xref: /freebsd/sys/contrib/openzfs/include/sys/vdev_raidz_impl.h (revision 47bb16f8f09238e8d46e9e441a837e4bb28f6a00)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
23  */
24 
25 #ifndef _VDEV_RAIDZ_H
26 #define	_VDEV_RAIDZ_H
27 
28 #include <sys/types.h>
29 #include <sys/debug.h>
30 #include <sys/kstat.h>
31 #include <sys/abd.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/abd_impl.h>
34 #include <sys/zfs_rlock.h>
35 
36 #ifdef  __cplusplus
37 extern "C" {
38 #endif
39 
40 #define	CODE_P		(0U)
41 #define	CODE_Q		(1U)
42 #define	CODE_R		(2U)
43 
44 #define	PARITY_P	(1U)
45 #define	PARITY_PQ	(2U)
46 #define	PARITY_PQR	(3U)
47 
48 #define	TARGET_X	(0U)
49 #define	TARGET_Y	(1U)
50 #define	TARGET_Z	(2U)
51 
52 /*
53  * Parity generation methods indexes
54  */
55 enum raidz_math_gen_op {
56 	RAIDZ_GEN_P = 0,
57 	RAIDZ_GEN_PQ,
58 	RAIDZ_GEN_PQR,
59 	RAIDZ_GEN_NUM = 3
60 };
61 /*
62  * Data reconstruction methods indexes
63  */
64 enum raidz_rec_op {
65 	RAIDZ_REC_P = 0,
66 	RAIDZ_REC_Q,
67 	RAIDZ_REC_R,
68 	RAIDZ_REC_PQ,
69 	RAIDZ_REC_PR,
70 	RAIDZ_REC_QR,
71 	RAIDZ_REC_PQR,
72 	RAIDZ_REC_NUM = 7
73 };
74 
75 extern const char *const raidz_gen_name[RAIDZ_GEN_NUM];
76 extern const char *const raidz_rec_name[RAIDZ_REC_NUM];
77 
78 /*
79  * Methods used to define raidz implementation
80  *
81  * @raidz_gen_f	Parity generation function
82  *     @par1	pointer to raidz_map
83  * @raidz_rec_f	Data reconstruction function
84  *     @par1	pointer to raidz_map
85  *     @par2	array of reconstruction targets
86  * @will_work_f Function returns TRUE if impl. is supported on the system
87  * @init_impl_f Function is called once on init
88  * @fini_impl_f Function is called once on fini
89  */
90 typedef void		(*raidz_gen_f)(void *);
91 typedef int		(*raidz_rec_f)(void *, const int *);
92 typedef boolean_t	(*will_work_f)(void);
93 typedef void		(*init_impl_f)(void);
94 typedef void		(*fini_impl_f)(void);
95 
96 #define	RAIDZ_IMPL_NAME_MAX	(20)
97 
98 typedef struct raidz_impl_ops {
99 	init_impl_f init;
100 	fini_impl_f fini;
101 	raidz_gen_f gen[RAIDZ_GEN_NUM];	/* Parity generate functions */
102 	raidz_rec_f rec[RAIDZ_REC_NUM];	/* Data reconstruction functions */
103 	will_work_f is_supported;	/* Support check function */
104 	char name[RAIDZ_IMPL_NAME_MAX];	/* Name of the implementation */
105 } raidz_impl_ops_t;
106 
107 
108 typedef struct raidz_col {
109 	int rc_devidx;			/* child device index for I/O */
110 	uint32_t rc_size;		/* I/O size */
111 	uint64_t rc_offset;		/* device offset */
112 	abd_t rc_abdstruct;		/* rc_abd probably points here */
113 	abd_t *rc_abd;			/* I/O data */
114 	abd_t *rc_orig_data;		/* pre-reconstruction */
115 	int rc_error;			/* I/O error for this device */
116 	uint8_t rc_tried:1;		/* Did we attempt this I/O column? */
117 	uint8_t rc_skipped:1;		/* Did we skip this I/O column? */
118 	uint8_t rc_need_orig_restore:1;	/* need to restore from orig_data? */
119 	uint8_t rc_force_repair:1;	/* Write good data to this column */
120 	uint8_t rc_allow_repair:1;	/* Allow repair I/O to this column */
121 	int rc_shadow_devidx;		/* for double write during expansion */
122 	int rc_shadow_error;		/* for double write during expansion */
