xref: /linux/drivers/gpu/drm/rockchip/rockchip_drm_vop.c (revision f868cd2517763c66783c6000b29d97f0b966b311)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4  * Author:Mark Yao <mark.yao@rock-chips.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_blend.h>
24 #include <drm/drm_crtc.h>
25 #include <drm/drm_flip_work.h>
26 #include <drm/drm_fourcc.h>
27 #include <drm/drm_framebuffer.h>
28 #include <drm/drm_gem_atomic_helper.h>
29 #include <drm/drm_gem_framebuffer_helper.h>
30 #include <drm/drm_probe_helper.h>
31 #include <drm/drm_self_refresh_helper.h>
32 #include <drm/drm_vblank.h>
33 
34 #ifdef CONFIG_DRM_ANALOGIX_DP
35 #include <drm/bridge/analogix_dp.h>
36 #endif
37 
38 #include "rockchip_drm_drv.h"
39 #include "rockchip_drm_gem.h"
40 #include "rockchip_drm_fb.h"
41 #include "rockchip_drm_vop.h"
42 #include "rockchip_rgb.h"
43 
44 #define VOP_WIN_SET(vop, win, name, v) \
45 		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
46 #define VOP_SCL_SET(vop, win, name, v) \
47 		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
48 #define VOP_SCL_SET_EXT(vop, win, name, v) \
49 		vop_reg_set(vop, &win->phy->scl->ext->name, \
50 			    win->base, ~0, v, #name)
51 
52 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
53 	do { \
54 		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
55 			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
56 	} while (0)
57 
58 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
59 	do { \
60 		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
61 			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
62 	} while (0)
63 
64 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
65 		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
66 
67 #define VOP_REG_SET(vop, group, name, v) \
68 		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
69 
70 #define VOP_HAS_REG(vop, group, name) \
71 		(!!(vop->data->group->name.mask))
72 
73 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
74 	do { \
75 		int i, reg = 0, mask = 0; \
76 		for (i = 0; i < vop->data->intr->nintrs; i++) { \
77 			if (vop->data->intr->intrs[i] & type) { \
78 				reg |= (v) << i; \
79 				mask |= 1 << i; \
80 			} \
81 		} \
82 		VOP_INTR_SET_MASK(vop, name, mask, reg); \
83 	} while (0)
84 #define VOP_INTR_GET_TYPE(vop, name, type) \
85 		vop_get_intr_type(vop, &vop->data->intr->name, type)
86 
87 #define VOP_WIN_GET(vop, win, name) \
88 		vop_read_reg(vop, win->base, &win->phy->name)
89 
90 #define VOP_WIN_HAS_REG(win, name) \
91 	(!!(win->phy->name.mask))
92 
93 #define VOP_WIN_GET_YRGBADDR(vop, win) \
94 		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
95 
96 #define VOP_WIN_TO_INDEX(vop_win) \
97 	((vop_win) - (vop_win)->vop->win)
98 
99 #define VOP_AFBC_SET(vop, name, v) \
100 	do { \
101 		if ((vop)->data->afbc) \
102 			vop_reg_set((vop), &(vop)->data->afbc->name, \
103 				    0, ~0, v, #name); \
104 	} while (0)
105 
106 #define to_vop(x) container_of(x, struct vop, crtc)
107 #define to_vop_win(x) container_of(x, struct vop_win, base)
108 
109 #define AFBC_FMT_RGB565		0x0
110 #define AFBC_FMT_U8U8U8U8	0x5
111 #define AFBC_FMT_U8U8U8		0x4
112 
113 #define AFBC_TILE_16x16		BIT(4)
114 
115 /*
116  * The coefficients of the following matrix are all fixed points.
117  * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
118  * They are all represented in two's complement.
119  */
120 static const uint32_t bt601_yuv2rgb[] = {
121 	0x4A8, 0x0,    0x662,
122 	0x4A8, 0x1E6F, 0x1CBF,
123 	0x4A8, 0x812,  0x0,
124 	0x321168, 0x0877CF, 0x2EB127
125 };
126 
127 enum vop_pending {
128 	VOP_PENDING_FB_UNREF,
129 };
130 
131 struct vop_win {
132 	struct drm_plane base;
133 	const struct vop_win_data *data;
134 	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
135 	struct vop *vop;
136 };
137 
138 struct rockchip_rgb;
139 struct vop {
140 	struct drm_crtc crtc;
141 	struct device *dev;
142 	struct drm_device *drm_dev;
143 	bool is_enabled;
144 
145 	struct completion dsp_hold_completion;
146 	unsigned int win_enabled;
147 
148 	/* protected by dev->event_lock */
149 	struct drm_pending_vblank_event *event;
150 
151 	struct drm_flip_work fb_unref_work;
152 	unsigned long pending;
153 
154 	struct completion line_flag_completion;
155 
156 	const struct vop_data *data;
157 
158 	uint32_t *regsbak;
159 	void __iomem *regs;
160 	void __iomem *lut_regs;
161 
162 	/* physical map length of vop register */
163 	uint32_t len;
164 
165 	/* one time only one process allowed to config the register */
166 	spinlock_t reg_lock;
167 	/* lock vop irq reg */
168 	spinlock_t irq_lock;
169 	/* protects crtc enable/disable */
170 	struct mutex vop_lock;
171 
172 	unsigned int irq;
173 
174 	/* vop AHP clk */
175 	struct clk *hclk;
176 	/* vop dclk */
177 	struct clk *dclk;
178 	/* vop share memory frequency */
179 	struct clk *aclk;
180 
181 	/* vop dclk reset */
182 	struct reset_control *dclk_rst;
183 
184 	/* optional internal rgb encoder */
185 	struct rockchip_rgb *rgb;
186 
187 	struct vop_win win[];
188 };
189 
vop_readl(struct vop * vop,uint32_t offset)190 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
191 {
192 	return readl(vop->regs + offset);
193 }
194 
vop_read_reg(struct vop * vop,uint32_t base,const struct vop_reg * reg)195 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
196 				    const struct vop_reg *reg)
197 {
198 	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
199 }
200 
vop_reg_set(struct vop * vop,const struct vop_reg * reg,uint32_t _offset,uint32_t _mask,uint32_t v,const char * reg_name)201 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
202 			uint32_t _offset, uint32_t _mask, uint32_t v,
203 			const char *reg_name)
204 {
205 	int offset, mask, shift;
206 
207 	if (!reg || !reg->mask) {
208 		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
209 		return;
210 	}
211 
212 	offset = reg->offset + _offset;
213 	mask = reg->mask & _mask;
214 	shift = reg->shift;
215 
216 	if (reg->write_mask) {
217 		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
218 	} else {
219 		uint32_t cached_val = vop->regsbak[offset >> 2];
220 
221 		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
222 		vop->regsbak[offset >> 2] = v;
223 	}
224 
225 	if (reg->relaxed)
226 		writel_relaxed(v, vop->regs + offset);
227 	else
228 		writel(v, vop->regs + offset);
229 }
230 
vop_get_intr_type(struct vop * vop,const struct vop_reg * reg,int type)231 static inline uint32_t vop_get_intr_type(struct vop *vop,
232 					 const struct vop_reg *reg, int type)
233 {
234 	uint32_t i, ret = 0;
235 	uint32_t regs = vop_read_reg(vop, 0, reg);
236 
237 	for (i = 0; i < vop->data->intr->nintrs; i++) {
238 		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
239 			ret |= vop->data->intr->intrs[i];
240 	}
241 
242 	return ret;
243 }
244 
vop_cfg_done(struct vop * vop)245 static inline void vop_cfg_done(struct vop *vop)
246 {
247 	VOP_REG_SET(vop, common, cfg_done, 1);
248 }
249 
has_rb_swapped(uint32_t version,uint32_t format)250 static bool has_rb_swapped(uint32_t version, uint32_t format)
251 {
252 	switch (format) {
253 	case DRM_FORMAT_XBGR8888:
254 	case DRM_FORMAT_ABGR8888:
255 	case DRM_FORMAT_BGR565:
256 		return true;
257 	/*
258 	 * full framework (IP version 3.x) only need rb swapped for RGB888 and
259 	 * little framework (IP version 2.x) only need rb swapped for BGR888,
260 	 * check for 3.x to also only rb swap BGR888 for unknown vop version
261 	 */
262 	case DRM_FORMAT_RGB888:
263 		return VOP_MAJOR(version) == 3;
264 	case DRM_FORMAT_BGR888:
265 		return VOP_MAJOR(version) != 3;
266 	default:
267 		return false;
268 	}
269 }
270 
has_uv_swapped(uint32_t format)271 static bool has_uv_swapped(uint32_t format)
272 {
273 	switch (format) {
274 	case DRM_FORMAT_NV21:
275 	case DRM_FORMAT_NV61:
276 	case DRM_FORMAT_NV42:
277 		return true;
278 	default:
279 		return false;
280 	}
281 }
282 
is_fmt_10(uint32_t format)283 static bool is_fmt_10(uint32_t format)
284 {
285 	switch (format) {
286 	case DRM_FORMAT_NV15:
287 	case DRM_FORMAT_NV20:
288 	case DRM_FORMAT_NV30:
289 		return true;
290 	default:
291 		return false;
292 	}
293 }
294 
vop_convert_format(uint32_t format)295 static enum vop_data_format vop_convert_format(uint32_t format)
296 {
297 	switch (format) {
298 	case DRM_FORMAT_XRGB8888:
299 	case DRM_FORMAT_ARGB8888:
300 	case DRM_FORMAT_XBGR8888:
301 	case DRM_FORMAT_ABGR8888:
302 		return VOP_FMT_ARGB8888;
303 	case DRM_FORMAT_RGB888:
304 	case DRM_FORMAT_BGR888:
305 		return VOP_FMT_RGB888;
306 	case DRM_FORMAT_RGB565:
307 	case DRM_FORMAT_BGR565:
308 		return VOP_FMT_RGB565;
309 	case DRM_FORMAT_NV12:
310 	case DRM_FORMAT_NV15:
311 	case DRM_FORMAT_NV21:
312 		return VOP_FMT_YUV420SP;
313 	case DRM_FORMAT_NV16:
314 	case DRM_FORMAT_NV20:
315 	case DRM_FORMAT_NV61:
316 		return VOP_FMT_YUV422SP;
317 	case DRM_FORMAT_NV24:
318 	case DRM_FORMAT_NV30:
319 	case DRM_FORMAT_NV42:
320 		return VOP_FMT_YUV444SP;
321 	default:
322 		DRM_ERROR("unsupported format[%08x]\n", format);
323 		return -EINVAL;
324 	}
325 }
326 
vop_convert_afbc_format(uint32_t format)327 static int vop_convert_afbc_format(uint32_t format)
328 {
329 	switch (format) {
330 	case DRM_FORMAT_XRGB8888:
331 	case DRM_FORMAT_ARGB8888:
332 	case DRM_FORMAT_XBGR8888:
333 	case DRM_FORMAT_ABGR8888:
334 		return AFBC_FMT_U8U8U8U8;
335 	case DRM_FORMAT_RGB888:
336 	case DRM_FORMAT_BGR888:
337 		return AFBC_FMT_U8U8U8;
338 	case DRM_FORMAT_RGB565:
339 	case DRM_FORMAT_BGR565:
340 		return AFBC_FMT_RGB565;
341 	default:
342 		DRM_DEBUG_KMS("unsupported AFBC format[%08x]\n", format);
343 		return -EINVAL;
344 	}
345 }
346 
scl_vop_cal_scale(enum scale_mode mode,uint32_t src,uint32_t dst,bool is_horizontal,int vsu_mode,int * vskiplines)347 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
