xref: /freebsd/sys/kern/subr_rman.c (revision 305f85a3d6f2ec32ee8178413a716de7c0a73eaa)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  *
4  * Permission to use, copy, modify, and distribute this software and
5  * its documentation for any purpose and without fee is hereby
6  * granted, provided that both the above copyright notice and this
7  * permission notice appear in all copies, that both the above
8  * copyright notice and this permission notice appear in all
9  * supporting documentation, and that the name of M.I.T. not be used
10  * in advertising or publicity pertaining to distribution of the
11  * software without specific, written prior permission.  M.I.T. makes
12  * no representations about the suitability of this software for any
13  * purpose.  It is provided "as is" without express or implied
14  * warranty.
15  *
16  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * The kernel resource manager.  This code is responsible for keeping track
32  * of hardware resources which are apportioned out to various drivers.
33  * It does not actually assign those resources, and it is not expected
34  * that end-device drivers will call into this code directly.  Rather,
35  * the code which implements the buses that those devices are attached to,
36  * and the code which manages CPU resources, will call this code, and the
37  * end-device drivers will make upcalls to that code to actually perform
38  * the allocation.
39  *
40  * There are two sorts of resources managed by this code.  The first is
41  * the more familiar array (RMAN_ARRAY) type; resources in this class
42  * consist of a sequence of individually-allocatable objects which have
43  * been numbered in some well-defined order.  Most of the resources
44  * are of this type, as it is the most familiar.  The second type is
45  * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
46  * resources in which each instance is indistinguishable from every
47  * other instance).  The principal anticipated application of gauges
48  * is in the context of power consumption, where a bus may have a specific
49  * power budget which all attached devices share.  RMAN_GAUGE is not
50  * implemented yet.
51  *
52  * For array resources, we make one simplifying assumption: two clients
53  * sharing the same resource must use the same range of indices.  That
54  * is to say, sharing of overlapping-but-not-identical regions is not
55  * permitted.
56  */
57 
58 #include "opt_ddb.h"
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/kernel.h>
63 #include <sys/limits.h>
64 #include <sys/lock.h>
65 #include <sys/malloc.h>
66 #include <sys/mutex.h>
67 #include <sys/bus.h>		/* XXX debugging */
68 #include <machine/bus.h>
69 #include <sys/rman.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 /*
77  * We use a linked list rather than a bitmap because we need to be able to
78  * represent potentially huge objects (like all of a processor's physical
79  * address space).
80  */
81 struct resource_i {
82 	struct resource		r_r;
83 	TAILQ_ENTRY(resource_i)	r_link;
84 	LIST_ENTRY(resource_i)	r_sharelink;
85 	LIST_HEAD(, resource_i)	*r_sharehead;
86 	rman_res_t	r_start;	/* index of the first entry in this resource */
87 	rman_res_t	r_end;		/* index of the last entry (inclusive) */
88 	u_int	r_flags;
89 	void	*r_virtual;	/* virtual address of this resource */
90 	void	*r_irq_cookie;	/* interrupt cookie for this (interrupt) resource */
91 	device_t r_dev;	/* device which has allocated this resource */
92 	struct rman *r_rm;	/* resource manager from whence this came */
93 	int	r_rid;		/* optional rid for this resource. */
94 	int	r_type;		/* optional type for this resource. */
95 };
96 
97 static int rman_debug = 0;
98 SYSCTL_INT(_debug, OID_AUTO, rman_debug, CTLFLAG_RWTUN,
99     &rman_debug, 0, "rman debug");
100 
101 #define DPRINTF(...) do { if (rman_debug) printf(__VA_ARGS__); } while (0)
102 
103 static MALLOC_DEFINE(M_RMAN, "rman", "Resource manager");
104 
105 struct rman_head rman_head = TAILQ_HEAD_INITIALIZER(rman_head);
106 static struct mtx rman_mtx; /* mutex to protect rman_head */
107 MTX_SYSINIT(rman_mtx, &rman_mtx, "rman head", MTX_DEF);
108 
109 static int int_rman_release_resource(struct rman *rm, struct resource_i *r);
110 
111 static __inline struct resource_i *
int_alloc_resource(int malloc_flag)112 int_alloc_resource(int malloc_flag)
113 {
114 	struct resource_i *r;
115 
116 	r = malloc(sizeof *r, M_RMAN, malloc_flag | M_ZERO);
117 	if (r != NULL) {
118 		r->r_r.__r_i = r;
119 	}
120 	return (r);
121 }
122 
123 int
rman_init(struct rman * rm)124 rman_init(struct rman *rm)
125 {
126 	if (rm->rm_start == 0 && rm->rm_end == 0)
127 		rm->rm_end = ~0;
128 	if (rm->rm_type == RMAN_UNINIT)
129 		panic("rman_init");
130 	if (rm->rm_type == RMAN_GAUGE)
131 		panic("implement RMAN_GAUGE");
132 
133 	TAILQ_INIT(&rm->rm_list);
134 	mtx_init(&rm->rm_mtx, "rman", NULL, MTX_DEF);
135 
136 	mtx_lock(&rman_mtx);
137 	TAILQ_INSERT_TAIL(&rman_head, rm, rm_link);
138 	mtx_unlock(&rman_mtx);