123 	uint64_t rc_shadow_offset;	/* for double write during expansion */
124 } raidz_col_t;
125 
126 typedef struct raidz_row {
127 	int rr_cols;			/* Regular column count */
128 	int rr_scols;			/* Count including skipped columns */
129 	int rr_bigcols;			/* Remainder data column count */
130 	int rr_missingdata;		/* Count of missing data devices */
131 	int rr_missingparity;		/* Count of missing parity devices */
132 	int rr_firstdatacol;		/* First data column/parity count */
133 	abd_t *rr_abd_empty;		/* dRAID empty sector buffer */
134 	int rr_nempty;			/* empty sectors included in parity */
135 #ifdef ZFS_DEBUG
136 	uint64_t rr_offset;		/* Logical offset for *_io_verify() */
137 	uint64_t rr_size;		/* Physical size for *_io_verify() */
138 #endif
139 	raidz_col_t rr_col[];		/* Flexible array of I/O columns */
140 } raidz_row_t;
141 
142 typedef struct raidz_map {
143 	boolean_t rm_ecksuminjected;	/* checksum error was injected */
144 	int rm_nrows;			/* Regular row count */
145 	int rm_nskip;			/* RAIDZ sectors skipped for padding */
146 	int rm_skipstart;		/* Column index of padding start */
147 	int rm_original_width;		/* pre-expansion width of raidz vdev */
148 	int rm_nphys_cols;		/* num entries in rm_phys_col[] */
149 	zfs_locked_range_t *rm_lr;
150 	const raidz_impl_ops_t *rm_ops;	/* RAIDZ math operations */
151 	raidz_col_t *rm_phys_col;	/* if non-NULL, read i/o aggregation */
152 	raidz_row_t *rm_row[];		/* flexible array of rows */
153 } raidz_map_t;
154 
155 /*
156  * Nodes in vdev_raidz_t:vd_expand_txgs.
157  * Blocks with physical birth time of re_txg or later have the specified
158  * logical width (until the next node).
159  */
160 typedef struct reflow_node {
161 	uint64_t re_txg;
162 	uint64_t re_logical_width;
163 	avl_node_t re_link;
164 } reflow_node_t;
165 
166 
167 #define	RAIDZ_ORIGINAL_IMPL	(INT_MAX)
168 
169 extern const raidz_impl_ops_t vdev_raidz_scalar_impl;
170 extern boolean_t raidz_will_scalar_work(void);
171 
172 #if defined(__x86_64) && defined(HAVE_SSE2)	/* only x86_64 for now */
173 extern const raidz_impl_ops_t vdev_raidz_sse2_impl;
174 #endif
175 #if defined(__x86_64) && defined(HAVE_SSSE3)	/* only x86_64 for now */
176 extern const raidz_impl_ops_t vdev_raidz_ssse3_impl;
177 #endif
178 #if defined(__x86_64) && defined(HAVE_AVX2)	/* only x86_64 for now */
179 extern const raidz_impl_ops_t vdev_raidz_avx2_impl;
180 #endif
181 #if defined(__x86_64) && defined(HAVE_AVX512F)	/* only x86_64 for now */
182 extern const raidz_impl_ops_t vdev_raidz_avx512f_impl;
183 #endif
184 #if defined(__x86_64) && defined(HAVE_AVX512BW)	/* only x86_64 for now */
185 extern const raidz_impl_ops_t vdev_raidz_avx512bw_impl;
186 #endif
187 #if defined(__aarch64__)
188 extern const raidz_impl_ops_t vdev_raidz_aarch64_neon_impl;
189 extern const raidz_impl_ops_t vdev_raidz_aarch64_neonx2_impl;
190 #endif
191 #if defined(__powerpc__)
192 extern const raidz_impl_ops_t vdev_raidz_powerpc_altivec_impl;
193 #endif
194 
195 /*
196  * Commonly used raidz_map helpers
197  *
198  * raidz_parity		Returns parity of the RAIDZ block
199  * raidz_ncols		Returns number of columns the block spans
200  *			Note, all rows have the same number of columns.