348 				  uint32_t dst, bool is_horizontal,
349 				  int vsu_mode, int *vskiplines)
350 {
351 	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
352 
353 	if (vskiplines)
354 		*vskiplines = 0;
355 
356 	if (is_horizontal) {
357 		if (mode == SCALE_UP)
358 			val = GET_SCL_FT_BIC(src, dst);
359 		else if (mode == SCALE_DOWN)
360 			val = GET_SCL_FT_BILI_DN(src, dst);
361 	} else {
362 		if (mode == SCALE_UP) {
363 			if (vsu_mode == SCALE_UP_BIL)
364 				val = GET_SCL_FT_BILI_UP(src, dst);
365 			else
366 				val = GET_SCL_FT_BIC(src, dst);
367 		} else if (mode == SCALE_DOWN) {
368 			if (vskiplines) {
369 				*vskiplines = scl_get_vskiplines(src, dst);
370 				val = scl_get_bili_dn_vskip(src, dst,
371 							    *vskiplines);
372 			} else {
373 				val = GET_SCL_FT_BILI_DN(src, dst);
374 			}
375 		}
376 	}
377 
378 	return val;
379 }
380 
scl_vop_cal_scl_fac(struct vop * vop,const struct vop_win_data * win,uint32_t src_w,uint32_t src_h,uint32_t dst_w,uint32_t dst_h,const struct drm_format_info * info)381 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
382 			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
383 			     uint32_t dst_h, const struct drm_format_info *info)
384 {
385 	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
386 	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
387 	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
388 	bool is_yuv = false;
389 	uint16_t cbcr_src_w = src_w / info->hsub;
390 	uint16_t cbcr_src_h = src_h / info->vsub;
391 	uint16_t vsu_mode;
392 	uint16_t lb_mode;
393 	uint32_t val;
394 	int vskiplines;
395 
396 	if (info->is_yuv)
397 		is_yuv = true;
398 
399 	if (dst_w > 4096) {
400 		DRM_DEV_ERROR(vop->dev, "Maximum dst width (4096) exceeded\n");
401 		return;
402 	}
403 
404 	if (!win->phy->scl->ext) {
405 		VOP_SCL_SET(vop, win, scale_yrgb_x,
406 			    scl_cal_scale2(src_w, dst_w));
407 		VOP_SCL_SET(vop, win, scale_yrgb_y,
408 			    scl_cal_scale2(src_h, dst_h));
409 		if (is_yuv) {
410 			VOP_SCL_SET(vop, win, scale_cbcr_x,
411 				    scl_cal_scale2(cbcr_src_w, dst_w));
412 			VOP_SCL_SET(vop, win, scale_cbcr_y,
413 				    scl_cal_scale2(cbcr_src_h, dst_h));
414 		}
415 		return;
416 	}
417 
418 	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
419 	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
420 
421 	if (is_yuv) {
422 		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
423 		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
424 		if (cbcr_hor_scl_mode == SCALE_DOWN)
425 			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
426 		else
427 			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
428 	} else {
429 		if (yrgb_hor_scl_mode == SCALE_DOWN)
430 			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
431 		else
432 			lb_mode = scl_vop_cal_lb_mode(src_w, false);
433 	}
434 
435 	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
436 	if (lb_mode == LB_RGB_3840X2) {
437 		if (yrgb_ver_scl_mode != SCALE_NONE) {
438 			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
439 			return;
440 		}
441 		if (cbcr_ver_scl_mode != SCALE_NONE) {
442 			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
443 			return;
444 		}
445 		vsu_mode = SCALE_UP_BIL;
446 	} else if (lb_mode == LB_RGB_2560X4) {
447 		vsu_mode = SCALE_UP_BIL;
448 	} else {
449 		vsu_mode = SCALE_UP_BIC;
450 	}
451 
452 	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
453 				true, 0, NULL);
454 	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
455 	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
456 				false, vsu_mode, &vskiplines);
457 	VOP_SCL_SET(vop, win, scale_yrgb_y, val);
458 
459 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
460 	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
461 
462 	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
463 	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
464 	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
465 	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
466 	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
467 	if (is_yuv) {
468 		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
469 					dst_w, true, 0, NULL);
470 		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
471 		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
472 					dst_h, false, vsu_mode, &vskiplines);
473 		VOP_SCL_SET(vop, win, scale_cbcr_y, val);
474 
475 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
476 		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
477 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
478 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
479 		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
480 		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
481 		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
482 	}
483 }
484 
vop_dsp_hold_valid_irq_enable(struct vop * vop)485 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
486 {
487 	unsigned long flags;
488 
489 	if (WARN_ON(!vop->is_enabled))
490 		return;
491 
492 	spin_lock_irqsave(&vop->irq_lock, flags);
493 
494 	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
495 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
496 
497 	spin_unlock_irqrestore(&vop->irq_lock, flags);
498 }
499 
vop_dsp_hold_valid_irq_disable(struct vop * vop)500 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
501 {
502 	unsigned long flags;
503 
504 	if (WARN_ON(!vop->is_enabled))
505 		return;
506 
507 	spin_lock_irqsave(&vop->irq_lock, flags);
508 
509 	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
510 
511 	spin_unlock_irqrestore(&vop->irq_lock, flags);
512 }
513 
514 /*
515  * (1) each frame starts at the start of the Vsync pulse which is signaled by
516  *     the "FRAME_SYNC" interrupt.
517  * (2) the active data region of each frame ends at dsp_vact_end
518  * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
519  *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
520  *
521  * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
522  * Interrupts
523  * LINE_FLAG -------------------------------+
524  * FRAME_SYNC ----+                         |
525  *                |                         |
526  *                v                         v
527  *                | Vsync | Vbp |  Vactive  | Vfp |
528  *                        ^     ^           ^     ^
529  *                        |     |           |     |
530  *                        |     |           |     |
531  * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
532  * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
533  * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
534  * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
535  */
vop_line_flag_irq_is_enabled(struct vop * vop)536 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
537 {
538 	uint32_t line_flag_irq;
539 	unsigned long flags;
540 
541 	spin_lock_irqsave(&vop->irq_lock, flags);
542 
543 	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
544 
545 	spin_unlock_irqrestore(&vop->irq_lock, flags);
546 
547 	return !!line_flag_irq;
548 }
549 
vop_line_flag_irq_enable(struct vop * vop)550 static void vop_line_flag_irq_enable(struct vop *vop)
551 {
552 	unsigned long flags;
553 
554 	if (WARN_ON(!vop->is_enabled))
555 		return;
556 
557 	spin_lock_irqsave(&vop->irq_lock, flags);
558 
559 	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
560 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
561 
562 	spin_unlock_irqrestore(&vop->irq_lock, flags);
563 }
564 
vop_line_flag_irq_disable(struct vop * vop)565 static void vop_line_flag_irq_disable(struct vop *vop)
566 {
567 	unsigned long flags;
568 
569 	if (WARN_ON(!vop->is_enabled))
570 		return;
571 
572 	spin_lock_irqsave(&vop->irq_lock, flags);
573 
574 	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
575 
576 	spin_unlock_irqrestore(&vop->irq_lock, flags);
577 }
578 
vop_core_clks_enable(struct vop * vop)579 static int vop_core_clks_enable(struct vop *vop)
580 {
581 	int ret;
582 
583 	ret = clk_enable(vop->hclk);
584 	if (ret < 0)
585 		return ret;
586 
587 	ret = clk_enable(vop->aclk);
588 	if (ret < 0)
589 		goto err_disable_hclk;
590 
591 	return 0;
592 
593 err_disable_hclk:
594 	clk_disable(vop->hclk);
595 	return ret;
596 }
597 
vop_core_clks_disable(struct vop * vop)598 static void vop_core_clks_disable(struct vop *vop)
599 {
600 	clk_disable(vop->aclk);
601 	clk_disable(vop->hclk);
602 }
603 
vop_win_disable(struct vop * vop,const struct vop_win * vop_win)604 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
605 {
606 	const struct vop_win_data *win = vop_win->data;
607 
608 	if (win->phy->scl && win->phy->scl->ext) {
609 		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
610 		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
611 		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
612 		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
613 	}
614 
615 	VOP_WIN_SET(vop, win, enable, 0);
616 	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
617 }
618 
vop_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)619 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
620 {
621 	struct vop *vop = to_vop(crtc);
622 	int ret, i;
623 
624 	ret = pm_runtime_resume_and_get(vop->dev);
625 	if (ret < 0) {
626 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
627 		return ret;
628 	}
629 
630 	ret = vop_core_clks_enable(vop);
631 	if (WARN_ON(ret < 0))
632 		goto err_put_pm_runtime;
633 
634 	ret = clk_enable(vop->dclk);
635 	if (WARN_ON(ret < 0))
636 		goto err_disable_core;
637 
638 	/*
639 	 * Slave iommu shares power, irq and clock with vop.  It was associated
640 	 * automatically with this master device via common driver code.
