1 /*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission. M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose. It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 * The kernel resource manager. This code is responsible for keeping track
32 * of hardware resources which are apportioned out to various drivers.
33 * It does not actually assign those resources, and it is not expected
34 * that end-device drivers will call into this code directly. Rather,
35 * the code which implements the buses that those devices are attached to,
36 * and the code which manages CPU resources, will call this code, and the
37 * end-device drivers will make upcalls to that code to actually perform
38 * the allocation.
39 *
40 * There are two sorts of resources managed by this code. The first is
41 * the more familiar array (RMAN_ARRAY) type; resources in this class
42 * consist of a sequence of individually-allocatable objects which have
43 * been numbered in some well-defined order. Most of the resources
44 * are of this type, as it is the most familiar. The second type is
45 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46 * resources in which each instance is indistinguishable from every
47 * other instance). The principal anticipated application of gauges
48 * is in the context of power consumption, where a bus may have a specific
49 * power budget which all attached devices share. RMAN_GAUGE is not
50 * implemented yet.
51 *
52 * For array resources, we make one simplifying assumption: two clients
53 * sharing the same resource must use the same range of indices. That
54 * is to say, sharing of overlapping-but-not-identical regions is not
55 * permitted.
56 */
57
58 #include "opt_ddb.h"
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/limits.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/mutex.h>
67 #include <sys/bus.h> /* XXX debugging */
68 #include <machine/bus.h>
69 #include <sys/rman.h>
70 #include <sys/sysctl.h>
71
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75
76 /*
77 * We use a linked list rather than a bitmap because we need to be able to
78 * represent potentially huge objects (like all of a processor's physical
79 * address space).
80 */
81 struct resource_i {
82 struct resource r_r;
83 TAILQ_ENTRY(resource_i) r_link;
84 LIST_ENTRY(resource_i) r_sharelink;
85 LIST_HEAD(, resource_i) *r_sharehead;
86 rman_res_t r_start; /* index of the first entry in this resource */
87 rman_res_t r_end; /* index of the last entry (inclusive) */
88 u_int r_flags;
89 void *r_virtual; /* virtual address of this resource */
90 void *r_irq_cookie; /* interrupt cookie for this (interrupt) resource */
91 device_t r_dev; /* device which has allocated this resource */
92 struct rman *r_rm; /* resource manager from whence this came */
93 int r_rid; /* optional rid for this resource. */
94 int r_type; /* optional type for this resource. */
95 };
96
97 static int rman_debug = 0;
98 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
99 &rman_debug, 0, "rman debug");
100
101 #define DPRINTF(...) do { if (rman_debug) printf(__VA_ARGS__); } while (0)
102
103 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
104
105 struct rman_head rman_head = TAILQ_HEAD_INITIALIZER(rman_head);
106 static struct mtx rman_mtx; /* mutex to protect rman_head */
107 MTX_SYSINIT(rman_mtx, &rman_mtx, "rman head", MTX_DEF);
108
109 static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
110
111 static __inline struct resource_i *
int_alloc_resource(int malloc_flag)112 int_alloc_resource(int malloc_flag)
113 {
114 struct resource_i *r;
115
116 r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
117 if (r != NULL) {
118 r->r_r.__r_i = r;
119 }
120 return (r);
121 }
122
123 int
rman_init(struct rman * rm)124 rman_init(struct rman *rm)
125 {
126 if (rm->rm_start == 0 && rm->rm_end == 0)
127 rm->rm_end = ~0;
128 if (rm->rm_type == RMAN_UNINIT)
129 panic("rman_init");
130 if (rm->rm_type == RMAN_GAUGE)
131 panic("implement RMAN_GAUGE");
132
133 TAILQ_INIT(&rm->rm_list);
134 mtx_init(&rm->rm_mtx, "rman", NULL, MTX_DEF);
135
136 mtx_lock(&rman_mtx);
137 TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
138 mtx_unlock(&rman_mtx);
139 return 0;
140 }
141
142 int
rman_manage_region(struct rman * rm,rman_res_t start,rman_res_t end)143 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end)
144 {
145 struct resource_i *r, *s, *t;
146 int rv = 0;
147
148 DPRINTF("%s: <%s> request: start %#jx, end %#jx\n", __func__,
149 rm->rm_descr, start, end);
150 if (start < rm->rm_start || end > rm->rm_end)
151 return EINVAL;
152 r = int_alloc_resource(M_NOWAIT);
153 if (r == NULL)
154 return ENOMEM;
155 r->r_start = start;
156 r->r_end = end;
157 r->r_rm = rm;
158
159 mtx_lock(&rm->rm_mtx);
160
161 /* Skip entries before us. */
162 TAILQ_FOREACH(s, &rm->rm_list, r_link) {
163 if (s->r_end == ~0)
164 break;
165 if (s->r_end + 1 >= r->r_start)
166 break;
167 }
168
169 /* If we ran off the end of the list, insert at the tail. */
170 if (s == NULL) {
171 TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
172 } else {
173 /* Check for any overlap with the current region. */
174 if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
175 rv = EBUSY;
176 goto out;
177 }
178
179 /* Check for any overlap with the next region. */
180 t = TAILQ_NEXT(s, r_link);
181 if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
182 rv = EBUSY;
183 goto out;
184 }
185
186 /*
187 * See if this region can be merged with the next region. If
188 * not, clear the pointer.
