xref: /linux/kernel/events/core.c (revision 69fd6b99b8f85eaa5d784e4840e982ca59c04250)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 #include <linux/percpu-rwsem.h>
59 
60 #include "internal.h"
61 
62 #include <asm/irq_regs.h>
63 
64 typedef int (*remote_function_f)(void *);
65 
66 struct remote_function_call {
67 	struct task_struct	*p;
68 	remote_function_f	func;
69 	void			*info;
70 	int			ret;
71 };
72 
remote_function(void * data)73 static void remote_function(void *data)
74 {
75 	struct remote_function_call *tfc = data;
76 	struct task_struct *p = tfc->p;
77 
78 	if (p) {
79 		/* -EAGAIN */
80 		if (task_cpu(p) != smp_processor_id())
81 			return;
82 
83 		/*
84 		 * Now that we're on right CPU with IRQs disabled, we can test
85 		 * if we hit the right task without races.
86 		 */
87 
88 		tfc->ret = -ESRCH; /* No such (running) process */
89 		if (p != current)
90 			return;
91 	}
92 
93 	tfc->ret = tfc->func(tfc->info);
94 }
95 
96 /**
97  * task_function_call - call a function on the cpu on which a task runs
98  * @p:		the task to evaluate
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func when the task is currently running. This might
103  * be on the current CPU, which just calls the function directly.  This will
104  * retry due to any failures in smp_call_function_single(), such as if the
105  * task_cpu() goes offline concurrently.
106  *
107  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
108  */
109 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)110 task_function_call(struct task_struct *p, remote_function_f func, void *info)
111 {
112 	struct remote_function_call data = {
113 		.p	= p,
114 		.func	= func,
115 		.info	= info,
116 		.ret	= -EAGAIN,
117 	};
118 	int ret;
119 
120 	for (;;) {
121 		ret = smp_call_function_single(task_cpu(p), remote_function,
122 					       &data, 1);
123 		if (!ret)
124 			ret = data.ret;
125 
126 		if (ret != -EAGAIN)
127 			break;
128 
129 		cond_resched();
130 	}
131 
132 	return ret;
133 }
134 
135 /**
136  * cpu_function_call - call a function on the cpu
137  * @cpu:	target cpu to queue this function
138  * @func:	the function to be called
139  * @info:	the function call argument
140  *
141  * Calls the function @func on the remote cpu.
142  *
143  * returns: @func return value or -ENXIO when the cpu is offline
144  */
cpu_function_call(int cpu,remote_function_f func,void * info)145 static int cpu_function_call(int cpu, remote_function_f func, void *info)
146 {
147 	struct remote_function_call data = {
148 		.p	= NULL,
149 		.func	= func,
150 		.info	= info,
151 		.ret	= -ENXIO, /* No such CPU */
152 	};
153 
154 	smp_call_function_single(cpu, remote_function, &data, 1);
155 
156 	return data.ret;
157 }
158 
159 enum event_type_t {
160 	EVENT_FLEXIBLE	= 0x01,
161 	EVENT_PINNED	= 0x02,
162 	EVENT_TIME	= 0x04,
163 	EVENT_FROZEN	= 0x08,
164 	/* see ctx_resched() for details */
165 	EVENT_CPU	= 0x10,
166 	EVENT_CGROUP	= 0x20,
167 
168 	/* compound helpers */
169 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
170 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
171 };
172 
__perf_ctx_lock(struct perf_event_context * ctx)173 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
174 {
175 	raw_spin_lock(&ctx->lock);
176 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
177 }
178 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
180 			  struct perf_event_context *ctx)
181 {
182 	__perf_ctx_lock(&cpuctx->ctx);
183 	if (ctx)
184 		__perf_ctx_lock(ctx);
185 }
186 
__perf_ctx_unlock(struct perf_event_context * ctx)187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
188 {
189 	/*
190 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
191 	 * after ctx_sched_out() by clearing is_active.
192 	 */
193 	if (ctx->is_active & EVENT_FROZEN) {
194 		if (!(ctx->is_active & EVENT_ALL))
195 			ctx->is_active = 0;
196 		else
197 			ctx->is_active &= ~EVENT_FROZEN;
198 	}
199 	raw_spin_unlock(&ctx->lock);
200 }
201 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
203 			    struct perf_event_context *ctx)
204 {
205 	if (ctx)
206 		__perf_ctx_unlock(ctx);
207 	__perf_ctx_unlock(&cpuctx->ctx);
208 }
209 
210 typedef struct {
211 	struct perf_cpu_context *cpuctx;
212 	struct perf_event_context *ctx;
213 } class_perf_ctx_lock_t;
214 
class_perf_ctx_lock_destructor(class_perf_ctx_lock_t * _T)215 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T)
216 { perf_ctx_unlock(_T->cpuctx, _T->ctx); }
217 
218 static inline class_perf_ctx_lock_t
class_perf_ctx_lock_constructor(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)219 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx,
220 				struct perf_event_context *ctx)
221 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; }
222 
223 #define TASK_TOMBSTONE ((void *)-1L)
224 
is_kernel_event(struct perf_event * event)225 static bool is_kernel_event(struct perf_event *event)
226 {
227 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
228 }
229 
230 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
231 
perf_cpu_task_ctx(void)232 struct perf_event_context *perf_cpu_task_ctx(void)
233 {
234 	lockdep_assert_irqs_disabled();
235 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
236 }
237 
238 /*
239  * On task ctx scheduling...
240  *
241  * When !ctx->nr_events a task context will not be scheduled. This means
242  * we can disable the scheduler hooks (for performance) without leaving
243  * pending task ctx state.
244  *
245  * This however results in two special cases:
246  *
247  *  - removing the last event from a task ctx; this is relatively straight
248  *    forward and is done in __perf_remove_from_context.
249  *
250  *  - adding the first event to a task ctx; this is tricky because we cannot
251  *    rely on ctx->is_active and therefore cannot use event_function_call().
252  *    See perf_install_in_context().
253  *
254  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
255  */
256 
257 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
258 			struct perf_event_context *, void *);
259 
260 struct event_function_struct {
261 	struct perf_event *event;
262 	event_f func;
263 	void *data;
264 };
265 
event_function(void * info)266 static int event_function(void *info)
267 {
268 	struct event_function_struct *efs = info;
269 	struct perf_event *event = efs->event;
270 	struct perf_event_context *ctx = event->ctx;
271 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
272 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
273 	int ret = 0;
274 
275 	lockdep_assert_irqs_disabled();
276 
277 	perf_ctx_lock(cpuctx, task_ctx);
278 	/*
279 	 * Since we do the IPI call without holding ctx->lock things can have
280 	 * changed, double check we hit the task we set out to hit.
281 	 */
282 	if (ctx->task) {
283 		if (ctx->task != current) {
284 			ret = -ESRCH;
285 			goto unlock;
286 		}
287 
288 		/*
289 		 * We only use event_function_call() on established contexts,
290 		 * and event_function() is only ever called when active (or
291 		 * rather, we'll have bailed in task_function_call() or the
292 		 * above ctx->task != current test), therefore we must have
293 		 * ctx->is_active here.
294 		 */
295 		WARN_ON_ONCE(!ctx->is_active);
296 		/*
297 		 * And since we have ctx->is_active, cpuctx->task_ctx must
298 		 * match.
299 		 */
300 		WARN_ON_ONCE(task_ctx != ctx);
301 	} else {
302 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
303 	}
304 
305 	efs->func(event, cpuctx, ctx, efs->data);
306 unlock:
307 	perf_ctx_unlock(cpuctx, task_ctx);
308 
309 	return ret;
310 }
311 
event_function_call(struct perf_event * event,event_f func,void * data)312 static void event_function_call(struct perf_event *event, event_f func, void *data)
313 {
314 	struct perf_event_context *ctx = event->ctx;
315 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
316 	struct perf_cpu_context *cpuctx;
317 	struct event_function_struct efs = {
318 		.event = event,
319 		.func = func,
320 		.data = data,
321 	};
322 
323 	if (!event->parent) {
324 		/*
325 		 * If this is a !child event, we must hold ctx::mutex to
326 		 * stabilize the event->ctx relation. See
327 		 * perf_event_ctx_lock().
328 		 */
329 		lockdep_assert_held(&ctx->mutex);
330 	}
331 
332 	if (!task) {
333 		cpu_function_call(event->cpu, event_function, &efs);
334 		return;
335 	}
336 
337 	if (task == TASK_TOMBSTONE)
338 		return;
339 
340 again:
341 	if (!task_function_call(task, event_function, &efs))
342 		return;
343 
344 	local_irq_disable();
345 	cpuctx = this_cpu_ptr(&perf_cpu_context);
346 	perf_ctx_lock(cpuctx, ctx);
347 	/*
348 	 * Reload the task pointer, it might have been changed by
349 	 * a concurrent perf_event_context_sched_out().
350 	 */
351 	task = ctx->task;
352 	if (task == TASK_TOMBSTONE)
353 		goto unlock;
354 	if (ctx->is_active) {
355 		perf_ctx_unlock(cpuctx, ctx);
356 		local_irq_enable();
357 		goto again;
358 	}
359 	func(event, NULL, ctx, data);
360 unlock:
361 	perf_ctx_unlock(cpuctx, ctx);
362 	local_irq_enable();
363 }
364 
365 /*
366  * Similar to event_function_call() + event_function(), but hard assumes IRQs
367  * are already disabled and we're on the right CPU.
368  */
event_function_local(struct perf_event * event,event_f func,void * data)369 static void event_function_local(struct perf_event *event, event_f func, void *data)
370 {
371 	struct perf_event_context *ctx = event->ctx;
372 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
373 	struct task_struct *task = READ_ONCE(ctx->task);
374 	struct perf_event_context *task_ctx = NULL;
375 
376 	lockdep_assert_irqs_disabled();
377 
378 	if (task) {
379 		if (task == TASK_TOMBSTONE)
380 			return;
381 
382 		task_ctx = ctx;
383 	}
384 
385 	perf_ctx_lock(cpuctx, task_ctx);
386 
387 	task = ctx->task;
388 	if (task == TASK_TOMBSTONE)
389 		goto unlock;
390 
391 	if (task) {
392 		/*
393 		 * We must be either inactive or active and the right task,
394 		 * otherwise we're screwed, since we cannot IPI to somewhere
395 		 * else.
396 		 */
397 		if (ctx->is_active) {
398 			if (WARN_ON_ONCE(task != current))
399 				goto unlock;
400 
401 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
402 				goto unlock;
403 		}
404 	} else {
405 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
406 	}
407 
408 	func(event, cpuctx, ctx, data);
409 unlock:
410 	perf_ctx_unlock(cpuctx, task_ctx);
411 }
412 
413 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
414 		       PERF_FLAG_FD_OUTPUT  |\
415 		       PERF_FLAG_PID_CGROUP |\
416 		       PERF_FLAG_FD_CLOEXEC)
417 
418 /*
419  * branch priv levels that need permission checks
420  */
421 #define PERF_SAMPLE_BRANCH_PERM_PLM \
422 	(PERF_SAMPLE_BRANCH_KERNEL |\
423 	 PERF_SAMPLE_BRANCH_HV)
424 
425 /*
426  * perf_sched_events : >0 events exist
427  */
428 
429 static void perf_sched_delayed(struct work_struct *work);
430 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
431 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
432 static DEFINE_MUTEX(perf_sched_mutex);
433 static atomic_t perf_sched_count;
434 
435 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
436 
437 static atomic_t nr_mmap_events __read_mostly;
438 static atomic_t nr_comm_events __read_mostly;
439 static atomic_t nr_namespaces_events __read_mostly;
440 static atomic_t nr_task_events __read_mostly;
441 static atomic_t nr_freq_events __read_mostly;
442 static atomic_t nr_switch_events __read_mostly;
443 static atomic_t nr_ksymbol_events __read_mostly;
444 static atomic_t nr_bpf_events __read_mostly;
445 static atomic_t nr_cgroup_events __read_mostly;
446 static atomic_t nr_text_poke_events __read_mostly;
447 static atomic_t nr_build_id_events __read_mostly;
448 
449 static LIST_HEAD(pmus);
450 static DEFINE_MUTEX(pmus_lock);
451 static struct srcu_struct pmus_srcu;
452 static cpumask_var_t perf_online_mask;
453 static cpumask_var_t perf_online_core_mask;
454 static cpumask_var_t perf_online_die_mask;
455 static cpumask_var_t perf_online_cluster_mask;
456 static cpumask_var_t perf_online_pkg_mask;
457 static cpumask_var_t perf_online_sys_mask;
458 static struct kmem_cache *perf_event_cache;
459 
460 /*
461  * perf event paranoia level:
462  *  -1 - not paranoid at all
463  *   0 - disallow raw tracepoint access for unpriv
464  *   1 - disallow cpu events for unpriv
465  *   2 - disallow kernel profiling for unpriv
466  */
467 int sysctl_perf_event_paranoid __read_mostly = 2;
468 
469 /* Minimum for 512 kiB + 1 user control page. 'free' kiB per user. */
470 static int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024);
471 
472 /*
473  * max perf event sample rate
474  */
475 #define DEFAULT_MAX_SAMPLE_RATE		100000
476 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
477 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
478 
479 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
480 static int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
481 
482 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
483 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
484 
485 static int perf_sample_allowed_ns __read_mostly =
486 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
487 
update_perf_cpu_limits(void)488 static void update_perf_cpu_limits(void)
489 {
490 	u64 tmp = perf_sample_period_ns;
491 
492 	tmp *= sysctl_perf_cpu_time_max_percent;
493 	tmp = div_u64(tmp, 100);
494 	if (!tmp)
495 		tmp = 1;
496 
497 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
498 }
499 
500 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
501 
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)502 static int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
503 				       void *buffer, size_t *lenp, loff_t *ppos)
504 {
505 	int ret;
506 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
507 	/*
508 	 * If throttling is disabled don't allow the write:
509 	 */
510 	if (write && (perf_cpu == 100 || perf_cpu == 0))
511 		return -EINVAL;
512 
513 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
514 	if (ret || !write)
515 		return ret;
516 
517 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
518 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
519 	update_perf_cpu_limits();
520 
521 	return 0;
522 }
523 
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)524 static int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
525 		void *buffer, size_t *lenp, loff_t *ppos)
526 {
527 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
528 
529 	if (ret || !write)
530 		return ret;
531 
532 	if (sysctl_perf_cpu_time_max_percent == 100 ||
533 	    sysctl_perf_cpu_time_max_percent == 0) {
534 		printk(KERN_WARNING
535 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
536 		WRITE_ONCE(perf_sample_allowed_ns, 0);
537 	} else {
538 		update_perf_cpu_limits();
539 	}
540 
541 	return 0;
542 }
543 
544 static const struct ctl_table events_core_sysctl_table[] = {
545 	/*
546 	 * User-space relies on this file as a feature check for
547 	 * perf_events being enabled. It's an ABI, do not remove!