641 	 * Now that we have enabled the clock we attach it to the shared drm
642 	 * mapping.
643 	 */
644 	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
645 	if (ret) {
646 		DRM_DEV_ERROR(vop->dev,
647 			      "failed to attach dma mapping, %d\n", ret);
648 		goto err_disable_dclk;
649 	}
650 
651 	spin_lock(&vop->reg_lock);
652 	for (i = 0; i < vop->len; i += 4)
653 		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
654 
655 	/*
656 	 * We need to make sure that all windows are disabled before we
657 	 * enable the crtc. Otherwise we might try to scan from a destroyed
658 	 * buffer later.
659 	 *
660 	 * In the case of enable-after-PSR, we don't need to worry about this
661 	 * case since the buffer is guaranteed to be valid and disabling the
662 	 * window will result in screen glitches on PSR exit.
663 	 */
664 	if (!old_state || !old_state->self_refresh_active) {
665 		for (i = 0; i < vop->data->win_size; i++) {
666 			struct vop_win *vop_win = &vop->win[i];
667 
668 			vop_win_disable(vop, vop_win);
669 		}
670 	}
671 
672 	if (vop->data->afbc) {
673 		struct rockchip_crtc_state *s;
674 		/*
675 		 * Disable AFBC and forget there was a vop window with AFBC
676 		 */
677 		VOP_AFBC_SET(vop, enable, 0);
678 		s = to_rockchip_crtc_state(crtc->state);
679 		s->enable_afbc = false;
680 	}
681 
682 	vop_cfg_done(vop);
683 
684 	spin_unlock(&vop->reg_lock);
685 
686 	/*
687 	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
688 	 */
689 	vop->is_enabled = true;
690 
691 	spin_lock(&vop->reg_lock);
692 
693 	VOP_REG_SET(vop, common, standby, 1);
694 
695 	spin_unlock(&vop->reg_lock);
696 
697 	drm_crtc_vblank_on(crtc);
698 
699 	return 0;
700 
701 err_disable_dclk:
702 	clk_disable(vop->dclk);
703 err_disable_core:
704 	vop_core_clks_disable(vop);
705 err_put_pm_runtime:
706 	pm_runtime_put_sync(vop->dev);
707 	return ret;
708 }
709 
rockchip_drm_set_win_enabled(struct drm_crtc * crtc,bool enabled)710 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
711 {
712         struct vop *vop = to_vop(crtc);
713         int i;
714 
715         spin_lock(&vop->reg_lock);
716 
717         for (i = 0; i < vop->data->win_size; i++) {
718                 struct vop_win *vop_win = &vop->win[i];
719                 const struct vop_win_data *win = vop_win->data;
720 
721                 VOP_WIN_SET(vop, win, enable,
722                             enabled && (vop->win_enabled & BIT(i)));
723         }
724         vop_cfg_done(vop);
725 
726         spin_unlock(&vop->reg_lock);
727 }
728 
vop_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)729 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
730 				    struct drm_atomic_state *state)
731 {
732 	struct vop *vop = to_vop(crtc);
733 
734 	WARN_ON(vop->event);
735 
736 	if (crtc->state->self_refresh_active)
737 		rockchip_drm_set_win_enabled(crtc, false);
738 
739 	if (crtc->state->self_refresh_active)
740 		goto out;
741 
742 	mutex_lock(&vop->vop_lock);
743 
744 	drm_crtc_vblank_off(crtc);
745 
746 	/*
747 	 * Vop standby will take effect at end of current frame,
748 	 * if dsp hold valid irq happen, it means standby complete.
749 	 *
750 	 * we must wait standby complete when we want to disable aclk,
751 	 * if not, memory bus maybe dead.
752 	 */
753 	reinit_completion(&vop->dsp_hold_completion);
754 	vop_dsp_hold_valid_irq_enable(vop);
755 
756 	spin_lock(&vop->reg_lock);
757 
758 	VOP_REG_SET(vop, common, standby, 1);
759 
760 	spin_unlock(&vop->reg_lock);
761 
762 	if (!wait_for_completion_timeout(&vop->dsp_hold_completion,
763 					 msecs_to_jiffies(200)))
764 		WARN(1, "%s: timed out waiting for DSP hold", crtc->name);
765 
766 	vop_dsp_hold_valid_irq_disable(vop);
767 
768 	vop->is_enabled = false;
769 
770 	/*
771 	 * vop standby complete, so iommu detach is safe.
772 	 */
773 	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
774 
775 	clk_disable(vop->dclk);
776 	vop_core_clks_disable(vop);
777 	pm_runtime_put(vop->dev);
778 
779 	mutex_unlock(&vop->vop_lock);
780 
781 out:
782 	if (crtc->state->event && !crtc->state->active) {
783 		spin_lock_irq(&crtc->dev->event_lock);
784 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
785 		spin_unlock_irq(&crtc->dev->event_lock);
786 
787 		crtc->state->event = NULL;
788 	}
789 }
790 
rockchip_afbc(u64 modifier)791 static inline bool rockchip_afbc(u64 modifier)
792 {
793 	return modifier == ROCKCHIP_AFBC_MOD;
794 }
795 
rockchip_mod_supported(struct drm_plane * plane,u32 format,u64 modifier)796 static bool rockchip_mod_supported(struct drm_plane *plane,
797 				   u32 format, u64 modifier)
798 {
799 	if (modifier == DRM_FORMAT_MOD_LINEAR)
800 		return true;
801 
802 	if (!rockchip_afbc(modifier)) {
803 		DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
804 
805 		return false;
806 	}
807 
808 	return vop_convert_afbc_format(format) >= 0;
809 }
810 
vop_plane_atomic_check(struct drm_plane * plane,struct drm_atomic_state * state)811 static int vop_plane_atomic_check(struct drm_plane *plane,
812 			   struct drm_atomic_state *state)
813 {
814 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
815 										 plane);
816 	struct drm_crtc *crtc = new_plane_state->crtc;
817 	struct drm_crtc_state *crtc_state;
818 	struct drm_framebuffer *fb = new_plane_state->fb;
819 	struct vop_win *vop_win = to_vop_win(plane);
820 	const struct vop_win_data *win = vop_win->data;
821 	int ret;
822 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
823 					DRM_PLANE_NO_SCALING;
824 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
825 					DRM_PLANE_NO_SCALING;
826 
827 	if (!crtc || WARN_ON(!fb))
828 		return 0;
829 
830 	crtc_state = drm_atomic_get_existing_crtc_state(state,
831 							crtc);
832 	if (WARN_ON(!crtc_state))
833 		return -EINVAL;
834 
835 	ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
836 						  min_scale, max_scale,
837 						  true, true);
838 	if (ret)
839 		return ret;
840 
841 	if (!new_plane_state->visible)
842 		return 0;
843 
844 	ret = vop_convert_format(fb->format->format);
845 	if (ret < 0)
846 		return ret;
847 
848 	/*
849 	 * Src.x1 can be odd when do clip, but yuv plane start point
850 	 * need align with 2 pixel.
851 	 */
852 	if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
853 		DRM_DEBUG_KMS("Invalid Source: Yuv format not support odd xpos\n");
854 		return -EINVAL;
855 	}
856 
857 	if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
858 		DRM_DEBUG_KMS("Invalid Source: Yuv format does not support this rotation\n");
859 		return -EINVAL;
860 	}
861 
862 	if (rockchip_afbc(fb->modifier)) {
863 		struct vop *vop = to_vop(crtc);
864 
865 		if (!vop->data->afbc) {
866 			DRM_DEBUG_KMS("vop does not support AFBC\n");
867 			return -EINVAL;
868 		}
869 
870 		ret = vop_convert_afbc_format(fb->format->format);
871 		if (ret < 0)
872 			return ret;
873 
874 		if (new_plane_state->src.x1 || new_plane_state->src.y1) {
875 			DRM_DEBUG_KMS("AFBC does not support offset display, " \
876 				      "xpos=%d, ypos=%d, offset=%d\n",
877 				      new_plane_state->src.x1, new_plane_state->src.y1,
878 				      fb->offsets[0]);
879 			return -EINVAL;
880 		}
881 
882 		if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
883 			DRM_DEBUG_KMS("No rotation support in AFBC, rotation=%d\n",
884 				      new_plane_state->rotation);
885 			return -EINVAL;
886 		}
887 	}
888 
889 	return 0;
890 }
891 
vop_plane_atomic_disable(struct drm_plane * plane,struct drm_atomic_state * state)892 static void vop_plane_atomic_disable(struct drm_plane *plane,
893 				     struct drm_atomic_state *state)
894 {
895 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
896 									   plane);
897 	struct vop_win *vop_win = to_vop_win(plane);
898 	struct vop *vop = to_vop(old_state->crtc);
899 
900 	if (!old_state->crtc)
901 		return;
902 
903 	spin_lock(&vop->reg_lock);
904 
905 	vop_win_disable(vop, vop_win);
906 
907 	spin_unlock(&vop->reg_lock);
908 }
909 
vop_plane_atomic_update(struct drm_plane * plane,struct drm_atomic_state * state)910 static void vop_plane_atomic_update(struct drm_plane *plane,
911 		struct drm_atomic_state *state)
912 {
913 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
914 									   plane);
915 	struct drm_crtc *crtc = new_state->crtc;
916 	struct vop_win *vop_win = to_vop_win(plane);
917 	const struct vop_win_data *win = vop_win->data;
918 	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
919 	struct vop *vop = to_vop(new_state->crtc);
920 	struct drm_framebuffer *fb = new_state->fb;
921 	unsigned int actual_w, actual_h;
922 	unsigned int dsp_stx, dsp_sty;
923 	uint32_t act_info, dsp_info, dsp_st;
924 	struct drm_rect *src = &new_state->src;
925 	struct drm_rect *dest = &new_state->dst;
926 	struct drm_gem_object *obj, *uv_obj;
927 	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
928 	unsigned long offset;
929 	dma_addr_t dma_addr;
930 	uint32_t val;
931 	bool rb_swap, uv_swap;
932 	int win_index = VOP_WIN_TO_INDEX(vop_win);
933 	int format;
934 	int is_yuv = fb->format->is_yuv;
935 	int i;
936 
937 	/*
938 	 * can't update plane when vop is disabled.
