out;
4502 } else if (!is_orphan) {
4503 ret = orphanize_inode(sctx, sctx->cur_ino,
4504 sctx->cur_inode_gen, valid_path);
4505 if (ret < 0)
4506 goto out;
4507 is_orphan = true;
4508 }
4509
4510 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4511 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4512 if (ret < 0)
4513 goto out;
4514 }
4515 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4516 !list_empty(&sctx->deleted_refs)) {
4517 /*
4518 * We have a moved dir. Add the old parent to check_dirs
4519 */
4520 cur = list_first_entry(&sctx->deleted_refs, struct recorded_ref, list);
4521 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4522 if (ret < 0)
4523 goto out;
4524 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4525 /*
4526 * We have a non dir inode. Go through all deleted refs and
4527 * unlink them if they were not already overwritten by other
4528 * inodes.
4529 */
4530 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4531 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4532 sctx->cur_ino, sctx->cur_inode_gen,
4533 cur->name, cur->name_len);
4534 if (ret < 0)
4535 goto out;
4536 if (!ret) {
4537 /*
4538 * If we orphanized any ancestor before, we need
4539 * to recompute the full path for deleted names,
4540 * since any such path was computed before we
4541 * processed any references and orphanized any
4542 * ancestor inode.
4543 */
4544 if (orphanized_ancestor) {
4545 ret = update_ref_path(sctx, cur);
4546 if (ret < 0)
4547 goto out;
4548 }
4549 ret = send_unlink(sctx, cur->full_path);
4550 if (ret < 0)
4551 goto out;
4552 if (is_current_inode_path(sctx, cur->full_path))
4553 fs_path_reset(&sctx->cur_inode_path);
4554 }
4555 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs);
4556 if (ret < 0)
4557 goto out;
4558 }
4559 /*
4560 * If the inode is still orphan, unlink the orphan. This may
4561 * happen when a previous inode did overwrite the first ref
4562 * of this inode and no new refs were added for the current
4563 * inode. Unlinking does not mean that the inode is deleted in
4564 * all cases. There may still be links to this inode in other
4565 * places.
4566 */
4567 if (is_orphan) {
4568 ret = send_unlink(sctx, valid_path);
4569 if (ret < 0)
4570 goto out;
4571 }
4572 }
4573
4574 /*
4575 * We did collect all parent dirs where cur_inode was once located. We
4576 * now go through all these dirs and check if they are pending for
4577 * deletion and if it's finally possible to perform the rmdir now.
4578 * We also update the inode stats of the parent dirs here.
4579 */
4580 list_for_each_entry(cur, &check_dirs, list) {
4581 /*
4582 * In case we had refs into dirs that were not processed yet,
4583 * we don't need to do the utime and rmdir logic for these dirs.
4584 * The dir will be processed later.
4585 */
4586 if (cur->dir > sctx->cur_ino)
4587 continue;
4588
4589 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4590 if (ret < 0)
4591 goto out;
4592
4593 if (ret == inode_state_did_create ||
4594 ret == inode_state_no_change) {
4595 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4596 if (ret < 0)
4597 goto out;
4598 } else if (ret == inode_state_did_delete) {
4599 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4600 if (ret < 0)
4601 goto out;
4602 if (ret) {
4603 ret = get_cur_path(sctx, cur->dir,
4604 cur->dir_gen, valid_path);
4605 if (ret < 0)
4606 goto out;
4607 ret = send_rmdir(sctx, valid_path);
4608 if (ret < 0)
4609 goto out;
4610 }
4611 }
4612 }
4613
4614 ret = 0;
4615
4616 out:
4617 __free_recorded_refs(&check_dirs);
4618 free_recorded_refs(sctx);
4619 fs_path_free(valid_path);
4620 return ret;
4621 }
4622
rbtree_ref_comp(const void * k,const struct rb_node * node)4623 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4624 {
4625 const struct recorded_ref *data = k;
4626 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4627
4628 if (data->dir > ref->dir)
4629 return 1;
4630 if (data->dir < ref->dir)
4631 return -1;
4632 if (data->dir_gen > ref->dir_gen)
4633 return 1;
4634 if (data->dir_gen < ref->dir_gen)
4635 return -1;
4636 if (data->name_len > ref->name_len)
4637 return 1;
4638 if (data->name_len < ref->name_len)
4639 return -1;
4640 return strcmp(data->name, ref->name);
4641 }
4642
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4643 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4644 {
4645 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4646
4647 return rbtree_ref_comp(entry, parent) < 0;
4648 }
4649
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4650 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4651 struct fs_path *name, u64 dir, u64 dir_gen,
4652 struct send_ctx *sctx)
4653 {
4654 int ret = 0;
4655 struct fs_path *path = NULL;
4656 struct recorded_ref *ref = NULL;
4657
4658 path = fs_path_alloc();
4659 if (!path) {
4660 ret = -ENOMEM;
4661 goto out;
4662 }
4663
4664 ref = recorded_ref_alloc();
4665 if (!ref) {
4666 ret = -ENOMEM;
4667 goto out;
4668 }
4669
4670 ret = get_cur_path(sctx, dir, dir_gen, path);
4671 if (ret < 0)
4672 goto out;
4673 ret = fs_path_add_path(path, name);
4674 if (ret < 0)
4675 goto out;
4676
4677 ref->dir = dir;
4678 ref->dir_gen = dir_gen;
4679 set_ref_path(ref, path);
4680 list_add_tail(&ref->list, refs);
4681 rb_add(&ref->node, root, rbtree_ref_less);
4682 ref->root = root;
4683 out:
4684 if (ret) {
4685 if (path && (!ref || !ref->full_path))
4686 fs_path_free(path);
4687 recorded_ref_free(ref);
4688 }
4689 return ret;
4690 }
4691
record_new_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4692 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4693 {
4694 int ret;
4695 struct send_ctx *sctx = ctx;
4696 struct rb_node *node = NULL;
4697 struct recorded_ref data;
4698 struct recorded_ref *ref;
4699 u64 dir_gen;
4700
4701 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4702 if (ret < 0)
4703 return ret;
4704
4705 data.dir = dir;
4706 data.dir_gen = dir_gen;
4707 set_ref_path(&data, name);
4708 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4709 if (node) {
4710 ref = rb_entry(node, struct recorded_ref, node);
4711 recorded_ref_free(ref);
4712 } else {
4713 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4714 &sctx->new_refs, name, dir, dir_gen,
4715 sctx);
4716 }
4717
4718 return ret;
4719 }
4720
record_deleted_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4721 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4722 {
4723 int ret;
4724 struct send_ctx *sctx = ctx;
4725 struct rb_node *node = NULL;
4726 struct recorded_ref data;
4727 struct recorded_ref *ref;
4728 u64 dir_gen;
4729
4730 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4731 if (ret < 0)
4732 return ret;
4733
4734 data.dir = dir;
4735 data.dir_gen = dir_gen;
4736 set_ref_path(&data, name);
4737 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4738 if (node) {
4739 ref = rb_entry(node, struct recorded_ref, node);
4740 recorded_ref_free(ref);
4741 } else {
4742 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4743 &sctx->deleted_refs, name, dir,
4744 dir_gen, sctx);
4745 }
4746
4747 return ret;
4748 }
4749
record_new_ref(struct send_ctx * sctx)4750 static int record_new_ref(struct send_ctx *sctx)
4751 {
4752 int ret;
4753
4754 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4755 false, record_new_ref_if_needed, sctx);
4756 if (ret < 0)
4757 return ret;
4758
4759 return 0;
4760 }
4761
record_deleted_ref(struct send_ctx * sctx)4762 static int record_deleted_ref(struct send_ctx *sctx)
4763 {
4764 int ret;
4765
4766 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key,
4767 false, record_deleted_ref_if_needed, sctx);
4768 if (ret < 0)
4769 return ret;
4770
4771 return 0;
4772 }
4773
record_changed_ref(struct send_ctx * sctx)4774 static int record_changed_ref(struct send_ctx *sctx)
4775 {
4776 int ret;
4777
4778 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4779 false, record_new_ref_if_needed, sctx);
4780 if (ret < 0)
4781 return ret;
4782 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key,
4783 false, record_deleted_ref_if_needed, sctx);
4784 if (ret < 0)
4785 return ret;
4786
4787 return 0;
4788 }
4789
4790 /*
4791 * Record and process all refs at once. Needed when an inode changes the
4792 * generation number, which means that it was deleted and recreated.
4793 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4794 static int process_all_refs(struct send_ctx *sctx,
4795 enum btrfs_compare_tree_result cmd)
4796 {
4797 int ret = 0;
4798 int iter_ret = 0;
4799 struct btrfs_root *root;
4800 BTRFS_PATH_AUTO_FREE(path);
4801 struct btrfs_key key;
4802 struct btrfs_key found_key;
4803 iterate_inode_ref_t cb;
4804 int pending_move = 0;
4805
4806 path = alloc_path_for_send();
4807 if (!path)
4808 return -ENOMEM;
4809
4810 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4811 root = sctx->send_root;
4812 cb = record_new_ref_if_needed;
4813 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4814 root = sctx->parent_root;
4815 cb = record_deleted_ref_if_needed;
4816 } else {
4817 btrfs_err(sctx->send_root->fs_info,
4818 "Wrong command %d in process_all_refs", cmd);
4819 return -EINVAL;
4820 }
4821
4822 key.objectid = sctx->cmp_key->objectid;
4823 key.type = BTRFS_INODE_REF_KEY;
4824 key.offset = 0;
4825 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4826 if (found_key.objectid != key.objectid ||
4827 (found_key.type != BTRFS_INODE_REF_KEY &&
4828 found_key.type != BTRFS_INODE_EXTREF_KEY))
4829 break;
4830
4831 ret = iterate_inode_ref(root, path, &found_key, false, cb, sctx);
4832 if (ret < 0)
4833 return ret;
4834 }
4835 /* Catch error found during iteration */
4836 if (iter_ret < 0)
4837 return iter_ret;
4838
4839 btrfs_release_path(path);
4840
4841 /*
4842 * We don't actually care about pending_move as we are simply
4843 * re-creating this inode and will be rename'ing it into place once we
4844 * rename the parent directory.
4845 */
4846 return process_recorded_refs(sctx, &pending_move);
4847 }
4848
send_set_xattr(struct send_ctx * sctx,const char * name,int name_len,const char * data,int data_len)4849 static int send_set_xattr(struct send_ctx *sctx,
4850 const char *name, int name_len,
4851 const char *data, int data_len)
4852 {
4853 struct fs_path *path;
4854 int ret;
4855
4856 path = get_cur_inode_path(sctx);
4857 if (IS_ERR(path))
4858 return PTR_ERR(path);
4859
4860 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4861 if (ret < 0)
4862 return ret;
4863
4864 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4865 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4866 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4867
4868 ret = send_cmd(sctx);
4869
4870 tlv_put_failure:
4871 return ret;
4872 }
4873
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4874 static int send_remove_xattr(struct send_ctx *sctx,
4875 struct fs_path *path,
4876 const char *name, int name_len)
4877 {
4878 int ret;
4879
4880 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4881 if (ret < 0)
4882 return ret;
4883
4884 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4885 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4886
4887 ret = send_cmd(sctx);
4888
4889 tlv_put_failure:
4890 return ret;
4891 }
4892
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4893 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4894 const char *name, int name_len, const char *data,
4895 int data_len, void *ctx)
4896 {
4897 struct send_ctx *sctx = ctx;
4898 struct posix_acl_xattr_header dummy_acl;
4899
4900 /* Capabilities are emitted by finish_inode_if_needed */
4901 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4902 return 0;
4903
4904 /*
4905 * This hack is needed because empty acls are stored as zero byte
4906 * data in xattrs. Problem with that is, that receiving these zero byte
4907 * acls will fail later. To fix this, we send a dummy acl list that
4908 * only contains the version number and no entries.