548 	 */
549 	{
550 		.procname	= "perf_event_paranoid",
551 		.data		= &sysctl_perf_event_paranoid,
552 		.maxlen		= sizeof(sysctl_perf_event_paranoid),
553 		.mode		= 0644,
554 		.proc_handler	= proc_dointvec,
555 	},
556 	{
557 		.procname	= "perf_event_mlock_kb",
558 		.data		= &sysctl_perf_event_mlock,
559 		.maxlen		= sizeof(sysctl_perf_event_mlock),
560 		.mode		= 0644,
561 		.proc_handler	= proc_dointvec,
562 	},
563 	{
564 		.procname	= "perf_event_max_sample_rate",
565 		.data		= &sysctl_perf_event_sample_rate,
566 		.maxlen		= sizeof(sysctl_perf_event_sample_rate),
567 		.mode		= 0644,
568 		.proc_handler	= perf_event_max_sample_rate_handler,
569 		.extra1		= SYSCTL_ONE,
570 	},
571 	{
572 		.procname	= "perf_cpu_time_max_percent",
573 		.data		= &sysctl_perf_cpu_time_max_percent,
574 		.maxlen		= sizeof(sysctl_perf_cpu_time_max_percent),
575 		.mode		= 0644,
576 		.proc_handler	= perf_cpu_time_max_percent_handler,
577 		.extra1		= SYSCTL_ZERO,
578 		.extra2		= SYSCTL_ONE_HUNDRED,
579 	},
580 };
581 
init_events_core_sysctls(void)582 static int __init init_events_core_sysctls(void)
583 {
584 	register_sysctl_init("kernel", events_core_sysctl_table);
585 	return 0;
586 }
587 core_initcall(init_events_core_sysctls);
588 
589 
590 /*
591  * perf samples are done in some very critical code paths (NMIs).
592  * If they take too much CPU time, the system can lock up and not
593  * get any real work done.  This will drop the sample rate when
594  * we detect that events are taking too long.
595  */
596 #define NR_ACCUMULATED_SAMPLES 128
597 static DEFINE_PER_CPU(u64, running_sample_length);
598 
599 static u64 __report_avg;
600 static u64 __report_allowed;
601 
perf_duration_warn(struct irq_work * w)602 static void perf_duration_warn(struct irq_work *w)
603 {
604 	printk_ratelimited(KERN_INFO
605 		"perf: interrupt took too long (%lld > %lld), lowering "
606 		"kernel.perf_event_max_sample_rate to %d\n",
607 		__report_avg, __report_allowed,
608 		sysctl_perf_event_sample_rate);
609 }
610 
611 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
612 
perf_sample_event_took(u64 sample_len_ns)613 void perf_sample_event_took(u64 sample_len_ns)
614 {
615 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
616 	u64 running_len;
617 	u64 avg_len;
618 	u32 max;
619 
620 	if (max_len == 0)
621 		return;
622 
623 	/* Decay the counter by 1 average sample. */
624 	running_len = __this_cpu_read(running_sample_length);
625 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
626 	running_len += sample_len_ns;
627 	__this_cpu_write(running_sample_length, running_len);
628 
629 	/*
630 	 * Note: this will be biased artificially low until we have
631 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
632 	 * from having to maintain a count.
633 	 */
634 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
635 	if (avg_len <= max_len)
636 		return;
637 
638 	__report_avg = avg_len;
639 	__report_allowed = max_len;
640 
641 	/*
642 	 * Compute a throttle threshold 25% below the current duration.
643 	 */
644 	avg_len += avg_len / 4;
645 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
646 	if (avg_len < max)
647 		max /= (u32)avg_len;
648 	else
649 		max = 1;
650 
651 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
652 	WRITE_ONCE(max_samples_per_tick, max);
653 
654 	sysctl_perf_event_sample_rate = max * HZ;
655 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
656 
657 	if (!irq_work_queue(&perf_duration_work)) {
658 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
659 			     "kernel.perf_event_max_sample_rate to %d\n",
660 			     __report_avg, __report_allowed,
661 			     sysctl_perf_event_sample_rate);
662 	}
663 }
664 
665 static atomic64_t perf_event_id;
666 
667 static void update_context_time(struct perf_event_context *ctx);
668 static u64 perf_event_time(struct perf_event *event);
669 
perf_event_print_debug(void)670 void __weak perf_event_print_debug(void)	{ }
671 
perf_clock(void)672 static inline u64 perf_clock(void)
673 {
674 	return local_clock();
675 }
676 
perf_event_clock(struct perf_event * event)677 static inline u64 perf_event_clock(struct perf_event *event)
678 {
679 	return event->clock();
680 }
681 
682 /*
683  * State based event timekeeping...
684  *
685  * The basic idea is to use event->state to determine which (if any) time
686  * fields to increment with the current delta. This means we only need to
687  * update timestamps when we change state or when they are explicitly requested
688  * (read).
689  *
690  * Event groups make things a little more complicated, but not terribly so. The
691  * rules for a group are that if the group leader is OFF the entire group is
692  * OFF, irrespective of what the group member states are. This results in
693  * __perf_effective_state().
694  *
695  * A further ramification is that when a group leader flips between OFF and
696  * !OFF, we need to update all group member times.
697  *
698  *
699  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
700  * need to make sure the relevant context time is updated before we try and
701  * update our timestamps.
702  */
703 
704 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)705 __perf_effective_state(struct perf_event *event)
706 {
707 	struct perf_event *leader = event->group_leader;
708 
709 	if (leader->state <= PERF_EVENT_STATE_OFF)
710 		return leader->state;
711 
712 	return event->state;
713 }
714 
715 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)716 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
717 {
718 	enum perf_event_state state = __perf_effective_state(event);
719 	u64 delta = now - event->tstamp;
720 
721 	*enabled = event->total_time_enabled;
722 	if (state >= PERF_EVENT_STATE_INACTIVE)
723 		*enabled += delta;
724 
725 	*running = event->total_time_running;
726 	if (state >= PERF_EVENT_STATE_ACTIVE)
727 		*running += delta;
728 }
729 
perf_event_update_time(struct perf_event * event)730 static void perf_event_update_time(struct perf_event *event)
731 {
732 	u64 now = perf_event_time(event);
733 
734 	__perf_update_times(event, now, &event->total_time_enabled,
735 					&event->total_time_running);
736 	event->tstamp = now;
737 }
738 
perf_event_update_sibling_time(struct perf_event * leader)739 static void perf_event_update_sibling_time(struct perf_event *leader)
740 {
741 	struct perf_event *sibling;
742 
743 	for_each_sibling_event(sibling, leader)
744 		perf_event_update_time(sibling);
745 }
746 
747 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)748 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
749 {
750 	if (event->state == state)
751 		return;
752 
753 	perf_event_update_time(event);
754 	/*
755 	 * If a group leader gets enabled/disabled all its siblings
756 	 * are affected too.
757 	 */
758 	if ((event->state < 0) ^ (state < 0))
759 		perf_event_update_sibling_time(event);
760 
761 	WRITE_ONCE(event->state, state);
762 }
763 
764 /*
765  * UP store-release, load-acquire
766  */
767 
768 #define __store_release(ptr, val)					\
769 do {									\
770 	barrier();							\
771 	WRITE_ONCE(*(ptr), (val));					\
772 } while (0)
773 
774 #define __load_acquire(ptr)						\
775 ({									\
776 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
777 	barrier();							\
778 	___p;								\
779 })
780 
781 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
782 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
783 		if (_cgroup && !_epc->nr_cgroups)			\
784 			continue;					\
785 		else if (_pmu && _epc->pmu != _pmu)			\
786 			continue;					\
787 		else
788 
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)789 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
790 {
791 	struct perf_event_pmu_context *pmu_ctx;
792 
793 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
794 		perf_pmu_disable(pmu_ctx->pmu);
795 }
796 
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)797 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
798 {
799 	struct perf_event_pmu_context *pmu_ctx;
800 
801 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
802 		perf_pmu_enable(pmu_ctx->pmu);
803 }
804 
805 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
806 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
807 
808 #ifdef CONFIG_CGROUP_PERF
809 
810 static inline bool
perf_cgroup_match(struct perf_event * event)811 perf_cgroup_match(struct perf_event *event)
812 {
813 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
814 
815 	/* @event doesn't care about cgroup */
816 	if (!event->cgrp)
817 		return true;
818 
819 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
820 	if (!cpuctx->cgrp)
821 		return false;
822 
823 	/*
824 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
825 	 * also enabled for all its descendant cgroups.  If @cpuctx's
826 	 * cgroup is a descendant of @event's (the test covers identity
827 	 * case), it's a match.
828 	 */
829 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
830 				    event->cgrp->css.cgroup);
831 }
832 
perf_detach_cgroup(struct perf_event * event)833 static inline void perf_detach_cgroup(struct perf_event *event)
834 {
835 	css_put(&event->cgrp->css);
836 	event->cgrp = NULL;
837 }
838 
is_cgroup_event(struct perf_event * event)839 static inline int is_cgroup_event(struct perf_event *event)
840 {
841 	return event->cgrp != NULL;
842 }
843 
perf_cgroup_event_time(struct perf_event * event)844 static inline u64 perf_cgroup_event_time(struct perf_event *event)
845 {
846 	struct perf_cgroup_info *t;
847 
848 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
849 	return t->time;
850 }
851 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)852 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
853 {
854 	struct perf_cgroup_info *t;
855 
856 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
857 	if (!__load_acquire(&t->active))
858 		return t->time;
859 	now += READ_ONCE(t->timeoffset);
860 	return now;
861 }
862 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)863 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
864 {
865 	if (adv)
866 		info->time += now - info->timestamp;
867 	info->timestamp = now;
868 	/*
869 	 * see update_context_time()
870 	 */
871 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
872 }
873 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)874 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
875 {
876 	struct perf_cgroup *cgrp = cpuctx->cgrp;
877 	struct cgroup_subsys_state *css;
878 	struct perf_cgroup_info *info;
879 
880 	if (cgrp) {
881 		u64 now = perf_clock();
882 
883 		for (css = &cgrp->css; css; css = css->parent) {
884 			cgrp = container_of(css, struct perf_cgroup, css);
885 			info = this_cpu_ptr(cgrp->info);
886 
887 			__update_cgrp_time(info, now, true);
888 			if (final)
889 				__store_release(&info->active, 0);
890 		}
891 	}
892 }
893 
update_cgrp_time_from_event(struct perf_event * event)894 static inline void update_cgrp_time_from_event(struct perf_event *event)
895 {
896 	struct perf_cgroup_info *info;
897 
898 	/*
899 	 * ensure we access cgroup data only when needed and
900 	 * when we know the cgroup is pinned (css_get)
901 	 */
902 	if (!is_cgroup_event(event))
903 		return;
904 
905 	info = this_cpu_ptr(event->cgrp->info);
906 	/*
907 	 * Do not update time when cgroup is not active
908 	 */
909 	if (info->active)
910 		__update_cgrp_time(info, perf_clock(), true);
911 }
912 
913 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)914 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
915 {
916 	struct perf_event_context *ctx = &cpuctx->ctx;
917 	struct perf_cgroup *cgrp = cpuctx->cgrp;
918 	struct perf_cgroup_info *info;
919 	struct cgroup_subsys_state *css;
920 
921 	/*
922 	 * ctx->lock held by caller
923 	 * ensure we do not access cgroup data
924 	 * unless we have the cgroup pinned (css_get)
925 	 */
926 	if (!cgrp)
927 		return;
928 
929 	WARN_ON_ONCE(!ctx->nr_cgroups);
930 
931 	for (css = &cgrp->css; css; css = css->parent) {
932 		cgrp = container_of(css, struct perf_cgroup, css);
933 		info = this_cpu_ptr(cgrp->info);
934 		__update_cgrp_time(info, ctx->timestamp, false);
935 		__store_release(&info->active, 1);
936 	}
937 }
938 
939 /*
940  * reschedule events based on the cgroup constraint of task.