201  * raidz_nbigcols	Returns number of big columns
202  * raidz_col_p		Returns pointer to a column
203  * raidz_col_size	Returns size of a column
204  * raidz_big_size	Returns size of big columns
205  * raidz_short_size	Returns size of short columns
206  */
207 #define	raidz_parity(rm)	((rm)->rm_row[0]->rr_firstdatacol)
208 #define	raidz_ncols(rm)		((rm)->rm_row[0]->rr_cols)
209 #define	raidz_nbigcols(rm)	((rm)->rm_bigcols)
210 #define	raidz_col_p(rm, c)	((rm)->rm_col + (c))
211 #define	raidz_col_size(rm, c)	((rm)->rm_col[c].rc_size)
212 #define	raidz_big_size(rm)	(raidz_col_size(rm, CODE_P))
213 #define	raidz_short_size(rm)	(raidz_col_size(rm, raidz_ncols(rm)-1))
214 
215 /*
216  * Macro defines an RAIDZ parity generation method
217  *
218  * @code	parity the function produce
219  * @impl	name of the implementation
220  */
221 #define	_RAIDZ_GEN_WRAP(code, impl)					\
222 static void								\
223 impl ## _gen_ ## code(void *rrp)					\
224 {									\
225 	raidz_row_t *rr = (raidz_row_t *)rrp;				\
226 	raidz_generate_## code ## _impl(rr);				\
227 }
228 
229 /*
230  * Macro defines an RAIDZ data reconstruction method
231  *
232  * @code	parity the function produce
233  * @impl	name of the implementation
234  */
235 #define	_RAIDZ_REC_WRAP(code, impl)					\
236 static int								\
237 impl ## _rec_ ## code(void *rrp, const int *tgtidx)			\
238 {									\
239 	raidz_row_t *rr = (raidz_row_t *)rrp;				\
240 	return (raidz_reconstruct_## code ## _impl(rr, tgtidx));	\
241 }
242 
243 /*
244  * Define all gen methods for an implementation
245  *
246  * @impl	name of the implementation
247  */
248 #define	DEFINE_GEN_METHODS(impl)					\
249 	_RAIDZ_GEN_WRAP(p, impl);					\
250 	_RAIDZ_GEN_WRAP(pq, impl);					\
251 	_RAIDZ_GEN_WRAP(pqr, impl)
252 
253 /*
254  * Define all rec functions for an implementation
255  *
256  * @impl	name of the implementation
257  */
258 #define	DEFINE_REC_METHODS(impl)					\
259 	_RAIDZ_REC_WRAP(p, impl);					\
260 	_RAIDZ_REC_WRAP(q, impl);					\
261 	_RAIDZ_REC_WRAP(r, impl);					\
262 	_RAIDZ_REC_WRAP(pq, impl);					\
263 	_RAIDZ_REC_WRAP(pr, impl);					\
264 	_RAIDZ_REC_WRAP(qr, impl);					\
265 	_RAIDZ_REC_WRAP(pqr, impl)
266 
267 #define	RAIDZ_GEN_METHODS(impl)						\
268 {									\
269 	[RAIDZ_GEN_P] = & impl ## _gen_p,				\
270 	[RAIDZ_GEN_PQ] = & impl ## _gen_pq,				\
271 	[RAIDZ_GEN_PQR] = & impl ## _gen_pqr				\
272 }
273 
274 #define	RAIDZ_REC_METHODS(impl)						\
275 {									\
276 	[RAIDZ_REC_P] = & impl ## _rec_p,				\
277 	[RAIDZ_REC_Q] = & impl ## _rec_q,				\
278 	[RAIDZ_REC_R] = & impl ## _rec_r,				\
279 	[RAIDZ_REC_PQ] = & impl ## _rec_pq,				\
280 	[RAIDZ_REC_PR] = & impl ## _rec_pr,				\
281 	[RAIDZ_REC_QR] = & impl ## _rec_qr,				\
282 	[RAIDZ_REC_PQR] = & impl ## _rec_pqr				\
283 }
284 
285 
286 typedef struct raidz_impl_kstat {
287 	uint64_t gen[RAIDZ_GEN_NUM];	/* gen method speed B/s */
288 	uint64_t rec[RAIDZ_REC_NUM];	/* rec method speed B/s */
289 } raidz_impl_kstat_t;
290 
291 /*
292  * Enumerate various multiplication constants
293  * used in reconstruction methods
294  */
295 typedef enum raidz_mul_info {
296 	/* Reconstruct Q */
297 	MUL_Q_X		= 0,
298 	/* Reconstruct R */
299 	MUL_R_X		= 0,
300 	/* Reconstruct PQ */
301 	MUL_PQ_X	= 0,
302 	MUL_PQ_Y	= 1,
303 	/* Reconstruct PR */
304 	MUL_PR_X	= 0,
305 	MUL_PR_Y	= 1,
306 	/* Reconstruct QR */
307 	MUL_QR_XQ	= 0,
308 	MUL_QR_X	= 1,
309 	MUL_QR_YQ	= 2,
310 	MUL_QR_Y	= 3,
311 	/* Reconstruct PQR */
312 	MUL_PQR_XP	= 0,
313 	MUL_PQR_XQ	= 1,
314 	MUL_PQR_XR	= 2,
315 	MUL_PQR_YU	= 3,
316 	MUL_PQR_YP	= 4,
317 	MUL_PQR_YQ	= 5,
318 
319 	MUL_CNT		= 6
320 } raidz_mul_info_t;
321 
322 /*
323  * Powers of 2 in the Galois field.