939 	 */
940 	if (WARN_ON(!crtc))
941 		return;
942 
943 	if (WARN_ON(!vop->is_enabled))
944 		return;
945 
946 	if (!new_state->visible) {
947 		vop_plane_atomic_disable(plane, state);
948 		return;
949 	}
950 
951 	obj = fb->obj[0];
952 	rk_obj = to_rockchip_obj(obj);
953 
954 	actual_w = drm_rect_width(src) >> 16;
955 	actual_h = drm_rect_height(src) >> 16;
956 	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
957 
958 	dsp_info = (drm_rect_height(dest) - 1) << 16;
959 	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
960 
961 	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
962 	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
963 	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
964 
965 	if (fb->format->char_per_block[0])
966 		offset = drm_format_info_min_pitch(fb->format, 0,
967 						   src->x1 >> 16);
968 	else
969 		offset = (src->x1 >> 16) * fb->format->cpp[0];
970 
971 	offset += (src->y1 >> 16) * fb->pitches[0];
972 	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
973 
974 	/*
975 	 * For y-mirroring we need to move address
976 	 * to the beginning of the last line.
977 	 */
978 	if (new_state->rotation & DRM_MODE_REFLECT_Y)
979 		dma_addr += (actual_h - 1) * fb->pitches[0];
980 
981 	format = vop_convert_format(fb->format->format);
982 
983 	spin_lock(&vop->reg_lock);
984 
985 	if (rockchip_afbc(fb->modifier)) {
986 		int afbc_format = vop_convert_afbc_format(fb->format->format);
987 
988 		VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
989 		VOP_AFBC_SET(vop, hreg_block_split, 0);
990 		VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
991 		VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
992 		VOP_AFBC_SET(vop, pic_size, act_info);
993 	}
994 
995 	VOP_WIN_SET(vop, win, format, format);
996 	VOP_WIN_SET(vop, win, fmt_10, is_fmt_10(fb->format->format));
997 	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
998 	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
999 	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
1000 	VOP_WIN_SET(vop, win, y_mir_en,
1001 		    (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
1002 	VOP_WIN_SET(vop, win, x_mir_en,
1003 		    (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
1004 
1005 	if (is_yuv) {
1006 		uv_obj = fb->obj[1];
1007 		rk_uv_obj = to_rockchip_obj(uv_obj);
1008 
1009 		if (fb->format->char_per_block[1])
1010 			offset = drm_format_info_min_pitch(fb->format, 1,
1011 							   src->x1 >> 16);
1012 		else
1013 			offset = (src->x1 >> 16) * fb->format->cpp[1];
1014 		offset /= fb->format->hsub;
1015 		offset += (src->y1 >> 16) * fb->pitches[1] / fb->format->vsub;
1016 
1017 		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
1018 		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
1019 		VOP_WIN_SET(vop, win, uv_mst, dma_addr);
1020 
1021 		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
1022 			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
1023 							win_yuv2yuv,
1024 							y2r_coefficients[i],
1025 							bt601_yuv2rgb[i]);
1026 		}
1027 
1028 		uv_swap = has_uv_swapped(fb->format->format);
1029 		VOP_WIN_SET(vop, win, uv_swap, uv_swap);
1030 	}
1031 
1032 	if (win->phy->scl)
1033 		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
1034 				    drm_rect_width(dest), drm_rect_height(dest),
1035 				    fb->format);
1036 
1037 	VOP_WIN_SET(vop, win, act_info, act_info);
1038 	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
1039 	VOP_WIN_SET(vop, win, dsp_st, dsp_st);
1040 
1041 	rb_swap = has_rb_swapped(vop->data->version, fb->format->format);
1042 	VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1043 
1044 	/*
1045 	 * Blending win0 with the background color doesn't seem to work
1046 	 * correctly. We only get the background color, no matter the contents
1047 	 * of the win0 framebuffer.  However, blending pre-multiplied color
1048 	 * with the default opaque black default background color is a no-op,
1049 	 * so we can just disable blending to get the correct result.
1050 	 */
1051 	if (fb->format->has_alpha && win_index > 0) {
1052 		VOP_WIN_SET(vop, win, dst_alpha_ctl,
1053 			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1054 		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1055 			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1056 			SRC_BLEND_M0(ALPHA_PER_PIX) |
1057 			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1058 			SRC_FACTOR_M0(ALPHA_ONE);
1059 		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1060 
1061 		VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1062 		VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1063 		VOP_WIN_SET(vop, win, alpha_en, 1);
1064 	} else {
1065 		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1066 		VOP_WIN_SET(vop, win, alpha_en, 0);
1067 	}
1068 
1069 	VOP_WIN_SET(vop, win, enable, 1);
1070 	vop->win_enabled |= BIT(win_index);
1071 	spin_unlock(&vop->reg_lock);
1072 }
1073 
vop_plane_atomic_async_check(struct drm_plane * plane,struct drm_atomic_state * state)1074 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1075 					struct drm_atomic_state *state)
1076 {
1077 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1078 										 plane);
1079 	struct vop_win *vop_win = to_vop_win(plane);
1080 	const struct vop_win_data *win = vop_win->data;
1081 	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1082 					DRM_PLANE_NO_SCALING;
1083 	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1084 					DRM_PLANE_NO_SCALING;
1085 	struct drm_crtc_state *crtc_state;
1086 
1087 	if (plane != new_plane_state->crtc->cursor)
1088 		return -EINVAL;
1089 
1090 	if (!plane->state)
1091 		return -EINVAL;
1092 
1093 	if (!plane->state->fb)
1094 		return -EINVAL;
1095 
1096 	crtc_state = drm_atomic_get_existing_crtc_state(state, new_plane_state->crtc);
1097 
1098 	/* Special case for asynchronous cursor updates. */
1099 	if (!crtc_state)
1100 		crtc_state = plane->crtc->state;
1101 
1102 	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1103 						   min_scale, max_scale,
1104 						   true, true);
1105 }
1106 
vop_plane_atomic_async_update(struct drm_plane * plane,struct drm_atomic_state * state)1107 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1108 					  struct drm_atomic_state *state)
1109 {
1110 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1111 									   plane);
1112 	struct vop *vop = to_vop(plane->state->crtc);
1113 	struct drm_framebuffer *old_fb = plane->state->fb;
1114 
1115 	plane->state->crtc_x = new_state->crtc_x;
1116 	plane->state->crtc_y = new_state->crtc_y;
1117 	plane->state->crtc_h = new_state->crtc_h;
1118 	plane->state->crtc_w = new_state->crtc_w;
1119 	plane->state->src_x = new_state->src_x;
1120 	plane->state->src_y = new_state->src_y;
1121 	plane->state->src_h = new_state->src_h;
1122 	plane->state->src_w = new_state->src_w;
1123 	swap(plane->state->fb, new_state->fb);
1124 
1125 	if (vop->is_enabled) {
1126 		vop_plane_atomic_update(plane, state);
1127 		spin_lock(&vop->reg_lock);
1128 		vop_cfg_done(vop);
1129 		spin_unlock(&vop->reg_lock);
1130 
1131 		/*
1132 		 * A scanout can still be occurring, so we can't drop the
1133 		 * reference to the old framebuffer. To solve this we get a
1134 		 * reference to old_fb and set a worker to release it later.
1135 		 * FIXME: if we perform 500 async_update calls before the
1136 		 * vblank, then we can have 500 different framebuffers waiting
1137 		 * to be released.