941  */
perf_cgroup_switch(struct task_struct * task)942 static void perf_cgroup_switch(struct task_struct *task)
943 {
944 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
945 	struct perf_cgroup *cgrp;
946 
947 	/*
948 	 * cpuctx->cgrp is set when the first cgroup event enabled,
949 	 * and is cleared when the last cgroup event disabled.
950 	 */
951 	if (READ_ONCE(cpuctx->cgrp) == NULL)
952 		return;
953 
954 	cgrp = perf_cgroup_from_task(task, NULL);
955 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
956 		return;
957 
958 	guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
959 	/*
960 	 * Re-check, could've raced vs perf_remove_from_context().
961 	 */
962 	if (READ_ONCE(cpuctx->cgrp) == NULL)
963 		return;
964 
965 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
966 
967 	perf_ctx_disable(&cpuctx->ctx, true);
968 
969 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
970 	/*
971 	 * must not be done before ctxswout due
972 	 * to update_cgrp_time_from_cpuctx() in
973 	 * ctx_sched_out()
974 	 */
975 	cpuctx->cgrp = cgrp;
976 	/*
977 	 * set cgrp before ctxsw in to allow
978 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
979 	 * to not have to pass task around
980 	 */
981 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
982 
983 	perf_ctx_enable(&cpuctx->ctx, true);
984 }
985 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)986 static int perf_cgroup_ensure_storage(struct perf_event *event,
987 				struct cgroup_subsys_state *css)
988 {
989 	struct perf_cpu_context *cpuctx;
990 	struct perf_event **storage;
991 	int cpu, heap_size, ret = 0;
992 
993 	/*
994 	 * Allow storage to have sufficient space for an iterator for each
995 	 * possibly nested cgroup plus an iterator for events with no cgroup.
996 	 */
997 	for (heap_size = 1; css; css = css->parent)
998 		heap_size++;
999 
1000 	for_each_possible_cpu(cpu) {
1001 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
1002 		if (heap_size <= cpuctx->heap_size)
1003 			continue;
1004 
1005 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
1006 				       GFP_KERNEL, cpu_to_node(cpu));
1007 		if (!storage) {
1008 			ret = -ENOMEM;
1009 			break;
1010 		}
1011 
1012 		raw_spin_lock_irq(&cpuctx->ctx.lock);
1013 		if (cpuctx->heap_size < heap_size) {
1014 			swap(cpuctx->heap, storage);
1015 			if (storage == cpuctx->heap_default)
1016 				storage = NULL;
1017 			cpuctx->heap_size = heap_size;
1018 		}
1019 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
1020 
1021 		kfree(storage);
1022 	}
1023 
1024 	return ret;
1025 }
1026 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1027 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
1028 				      struct perf_event_attr *attr,
1029 				      struct perf_event *group_leader)
1030 {
1031 	struct perf_cgroup *cgrp;
1032 	struct cgroup_subsys_state *css;
1033 	CLASS(fd, f)(fd);
1034 	int ret = 0;
1035 
1036 	if (fd_empty(f))
1037 		return -EBADF;
1038 
1039 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
1040 					 &perf_event_cgrp_subsys);
1041 	if (IS_ERR(css))
1042 		return PTR_ERR(css);
1043 
1044 	ret = perf_cgroup_ensure_storage(event, css);
1045 	if (ret)
1046 		return ret;
1047 
1048 	cgrp = container_of(css, struct perf_cgroup, css);
1049 	event->cgrp = cgrp;
1050 
1051 	/*
1052 	 * all events in a group must monitor
1053 	 * the same cgroup because a task belongs
1054 	 * to only one perf cgroup at a time
1055 	 */
1056 	if (group_leader && group_leader->cgrp != cgrp) {
1057 		perf_detach_cgroup(event);
1058 		ret = -EINVAL;
1059 	}
1060 	return ret;
1061 }
1062 
1063 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1064 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 	struct perf_cpu_context *cpuctx;
1067 
1068 	if (!is_cgroup_event(event))
1069 		return;
1070 
1071 	event->pmu_ctx->nr_cgroups++;
1072 
1073 	/*
1074 	 * Because cgroup events are always per-cpu events,
1075 	 * @ctx == &cpuctx->ctx.
1076 	 */
1077 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1078 
1079 	if (ctx->nr_cgroups++)
1080 		return;
1081 
1082 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1083 }
1084 
1085 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1086 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1087 {
1088 	struct perf_cpu_context *cpuctx;
1089 
1090 	if (!is_cgroup_event(event))
1091 		return;
1092 
1093 	event->pmu_ctx->nr_cgroups--;
1094 
1095 	/*
1096 	 * Because cgroup events are always per-cpu events,
1097 	 * @ctx == &cpuctx->ctx.
1098 	 */
1099 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1100 
1101 	if (--ctx->nr_cgroups)
1102 		return;
1103 
1104 	cpuctx->cgrp = NULL;
1105 }
1106 
1107 #else /* !CONFIG_CGROUP_PERF */
1108 
1109 static inline bool
perf_cgroup_match(struct perf_event * event)1110 perf_cgroup_match(struct perf_event *event)
1111 {
1112 	return true;
1113 }
1114 
perf_detach_cgroup(struct perf_event * event)1115 static inline void perf_detach_cgroup(struct perf_event *event)
1116 {}
1117 
is_cgroup_event(struct perf_event * event)1118 static inline int is_cgroup_event(struct perf_event *event)
1119 {
1120 	return 0;
1121 }
1122 
update_cgrp_time_from_event(struct perf_event * event)1123 static inline void update_cgrp_time_from_event(struct perf_event *event)
1124 {
1125 }
1126 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1127 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1128 						bool final)
1129 {
1130 }
1131 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1132 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1133 				      struct perf_event_attr *attr,
1134 				      struct perf_event *group_leader)
1135 {
1136 	return -EINVAL;
1137 }
1138 
1139 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1140 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1141 {
1142 }
1143 
perf_cgroup_event_time(struct perf_event * event)1144 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1145 {
1146 	return 0;
1147 }
1148 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1149 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1150 {
1151 	return 0;
1152 }
1153 
1154 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1155 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1156 {
1157 }
1158 
1159 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1160 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1161 {
1162 }
1163 
perf_cgroup_switch(struct task_struct * task)1164 static void perf_cgroup_switch(struct task_struct *task)
1165 {
1166 }
1167 #endif
1168 
1169 /*
1170  * set default to be dependent on timer tick just
1171  * like original code
1172  */
1173 #define PERF_CPU_HRTIMER (1000 / HZ)
1174 /*
1175  * function must be called with interrupts disabled
1176  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1177 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1178 {
1179 	struct perf_cpu_pmu_context *cpc;
1180 	bool rotations;
1181 
1182 	lockdep_assert_irqs_disabled();
1183 
1184 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1185 	rotations = perf_rotate_context(cpc);
1186 
1187 	raw_spin_lock(&cpc->hrtimer_lock);
1188 	if (rotations)
1189 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1190 	else
1191 		cpc->hrtimer_active = 0;
1192 	raw_spin_unlock(&cpc->hrtimer_lock);
1193 
1194 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1195 }
1196 
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1197 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1198 {
1199 	struct hrtimer *timer = &cpc->hrtimer;
1200 	struct pmu *pmu = cpc->epc.pmu;
1201 	u64 interval;
1202 
1203 	/*
1204 	 * check default is sane, if not set then force to
1205 	 * default interval (1/tick)
1206 	 */
1207 	interval = pmu->hrtimer_interval_ms;
1208 	if (interval < 1)
1209 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1210 
1211 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1212 
1213 	raw_spin_lock_init(&cpc->hrtimer_lock);
1214 	hrtimer_setup(timer, perf_mux_hrtimer_handler, CLOCK_MONOTONIC,
1215 		      HRTIMER_MODE_ABS_PINNED_HARD);
1216 }
1217 
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1218 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1219 {
1220 	struct hrtimer *timer = &cpc->hrtimer;
1221 	unsigned long flags;
1222 
1223 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1224 	if (!cpc->hrtimer_active) {
1225 		cpc->hrtimer_active = 1;
1226 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1227 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1228 	}
1229 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1230 
1231 	return 0;
1232 }
1233 
perf_mux_hrtimer_restart_ipi(void * arg)1234 static int perf_mux_hrtimer_restart_ipi(void *arg)
1235 {
1236 	return perf_mux_hrtimer_restart(arg);
1237 }
1238 
this_cpc(struct pmu * pmu)1239 static __always_inline struct perf_cpu_pmu_context *this_cpc(struct pmu *pmu)
1240 {
1241 	return *this_cpu_ptr(pmu->cpu_pmu_context);
1242 }
1243 
perf_pmu_disable(struct pmu * pmu)1244 void perf_pmu_disable(struct pmu *pmu)
1245 {
1246 	int *count = &this_cpc(pmu)->pmu_disable_count;
1247 	if (!(*count)++)
1248 		pmu->pmu_disable(pmu);
1249 }
1250 
perf_pmu_enable(struct pmu * pmu)1251 void perf_pmu_enable(struct pmu *pmu)
1252 {
1253 	int *count = &this_cpc(pmu)->pmu_disable_count;
1254 	if (!--(*count))
1255 		pmu->pmu_enable(pmu);
1256 }
1257 
perf_assert_pmu_disabled(struct pmu * pmu)1258 static void perf_assert_pmu_disabled(struct pmu *pmu)
1259 {
1260 	int *count = &this_cpc(pmu)->pmu_disable_count;
1261 	WARN_ON_ONCE(*count == 0);
1262 }
1263 
perf_pmu_read(struct perf_event * event)1264 static inline void perf_pmu_read(struct perf_event *event)
1265 {
1266 	if (event->state == PERF_EVENT_STATE_ACTIVE)
1267 		event->pmu->read(event);
1268 }
1269 
get_ctx(struct perf_event_context * ctx)1270 static void get_ctx(struct perf_event_context *ctx)
1271 {
1272 	refcount_inc(&ctx->refcount);
1273 }
1274 
free_ctx(struct rcu_head * head)1275 static void free_ctx(struct rcu_head *head)
1276 {
1277 	struct perf_event_context *ctx;
1278 
1279 	ctx = container_of(head, struct perf_event_context, rcu_head);
1280 	kfree(ctx);
1281 }
1282 
put_ctx(struct perf_event_context * ctx)1283 static void put_ctx(struct perf_event_context *ctx)
1284 {
1285 	if (refcount_dec_and_test(&ctx->refcount)) {
1286 		if (ctx->parent_ctx)
1287 			put_ctx(ctx->parent_ctx);
1288 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1289 			put_task_struct(ctx->task);
1290 		call_rcu(&ctx->rcu_head, free_ctx);
1291 	} else {
1292 		smp_mb__after_atomic(); /* pairs with wait_var_event() */
1293 		if (ctx->task == TASK_TOMBSTONE)
1294 			wake_up_var(&ctx->refcount);
1295 	}
1296 }
1297 
1298 /*
1299  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1300  * perf_pmu_migrate_context() we need some magic.
1301  *
1302  * Those places that change perf_event::ctx will hold both
1303  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1304  *
1305  * Lock ordering is by mutex address. There are two other sites where
1306  * perf_event_context::mutex nests and those are:
1307  *
1308  *  - perf_event_exit_task_context()	[ child , 0 ]
1309  *      perf_event_exit_event()
1310  *        put_event()			[ parent, 1 ]
1311  *
1312  *  - perf_event_init_context()		[ parent, 0 ]
1313  *      inherit_task_group()
1314  *        inherit_group()
1315  *          inherit_event()
1316  *            perf_event_alloc()
1317  *              perf_init_event()
1318  *                perf_try_init_event()	[ child , 1 ]
1319  *
1320  * While it appears there is an obvious deadlock here -- the parent and child
1321  * nesting levels are inverted between the two. This is in fact safe because
1322  * life-time rules separate them. That is an exiting task cannot fork, and a
1323  * spawning task cannot (yet) exit.
1324  *
1325  * But remember that these are parent<->child context relations, and
1326  * migration does not affect children, therefore these two orderings should not
1327  * interact.
1328  *
1329  * The change in perf_event::ctx does not affect children (as claimed above)
1330  * because the sys_perf_event_open() case will install a new event and break
1331  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1332  * concerned with cpuctx and that doesn't have children.
1333  *
1334  * The places that change perf_event::ctx will issue:
1335  *
1336  *   perf_remove_from_context();
1337  *   synchronize_rcu();
1338  *   perf_install_in_context();
1339  *
1340  * to affect the change. The remove_from_context() + synchronize_rcu() should
1341  * quiesce the event, after which we can install it in the new location. This
1342  * means that only external vectors (perf_fops, prctl) can perturb the event
1343  * while in transit. Therefore all such accessors should also acquire
1344  * perf_event_context::mutex to serialize against this.
1345  *
1346  * However; because event->ctx can change while we're waiting to acquire
1347  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1348  * function.