324  */
325 extern const uint8_t vdev_raidz_pow2[256] __attribute__((aligned(256)));
326 /* Logs of 2 in the Galois field defined above. */
327 extern const uint8_t vdev_raidz_log2[256] __attribute__((aligned(256)));
328 
329 /*
330  * Multiply a given number by 2 raised to the given power.
331  */
332 static inline uint8_t
vdev_raidz_exp2(const uint8_t a,const unsigned exp)333 vdev_raidz_exp2(const uint8_t a, const unsigned exp)
334 {
335 	if (a == 0)
336 		return (0);
337 
338 	return (vdev_raidz_pow2[(exp + (unsigned)vdev_raidz_log2[a]) % 255]);
339 }
340 
341 /*
342  * Galois Field operations.
343  *
344  * gf_exp2	- computes 2 raised to the given power
345  * gf_exp4	- computes 4 raised to the given power
346  * gf_mul	- multiplication
347  * gf_div	- division
348  * gf_inv	- multiplicative inverse
349  */
350 typedef unsigned gf_t;
351 typedef unsigned gf_log_t;
352 
353 static inline gf_t
gf_mul(const gf_t a,const gf_t b)354 gf_mul(const gf_t a, const gf_t b)
355 {
356 	gf_log_t logsum;
357 
358 	if (a == 0 || b == 0)
359 		return (0);
360 
361 	logsum = (gf_log_t)vdev_raidz_log2[a] + (gf_log_t)vdev_raidz_log2[b];
362 
363 	return ((gf_t)vdev_raidz_pow2[logsum % 255]);
364 }
365 
366 static inline gf_t
gf_div(const gf_t a,const gf_t b)367 gf_div(const gf_t  a, const gf_t b)
368 {
369 	gf_log_t logsum;
370 
371 	ASSERT3U(b, >, 0);
372 	if (a == 0)
373 		return (0);
374 
375 	logsum = (gf_log_t)255 + (gf_log_t)vdev_raidz_log2[a] -
376 	    (gf_log_t)vdev_raidz_log2[b];
377 
378 	return ((gf_t)vdev_raidz_pow2[logsum % 255]);
379 }
380 
381 static inline gf_t
gf_inv(const gf_t a)382 gf_inv(const gf_t a)
383 {
384 	gf_log_t logsum;
385 
386 	ASSERT3U(a, >, 0);
387 
388 	logsum = (gf_log_t)255 - (gf_log_t)vdev_raidz_log2[a];
389 
390 	return ((gf_t)vdev_raidz_pow2[logsum]);
391 }
392 
393 static inline gf_t
gf_exp2(gf_log_t exp)394 gf_exp2(gf_log_t exp)
395 {
396 	return (vdev_raidz_pow2[exp % 255]);
397 }
398 
399 static inline gf_t
gf_exp4(gf_log_t exp)400 gf_exp4(gf_log_t exp)
401 {
402 	ASSERT3U(exp, <=, 255);
403 	return ((gf_t)vdev_raidz_pow2[(2 * exp) % 255]);
404 }
405 
406 #ifdef  __cplusplus
407 }
408 #endif
409 
410 #endif /* _VDEV_RAIDZ_H */
411