139 	return 0;
140 }
141 
142 int
rman_manage_region(struct rman * rm,rman_res_t start,rman_res_t end)143 rman_manage_region(struct rman *rm, rman_res_t start, rman_res_t end)
144 {
145 	struct resource_i *r, *s, *t;
146 	int rv = 0;
147 
148 	DPRINTF("%s: <%s> request: start %#jx, end %#jx\n", __func__,
149 	    rm->rm_descr, start, end);
150 	if (start < rm->rm_start || end > rm->rm_end)
151 		return EINVAL;
152 	r = int_alloc_resource(M_NOWAIT);
153 	if (r == NULL)
154 		return ENOMEM;
155 	r->r_start = start;
156 	r->r_end = end;
157 	r->r_rm = rm;
158 
159 	mtx_lock(&rm->rm_mtx);
160 
161 	/* Skip entries before us. */
162 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
163 		if (s->r_end == ~0)
164 			break;
165 		if (s->r_end + 1 >= r->r_start)
166 			break;
167 	}
168 
169 	/* If we ran off the end of the list, insert at the tail. */
170 	if (s == NULL) {
171 		TAILQ_INSERT_TAIL(&rm->rm_list, r, r_link);
172 	} else {
173 		/* Check for any overlap with the current region. */
174 		if (r->r_start <= s->r_end && r->r_end >= s->r_start) {
175 			rv = EBUSY;
176 			goto out;
177 		}
178 
179 		/* Check for any overlap with the next region. */
180 		t = TAILQ_NEXT(s, r_link);
181 		if (t && r->r_start <= t->r_end && r->r_end >= t->r_start) {
182 			rv = EBUSY;
183 			goto out;
184 		}
185 
186 		/*
187 		 * See if this region can be merged with the next region.  If
188 		 * not, clear the pointer.
189 		 */
190 		if (t && (r->r_end + 1 != t->r_start || t->r_flags != 0))
191 			t = NULL;
192 
193 		/* See if we can merge with the current region. */
194 		if (s->r_end + 1 == r->r_start && s->r_flags == 0) {
195 			/* Can we merge all 3 regions? */
196 			if (t != NULL) {
197 				s->r_end = t->r_end;
198 				TAILQ_REMOVE(&rm->rm_list, t, r_link);
199 				free(r, M_RMAN);
200 				free(t, M_RMAN);
201 			} else {
202 				s->r_end = r->r_end;
203 				free(r, M_RMAN);
204 			}
205 		} else if (t != NULL) {
206 			/* Can we merge with just the next region? */
207 			t->r_start = r->r_start;
208 			free(r, M_RMAN);
209 		} else if (s->r_end < r->r_start) {
210 			TAILQ_INSERT_AFTER(&rm->rm_list, s, r, r_link);
211 		} else {
212 			TAILQ_INSERT_BEFORE(s, r, r_link);
213 		}
214 	}
215 out:
216 	mtx_unlock(&rm->rm_mtx);
217 	return rv;
218 }
219 
220 int
rman_init_from_resource(struct rman * rm,struct resource * r)221 rman_init_from_resource(struct rman *rm, struct resource *r)
222 {
223 	int rv;
224 
225 	if ((rv = rman_init(rm)) != 0)
226 		return (rv);
227 	return (rman_manage_region(rm, r->__r_i->r_start, r->__r_i->r_end));
228 }
229 
230 int
rman_fini(struct rman * rm)231 rman_fini(struct rman *rm)
232 {
233 	struct resource_i *r;
234 
235 	mtx_lock(&rm->rm_mtx);
236 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
237 		if (r->r_flags & RF_ALLOCATED) {
238 			mtx_unlock(&rm->rm_mtx);
239 			return EBUSY;
240 		}
241 	}
242 
243 	/*
244 	 * There really should only be one of these if we are in this
245 	 * state and the code is working properly, but it can't hurt.
246 	 */
247 	while (!TAILQ_EMPTY(&rm->rm_list)) {
248 		r = TAILQ_FIRST(&rm->rm_list);
249 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
250 		free(r, M_RMAN);
251 	}
252 	mtx_unlock(&rm->rm_mtx);
253 	mtx_lock(&rman_mtx);
254 	TAILQ_REMOVE(&rman_head, rm, rm_link);
255 	mtx_unlock(&rman_mtx);
256 	mtx_destroy(&rm->rm_mtx);
257 
258 	return 0;
259 }
260 
261 int
rman_first_free_region(struct rman * rm,rman_res_t * start,rman_res_t * end)262 rman_first_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
263 {
264 	struct resource_i *r;
265 
266 	mtx_lock(&rm->rm_mtx);
267 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
268 		if (!(r->r_flags & RF_ALLOCATED)) {
269 			*start = r->r_start;
270 			*end = r->r_end;
271 			mtx_unlock(&rm->rm_mtx);
272 			return (0);
273 		}
274 	}
275 	mtx_unlock(&rm->rm_mtx);
276 	return (ENOENT);
277 }
278 
279 int
rman_last_free_region(struct rman * rm,rman_res_t * start,rman_res_t * end)280 rman_last_free_region(struct rman *rm, rman_res_t *start, rman_res_t *end)
281 {
282 	struct resource_i *r;
283 
284 	mtx_lock(&rm->rm_mtx);
285 	TAILQ_FOREACH_REVERSE(r, &rm->rm_list, resource_head, r_link) {
286 		if (!(r->r_flags & RF_ALLOCATED)) {
287 			*start = r->r_start;
288 			*end = r->r_end;
289 			mtx_unlock(&rm->rm_mtx);
290 			return (0);
291 		}
292 	}
293 	mtx_unlock(&rm->rm_mtx);
294 	return (ENOENT);
295 }
296 
297 /* Shrink or extend one or both ends of an allocated resource. */
298 int
rman_adjust_resource(struct resource * rr,rman_res_t start,rman_res_t end)299 rman_adjust_resource(struct resource *rr, rman_res_t start, rman_res_t end)
300 {
301 	struct resource_i *r, *s, *t, *new;
302 	struct rman *rm;
303 
304 	/* Not supported for shared resources. */
305 	r = rr->__r_i;
306 	if (r->r_flags & RF_SHAREABLE)
307 		return (EINVAL);
308 
309 	/*
310 	 * This does not support wholesale moving of a resource.  At
311 	 * least part of the desired new range must overlap with the
312 	 * existing resource.