1349  *
1350  * Lock order:
1351  *    exec_update_lock
1352  *	task_struct::perf_event_mutex
1353  *	  perf_event_context::mutex
1354  *	    perf_event::child_mutex;
1355  *	      perf_event_context::lock
1356  *	    mmap_lock
1357  *	      perf_event::mmap_mutex
1358  *	        perf_buffer::aux_mutex
1359  *	      perf_addr_filters_head::lock
1360  *
1361  *    cpu_hotplug_lock
1362  *      pmus_lock
1363  *	  cpuctx->mutex / perf_event_context::mutex
1364  */
1365 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1366 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1367 {
1368 	struct perf_event_context *ctx;
1369 
1370 again:
1371 	rcu_read_lock();
1372 	ctx = READ_ONCE(event->ctx);
1373 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1374 		rcu_read_unlock();
1375 		goto again;
1376 	}
1377 	rcu_read_unlock();
1378 
1379 	mutex_lock_nested(&ctx->mutex, nesting);
1380 	if (event->ctx != ctx) {
1381 		mutex_unlock(&ctx->mutex);
1382 		put_ctx(ctx);
1383 		goto again;
1384 	}
1385 
1386 	return ctx;
1387 }
1388 
1389 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1390 perf_event_ctx_lock(struct perf_event *event)
1391 {
1392 	return perf_event_ctx_lock_nested(event, 0);
1393 }
1394 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1395 static void perf_event_ctx_unlock(struct perf_event *event,
1396 				  struct perf_event_context *ctx)
1397 {
1398 	mutex_unlock(&ctx->mutex);
1399 	put_ctx(ctx);
1400 }
1401 
1402 /*
1403  * This must be done under the ctx->lock, such as to serialize against
1404  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1405  * calling scheduler related locks and ctx->lock nests inside those.
1406  */
1407 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1408 unclone_ctx(struct perf_event_context *ctx)
1409 {
1410 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1411 
1412 	lockdep_assert_held(&ctx->lock);
1413 
1414 	if (parent_ctx)
1415 		ctx->parent_ctx = NULL;
1416 	ctx->generation++;
1417 
1418 	return parent_ctx;
1419 }
1420 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1421 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1422 				enum pid_type type)
1423 {
1424 	u32 nr;
1425 	/*
1426 	 * only top level events have the pid namespace they were created in
1427 	 */
1428 	if (event->parent)
1429 		event = event->parent;
1430 
1431 	nr = __task_pid_nr_ns(p, type, event->ns);
1432 	/* avoid -1 if it is idle thread or runs in another ns */
1433 	if (!nr && !pid_alive(p))
1434 		nr = -1;
1435 	return nr;
1436 }
1437 
perf_event_pid(struct perf_event * event,struct task_struct * p)1438 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1439 {
1440 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1441 }
1442 
perf_event_tid(struct perf_event * event,struct task_struct * p)1443 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1444 {
1445 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1446 }
1447 
1448 /*
1449  * If we inherit events we want to return the parent event id
1450  * to userspace.
1451  */
primary_event_id(struct perf_event * event)1452 static u64 primary_event_id(struct perf_event *event)
1453 {
1454 	u64 id = event->id;
1455 
1456 	if (event->parent)
1457 		id = event->parent->id;
1458 
1459 	return id;
1460 }
1461 
1462 /*
1463  * Get the perf_event_context for a task and lock it.
1464  *
1465  * This has to cope with the fact that until it is locked,
1466  * the context could get moved to another task.
1467  */
1468 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1469 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1470 {
1471 	struct perf_event_context *ctx;
1472 
1473 retry:
1474 	/*
1475 	 * One of the few rules of preemptible RCU is that one cannot do
1476 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1477 	 * part of the read side critical section was irqs-enabled -- see
1478 	 * rcu_read_unlock_special().
1479 	 *
1480 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1481 	 * side critical section has interrupts disabled.
1482 	 */
1483 	local_irq_save(*flags);
1484 	rcu_read_lock();
1485 	ctx = rcu_dereference(task->perf_event_ctxp);
1486 	if (ctx) {
1487 		/*
1488 		 * If this context is a clone of another, it might
1489 		 * get swapped for another underneath us by
1490 		 * perf_event_task_sched_out, though the
1491 		 * rcu_read_lock() protects us from any context
1492 		 * getting freed.  Lock the context and check if it
1493 		 * got swapped before we could get the lock, and retry
1494 		 * if so.  If we locked the right context, then it
1495 		 * can't get swapped on us any more.
1496 		 */
1497 		raw_spin_lock(&ctx->lock);
1498 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1499 			raw_spin_unlock(&ctx->lock);
1500 			rcu_read_unlock();
1501 			local_irq_restore(*flags);
1502 			goto retry;
1503 		}
1504 
1505 		if (ctx->task == TASK_TOMBSTONE ||
1506 		    !refcount_inc_not_zero(&ctx->refcount)) {
1507 			raw_spin_unlock(&ctx->lock);
1508 			ctx = NULL;
1509 		} else {
1510 			WARN_ON_ONCE(ctx->task != task);
1511 		}
1512 	}
1513 	rcu_read_unlock();
1514 	if (!ctx)
1515 		local_irq_restore(*flags);
1516 	return ctx;
1517 }
1518 
1519 /*
1520  * Get the context for a task and increment its pin_count so it
1521  * can't get swapped to another task.  This also increments its
1522  * reference count so that the context can't get freed.
1523  */
1524 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1525 perf_pin_task_context(struct task_struct *task)
1526 {
1527 	struct perf_event_context *ctx;
1528 	unsigned long flags;
1529 
1530 	ctx = perf_lock_task_context(task, &flags);
1531 	if (ctx) {
1532 		++ctx->pin_count;
1533 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1534 	}
1535 	return ctx;
1536 }
1537 
perf_unpin_context(struct perf_event_context * ctx)1538 static void perf_unpin_context(struct perf_event_context *ctx)
1539 {
1540 	unsigned long flags;
1541 
1542 	raw_spin_lock_irqsave(&ctx->lock, flags);
1543 	--ctx->pin_count;
1544 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1545 }
1546 
1547 /*
1548  * Update the record of the current time in a context.
1549  */
__update_context_time(struct perf_event_context * ctx,bool adv)1550 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1551 {
1552 	u64 now = perf_clock();
1553 
1554 	lockdep_assert_held(&ctx->lock);
1555 
1556 	if (adv)
1557 		ctx->time += now - ctx->timestamp;
1558 	ctx->timestamp = now;
1559 
1560 	/*
1561 	 * The above: time' = time + (now - timestamp), can be re-arranged
1562 	 * into: time` = now + (time - timestamp), which gives a single value
1563 	 * offset to compute future time without locks on.
1564 	 *
1565 	 * See perf_event_time_now(), which can be used from NMI context where
1566 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1567 	 * both the above values in a consistent manner.
1568 	 */
1569 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1570 }
1571 
update_context_time(struct perf_event_context * ctx)1572 static void update_context_time(struct perf_event_context *ctx)
1573 {
1574 	__update_context_time(ctx, true);
1575 }
1576 
perf_event_time(struct perf_event * event)1577 static u64 perf_event_time(struct perf_event *event)
1578 {
1579 	struct perf_event_context *ctx = event->ctx;
1580 
1581 	if (unlikely(!ctx))
1582 		return 0;
1583 
1584 	if (is_cgroup_event(event))
1585 		return perf_cgroup_event_time(event);
1586 
1587 	return ctx->time;
1588 }
1589 
perf_event_time_now(struct perf_event * event,u64 now)1590 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1591 {
1592 	struct perf_event_context *ctx = event->ctx;
1593 
1594 	if (unlikely(!ctx))
1595 		return 0;
1596 
1597 	if (is_cgroup_event(event))
1598 		return perf_cgroup_event_time_now(event, now);
1599 
1600 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1601 		return ctx->time;
1602 
1603 	now += READ_ONCE(ctx->timeoffset);
1604 	return now;
1605 }
1606 
get_event_type(struct perf_event * event)1607 static enum event_type_t get_event_type(struct perf_event *event)
1608 {
1609 	struct perf_event_context *ctx = event->ctx;
1610 	enum event_type_t event_type;
1611 
1612 	lockdep_assert_held(&ctx->lock);
1613 
1614 	/*
1615 	 * It's 'group type', really, because if our group leader is
1616 	 * pinned, so are we.
1617 	 */
1618 	if (event->group_leader != event)
1619 		event = event->group_leader;
1620 
1621 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1622 	if (!ctx->task)
1623 		event_type |= EVENT_CPU;
1624 
1625 	return event_type;
1626 }
1627 
1628 /*
1629  * Helper function to initialize event group nodes.
1630  */
init_event_group(struct perf_event * event)1631 static void init_event_group(struct perf_event *event)
1632 {
1633 	RB_CLEAR_NODE(&event->group_node);
1634 	event->group_index = 0;
1635 }
1636 
1637 /*
1638  * Extract pinned or flexible groups from the context
1639  * based on event attrs bits.
1640  */
1641 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1642 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1643 {
1644 	if (event->attr.pinned)
1645 		return &ctx->pinned_groups;
1646 	else
1647 		return &ctx->flexible_groups;
1648 }
1649 
1650 /*
1651  * Helper function to initializes perf_event_group trees.
1652  */
perf_event_groups_init(struct perf_event_groups * groups)1653 static void perf_event_groups_init(struct perf_event_groups *groups)
1654 {
1655 	groups->tree = RB_ROOT;
1656 	groups->index = 0;
1657 }
1658 
event_cgroup(const struct perf_event * event)1659 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1660 {
1661 	struct cgroup *cgroup = NULL;
1662 
1663 #ifdef CONFIG_CGROUP_PERF
1664 	if (event->cgrp)
1665 		cgroup = event->cgrp->css.cgroup;
1666 #endif
1667 
1668 	return cgroup;
1669 }
1670 
1671 /*
1672  * Compare function for event groups;
1673  *
1674  * Implements complex key that first sorts by CPU and then by virtual index
1675  * which provides ordering when rotating groups for the same CPU.
1676  */
1677 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1678 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1679 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1680 		      const struct perf_event *right)
1681 {
1682 	if (left_cpu < right->cpu)
1683 		return -1;
1684 	if (left_cpu > right->cpu)
1685 		return 1;
1686 
1687 	if (left_pmu) {
1688 		if (left_pmu < right->pmu_ctx->pmu)
1689 			return -1;
1690 		if (left_pmu > right->pmu_ctx->pmu)
1691 			return 1;
1692 	}
1693 
1694 #ifdef CONFIG_CGROUP_PERF
1695 	{
1696 		const struct cgroup *right_cgroup = event_cgroup(right);
1697 
1698 		if (left_cgroup != right_cgroup) {
1699 			if (!left_cgroup) {
1700 				/*
1701 				 * Left has no cgroup but right does, no
1702 				 * cgroups come first.
1703 				 */
1704 				return -1;
1705 			}
1706 			if (!right_cgroup) {
1707 				/*
1708 				 * Right has no cgroup but left does, no
1709 				 * cgroups come first.
1710 				 */
1711 				return 1;
1712 			}
1713 			/* Two dissimilar cgroups, order by id. */
1714 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1715 				return -1;
1716 
1717 			return 1;
1718 		}
1719 	}
1720 #endif
1721 
1722 	if (left_group_index < right->group_index)
1723 		return -1;
1724 	if (left_group_index > right->group_index)
1725 		return 1;
1726 
1727 	return 0;
1728 }
1729 
1730 #define __node_2_pe(node) \
1731 	rb_entry((node), struct perf_event, group_node)
1732 
__group_less(struct rb_node * a,const struct rb_node * b)1733 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1734 {
1735 	struct perf_event *e = __node_2_pe(a);
1736 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1737 				     e->group_index, __node_2_pe(b)) < 0;
1738 }
1739 
1740 struct __group_key {
1741 	int cpu;
1742 	struct pmu *pmu;
1743 	struct cgroup *cgroup;
1744 };
1745 
__group_cmp(const void * key,const struct rb_node * node)1746 static inline int __group_cmp(const void *key, const struct rb_node *node)
1747 {
1748 	const struct __group_key *a = key;
1749 	const struct perf_event *b = __node_2_pe(node);
1750 
1751 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1752 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1753 }
1754 
1755 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1756 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1757 {
1758 	const struct __group_key *a = key;
1759 	const struct perf_event *b = __node_2_pe(node);
1760 
1761 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1762 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1763 				     b->group_index, b);
1764 }
1765 
1766 /*
1767  * Insert @event into @groups' tree; using
1768  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1769  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1770  */
1771 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1772 perf_event_groups_insert(struct perf_event_groups *groups,
1773 			 struct perf_event *event)
1774 {
1775 	event->group_index = ++groups->index;
1776 
1777 	rb_add(&event->group_node, &groups->tree, __group_less);
1778 }
1779 
1780 /*
1781  * Helper function to insert event into the pinned or flexible groups.
1782  */
1783 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1784 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1785 {
1786 	struct perf_event_groups *groups;
1787 
1788 	groups = get_event_groups(event, ctx);
1789 	perf_event_groups_insert(groups, event);
1790 }
1791 
1792 /*
1793  * Delete a group from a tree.
1794  */
1795 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1796 perf_event_groups_delete(struct perf_event_groups *groups,
1797 			 struct perf_event *event)
1798 {
1799 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1800 		     RB_EMPTY_ROOT(&groups->tree));
1801 
1802 	rb_erase(&event->group_node, &groups->tree);
1803 	init_event_group(event);
1804 }
1805 
1806 /*
1807  * Helper function to delete event from its groups.