4909 */
4910 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4911 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4912 if (data_len == 0) {
4913 dummy_acl.a_version =
4914 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4915 data = (char *)&dummy_acl;
4916 data_len = sizeof(dummy_acl);
4917 }
4918 }
4919
4920 return send_set_xattr(sctx, name, name_len, data, data_len);
4921 }
4922
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4923 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4924 const char *name, int name_len,
4925 const char *data, int data_len, void *ctx)
4926 {
4927 struct send_ctx *sctx = ctx;
4928 struct fs_path *p;
4929
4930 p = get_cur_inode_path(sctx);
4931 if (IS_ERR(p))
4932 return PTR_ERR(p);
4933
4934 return send_remove_xattr(sctx, p, name, name_len);
4935 }
4936
process_new_xattr(struct send_ctx * sctx)4937 static int process_new_xattr(struct send_ctx *sctx)
4938 {
4939 return iterate_dir_item(sctx->send_root, sctx->left_path,
4940 __process_new_xattr, sctx);
4941 }
4942
process_deleted_xattr(struct send_ctx * sctx)4943 static int process_deleted_xattr(struct send_ctx *sctx)
4944 {
4945 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4946 __process_deleted_xattr, sctx);
4947 }
4948
4949 struct find_xattr_ctx {
4950 const char *name;
4951 int name_len;
4952 int found_idx;
4953 char *found_data;
4954 int found_data_len;
4955 };
4956
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)4957 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4958 int name_len, const char *data, int data_len, void *vctx)
4959 {
4960 struct find_xattr_ctx *ctx = vctx;
4961
4962 if (name_len == ctx->name_len &&
4963 strncmp(name, ctx->name, name_len) == 0) {
4964 ctx->found_idx = num;
4965 ctx->found_data_len = data_len;
4966 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4967 if (!ctx->found_data)
4968 return -ENOMEM;
4969 return 1;
4970 }
4971 return 0;
4972 }
4973
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)4974 static int find_xattr(struct btrfs_root *root,
4975 struct btrfs_path *path,
4976 struct btrfs_key *key,
4977 const char *name, int name_len,
4978 char **data, int *data_len)
4979 {
4980 int ret;
4981 struct find_xattr_ctx ctx;
4982
4983 ctx.name = name;
4984 ctx.name_len = name_len;
4985 ctx.found_idx = -1;
4986 ctx.found_data = NULL;
4987 ctx.found_data_len = 0;
4988
4989 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4990 if (ret < 0)
4991 return ret;
4992
4993 if (ctx.found_idx == -1)
4994 return -ENOENT;
4995 if (data) {
4996 *data = ctx.found_data;
4997 *data_len = ctx.found_data_len;
4998 } else {
4999 kfree(ctx.found_data);
5000 }
5001 return ctx.found_idx;
5002 }
5003
5004
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5005 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5006 const char *name, int name_len,
5007 const char *data, int data_len,
5008 void *ctx)
5009 {
5010 int ret;
5011 struct send_ctx *sctx = ctx;
5012 char *found_data = NULL;
5013 int found_data_len = 0;
5014
5015 ret = find_xattr(sctx->parent_root, sctx->right_path,
5016 sctx->cmp_key, name, name_len, &found_data,
5017 &found_data_len);
5018 if (ret == -ENOENT) {
5019 ret = __process_new_xattr(num, di_key, name, name_len, data,
5020 data_len, ctx);
5021 } else if (ret >= 0) {
5022 if (data_len != found_data_len ||
5023 memcmp(data, found_data, data_len)) {
5024 ret = __process_new_xattr(num, di_key, name, name_len,
5025 data, data_len, ctx);
5026 } else {
5027 ret = 0;
5028 }
5029 }
5030
5031 kfree(found_data);
5032 return ret;
5033 }
5034
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5035 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5036 const char *name, int name_len,
5037 const char *data, int data_len,
5038 void *ctx)
5039 {
5040 int ret;
5041 struct send_ctx *sctx = ctx;
5042
5043 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5044 name, name_len, NULL, NULL);
5045 if (ret == -ENOENT)
5046 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5047 data_len, ctx);
5048 else if (ret >= 0)
5049 ret = 0;
5050
5051 return ret;
5052 }
5053
process_changed_xattr(struct send_ctx * sctx)5054 static int process_changed_xattr(struct send_ctx *sctx)
5055 {
5056 int ret;
5057
5058 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5059 __process_changed_new_xattr, sctx);
5060 if (ret < 0)
5061 return ret;
5062
5063 return iterate_dir_item(sctx->parent_root, sctx->right_path,
5064 __process_changed_deleted_xattr, sctx);
5065 }
5066
process_all_new_xattrs(struct send_ctx * sctx)5067 static int process_all_new_xattrs(struct send_ctx *sctx)
5068 {
5069 int ret = 0;
5070 int iter_ret = 0;
5071 struct btrfs_root *root;
5072 BTRFS_PATH_AUTO_FREE(path);
5073 struct btrfs_key key;
5074 struct btrfs_key found_key;
5075
5076 path = alloc_path_for_send();
5077 if (!path)
5078 return -ENOMEM;
5079
5080 root = sctx->send_root;
5081
5082 key.objectid = sctx->cmp_key->objectid;
5083 key.type = BTRFS_XATTR_ITEM_KEY;
5084 key.offset = 0;
5085 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5086 if (found_key.objectid != key.objectid ||
5087 found_key.type != key.type) {
5088 ret = 0;
5089 break;
5090 }
5091
5092 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5093 if (ret < 0)
5094 break;
5095 }
5096 /* Catch error found during iteration */
5097 if (iter_ret < 0)
5098 ret = iter_ret;
5099
5100 return ret;
5101 }
5102
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5103 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5104 struct fsverity_descriptor *desc)
5105 {
5106 int ret;
5107
5108 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5109 if (ret < 0)
5110 return ret;
5111
5112 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5113 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5114 le8_to_cpu(desc->hash_algorithm));
5115 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5116 1U << le8_to_cpu(desc->log_blocksize));
5117 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5118 le8_to_cpu(desc->salt_size));
5119 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5120 le32_to_cpu(desc->sig_size));
5121
5122 ret = send_cmd(sctx);
5123
5124 tlv_put_failure:
5125 return ret;
5126 }
5127
process_verity(struct send_ctx * sctx)5128 static int process_verity(struct send_ctx *sctx)
5129 {
5130 int ret = 0;
5131 struct btrfs_inode *inode;
5132 struct fs_path *p;
5133
5134 inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5135 if (IS_ERR(inode))
5136 return PTR_ERR(inode);
5137
5138 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0);
5139 if (ret < 0)
5140 goto iput;
5141
5142 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5143 ret = -EMSGSIZE;
5144 goto iput;
5145 }
5146 if (!sctx->verity_descriptor) {
5147 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5148 GFP_KERNEL);
5149 if (!sctx->verity_descriptor) {
5150 ret = -ENOMEM;
5151 goto iput;
5152 }
5153 }
5154
5155 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret);
5156 if (ret < 0)
5157 goto iput;
5158
5159 p = get_cur_inode_path(sctx);
5160 if (IS_ERR(p)) {
5161 ret = PTR_ERR(p);
5162 goto iput;
5163 }
5164
5165 ret = send_verity(sctx, p, sctx->verity_descriptor);
5166 iput:
5167 iput(&inode->vfs_inode);
5168 return ret;
5169 }
5170
max_send_read_size(const struct send_ctx * sctx)5171 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5172 {
5173 return sctx->send_max_size - SZ_16K;
5174 }
5175
put_data_header(struct send_ctx * sctx,u32 len)5176 static int put_data_header(struct send_ctx *sctx, u32 len)
5177 {
5178 if (WARN_ON_ONCE(sctx->put_data))
5179 return -EINVAL;
5180 sctx->put_data = true;
5181 if (sctx->proto >= 2) {
5182 /*
5183 * Since v2, the data attribute header doesn't include a length,
5184 * it is implicitly to the end of the command.
5185 */
5186 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5187 return -EOVERFLOW;
5188 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5189 sctx->send_size += sizeof(__le16);
5190 } else {
5191 struct btrfs_tlv_header *hdr;
5192
5193 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5194 return -EOVERFLOW;
5195 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5196 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5197 put_unaligned_le16(len, &hdr->tlv_len);
5198 sctx->send_size += sizeof(*hdr);
5199 }
5200 return 0;
5201 }
5202
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5203 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5204 {
5205 struct btrfs_root *root = sctx->send_root;
5206 struct btrfs_fs_info *fs_info = root->fs_info;
5207 u64 cur = offset;
5208 const u64 end = offset + len;
5209 const pgoff_t last_index = ((end - 1) >> PAGE_SHIFT);
5210 struct address_space *mapping = sctx->cur_inode->i_mapping;
5211 int ret;
5212
5213 ret = put_data_header(sctx, len);
5214 if (ret)
5215 return ret;
5216
5217 while (cur < end) {
5218 pgoff_t index = (cur >> PAGE_SHIFT);
5219 unsigned int cur_len;
5220 unsigned int pg_offset;
5221 struct folio *folio;
5222
5223 folio = filemap_lock_folio(mapping, index);
5224 if (IS_ERR(folio)) {
5225 page_cache_sync_readahead(mapping,
5226 &sctx->ra, NULL, index,
5227 last_index + 1 - index);
5228
5229 folio = filemap_grab_folio(mapping, index);
5230 if (IS_ERR(folio)) {
5231 ret = PTR_ERR(folio);
5232 break;
5233 }
5234 }
5235 pg_offset = offset_in_folio(folio, cur);
5236 cur_len = min_t(unsigned int, end - cur, folio_size(folio) - pg_offset);
5237
5238 if (folio_test_readahead(folio))
5239 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5240 last_index + 1 - index);
5241
5242 if (!folio_test_uptodate(folio)) {
5243 btrfs_read_folio(NULL, folio);
5244 folio_lock(folio);
5245 if (unlikely(!folio_test_uptodate(folio))) {
5246 folio_unlock(folio);
5247 btrfs_err(fs_info,
5248 "send: IO error at offset %llu for inode %llu root %llu",
5249 folio_pos(folio), sctx->cur_ino,
5250 btrfs_root_id(sctx->send_root));
5251 folio_put(folio);
5252 ret = -EIO;
5253 break;
5254 }
5255 if (folio->mapping != mapping) {
5256 folio_unlock(folio);
5257 folio_put(folio);
5258 continue;
5259 }
5260 }
5261
5262 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5263 pg_offset, cur_len);
5264 folio_unlock(folio);
5265 folio_put(folio);
5266 cur += cur_len;
5267 sctx->send_size += cur_len;
5268 }
5269
5270 return ret;
5271 }
5272
5273 /*
5274 * Read some bytes from the current inode/file and send a write command to
5275 * user space.
5276 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5277 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5278 {
5279 int ret = 0;
5280 struct fs_path *p;
5281
5282 p = get_cur_inode_path(sctx);
5283 if (IS_ERR(p))
5284 return PTR_ERR(p);
5285
5286 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5287 if (ret < 0)
5288 return ret;
5289
5290 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5291 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5292 ret = put_file_data(sctx, offset, len);
5293 if (ret < 0)
5294 return ret;
5295
5296 ret = send_cmd(sctx);
5297
5298 tlv_put_failure:
5299 return ret;
5300 }
5301
5302 /*
5303 * Send a clone command to user space.
5304 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5305 static int send_clone(struct send_ctx *sctx,
5306 u64 offset, u32 len,
5307 struct clone_root *clone_root)
5308 {
5309 int ret = 0;
5310 struct fs_path *p;
5311 struct fs_path *cur_inode_path;
5312 u64 gen;
5313
5314 cur_inode_path = get_cur_inode_path(sctx);
5315 if (IS_ERR(cur_inode_path))
5316 return PTR_ERR(cur_inode_path);
5317
5318 p = fs_path_alloc();
5319 if (!p)
5320 return -ENOMEM;
5321
5322 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5323 if (ret < 0)
5324 goto out;
5325
5326 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5327 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5328 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path);
5329
5330 if (clone_root->root == sctx->send_root) {
5331 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5332 if (ret < 0)
5333 goto out;
5334 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5335 } else {
5336 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5337 }
5338 if (ret < 0)
5339 goto out;
5340
5341 /*
5342 * If the parent we're using has a received_uuid set then use that as
5343 * our clone source as that is what we will look for when doing a
5344 * receive.
5345 *
5346 * This covers the case that we create a snapshot off of a received
5347 * subvolume and then use that as the parent and try to receive on a
5348 * different host.
5349 */
5350 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5351 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5352 clone_root->root->root_item.received_uuid);
5353 else
5354 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5355 clone_root->root->root_item.uuid);
5356 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5357 btrfs_root_ctransid(&clone_root->root->root_item));
5358 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5359 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5360 clone_root->offset);
5361
5362 ret = send_cmd(sctx);
5363
5364 tlv_put_failure:
5365 out:
5366 fs_path_free(p);
5367 return ret;
5368 }
5369
5370 /*
5371 * Send an update extent command to user space.
5372 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5373 static int send_update_extent(struct send_ctx *sctx,
5374 u64 offset, u32 len)
5375 {
5376 int ret = 0;
5377 struct fs_path *p;
5378
5379 p = get_cur_inode_path(sctx);
5380 if (IS_ERR(p))
5381 return PTR_ERR(p);
5382
5383 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5384 if (ret < 0)
5385 return ret;
5386
5387 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5388 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5389 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5390
5391 ret = send_cmd(sctx);
5392
5393 tlv_put_failure:
5394 return ret;
5395 }
5396
send_fallocate(struct send_ctx * sctx,u32 mode,u64 offset,u64 len)5397 static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len)
5398 {
5399 struct fs_path *path;
5400 int ret;
5401
5402 path = get_cur_inode_path(sctx);
5403 if (IS_ERR(path))
5404 return PTR_ERR(path);
5405
5406 ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE);
5407 if (ret < 0)
5408 return ret;
5409
5410 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5411 TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode);
5412 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5413 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5414
5415 ret = send_cmd(sctx);
5416
5417 tlv_put_failure:
5418 return ret;
5419 }
5420
send_hole(struct send_ctx * sctx,u64 end)5421 static int send_hole(struct send_ctx *sctx, u64 end)
5422 {
5423 struct fs_path *p = NULL;
5424 u64 read_size = max_send_read_size(sctx);
5425 u64 offset = sctx->cur_inode_last_extent;
5426 int ret = 0;
5427
5428 /*
5429 * Starting with send stream v2 we have fallocate and can use it to
5430 * punch holes instead of sending writes full of zeroes.
5431 */
5432 if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE))
5433 return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
5434 offset, end - offset);
5435
5436 /*
5437 * A hole that starts at EOF or beyond it. Since we do not yet support
5438 * fallocate (for extent preallocation and hole punching), sending a
5439 * write of zeroes starting at EOF or beyond would later require issuing
5440 * a truncate operation which would undo the write and achieve nothing.
5441 */
5442 if (offset >= sctx->cur_inode_size)
5443 return 0;
5444
5445 /*
5446 * Don't go beyond the inode's i_size due to prealloc extents that start
5447 * after the i_size.
5448 */
5449 end = min_t(u64, end, sctx->cur_inode_size);
5450
5451 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5452 return send_update_extent(sctx, offset, end - offset);
5453
5454 p = get_cur_inode_path(sctx);
5455 if (IS_ERR(p))
5456 return PTR_ERR(p);
5457
5458 while (offset < end) {
5459 u64 len = min(end - offset, read_size);
5460
5461 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5462 if (ret < 0)
5463 break;
5464 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5465 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5466 ret = put_data_header(sctx, len);
5467 if (ret < 0)
5468 break;
5469 memset(sctx->send_buf + sctx->send_size, 0, len);
5470 sctx->send_size += len;
5471 ret = send_cmd(sctx);
5472 if (ret < 0)
5473 break;
5474 offset += len;
5475 }
5476 sctx->cur_inode_next_write_offset = offset;
5477 tlv_put_failure:
5478 return ret;
5479 }
5480
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5481 static int send_encoded_inline_extent(struct send_ctx *sctx,
5482 struct btrfs_path *path, u64 offset,
5483 u64 len)
5484 {
5485 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5486 struct fs_path *fspath;
5487 struct extent_buffer *leaf = path->nodes[0];
5488 struct btrfs_key key;
5489 struct btrfs_file_extent_item *ei;
5490 u64 ram_bytes;
5491 size_t inline_size;
5492 int ret;
5493
5494 fspath = get_cur_inode_path(sctx);
5495 if (IS_ERR(fspath))
5496 return PTR_ERR(fspath);
5497
5498 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5499 if (ret < 0)
5500 return ret;
5501
5502 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5503 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5504 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5505 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5506
5507 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5508 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5509 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5510 min(key.offset + ram_bytes - offset, len));
5511 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5512 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5513 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5514 btrfs_file_extent_compression(leaf, ei));
5515 if (ret < 0)
5516 return ret;
5517 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5518
5519 ret = put_data_header(sctx, inline_size);
5520 if (ret < 0)
5521 return ret;
5522 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5523 btrfs_file_extent_inline_start(ei), inline_size);
5524 sctx->send_size += inline_size;
5525
5526 ret = send_cmd(sctx);
5527
5528 tlv_put_failure:
5529 return ret;
5530 }
5531
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5532 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5533 u64 offset, u64 len)
5534 {
5535 struct btrfs_root *root = sctx->send_root;
5536 struct btrfs_fs_info *fs_info = root->fs_info;
5537 struct btrfs_inode *inode;
5538 struct fs_path *fspath;
5539 struct extent_buffer *leaf = path->nodes[0];
5540 struct btrfs_key key;
5541 struct btrfs_file_extent_item *ei;
5542 u64 disk_bytenr, disk_num_bytes;
5543 u32 data_offset;
5544 struct btrfs_cmd_header *hdr;
5545 u32 crc;
5546 int ret;
5547
5548 inode = btrfs_iget(sctx->cur_ino, root);
5549 if (IS_ERR(inode))
5550 return PTR_ERR(inode);
5551
5552 fspath = get_cur_inode_path(sctx);
5553 if (IS_ERR(fspath)) {
5554 ret = PTR_ERR(fspath);
5555 goto out;
5556 }
5557
5558 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5559 if (ret < 0)
5560 goto out;
5561
5562 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5563 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5564 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5565 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5566
5567 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5568 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5569 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5570 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5571 len));
5572 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5573 btrfs_file_extent_ram_bytes(leaf, ei));
5574 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5575 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5576 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5577 btrfs_file_extent_compression(leaf, ei));
5578 if (ret < 0)
5579 goto out;
5580 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5581 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5582
5583 ret = put_data_header(sctx, disk_num_bytes);
5584 if (ret < 0)
5585 goto out;
5586
5587 /*
5588 * We want to do I/O directly into the send buffer, so get the next page
5589 * boundary in the send buffer. This means that there may be a gap
5590 * between the beginning of the command and the file data.