189 */
190 if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
191 t = NULL;
192
193 /* See if we can merge with the current region. */
194 if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
195 /* Can we merge all 3 regions? */
196 if (t != NULL) {
197 s->r_end = t->r_end;
198 TAILQ_REMOVE(&rm->rm_list, t, r_link);
199 free(r, M_RMAN);
200 free(t, M_RMAN);
201 } else {
202 s->r_end = r->r_end;
203 free(r, M_RMAN);
204 }
205 } else if (t != NULL) {
206 /* Can we merge with just the next region? */
207 t->r_start = r->r_start;
208 free(r, M_RMAN);
209 } else if (s->r_end < r->r_start) {
210 TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
211 } else {
212 TAILQ_INSERT_BEFORE(s, r, r_link);
213 }
214 }
215 out:
216 mtx_unlock(&rm->rm_mtx);
217 return rv;
218 }
219
220 int
rman_init_from_resource(struct rman * rm,struct resource * r)221 rman_init_from_resource(struct rman *rm, struct resource *r)
222 {
223 int rv;
224
225 if ((rv = rman_init(rm)) != 0)
226 return (rv);
227 return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
228 }
229
230 int
rman_fini(struct rman * rm)231 rman_fini(struct rman *rm)
232 {
233 struct resource_i *r;
234
235 mtx_lock(&rm->rm_mtx);
236 TAILQ_FOREACH(r, &rm->rm_list, r_link) {
237 if (r->r_flags & RF_ALLOCATED) {
238 mtx_unlock(&rm->rm_mtx);
239 return EBUSY;
240 }
241 }
242
243 /*
244 * There really should only be one of these if we are in this
245 * state and the code is working properly, but it can't hurt.
246 */
247 while (!TAILQ_EMPTY(&rm->rm_list)) {
248 r = TAILQ_FIRST(&rm->rm_list);
249 TAILQ_REMOVE(&rm->rm_list, r, r_link);
250 free(r, M_RMAN);
251 }
252 mtx_unlock(&rm->rm_mtx);
253 mtx_lock(&rman_mtx);
254 TAILQ_REMOVE(&rman_head, rm, rm_link);
255 mtx_unlock(&rman_mtx);
256 mtx_destroy(&rm->rm_mtx);
257
258 return 0;
259 }
260
261 int
rman_first_free_region(struct rman * rm,rman_res_t * start,rman_res_t * end)262 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
263 {
264 struct resource_i *r;
265
266 mtx_lock(&rm->rm_mtx);
267 TAILQ_FOREACH(r, &rm->rm_list, r_link) {
268 if (!(r->r_flags & RF_ALLOCATED)) {
269 *start = r->r_start;
270 *end = r->r_end;
271 mtx_unlock(&rm->rm_mtx);
272 return (0);
273 }
274 }
275 mtx_unlock(&rm->rm_mtx);
276 return (ENOENT);
277 }
278
279 int
rman_last_free_region(struct rman * rm,rman_res_t * start,rman_res_t * end)280 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
281 {
282 struct resource_i *r;
283
284 mtx_lock(&rm->rm_mtx);
285 TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
286 if (!(r->r_flags & RF_ALLOCATED)) {
287 *start = r->r_start;
288 *end = r->r_end;
289 mtx_unlock(&rm->rm_mtx);
290 return (0);
291 }
292 }
293 mtx_unlock(&rm->rm_mtx);
294 return (ENOENT);
295 }
296
297 /* Shrink or extend one or both ends of an allocated resource. */
298 int
rman_adjust_resource(struct resource * rr,rman_res_t start,rman_res_t end)299 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end)
300 {
301 struct resource_i *r, *s, *t, *new;
302 struct rman *rm;
303
304 /* Not supported for shared resources. */
305 r = rr->__r_i;
306 if (r->r_flags & RF_SHAREABLE)
307 return (EINVAL);
308
309 /*
310 * This does not support wholesale moving of a resource. At
311 * least part of the desired new range must overlap with the
312 * existing resource.