1808  */
1809 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1810 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1811 {
1812 	struct perf_event_groups *groups;
1813 
1814 	groups = get_event_groups(event, ctx);
1815 	perf_event_groups_delete(groups, event);
1816 }
1817 
1818 /*
1819  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1820  */
1821 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1822 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1823 			struct pmu *pmu, struct cgroup *cgrp)
1824 {
1825 	struct __group_key key = {
1826 		.cpu = cpu,
1827 		.pmu = pmu,
1828 		.cgroup = cgrp,
1829 	};
1830 	struct rb_node *node;
1831 
1832 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1833 	if (node)
1834 		return __node_2_pe(node);
1835 
1836 	return NULL;
1837 }
1838 
1839 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1840 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1841 {
1842 	struct __group_key key = {
1843 		.cpu = event->cpu,
1844 		.pmu = pmu,
1845 		.cgroup = event_cgroup(event),
1846 	};
1847 	struct rb_node *next;
1848 
1849 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1850 	if (next)
1851 		return __node_2_pe(next);
1852 
1853 	return NULL;
1854 }
1855 
1856 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1857 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1858 	     event; event = perf_event_groups_next(event, pmu))
1859 
1860 /*
1861  * Iterate through the whole groups tree.
1862  */
1863 #define perf_event_groups_for_each(event, groups)			\
1864 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1865 				typeof(*event), group_node); event;	\
1866 		event = rb_entry_safe(rb_next(&event->group_node),	\
1867 				typeof(*event), group_node))
1868 
1869 /*
1870  * Does the event attribute request inherit with PERF_SAMPLE_READ
1871  */
has_inherit_and_sample_read(struct perf_event_attr * attr)1872 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1873 {
1874 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1875 }
1876 
1877 /*
1878  * Add an event from the lists for its context.
1879  * Must be called with ctx->mutex and ctx->lock held.
1880  */
1881 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1882 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1883 {
1884 	lockdep_assert_held(&ctx->lock);
1885 
1886 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1887 	event->attach_state |= PERF_ATTACH_CONTEXT;
1888 
1889 	event->tstamp = perf_event_time(event);
1890 
1891 	/*
1892 	 * If we're a stand alone event or group leader, we go to the context
1893 	 * list, group events are kept attached to the group so that
1894 	 * perf_group_detach can, at all times, locate all siblings.
1895 	 */
1896 	if (event->group_leader == event) {
1897 		event->group_caps = event->event_caps;
1898 		add_event_to_groups(event, ctx);
1899 	}
1900 
1901 	list_add_rcu(&event->event_entry, &ctx->event_list);
1902 	ctx->nr_events++;
1903 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1904 		ctx->nr_user++;
1905 	if (event->attr.inherit_stat)
1906 		ctx->nr_stat++;
1907 	if (has_inherit_and_sample_read(&event->attr))
1908 		local_inc(&ctx->nr_no_switch_fast);
1909 
1910 	if (event->state > PERF_EVENT_STATE_OFF)
1911 		perf_cgroup_event_enable(event, ctx);
1912 
1913 	ctx->generation++;
1914 	event->pmu_ctx->nr_events++;
1915 }
1916 
1917 /*
1918  * Initialize event state based on the perf_event_attr::disabled.
1919  */
perf_event__state_init(struct perf_event * event)1920 static inline void perf_event__state_init(struct perf_event *event)
1921 {
1922 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1923 					      PERF_EVENT_STATE_INACTIVE;
1924 }
1925 
__perf_event_read_size(u64 read_format,int nr_siblings)1926 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1927 {
1928 	int entry = sizeof(u64); /* value */
1929 	int size = 0;
1930 	int nr = 1;
1931 
1932 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1933 		size += sizeof(u64);
1934 
1935 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1936 		size += sizeof(u64);
1937 
1938 	if (read_format & PERF_FORMAT_ID)
1939 		entry += sizeof(u64);
1940 
1941 	if (read_format & PERF_FORMAT_LOST)
1942 		entry += sizeof(u64);
1943 
1944 	if (read_format & PERF_FORMAT_GROUP) {
1945 		nr += nr_siblings;
1946 		size += sizeof(u64);
1947 	}
1948 
1949 	/*
1950 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1951 	 * adding more siblings, this will never overflow.
1952 	 */
1953 	return size + nr * entry;
1954 }
1955 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1956 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1957 {
1958 	struct perf_sample_data *data;
1959 	u16 size = 0;
1960 
1961 	if (sample_type & PERF_SAMPLE_IP)
1962 		size += sizeof(data->ip);
1963 
1964 	if (sample_type & PERF_SAMPLE_ADDR)
1965 		size += sizeof(data->addr);
1966 
1967 	if (sample_type & PERF_SAMPLE_PERIOD)
1968 		size += sizeof(data->period);
1969 
1970 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1971 		size += sizeof(data->weight.full);
1972 
1973 	if (sample_type & PERF_SAMPLE_READ)
1974 		size += event->read_size;
1975 
1976 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1977 		size += sizeof(data->data_src.val);
1978 
1979 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1980 		size += sizeof(data->txn);
1981 
1982 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1983 		size += sizeof(data->phys_addr);
1984 
1985 	if (sample_type & PERF_SAMPLE_CGROUP)
1986 		size += sizeof(data->cgroup);
1987 
1988 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1989 		size += sizeof(data->data_page_size);
1990 
1991 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1992 		size += sizeof(data->code_page_size);
1993 
1994 	event->header_size = size;
1995 }
1996 
1997 /*
1998  * Called at perf_event creation and when events are attached/detached from a
1999  * group.
2000  */
perf_event__header_size(struct perf_event * event)2001 static void perf_event__header_size(struct perf_event *event)
2002 {
2003 	event->read_size =
2004 		__perf_event_read_size(event->attr.read_format,
2005 				       event->group_leader->nr_siblings);
2006 	__perf_event_header_size(event, event->attr.sample_type);
2007 }
2008 
perf_event__id_header_size(struct perf_event * event)2009 static void perf_event__id_header_size(struct perf_event *event)
2010 {
2011 	struct perf_sample_data *data;
2012 	u64 sample_type = event->attr.sample_type;
2013 	u16 size = 0;
2014 
2015 	if (sample_type & PERF_SAMPLE_TID)
2016 		size += sizeof(data->tid_entry);
2017 
2018 	if (sample_type & PERF_SAMPLE_TIME)
2019 		size += sizeof(data->time);
2020 
2021 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
2022 		size += sizeof(data->id);
2023 
2024 	if (sample_type & PERF_SAMPLE_ID)
2025 		size += sizeof(data->id);
2026 
2027 	if (sample_type & PERF_SAMPLE_STREAM_ID)
2028 		size += sizeof(data->stream_id);
2029 
2030 	if (sample_type & PERF_SAMPLE_CPU)
2031 		size += sizeof(data->cpu_entry);
2032 
2033 	event->id_header_size = size;
2034 }
2035 
2036 /*
2037  * Check that adding an event to the group does not result in anybody
2038  * overflowing the 64k event limit imposed by the output buffer.
2039  *
2040  * Specifically, check that the read_size for the event does not exceed 16k,
2041  * read_size being the one term that grows with groups size. Since read_size
2042  * depends on per-event read_format, also (re)check the existing events.
2043  *
2044  * This leaves 48k for the constant size fields and things like callchains,
2045  * branch stacks and register sets.
2046  */
perf_event_validate_size(struct perf_event * event)2047 static bool perf_event_validate_size(struct perf_event *event)
2048 {
2049 	struct perf_event *sibling, *group_leader = event->group_leader;
2050 
2051 	if (__perf_event_read_size(event->attr.read_format,
2052 				   group_leader->nr_siblings + 1) > 16*1024)
2053 		return false;
2054 
2055 	if (__perf_event_read_size(group_leader->attr.read_format,
2056 				   group_leader->nr_siblings + 1) > 16*1024)
2057 		return false;
2058 
2059 	/*
2060 	 * When creating a new group leader, group_leader->ctx is initialized
2061 	 * after the size has been validated, but we cannot safely use
2062 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2063 	 * leader cannot have any siblings yet, so we can safely skip checking
2064 	 * the non-existent siblings.
2065 	 */
2066 	if (event == group_leader)
2067 		return true;
2068 
2069 	for_each_sibling_event(sibling, group_leader) {
2070 		if (__perf_event_read_size(sibling->attr.read_format,
2071 					   group_leader->nr_siblings + 1) > 16*1024)
2072 			return false;
2073 	}
2074 
2075 	return true;
2076 }
2077 
perf_group_attach(struct perf_event * event)2078 static void perf_group_attach(struct perf_event *event)
2079 {
2080 	struct perf_event *group_leader = event->group_leader, *pos;
2081 
2082 	lockdep_assert_held(&event->ctx->lock);
2083 
2084 	/*
2085 	 * We can have double attach due to group movement (move_group) in
2086 	 * perf_event_open().
2087 	 */
2088 	if (event->attach_state & PERF_ATTACH_GROUP)
2089 		return;
2090 
2091 	event->attach_state |= PERF_ATTACH_GROUP;
2092 
2093 	if (group_leader == event)
2094 		return;
2095 
2096 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2097 
2098 	group_leader->group_caps &= event->event_caps;
2099 
2100 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2101 	group_leader->nr_siblings++;
2102 	group_leader->group_generation++;
2103 
2104 	perf_event__header_size(group_leader);
2105 
2106 	for_each_sibling_event(pos, group_leader)
2107 		perf_event__header_size(pos);
2108 }
2109 
2110 /*
2111  * Remove an event from the lists for its context.
2112  * Must be called with ctx->mutex and ctx->lock held.
2113  */
2114 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2115 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2116 {
2117 	WARN_ON_ONCE(event->ctx != ctx);
2118 	lockdep_assert_held(&ctx->lock);
2119 
2120 	/*
2121 	 * We can have double detach due to exit/hot-unplug + close.
2122 	 */
2123 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2124 		return;
2125 
2126 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2127 
2128 	ctx->nr_events--;
2129 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2130 		ctx->nr_user--;
2131 	if (event->attr.inherit_stat)
2132 		ctx->nr_stat--;
2133 	if (has_inherit_and_sample_read(&event->attr))
2134 		local_dec(&ctx->nr_no_switch_fast);
2135 
2136 	list_del_rcu(&event->event_entry);
2137 
2138 	if (event->group_leader == event)
2139 		del_event_from_groups(event, ctx);
2140 
2141 	ctx->generation++;
2142 	event->pmu_ctx->nr_events--;
2143 }
2144 
2145 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2146 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2147 {
2148 	if (!has_aux(aux_event))
2149 		return 0;
2150 
2151 	if (!event->pmu->aux_output_match)
2152 		return 0;
2153 
2154 	return event->pmu->aux_output_match(aux_event);
2155 }
2156 
2157 static void put_event(struct perf_event *event);
2158 static void __event_disable(struct perf_event *event,
2159 			    struct perf_event_context *ctx,
2160 			    enum perf_event_state state);
2161 
perf_put_aux_event(struct perf_event * event)2162 static void perf_put_aux_event(struct perf_event *event)
2163 {
2164 	struct perf_event_context *ctx = event->ctx;
2165 	struct perf_event *iter;
2166 
2167 	/*
2168 	 * If event uses aux_event tear down the link
2169 	 */
2170 	if (event->aux_event) {
2171 		iter = event->aux_event;
2172 		event->aux_event = NULL;
2173 		put_event(iter);
2174 		return;
2175 	}
2176 
2177 	/*
2178 	 * If the event is an aux_event, tear down all links to
2179 	 * it from other events.
2180 	 */
2181 	for_each_sibling_event(iter, event) {
2182 		if (iter->aux_event != event)
2183 			continue;
2184 
2185 		iter->aux_event = NULL;
2186 		put_event(event);
2187 
2188 		/*
2189 		 * If it's ACTIVE, schedule it out and put it into ERROR
2190 		 * state so that we don't try to schedule it again. Note
2191 		 * that perf_event_enable() will clear the ERROR status.
2192 		 */
2193 		__event_disable(iter, ctx, PERF_EVENT_STATE_ERROR);
2194 	}
2195 }
2196 
perf_need_aux_event(struct perf_event * event)2197 static bool perf_need_aux_event(struct perf_event *event)
2198 {
2199 	return event->attr.aux_output || has_aux_action(event);
2200 }
2201 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2202 static int perf_get_aux_event(struct perf_event *event,
2203 			      struct perf_event *group_leader)
2204 {
2205 	/*
2206 	 * Our group leader must be an aux event if we want to be
2207 	 * an aux_output. This way, the aux event will precede its
2208 	 * aux_output events in the group, and therefore will always
2209 	 * schedule first.
2210 	 */
2211 	if (!group_leader)
2212 		return 0;
2213 
2214 	/*
2215 	 * aux_output and aux_sample_size are mutually exclusive.
2216 	 */
2217 	if (event->attr.aux_output && event->attr.aux_sample_size)
2218 		return 0;
2219 
2220 	if (event->attr.aux_output &&
2221 	    !perf_aux_output_match(event, group_leader))
2222 		return 0;
2223 
2224 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2225 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2226 		return 0;
2227 
2228 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2229 		return 0;
2230 
2231 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2232 		return 0;
2233 
2234 	/*
2235 	 * Link aux_outputs to their aux event; this is undone in
2236 	 * perf_group_detach() by perf_put_aux_event(). When the
2237 	 * group in torn down, the aux_output events loose their
2238 	 * link to the aux_event and can't schedule any more.