5591 */
5592 data_offset = PAGE_ALIGN(sctx->send_size);
5593 if (data_offset > sctx->send_max_size ||
5594 sctx->send_max_size - data_offset < disk_num_bytes) {
5595 ret = -EOVERFLOW;
5596 goto out;
5597 }
5598
5599 /*
5600 * Note that send_buf is a mapping of send_buf_pages, so this is really
5601 * reading into send_buf.
5602 */
5603 ret = btrfs_encoded_read_regular_fill_pages(inode,
5604 disk_bytenr, disk_num_bytes,
5605 sctx->send_buf_pages +
5606 (data_offset >> PAGE_SHIFT),
5607 NULL);
5608 if (ret)
5609 goto out;
5610
5611 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5612 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5613 hdr->crc = 0;
5614 crc = crc32c(0, sctx->send_buf, sctx->send_size);
5615 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5616 hdr->crc = cpu_to_le32(crc);
5617
5618 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5619 &sctx->send_off);
5620 if (!ret) {
5621 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5622 disk_num_bytes, &sctx->send_off);
5623 }
5624 sctx->send_size = 0;
5625 sctx->put_data = false;
5626
5627 tlv_put_failure:
5628 out:
5629 iput(&inode->vfs_inode);
5630 return ret;
5631 }
5632
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5633 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5634 const u64 offset, const u64 len)
5635 {
5636 const u64 end = offset + len;
5637 struct extent_buffer *leaf = path->nodes[0];
5638 struct btrfs_file_extent_item *ei;
5639 u64 read_size = max_send_read_size(sctx);
5640 u64 sent = 0;
5641
5642 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5643 return send_update_extent(sctx, offset, len);
5644
5645 ei = btrfs_item_ptr(leaf, path->slots[0],
5646 struct btrfs_file_extent_item);
5647 /*
5648 * Do not go through encoded read for bs > ps cases.
5649 *
5650 * Encoded send is using vmallocated pages as buffer, which we can
5651 * not ensure every folio is large enough to contain a block.
5652 */
5653 if (sctx->send_root->fs_info->sectorsize <= PAGE_SIZE &&
5654 (sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5655 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5656 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5657 BTRFS_FILE_EXTENT_INLINE);
5658
5659 /*
5660 * Send the compressed extent unless the compressed data is
5661 * larger than the decompressed data. This can happen if we're
5662 * not sending the entire extent, either because it has been
5663 * partially overwritten/truncated or because this is a part of
5664 * the extent that we couldn't clone in clone_range().
5665 */
5666 if (is_inline &&
5667 btrfs_file_extent_inline_item_len(leaf,
5668 path->slots[0]) <= len) {
5669 return send_encoded_inline_extent(sctx, path, offset,
5670 len);
5671 } else if (!is_inline &&
5672 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5673 return send_encoded_extent(sctx, path, offset, len);
5674 }
5675 }
5676
5677 if (sctx->cur_inode == NULL) {
5678 struct btrfs_inode *btrfs_inode;
5679 struct btrfs_root *root = sctx->send_root;
5680
5681 btrfs_inode = btrfs_iget(sctx->cur_ino, root);
5682 if (IS_ERR(btrfs_inode))
5683 return PTR_ERR(btrfs_inode);
5684
5685 sctx->cur_inode = &btrfs_inode->vfs_inode;
5686 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5687 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5688
5689 /*
5690 * It's very likely there are no pages from this inode in the page
5691 * cache, so after reading extents and sending their data, we clean
5692 * the page cache to avoid trashing the page cache (adding pressure
5693 * to the page cache and forcing eviction of other data more useful
5694 * for applications).
5695 *
5696 * We decide if we should clean the page cache simply by checking
5697 * if the inode's mapping nrpages is 0 when we first open it, and
5698 * not by using something like filemap_range_has_page() before
5699 * reading an extent because when we ask the readahead code to
5700 * read a given file range, it may (and almost always does) read
5701 * pages from beyond that range (see the documentation for
5702 * page_cache_sync_readahead()), so it would not be reliable,
5703 * because after reading the first extent future calls to
5704 * filemap_range_has_page() would return true because the readahead
5705 * on the previous extent resulted in reading pages of the current
5706 * extent as well.
5707 */
5708 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5709 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5710 }
5711
5712 while (sent < len) {
5713 u64 size = min(len - sent, read_size);
5714 int ret;
5715
5716 ret = send_write(sctx, offset + sent, size);
5717 if (ret < 0)
5718 return ret;
5719 sent += size;
5720 }
5721
5722 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5723 /*
5724 * Always operate only on ranges that are a multiple of the page
5725 * size. This is not only to prevent zeroing parts of a page in
5726 * the case of subpage sector size, but also to guarantee we evict
5727 * pages, as passing a range that is smaller than page size does
5728 * not evict the respective page (only zeroes part of its content).
5729 *
5730 * Always start from the end offset of the last range cleared.
5731 * This is because the readahead code may (and very often does)
5732 * reads pages beyond the range we request for readahead. So if
5733 * we have an extent layout like this:
5734 *
5735 * [ extent A ] [ extent B ] [ extent C ]
5736 *
5737 * When we ask page_cache_sync_readahead() to read extent A, it
5738 * may also trigger reads for pages of extent B. If we are doing
5739 * an incremental send and extent B has not changed between the
5740 * parent and send snapshots, some or all of its pages may end
5741 * up being read and placed in the page cache. So when truncating
5742 * the page cache we always start from the end offset of the
5743 * previously processed extent up to the end of the current
5744 * extent.
5745 */
5746 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5747 sctx->page_cache_clear_start,
5748 end - 1);
5749 sctx->page_cache_clear_start = end;
5750 }
5751
5752 return 0;
5753 }
5754
5755 /*
5756 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5757 * found, call send_set_xattr function to emit it.
5758 *
5759 * Return 0 if there isn't a capability, or when the capability was emitted
5760 * successfully, or < 0 if an error occurred.
5761 */
send_capabilities(struct send_ctx * sctx)5762 static int send_capabilities(struct send_ctx *sctx)
5763 {
5764 BTRFS_PATH_AUTO_FREE(path);
5765 struct btrfs_dir_item *di;
5766 struct extent_buffer *leaf;
5767 unsigned long data_ptr;
5768 char *buf = NULL;
5769 int buf_len;
5770 int ret = 0;
5771
5772 path = alloc_path_for_send();
5773 if (!path)
5774 return -ENOMEM;
5775
5776 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5777 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5778 if (!di) {
5779 /* There is no xattr for this inode */
5780 goto out;
5781 } else if (IS_ERR(di)) {
5782 ret = PTR_ERR(di);
5783 goto out;
5784 }
5785
5786 leaf = path->nodes[0];
5787 buf_len = btrfs_dir_data_len(leaf, di);
5788
5789 buf = kmalloc(buf_len, GFP_KERNEL);
5790 if (!buf) {
5791 ret = -ENOMEM;
5792 goto out;
5793 }
5794
5795 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5796 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5797
5798 ret = send_set_xattr(sctx, XATTR_NAME_CAPS,
5799 strlen(XATTR_NAME_CAPS), buf, buf_len);
5800 out:
5801 kfree(buf);
5802 return ret;
5803 }
5804
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5805 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5806 struct clone_root *clone_root, const u64 disk_byte,
5807 u64 data_offset, u64 offset, u64 len)
5808 {
5809 BTRFS_PATH_AUTO_FREE(path);
5810 struct btrfs_key key;
5811 int ret;
5812 struct btrfs_inode_info info;
5813 u64 clone_src_i_size = 0;
5814
5815 /*
5816 * Prevent cloning from a zero offset with a length matching the sector
5817 * size because in some scenarios this will make the receiver fail.
5818 *
5819 * For example, if in the source filesystem the extent at offset 0
5820 * has a length of sectorsize and it was written using direct IO, then
5821 * it can never be an inline extent (even if compression is enabled).
5822 * Then this extent can be cloned in the original filesystem to a non
5823 * zero file offset, but it may not be possible to clone in the
5824 * destination filesystem because it can be inlined due to compression
5825 * on the destination filesystem (as the receiver's write operations are
5826 * always done using buffered IO). The same happens when the original
5827 * filesystem does not have compression enabled but the destination
5828 * filesystem has.
5829 */
5830 if (clone_root->offset == 0 &&
5831 len == sctx->send_root->fs_info->sectorsize)
5832 return send_extent_data(sctx, dst_path, offset, len);
5833
5834 path = alloc_path_for_send();
5835 if (!path)
5836 return -ENOMEM;
5837
5838 /*
5839 * There are inodes that have extents that lie behind its i_size. Don't
5840 * accept clones from these extents.
5841 */
5842 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5843 btrfs_release_path(path);
5844 if (ret < 0)
5845 return ret;
5846 clone_src_i_size = info.size;
5847
5848 /*
5849 * We can't send a clone operation for the entire range if we find
5850 * extent items in the respective range in the source file that
5851 * refer to different extents or if we find holes.
5852 * So check for that and do a mix of clone and regular write/copy
5853 * operations if needed.
5854 *
5855 * Example:
5856 *
5857 * mkfs.btrfs -f /dev/sda
5858 * mount /dev/sda /mnt
5859 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5860 * cp --reflink=always /mnt/foo /mnt/bar
5861 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5862 * btrfs subvolume snapshot -r /mnt /mnt/snap
5863 *
5864 * If when we send the snapshot and we are processing file bar (which
5865 * has a higher inode number than foo) we blindly send a clone operation
5866 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5867 * a file bar that matches the content of file foo - iow, doesn't match
5868 * the content from bar in the original filesystem.
5869 */
5870 key.objectid = clone_root->ino;
5871 key.type = BTRFS_EXTENT_DATA_KEY;
5872 key.offset = clone_root->offset;
5873 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5874 if (ret < 0)
5875 return ret;
5876 if (ret > 0 && path->slots[0] > 0) {
5877 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5878 if (key.objectid == clone_root->ino &&
5879 key.type == BTRFS_EXTENT_DATA_KEY)
5880 path->slots[0]--;
5881 }
5882
5883 while (true) {
5884 struct extent_buffer *leaf = path->nodes[0];
5885 int slot = path->slots[0];
5886 struct btrfs_file_extent_item *ei;
5887 u8 type;
5888 u64 ext_len;
5889 u64 clone_len;
5890 u64 clone_data_offset;
5891 bool crossed_src_i_size = false;
5892
5893 if (slot >= btrfs_header_nritems(leaf)) {
5894 ret = btrfs_next_leaf(clone_root->root, path);
5895 if (ret < 0)
5896 return ret;
5897 else if (ret > 0)
5898 break;
5899 continue;
5900 }
5901
5902 btrfs_item_key_to_cpu(leaf, &key, slot);
5903
5904 /*
5905 * We might have an implicit trailing hole (NO_HOLES feature
5906 * enabled). We deal with it after leaving this loop.
5907 */
5908 if (key.objectid != clone_root->ino ||
5909 key.type != BTRFS_EXTENT_DATA_KEY)
5910 break;
5911
5912 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5913 type = btrfs_file_extent_type(leaf, ei);
5914 if (type == BTRFS_FILE_EXTENT_INLINE) {
5915 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5916 ext_len = PAGE_ALIGN(ext_len);
5917 } else {
5918 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5919 }
5920
5921 if (key.offset + ext_len <= clone_root->offset)
5922 goto next;
5923
5924 if (key.offset > clone_root->offset) {
5925 /* Implicit hole, NO_HOLES feature enabled. */
5926 u64 hole_len = key.offset - clone_root->offset;
5927
5928 if (hole_len > len)
5929 hole_len = len;
5930 ret = send_extent_data(sctx, dst_path, offset,
5931 hole_len);
5932 if (ret < 0)
5933 return ret;
5934
5935 len -= hole_len;
5936 if (len == 0)
5937 break;
5938 offset += hole_len;
5939 clone_root->offset += hole_len;
5940 data_offset += hole_len;
5941 }
5942
5943 if (key.offset >= clone_root->offset + len)
5944 break;
5945
5946 if (key.offset >= clone_src_i_size)
5947 break;
5948
5949 if (key.offset + ext_len > clone_src_i_size) {
5950 ext_len = clone_src_i_size - key.offset;
5951 crossed_src_i_size = true;
5952 }
5953
5954 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5955 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5956 clone_root->offset = key.offset;
5957 if (clone_data_offset < data_offset &&
5958 clone_data_offset + ext_len > data_offset) {
5959 u64 extent_offset;
5960
5961 extent_offset = data_offset - clone_data_offset;
5962 ext_len -= extent_offset;
5963 clone_data_offset += extent_offset;
5964 clone_root->offset += extent_offset;
5965 }
5966 }
5967
5968 clone_len = min_t(u64, ext_len, len);
5969
5970 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5971 clone_data_offset == data_offset) {
5972 const u64 src_end = clone_root->offset + clone_len;
5973 const u64 sectorsize = SZ_64K;
5974
5975 /*
5976 * We can't clone the last block, when its size is not
5977 * sector size aligned, into the middle of a file. If we
5978 * do so, the receiver will get a failure (-EINVAL) when
5979 * trying to clone or will silently corrupt the data in
5980 * the destination file if it's on a kernel without the
5981 * fix introduced by commit ac765f83f1397646
5982 * ("Btrfs: fix data corruption due to cloning of eof
5983 * block).
5984 *
5985 * So issue a clone of the aligned down range plus a
5986 * regular write for the eof block, if we hit that case.
5987 *
5988 * Also, we use the maximum possible sector size, 64K,
5989 * because we don't know what's the sector size of the
5990 * filesystem that receives the stream, so we have to
5991 * assume the largest possible sector size.
5992 */
5993 if (src_end == clone_src_i_size &&
5994 !IS_ALIGNED(src_end, sectorsize) &&
5995 offset + clone_len < sctx->cur_inode_size) {
5996 u64 slen;
5997
5998 slen = ALIGN_DOWN(src_end - clone_root->offset,
5999 sectorsize);
6000 if (slen > 0) {
6001 ret = send_clone(sctx, offset, slen,
6002 clone_root);
6003 if (ret < 0)
6004 return ret;
6005 }
6006 ret = send_extent_data(sctx, dst_path,
6007 offset + slen,
6008 clone_len - slen);
6009 } else {
6010 ret = send_clone(sctx, offset, clone_len,
6011 clone_root);
6012 }
6013 } else if (crossed_src_i_size && clone_len < len) {
6014 /*
6015 * If we are at i_size of the clone source inode and we
6016 * can not clone from it, terminate the loop. This is
6017 * to avoid sending two write operations, one with a
6018 * length matching clone_len and the final one after
6019 * this loop with a length of len - clone_len.