313 	 */
314 	if (end < r->r_start || r->r_end < start)
315 		return (EINVAL);
316 
317 	/*
318 	 * Find the two resource regions immediately adjacent to the
319 	 * allocated resource.
320 	 */
321 	rm = r->r_rm;
322 	mtx_lock(&rm->rm_mtx);
323 #ifdef INVARIANTS
324 	TAILQ_FOREACH(s, &rm->rm_list, r_link) {
325 		if (s == r)
326 			break;
327 	}
328 	if (s == NULL)
329 		panic("resource not in list");
330 #endif
331 	s = TAILQ_PREV(r, resource_head, r_link);
332 	t = TAILQ_NEXT(r, r_link);
333 	KASSERT(s == NULL || s->r_end + 1 == r->r_start,
334 	    ("prev resource mismatch"));
335 	KASSERT(t == NULL || r->r_end + 1 == t->r_start,
336 	    ("next resource mismatch"));
337 
338 	/*
339 	 * See if the changes are permitted.  Shrinking is always allowed,
340 	 * but growing requires sufficient room in the adjacent region.
341 	 */
342 	if (start < r->r_start && (s == NULL || (s->r_flags & RF_ALLOCATED) ||
343 	    s->r_start > start)) {
344 		mtx_unlock(&rm->rm_mtx);
345 		return (EBUSY);
346 	}
347 	if (end > r->r_end && (t == NULL || (t->r_flags & RF_ALLOCATED) ||
348 	    t->r_end < end)) {
349 		mtx_unlock(&rm->rm_mtx);
350 		return (EBUSY);
351 	}
352 
353 	/*
354 	 * While holding the lock, grow either end of the resource as
355 	 * needed and shrink either end if the shrinking does not require
356 	 * allocating a new resource.  We can safely drop the lock and then
357 	 * insert a new range to handle the shrinking case afterwards.
358 	 */
359 	if (start < r->r_start ||
360 	    (start > r->r_start && s != NULL && !(s->r_flags & RF_ALLOCATED))) {
361 		KASSERT(s->r_flags == 0, ("prev is busy"));
362 		r->r_start = start;
363 		if (s->r_start == start) {
364 			TAILQ_REMOVE(&rm->rm_list, s, r_link);
365 			free(s, M_RMAN);
366 		} else
367 			s->r_end = start - 1;
368 	}
369 	if (end > r->r_end ||
370 	    (end < r->r_end && t != NULL && !(t->r_flags & RF_ALLOCATED))) {
371 		KASSERT(t->r_flags == 0, ("next is busy"));
372 		r->r_end = end;
373 		if (t->r_end == end) {
374 			TAILQ_REMOVE(&rm->rm_list, t, r_link);
375 			free(t, M_RMAN);
376 		} else
377 			t->r_start = end + 1;
378 	}
379 	mtx_unlock(&rm->rm_mtx);
380 
381 	/*
382 	 * Handle the shrinking cases that require allocating a new
383 	 * resource to hold the newly-free region.  We have to recheck
384 	 * if we still need this new region after acquiring the lock.