2239 	 */
2240 	event->aux_event = group_leader;
2241 
2242 	return 1;
2243 }
2244 
get_event_list(struct perf_event * event)2245 static inline struct list_head *get_event_list(struct perf_event *event)
2246 {
2247 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2248 				    &event->pmu_ctx->flexible_active;
2249 }
2250 
perf_group_detach(struct perf_event * event)2251 static void perf_group_detach(struct perf_event *event)
2252 {
2253 	struct perf_event *leader = event->group_leader;
2254 	struct perf_event *sibling, *tmp;
2255 	struct perf_event_context *ctx = event->ctx;
2256 
2257 	lockdep_assert_held(&ctx->lock);
2258 
2259 	/*
2260 	 * We can have double detach due to exit/hot-unplug + close.
2261 	 */
2262 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2263 		return;
2264 
2265 	event->attach_state &= ~PERF_ATTACH_GROUP;
2266 
2267 	perf_put_aux_event(event);
2268 
2269 	/*
2270 	 * If this is a sibling, remove it from its group.
2271 	 */
2272 	if (leader != event) {
2273 		list_del_init(&event->sibling_list);
2274 		event->group_leader->nr_siblings--;
2275 		event->group_leader->group_generation++;
2276 		goto out;
2277 	}
2278 
2279 	/*
2280 	 * If this was a group event with sibling events then
2281 	 * upgrade the siblings to singleton events by adding them
2282 	 * to whatever list we are on.
2283 	 */
2284 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2285 
2286 		/*
2287 		 * Events that have PERF_EV_CAP_SIBLING require being part of
2288 		 * a group and cannot exist on their own, schedule them out
2289 		 * and move them into the ERROR state. Also see
2290 		 * _perf_event_enable(), it will not be able to recover this
2291 		 * ERROR state.
2292 		 */
2293 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2294 			__event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR);
2295 
2296 		sibling->group_leader = sibling;
2297 		list_del_init(&sibling->sibling_list);
2298 
2299 		/* Inherit group flags from the previous leader */
2300 		sibling->group_caps = event->group_caps;
2301 
2302 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2303 			add_event_to_groups(sibling, event->ctx);
2304 
2305 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2306 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2307 		}
2308 
2309 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2310 	}
2311 
2312 out:
2313 	for_each_sibling_event(tmp, leader)
2314 		perf_event__header_size(tmp);
2315 
2316 	perf_event__header_size(leader);
2317 }
2318 
2319 static void sync_child_event(struct perf_event *child_event);
2320 
perf_child_detach(struct perf_event * event)2321 static void perf_child_detach(struct perf_event *event)
2322 {
2323 	struct perf_event *parent_event = event->parent;
2324 
2325 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2326 		return;
2327 
2328 	event->attach_state &= ~PERF_ATTACH_CHILD;
2329 
2330 	if (WARN_ON_ONCE(!parent_event))
2331 		return;
2332 
2333 	/*
2334 	 * Can't check this from an IPI, the holder is likey another CPU.
2335 	 *
2336 	lockdep_assert_held(&parent_event->child_mutex);
2337 	 */
2338 
2339 	sync_child_event(event);
2340 	list_del_init(&event->child_list);
2341 }
2342 
is_orphaned_event(struct perf_event * event)2343 static bool is_orphaned_event(struct perf_event *event)
2344 {
2345 	return event->state == PERF_EVENT_STATE_DEAD;
2346 }
2347 
2348 static inline int
event_filter_match(struct perf_event * event)2349 event_filter_match(struct perf_event *event)
2350 {
2351 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2352 	       perf_cgroup_match(event);
2353 }
2354 
is_event_in_freq_mode(struct perf_event * event)2355 static inline bool is_event_in_freq_mode(struct perf_event *event)
2356 {
2357 	return event->attr.freq && event->attr.sample_freq;
2358 }
2359 
2360 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2361 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2362 {
2363 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2364 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2365 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2366 
2367 	// XXX cpc serialization, probably per-cpu IRQ disabled
2368 
2369 	WARN_ON_ONCE(event->ctx != ctx);
2370 	lockdep_assert_held(&ctx->lock);
2371 
2372 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2373 		return;
2374 
2375 	/*
2376 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2377 	 * we can schedule events _OUT_ individually through things like
2378 	 * __perf_remove_from_context().
2379 	 */
2380 	list_del_init(&event->active_list);
2381 
2382 	perf_pmu_disable(event->pmu);
2383 
2384 	event->pmu->del(event, 0);
2385 	event->oncpu = -1;
2386 
2387 	if (event->pending_disable) {
2388 		event->pending_disable = 0;
2389 		perf_cgroup_event_disable(event, ctx);
2390 		state = PERF_EVENT_STATE_OFF;
2391 	}
2392 
2393 	perf_event_set_state(event, state);
2394 
2395 	if (!is_software_event(event))
2396 		cpc->active_oncpu--;
2397 	if (is_event_in_freq_mode(event)) {
2398 		ctx->nr_freq--;
2399 		epc->nr_freq--;
2400 	}
2401 	if (event->attr.exclusive || !cpc->active_oncpu)
2402 		cpc->exclusive = 0;
2403 
2404 	perf_pmu_enable(event->pmu);
2405 }
2406 
2407 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2408 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2409 {
2410 	struct perf_event *event;
2411 
2412 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2413 		return;
2414 
2415 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2416 
2417 	event_sched_out(group_event, ctx);
2418 
2419 	/*
2420 	 * Schedule out siblings (if any):
2421 	 */
2422 	for_each_sibling_event(event, group_event)
2423 		event_sched_out(event, ctx);
2424 }
2425 
2426 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2427 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2428 {
2429 	if (ctx->is_active & EVENT_TIME) {
2430 		if (ctx->is_active & EVENT_FROZEN)
2431 			return;
2432 		update_context_time(ctx);
2433 		update_cgrp_time_from_cpuctx(cpuctx, final);
2434 	}
2435 }
2436 
2437 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2438 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2439 {
2440 	__ctx_time_update(cpuctx, ctx, false);
2441 }
2442 
2443 /*
2444  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2445  */
2446 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2447 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2448 {
2449 	ctx_time_update(cpuctx, ctx);
2450 	if (ctx->is_active & EVENT_TIME)
2451 		ctx->is_active |= EVENT_FROZEN;
2452 }
2453 
2454 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2455 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2456 {
2457 	if (ctx->is_active & EVENT_TIME) {
2458 		if (ctx->is_active & EVENT_FROZEN)
2459 			return;
2460 		update_context_time(ctx);
2461 		update_cgrp_time_from_event(event);
2462 	}
2463 }
2464 
2465 #define DETACH_GROUP	0x01UL
2466 #define DETACH_CHILD	0x02UL
2467 #define DETACH_EXIT	0x04UL
2468 #define DETACH_REVOKE	0x08UL
2469 #define DETACH_DEAD	0x10UL
2470 
2471 /*
2472  * Cross CPU call to remove a performance event
2473  *
2474  * We disable the event on the hardware level first. After that we
2475  * remove it from the context list.
2476  */
2477 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2478 __perf_remove_from_context(struct perf_event *event,
2479 			   struct perf_cpu_context *cpuctx,
2480 			   struct perf_event_context *ctx,
2481 			   void *info)
2482 {
2483 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2484 	enum perf_event_state state = PERF_EVENT_STATE_OFF;
2485 	unsigned long flags = (unsigned long)info;
2486 
2487 	ctx_time_update(cpuctx, ctx);
2488 
2489 	/*
2490 	 * Ensure event_sched_out() switches to OFF, at the very least
2491 	 * this avoids raising perf_pending_task() at this time.
2492 	 */
2493 	if (flags & DETACH_EXIT)
2494 		state = PERF_EVENT_STATE_EXIT;
2495 	if (flags & DETACH_REVOKE)
2496 		state = PERF_EVENT_STATE_REVOKED;
2497 	if (flags & DETACH_DEAD)
2498 		state = PERF_EVENT_STATE_DEAD;
2499 
2500 	event_sched_out(event, ctx);
2501 
2502 	if (event->state > PERF_EVENT_STATE_OFF)
2503 		perf_cgroup_event_disable(event, ctx);
2504 
2505 	perf_event_set_state(event, min(event->state, state));
2506 
2507 	if (flags & DETACH_GROUP)
2508 		perf_group_detach(event);
2509 	if (flags & DETACH_CHILD)
2510 		perf_child_detach(event);
2511 	list_del_event(event, ctx);
2512 
2513 	if (!pmu_ctx->nr_events) {
2514 		pmu_ctx->rotate_necessary = 0;
2515 
2516 		if (ctx->task && ctx->is_active) {
2517 			struct perf_cpu_pmu_context *cpc = this_cpc(pmu_ctx->pmu);
2518 
2519 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2520 			cpc->task_epc = NULL;
2521 		}
2522 	}
2523 
2524 	if (!ctx->nr_events && ctx->is_active) {
2525 		if (ctx == &cpuctx->ctx)
2526 			update_cgrp_time_from_cpuctx(cpuctx, true);
2527 
2528 		ctx->is_active = 0;
2529 		if (ctx->task) {
2530 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2531 			cpuctx->task_ctx = NULL;
2532 		}
2533 	}
2534 }
2535 
2536 /*
2537  * Remove the event from a task's (or a CPU's) list of events.
2538  *
2539  * If event->ctx is a cloned context, callers must make sure that
2540  * every task struct that event->ctx->task could possibly point to
2541  * remains valid.  This is OK when called from perf_release since
2542  * that only calls us on the top-level context, which can't be a clone.
2543  * When called from perf_event_exit_task, it's OK because the
2544  * context has been detached from its task.
2545  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2546 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2547 {
2548 	struct perf_event_context *ctx = event->ctx;
2549 
2550 	lockdep_assert_held(&ctx->mutex);
2551 
2552 	/*
2553 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2554 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2555 	 * event_function_call() user.
2556 	 */
2557 	raw_spin_lock_irq(&ctx->lock);
2558 	if (!ctx->is_active) {
2559 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2560 					   ctx, (void *)flags);
2561 		raw_spin_unlock_irq(&ctx->lock);
2562 		return;
2563 	}
2564 	raw_spin_unlock_irq(&ctx->lock);
2565 
2566 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2567 }
2568 
__event_disable(struct perf_event * event,struct perf_event_context * ctx,enum perf_event_state state)2569 static void __event_disable(struct perf_event *event,
2570 			    struct perf_event_context *ctx,
2571 			    enum perf_event_state state)
2572 {
2573 	event_sched_out(event, ctx);
2574 	perf_cgroup_event_disable(event, ctx);
2575 	perf_event_set_state(event, state);
2576 }
2577 
2578 /*
2579  * Cross CPU call to disable a performance event
2580  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2581 static void __perf_event_disable(struct perf_event *event,
2582 				 struct perf_cpu_context *cpuctx,
2583 				 struct perf_event_context *ctx,
2584 				 void *info)
2585 {
2586 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2587 		return;
2588 
2589 	perf_pmu_disable(event->pmu_ctx->pmu);
2590 	ctx_time_update_event(ctx, event);
2591 
2592 	/*
2593 	 * When disabling a group leader, the whole group becomes ineligible
2594 	 * to run, so schedule out the full group.
2595 	 */
2596 	if (event == event->group_leader)
2597 		group_sched_out(event, ctx);
2598 
2599 	/*
2600 	 * But only mark the leader OFF; the siblings will remain
2601 	 * INACTIVE.
2602 	 */
2603 	__event_disable(event, ctx, PERF_EVENT_STATE_OFF);
2604 
2605 	perf_pmu_enable(event->pmu_ctx->pmu);
2606 }
2607 
2608 /*
2609  * Disable an event.
2610  *
2611  * If event->ctx is a cloned context, callers must make sure that
2612  * every task struct that event->ctx->task could possibly point to
2613  * remains valid.  This condition is satisfied when called through
2614  * perf_event_for_each_child or perf_event_for_each because they
2615  * hold the top-level event's child_mutex, so any descendant that
2616  * goes to exit will block in perf_event_exit_event().
2617  *
2618  * When called from perf_pending_disable it's OK because event->ctx
2619  * is the current context on this CPU and preemption is disabled,
2620  * hence we can't get into perf_event_task_sched_out for this context.
2621  */
_perf_event_disable(struct perf_event * event)2622 static void _perf_event_disable(struct perf_event *event)
2623 {
2624 	struct perf_event_context *ctx = event->ctx;
2625 
2626 	raw_spin_lock_irq(&ctx->lock);
2627 	if (event->state <= PERF_EVENT_STATE_OFF) {
2628 		raw_spin_unlock_irq(&ctx->lock);
2629 		return;
2630 	}
2631 	raw_spin_unlock_irq(&ctx->lock);
2632 
2633 	event_function_call(event, __perf_event_disable, NULL);
2634 }
2635 
perf_event_disable_local(struct perf_event * event)2636 void perf_event_disable_local(struct perf_event *event)
2637 {
2638 	event_function_local(event, __perf_event_disable, NULL);
2639 }
2640 
2641 /*
2642  * Strictly speaking kernel users cannot create groups and therefore this
2643  * interface does not need the perf_event_ctx_lock() magic.