313 */
314 if (end < r->r_start || r->r_end < start)
315 return (EINVAL);
316
317 /*
318 * Find the two resource regions immediately adjacent to the
319 * allocated resource.
320 */
321 rm = r->r_rm;
322 mtx_lock(&rm->rm_mtx);
323 #ifdef INVARIANTS
324 TAILQ_FOREACH(s, &rm->rm_list, r_link) {
325 if (s == r)
326 break;
327 }
328 if (s == NULL)
329 panic("resource not in list");
330 #endif
331 s = TAILQ_PREV(r, resource_head, r_link);
332 t = TAILQ_NEXT(r, r_link);
333 KASSERT(s == NULL || s->r_end + 1 == r->r_start,
334 ("prev resource mismatch"));
335 KASSERT(t == NULL || r->r_end + 1 == t->r_start,
336 ("next resource mismatch"));
337
338 /*
339 * See if the changes are permitted. Shrinking is always allowed,
340 * but growing requires sufficient room in the adjacent region.
341 */
342 if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
343 s->r_start > start)) {
344 mtx_unlock(&rm->rm_mtx);
345 return (EBUSY);
346 }
347 if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
348 t->r_end < end)) {
349 mtx_unlock(&rm->rm_mtx);
350 return (EBUSY);
351 }
352
353 /*
354 * While holding the lock, grow either end of the resource as
355 * needed and shrink either end if the shrinking does not require
356 * allocating a new resource. We can safely drop the lock and then
357 * insert a new range to handle the shrinking case afterwards.
358 */
359 if (start < r->r_start ||
360 (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
361 KASSERT(s->r_flags == 0, ("prev is busy"));
362 r->r_start = start;
363 if (s->r_start == start) {
364 TAILQ_REMOVE(&rm->rm_list, s, r_link);
365 free(s, M_RMAN);
366 } else
367 s->r_end = start - 1;
368 }
369 if (end > r->r_end ||
370 (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
371 KASSERT(t->r_flags == 0, ("next is busy"));
372 r->r_end = end;
373 if (t->r_end == end) {
374 TAILQ_REMOVE(&rm->rm_list, t, r_link);
375 free(t, M_RMAN);
376 } else
377 t->r_start = end + 1;
378 }
379 mtx_unlock(&rm->rm_mtx);
380
381 /*
382 * Handle the shrinking cases that require allocating a new
383 * resource to hold the newly-free region. We have to recheck
384 * if we still need this new region after acquiring the lock.
385 */
386 if (start > r->r_start) {
387 new = int_alloc_resource(M_WAITOK);
388 new->r_start = r->r_start;
389 new->r_end = start - 1;
390 new->r_rm = rm;
391 mtx_lock(&rm->rm_mtx);
392 r->r_start = start;
393 s = TAILQ_PREV(r, resource_head, r_link);
394 if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
395 s->r_end = start - 1;
396 free(new, M_RMAN);
397 } else
398 TAILQ_INSERT_BEFORE(r, new, r_link);
399 mtx_unlock(&rm->rm_mtx);
400 }
401 if (end < r->r_end) {
402 new = int_alloc_resource(M_WAITOK);
403 new->r_start = end + 1;
404 new->r_end = r->r_end;
405 new->r_rm = rm;
406 mtx_lock(&rm->rm_mtx);
407 r->r_end = end;
408 t = TAILQ_NEXT(r, r_link);
409 if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
410 t->r_start = end + 1;
411 free(new, M_RMAN);
412 } else
413 TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
414 mtx_unlock(&rm->rm_mtx);
415 }
416 return (0);
417 }
418
419 #define SHARE_TYPE(f) (f & (RF_SHAREABLE | RF_PREFETCHABLE))
420
421 struct resource *
rman_reserve_resource(struct rman * rm,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags,device_t dev)422 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end,
423 rman_res_t count, u_int flags, device_t dev)
424 {
425 u_int new_rflags;
426 struct resource_i *r, *s, *rv;
427 rman_res_t rstart, rend, amask;
428
429 rv = NULL;
430
431 DPRINTF("%s: <%s> request: [%#jx, %#jx], length %#jx, flags %x, "