385 	 */
386 	if (start > r->r_start) {
387 		new = int_alloc_resource(M_WAITOK);
388 		new->r_start = r->r_start;
389 		new->r_end = start - 1;
390 		new->r_rm = rm;
391 		mtx_lock(&rm->rm_mtx);
392 		r->r_start = start;
393 		s = TAILQ_PREV(r, resource_head, r_link);
394 		if (s != NULL && !(s->r_flags & RF_ALLOCATED)) {
395 			s->r_end = start - 1;
396 			free(new, M_RMAN);
397 		} else
398 			TAILQ_INSERT_BEFORE(r, new, r_link);
399 		mtx_unlock(&rm->rm_mtx);
400 	}
401 	if (end < r->r_end) {
402 		new = int_alloc_resource(M_WAITOK);
403 		new->r_start = end + 1;
404 		new->r_end = r->r_end;
405 		new->r_rm = rm;
406 		mtx_lock(&rm->rm_mtx);
407 		r->r_end = end;
408 		t = TAILQ_NEXT(r, r_link);
409 		if (t != NULL && !(t->r_flags & RF_ALLOCATED)) {
410 			t->r_start = end + 1;
411 			free(new, M_RMAN);
412 		} else
413 			TAILQ_INSERT_AFTER(&rm->rm_list, r, new, r_link);
414 		mtx_unlock(&rm->rm_mtx);
415 	}
416 	return (0);
417 }
418 
419 #define	SHARE_TYPE(f)	(f & (RF_SHAREABLE | RF_PREFETCHABLE))
420 
421 struct resource *
rman_reserve_resource(struct rman * rm,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags,device_t dev)422 rman_reserve_resource(struct rman *rm, rman_res_t start, rman_res_t end,
423 			    rman_res_t count, u_int flags, device_t dev)
424 {
425 	u_int new_rflags;
426 	struct resource_i *r, *s, *rv;
427 	rman_res_t rstart, rend, amask;
428 
429 	rv = NULL;
430 
431 	DPRINTF("%s: <%s> request: [%#jx, %#jx], length %#jx, flags %x, "
432 	    "device %s\n", __func__, rm->rm_descr, start, end, count, flags,
433 	    dev == NULL ? "<null>" : device_get_nameunit(dev));
434 	KASSERT(count != 0, ("%s: attempted to allocate an empty range",
435 	    __func__));
436 	KASSERT((flags & RF_FIRSTSHARE) == 0,
437 	    ("invalid flags %#x", flags));
438 	new_rflags = (flags & ~RF_FIRSTSHARE) | RF_ALLOCATED;
439 
440 	mtx_lock(&rm->rm_mtx);
441 
442 	r = TAILQ_FIRST(&rm->rm_list);
443 	if (r == NULL)
444 		DPRINTF("NULL list head\n");
445 	else
446 		DPRINTF("%s: trying %#jx <%#jx,%#jx>\n", __func__, r->r_end,
447 		    start, count-1);
448 
449 	for (r = TAILQ_FIRST(&rm->rm_list);
450 	     r && r->r_end < start + count - 1;
451 	     r = TAILQ_NEXT(r, r_link))
452 		DPRINTF("%s: tried %#jx <%#jx,%#jx>\n", __func__, r->r_end,
453 		    start, count-1);
454 
455 	if (r == NULL) {
456 		DPRINTF("could not find a region\n");
457 		goto out;
458 	}
459 
460 	amask = (1ull << RF_ALIGNMENT(flags)) - 1;
461 	KASSERT(start <= RM_MAX_END - amask,
462 	    ("start (%#jx) + amask (%#jx) would wrap around", start, amask));
463 
464 	/*
465 	 * First try to find an acceptable totally-unshared region.
466 	 */
467 	for (s = r; s; s = TAILQ_NEXT(s, r_link)) {
468 		DPRINTF("considering [%#jx, %#jx]\n", s->r_start, s->r_end);
469 		/*
470 		 * The resource list is sorted, so there is no point in
471 		 * searching further once r_start is too large.
472 		 */
473 		if (s->r_start > end - (count - 1)) {
474 			DPRINTF("s->r_start (%#jx) + count - 1> end (%#jx)\n",
475 			    s->r_start, end);
476 			break;
477 		}
478 		if (s->r_start > RM_MAX_END - amask) {
479 			DPRINTF("s->r_start (%#jx) + amask (%#jx) too large\n",
480 			    s->r_start, amask);
481 			break;
482 		}
483 		if (s->r_flags & RF_ALLOCATED) {
484 			DPRINTF("region is allocated\n");
485 			continue;
486 		}
487 		rstart = ummax(s->r_start, start);
488 		/*
489 		 * Try to find a region by adjusting to boundary and alignment
490 		 * until both conditions are satisfied. This is not an optimal
491 		 * algorithm, but in most cases it isn't really bad, either.
492 		 */
493 		do {
494 			rstart = (rstart + amask) & ~amask;
495 		} while ((rstart & amask) != 0 && rstart < end &&
496 		    rstart < s->r_end);
497 		rend = ummin(s->r_end, ummax(rstart + count - 1, end));
498 		if (rstart > rend) {
499 			DPRINTF("adjusted start exceeds end\n");
500 			continue;
501 		}
502 		DPRINTF("truncated region: [%#jx, %#jx]; size %#jx (requested %#jx)\n",
503 		       rstart, rend, (rend - rstart + 1), count);
504 
505 		if ((rend - rstart) >= (count - 1)) {
506 			DPRINTF("candidate region: [%#jx, %#jx], size %#jx\n",
507 			       rstart, rend, (rend - rstart + 1));
508 			if ((s->r_end - s->r_start + 1) == count) {
509 				DPRINTF("candidate region is entire chunk\n");
510 				rv = s;
511 				rv->r_flags = new_rflags;
512 				rv->r_dev = dev;
513 				goto out;
514 			}
515 
516 			/*
517 			 * If s->r_start < rstart and
518 			 *    s->r_end > rstart + count - 1, then
519 			 * we need to split the region into three pieces
520 			 * (the middle one will get returned to the user).