2644  */
perf_event_disable(struct perf_event * event)2645 void perf_event_disable(struct perf_event *event)
2646 {
2647 	struct perf_event_context *ctx;
2648 
2649 	ctx = perf_event_ctx_lock(event);
2650 	_perf_event_disable(event);
2651 	perf_event_ctx_unlock(event, ctx);
2652 }
2653 EXPORT_SYMBOL_GPL(perf_event_disable);
2654 
perf_event_disable_inatomic(struct perf_event * event)2655 void perf_event_disable_inatomic(struct perf_event *event)
2656 {
2657 	event->pending_disable = 1;
2658 	irq_work_queue(&event->pending_disable_irq);
2659 }
2660 
2661 #define MAX_INTERRUPTS (~0ULL)
2662 
2663 static void perf_log_throttle(struct perf_event *event, int enable);
2664 static void perf_log_itrace_start(struct perf_event *event);
2665 
perf_event_unthrottle(struct perf_event * event,bool start)2666 static void perf_event_unthrottle(struct perf_event *event, bool start)
2667 {
2668 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2669 		return;
2670 
2671 	event->hw.interrupts = 0;
2672 	if (start)
2673 		event->pmu->start(event, 0);
2674 	if (event == event->group_leader)
2675 		perf_log_throttle(event, 1);
2676 }
2677 
perf_event_throttle(struct perf_event * event)2678 static void perf_event_throttle(struct perf_event *event)
2679 {
2680 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2681 		return;
2682 
2683 	event->hw.interrupts = MAX_INTERRUPTS;
2684 	event->pmu->stop(event, 0);
2685 	if (event == event->group_leader)
2686 		perf_log_throttle(event, 0);
2687 }
2688 
perf_event_unthrottle_group(struct perf_event * event,bool skip_start_event)2689 static void perf_event_unthrottle_group(struct perf_event *event, bool skip_start_event)
2690 {
2691 	struct perf_event *sibling, *leader = event->group_leader;
2692 
2693 	perf_event_unthrottle(leader, skip_start_event ? leader != event : true);
2694 	for_each_sibling_event(sibling, leader)
2695 		perf_event_unthrottle(sibling, skip_start_event ? sibling != event : true);
2696 }
2697 
perf_event_throttle_group(struct perf_event * event)2698 static void perf_event_throttle_group(struct perf_event *event)
2699 {
2700 	struct perf_event *sibling, *leader = event->group_leader;
2701 
2702 	perf_event_throttle(leader);
2703 	for_each_sibling_event(sibling, leader)
2704 		perf_event_throttle(sibling);
2705 }
2706 
2707 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2708 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2709 {
2710 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2711 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2712 	int ret = 0;
2713 
2714 	WARN_ON_ONCE(event->ctx != ctx);
2715 
2716 	lockdep_assert_held(&ctx->lock);
2717 
2718 	if (event->state <= PERF_EVENT_STATE_OFF)
2719 		return 0;
2720 
2721 	WRITE_ONCE(event->oncpu, smp_processor_id());
2722 	/*
2723 	 * Order event::oncpu write to happen before the ACTIVE state is
2724 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2725 	 * ->oncpu if it sees ACTIVE.
2726 	 */
2727 	smp_wmb();
2728 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2729 
2730 	/*
2731 	 * Unthrottle events, since we scheduled we might have missed several
2732 	 * ticks already, also for a heavily scheduling task there is little
2733 	 * guarantee it'll get a tick in a timely manner.
2734 	 */
2735 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS))
2736 		perf_event_unthrottle(event, false);
2737 
2738 	perf_pmu_disable(event->pmu);
2739 
2740 	perf_log_itrace_start(event);
2741 
2742 	if (event->pmu->add(event, PERF_EF_START)) {
2743 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2744 		event->oncpu = -1;
2745 		ret = -EAGAIN;
2746 		goto out;
2747 	}
2748 
2749 	if (!is_software_event(event))
2750 		cpc->active_oncpu++;
2751 	if (is_event_in_freq_mode(event)) {
2752 		ctx->nr_freq++;
2753 		epc->nr_freq++;
2754 	}
2755 	if (event->attr.exclusive)
2756 		cpc->exclusive = 1;
2757 
2758 out:
2759 	perf_pmu_enable(event->pmu);
2760 
2761 	return ret;
2762 }
2763 
2764 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2765 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2766 {
2767 	struct perf_event *event, *partial_group = NULL;
2768 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2769 
2770 	if (group_event->state == PERF_EVENT_STATE_OFF)
2771 		return 0;
2772 
2773 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2774 
2775 	if (event_sched_in(group_event, ctx))
2776 		goto error;
2777 
2778 	/*
2779 	 * Schedule in siblings as one group (if any):
2780 	 */
2781 	for_each_sibling_event(event, group_event) {
2782 		if (event_sched_in(event, ctx)) {
2783 			partial_group = event;
2784 			goto group_error;
2785 		}
2786 	}
2787 
2788 	if (!pmu->commit_txn(pmu))
2789 		return 0;
2790 
2791 group_error:
2792 	/*
2793 	 * Groups can be scheduled in as one unit only, so undo any
2794 	 * partial group before returning:
2795 	 * The events up to the failed event are scheduled out normally.
2796 	 */
2797 	for_each_sibling_event(event, group_event) {
2798 		if (event == partial_group)
2799 			break;
2800 
2801 		event_sched_out(event, ctx);
2802 	}
2803 	event_sched_out(group_event, ctx);
2804 
2805 error:
2806 	pmu->cancel_txn(pmu);
2807 	return -EAGAIN;
2808 }
2809 
2810 /*
2811  * Work out whether we can put this event group on the CPU now.
2812  */
group_can_go_on(struct perf_event * event,int can_add_hw)2813 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2814 {
2815 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2816 	struct perf_cpu_pmu_context *cpc = this_cpc(epc->pmu);
2817 
2818 	/*
2819 	 * Groups consisting entirely of software events can always go on.
2820 	 */
2821 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2822 		return 1;
2823 	/*
2824 	 * If an exclusive group is already on, no other hardware
2825 	 * events can go on.
2826 	 */
2827 	if (cpc->exclusive)
2828 		return 0;
2829 	/*
2830 	 * If this group is exclusive and there are already
2831 	 * events on the CPU, it can't go on.
2832 	 */
2833 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2834 		return 0;
2835 	/*
2836 	 * Otherwise, try to add it if all previous groups were able
2837 	 * to go on.
2838 	 */
2839 	return can_add_hw;
2840 }
2841 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2842 static void add_event_to_ctx(struct perf_event *event,
2843 			       struct perf_event_context *ctx)
2844 {
2845 	list_add_event(event, ctx);
2846 	perf_group_attach(event);
2847 }
2848 
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2849 static void task_ctx_sched_out(struct perf_event_context *ctx,
2850 			       struct pmu *pmu,
2851 			       enum event_type_t event_type)
2852 {
2853 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2854 
2855 	if (!cpuctx->task_ctx)
2856 		return;
2857 
2858 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2859 		return;
2860 
2861 	ctx_sched_out(ctx, pmu, event_type);
2862 }
2863 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2864 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2865 				struct perf_event_context *ctx,
2866 				struct pmu *pmu)
2867 {
2868 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2869 	if (ctx)
2870 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2871 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2872 	if (ctx)
2873 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2874 }
2875 
2876 /*
2877  * We want to maintain the following priority of scheduling:
2878  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2879  *  - task pinned (EVENT_PINNED)
2880  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2881  *  - task flexible (EVENT_FLEXIBLE).
2882  *
2883  * In order to avoid unscheduling and scheduling back in everything every
2884  * time an event is added, only do it for the groups of equal priority and
2885  * below.
2886  *
2887  * This can be called after a batch operation on task events, in which case
2888  * event_type is a bit mask of the types of events involved. For CPU events,
2889  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2890  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2891 static void ctx_resched(struct perf_cpu_context *cpuctx,
2892 			struct perf_event_context *task_ctx,
2893 			struct pmu *pmu, enum event_type_t event_type)
2894 {
2895 	bool cpu_event = !!(event_type & EVENT_CPU);
2896 	struct perf_event_pmu_context *epc;
2897 
2898 	/*
2899 	 * If pinned groups are involved, flexible groups also need to be
2900 	 * scheduled out.
2901 	 */
2902 	if (event_type & EVENT_PINNED)
2903 		event_type |= EVENT_FLEXIBLE;
2904 
2905 	event_type &= EVENT_ALL;
2906 
2907 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2908 		perf_pmu_disable(epc->pmu);
2909 
2910 	if (task_ctx) {
2911 		for_each_epc(epc, task_ctx, pmu, false)
2912 			perf_pmu_disable(epc->pmu);
2913 
2914 		task_ctx_sched_out(task_ctx, pmu, event_type);
2915 	}
2916 
2917 	/*
2918 	 * Decide which cpu ctx groups to schedule out based on the types
2919 	 * of events that caused rescheduling:
2920 	 *  - EVENT_CPU: schedule out corresponding groups;
2921 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2922 	 *  - otherwise, do nothing more.
2923 	 */
2924 	if (cpu_event)
2925 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2926 	else if (event_type & EVENT_PINNED)
2927 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2928 
2929 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2930 
2931 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2932 		perf_pmu_enable(epc->pmu);
2933 
2934 	if (task_ctx) {
2935 		for_each_epc(epc, task_ctx, pmu, false)
2936 			perf_pmu_enable(epc->pmu);
2937 	}
2938 }
2939 
perf_pmu_resched(struct pmu * pmu)2940 void perf_pmu_resched(struct pmu *pmu)
2941 {
2942 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2943 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2944 
2945 	perf_ctx_lock(cpuctx, task_ctx);
2946 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2947 	perf_ctx_unlock(cpuctx, task_ctx);
2948 }
2949 
2950 /*
2951  * Cross CPU call to install and enable a performance event
2952  *
2953  * Very similar to remote_function() + event_function() but cannot assume that
2954  * things like ctx->is_active and cpuctx->task_ctx are set.
2955  */
__perf_install_in_context(void * info)2956 static int  __perf_install_in_context(void *info)
2957 {
2958 	struct perf_event *event = info;
2959 	struct perf_event_context *ctx = event->ctx;
2960 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2961 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2962 	bool reprogram = true;
2963 	int ret = 0;
2964 
2965 	raw_spin_lock(&cpuctx->ctx.lock);
2966 	if (ctx->task) {
2967 		raw_spin_lock(&ctx->lock);
2968 		task_ctx = ctx;
2969 
2970 		reprogram = (ctx->task == current);
2971 
2972 		/*
2973 		 * If the task is running, it must be running on this CPU,
2974 		 * otherwise we cannot reprogram things.
2975 		 *
2976 		 * If its not running, we don't care, ctx->lock will
2977 		 * serialize against it becoming runnable.
2978 		 */
2979 		if (task_curr(ctx->task) && !reprogram) {
2980 			ret = -ESRCH;
2981 			goto unlock;
2982 		}
2983 
2984 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2985 	} else if (task_ctx) {
2986 		raw_spin_lock(&task_ctx->lock);
2987 	}
2988 
2989 #ifdef CONFIG_CGROUP_PERF
2990 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2991 		/*
2992 		 * If the current cgroup doesn't match the event's
2993 		 * cgroup, we should not try to schedule it.
2994 		 */
2995 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2996 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2997 					event->cgrp->css.cgroup);
2998 	}
2999 #endif
3000 
3001 	if (reprogram) {
3002 		ctx_time_freeze(cpuctx, ctx);
3003 		add_event_to_ctx(event, ctx);
3004 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
3005 			    get_event_type(event));
3006 	} else {
3007 		add_event_to_ctx(event, ctx);
3008 	}
3009 
3010 unlock:
3011 	perf_ctx_unlock(cpuctx, task_ctx);
3012 
3013 	return ret;
3014 }
3015 
3016 static bool exclusive_event_installable(struct perf_event *event,
3017 					struct perf_event_context *ctx);
3018 
3019 /*
3020  * Attach a performance event to a context.
3021  *
3022  * Very similar to event_function_call, see comment there.
3023  */
3024 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)3025 perf_install_in_context(struct perf_event_context *ctx,
3026 			struct perf_event *event,
3027 			int cpu)
3028 {
3029 	struct task_struct *task = READ_ONCE(ctx->task);
3030 
3031 	lockdep_assert_held(&ctx->mutex);
3032 
3033 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
3034 
3035 	if (event->cpu != -1)
3036 		WARN_ON_ONCE(event->cpu != cpu);
3037 
3038 	/*
3039 	 * Ensures that if we can observe event->ctx, both the event and ctx
3040 	 * will be 'complete'. See perf_iterate_sb_cpu().
3041 	 */
3042 	smp_store_release(&event->ctx, ctx);
3043 
3044 	/*
3045 	 * perf_event_attr::disabled events will not run and can be initialized
3046 	 * without IPI. Except when this is the first event for the context, in
3047 	 * that case we need the magic of the IPI to set ctx->is_active.
3048 	 *
3049 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
3050 	 * event will issue the IPI and reprogram the hardware.
3051 	 */
3052 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
3053 	    ctx->nr_events && !is_cgroup_event(event)) {
3054 		raw_spin_lock_irq(&ctx->lock);
3055 		if (ctx->task == TASK_TOMBSTONE) {
3056 			raw_spin_unlock_irq(&ctx->lock);
3057 			return;
3058 		}
3059 		add_event_to_ctx(event, ctx);
3060 		raw_spin_unlock_irq(&ctx->lock);
3061 		return;
3062 	}
3063 
3064 	if (!task) {
3065 		cpu_function_call(cpu, __perf_install_in_context, event);
3066 		return;
3067 	}
3068 
3069 	/*
3070 	 * Should not happen, we validate the ctx is still alive before calling.
3071 	 */
3072 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
3073 		return;
3074 
3075 	/*
3076 	 * Installing events is tricky because we cannot rely on ctx->is_active
3077 	 * to be set in case this is the nr_events 0 -> 1 transition.
3078 	 *
3079 	 * Instead we use task_curr(), which tells us if the task is running.