432 "device %s\n", __func__, rm->rm_descr, start, end, count, flags,
433 dev == NULL ? "<null>" : device_get_nameunit(dev));
434 KASSERT(count != 0, ("%s: attempted to allocate an empty range",
435 __func__));
436 KASSERT((flags & RF_FIRSTSHARE) == 0,
437 ("invalid flags %#x", flags));
438 new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
439
440 mtx_lock(&rm->rm_mtx);
441
442 r = TAILQ_FIRST(&rm->rm_list);
443 if (r == NULL)
444 DPRINTF("NULL list head\n");
445 else
446 DPRINTF("%s: trying %#jx <%#jx,%#jx>\n", __func__, r->r_end,
447 start, count-1);
448
449 for (r = TAILQ_FIRST(&rm->rm_list);
450 r && r->r_end < start + count - 1;
451 r = TAILQ_NEXT(r, r_link))
452 DPRINTF("%s: tried %#jx <%#jx,%#jx>\n", __func__, r->r_end,
453 start, count-1);
454
455 if (r == NULL) {
456 DPRINTF("could not find a region\n");
457 goto out;
458 }
459
460 amask = (1ull << RF_ALIGNMENT(flags)) - 1;
461 KASSERT(start <= RM_MAX_END - amask,
462 ("start (%#jx) + amask (%#jx) would wrap around", start, amask));
463
464 /*
465 * First try to find an acceptable totally-unshared region.
466 */
467 for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
468 DPRINTF("considering [%#jx, %#jx]\n", s->r_start, s->r_end);
469 /*
470 * The resource list is sorted, so there is no point in
471 * searching further once r_start is too large.
472 */
473 if (s->r_start > end - (count - 1)) {
474 DPRINTF("s->r_start (%#jx) + count - 1> end (%#jx)\n",
475 s->r_start, end);
476 break;
477 }
478 if (s->r_start > RM_MAX_END - amask) {
479 DPRINTF("s->r_start (%#jx) + amask (%#jx) too large\n",
480 s->r_start, amask);
481 break;
482 }
483 if (s->r_flags & RF_ALLOCATED) {
484 DPRINTF("region is allocated\n");
485 continue;
486 }
487 rstart = ummax(s->r_start, start);
488 /*
489 * Try to find a region by adjusting to boundary and alignment
490 * until both conditions are satisfied. This is not an optimal
491 * algorithm, but in most cases it isn't really bad, either.
492 */
493 do {
494 rstart = (rstart + amask) & ~amask;
495 } while ((rstart & amask) != 0 && rstart < end &&
496 rstart < s->r_end);
497 rend = ummin(s->r_end, ummax(rstart + count - 1, end));
498 if (rstart > rend) {
499 DPRINTF("adjusted start exceeds end\n");
500 continue;
501 }
502 DPRINTF("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n",
503 rstart, rend, (rend - rstart + 1), count);
504
505 if ((rend - rstart) >= (count - 1)) {
506 DPRINTF("candidate region: [%#jx, %#jx], size %#jx\n",
507 rstart, rend, (rend - rstart + 1));
508 if ((s->r_end - s->r_start + 1) == count) {
509 DPRINTF("candidate region is entire chunk\n");
510 rv = s;
511 rv->r_flags = new_rflags;
512 rv->r_dev = dev;
513 goto out;
514 }
515
516 /*
517 * If s->r_start < rstart and
518 * s->r_end > rstart + count - 1, then
519 * we need to split the region into three pieces
520 * (the middle one will get returned to the user).
521 * Otherwise, we are allocating at either the
522 * beginning or the end of s, so we only need to
523 * split it in two. The first case requires
524 * two new allocations; the second requires but one.
525 */
526 rv = int_alloc_resource(M_NOWAIT);
527 if (rv == NULL)
528 goto out;
529 rv->r_start = rstart;
530 rv->r_end = rstart + count - 1;
531 rv->r_flags = new_rflags;
532 rv->r_dev = dev;
533 rv->r_rm = rm;
534
535 if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
536 DPRINTF("splitting region in three parts: "
537 "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n",
538 s->r_start, rv->r_start - 1,
539 rv->r_start, rv->r_end,
540 rv->r_end + 1, s->r_end);
541 /*
542 * We are allocating in the middle.