1138 		 */
1139 		if (old_fb && plane->state->fb != old_fb) {
1140 			drm_framebuffer_get(old_fb);
1141 			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1142 			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1143 			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1144 		}
1145 	}
1146 }
1147 
1148 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1149 	.atomic_check = vop_plane_atomic_check,
1150 	.atomic_update = vop_plane_atomic_update,
1151 	.atomic_disable = vop_plane_atomic_disable,
1152 	.atomic_async_check = vop_plane_atomic_async_check,
1153 	.atomic_async_update = vop_plane_atomic_async_update,
1154 };
1155 
1156 static const struct drm_plane_funcs vop_plane_funcs = {
1157 	.update_plane	= drm_atomic_helper_update_plane,
1158 	.disable_plane	= drm_atomic_helper_disable_plane,
1159 	.destroy = drm_plane_cleanup,
1160 	.reset = drm_atomic_helper_plane_reset,
1161 	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1162 	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1163 	.format_mod_supported = rockchip_mod_supported,
1164 };
1165 
vop_crtc_enable_vblank(struct drm_crtc * crtc)1166 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1167 {
1168 	struct vop *vop = to_vop(crtc);
1169 	unsigned long flags;
1170 
1171 	if (WARN_ON(!vop->is_enabled))
1172 		return -EPERM;
1173 
1174 	spin_lock_irqsave(&vop->irq_lock, flags);
1175 
1176 	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1177 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1178 
1179 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1180 
1181 	return 0;
1182 }
1183 
vop_crtc_disable_vblank(struct drm_crtc * crtc)1184 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1185 {
1186 	struct vop *vop = to_vop(crtc);
1187 	unsigned long flags;
1188 
1189 	if (WARN_ON(!vop->is_enabled))
1190 		return;
1191 
1192 	spin_lock_irqsave(&vop->irq_lock, flags);
1193 
1194 	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1195 
1196 	spin_unlock_irqrestore(&vop->irq_lock, flags);
1197 }
1198 
vop_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)1199 static enum drm_mode_status vop_crtc_mode_valid(struct drm_crtc *crtc,
1200 						const struct drm_display_mode *mode)
1201 {
1202 	struct vop *vop = to_vop(crtc);
1203 
1204 	if (vop->data->max_output.width && mode->hdisplay > vop->data->max_output.width)
1205 		return MODE_BAD_HVALUE;
1206 
1207 	return MODE_OK;
1208 }
1209 
vop_crtc_mode_fixup(struct drm_crtc * crtc,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)1210 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1211 				const struct drm_display_mode *mode,
1212 				struct drm_display_mode *adjusted_mode)
1213 {
1214 	struct vop *vop = to_vop(crtc);
1215 	unsigned long rate;
1216 
1217 	/*
1218 	 * Clock craziness.
1219 	 *
1220 	 * Key points:
1221 	 *
1222 	 * - DRM works in kHz.
1223 	 * - Clock framework works in Hz.
1224 	 * - Rockchip's clock driver picks the clock rate that is the
1225 	 *   same _OR LOWER_ than the one requested.
1226 	 *
1227 	 * Action plan:
1228 	 *
1229 	 * 1. Try to set the exact rate first, and confirm the clock framework
1230 	 *    can provide it.
1231 	 *
1232 	 * 2. If the clock framework cannot provide the exact rate, we should
1233 	 *    add 999 Hz to the requested rate.  That way if the clock we need
1234 	 *    is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1235 	 *    the clock framework will actually give us the right clock.
1236 	 *
1237 	 * 3. Get the clock framework to round the rate for us to tell us
1238 	 *    what it will actually make.
1239 	 *
1240 	 * 4. Store the rounded up rate so that we don't need to worry about
1241 	 *    this in the actual clk_set_rate().
1242 	 */
1243 	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1244 	if (rate / 1000 != adjusted_mode->clock)
1245 		rate = clk_round_rate(vop->dclk,
1246 				      adjusted_mode->clock * 1000 + 999);
1247 	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1248 
1249 	return true;
1250 }
1251 
vop_dsp_lut_is_enabled(struct vop * vop)1252 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1253 {
1254 	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1255 }
1256 
vop_lut_buffer_index(struct vop * vop)1257 static u32 vop_lut_buffer_index(struct vop *vop)
1258 {
1259 	return vop_read_reg(vop, 0, &vop->data->common->lut_buffer_index);
1260 }
1261 
vop_crtc_write_gamma_lut(struct vop * vop,struct drm_crtc * crtc)1262 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1263 {
1264 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1265 	unsigned int i, bpc = ilog2(vop->data->lut_size);
1266 
1267 	for (i = 0; i < crtc->gamma_size; i++) {
1268 		u32 word;
1269 
1270 		word = (drm_color_lut_extract(lut[i].red, bpc) << (2 * bpc)) |
1271 		       (drm_color_lut_extract(lut[i].green, bpc) << bpc) |
1272 			drm_color_lut_extract(lut[i].blue, bpc);
1273 		writel(word, vop->lut_regs + i * 4);
1274 	}
1275 }
1276 
vop_crtc_gamma_set(struct vop * vop,struct drm_crtc * crtc,struct drm_crtc_state * old_state)1277 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1278 			       struct drm_crtc_state *old_state)
1279 {
1280 	struct drm_crtc_state *state = crtc->state;
1281 	unsigned int idle;
1282 	u32 lut_idx, old_idx;
1283 	int ret;
1284 
1285 	if (!vop->lut_regs)
1286 		return;
1287 
1288 	if (!state->gamma_lut || !VOP_HAS_REG(vop, common, update_gamma_lut)) {
1289 		/*
1290 		 * To disable gamma (gamma_lut is null) or to write
1291 		 * an update to the LUT, clear dsp_lut_en.
1292 		 */
1293 		spin_lock(&vop->reg_lock);
1294 		VOP_REG_SET(vop, common, dsp_lut_en, 0);
1295 		vop_cfg_done(vop);
1296 		spin_unlock(&vop->reg_lock);
1297 
1298 		/*
1299 		 * In order to write the LUT to the internal memory,
1300 		 * we need to first make sure the dsp_lut_en bit is cleared.
1301 		 */
1302 		ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1303 					 idle, !idle, 5, 30 * 1000);
1304 		if (ret) {
1305 			DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1306 			return;
1307 		}
1308 
1309 		if (!state->gamma_lut)
1310 			return;
1311 	} else {
1312 		/*
1313 		 * On RK3399 the gamma LUT can updated without clearing dsp_lut_en,
1314 		 * by setting update_gamma_lut then waiting for lut_buffer_index change
1315 		 */
1316 		old_idx = vop_lut_buffer_index(vop);
1317 	}
1318 
1319 	spin_lock(&vop->reg_lock);
1320 	vop_crtc_write_gamma_lut(vop, crtc);
1321 	VOP_REG_SET(vop, common, dsp_lut_en, 1);
1322 	VOP_REG_SET(vop, common, update_gamma_lut, 1);
1323 	vop_cfg_done(vop);
1324 	spin_unlock(&vop->reg_lock);
1325 
1326 	if (VOP_HAS_REG(vop, common, update_gamma_lut)) {
1327 		ret = readx_poll_timeout(vop_lut_buffer_index, vop,
1328 					 lut_idx, lut_idx != old_idx, 5, 30 * 1000);
1329 		if (ret) {
1330 			DRM_DEV_ERROR(vop->dev, "gamma LUT update timeout!\n");
1331 			return;
1332 		}
1333 
1334 		/*
1335 		 * update_gamma_lut is auto cleared by HW, but write 0 to clear the bit
1336 		 * in our backup of the regs.
1337 		 */
1338 		spin_lock(&vop->reg_lock);
1339 		VOP_REG_SET(vop, common, update_gamma_lut, 0);
1340 		spin_unlock(&vop->reg_lock);
1341 	}
1342 }
1343 
vop_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)1344 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1345 				  struct drm_atomic_state *state)
1346 {
1347 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1348 									  crtc);
1349 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1350 									      crtc);
1351 	struct vop *vop = to_vop(crtc);
1352 
1353 	/*
1354 	 * Only update GAMMA if the 'active' flag is not changed,
1355 	 * otherwise it's updated by .atomic_enable.
1356 	 */
1357 	if (crtc_state->color_mgmt_changed &&
1358 	    !crtc_state->active_changed)
1359 		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1360 }
1361 
vop_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1362 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1363 				   struct drm_atomic_state *state)
1364 {
1365 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1366 									 crtc);
1367 	struct vop *vop = to_vop(crtc);
1368 	const struct vop_data *vop_data = vop->data;
1369 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1370 	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1371 	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1372 	u16 hdisplay = adjusted_mode->hdisplay;
1373 	u16 htotal = adjusted_mode->htotal;
1374 	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1375 	u16 hact_end = hact_st + hdisplay;
1376 	u16 vdisplay = adjusted_mode->vdisplay;
1377 	u16 vtotal = adjusted_mode->vtotal;
1378 	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1379 	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1380 	u16 vact_end = vact_st + vdisplay;
1381 	uint32_t pin_pol, val;
1382 	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1383 	int ret;
1384 
1385 	if (old_state && old_state->self_refresh_active) {
1386 		drm_crtc_vblank_on(crtc);
1387 		rockchip_drm_set_win_enabled(crtc, true);
1388 		return;
1389 	}
1390 
1391 	mutex_lock(&vop->vop_lock);
1392 
1393 	WARN_ON(vop->event);
1394 
1395 	ret = vop_enable(crtc, old_state);
1396 	if (ret) {
1397 		mutex_unlock(&vop->vop_lock);
1398 		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1399 		return;
1400 	}
1401 	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1402 		   BIT(HSYNC_POSITIVE) : 0;
1403 	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1404 		   BIT(VSYNC_POSITIVE) : 0;
1405 	VOP_REG_SET(vop, output, pin_pol, pin_pol);
1406 	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1407 
1408 	switch (s->output_type) {
1409 	case DRM_MODE_CONNECTOR_LVDS:
1410 		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1411 		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1412 		VOP_REG_SET(vop, output, rgb_en, 1);
1413 		break;
1414 	case DRM_MODE_CONNECTOR_eDP:
1415 		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1416 		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1417 		VOP_REG_SET(vop, output, edp_en, 1);
1418 		break;
1419 	case DRM_MODE_CONNECTOR_HDMIA:
1420 		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1421 		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1422 		VOP_REG_SET(vop, output, hdmi_en, 1);
1423 		break;
1424 	case DRM_MODE_CONNECTOR_DSI:
1425 		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1426 		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1427 		VOP_REG_SET(vop, output, mipi_en, 1);
1428 		VOP_REG_SET(vop, output, mipi_dual_channel_en,
1429 			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1430 		break;
1431 	case DRM_MODE_CONNECTOR_DisplayPort:
1432 		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1433 		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1434 		VOP_REG_SET(vop, output, dp_en, 1);
1435 		break;
1436 	default:
1437 		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1438 			      s->output_type);
1439 	}
1440 
1441 	/*
1442 	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1443 	 */
1444 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1445 	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1446 		s->output_mode = ROCKCHIP_OUT_MODE_P888;
1447 
1448 	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1449 		VOP_REG_SET(vop, common, pre_dither_down, 1);
1450 	else
1451 		VOP_REG_SET(vop, common, pre_dither_down, 0);
1452 
1453 	if (dither_bpc == 6) {
1454 		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1455 		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1456 		VOP_REG_SET(vop, common, dither_down_en, 1);
1457 	} else {
1458 		VOP_REG_SET(vop, common, dither_down_en, 0);
1459 	}
1460 
1461 	VOP_REG_SET(vop, common, out_mode, s->output_mode);
1462 
1463 	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1464 	val = hact_st << 16;
1465 	val |= hact_end;
1466 	VOP_REG_SET(vop, modeset, hact_st_end, val);
1467 	VOP_REG_SET(vop, modeset, hpost_st_end, val);
1468 
1469 	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1470 	val = vact_st << 16;
1471 	val |= vact_end;
1472 	VOP_REG_SET(vop, modeset, vact_st_end, val);
1473 	VOP_REG_SET(vop, modeset, vpost_st_end, val);
1474 
1475 	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1476 
1477 	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1478 
1479 	VOP_REG_SET(vop, common, standby, 0);
1480 	mutex_unlock(&vop->vop_lock);
1481 
1482 	/*
1483 	 * If we have a GAMMA LUT in the state, then let's make sure
1484 	 * it's updated. We might be coming out of suspend,
1485 	 * which means the LUT internal memory needs to be re-written.