6020 *
6021 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6022 * was passed to the send ioctl), this helps avoid
6023 * sending an encoded write for an offset that is not
6024 * sector size aligned, in case the i_size of the source
6025 * inode is not sector size aligned. That will make the
6026 * receiver fallback to decompression of the data and
6027 * writing it using regular buffered IO, therefore while
6028 * not incorrect, it's not optimal due decompression and
6029 * possible re-compression at the receiver.
6030 */
6031 break;
6032 } else {
6033 ret = send_extent_data(sctx, dst_path, offset,
6034 clone_len);
6035 }
6036
6037 if (ret < 0)
6038 return ret;
6039
6040 len -= clone_len;
6041 if (len == 0)
6042 break;
6043 offset += clone_len;
6044 clone_root->offset += clone_len;
6045
6046 /*
6047 * If we are cloning from the file we are currently processing,
6048 * and using the send root as the clone root, we must stop once
6049 * the current clone offset reaches the current eof of the file
6050 * at the receiver, otherwise we would issue an invalid clone
6051 * operation (source range going beyond eof) and cause the
6052 * receiver to fail. So if we reach the current eof, bail out
6053 * and fallback to a regular write.
6054 */
6055 if (clone_root->root == sctx->send_root &&
6056 clone_root->ino == sctx->cur_ino &&
6057 clone_root->offset >= sctx->cur_inode_next_write_offset)
6058 break;
6059
6060 data_offset += clone_len;
6061 next:
6062 path->slots[0]++;
6063 }
6064
6065 if (len > 0)
6066 ret = send_extent_data(sctx, dst_path, offset, len);
6067 else
6068 ret = 0;
6069 return ret;
6070 }
6071
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6072 static int send_write_or_clone(struct send_ctx *sctx,
6073 struct btrfs_path *path,
6074 struct btrfs_key *key,
6075 struct clone_root *clone_root)
6076 {
6077 int ret = 0;
6078 u64 offset = key->offset;
6079 u64 end;
6080 u64 bs = sctx->send_root->fs_info->sectorsize;
6081 struct btrfs_file_extent_item *ei;
6082 u64 disk_byte;
6083 u64 data_offset;
6084 u64 num_bytes;
6085 struct btrfs_inode_info info = { 0 };
6086
6087 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6088 if (offset >= end)
6089 return 0;
6090
6091 num_bytes = end - offset;
6092
6093 if (!clone_root)
6094 goto write_data;
6095
6096 if (IS_ALIGNED(end, bs))
6097 goto clone_data;
6098
6099 /*
6100 * If the extent end is not aligned, we can clone if the extent ends at
6101 * the i_size of the inode and the clone range ends at the i_size of the
6102 * source inode, otherwise the clone operation fails with -EINVAL.
6103 */
6104 if (end != sctx->cur_inode_size)
6105 goto write_data;
6106
6107 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6108 if (ret < 0)
6109 return ret;
6110
6111 if (clone_root->offset + num_bytes == info.size) {
6112 /*
6113 * The final size of our file matches the end offset, but it may
6114 * be that its current size is larger, so we have to truncate it
6115 * to any value between the start offset of the range and the
6116 * final i_size, otherwise the clone operation is invalid
6117 * because it's unaligned and it ends before the current EOF.
6118 * We do this truncate to the final i_size when we finish
6119 * processing the inode, but it's too late by then. And here we
6120 * truncate to the start offset of the range because it's always
6121 * sector size aligned while if it were the final i_size it
6122 * would result in dirtying part of a page, filling part of a
6123 * page with zeroes and then having the clone operation at the
6124 * receiver trigger IO and wait for it due to the dirty page.
6125 */
6126 if (sctx->parent_root != NULL) {
6127 ret = send_truncate(sctx, sctx->cur_ino,
6128 sctx->cur_inode_gen, offset);
6129 if (ret < 0)
6130 return ret;
6131 }
6132 goto clone_data;
6133 }
6134
6135 write_data:
6136 ret = send_extent_data(sctx, path, offset, num_bytes);
6137 sctx->cur_inode_next_write_offset = end;
6138 return ret;
6139
6140 clone_data:
6141 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6142 struct btrfs_file_extent_item);
6143 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6144 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6145 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6146 num_bytes);
6147 sctx->cur_inode_next_write_offset = end;
6148 return ret;
6149 }
6150
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6151 static int is_extent_unchanged(struct send_ctx *sctx,
6152 struct btrfs_path *left_path,
6153 struct btrfs_key *ekey)
6154 {
6155 int ret = 0;
6156 struct btrfs_key key;
6157 BTRFS_PATH_AUTO_FREE(path);
6158 struct extent_buffer *eb;
6159 int slot;
6160 struct btrfs_key found_key;
6161 struct btrfs_file_extent_item *ei;
6162 u64 left_disknr;
6163 u64 right_disknr;
6164 u64 left_offset;
6165 u64 right_offset;
6166 u64 left_offset_fixed;
6167 u64 left_len;
6168 u64 right_len;
6169 u64 left_gen;
6170 u64 right_gen;
6171 u8 left_type;
6172 u8 right_type;
6173
6174 path = alloc_path_for_send();
6175 if (!path)
6176 return -ENOMEM;
6177
6178 eb = left_path->nodes[0];
6179 slot = left_path->slots[0];
6180 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6181 left_type = btrfs_file_extent_type(eb, ei);
6182
6183 if (left_type != BTRFS_FILE_EXTENT_REG)
6184 return 0;
6185
6186 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6187 left_len = btrfs_file_extent_num_bytes(eb, ei);
6188 left_offset = btrfs_file_extent_offset(eb, ei);
6189 left_gen = btrfs_file_extent_generation(eb, ei);
6190
6191 /*
6192 * Following comments will refer to these graphics. L is the left
6193 * extents which we are checking at the moment. 1-8 are the right
6194 * extents that we iterate.
6195 *
6196 * |-----L-----|
6197 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6198 *
6199 * |-----L-----|
6200 * |--1--|-2b-|...(same as above)
6201 *
6202 * Alternative situation. Happens on files where extents got split.
6203 * |-----L-----|
6204 * |-----------7-----------|-6-|
6205 *
6206 * Alternative situation. Happens on files which got larger.
6207 * |-----L-----|
6208 * |-8-|
6209 * Nothing follows after 8.
6210 */
6211
6212 key.objectid = ekey->objectid;
6213 key.type = BTRFS_EXTENT_DATA_KEY;
6214 key.offset = ekey->offset;
6215 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6216 if (ret < 0)
6217 return ret;
6218 if (ret)
6219 return 0;
6220
6221 /*
6222 * Handle special case where the right side has no extents at all.
6223 */
6224 eb = path->nodes[0];
6225 slot = path->slots[0];
6226 btrfs_item_key_to_cpu(eb, &found_key, slot);
6227 if (found_key.objectid != key.objectid ||
6228 found_key.type != key.type)
6229 /* If we're a hole then just pretend nothing changed */
6230 return (left_disknr ? 0 : 1);
6231
6232 /*
6233 * We're now on 2a, 2b or 7.
6234 */
6235 key = found_key;
6236 while (key.offset < ekey->offset + left_len) {
6237 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6238 right_type = btrfs_file_extent_type(eb, ei);
6239 if (right_type != BTRFS_FILE_EXTENT_REG &&
6240 right_type != BTRFS_FILE_EXTENT_INLINE)
6241 return 0;
6242
6243 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6244 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6245 right_len = PAGE_ALIGN(right_len);
6246 } else {
6247 right_len = btrfs_file_extent_num_bytes(eb, ei);
6248 }
6249
6250 /*
6251 * Are we at extent 8? If yes, we know the extent is changed.
6252 * This may only happen on the first iteration.
6253 */
6254 if (found_key.offset + right_len <= ekey->offset)
6255 /* If we're a hole just pretend nothing changed */
6256 return (left_disknr ? 0 : 1);
6257
6258 /*
6259 * We just wanted to see if when we have an inline extent, what
6260 * follows it is a regular extent (wanted to check the above
6261 * condition for inline extents too). This should normally not
6262 * happen but it's possible for example when we have an inline
6263 * compressed extent representing data with a size matching
6264 * the page size (currently the same as sector size).
6265 */
6266 if (right_type == BTRFS_FILE_EXTENT_INLINE)
6267 return 0;
6268
6269 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6270 right_offset = btrfs_file_extent_offset(eb, ei);
6271 right_gen = btrfs_file_extent_generation(eb, ei);
6272
6273 left_offset_fixed = left_offset;
6274 if (key.offset < ekey->offset) {
6275 /* Fix the right offset for 2a and 7. */
6276 right_offset += ekey->offset - key.offset;
6277 } else {
6278 /* Fix the left offset for all behind 2a and 2b */
6279 left_offset_fixed += key.offset - ekey->offset;
6280 }
6281
6282 /*
6283 * Check if we have the same extent.
6284 */
6285 if (left_disknr != right_disknr ||
6286 left_offset_fixed != right_offset ||
6287 left_gen != right_gen)
6288 return 0;
6289
6290 /*
6291 * Go to the next extent.
6292 */
6293 ret = btrfs_next_item(sctx->parent_root, path);
6294 if (ret < 0)
6295 return ret;
6296 if (!ret) {
6297 eb = path->nodes[0];
6298 slot = path->slots[0];
6299 btrfs_item_key_to_cpu(eb, &found_key, slot);
6300 }
6301 if (ret || found_key.objectid != key.objectid ||
6302 found_key.type != key.type) {
6303 key.offset += right_len;
6304 break;
6305 }
6306 if (found_key.offset != key.offset + right_len)
6307 return 0;
6308
6309 key = found_key;
6310 }
6311
6312 /*
6313 * We're now behind the left extent (treat as unchanged) or at the end
6314 * of the right side (treat as changed).
6315 */
6316 if (key.offset >= ekey->offset + left_len)
6317 ret = 1;
6318 else
6319 ret = 0;
6320
6321 return ret;
6322 }
6323
get_last_extent(struct send_ctx * sctx,u64 offset)6324 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6325 {
6326 BTRFS_PATH_AUTO_FREE(path);
6327 struct btrfs_root *root = sctx->send_root;
6328 struct btrfs_key key;
6329 int ret;
6330
6331 path = alloc_path_for_send();
6332 if (!path)
6333 return -ENOMEM;
6334
6335 sctx->cur_inode_last_extent = 0;
6336
6337 key.objectid = sctx->cur_ino;
6338 key.type = BTRFS_EXTENT_DATA_KEY;
6339 key.offset = offset;
6340 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6341 if (ret < 0)
6342 return ret;
6343 ret = 0;
6344 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6345 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6346 return ret;
6347
6348 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6349 return ret;
6350 }
6351
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6352 static int range_is_hole_in_parent(struct send_ctx *sctx,
6353 const u64 start,
6354 const u64 end)
6355 {
6356 BTRFS_PATH_AUTO_FREE(path);
6357 struct btrfs_key key;
6358 struct btrfs_root *root = sctx->parent_root;
6359 u64 search_start = start;
6360 int ret;
6361
6362 path = alloc_path_for_send();
6363 if (!path)
6364 return -ENOMEM;
6365
6366 key.objectid = sctx->cur_ino;
6367 key.type = BTRFS_EXTENT_DATA_KEY;
6368 key.offset = search_start;
6369 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6370 if (ret < 0)
6371 return ret;
6372 if (ret > 0 && path->slots[0] > 0)
6373 path->slots[0]--;
6374
6375 while (search_start < end) {
6376 struct extent_buffer *leaf = path->nodes[0];
6377 int slot = path->slots[0];
6378 struct btrfs_file_extent_item *fi;
6379 u64 extent_end;
6380
6381 if (slot >= btrfs_header_nritems(leaf)) {
6382 ret = btrfs_next_leaf(root, path);
6383 if (ret < 0)
6384 return ret;
6385 if (ret > 0)
6386 break;
6387 continue;
6388 }
6389
6390 btrfs_item_key_to_cpu(leaf, &key, slot);
6391 if (key.objectid < sctx->cur_ino ||
6392 key.type < BTRFS_EXTENT_DATA_KEY)
6393 goto next;
6394 if (key.objectid > sctx->cur_ino ||
6395 key.type > BTRFS_EXTENT_DATA_KEY ||
6396 key.offset >= end)
6397 break;
6398
6399 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6400 extent_end = btrfs_file_extent_end(path);
6401 if (extent_end <= start)
6402 goto next;
6403 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6404 search_start = extent_end;
6405 goto next;
6406 }
6407 return 0;
6408 next:
6409 path->slots[0]++;
6410 }
6411 return 1;
6412 }
6413
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6414 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6415 struct btrfs_key *key)
6416 {
6417 int ret = 0;
6418
6419 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6420 return 0;
6421
6422 /*
6423 * Get last extent's end offset (exclusive) if we haven't determined it
6424 * yet (we're processing the first file extent item that is new), or if
6425 * we're at the first slot of a leaf and the last extent's end is less
6426 * than the current extent's offset, because we might have skipped
6427 * entire leaves that contained only file extent items for our current
6428 * inode. These leaves have a generation number smaller (older) than the
6429 * one in the current leaf and the leaf our last extent came from, and
6430 * are located between these 2 leaves.
6431 */
6432 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6433 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6434 ret = get_last_extent(sctx, key->offset - 1);
6435 if (ret)
6436 return ret;
6437 }
6438
6439 if (sctx->cur_inode_last_extent < key->offset) {
6440 ret = range_is_hole_in_parent(sctx,
6441 sctx->cur_inode_last_extent,
6442 key->offset);
6443 if (ret < 0)
6444 return ret;
6445 else if (ret == 0)
6446 ret = send_hole(sctx, key->offset);
6447 else
6448 ret = 0;
6449 }
6450 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6451 return ret;
6452 }
6453
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6454 static int process_extent(struct send_ctx *sctx,
6455 struct btrfs_path *path,
6456 struct btrfs_key *key)
6457 {
6458 struct clone_root *found_clone = NULL;
6459 int ret = 0;
6460
6461 if (S_ISLNK(sctx->cur_inode_mode))
6462 return 0;
6463
6464 if (sctx->parent_root && !sctx->cur_inode_new) {
6465 ret = is_extent_unchanged(sctx, path, key);
6466 if (ret < 0)
6467 goto out;
6468 if (ret) {
6469 ret = 0;
6470 goto out_hole;
6471 }
6472 } else {
6473 struct btrfs_file_extent_item *ei;
6474 u8 type;
6475
6476 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6477 struct btrfs_file_extent_item);
6478 type = btrfs_file_extent_type(path->nodes[0], ei);
6479 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6480 type == BTRFS_FILE_EXTENT_REG) {
6481 /*
6482 * The send spec does not have a prealloc command yet,
6483 * so just leave a hole for prealloc'ed extents until
6484 * we have enough commands queued up to justify rev'ing
6485 * the send spec.