543 */
544 r = int_alloc_resource(M_NOWAIT);
545 if (r == NULL) {
546 free(rv, M_RMAN);
547 rv = NULL;
548 goto out;
549 }
550 r->r_start = rv->r_end + 1;
551 r->r_end = s->r_end;
552 r->r_flags = s->r_flags;
553 r->r_rm = rm;
554 s->r_end = rv->r_start - 1;
555 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
556 r_link);
557 TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
558 r_link);
559 } else if (s->r_start == rv->r_start) {
560 DPRINTF("allocating from the beginning\n");
561 /*
562 * We are allocating at the beginning.
563 */
564 s->r_start = rv->r_end + 1;
565 TAILQ_INSERT_BEFORE(s, rv, r_link);
566 } else {
567 DPRINTF("allocating at the end\n");
568 /*
569 * We are allocating at the end.
570 */
571 s->r_end = rv->r_start - 1;
572 TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
573 r_link);
574 }
575 goto out;
576 }
577 }
578
579 /*
580 * Now find an acceptable shared region, if the client's requirements
581 * allow sharing. By our implementation restriction, a candidate
582 * region must match exactly by both size and sharing type in order
583 * to be considered compatible with the client's request. (The
584 * former restriction could probably be lifted without too much
585 * additional work, but this does not seem warranted.)
586 */
587 DPRINTF("no unshared regions found\n");
588 if ((flags & RF_SHAREABLE) == 0)
589 goto out;
590
591 for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
592 if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
593 s->r_start >= start &&
594 (s->r_end - s->r_start + 1) == count &&
595 (s->r_start & amask) == 0) {
596 rv = int_alloc_resource(M_NOWAIT);
597 if (rv == NULL)
598 goto out;
599 rv->r_start = s->r_start;
600 rv->r_end = s->r_end;
601 rv->r_flags = new_rflags;
602 rv->r_dev = dev;
603 rv->r_rm = rm;
604 if (s->r_sharehead == NULL) {
605 s->r_sharehead = malloc(sizeof *s->r_sharehead,
606 M_RMAN, M_NOWAIT | M_ZERO);
607 if (s->r_sharehead == NULL) {
608 free(rv, M_RMAN);
609 rv = NULL;
610 goto out;
611 }
612 LIST_INIT(s->r_sharehead);
613 LIST_INSERT_HEAD(s->r_sharehead, s,
614 r_sharelink);
615 s->r_flags |= RF_FIRSTSHARE;
616 }
617 rv->r_sharehead = s->r_sharehead;
618 LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
619 goto out;
620 }
621 }
622 /*
623 * We couldn't find anything.
624 */
625
626 out:
627 mtx_unlock(&rm->rm_mtx);
628 return (rv == NULL ? NULL : &rv->r_r);
629 }
630
631 int
rman_activate_resource(struct resource * re)632 rman_activate_resource(struct resource *re)
633 {
634 struct resource_i *r;
635 struct rman *rm;
636
637 r = re->__r_i;
638 rm = r->r_rm;
639 mtx_lock(&rm->rm_mtx);
640 r->r_flags |= RF_ACTIVE;
641 mtx_unlock(&rm->rm_mtx);
642 return 0;
643 }
644
645 int
rman_deactivate_resource(struct resource * r)646 rman_deactivate_resource(struct resource *r)
647 {
648 struct rman *rm;
649
650 rm = r->__r_i->r_rm;
651 mtx_lock(&rm->rm_mtx);
652 r->__r_i->r_flags &= ~RF_ACTIVE;
653 mtx_unlock(&rm->rm_mtx);
654 return 0;
655 }
656
657 static int
int_rman_release_resource(struct rman * rm,struct resource_i * r)658 int_rman_release_resource(struct rman *rm, struct resource_i *r)
659 {
660 struct resource_i *s, *t;
661
662 if (r->r_flags & RF_ACTIVE)
663 r->r_flags &= ~RF_ACTIVE;
664
665 /*
666 * Check for a sharing list first. If there is one, then we don't
667 * have to think as hard.
668 */
669 if (r->r_sharehead) {
670 /*
671 * If a sharing list exists, then we know there are at
672 * least two sharers.
673 *
674 * If we are in the main circleq, appoint someone else.
675 */
676 LIST_REMOVE(r, r_sharelink);
677 s = LIST_FIRST(r->r_sharehead);
678 if (r->r_flags & RF_FIRSTSHARE) {
679 s->r_flags |= RF_FIRSTSHARE;
680 TAILQ_INSERT_BEFORE(r, s, r_link);
681 TAILQ_REMOVE(&rm->rm_list, r, r_link);
682 }
683
684 /*
685 * Make sure that the sharing list goes away completely
686 * if the resource is no longer being shared at all.