1486 	 */
1487 	if (crtc->state->gamma_lut)
1488 		vop_crtc_gamma_set(vop, crtc, old_state);
1489 }
1490 
vop_fs_irq_is_pending(struct vop * vop)1491 static bool vop_fs_irq_is_pending(struct vop *vop)
1492 {
1493 	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1494 }
1495 
vop_wait_for_irq_handler(struct vop * vop)1496 static void vop_wait_for_irq_handler(struct vop *vop)
1497 {
1498 	bool pending;
1499 	int ret;
1500 
1501 	/*
1502 	 * Spin until frame start interrupt status bit goes low, which means
1503 	 * that interrupt handler was invoked and cleared it. The timeout of
1504 	 * 10 msecs is really too long, but it is just a safety measure if
1505 	 * something goes really wrong. The wait will only happen in the very
1506 	 * unlikely case of a vblank happening exactly at the same time and
1507 	 * shouldn't exceed microseconds range.
1508 	 */
1509 	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1510 					!pending, 0, 10 * 1000);
1511 	if (ret)
1512 		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1513 
1514 	synchronize_irq(vop->irq);
1515 }
1516 
vop_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)1517 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1518 				 struct drm_atomic_state *state)
1519 {
1520 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1521 									  crtc);
1522 	struct vop *vop = to_vop(crtc);
1523 	struct drm_plane *plane;
1524 	struct drm_plane_state *plane_state;
1525 	struct rockchip_crtc_state *s;
1526 	int afbc_planes = 0;
1527 
1528 	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1529 	    crtc_state->gamma_lut) {
1530 		unsigned int len;
1531 
1532 		len = drm_color_lut_size(crtc_state->gamma_lut);
1533 		if (len != crtc->gamma_size) {
1534 			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1535 				      len, crtc->gamma_size);
1536 			return -EINVAL;
1537 		}
1538 	}
1539 
1540 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1541 		plane_state =
1542 			drm_atomic_get_plane_state(crtc_state->state, plane);
1543 		if (IS_ERR(plane_state)) {
1544 			DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1545 				      plane->name);
1546 			return PTR_ERR(plane_state);
1547 		}
1548 
1549 		if (drm_is_afbc(plane_state->fb->modifier))
1550 			++afbc_planes;
1551 	}
1552 
1553 	if (afbc_planes > 1) {
1554 		DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1555 		return -EINVAL;
1556 	}
1557 
1558 	s = to_rockchip_crtc_state(crtc_state);
1559 	s->enable_afbc = afbc_planes > 0;
1560 
1561 	return 0;
1562 }
1563 
vop_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)1564 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1565 				  struct drm_atomic_state *state)
1566 {
1567 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1568 									      crtc);
1569 	struct drm_atomic_state *old_state = old_crtc_state->state;
1570 	struct drm_plane_state *old_plane_state, *new_plane_state;
1571 	struct vop *vop = to_vop(crtc);
1572 	struct drm_plane *plane;
1573 	struct rockchip_crtc_state *s;
1574 	int i;
1575 
1576 	if (WARN_ON(!vop->is_enabled))
1577 		return;
1578 
1579 	spin_lock(&vop->reg_lock);
1580 
1581 	/* Enable AFBC if there is some AFBC window, disable otherwise. */
1582 	s = to_rockchip_crtc_state(crtc->state);
1583 	VOP_AFBC_SET(vop, enable, s->enable_afbc);
1584 	vop_cfg_done(vop);
1585 
1586 	/* Ack the DMA transfer of the previous frame (RK3066). */
1587 	if (VOP_HAS_REG(vop, common, dma_stop))
1588 		VOP_REG_SET(vop, common, dma_stop, 0);
1589 
1590 	spin_unlock(&vop->reg_lock);
1591 
1592 	/*
1593 	 * There is a (rather unlikely) possiblity that a vblank interrupt
1594 	 * fired before we set the cfg_done bit. To avoid spuriously
1595 	 * signalling flip completion we need to wait for it to finish.
1596 	 */
1597 	vop_wait_for_irq_handler(vop);
1598 
1599 	spin_lock_irq(&crtc->dev->event_lock);
1600 	if (crtc->state->event) {
1601 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1602 		WARN_ON(vop->event);
1603 
1604 		vop->event = crtc->state->event;
1605 		crtc->state->event = NULL;
1606 	}
1607 	spin_unlock_irq(&crtc->dev->event_lock);
1608 
1609 	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1610 				       new_plane_state, i) {
1611 		if (!old_plane_state->fb)
1612 			continue;
1613 
1614 		if (old_plane_state->fb == new_plane_state->fb)
1615 			continue;
1616 
1617 		drm_framebuffer_get(old_plane_state->fb);
1618 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1619 		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1620 		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1621 	}
1622 }
1623 
1624 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1625 	.mode_valid = vop_crtc_mode_valid,
1626 	.mode_fixup = vop_crtc_mode_fixup,
1627 	.atomic_check = vop_crtc_atomic_check,
1628 	.atomic_begin = vop_crtc_atomic_begin,
1629 	.atomic_flush = vop_crtc_atomic_flush,
1630 	.atomic_enable = vop_crtc_atomic_enable,
1631 	.atomic_disable = vop_crtc_atomic_disable,
1632 };
1633 
vop_crtc_duplicate_state(struct drm_crtc * crtc)1634 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1635 {
1636 	struct rockchip_crtc_state *rockchip_state;
1637 
1638 	if (WARN_ON(!crtc->state))
1639 		return NULL;
1640 
1641 	rockchip_state = kmemdup(to_rockchip_crtc_state(crtc->state),
1642 				 sizeof(*rockchip_state), GFP_KERNEL);
1643 	if (!rockchip_state)
1644 		return NULL;
1645 
1646 	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1647 	return &rockchip_state->base;
1648 }
1649 
vop_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)1650 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1651 				   struct drm_crtc_state *state)
1652 {
1653 	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1654 
1655 	__drm_atomic_helper_crtc_destroy_state(&s->base);
1656 	kfree(s);
1657 }
1658 
vop_crtc_reset(struct drm_crtc * crtc)1659 static void vop_crtc_reset(struct drm_crtc *crtc)
1660 {
1661 	struct rockchip_crtc_state *crtc_state =
1662 		kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1663 
1664 	if (crtc->state)
1665 		vop_crtc_destroy_state(crtc, crtc->state);
1666 
1667 	if (crtc_state)
1668 		__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1669 	else
1670 		__drm_atomic_helper_crtc_reset(crtc, NULL);
1671 }
1672 
1673 #ifdef CONFIG_DRM_ANALOGIX_DP
vop_get_edp_connector(struct vop * vop)1674 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1675 {
1676 	struct drm_connector *connector;
1677 	struct drm_connector_list_iter conn_iter;
1678 
1679 	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1680 	drm_for_each_connector_iter(connector, &conn_iter) {
1681 		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1682 			drm_connector_list_iter_end(&conn_iter);
1683 			return connector;
1684 		}
1685 	}
1686 	drm_connector_list_iter_end(&conn_iter);
1687 
1688 	return NULL;
1689 }
1690 
vop_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)1691 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1692 				   const char *source_name)
1693 {
1694 	struct vop *vop = to_vop(crtc);
1695 	struct drm_connector *connector;
1696 	int ret;
1697 
1698 	connector = vop_get_edp_connector(vop);
1699 	if (!connector)
1700 		return -EINVAL;
1701 
1702 	if (source_name && strcmp(source_name, "auto") == 0)
1703 		ret = analogix_dp_start_crc(connector);
1704 	else if (!source_name)
1705 		ret = analogix_dp_stop_crc(connector);
1706 	else
1707 		ret = -EINVAL;
1708 
1709 	return ret;
1710 }
1711 
1712 static int
vop_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)1713 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1714 			   size_t *values_cnt)
1715 {
1716 	if (source_name && strcmp(source_name, "auto") != 0)
1717 		return -EINVAL;
1718 
1719 	*values_cnt = 3;
1720 	return 0;
1721 }
1722 
1723 #else
vop_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)1724 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1725 				   const char *source_name)
1726 {
1727 	return -ENODEV;
1728 }
1729 
1730 static int
vop_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)1731 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1732 			   size_t *values_cnt)
1733 {
1734 	return -ENODEV;
1735 }
1736 #endif
1737 
1738 static const struct drm_crtc_funcs vop_crtc_funcs = {
1739 	.set_config = drm_atomic_helper_set_config,
1740 	.page_flip = drm_atomic_helper_page_flip,
1741 	.destroy = drm_crtc_cleanup,
1742 	.reset = vop_crtc_reset,
1743 	.atomic_duplicate_state = vop_crtc_duplicate_state,
1744 	.atomic_destroy_state = vop_crtc_destroy_state,
1745 	.enable_vblank = vop_crtc_enable_vblank,
1746 	.disable_vblank = vop_crtc_disable_vblank,
1747 	.set_crc_source = vop_crtc_set_crc_source,
1748 	.verify_crc_source = vop_crtc_verify_crc_source,
1749 };
1750 
vop_fb_unref_worker(struct drm_flip_work * work,void * val)1751 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1752 {
1753 	struct vop *vop = container_of(work, struct vop, fb_unref_work);
1754 	struct drm_framebuffer *fb = val;
1755 
1756 	drm_crtc_vblank_put(&vop->crtc);
1757 	drm_framebuffer_put(fb);
1758 }
1759 
vop_handle_vblank(struct vop * vop)1760 static void vop_handle_vblank(struct vop *vop)
1761 {
1762 	struct drm_device *drm = vop->drm_dev;
1763 	struct drm_crtc *crtc = &vop->crtc;
1764 
1765 	spin_lock(&drm->event_lock);
1766 	if (vop->event) {
1767 		drm_crtc_send_vblank_event(crtc, vop->event);
1768 		drm_crtc_vblank_put(crtc);
1769 		vop->event = NULL;
1770 	}
1771 	spin_unlock(&drm->event_lock);
1772 
1773 	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1774 		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1775 }
1776 
vop_isr(int irq,void * data)1777 static irqreturn_t vop_isr(int irq, void *data)
1778 {
1779 	struct vop *vop = data;
1780 	struct drm_crtc *crtc = &vop->crtc;
1781 	uint32_t active_irqs;
1782 	int ret = IRQ_NONE;
1783 
1784 	/*
1785 	 * The irq is shared with the iommu. If the runtime-pm state of the
1786 	 * vop-device is disabled the irq has to be targeted at the iommu.