6486 */
6487 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6488 ret = 0;
6489 goto out;
6490 }
6491
6492 /* Have a hole, just skip it. */
6493 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6494 ret = 0;
6495 goto out;
6496 }
6497 }
6498 }
6499
6500 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6501 sctx->cur_inode_size, &found_clone);
6502 if (ret != -ENOENT && ret < 0)
6503 goto out;
6504
6505 ret = send_write_or_clone(sctx, path, key, found_clone);
6506 if (ret)
6507 goto out;
6508 out_hole:
6509 ret = maybe_send_hole(sctx, path, key);
6510 out:
6511 return ret;
6512 }
6513
process_all_extents(struct send_ctx * sctx)6514 static int process_all_extents(struct send_ctx *sctx)
6515 {
6516 int ret = 0;
6517 int iter_ret = 0;
6518 struct btrfs_root *root;
6519 BTRFS_PATH_AUTO_FREE(path);
6520 struct btrfs_key key;
6521 struct btrfs_key found_key;
6522
6523 root = sctx->send_root;
6524 path = alloc_path_for_send();
6525 if (!path)
6526 return -ENOMEM;
6527
6528 key.objectid = sctx->cmp_key->objectid;
6529 key.type = BTRFS_EXTENT_DATA_KEY;
6530 key.offset = 0;
6531 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6532 if (found_key.objectid != key.objectid ||
6533 found_key.type != key.type) {
6534 ret = 0;
6535 break;
6536 }
6537
6538 ret = process_extent(sctx, path, &found_key);
6539 if (ret < 0)
6540 break;
6541 }
6542 /* Catch error found during iteration */
6543 if (iter_ret < 0)
6544 ret = iter_ret;
6545
6546 return ret;
6547 }
6548
process_recorded_refs_if_needed(struct send_ctx * sctx,bool at_end,int * pending_move,int * refs_processed)6549 static int process_recorded_refs_if_needed(struct send_ctx *sctx, bool at_end,
6550 int *pending_move,
6551 int *refs_processed)
6552 {
6553 int ret = 0;
6554
6555 if (sctx->cur_ino == 0)
6556 goto out;
6557 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6558 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6559 goto out;
6560 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6561 goto out;
6562
6563 ret = process_recorded_refs(sctx, pending_move);
6564 if (ret < 0)
6565 goto out;
6566
6567 *refs_processed = 1;
6568 out:
6569 return ret;
6570 }
6571
finish_inode_if_needed(struct send_ctx * sctx,bool at_end)6572 static int finish_inode_if_needed(struct send_ctx *sctx, bool at_end)
6573 {
6574 int ret = 0;
6575 struct btrfs_inode_info info;
6576 u64 left_mode;
6577 u64 left_uid;
6578 u64 left_gid;
6579 u64 left_fileattr;
6580 u64 right_mode;
6581 u64 right_uid;
6582 u64 right_gid;
6583 u64 right_fileattr;
6584 int need_chmod = 0;
6585 int need_chown = 0;
6586 bool need_fileattr = false;
6587 int need_truncate = 1;
6588 int pending_move = 0;
6589 int refs_processed = 0;
6590
6591 if (sctx->ignore_cur_inode)
6592 return 0;
6593
6594 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6595 &refs_processed);
6596 if (ret < 0)
6597 goto out;
6598
6599 /*
6600 * We have processed the refs and thus need to advance send_progress.
6601 * Now, calls to get_cur_xxx will take the updated refs of the current
6602 * inode into account.
6603 *
6604 * On the other hand, if our current inode is a directory and couldn't
6605 * be moved/renamed because its parent was renamed/moved too and it has
6606 * a higher inode number, we can only move/rename our current inode
6607 * after we moved/renamed its parent. Therefore in this case operate on
6608 * the old path (pre move/rename) of our current inode, and the
6609 * move/rename will be performed later.
6610 */
6611 if (refs_processed && !pending_move)
6612 sctx->send_progress = sctx->cur_ino + 1;
6613
6614 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6615 goto out;
6616 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6617 goto out;
6618 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6619 if (ret < 0)
6620 goto out;
6621 left_mode = info.mode;
6622 left_uid = info.uid;
6623 left_gid = info.gid;
6624 left_fileattr = info.fileattr;
6625
6626 if (!sctx->parent_root || sctx->cur_inode_new) {
6627 need_chown = 1;
6628 if (!S_ISLNK(sctx->cur_inode_mode))
6629 need_chmod = 1;
6630 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6631 need_truncate = 0;
6632 } else {
6633 u64 old_size;
6634
6635 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6636 if (ret < 0)
6637 goto out;
6638 old_size = info.size;
6639 right_mode = info.mode;
6640 right_uid = info.uid;
6641 right_gid = info.gid;
6642 right_fileattr = info.fileattr;
6643
6644 if (left_uid != right_uid || left_gid != right_gid)
6645 need_chown = 1;
6646 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6647 need_chmod = 1;
6648 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6649 need_fileattr = true;
6650 if ((old_size == sctx->cur_inode_size) ||
6651 (sctx->cur_inode_size > old_size &&
6652 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6653 need_truncate = 0;
6654 }
6655
6656 if (S_ISREG(sctx->cur_inode_mode)) {
6657 if (need_send_hole(sctx)) {
6658 if (sctx->cur_inode_last_extent == (u64)-1 ||
6659 sctx->cur_inode_last_extent <
6660 sctx->cur_inode_size) {
6661 ret = get_last_extent(sctx, (u64)-1);
6662 if (ret)
6663 goto out;
6664 }
6665 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6666 ret = range_is_hole_in_parent(sctx,
6667 sctx->cur_inode_last_extent,
6668 sctx->cur_inode_size);
6669 if (ret < 0) {
6670 goto out;
6671 } else if (ret == 0) {
6672 ret = send_hole(sctx, sctx->cur_inode_size);
6673 if (ret < 0)
6674 goto out;
6675 } else {
6676 /* Range is already a hole, skip. */
6677 ret = 0;
6678 }
6679 }
6680 }
6681 if (need_truncate) {
6682 ret = send_truncate(sctx, sctx->cur_ino,
6683 sctx->cur_inode_gen,
6684 sctx->cur_inode_size);
6685 if (ret < 0)
6686 goto out;
6687 }
6688 }
6689
6690 if (need_chown) {
6691 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6692 left_uid, left_gid);
6693 if (ret < 0)
6694 goto out;
6695 }
6696 if (need_chmod) {
6697 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6698 left_mode);
6699 if (ret < 0)
6700 goto out;
6701 }
6702 if (need_fileattr) {
6703 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6704 left_fileattr);
6705 if (ret < 0)
6706 goto out;
6707 }
6708
6709 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6710 && sctx->cur_inode_needs_verity) {
6711 ret = process_verity(sctx);
6712 if (ret < 0)
6713 goto out;
6714 }
6715
6716 ret = send_capabilities(sctx);
6717 if (ret < 0)
6718 goto out;
6719
6720 /*
6721 * If other directory inodes depended on our current directory
6722 * inode's move/rename, now do their move/rename operations.
6723 */
6724 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6725 ret = apply_children_dir_moves(sctx);
6726 if (ret)
6727 goto out;
6728 /*
6729 * Need to send that every time, no matter if it actually
6730 * changed between the two trees as we have done changes to
6731 * the inode before. If our inode is a directory and it's
6732 * waiting to be moved/renamed, we will send its utimes when
6733 * it's moved/renamed, therefore we don't need to do it here.
6734 */
6735 sctx->send_progress = sctx->cur_ino + 1;
6736
6737 /*
6738 * If the current inode is a non-empty directory, delay issuing
6739 * the utimes command for it, as it's very likely we have inodes
6740 * with an higher number inside it. We want to issue the utimes
6741 * command only after adding all dentries to it.
6742 */
6743 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6744 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6745 else
6746 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6747
6748 if (ret < 0)
6749 goto out;
6750 }
6751
6752 out:
6753 if (!ret)
6754 ret = trim_dir_utimes_cache(sctx);
6755
6756 return ret;
6757 }
6758
close_current_inode(struct send_ctx * sctx)6759 static void close_current_inode(struct send_ctx *sctx)
6760 {
6761 u64 i_size;
6762
6763 if (sctx->cur_inode == NULL)
6764 return;
6765
6766 i_size = i_size_read(sctx->cur_inode);
6767
6768 /*
6769 * If we are doing an incremental send, we may have extents between the
6770 * last processed extent and the i_size that have not been processed
6771 * because they haven't changed but we may have read some of their pages
6772 * through readahead, see the comments at send_extent_data().
6773 */
6774 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6775 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6776 sctx->page_cache_clear_start,
6777 round_up(i_size, PAGE_SIZE) - 1);
6778
6779 iput(sctx->cur_inode);
6780 sctx->cur_inode = NULL;
6781 }
6782
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6783 static int changed_inode(struct send_ctx *sctx,
6784 enum btrfs_compare_tree_result result)
6785 {
6786 int ret = 0;
6787 struct btrfs_key *key = sctx->cmp_key;
6788 struct btrfs_inode_item *left_ii = NULL;
6789 struct btrfs_inode_item *right_ii = NULL;
6790 u64 left_gen = 0;
6791 u64 right_gen = 0;
6792
6793 close_current_inode(sctx);
6794
6795 sctx->cur_ino = key->objectid;
6796 sctx->cur_inode_new_gen = false;
6797 sctx->cur_inode_last_extent = (u64)-1;
6798 sctx->cur_inode_next_write_offset = 0;
6799 sctx->ignore_cur_inode = false;
6800 fs_path_reset(&sctx->cur_inode_path);
6801
6802 /*
6803 * Set send_progress to current inode. This will tell all get_cur_xxx
6804 * functions that the current inode's refs are not updated yet. Later,
6805 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6806 */
6807 sctx->send_progress = sctx->cur_ino;
6808
6809 if (result == BTRFS_COMPARE_TREE_NEW ||
6810 result == BTRFS_COMPARE_TREE_CHANGED) {
6811 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6812 sctx->left_path->slots[0],
6813 struct btrfs_inode_item);
6814 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6815 left_ii);
6816 } else {
6817 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6818 sctx->right_path->slots[0],
6819 struct btrfs_inode_item);
6820 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6821 right_ii);
6822 }
6823 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6824 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6825 sctx->right_path->slots[0],
6826 struct btrfs_inode_item);
6827
6828 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6829 right_ii);
6830
6831 /*
6832 * The cur_ino = root dir case is special here. We can't treat
6833 * the inode as deleted+reused because it would generate a
6834 * stream that tries to delete/mkdir the root dir.
6835 */
6836 if (left_gen != right_gen &&
6837 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6838 sctx->cur_inode_new_gen = true;
6839 }
6840
6841 /*
6842 * Normally we do not find inodes with a link count of zero (orphans)
6843 * because the most common case is to create a snapshot and use it
6844 * for a send operation. However other less common use cases involve
6845 * using a subvolume and send it after turning it to RO mode just
6846 * after deleting all hard links of a file while holding an open
6847 * file descriptor against it or turning a RO snapshot into RW mode,
6848 * keep an open file descriptor against a file, delete it and then
6849 * turn the snapshot back to RO mode before using it for a send
6850 * operation. The former is what the receiver operation does.
6851 * Therefore, if we want to send these snapshots soon after they're
6852 * received, we need to handle orphan inodes as well. Moreover, orphans
6853 * can appear not only in the send snapshot but also in the parent
6854 * snapshot. Here are several cases:
6855 *
6856 * Case 1: BTRFS_COMPARE_TREE_NEW
6857 * | send snapshot | action
6858 * --------------------------------
6859 * nlink | 0 | ignore
6860 *
6861 * Case 2: BTRFS_COMPARE_TREE_DELETED
6862 * | parent snapshot | action
6863 * ----------------------------------
6864 * nlink | 0 | as usual
6865 * Note: No unlinks will be sent because there're no paths for it.
6866 *
6867 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6868 * | | parent snapshot | send snapshot | action
6869 * -----------------------------------------------------------------------
6870 * subcase 1 | nlink | 0 | 0 | ignore
6871 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6872 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6873 *
6874 */
6875 if (result == BTRFS_COMPARE_TREE_NEW) {
6876 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6877 sctx->ignore_cur_inode = true;
6878 goto out;
6879 }
6880 sctx->cur_inode_gen = left_gen;
6881 sctx->cur_inode_new = true;
6882 sctx->cur_inode_deleted = false;
6883 sctx->cur_inode_size = btrfs_inode_size(
6884 sctx->left_path->nodes[0], left_ii);
6885 sctx->cur_inode_mode = btrfs_inode_mode(
6886 sctx->left_path->nodes[0], left_ii);
6887 sctx->cur_inode_rdev = btrfs_inode_rdev(
6888 sctx->left_path->nodes[0], left_ii);
6889 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6890 ret = send_create_inode_if_needed(sctx);
6891 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6892 sctx->cur_inode_gen = right_gen;
6893 sctx->cur_inode_new = false;
6894 sctx->cur_inode_deleted = true;
6895 sctx->cur_inode_size = btrfs_inode_size(
6896 sctx->right_path->nodes[0], right_ii);
6897 sctx->cur_inode_mode = btrfs_inode_mode(
6898 sctx->right_path->nodes[0], right_ii);
6899 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6900 u32 new_nlinks, old_nlinks;
6901
6902 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6903 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6904 if (new_nlinks == 0 && old_nlinks == 0) {
6905 sctx->ignore_cur_inode = true;
6906 goto out;
6907 } else if (new_nlinks == 0 || old_nlinks == 0) {
6908 sctx->cur_inode_new_gen = 1;
6909 }
6910 /*
6911 * We need to do some special handling in case the inode was
6912 * reported as changed with a changed generation number. This
6913 * means that the original inode was deleted and new inode
6914 * reused the same inum. So we have to treat the old inode as
6915 * deleted and the new one as new.
6916 */
6917 if (sctx->cur_inode_new_gen) {
6918 /*
6919 * First, process the inode as if it was deleted.
6920 */
6921 if (old_nlinks > 0) {
6922 sctx->cur_inode_gen = right_gen;
6923 sctx->cur_inode_new = false;
6924 sctx->cur_inode_deleted = true;
6925 sctx->cur_inode_size = btrfs_inode_size(
6926 sctx->right_path->nodes[0], right_ii);
6927 sctx->cur_inode_mode = btrfs_inode_mode(
6928 sctx->right_path->nodes[0], right_ii);
6929 ret = process_all_refs(sctx,
6930 BTRFS_COMPARE_TREE_DELETED);
6931 if (ret < 0)
6932 goto out;
6933 }
6934
6935 /*
6936 * Now process the inode as if it was new.
6937 */
6938 if (new_nlinks > 0) {
6939 sctx->cur_inode_gen = left_gen;
6940 sctx->cur_inode_new = true;
6941 sctx->cur_inode_deleted = false;
6942 sctx->cur_inode_size = btrfs_inode_size(
6943 sctx->left_path->nodes[0],
6944 left_ii);
6945 sctx->cur_inode_mode = btrfs_inode_mode(
6946 sctx->left_path->nodes[0],
6947 left_ii);
6948 sctx->cur_inode_rdev = btrfs_inode_rdev(
6949 sctx->left_path->nodes[0],
6950 left_ii);
6951 ret = send_create_inode_if_needed(sctx);
6952 if (ret < 0)
6953 goto out;
6954
6955 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6956 if (ret < 0)
6957 goto out;
6958 /*
6959 * Advance send_progress now as we did not get
6960 * into process_recorded_refs_if_needed in the
6961 * new_gen case.