687 */
688 if (LIST_NEXT(s, r_sharelink) == NULL) {
689 free(s->r_sharehead, M_RMAN);
690 s->r_sharehead = NULL;
691 s->r_flags &= ~RF_FIRSTSHARE;
692 }
693 goto out;
694 }
695
696 /*
697 * Look at the adjacent resources in the list and see if our
698 * segment can be merged with any of them. If either of the
699 * resources is allocated or is not exactly adjacent then they
700 * cannot be merged with our segment.
701 */
702 s = TAILQ_PREV(r, resource_head, r_link);
703 if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
704 s->r_end + 1 != r->r_start))
705 s = NULL;
706 t = TAILQ_NEXT(r, r_link);
707 if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
708 r->r_end + 1 != t->r_start))
709 t = NULL;
710
711 if (s != NULL && t != NULL) {
712 /*
713 * Merge all three segments.
714 */
715 s->r_end = t->r_end;
716 TAILQ_REMOVE(&rm->rm_list, r, r_link);
717 TAILQ_REMOVE(&rm->rm_list, t, r_link);
718 free(t, M_RMAN);
719 } else if (s != NULL) {
720 /*
721 * Merge previous segment with ours.
722 */
723 s->r_end = r->r_end;
724 TAILQ_REMOVE(&rm->rm_list, r, r_link);
725 } else if (t != NULL) {
726 /*
727 * Merge next segment with ours.
728 */
729 t->r_start = r->r_start;
730 TAILQ_REMOVE(&rm->rm_list, r, r_link);
731 } else {
732 /*
733 * At this point, we know there is nothing we
734 * can potentially merge with, because on each
735 * side, there is either nothing there or what is
736 * there is still allocated. In that case, we don't
737 * want to remove r from the list; we simply want to
738 * change it to an unallocated region and return
739 * without freeing anything.
740 */
741 r->r_flags &= ~RF_ALLOCATED;
742 r->r_dev = NULL;
743 return 0;
744 }
745
746 out:
747 free(r, M_RMAN);
748 return 0;
749 }
750
751 int
rman_release_resource(struct resource * re)752 rman_release_resource(struct resource *re)
753 {
754 int rv;
755 struct resource_i *r;
756 struct rman *rm;
757
758 r = re->__r_i;
759 rm = r->r_rm;
760 mtx_lock(&rm->rm_mtx);
761 rv = int_rman_release_resource(rm, r);
762 mtx_unlock(&rm->rm_mtx);
763 return (rv);
764 }
765
766 uint32_t
rman_make_alignment_flags(uint32_t size)767 rman_make_alignment_flags(uint32_t size)
768 {
769
770 /*
771 * Find the hightest bit set, and add one if more than one bit
772 * set. We're effectively computing the ceil(log2(size)) here.
773 */
774 if (__predict_false(size == 0))
775 return (0);
776 return (RF_ALIGNMENT_LOG2(flsl(size - 1)));
777 }
778
779 rman_res_t
rman_get_start(const struct resource * r)780 rman_get_start(const struct resource *r)
781 {
782
783 return (r->__r_i->r_start);
784 }
785
786 rman_res_t
rman_get_end(const struct resource * r)787 rman_get_end(const struct resource *r)
788 {
789
790 return (r->__r_i->r_end);
791 }
792
793 rman_res_t
rman_get_size(const struct resource * r)794 rman_get_size(const struct resource *r)
795 {
796
797 return (r->__r_i->r_end - r->__r_i->r_start + 1);
798 }
799
800 u_int
rman_get_flags(const struct resource * r)801 rman_get_flags(const struct resource *r)
802 {
803
804 return (r->__r_i->r_flags);
805 }
806
807 void
rman_set_virtual(struct resource * r,void * v)808 rman_set_virtual(struct resource *r, void *v)
809 {
810
811 r->__r_i->r_virtual = v;
812 }
813
814 void *
rman_get_virtual(const struct resource * r)815 rman_get_virtual(const struct resource *r)
816 {
817
818 return (r->__r_i->r_virtual);
819 }
820
821 void
rman_set_irq_cookie(struct resource * r,void * c)822 rman_set_irq_cookie(struct resource *r, void *c)
823 {
824
825 r->__r_i->r_irq_cookie = c;
826 }
827
828 void *