521 			 * Otherwise, we are allocating at either the
522 			 * beginning or the end of s, so we only need to
523 			 * split it in two.  The first case requires
524 			 * two new allocations; the second requires but one.
525 			 */
526 			rv = int_alloc_resource(M_NOWAIT);
527 			if (rv == NULL)
528 				goto out;
529 			rv->r_start = rstart;
530 			rv->r_end = rstart + count - 1;
531 			rv->r_flags = new_rflags;
532 			rv->r_dev = dev;
533 			rv->r_rm = rm;
534 
535 			if (s->r_start < rv->r_start && s->r_end > rv->r_end) {
536 				DPRINTF("splitting region in three parts: "
537 				       "[%#jx, %#jx]; [%#jx, %#jx]; [%#jx, %#jx]\n",
538 				       s->r_start, rv->r_start - 1,
539 				       rv->r_start, rv->r_end,
540 				       rv->r_end + 1, s->r_end);
541 				/*
542 				 * We are allocating in the middle.
543 				 */
544 				r = int_alloc_resource(M_NOWAIT);
545 				if (r == NULL) {
546 					free(rv, M_RMAN);
547 					rv = NULL;
548 					goto out;
549 				}
550 				r->r_start = rv->r_end + 1;
551 				r->r_end = s->r_end;
552 				r->r_flags = s->r_flags;
553 				r->r_rm = rm;
554 				s->r_end = rv->r_start - 1;
555 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
556 						     r_link);
557 				TAILQ_INSERT_AFTER(&rm->rm_list, rv, r,
558 						     r_link);
559 			} else if (s->r_start == rv->r_start) {
560 				DPRINTF("allocating from the beginning\n");
561 				/*
562 				 * We are allocating at the beginning.
563 				 */
564 				s->r_start = rv->r_end + 1;
565 				TAILQ_INSERT_BEFORE(s, rv, r_link);
566 			} else {
567 				DPRINTF("allocating at the end\n");
568 				/*
569 				 * We are allocating at the end.
570 				 */
571 				s->r_end = rv->r_start - 1;
572 				TAILQ_INSERT_AFTER(&rm->rm_list, s, rv,
573 						     r_link);
574 			}
575 			goto out;
576 		}
577 	}
578 
579 	/*
580 	 * Now find an acceptable shared region, if the client's requirements
581 	 * allow sharing.  By our implementation restriction, a candidate
582 	 * region must match exactly by both size and sharing type in order
583 	 * to be considered compatible with the client's request.  (The
584 	 * former restriction could probably be lifted without too much
585 	 * additional work, but this does not seem warranted.)
586 	 */
587 	DPRINTF("no unshared regions found\n");
588 	if ((flags & RF_SHAREABLE) == 0)
589 		goto out;
590 
591 	for (s = r; s && s->r_end <= end; s = TAILQ_NEXT(s, r_link)) {
592 		if (SHARE_TYPE(s->r_flags) == SHARE_TYPE(flags) &&
593 		    s->r_start >= start &&
594 		    (s->r_end - s->r_start + 1) == count &&
595 		    (s->r_start & amask) == 0) {
596 			rv = int_alloc_resource(M_NOWAIT);
597 			if (rv == NULL)
598 				goto out;
599 			rv->r_start = s->r_start;
600 			rv->r_end = s->r_end;
601 			rv->r_flags = new_rflags;
602 			rv->r_dev = dev;
603 			rv->r_rm = rm;
604 			if (s->r_sharehead == NULL) {
605 				s->r_sharehead = malloc(sizeof *s->r_sharehead,
606 						M_RMAN, M_NOWAIT | M_ZERO);
607 				if (s->r_sharehead == NULL) {
608 					free(rv, M_RMAN);
609 					rv = NULL;
610 					goto out;
611 				}
612 				LIST_INIT(s->r_sharehead);
613 				LIST_INSERT_HEAD(s->r_sharehead, s,
614 						 r_sharelink);
615 				s->r_flags |= RF_FIRSTSHARE;
616 			}
617 			rv->r_sharehead = s->r_sharehead;
618 			LIST_INSERT_HEAD(s->r_sharehead, rv, r_sharelink);
619 			goto out;
620 		}
621 	}
622 	/*
623 	 * We couldn't find anything.
624 	 */
625 
626 out:
627 	mtx_unlock(&rm->rm_mtx);
628 	return (rv == NULL ? NULL : &rv->r_r);
629 }
630 
631 int
rman_activate_resource(struct resource * re)632 rman_activate_resource(struct resource *re)
633 {
634 	struct resource_i *r;
635 	struct rman *rm;
636 
637 	r = re->__r_i;
638 	rm = r->r_rm;
639 	mtx_lock(&rm->rm_mtx);
640 	r->r_flags |= RF_ACTIVE;
641 	mtx_unlock(&rm->rm_mtx);
642 	return 0;
643 }
644 
645 int
rman_deactivate_resource(struct resource * r)646 rman_deactivate_resource(struct resource *r)
647 {
648 	struct rman *rm;
649 
650 	rm = r->__r_i->r_rm;
651 	mtx_lock(&rm->rm_mtx);
652 	r->__r_i->r_flags &= ~RF_ACTIVE;
653 	mtx_unlock(&rm->rm_mtx);
654 	return 0;
655 }
656 
657 static int
int_rman_release_resource(struct rman * rm,struct resource_i * r)658 int_rman_release_resource(struct rman *rm, struct resource_i *r)
659 {
660 	struct resource_i *s, *t;
661 
662 	if (r->r_flags & RF_ACTIVE)
663 		r->r_flags &= ~RF_ACTIVE;
664 
665 	/*
666 	 * Check for a sharing list first.  If there is one, then we don't
667 	 * have to think as hard.