1787 	 */
1788 	if (!pm_runtime_get_if_in_use(vop->dev))
1789 		return IRQ_NONE;
1790 
1791 	if (vop_core_clks_enable(vop)) {
1792 		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1793 		goto out;
1794 	}
1795 
1796 	/*
1797 	 * interrupt register has interrupt status, enable and clear bits, we
1798 	 * must hold irq_lock to avoid a race with enable/disable_vblank().
1799 	*/
1800 	spin_lock(&vop->irq_lock);
1801 
1802 	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1803 	/* Clear all active interrupt sources */
1804 	if (active_irqs)
1805 		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1806 
1807 	spin_unlock(&vop->irq_lock);
1808 
1809 	/* This is expected for vop iommu irqs, since the irq is shared */
1810 	if (!active_irqs)
1811 		goto out_disable;
1812 
1813 	if (active_irqs & DSP_HOLD_VALID_INTR) {
1814 		complete(&vop->dsp_hold_completion);
1815 		active_irqs &= ~DSP_HOLD_VALID_INTR;
1816 		ret = IRQ_HANDLED;
1817 	}
1818 
1819 	if (active_irqs & LINE_FLAG_INTR) {
1820 		complete(&vop->line_flag_completion);
1821 		active_irqs &= ~LINE_FLAG_INTR;
1822 		ret = IRQ_HANDLED;
1823 	}
1824 
1825 	if (active_irqs & FS_INTR) {
1826 		drm_crtc_handle_vblank(crtc);
1827 		vop_handle_vblank(vop);
1828 		active_irqs &= ~FS_INTR;
1829 		ret = IRQ_HANDLED;
1830 	}
1831 
1832 	/* Unhandled irqs are spurious. */
1833 	if (active_irqs)
1834 		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1835 			      active_irqs);
1836 
1837 out_disable:
1838 	vop_core_clks_disable(vop);
1839 out:
1840 	pm_runtime_put(vop->dev);
1841 	return ret;
1842 }
1843 
vop_plane_add_properties(struct drm_plane * plane,const struct vop_win_data * win_data)1844 static void vop_plane_add_properties(struct drm_plane *plane,
1845 				     const struct vop_win_data *win_data)
1846 {
1847 	unsigned int flags = 0;
1848 
1849 	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1850 	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1851 	if (flags)
1852 		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1853 						   DRM_MODE_ROTATE_0 | flags);
1854 }
1855 
vop_create_crtc(struct vop * vop)1856 static int vop_create_crtc(struct vop *vop)
1857 {
1858 	const struct vop_data *vop_data = vop->data;
1859 	struct device *dev = vop->dev;
1860 	struct drm_device *drm_dev = vop->drm_dev;
1861 	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1862 	struct drm_crtc *crtc = &vop->crtc;
1863 	struct device_node *port;
1864 	int ret;
1865 	int i;
1866 
1867 	/*
1868 	 * Create drm_plane for primary and cursor planes first, since we need
1869 	 * to pass them to drm_crtc_init_with_planes, which sets the
1870 	 * "possible_crtcs" to the newly initialized crtc.
1871 	 */
1872 	for (i = 0; i < vop_data->win_size; i++) {
1873 		struct vop_win *vop_win = &vop->win[i];
1874 		const struct vop_win_data *win_data = vop_win->data;
1875 
1876 		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1877 		    win_data->type != DRM_PLANE_TYPE_CURSOR)
1878 			continue;
1879 
1880 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1881 					       0, &vop_plane_funcs,
1882 					       win_data->phy->data_formats,
1883 					       win_data->phy->nformats,
1884 					       win_data->phy->format_modifiers,
1885 					       win_data->type, NULL);
1886 		if (ret) {
1887 			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1888 				      ret);
1889 			goto err_cleanup_planes;
1890 		}
1891 
1892 		plane = &vop_win->base;
1893 		drm_plane_helper_add(plane, &plane_helper_funcs);
1894 		vop_plane_add_properties(plane, win_data);
1895 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1896 			primary = plane;
1897 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1898 			cursor = plane;
1899 	}
1900 
1901 	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1902 					&vop_crtc_funcs, NULL);
1903 	if (ret)
1904 		goto err_cleanup_planes;
1905 
1906 	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1907 	if (vop->lut_regs) {
1908 		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1909 		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1910 	}
1911 
1912 	/*
1913 	 * Create drm_planes for overlay windows with possible_crtcs restricted
1914 	 * to the newly created crtc.
1915 	 */
1916 	for (i = 0; i < vop_data->win_size; i++) {
1917 		struct vop_win *vop_win = &vop->win[i];
1918 		const struct vop_win_data *win_data = vop_win->data;
1919 		unsigned long possible_crtcs = drm_crtc_mask(crtc);
1920 
1921 		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1922 			continue;
1923 
1924 		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1925 					       possible_crtcs,
1926 					       &vop_plane_funcs,
1927 					       win_data->phy->data_formats,
1928 					       win_data->phy->nformats,
1929 					       win_data->phy->format_modifiers,
1930 					       win_data->type, NULL);
1931 		if (ret) {
1932 			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1933 				      ret);
1934 			goto err_cleanup_crtc;
1935 		}
1936 		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1937 		vop_plane_add_properties(&vop_win->base, win_data);
1938 	}
1939 
1940 	port = of_get_child_by_name(dev->of_node, "port");
1941 	if (!port) {
1942 		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1943 			      dev->of_node);
1944 		ret = -ENOENT;
1945 		goto err_cleanup_crtc;
1946 	}
1947 
1948 	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1949 			   vop_fb_unref_worker);
1950 
1951 	init_completion(&vop->dsp_hold_completion);
1952 	init_completion(&vop->line_flag_completion);
1953 	crtc->port = port;
1954 
1955 	ret = drm_self_refresh_helper_init(crtc);
1956 	if (ret)
1957 		DRM_DEV_DEBUG_KMS(vop->dev,
1958 			"Failed to init %s with SR helpers %d, ignoring\n",
1959 			crtc->name, ret);
1960 
1961 	return 0;
1962 
1963 err_cleanup_crtc:
1964 	drm_crtc_cleanup(crtc);
1965 err_cleanup_planes:
1966 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1967 				 head)
1968 		drm_plane_cleanup(plane);
1969 	return ret;
1970 }
1971 
vop_destroy_crtc(struct vop * vop)1972 static void vop_destroy_crtc(struct vop *vop)
1973 {
1974 	struct drm_crtc *crtc = &vop->crtc;
1975 	struct drm_device *drm_dev = vop->drm_dev;
1976 	struct drm_plane *plane, *tmp;
1977 
1978 	drm_self_refresh_helper_cleanup(crtc);
1979 
1980 	of_node_put(crtc->port);
1981 
1982 	/*
1983 	 * We need to cleanup the planes now.  Why?
1984 	 *
1985 	 * The planes are "&vop->win[i].base".  That means the memory is
1986 	 * all part of the big "struct vop" chunk of memory.  That memory
1987 	 * was devm allocated and associated with this component.  We need to
1988 	 * free it ourselves before vop_unbind() finishes.
1989 	 */
1990 	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1991 				 head)
1992 		drm_plane_cleanup(plane);
1993 
1994 	/*
1995 	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1996 	 * references the CRTC.