6962 */
6963 sctx->send_progress = sctx->cur_ino + 1;
6964
6965 /*
6966 * Now process all extents and xattrs of the
6967 * inode as if they were all new.
6968 */
6969 ret = process_all_extents(sctx);
6970 if (ret < 0)
6971 goto out;
6972 ret = process_all_new_xattrs(sctx);
6973 if (ret < 0)
6974 goto out;
6975 }
6976 } else {
6977 sctx->cur_inode_gen = left_gen;
6978 sctx->cur_inode_new = false;
6979 sctx->cur_inode_new_gen = false;
6980 sctx->cur_inode_deleted = false;
6981 sctx->cur_inode_size = btrfs_inode_size(
6982 sctx->left_path->nodes[0], left_ii);
6983 sctx->cur_inode_mode = btrfs_inode_mode(
6984 sctx->left_path->nodes[0], left_ii);
6985 }
6986 }
6987
6988 out:
6989 return ret;
6990 }
6991
6992 /*
6993 * We have to process new refs before deleted refs, but compare_trees gives us
6994 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6995 * first and later process them in process_recorded_refs.
6996 * For the cur_inode_new_gen case, we skip recording completely because
6997 * changed_inode did already initiate processing of refs. The reason for this is
6998 * that in this case, compare_tree actually compares the refs of 2 different
6999 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7000 * refs of the right tree as deleted and all refs of the left tree as new.
7001 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7002 static int changed_ref(struct send_ctx *sctx,
7003 enum btrfs_compare_tree_result result)
7004 {
7005 int ret = 0;
7006
7007 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) {
7008 inconsistent_snapshot_error(sctx, result, "reference");
7009 return -EIO;
7010 }
7011
7012 if (!sctx->cur_inode_new_gen &&
7013 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7014 if (result == BTRFS_COMPARE_TREE_NEW)
7015 ret = record_new_ref(sctx);
7016 else if (result == BTRFS_COMPARE_TREE_DELETED)
7017 ret = record_deleted_ref(sctx);
7018 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7019 ret = record_changed_ref(sctx);
7020 }
7021
7022 return ret;
7023 }
7024
7025 /*
7026 * Process new/deleted/changed xattrs. We skip processing in the
7027 * cur_inode_new_gen case because changed_inode did already initiate processing
7028 * of xattrs. The reason is the same as in changed_ref
7029 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7030 static int changed_xattr(struct send_ctx *sctx,
7031 enum btrfs_compare_tree_result result)
7032 {
7033 int ret = 0;
7034
7035 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) {
7036 inconsistent_snapshot_error(sctx, result, "xattr");
7037 return -EIO;
7038 }
7039
7040 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7041 if (result == BTRFS_COMPARE_TREE_NEW)
7042 ret = process_new_xattr(sctx);
7043 else if (result == BTRFS_COMPARE_TREE_DELETED)
7044 ret = process_deleted_xattr(sctx);
7045 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7046 ret = process_changed_xattr(sctx);
7047 }
7048
7049 return ret;
7050 }
7051
7052 /*
7053 * Process new/deleted/changed extents. We skip processing in the
7054 * cur_inode_new_gen case because changed_inode did already initiate processing
7055 * of extents. The reason is the same as in changed_ref
7056 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7057 static int changed_extent(struct send_ctx *sctx,
7058 enum btrfs_compare_tree_result result)
7059 {
7060 int ret = 0;
7061
7062 /*
7063 * We have found an extent item that changed without the inode item
7064 * having changed. This can happen either after relocation (where the
7065 * disk_bytenr of an extent item is replaced at
7066 * relocation.c:replace_file_extents()) or after deduplication into a
7067 * file in both the parent and send snapshots (where an extent item can
7068 * get modified or replaced with a new one). Note that deduplication
7069 * updates the inode item, but it only changes the iversion (sequence
7070 * field in the inode item) of the inode, so if a file is deduplicated
7071 * the same amount of times in both the parent and send snapshots, its
7072 * iversion becomes the same in both snapshots, whence the inode item is
7073 * the same on both snapshots.
7074 */
7075 if (sctx->cur_ino != sctx->cmp_key->objectid)
7076 return 0;
7077
7078 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7079 if (result != BTRFS_COMPARE_TREE_DELETED)
7080 ret = process_extent(sctx, sctx->left_path,
7081 sctx->cmp_key);
7082 }
7083
7084 return ret;
7085 }
7086
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7087 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7088 {
7089 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7090 if (result == BTRFS_COMPARE_TREE_NEW)
7091 sctx->cur_inode_needs_verity = true;
7092 }
7093 return 0;
7094 }
7095
dir_changed(struct send_ctx * sctx,u64 dir)7096 static int dir_changed(struct send_ctx *sctx, u64 dir)
7097 {
7098 u64 orig_gen, new_gen;
7099 int ret;
7100
7101 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7102 if (ret)
7103 return ret;
7104
7105 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7106 if (ret)
7107 return ret;
7108
7109 return (orig_gen != new_gen) ? 1 : 0;
7110 }
7111
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7112 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7113 struct btrfs_key *key)
7114 {
7115 struct btrfs_inode_extref *extref;
7116 struct extent_buffer *leaf;
7117 u64 dirid = 0, last_dirid = 0;
7118 unsigned long ptr;
7119 u32 item_size;
7120 u32 cur_offset = 0;
7121 int ref_name_len;
7122 int ret = 0;
7123
7124 /* Easy case, just check this one dirid */
7125 if (key->type == BTRFS_INODE_REF_KEY) {
7126 dirid = key->offset;
7127
7128 ret = dir_changed(sctx, dirid);
7129 goto out;
7130 }
7131
7132 leaf = path->nodes[0];
7133 item_size = btrfs_item_size(leaf, path->slots[0]);
7134 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7135 while (cur_offset < item_size) {
7136 extref = (struct btrfs_inode_extref *)(ptr +
7137 cur_offset);
7138 dirid = btrfs_inode_extref_parent(leaf, extref);
7139 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7140 cur_offset += ref_name_len + sizeof(*extref);
7141 if (dirid == last_dirid)
7142 continue;
7143 ret = dir_changed(sctx, dirid);
7144 if (ret)
7145 break;
7146 last_dirid = dirid;
7147 }
7148 out:
7149 return ret;
7150 }
7151
7152 /*
7153 * Updates compare related fields in sctx and simply forwards to the actual
7154 * changed_xxx functions.
7155 */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7156 static int changed_cb(struct btrfs_path *left_path,
7157 struct btrfs_path *right_path,
7158 struct btrfs_key *key,
7159 enum btrfs_compare_tree_result result,
7160 struct send_ctx *sctx)
7161 {
7162 int ret;
7163
7164 /*
7165 * We can not hold the commit root semaphore here. This is because in
7166 * the case of sending and receiving to the same filesystem, using a
7167 * pipe, could result in a deadlock:
7168 *
7169 * 1) The task running send blocks on the pipe because it's full;
7170 *
7171 * 2) The task running receive, which is the only consumer of the pipe,
7172 * is waiting for a transaction commit (for example due to a space
7173 * reservation when doing a write or triggering a transaction commit
7174 * when creating a subvolume);
7175 *
7176 * 3) The transaction is waiting to write lock the commit root semaphore,
7177 * but can not acquire it since it's being held at 1).
7178 *
7179 * Down this call chain we write to the pipe through kernel_write().
7180 * The same type of problem can also happen when sending to a file that
7181 * is stored in the same filesystem - when reserving space for a write
7182 * into the file, we can trigger a transaction commit.
7183 *
7184 * Our caller has supplied us with clones of leaves from the send and
7185 * parent roots, so we're safe here from a concurrent relocation and
7186 * further reallocation of metadata extents while we are here. Below we
7187 * also assert that the leaves are clones.
7188 */
7189 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7190
7191 /*
7192 * We always have a send root, so left_path is never NULL. We will not
7193 * have a leaf when we have reached the end of the send root but have
7194 * not yet reached the end of the parent root.
7195 */
7196 if (left_path->nodes[0])
7197 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7198 &left_path->nodes[0]->bflags));
7199 /*
7200 * When doing a full send we don't have a parent root, so right_path is
7201 * NULL. When doing an incremental send, we may have reached the end of
7202 * the parent root already, so we don't have a leaf at right_path.
7203 */
7204 if (right_path && right_path->nodes[0])
7205 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7206 &right_path->nodes[0]->bflags));
7207
7208 if (result == BTRFS_COMPARE_TREE_SAME) {
7209 if (key->type == BTRFS_INODE_REF_KEY ||
7210 key->type == BTRFS_INODE_EXTREF_KEY) {
7211 ret = compare_refs(sctx, left_path, key);
7212 if (!ret)
7213 return 0;
7214 if (ret < 0)
7215 return ret;
7216 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7217 return maybe_send_hole(sctx, left_path, key);
7218 } else {
7219 return 0;
7220 }
7221 result = BTRFS_COMPARE_TREE_CHANGED;
7222 }
7223
7224 sctx->left_path = left_path;
7225 sctx->right_path = right_path;
7226 sctx->cmp_key = key;
7227
7228 ret = finish_inode_if_needed(sctx, 0);
7229 if (ret < 0)
7230 goto out;
7231
7232 /* Ignore non-FS objects */
7233 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7234 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7235 goto out;
7236
7237 if (key->type == BTRFS_INODE_ITEM_KEY) {
7238 ret = changed_inode(sctx, result);
7239 } else if (!sctx->ignore_cur_inode) {
7240 if (key->type == BTRFS_INODE_REF_KEY ||
7241 key->type == BTRFS_INODE_EXTREF_KEY)
7242 ret = changed_ref(sctx, result);
7243 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7244 ret = changed_xattr(sctx, result);
7245 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7246 ret = changed_extent(sctx, result);
7247 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7248 key->offset == 0)
7249 ret = changed_verity(sctx, result);
7250 }
7251
7252 out:
7253 return ret;
7254 }
7255
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7256 static int search_key_again(const struct send_ctx *sctx,
7257 struct btrfs_root *root,
7258 struct btrfs_path *path,
7259 const struct btrfs_key *key)
7260 {
7261 int ret;
7262
7263 if (!path->need_commit_sem)
7264 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7265
7266 /*
7267 * Roots used for send operations are readonly and no one can add,
7268 * update or remove keys from them, so we should be able to find our
7269 * key again. The only exception is deduplication, which can operate on
7270 * readonly roots and add, update or remove keys to/from them - but at
7271 * the moment we don't allow it to run in parallel with send.
7272 */
7273 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7274 ASSERT(ret <= 0);
7275 if (unlikely(ret > 0)) {
7276 btrfs_print_tree(path->nodes[path->lowest_level], false);
7277 btrfs_err(root->fs_info,
7278 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7279 key->objectid, key->type, key->offset,
7280 (root == sctx->parent_root ? "parent" : "send"),
7281 btrfs_root_id(root), path->lowest_level,
7282 path->slots[path->lowest_level]);
7283 return -EUCLEAN;
7284 }
7285
7286 return ret;
7287 }
7288
full_send_tree(struct send_ctx * sctx)7289 static int full_send_tree(struct send_ctx *sctx)
7290 {
7291 int ret;
7292 struct btrfs_root *send_root = sctx->send_root;
7293 struct btrfs_key key;
7294 struct btrfs_fs_info *fs_info = send_root->fs_info;
7295 BTRFS_PATH_AUTO_FREE(path);
7296
7297 path = alloc_path_for_send();
7298 if (!path)
7299 return -ENOMEM;
7300 path->reada = READA_FORWARD_ALWAYS;
7301
7302 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7303 key.type = BTRFS_INODE_ITEM_KEY;
7304 key.offset = 0;
7305
7306 down_read(&fs_info->commit_root_sem);
7307 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7308 up_read(&fs_info->commit_root_sem);
7309
7310 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7311 if (ret < 0)
7312 return ret;
7313 if (ret)
7314 goto out_finish;
7315
7316 while (1) {
7317 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7318
7319 ret = changed_cb(path, NULL, &key,
7320 BTRFS_COMPARE_TREE_NEW, sctx);
7321 if (ret < 0)
7322 return ret;
7323
7324 down_read(&fs_info->commit_root_sem);
7325 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7326 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7327 up_read(&fs_info->commit_root_sem);
7328 /*
7329 * A transaction used for relocating a block group was
7330 * committed or is about to finish its commit. Release
7331 * our path (leaf) and restart the search, so that we
7332 * avoid operating on any file extent items that are
7333 * stale, with a disk_bytenr that reflects a pre
7334 * relocation value. This way we avoid as much as
7335 * possible to fallback to regular writes when checking
7336 * if we can clone file ranges.
7337 */
7338 btrfs_release_path(path);
7339 ret = search_key_again(sctx, send_root, path, &key);
7340 if (ret < 0)
7341 return ret;
7342 } else {
7343 up_read(&fs_info->commit_root_sem);
7344 }
7345
7346 ret = btrfs_next_item(send_root, path);
7347 if (ret < 0)
7348 return ret;
7349 if (ret) {
7350 ret = 0;
7351 break;
7352 }
7353 }
7354
7355 out_finish:
7356 return finish_inode_if_needed(sctx, 1);
7357 }
7358
replace_node_with_clone(struct btrfs_path * path,int level)7359 static int replace_node_with_clone(struct btrfs_path *path, int level)
7360 {
7361 struct extent_buffer *clone;
7362
7363 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7364 if (!clone)
7365 return -ENOMEM;
7366
7367 free_extent_buffer(path->nodes[level]);
7368 path->nodes[level] = clone;
7369
7370 return 0;
7371 }
7372
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7373 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7374 {
7375 struct extent_buffer *eb;
7376 struct extent_buffer *parent = path->nodes[*level];
7377 int slot = path->slots[*level];
7378 const int nritems = btrfs_header_nritems(parent);
7379 u64 reada_max;
7380 u64 reada_done = 0;
7381
7382 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7383 ASSERT(*level != 0);
7384
7385 eb = btrfs_read_node_slot(parent, slot);
7386 if (IS_ERR(eb))
7387 return PTR_ERR(eb);
7388
7389 /*
7390 * Trigger readahead for the next leaves we will process, so that it is
7391 * very likely that when we need them they are already in memory and we
7392 * will not block on disk IO. For nodes we only do readahead for one,
7393 * since the time window between processing nodes is typically larger.