668 	 */
669 	if (r->r_sharehead) {
670 		/*
671 		 * If a sharing list exists, then we know there are at
672 		 * least two sharers.
673 		 *
674 		 * If we are in the main circleq, appoint someone else.
675 		 */
676 		LIST_REMOVE(r, r_sharelink);
677 		s = LIST_FIRST(r->r_sharehead);
678 		if (r->r_flags & RF_FIRSTSHARE) {
679 			s->r_flags |= RF_FIRSTSHARE;
680 			TAILQ_INSERT_BEFORE(r, s, r_link);
681 			TAILQ_REMOVE(&rm->rm_list, r, r_link);
682 		}
683 
684 		/*
685 		 * Make sure that the sharing list goes away completely
686 		 * if the resource is no longer being shared at all.
687 		 */
688 		if (LIST_NEXT(s, r_sharelink) == NULL) {
689 			free(s->r_sharehead, M_RMAN);
690 			s->r_sharehead = NULL;
691 			s->r_flags &= ~RF_FIRSTSHARE;
692 		}
693 		goto out;
694 	}
695 
696 	/*
697 	 * Look at the adjacent resources in the list and see if our
698 	 * segment can be merged with any of them.  If either of the
699 	 * resources is allocated or is not exactly adjacent then they
700 	 * cannot be merged with our segment.
701 	 */
702 	s = TAILQ_PREV(r, resource_head, r_link);
703 	if (s != NULL && ((s->r_flags & RF_ALLOCATED) != 0 ||
704 	    s->r_end + 1 != r->r_start))
705 		s = NULL;
706 	t = TAILQ_NEXT(r, r_link);
707 	if (t != NULL && ((t->r_flags & RF_ALLOCATED) != 0 ||
708 	    r->r_end + 1 != t->r_start))
709 		t = NULL;
710 
711 	if (s != NULL && t != NULL) {
712 		/*
713 		 * Merge all three segments.
714 		 */
715 		s->r_end = t->r_end;
716 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
717 		TAILQ_REMOVE(&rm->rm_list, t, r_link);
718 		free(t, M_RMAN);
719 	} else if (s != NULL) {
720 		/*
721 		 * Merge previous segment with ours.
722 		 */
723 		s->r_end = r->r_end;
724 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
725 	} else if (t != NULL) {
726 		/*
727 		 * Merge next segment with ours.
728 		 */
729 		t->r_start = r->r_start;
730 		TAILQ_REMOVE(&rm->rm_list, r, r_link);
731 	} else {
732 		/*
733 		 * At this point, we know there is nothing we
734 		 * can potentially merge with, because on each
735 		 * side, there is either nothing there or what is
736 		 * there is still allocated.  In that case, we don't
737 		 * want to remove r from the list; we simply want to
738 		 * change it to an unallocated region and return
739 		 * without freeing anything.
740 		 */
741 		r->r_flags &= ~RF_ALLOCATED;
742 		r->r_dev = NULL;
743 		return 0;
744 	}
745 
746 out:
747 	free(r, M_RMAN);
748 	return 0;
749 }
750 
751 int
rman_release_resource(struct resource * re)752 rman_release_resource(struct resource *re)
753 {
754 	int rv;
755 	struct resource_i *r;
756 	struct rman *rm;
757 
758 	r = re->__r_i;
759 	rm = r->r_rm;
760 	mtx_lock(&rm->rm_mtx);
761 	rv = int_rman_release_resource(rm, r);
762 	mtx_unlock(&rm->rm_mtx);
763 	return (rv);
764 }
765 
766 uint32_t
rman_make_alignment_flags(uint32_t size)767 rman_make_alignment_flags(uint32_t size)
768 {
769 
770 	/*
771 	 * Find the hightest bit set, and add one if more than one bit
772 	 * set.  We're effectively computing the ceil(log2(size)) here.