rman_get_irq_cookie(const struct resource * r)829 rman_get_irq_cookie(const struct resource *r)
830 {
831
832 return (r->__r_i->r_irq_cookie);
833 }
834
835 void
rman_set_bustag(struct resource * r,bus_space_tag_t t)836 rman_set_bustag(struct resource *r, bus_space_tag_t t)
837 {
838
839 r->r_bustag = t;
840 }
841
842 bus_space_tag_t
rman_get_bustag(const struct resource * r)843 rman_get_bustag(const struct resource *r)
844 {
845
846 return (r->r_bustag);
847 }
848
849 void
rman_set_bushandle(struct resource * r,bus_space_handle_t h)850 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
851 {
852
853 r->r_bushandle = h;
854 }
855
856 bus_space_handle_t
rman_get_bushandle(const struct resource * r)857 rman_get_bushandle(const struct resource *r)
858 {
859
860 return (r->r_bushandle);
861 }
862
863 void
rman_set_mapping(struct resource * r,struct resource_map * map)864 rman_set_mapping(struct resource *r, struct resource_map *map)
865 {
866
867 KASSERT(rman_get_size(r) == map->r_size,
868 ("rman_set_mapping: size mismatch"));
869 rman_set_bustag(r, map->r_bustag);
870 rman_set_bushandle(r, map->r_bushandle);
871 rman_set_virtual(r, map->r_vaddr);
872 }
873
874 void
rman_get_mapping(const struct resource * r,struct resource_map * map)875 rman_get_mapping(const struct resource *r, struct resource_map *map)
876 {
877
878 map->r_bustag = rman_get_bustag(r);
879 map->r_bushandle = rman_get_bushandle(r);
880 map->r_size = rman_get_size(r);
881 map->r_vaddr = rman_get_virtual(r);
882 }
883
884 void
rman_set_rid(struct resource * r,int rid)885 rman_set_rid(struct resource *r, int rid)
886 {
887
888 r->__r_i->r_rid = rid;
889 }
890
891 int
rman_get_rid(const struct resource * r)892 rman_get_rid(const struct resource *r)
893 {
894
895 return (r->__r_i->r_rid);
896 }
897
898 void
rman_set_type(struct resource * r,int type)899 rman_set_type(struct resource *r, int type)
900 {
901 r->__r_i->r_type = type;
902 }
903
904 int
rman_get_type(const struct resource * r)905 rman_get_type(const struct resource *r)
906 {
907 return (r->__r_i->r_type);
908 }
909
910 void
rman_set_device(struct resource * r,device_t dev)911 rman_set_device(struct resource *r, device_t dev)
912 {
913
914 r->__r_i->r_dev = dev;
915 }
916
917 device_t
rman_get_device(const struct resource * r)918 rman_get_device(const struct resource *r)
919 {
920
921 return (r->__r_i->r_dev);
922 }
923
924 int
rman_is_region_manager(const struct resource * r,const struct rman * rm)925 rman_is_region_manager(const struct resource *r, const struct rman *rm)
926 {
927
928 return (r->__r_i->r_rm == rm);
929 }
930
931 /*
932 * Sysctl interface for scanning the resource lists.
933 *
934 * We take two input parameters; the index into the list of resource
935 * managers, and the resource offset into the list.
936 */
937 static int
sysctl_rman(SYSCTL_HANDLER_ARGS)938 sysctl_rman(SYSCTL_HANDLER_ARGS)
939 {
940 int *name = (int *)arg1;
941 u_int namelen = arg2;
942 int rman_idx, res_idx;
943 struct rman *rm;
944 struct resource_i *res;
945 struct resource_i *sres;
946 struct u_rman urm;
947 struct u_resource ures;
948 int error;
949
950 if (namelen != 3)
951 return (EINVAL);
952
953 if (bus_data_generation_check(name[0]))
954 return (EINVAL);
955 rman_idx = name[1];
956 res_idx = name[2];
957
958 /*
959 * Find the indexed resource manager
960 */
961 mtx_lock(&rman_mtx);
962 TAILQ_FOREACH(rm, &rman_head, rm_link) {
963 if (rman_idx-- == 0)
964 break;
965 }
966 mtx_unlock(&rman_mtx);
967 if (rm == NULL)
968 return (ENOENT);
969
970 /*
971 * If the resource index is -1, we want details on the
972 * resource manager.