7394 */
7395 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7396
7397 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7398 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7399 btrfs_readahead_node_child(parent, slot);
7400 reada_done += eb->fs_info->nodesize;
7401 }
7402 }
7403
7404 path->nodes[*level - 1] = eb;
7405 path->slots[*level - 1] = 0;
7406 (*level)--;
7407
7408 if (*level == 0)
7409 return replace_node_with_clone(path, 0);
7410
7411 return 0;
7412 }
7413
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7414 static int tree_move_next_or_upnext(struct btrfs_path *path,
7415 int *level, int root_level)
7416 {
7417 int ret = 0;
7418 int nritems;
7419 nritems = btrfs_header_nritems(path->nodes[*level]);
7420
7421 path->slots[*level]++;
7422
7423 while (path->slots[*level] >= nritems) {
7424 if (*level == root_level) {
7425 path->slots[*level] = nritems - 1;
7426 return -1;
7427 }
7428
7429 /* move upnext */
7430 path->slots[*level] = 0;
7431 free_extent_buffer(path->nodes[*level]);
7432 path->nodes[*level] = NULL;
7433 (*level)++;
7434 path->slots[*level]++;
7435
7436 nritems = btrfs_header_nritems(path->nodes[*level]);
7437 ret = 1;
7438 }
7439 return ret;
7440 }
7441
7442 /*
7443 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7444 * or down.
7445 */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7446 static int tree_advance(struct btrfs_path *path,
7447 int *level, int root_level,
7448 int allow_down,
7449 struct btrfs_key *key,
7450 u64 reada_min_gen)
7451 {
7452 int ret;
7453
7454 if (*level == 0 || !allow_down) {
7455 ret = tree_move_next_or_upnext(path, level, root_level);
7456 } else {
7457 ret = tree_move_down(path, level, reada_min_gen);
7458 }
7459
7460 /*
7461 * Even if we have reached the end of a tree, ret is -1, update the key
7462 * anyway, so that in case we need to restart due to a block group
7463 * relocation, we can assert that the last key of the root node still
7464 * exists in the tree.
7465 */
7466 if (*level == 0)
7467 btrfs_item_key_to_cpu(path->nodes[*level], key,
7468 path->slots[*level]);
7469 else
7470 btrfs_node_key_to_cpu(path->nodes[*level], key,
7471 path->slots[*level]);
7472
7473 return ret;
7474 }
7475
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7476 static int tree_compare_item(struct btrfs_path *left_path,
7477 struct btrfs_path *right_path,
7478 char *tmp_buf)
7479 {
7480 int cmp;
7481 int len1, len2;
7482 unsigned long off1, off2;
7483
7484 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7485 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7486 if (len1 != len2)
7487 return 1;
7488
7489 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7490 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7491 right_path->slots[0]);
7492
7493 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7494
7495 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7496 if (cmp)
7497 return 1;
7498 return 0;
7499 }
7500
7501 /*
7502 * A transaction used for relocating a block group was committed or is about to
7503 * finish its commit. Release our paths and restart the search, so that we are
7504 * not using stale extent buffers:
7505 *
7506 * 1) For levels > 0, we are only holding references of extent buffers, without
7507 * any locks on them, which does not prevent them from having been relocated
7508 * and reallocated after the last time we released the commit root semaphore.
7509 * The exception are the root nodes, for which we always have a clone, see
7510 * the comment at btrfs_compare_trees();
7511 *
7512 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7513 * we are safe from the concurrent relocation and reallocation. However they
7514 * can have file extent items with a pre relocation disk_bytenr value, so we
7515 * restart the start from the current commit roots and clone the new leaves so
7516 * that we get the post relocation disk_bytenr values. Not doing so, could
7517 * make us clone the wrong data in case there are new extents using the old
7518 * disk_bytenr that happen to be shared.
7519 */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7520 static int restart_after_relocation(struct btrfs_path *left_path,
7521 struct btrfs_path *right_path,
7522 const struct btrfs_key *left_key,
7523 const struct btrfs_key *right_key,
7524 int left_level,
7525 int right_level,
7526 const struct send_ctx *sctx)
7527 {
7528 int root_level;
7529 int ret;
7530
7531 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7532
7533 btrfs_release_path(left_path);
7534 btrfs_release_path(right_path);
7535
7536 /*
7537 * Since keys can not be added or removed to/from our roots because they
7538 * are readonly and we do not allow deduplication to run in parallel
7539 * (which can add, remove or change keys), the layout of the trees should
7540 * not change.
7541 */
7542 left_path->lowest_level = left_level;
7543 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7544 if (ret < 0)
7545 return ret;
7546
7547 right_path->lowest_level = right_level;
7548 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7549 if (ret < 0)
7550 return ret;
7551
7552 /*
7553 * If the lowest level nodes are leaves, clone them so that they can be
7554 * safely used by changed_cb() while not under the protection of the
7555 * commit root semaphore, even if relocation and reallocation happens in
7556 * parallel.
7557 */
7558 if (left_level == 0) {
7559 ret = replace_node_with_clone(left_path, 0);
7560 if (ret < 0)
7561 return ret;
7562 }
7563
7564 if (right_level == 0) {
7565 ret = replace_node_with_clone(right_path, 0);
7566 if (ret < 0)
7567 return ret;
7568 }
7569
7570 /*
7571 * Now clone the root nodes (unless they happen to be the leaves we have
7572 * already cloned). This is to protect against concurrent snapshotting of
7573 * the send and parent roots (see the comment at btrfs_compare_trees()).
7574 */
7575 root_level = btrfs_header_level(sctx->send_root->commit_root);
7576 if (root_level > 0) {
7577 ret = replace_node_with_clone(left_path, root_level);
7578 if (ret < 0)
7579 return ret;
7580 }
7581
7582 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7583 if (root_level > 0) {
7584 ret = replace_node_with_clone(right_path, root_level);
7585 if (ret < 0)
7586 return ret;
7587 }
7588
7589 return 0;
7590 }
7591
7592 /*
7593 * This function compares two trees and calls the provided callback for
7594 * every changed/new/deleted item it finds.
7595 * If shared tree blocks are encountered, whole subtrees are skipped, making
7596 * the compare pretty fast on snapshotted subvolumes.
7597 *
7598 * This currently works on commit roots only. As commit roots are read only,
7599 * we don't do any locking. The commit roots are protected with transactions.
7600 * Transactions are ended and rejoined when a commit is tried in between.
7601 *
7602 * This function checks for modifications done to the trees while comparing.
7603 * If it detects a change, it aborts immediately.
7604 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7605 static int btrfs_compare_trees(struct btrfs_root *left_root,
7606 struct btrfs_root *right_root, struct send_ctx *sctx)
7607 {
7608 struct btrfs_fs_info *fs_info = left_root->fs_info;
7609 int ret;
7610 int cmp;
7611 BTRFS_PATH_AUTO_FREE(left_path);
7612 BTRFS_PATH_AUTO_FREE(right_path);
7613 struct btrfs_key left_key;
7614 struct btrfs_key right_key;
7615 char *tmp_buf = NULL;
7616 int left_root_level;
7617 int right_root_level;
7618 int left_level;
7619 int right_level;
7620 int left_end_reached = 0;
7621 int right_end_reached = 0;
7622 int advance_left = 0;
7623 int advance_right = 0;
7624 u64 left_blockptr;
7625 u64 right_blockptr;
7626 u64 left_gen;
7627 u64 right_gen;
7628 u64 reada_min_gen;
7629
7630 left_path = btrfs_alloc_path();
7631 if (!left_path) {
7632 ret = -ENOMEM;
7633 goto out;
7634 }
7635 right_path = btrfs_alloc_path();
7636 if (!right_path) {
7637 ret = -ENOMEM;
7638 goto out;
7639 }
7640
7641 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7642 if (!tmp_buf) {
7643 ret = -ENOMEM;
7644 goto out;
7645 }
7646
7647 left_path->search_commit_root = 1;
7648 left_path->skip_locking = 1;
7649 right_path->search_commit_root = 1;
7650 right_path->skip_locking = 1;
7651
7652 /*
7653 * Strategy: Go to the first items of both trees. Then do
7654 *
7655 * If both trees are at level 0
7656 * Compare keys of current items
7657 * If left < right treat left item as new, advance left tree
7658 * and repeat
7659 * If left > right treat right item as deleted, advance right tree
7660 * and repeat
7661 * If left == right do deep compare of items, treat as changed if
7662 * needed, advance both trees and repeat
7663 * If both trees are at the same level but not at level 0
7664 * Compare keys of current nodes/leafs
7665 * If left < right advance left tree and repeat
7666 * If left > right advance right tree and repeat
7667 * If left == right compare blockptrs of the next nodes/leafs
7668 * If they match advance both trees but stay at the same level
7669 * and repeat
7670 * If they don't match advance both trees while allowing to go
7671 * deeper and repeat
7672 * If tree levels are different
7673 * Advance the tree that needs it and repeat
7674 *
7675 * Advancing a tree means:
7676 * If we are at level 0, try to go to the next slot. If that's not
7677 * possible, go one level up and repeat. Stop when we found a level
7678 * where we could go to the next slot. We may at this point be on a
7679 * node or a leaf.
7680 *
7681 * If we are not at level 0 and not on shared tree blocks, go one
7682 * level deeper.
7683 *
7684 * If we are not at level 0 and on shared tree blocks, go one slot to
7685 * the right if possible or go up and right.
7686 */
7687
7688 down_read(&fs_info->commit_root_sem);
7689 left_level = btrfs_header_level(left_root->commit_root);
7690 left_root_level = left_level;
7691 /*
7692 * We clone the root node of the send and parent roots to prevent races
7693 * with snapshot creation of these roots. Snapshot creation COWs the
7694 * root node of a tree, so after the transaction is committed the old
7695 * extent can be reallocated while this send operation is still ongoing.
7696 * So we clone them, under the commit root semaphore, to be race free.
7697 */
7698 left_path->nodes[left_level] =
7699 btrfs_clone_extent_buffer(left_root->commit_root);
7700 if (!left_path->nodes[left_level]) {
7701 ret = -ENOMEM;
7702 goto out_unlock;
7703 }
7704
7705 right_level = btrfs_header_level(right_root->commit_root);
7706 right_root_level = right_level;
7707 right_path->nodes[right_level] =
7708 btrfs_clone_extent_buffer(right_root->commit_root);
7709 if (!right_path->nodes[right_level]) {
7710 ret = -ENOMEM;
7711 goto out_unlock;
7712 }
7713 /*
7714 * Our right root is the parent root, while the left root is the "send"
7715 * root. We know that all new nodes/leaves in the left root must have
7716 * a generation greater than the right root's generation, so we trigger
7717 * readahead for those nodes and leaves of the left root, as we know we
7718 * will need to read them at some point.
7719 */
7720 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7721
7722 if (left_level == 0)
7723 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7724 &left_key, left_path->slots[left_level]);
7725 else
7726 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7727 &left_key, left_path->slots[left_level]);
7728 if (right_level == 0)
7729 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7730 &right_key, right_path->slots[right_level]);
7731 else
7732 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7733 &right_key, right_path->slots[right_level]);
7734
7735 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7736
7737 while (1) {
7738 if (need_resched() ||
7739 rwsem_is_contended(&fs_info->commit_root_sem)) {
7740 up_read(&fs_info->commit_root_sem);
7741 cond_resched();
7742 down_read(&fs_info->commit_root_sem);
7743 }
7744
7745 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7746 ret = restart_after_relocation(left_path, right_path,
7747 &left_key, &right_key,
7748 left_level, right_level,
7749 sctx);
7750 if (ret < 0)
7751 goto out_unlock;
7752 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7753 }
7754
7755 if (advance_left && !left_end_reached) {
7756 ret = tree_advance(left_path, &left_level,
7757 left_root_level,
7758 advance_left != ADVANCE_ONLY_NEXT,
7759 &left_key, reada_min_gen);
7760 if (ret == -1)
7761 left_end_reached = ADVANCE;
7762 else if (ret < 0)
7763 goto out_unlock;
7764 advance_left = 0;
7765 }
7766 if (advance_right && !right_end_reached) {
7767 ret = tree_advance(right_path, &right_level,
7768 right_root_level,
7769 advance_right != ADVANCE_ONLY_NEXT,
7770 &right_key, reada_min_gen);
7771 if (ret == -1)
7772 right_end_reached = ADVANCE;
7773 else if (ret < 0)
7774 goto out_unlock;
7775 advance_right = 0;
7776 }
7777
7778 if (left_end_reached && right_end_reached) {
7779 ret = 0;
7780 goto out_unlock;
7781 } else if (left_end_reached) {
7782 if (right_level == 0) {
7783 up_read(&fs_info->commit_root_sem);
7784 ret = changed_cb(left_path, right_path,
7785 &right_key,
7786 BTRFS_COMPARE_TREE_DELETED,
7787 sctx);
7788 if (ret < 0)
7789 goto out;
7790 down_read(&fs_info->commit_root_sem);
7791 }
7792 advance_right = ADVANCE;
7793 continue;
7794 } else if (right_end_reached) {
7795 if (left_level == 0) {
7796 up_read(&fs_info->commit_root_sem);
7797 ret = changed_cb(left_path, right_path,
7798 &left_key,
7799 BTRFS_COMPARE_TREE_NEW,
7800 sctx);
7801 if (ret < 0)
7802 goto out;
7803 down_read(&fs_info->commit_root_sem);
7804 }
7805 advance_left = ADVANCE;
7806 continue;
7807 }
7808
7809 if (left_level == 0 && right_level == 0) {
7810 up_read(&fs_info->commit_root_sem);
7811 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7812 if (cmp < 0) {
7813 ret = changed_cb(left_path, right_path,
7814 &left_key,
7815 BTRFS_COMPARE_TREE_NEW,
7816 sctx);
7817 advance_left = ADVANCE;
7818 } else if (cmp > 0) {
7819 ret = changed_cb(left_path, right_path,
7820 &right_key,
7821 BTRFS_COMPARE_TREE_DELETED,
7822 sctx);
7823 advance_right = ADVANCE;
7824 } else {
7825 enum btrfs_compare_tree_result result;
7826
7827 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7828 ret = tree_compare_item(left_path, right_path,
7829 tmp_buf);
7830 if (ret)
7831 result = BTRFS_COMPARE_TREE_CHANGED;
7832 else
7833 result = BTRFS_COMPARE_TREE_SAME;
7834 ret = changed_cb(left_path, right_path,
7835 &left_key, result, sctx);
7836 advance_left = ADVANCE;
7837 advance_right = ADVANCE;
7838 }
7839
7840 if (ret < 0)
7841 goto out;
7842 down_read(&fs_info->commit_root_sem);
7843 } else if (left_level == right_level) {
7844 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7845 if (cmp < 0) {
7846 advance_left = ADVANCE;
7847 } else if (cmp > 0) {
7848 advance_right = ADVANCE;
7849 } else {
7850 left_blockptr = btrfs_node_blockptr(
7851 left_path->nodes[left_level],
7852 left_path->slots[left_level]);
7853 right_blockptr = btrfs_node_blockptr(
7854 right_path->nodes[right_level],
7855 right_path->slots[right_level]);
7856 left_gen = btrfs_node_ptr_generation(
7857 left_path->nodes[left_level],
7858 left_path->slots[left_level]);
7859 right_gen = btrfs_node_ptr_generation(
7860 right_path->nodes[right_level],
7861 right_path->slots[right_level]);
7862 if (left_blockptr == right_blockptr &&
7863 left_gen == right_gen) {
7864 /*
7865 * As we're on a shared block, don't
7866 * allow to go deeper.