773 	 */
774 	if (__predict_false(size == 0))
775 		return (0);
776 	return (RF_ALIGNMENT_LOG2(flsl(size - 1)));
777 }
778 
779 rman_res_t
rman_get_start(const struct resource * r)780 rman_get_start(const struct resource *r)
781 {
782 
783 	return (r->__r_i->r_start);
784 }
785 
786 rman_res_t
rman_get_end(const struct resource * r)787 rman_get_end(const struct resource *r)
788 {
789 
790 	return (r->__r_i->r_end);
791 }
792 
793 rman_res_t
rman_get_size(const struct resource * r)794 rman_get_size(const struct resource *r)
795 {
796 
797 	return (r->__r_i->r_end - r->__r_i->r_start + 1);
798 }
799 
800 u_int
rman_get_flags(const struct resource * r)801 rman_get_flags(const struct resource *r)
802 {
803 
804 	return (r->__r_i->r_flags);
805 }
806 
807 void
rman_set_virtual(struct resource * r,void * v)808 rman_set_virtual(struct resource *r, void *v)
809 {
810 
811 	r->__r_i->r_virtual = v;
812 }
813 
814 void *
rman_get_virtual(const struct resource * r)815 rman_get_virtual(const struct resource *r)
816 {
817 
818 	return (r->__r_i->r_virtual);
819 }
820 
821 void
rman_set_irq_cookie(struct resource * r,void * c)822 rman_set_irq_cookie(struct resource *r, void *c)
823 {
824 
825 	r->__r_i->r_irq_cookie = c;
826 }
827 
828 void *
rman_get_irq_cookie(const struct resource * r)829 rman_get_irq_cookie(const struct resource *r)
830 {
831 
832 	return (r->__r_i->r_irq_cookie);
833 }
834 
835 void
rman_set_bustag(struct resource * r,bus_space_tag_t t)836 rman_set_bustag(struct resource *r, bus_space_tag_t t)
837 {
838 
839 	r->r_bustag = t;
840 }
841 
842 bus_space_tag_t
rman_get_bustag(const struct resource * r)843 rman_get_bustag(const struct resource *r)
844 {
845 
846 	return (r->r_bustag);
847 }
848 
849 void
rman_set_bushandle(struct resource * r,bus_space_handle_t h)850 rman_set_bushandle(struct resource *r, bus_space_handle_t h)
851 {
852 
853 	r->r_bushandle = h;
854 }
855 
856 bus_space_handle_t
rman_get_bushandle(const struct resource * r)857 rman_get_bushandle(const struct resource *r)
858 {
859 
860 	return (r->r_bushandle);
861 }
862 
863 void
rman_set_mapping(struct resource * r,struct resource_map * map)864 rman_set_mapping(struct resource *r, struct resource_map *map)
865 {
866 
867 	KASSERT(rman_get_size(r) == map->r_size,
868 	    ("rman_set_mapping: size mismatch"));
869 	rman_set_bustag(r, map->r_bustag);
870 	rman_set_bushandle(r, map->r_bushandle);
871 	rman_set_virtual(r, map->r_vaddr);
872 }
873 
874 void
rman_get_mapping(const struct resource * r,struct resource_map * map)875 rman_get_mapping(const struct resource *r, struct resource_map *map)
876 {
877 
878 	map->r_bustag = rman_get_bustag(r);
879 	map->r_bushandle = rman_get_bushandle(r);
880 	map->r_size = rman_get_size(r);
881 	map->r_vaddr = rman_get_virtual(r);
882 }
883 
884 void
rman_set_rid(struct resource * r,int rid)885 rman_set_rid(struct resource *r, int rid)
886 {
887 
888 	r->__r_i->r_rid = rid;
889 }
890 
891 int
rman_get_rid(const struct resource * r)892 rman_get_rid(const struct resource *r)
893 {
894 
895 	return (r->__r_i->r_rid);
896 }
897 
898 void
rman_set_type(struct resource * r,int type)899 rman_set_type(struct resource *r, int type)
900 {
901 	r->__r_i->r_type = type;
902 }
903 
904 int
rman_get_type(const struct resource * r)905 rman_get_type(const struct resource *r)
906 {
907 	return (r->__r_i->r_type);
908 }
909 
910 void
rman_set_device(struct resource * r,device_t dev)911 rman_set_device(struct resource *r, device_t dev)
912 {
913 
914 	r->__r_i->r_dev = dev;
915 }
916 
917 device_t
rman_get_device(const struct resource * r)918 rman_get_device(const struct resource *r)
919 {
920 
921 	return (r->__r_i->r_dev);
922 }
923 
924 int
rman_is_region_manager(const struct resource * r,const struct rman * rm)925 rman_is_region_manager(const struct resource *r, const struct rman *rm)
926 {
927 
928 	return (r->__r_i->r_rm == rm);
929 }
930 
931 /*
932  * Sysctl interface for scanning the resource lists.
933  *
934  * We take two input parameters; the index into the list of resource
935  * managers, and the resource offset into the list.
936  */
937 static int
sysctl_rman(SYSCTL_HANDLER_ARGS)938 sysctl_rman(SYSCTL_HANDLER_ARGS)
939 {
940 	int			*name = (int *)arg1;
941 	u_int			namelen = arg2;
942 	int			rman_idx, res_idx;
943 	struct rman		*rm;
944 	struct resource_i	*res;
945 	struct resource_i	*sres;
946 	struct u_rman		urm;
947 	struct u_resource	ures;
948 	int			error;
949 
950 	if (namelen != 3)
951 		return (EINVAL);
952 
953 	if (bus_data_generation_check(name[0]))
954 		return (EINVAL);
955 	rman_idx = name[1];
956 	res_idx = name[2];
957 
958 	/*
959 	 * Find the indexed resource manager
960 	 */
961 	mtx_lock(&rman_mtx);
962 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
963 		if (rman_idx-- == 0)
964 			break;
965 	}
966 	mtx_unlock(&rman_mtx);
967 	if (rm == NULL)
968 		return (ENOENT);
969 
970 	/*
971 	 * If the resource index is -1, we want details on the
972 	 * resource manager.