973 */
974 if (res_idx == -1) {
975 bzero(&urm, sizeof(urm));
976 urm.rm_handle = (uintptr_t)rm;
977 if (rm->rm_descr != NULL)
978 strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
979 urm.rm_start = rm->rm_start;
980 urm.rm_size = rm->rm_end - rm->rm_start + 1;
981 urm.rm_type = rm->rm_type;
982
983 error = SYSCTL_OUT(req, &urm, sizeof(urm));
984 return (error);
985 }
986
987 /*
988 * Find the indexed resource and return it.
989 */
990 mtx_lock(&rm->rm_mtx);
991 TAILQ_FOREACH(res, &rm->rm_list, r_link) {
992 if (res->r_sharehead != NULL) {
993 LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
994 if (res_idx-- == 0) {
995 res = sres;
996 goto found;
997 }
998 }
999 else if (res_idx-- == 0)
1000 goto found;
1001 }
1002 mtx_unlock(&rm->rm_mtx);
1003 return (ENOENT);
1004
1005 found:
1006 bzero(&ures, sizeof(ures));
1007 ures.r_handle = (uintptr_t)res;
1008 ures.r_parent = (uintptr_t)res->r_rm;
1009 ures.r_device = (uintptr_t)res->r_dev;
1010 if (res->r_dev != NULL) {
1011 if (device_get_name(res->r_dev) != NULL) {
1012 snprintf(ures.r_devname, RM_TEXTLEN,
1013 "%s%d",
1014 device_get_name(res->r_dev),
1015 device_get_unit(res->r_dev));
1016 } else {
1017 strlcpy(ures.r_devname, "nomatch",
1018 RM_TEXTLEN);
1019 }
1020 } else {
1021 ures.r_devname[0] = '\0';
1022 }
1023 ures.r_start = res->r_start;
1024 ures.r_size = res->r_end - res->r_start + 1;
1025 ures.r_flags = res->r_flags;
1026
1027 mtx_unlock(&rm->rm_mtx);
1028 error = SYSCTL_OUT(req, &ures, sizeof(ures));
1029 return (error);
1030 }
1031
1032 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD | CTLFLAG_MPSAFE,
1033 sysctl_rman,
1034 "kernel resource manager");
1035
1036 #ifdef DDB
1037 static void
dump_rman_header(struct rman * rm)1038 dump_rman_header(struct rman *rm)
1039 {
1040
1041 if (db_pager_quit)
1042 return;
1043 db_printf("rman %p: %s (0x%jx-0x%jx full range)\n",
1044 rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end);
1045 }
1046
1047 static void
dump_rman(struct rman * rm)1048 dump_rman(struct rman *rm)
1049 {
1050 struct resource_i *r;
1051 const char *devname;
1052
1053 if (db_pager_quit)
1054 return;
1055 TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1056 if (r->r_dev != NULL) {
1057 devname = device_get_nameunit(r->r_dev);
1058 if (devname == NULL)
1059 devname = "nomatch";
1060 } else
1061 devname = NULL;
1062 db_printf(" 0x%jx-0x%jx (RID=%d) ",
1063 r->r_start, r->r_end, r->r_rid);
1064 if (devname != NULL)
1065 db_printf("(%s)\n", devname);
1066 else
1067 db_printf("----\n");
1068 if (db_pager_quit)
1069 return;
1070 }
1071 }
1072
DB_SHOW_COMMAND(rman,db_show_rman)1073 DB_SHOW_COMMAND(rman, db_show_rman)
1074 {
1075
1076 if (have_addr) {
1077 dump_rman_header((struct rman *)addr);
1078 dump_rman((struct rman *)addr);
1079 }
1080 }
1081
DB_SHOW_COMMAND_FLAGS(rmans,db_show_rmans,DB_CMD_MEMSAFE)1082 DB_SHOW_COMMAND_FLAGS(rmans, db_show_rmans, DB_CMD_MEMSAFE)
1083 {
1084 struct rman *rm;
1085
1086 TAILQ_FOREACH(rm, &rman_head, rm_link) {
1087 dump_rman_header(rm);
1088 }
1089 }
1090
DB_SHOW_ALL_COMMAND(rman,db_show_all_rman)1091 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1092 {
1093 struct rman *rm;
1094
1095 TAILQ_FOREACH(rm, &rman_head, rm_link) {
1096 dump_rman_header(rm);
1097 dump_rman(rm);
1098 }
1099 }
1100 DB_SHOW_ALIAS_FLAGS(allrman, db_show_all_rman, DB_CMD_MEMSAFE);
1101 #endif
1102