1997 	 */
1998 	drm_crtc_cleanup(crtc);
1999 	drm_flip_work_cleanup(&vop->fb_unref_work);
2000 }
2001 
vop_initial(struct vop * vop)2002 static int vop_initial(struct vop *vop)
2003 {
2004 	struct reset_control *ahb_rst;
2005 	int i, ret;
2006 
2007 	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
2008 	if (IS_ERR(vop->hclk)) {
2009 		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
2010 		return PTR_ERR(vop->hclk);
2011 	}
2012 	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
2013 	if (IS_ERR(vop->aclk)) {
2014 		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
2015 		return PTR_ERR(vop->aclk);
2016 	}
2017 	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
2018 	if (IS_ERR(vop->dclk)) {
2019 		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
2020 		return PTR_ERR(vop->dclk);
2021 	}
2022 
2023 	ret = pm_runtime_resume_and_get(vop->dev);
2024 	if (ret < 0) {
2025 		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
2026 		return ret;
2027 	}
2028 
2029 	ret = clk_prepare(vop->dclk);
2030 	if (ret < 0) {
2031 		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
2032 		goto err_put_pm_runtime;
2033 	}
2034 
2035 	/* Enable both the hclk and aclk to setup the vop */
2036 	ret = clk_prepare_enable(vop->hclk);
2037 	if (ret < 0) {
2038 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
2039 		goto err_unprepare_dclk;
2040 	}
2041 
2042 	ret = clk_prepare_enable(vop->aclk);
2043 	if (ret < 0) {
2044 		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
2045 		goto err_disable_hclk;
2046 	}
2047 
2048 	/*
2049 	 * do hclk_reset, reset all vop registers.
2050 	 */
2051 	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
2052 	if (IS_ERR(ahb_rst)) {
2053 		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
2054 		ret = PTR_ERR(ahb_rst);
2055 		goto err_disable_aclk;
2056 	}
2057 	reset_control_assert(ahb_rst);
2058 	usleep_range(10, 20);
2059 	reset_control_deassert(ahb_rst);
2060 
2061 	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
2062 	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
2063 
2064 	for (i = 0; i < vop->len; i += sizeof(u32))
2065 		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
2066 
2067 	VOP_REG_SET(vop, misc, global_regdone_en, 1);
2068 	VOP_REG_SET(vop, common, dsp_blank, 0);
2069 
2070 	for (i = 0; i < vop->data->win_size; i++) {
2071 		struct vop_win *vop_win = &vop->win[i];
2072 		const struct vop_win_data *win = vop_win->data;
2073 		int channel = i * 2 + 1;
2074 
2075 		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
2076 		vop_win_disable(vop, vop_win);
2077 		VOP_WIN_SET(vop, win, gate, 1);
2078 	}
2079 
2080 	vop_cfg_done(vop);
2081 
2082 	/*
2083 	 * do dclk_reset, let all config take affect.
2084 	 */
2085 	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
2086 	if (IS_ERR(vop->dclk_rst)) {
2087 		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
2088 		ret = PTR_ERR(vop->dclk_rst);
2089 		goto err_disable_aclk;
2090 	}
2091 	reset_control_assert(vop->dclk_rst);
2092 	usleep_range(10, 20);
2093 	reset_control_deassert(vop->dclk_rst);
2094 
2095 	clk_disable(vop->hclk);
2096 	clk_disable(vop->aclk);
2097 
2098 	vop->is_enabled = false;
2099 
2100 	pm_runtime_put_sync(vop->dev);
2101 
2102 	return 0;
2103 
2104 err_disable_aclk:
2105 	clk_disable_unprepare(vop->aclk);
2106 err_disable_hclk:
2107 	clk_disable_unprepare(vop->hclk);
2108 err_unprepare_dclk:
2109 	clk_unprepare(vop->dclk);
2110 err_put_pm_runtime:
2111 	pm_runtime_put_sync(vop->dev);
2112 	return ret;
2113 }
2114 
2115 /*
2116  * Initialize the vop->win array elements.
2117  */
vop_win_init(struct vop * vop)2118 static void vop_win_init(struct vop *vop)
2119 {
2120 	const struct vop_data *vop_data = vop->data;
2121 	unsigned int i;
2122 
2123 	for (i = 0; i < vop_data->win_size; i++) {
2124 		struct vop_win *vop_win = &vop->win[i];
2125 		const struct vop_win_data *win_data = &vop_data->win[i];
2126 
2127 		vop_win->data = win_data;
2128 		vop_win->vop = vop;
2129 
2130 		if (vop_data->win_yuv2yuv)
2131 			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2132 	}
2133 }
2134 
2135 /**
2136  * rockchip_drm_wait_vact_end
2137  * @crtc: CRTC to enable line flag
2138  * @mstimeout: millisecond for timeout
2139  *
2140  * Wait for vact_end line flag irq or timeout.
2141  *
2142  * Returns:
2143  * Zero on success, negative errno on failure.
2144  */
rockchip_drm_wait_vact_end(struct drm_crtc * crtc,unsigned int mstimeout)2145 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2146 {
2147 	struct vop *vop = to_vop(crtc);
2148 	unsigned long jiffies_left;
2149 	int ret = 0;
2150 
2151 	if (!crtc || !vop->is_enabled)
2152 		return -ENODEV;
2153 
2154 	mutex_lock(&vop->vop_lock);
2155 	if (mstimeout <= 0) {
2156 		ret = -EINVAL;
2157 		goto out;
2158 	}
2159 
2160 	if (vop_line_flag_irq_is_enabled(vop)) {
2161 		ret = -EBUSY;
2162 		goto out;
2163 	}
2164 
2165 	reinit_completion(&vop->line_flag_completion);
2166 	vop_line_flag_irq_enable(vop);
2167 
2168 	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2169 						   msecs_to_jiffies(mstimeout));
2170 	vop_line_flag_irq_disable(vop);
2171 
2172 	if (jiffies_left == 0) {
2173 		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2174 		ret = -ETIMEDOUT;
2175 		goto out;
2176 	}
2177 
2178 out:
2179 	mutex_unlock(&vop->vop_lock);
2180 	return ret;
2181 }
2182 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2183 
vop_bind(struct device * dev,struct device * master,void * data)2184 static int vop_bind(struct device *dev, struct device *master, void *data)
2185 {
2186 	struct platform_device *pdev = to_platform_device(dev);
2187 	const struct vop_data *vop_data;
2188 	struct drm_device *drm_dev = data;
2189 	struct vop *vop;
2190 	struct resource *res;
2191 	int ret, irq;
2192 
2193 	vop_data = of_device_get_match_data(dev);
2194 	if (!vop_data)
2195 		return -ENODEV;
2196 
2197 	/* Allocate vop struct and its vop_win array */
2198 	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2199 			   GFP_KERNEL);
2200 	if (!vop)
2201 		return -ENOMEM;
2202 
2203 	vop->dev = dev;
2204 	vop->data = vop_data;
2205 	vop->drm_dev = drm_dev;
2206 	dev_set_drvdata(dev, vop);
2207 
2208 	vop_win_init(vop);
2209 
2210 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2211 	vop->regs = devm_ioremap_resource(dev, res);
2212 	if (IS_ERR(vop->regs))
2213 		return PTR_ERR(vop->regs);
2214 	vop->len = resource_size(res);
2215 
2216 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2217 	if (res) {
2218 		if (vop_data->lut_size != 1024 && vop_data->lut_size != 256) {
2219 			DRM_DEV_ERROR(dev, "unsupported gamma LUT size %d\n", vop_data->lut_size);
2220 			return -EINVAL;
2221 		}
2222 		vop->lut_regs = devm_ioremap_resource(dev, res);
2223 		if (IS_ERR(vop->lut_regs))
2224 			return PTR_ERR(vop->lut_regs);
2225 	}
2226 
2227 	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2228 	if (!vop->regsbak)
2229 		return -ENOMEM;
2230 
2231 	irq = platform_get_irq(pdev, 0);
2232 	if (irq < 0) {
2233 		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2234 		return irq;
2235 	}
2236 	vop->irq = (unsigned int)irq;
2237 
2238 	spin_lock_init(&vop->reg_lock);
2239 	spin_lock_init(&vop->irq_lock);
2240 	mutex_init(&vop->vop_lock);
2241 
2242 	ret = vop_create_crtc(vop);
2243 	if (ret)
2244 		return ret;
2245 
2246 	pm_runtime_enable(&pdev->dev);
2247 
2248 	ret = vop_initial(vop);
2249 	if (ret < 0) {
2250 		DRM_DEV_ERROR(&pdev->dev,
2251 			      "cannot initial vop dev - err %d\n", ret);
2252 		goto err_disable_pm_runtime;
2253 	}
2254 
2255 	ret = devm_request_irq(dev, vop->irq, vop_isr,
2256 			       IRQF_SHARED, dev_name(dev), vop);
2257 	if (ret)
2258 		goto err_disable_pm_runtime;
2259 
2260 	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2261 		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev, 0);
2262 		if (IS_ERR(vop->rgb)) {
2263 			ret = PTR_ERR(vop->rgb);
2264 			goto err_disable_pm_runtime;
2265 		}
2266 	}
2267 
2268 	rockchip_drm_dma_init_device(drm_dev, dev);
2269 
2270 	return 0;
2271 
2272 err_disable_pm_runtime:
2273 	pm_runtime_disable(&pdev->dev);
2274 	vop_destroy_crtc(vop);
2275 	return ret;
2276 }
2277 
vop_unbind(struct device * dev,struct device * master,void * data)2278 static void vop_unbind(struct device *dev, struct device *master, void *data)
2279 {
2280 	struct vop *vop = dev_get_drvdata(dev);
2281 
2282 	if (vop->rgb)
2283 		rockchip_rgb_fini(vop->rgb);
2284 
2285 	pm_runtime_disable(dev);
2286 	vop_destroy_crtc(vop);
2287 
2288 	clk_unprepare(vop->aclk);
2289 	clk_unprepare(vop->hclk);
2290 	clk_unprepare(vop->dclk);
2291 }
2292 
2293 const struct component_ops vop_component_ops = {
2294 	.bind = vop_bind,
2295 	.unbind = vop_unbind,
2296 };
2297 EXPORT_SYMBOL_GPL(vop_component_ops);
2298