973 	 */
974 	if (res_idx == -1) {
975 		bzero(&urm, sizeof(urm));
976 		urm.rm_handle = (uintptr_t)rm;
977 		if (rm->rm_descr != NULL)
978 			strlcpy(urm.rm_descr, rm->rm_descr, RM_TEXTLEN);
979 		urm.rm_start = rm->rm_start;
980 		urm.rm_size = rm->rm_end - rm->rm_start + 1;
981 		urm.rm_type = rm->rm_type;
982 
983 		error = SYSCTL_OUT(req, &urm, sizeof(urm));
984 		return (error);
985 	}
986 
987 	/*
988 	 * Find the indexed resource and return it.
989 	 */
990 	mtx_lock(&rm->rm_mtx);
991 	TAILQ_FOREACH(res, &rm->rm_list, r_link) {
992 		if (res->r_sharehead != NULL) {
993 			LIST_FOREACH(sres, res->r_sharehead, r_sharelink)
994 				if (res_idx-- == 0) {
995 					res = sres;
996 					goto found;
997 				}
998 		}
999 		else if (res_idx-- == 0)
1000 				goto found;
1001 	}
1002 	mtx_unlock(&rm->rm_mtx);
1003 	return (ENOENT);
1004 
1005 found:
1006 	bzero(&ures, sizeof(ures));
1007 	ures.r_handle = (uintptr_t)res;
1008 	ures.r_parent = (uintptr_t)res->r_rm;
1009 	ures.r_device = (uintptr_t)res->r_dev;
1010 	if (res->r_dev != NULL) {
1011 		if (device_get_name(res->r_dev) != NULL) {
1012 			snprintf(ures.r_devname, RM_TEXTLEN,
1013 			    "%s%d",
1014 			    device_get_name(res->r_dev),
1015 			    device_get_unit(res->r_dev));
1016 		} else {
1017 			strlcpy(ures.r_devname, "nomatch",
1018 			    RM_TEXTLEN);
1019 		}
1020 	} else {
1021 		ures.r_devname[0] = '\0';
1022 	}
1023 	ures.r_start = res->r_start;
1024 	ures.r_size = res->r_end - res->r_start + 1;
1025 	ures.r_flags = res->r_flags;
1026 
1027 	mtx_unlock(&rm->rm_mtx);
1028 	error = SYSCTL_OUT(req, &ures, sizeof(ures));
1029 	return (error);
1030 }
1031 
1032 static SYSCTL_NODE(_hw_bus, OID_AUTO, rman, CTLFLAG_RD | CTLFLAG_MPSAFE,
1033     sysctl_rman,
1034     "kernel resource manager");
1035 
1036 #ifdef DDB
1037 static void
dump_rman_header(struct rman * rm)1038 dump_rman_header(struct rman *rm)
1039 {
1040 
1041 	if (db_pager_quit)
1042 		return;
1043 	db_printf("rman %p: %s (0x%jx-0x%jx full range)\n",
1044 	    rm, rm->rm_descr, (rman_res_t)rm->rm_start, (rman_res_t)rm->rm_end);
1045 }
1046 
1047 static void
dump_rman(struct rman * rm)1048 dump_rman(struct rman *rm)
1049 {
1050 	struct resource_i *r;
1051 	const char *devname;
1052 
1053 	if (db_pager_quit)
1054 		return;
1055 	TAILQ_FOREACH(r, &rm->rm_list, r_link) {
1056 		if (r->r_dev != NULL) {
1057 			devname = device_get_nameunit(r->r_dev);
1058 			if (devname == NULL)
1059 				devname = "nomatch";
1060 		} else
1061 			devname = NULL;
1062 		db_printf("    0x%jx-0x%jx (RID=%d) ",
1063 		    r->r_start, r->r_end, r->r_rid);
1064 		if (devname != NULL)
1065 			db_printf("(%s)\n", devname);
1066 		else
1067 			db_printf("----\n");
1068 		if (db_pager_quit)
1069 			return;
1070 	}
1071 }
1072 
DB_SHOW_COMMAND(rman,db_show_rman)1073 DB_SHOW_COMMAND(rman, db_show_rman)
1074 {
1075 
1076 	if (have_addr) {
1077 		dump_rman_header((struct rman *)addr);
1078 		dump_rman((struct rman *)addr);
1079 	}
1080 }
1081 
DB_SHOW_COMMAND_FLAGS(rmans,db_show_rmans,DB_CMD_MEMSAFE)1082 DB_SHOW_COMMAND_FLAGS(rmans, db_show_rmans, DB_CMD_MEMSAFE)
1083 {
1084 	struct rman *rm;
1085 
1086 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1087 		dump_rman_header(rm);
1088 	}
1089 }
1090 
DB_SHOW_ALL_COMMAND(rman,db_show_all_rman)1091 DB_SHOW_ALL_COMMAND(rman, db_show_all_rman)
1092 {
1093 	struct rman *rm;
1094 
1095 	TAILQ_FOREACH(rm, &rman_head, rm_link) {
1096 		dump_rman_header(rm);
1097 		dump_rman(rm);
1098 	}
1099 }
1100 DB_SHOW_ALIAS_FLAGS(allrman, db_show_all_rman, DB_CMD_MEMSAFE);
1101 #endif
1102