7867 */
7868 advance_left = ADVANCE_ONLY_NEXT;
7869 advance_right = ADVANCE_ONLY_NEXT;
7870 } else {
7871 advance_left = ADVANCE;
7872 advance_right = ADVANCE;
7873 }
7874 }
7875 } else if (left_level < right_level) {
7876 advance_right = ADVANCE;
7877 } else {
7878 advance_left = ADVANCE;
7879 }
7880 }
7881
7882 out_unlock:
7883 up_read(&fs_info->commit_root_sem);
7884 out:
7885 kvfree(tmp_buf);
7886 return ret;
7887 }
7888
send_subvol(struct send_ctx * sctx)7889 static int send_subvol(struct send_ctx *sctx)
7890 {
7891 int ret;
7892
7893 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7894 ret = send_header(sctx);
7895 if (ret < 0)
7896 goto out;
7897 }
7898
7899 ret = send_subvol_begin(sctx);
7900 if (ret < 0)
7901 goto out;
7902
7903 if (sctx->parent_root) {
7904 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7905 if (ret < 0)
7906 goto out;
7907 ret = finish_inode_if_needed(sctx, 1);
7908 if (ret < 0)
7909 goto out;
7910 } else {
7911 ret = full_send_tree(sctx);
7912 if (ret < 0)
7913 goto out;
7914 }
7915
7916 out:
7917 free_recorded_refs(sctx);
7918 return ret;
7919 }
7920
7921 /*
7922 * If orphan cleanup did remove any orphans from a root, it means the tree
7923 * was modified and therefore the commit root is not the same as the current
7924 * root anymore. This is a problem, because send uses the commit root and
7925 * therefore can see inode items that don't exist in the current root anymore,
7926 * and for example make calls to btrfs_iget, which will do tree lookups based
7927 * on the current root and not on the commit root. Those lookups will fail,
7928 * returning a -ESTALE error, and making send fail with that error. So make
7929 * sure a send does not see any orphans we have just removed, and that it will
7930 * see the same inodes regardless of whether a transaction commit happened
7931 * before it started (meaning that the commit root will be the same as the
7932 * current root) or not.
7933 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)7934 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7935 {
7936 struct btrfs_root *root = sctx->parent_root;
7937
7938 if (root && root->node != root->commit_root)
7939 return btrfs_commit_current_transaction(root);
7940
7941 for (int i = 0; i < sctx->clone_roots_cnt; i++) {
7942 root = sctx->clone_roots[i].root;
7943 if (root->node != root->commit_root)
7944 return btrfs_commit_current_transaction(root);
7945 }
7946
7947 return 0;
7948 }
7949
7950 /*
7951 * Make sure any existing delalloc is flushed for any root used by a send
7952 * operation so that we do not miss any data and we do not race with writeback
7953 * finishing and changing a tree while send is using the tree. This could
7954 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7955 * a send operation then uses the subvolume.
7956 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7957 */
flush_delalloc_roots(struct send_ctx * sctx)7958 static int flush_delalloc_roots(struct send_ctx *sctx)
7959 {
7960 struct btrfs_root *root = sctx->parent_root;
7961 int ret;
7962 int i;
7963
7964 if (root) {
7965 ret = btrfs_start_delalloc_snapshot(root, false);
7966 if (ret)
7967 return ret;
7968 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
7969 }
7970
7971 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7972 root = sctx->clone_roots[i].root;
7973 ret = btrfs_start_delalloc_snapshot(root, false);
7974 if (ret)
7975 return ret;
7976 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
7977 }
7978
7979 return 0;
7980 }
7981
btrfs_root_dec_send_in_progress(struct btrfs_root * root)7982 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7983 {
7984 spin_lock(&root->root_item_lock);
7985 root->send_in_progress--;
7986 /*
7987 * Not much left to do, we don't know why it's unbalanced and
7988 * can't blindly reset it to 0.
7989 */
7990 if (root->send_in_progress < 0)
7991 btrfs_err(root->fs_info,
7992 "send_in_progress unbalanced %d root %llu",
7993 root->send_in_progress, btrfs_root_id(root));
7994 spin_unlock(&root->root_item_lock);
7995 }
7996
dedupe_in_progress_warn(const struct btrfs_root * root)7997 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7998 {
7999 btrfs_warn_rl(root->fs_info,
8000 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8001 btrfs_root_id(root), root->dedupe_in_progress);
8002 }
8003
btrfs_ioctl_send(struct btrfs_root * send_root,const struct btrfs_ioctl_send_args * arg)8004 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg)
8005 {
8006 int ret = 0;
8007 struct btrfs_fs_info *fs_info = send_root->fs_info;
8008 struct btrfs_root *clone_root;
8009 struct send_ctx *sctx = NULL;
8010 u32 i;
8011 u64 *clone_sources_tmp = NULL;
8012 int clone_sources_to_rollback = 0;
8013 size_t alloc_size;
8014 int sort_clone_roots = 0;
8015 struct btrfs_lru_cache_entry *entry;
8016 struct btrfs_lru_cache_entry *tmp;
8017
8018 if (!capable(CAP_SYS_ADMIN))
8019 return -EPERM;
8020
8021 /*
8022 * The subvolume must remain read-only during send, protect against
8023 * making it RW. This also protects against deletion.
8024 */
8025 spin_lock(&send_root->root_item_lock);
8026 /*
8027 * Unlikely but possible, if the subvolume is marked for deletion but
8028 * is slow to remove the directory entry, send can still be started.
8029 */
8030 if (btrfs_root_dead(send_root)) {
8031 spin_unlock(&send_root->root_item_lock);
8032 return -EPERM;
8033 }
8034 /* Userspace tools do the checks and warn the user if it's not RO. */
8035 if (!btrfs_root_readonly(send_root)) {
8036 spin_unlock(&send_root->root_item_lock);
8037 return -EPERM;
8038 }
8039 if (send_root->dedupe_in_progress) {
8040 dedupe_in_progress_warn(send_root);
8041 spin_unlock(&send_root->root_item_lock);
8042 return -EAGAIN;
8043 }
8044 send_root->send_in_progress++;
8045 spin_unlock(&send_root->root_item_lock);
8046
8047 /*
8048 * Check that we don't overflow at later allocations, we request
8049 * clone_sources_count + 1 items, and compare to unsigned long inside
8050 * access_ok. Also set an upper limit for allocation size so this can't
8051 * easily exhaust memory. Max number of clone sources is about 200K.
8052 */
8053 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8054 ret = -EINVAL;
8055 goto out;
8056 }
8057
8058 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8059 ret = -EOPNOTSUPP;
8060 goto out;
8061 }
8062
8063 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8064 if (!sctx) {
8065 ret = -ENOMEM;
8066 goto out;
8067 }
8068
8069 init_path(&sctx->cur_inode_path);
8070 INIT_LIST_HEAD(&sctx->new_refs);
8071 INIT_LIST_HEAD(&sctx->deleted_refs);
8072
8073 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8074 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8075 btrfs_lru_cache_init(&sctx->dir_created_cache,
8076 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8077 /*
8078 * This cache is periodically trimmed to a fixed size elsewhere, see
8079 * cache_dir_utimes() and trim_dir_utimes_cache().
8080 */
8081 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8082
8083 sctx->pending_dir_moves = RB_ROOT;
8084 sctx->waiting_dir_moves = RB_ROOT;
8085 sctx->orphan_dirs = RB_ROOT;
8086 sctx->rbtree_new_refs = RB_ROOT;
8087 sctx->rbtree_deleted_refs = RB_ROOT;
8088
8089 sctx->flags = arg->flags;
8090
8091 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8092 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8093 ret = -EPROTO;
8094 goto out;
8095 }
8096 /* Zero means "use the highest version" */
8097 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8098 } else {
8099 sctx->proto = 1;
8100 }
8101 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8102 ret = -EINVAL;
8103 goto out;
8104 }
8105
8106 sctx->send_filp = fget(arg->send_fd);
8107 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8108 ret = -EBADF;
8109 goto out;
8110 }
8111
8112 sctx->send_root = send_root;
8113 sctx->clone_roots_cnt = arg->clone_sources_count;
8114
8115 if (sctx->proto >= 2) {
8116 u32 send_buf_num_pages;
8117
8118 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8119 sctx->send_buf = vmalloc(sctx->send_max_size);
8120 if (!sctx->send_buf) {
8121 ret = -ENOMEM;
8122 goto out;
8123 }
8124 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8125 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8126 sizeof(*sctx->send_buf_pages),
8127 GFP_KERNEL);
8128 if (!sctx->send_buf_pages) {
8129 ret = -ENOMEM;
8130 goto out;
8131 }
8132 for (i = 0; i < send_buf_num_pages; i++) {
8133 sctx->send_buf_pages[i] =
8134 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8135 }
8136 } else {
8137 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8138 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8139 }
8140 if (!sctx->send_buf) {
8141 ret = -ENOMEM;
8142 goto out;
8143 }
8144
8145 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8146 sizeof(*sctx->clone_roots),
8147 GFP_KERNEL);
8148 if (!sctx->clone_roots) {
8149 ret = -ENOMEM;
8150 goto out;
8151 }
8152
8153 alloc_size = array_size(sizeof(*arg->clone_sources),
8154 arg->clone_sources_count);
8155
8156 if (arg->clone_sources_count) {
8157 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8158 if (!clone_sources_tmp) {
8159 ret = -ENOMEM;
8160 goto out;
8161 }
8162
8163 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8164 alloc_size);
8165 if (ret) {
8166 ret = -EFAULT;
8167 goto out;
8168 }
8169
8170 for (i = 0; i < arg->clone_sources_count; i++) {
8171 clone_root = btrfs_get_fs_root(fs_info,
8172 clone_sources_tmp[i], true);
8173 if (IS_ERR(clone_root)) {
8174 ret = PTR_ERR(clone_root);
8175 goto out;
8176 }
8177 spin_lock(&clone_root->root_item_lock);
8178 if (!btrfs_root_readonly(clone_root) ||
8179 btrfs_root_dead(clone_root)) {
8180 spin_unlock(&clone_root->root_item_lock);
8181 btrfs_put_root(clone_root);
8182 ret = -EPERM;
8183 goto out;
8184 }
8185 if (clone_root->dedupe_in_progress) {
8186 dedupe_in_progress_warn(clone_root);
8187 spin_unlock(&clone_root->root_item_lock);
8188 btrfs_put_root(clone_root);
8189 ret = -EAGAIN;
8190 goto out;
8191 }
8192 clone_root->send_in_progress++;
8193 spin_unlock(&clone_root->root_item_lock);
8194
8195 sctx->clone_roots[i].root = clone_root;
8196 clone_sources_to_rollback = i + 1;
8197 }
8198 kvfree(clone_sources_tmp);
8199 clone_sources_tmp = NULL;
8200 }
8201
8202 if (arg->parent_root) {
8203 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8204 true);
8205 if (IS_ERR(sctx->parent_root)) {
8206 ret = PTR_ERR(sctx->parent_root);
8207 goto out;
8208 }
8209
8210 spin_lock(&sctx->parent_root->root_item_lock);
8211 sctx->parent_root->send_in_progress++;
8212 if (!btrfs_root_readonly(sctx->parent_root) ||
8213 btrfs_root_dead(sctx->parent_root)) {
8214 spin_unlock(&sctx->parent_root->root_item_lock);
8215 ret = -EPERM;
8216 goto out;
8217 }
8218 if (sctx->parent_root->dedupe_in_progress) {
8219 dedupe_in_progress_warn(sctx->parent_root);
8220 spin_unlock(&sctx->parent_root->root_item_lock);
8221 ret = -EAGAIN;
8222 goto out;
8223 }
8224 spin_unlock(&sctx->parent_root->root_item_lock);
8225 }
8226
8227 /*
8228 * Clones from send_root are allowed, but only if the clone source
8229 * is behind the current send position. This is checked while searching
8230 * for possible clone sources.
8231 */
8232 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8233 btrfs_grab_root(sctx->send_root);
8234
8235 /* We do a bsearch later */
8236 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8237 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8238 NULL);
8239 sort_clone_roots = 1;
8240
8241 ret = flush_delalloc_roots(sctx);
8242 if (ret)
8243 goto out;
8244
8245 ret = ensure_commit_roots_uptodate(sctx);
8246 if (ret)
8247 goto out;
8248
8249 ret = send_subvol(sctx);
8250 if (ret < 0)
8251 goto out;
8252
8253 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8254 ret = send_utimes(sctx, entry->key, entry->gen);
8255 if (ret < 0)
8256 goto out;
8257 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8258 }
8259
8260 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8261 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8262 if (ret < 0)
8263 goto out;
8264 ret = send_cmd(sctx);
8265 if (ret < 0)
8266 goto out;
8267 }
8268
8269 out:
8270 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8271 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8272 struct rb_node *n;
8273 struct pending_dir_move *pm;
8274
8275 n = rb_first(&sctx->pending_dir_moves);
8276 pm = rb_entry(n, struct pending_dir_move, node);
8277 while (!list_empty(&pm->list)) {
8278 struct pending_dir_move *pm2;
8279
8280 pm2 = list_first_entry(&pm->list,
8281 struct pending_dir_move, list);
8282 free_pending_move(sctx, pm2);
8283 }
8284 free_pending_move(sctx, pm);
8285 }
8286
8287 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8288 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8289 struct rb_node *n;
8290 struct waiting_dir_move *dm;
8291
8292 n = rb_first(&sctx->waiting_dir_moves);
8293 dm = rb_entry(n, struct waiting_dir_move, node);
8294 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8295 kfree(dm);
8296 }
8297
8298 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8299 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8300 struct rb_node *n;
8301 struct orphan_dir_info *odi;
8302
8303 n = rb_first(&sctx->orphan_dirs);
8304 odi = rb_entry(n, struct orphan_dir_info, node);
8305 free_orphan_dir_info(sctx, odi);
8306 }
8307
8308 if (sort_clone_roots) {
8309 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8310 btrfs_root_dec_send_in_progress(
8311 sctx->clone_roots[i].root);
8312 btrfs_put_root(sctx->clone_roots[i].root);
8313 }
8314 } else {
8315 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8316 btrfs_root_dec_send_in_progress(
8317 sctx->clone_roots[i].root);
8318 btrfs_put_root(sctx->clone_roots[i].root);
8319 }
8320
8321 btrfs_root_dec_send_in_progress(send_root);
8322 }
8323 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8324 btrfs_root_dec_send_in_progress(sctx->parent_root);
8325 btrfs_put_root(sctx->parent_root);
8326 }
8327
8328 kvfree(clone_sources_tmp);
8329
8330 if (sctx) {
8331 if (sctx->send_filp)
8332 fput(sctx->send_filp);
8333
8334 kvfree(sctx->clone_roots);
8335 kfree(sctx->send_buf_pages);
8336 kvfree(sctx->send_buf);
8337 kvfree(sctx->verity_descriptor);
8338
8339 close_current_inode(sctx);
8340
8341 btrfs_lru_cache_clear(&sctx->name_cache);
8342 btrfs_lru_cache_clear(&sctx->backref_cache);
8343 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8344 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8345
8346 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf)
8347 kfree(sctx->cur_inode_path.buf);
8348
8349 kfree(sctx);
8350 }
8351
8352 return ret;
8353 }
8354