3080 	 * However, since we use task_curr() outside of rq::lock, we can race
3081 	 * against the actual state. This means the result can be wrong.
3082 	 *
3083 	 * If we get a false positive, we retry, this is harmless.
3084 	 *
3085 	 * If we get a false negative, things are complicated. If we are after
3086 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3087 	 * value must be correct. If we're before, it doesn't matter since
3088 	 * perf_event_context_sched_in() will program the counter.
3089 	 *
3090 	 * However, this hinges on the remote context switch having observed
3091 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3092 	 * ctx::lock in perf_event_context_sched_in().
3093 	 *
3094 	 * We do this by task_function_call(), if the IPI fails to hit the task
3095 	 * we know any future context switch of task must see the
3096 	 * perf_event_ctpx[] store.
3097 	 */
3098 
3099 	/*
3100 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3101 	 * task_cpu() load, such that if the IPI then does not find the task
3102 	 * running, a future context switch of that task must observe the
3103 	 * store.
3104 	 */
3105 	smp_mb();
3106 again:
3107 	if (!task_function_call(task, __perf_install_in_context, event))
3108 		return;
3109 
3110 	raw_spin_lock_irq(&ctx->lock);
3111 	task = ctx->task;
3112 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3113 		/*
3114 		 * Cannot happen because we already checked above (which also
3115 		 * cannot happen), and we hold ctx->mutex, which serializes us
3116 		 * against perf_event_exit_task_context().
3117 		 */
3118 		raw_spin_unlock_irq(&ctx->lock);
3119 		return;
3120 	}
3121 	/*
3122 	 * If the task is not running, ctx->lock will avoid it becoming so,
3123 	 * thus we can safely install the event.
3124 	 */
3125 	if (task_curr(task)) {
3126 		raw_spin_unlock_irq(&ctx->lock);
3127 		goto again;
3128 	}
3129 	add_event_to_ctx(event, ctx);
3130 	raw_spin_unlock_irq(&ctx->lock);
3131 }
3132 
3133 /*
3134  * Cross CPU call to enable a performance event
3135  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3136 static void __perf_event_enable(struct perf_event *event,
3137 				struct perf_cpu_context *cpuctx,
3138 				struct perf_event_context *ctx,
3139 				void *info)
3140 {
3141 	struct perf_event *leader = event->group_leader;
3142 	struct perf_event_context *task_ctx;
3143 
3144 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3145 	    event->state <= PERF_EVENT_STATE_ERROR)
3146 		return;
3147 
3148 	ctx_time_freeze(cpuctx, ctx);
3149 
3150 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3151 	perf_cgroup_event_enable(event, ctx);
3152 
3153 	if (!ctx->is_active)
3154 		return;
3155 
3156 	if (!event_filter_match(event))
3157 		return;
3158 
3159 	/*
3160 	 * If the event is in a group and isn't the group leader,
3161 	 * then don't put it on unless the group is on.
3162 	 */
3163 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3164 		return;
3165 
3166 	task_ctx = cpuctx->task_ctx;
3167 	if (ctx->task)
3168 		WARN_ON_ONCE(task_ctx != ctx);
3169 
3170 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3171 }
3172 
3173 /*
3174  * Enable an event.
3175  *
3176  * If event->ctx is a cloned context, callers must make sure that
3177  * every task struct that event->ctx->task could possibly point to
3178  * remains valid.  This condition is satisfied when called through
3179  * perf_event_for_each_child or perf_event_for_each as described
3180  * for perf_event_disable.
3181  */
_perf_event_enable(struct perf_event * event)3182 static void _perf_event_enable(struct perf_event *event)
3183 {
3184 	struct perf_event_context *ctx = event->ctx;
3185 
3186 	raw_spin_lock_irq(&ctx->lock);
3187 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3188 	    event->state <  PERF_EVENT_STATE_ERROR) {
3189 out:
3190 		raw_spin_unlock_irq(&ctx->lock);
3191 		return;
3192 	}
3193 
3194 	/*
3195 	 * If the event is in error state, clear that first.
3196 	 *
3197 	 * That way, if we see the event in error state below, we know that it
3198 	 * has gone back into error state, as distinct from the task having
3199 	 * been scheduled away before the cross-call arrived.
3200 	 */
3201 	if (event->state == PERF_EVENT_STATE_ERROR) {
3202 		/*
3203 		 * Detached SIBLING events cannot leave ERROR state.
3204 		 */
3205 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3206 		    event->group_leader == event)
3207 			goto out;
3208 
3209 		event->state = PERF_EVENT_STATE_OFF;
3210 	}
3211 	raw_spin_unlock_irq(&ctx->lock);
3212 
3213 	event_function_call(event, __perf_event_enable, NULL);
3214 }
3215 
3216 /*
3217  * See perf_event_disable();
3218  */
perf_event_enable(struct perf_event * event)3219 void perf_event_enable(struct perf_event *event)
3220 {
3221 	struct perf_event_context *ctx;
3222 
3223 	ctx = perf_event_ctx_lock(event);
3224 	_perf_event_enable(event);
3225 	perf_event_ctx_unlock(event, ctx);
3226 }
3227 EXPORT_SYMBOL_GPL(perf_event_enable);
3228 
3229 struct stop_event_data {
3230 	struct perf_event	*event;
3231 	unsigned int		restart;
3232 };
3233 
__perf_event_stop(void * info)3234 static int __perf_event_stop(void *info)
3235 {
3236 	struct stop_event_data *sd = info;
3237 	struct perf_event *event = sd->event;
3238 
3239 	/* if it's already INACTIVE, do nothing */
3240 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3241 		return 0;
3242 
3243 	/* matches smp_wmb() in event_sched_in() */
3244 	smp_rmb();
3245 
3246 	/*
3247 	 * There is a window with interrupts enabled before we get here,
3248 	 * so we need to check again lest we try to stop another CPU's event.
3249 	 */
3250 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3251 		return -EAGAIN;
3252 
3253 	event->pmu->stop(event, PERF_EF_UPDATE);
3254 
3255 	/*
3256 	 * May race with the actual stop (through perf_pmu_output_stop()),
3257 	 * but it is only used for events with AUX ring buffer, and such
3258 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3259 	 * see comments in perf_aux_output_begin().
3260 	 *
3261 	 * Since this is happening on an event-local CPU, no trace is lost
3262 	 * while restarting.
3263 	 */
3264 	if (sd->restart)
3265 		event->pmu->start(event, 0);
3266 
3267 	return 0;
3268 }
3269 
perf_event_stop(struct perf_event * event,int restart)3270 static int perf_event_stop(struct perf_event *event, int restart)
3271 {
3272 	struct stop_event_data sd = {
3273 		.event		= event,
3274 		.restart	= restart,
3275 	};
3276 	int ret = 0;
3277 
3278 	do {
3279 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3280 			return 0;
3281 
3282 		/* matches smp_wmb() in event_sched_in() */
3283 		smp_rmb();
3284 
3285 		/*
3286 		 * We only want to restart ACTIVE events, so if the event goes
3287 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3288 		 * fall through with ret==-ENXIO.
3289 		 */
3290 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3291 					__perf_event_stop, &sd);
3292 	} while (ret == -EAGAIN);
3293 
3294 	return ret;
3295 }
3296 
3297 /*
3298  * In order to contain the amount of racy and tricky in the address filter
3299  * configuration management, it is a two part process:
3300  *
3301  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3302  *      we update the addresses of corresponding vmas in
3303  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3304  * (p2) when an event is scheduled in (pmu::add), it calls
3305  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3306  *      if the generation has changed since the previous call.
3307  *
3308  * If (p1) happens while the event is active, we restart it to force (p2).
3309  *
3310  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3311  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3312  *     ioctl;
3313  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3314  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3315  *     for reading;
3316  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3317  *     of exec.
3318  */
perf_event_addr_filters_sync(struct perf_event * event)3319 void perf_event_addr_filters_sync(struct perf_event *event)
3320 {
3321 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3322 
3323 	if (!has_addr_filter(event))
3324 		return;
3325 
3326 	raw_spin_lock(&ifh->lock);
3327 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3328 		event->pmu->addr_filters_sync(event);
3329 		event->hw.addr_filters_gen = event->addr_filters_gen;
3330 	}
3331 	raw_spin_unlock(&ifh->lock);
3332 }
3333 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3334 
_perf_event_refresh(struct perf_event * event,int refresh)3335 static int _perf_event_refresh(struct perf_event *event, int refresh)
3336 {
3337 	/*
3338 	 * not supported on inherited events
3339 	 */
3340 	if (event->attr.inherit || !is_sampling_event(event))
3341 		return -EINVAL;
3342 
3343 	atomic_add(refresh, &event->event_limit);
3344 	_perf_event_enable(event);
3345 
3346 	return 0;
3347 }
3348 
3349 /*
3350  * See perf_event_disable()
3351  */
perf_event_refresh(struct perf_event * event,int refresh)3352 int perf_event_refresh(struct perf_event *event, int refresh)
3353 {
3354 	struct perf_event_context *ctx;
3355 	int ret;
3356 
3357 	ctx = perf_event_ctx_lock(event);
3358 	ret = _perf_event_refresh(event, refresh);
3359 	perf_event_ctx_unlock(event, ctx);
3360 
3361 	return ret;
3362 }
3363 EXPORT_SYMBOL_GPL(perf_event_refresh);
3364 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3365 static int perf_event_modify_breakpoint(struct perf_event *bp,
3366 					 struct perf_event_attr *attr)
3367 {
3368 	int err;
3369 
3370 	_perf_event_disable(bp);
3371 
3372 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3373 
3374 	if (!bp->attr.disabled)
3375 		_perf_event_enable(bp);
3376 
3377 	return err;
3378 }
3379 
3380 /*
3381  * Copy event-type-independent attributes that may be modified.
3382  */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3383 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3384 					const struct perf_event_attr *from)
3385 {
3386 	to->sig_data = from->sig_data;
3387 }
3388 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3389 static int perf_event_modify_attr(struct perf_event *event,
3390 				  struct perf_event_attr *attr)
3391 {
3392 	int (*func)(struct perf_event *, struct perf_event_attr *);
3393 	struct perf_event *child;
3394 	int err;
3395 
3396 	if (event->attr.type != attr->type)
3397 		return -EINVAL;
3398 
3399 	switch (event->attr.type) {
3400 	case PERF_TYPE_BREAKPOINT:
3401 		func = perf_event_modify_breakpoint;
3402 		break;
3403 	default:
3404 		/* Place holder for future additions. */
3405 		return -EOPNOTSUPP;
3406 	}
3407 
3408 	WARN_ON_ONCE(event->ctx->parent_ctx);
3409 
3410 	mutex_lock(&event->child_mutex);
3411 	/*
3412 	 * Event-type-independent attributes must be copied before event-type
3413 	 * modification, which will validate that final attributes match the
3414 	 * source attributes after all relevant attributes have been copied.
3415 	 */
3416 	perf_event_modify_copy_attr(&event->attr, attr);
3417 	err = func(event, attr);
3418 	if (err)
3419 		goto out;
3420 	list_for_each_entry(child, &event->child_list, child_list) {
3421 		perf_event_modify_copy_attr(&child->attr, attr);
3422 		err = func(child, attr);
3423 		if (err)
3424 			goto out;
3425 	}
3426 out:
3427 	mutex_unlock(&event->child_mutex);
3428 	return err;
3429 }
3430 
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3431 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3432 				enum event_type_t event_type)
3433 {
3434 	struct perf_event_context *ctx = pmu_ctx->ctx;
3435 	struct perf_event *event, *tmp;
3436 	struct pmu *pmu = pmu_ctx->pmu;
3437 
3438 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3439 		struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3440 
3441 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3442 		cpc->task_epc = NULL;
3443 	}
3444 
3445 	if (!(event_type & EVENT_ALL))
3446 		return;
3447 
3448 	perf_pmu_disable(pmu);
3449 	if (event_type & EVENT_PINNED) {
3450 		list_for_each_entry_safe(event, tmp,
3451 					 &pmu_ctx->pinned_active,
3452 					 active_list)
3453 			group_sched_out(event, ctx);
3454 	}
3455 
3456 	if (event_type & EVENT_FLEXIBLE) {
3457 		list_for_each_entry_safe(event, tmp,
3458 					 &pmu_ctx->flexible_active,
3459 					 active_list)
3460 			group_sched_out(event, ctx);
3461 		/*
3462 		 * Since we cleared EVENT_FLEXIBLE, also clear
3463 		 * rotate_necessary, is will be reset by
3464 		 * ctx_flexible_sched_in() when needed.
3465 		 */
3466 		pmu_ctx->rotate_necessary = 0;
3467 	}
3468 	perf_pmu_enable(pmu);
3469 }
3470 
3471 /*
3472  * Be very careful with the @pmu argument since this will change ctx state.
3473  * The @pmu argument works for ctx_resched(), because that is symmetric in
3474  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3475  *
3476  * However, if you were to be asymmetrical, you could end up with messed up
3477  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3478  * be active.
3479  */
3480 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3481 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3482 {
3483 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3484 	struct perf_event_pmu_context *pmu_ctx;
3485 	int is_active = ctx->is_active;
3486 	bool cgroup = event_type & EVENT_CGROUP;
3487 
3488 	event_type &= ~EVENT_CGROUP;
3489 
3490 	lockdep_assert_held(&ctx->lock);
3491 
3492 	if (likely(!ctx->nr_events)) {
3493 		/*
3494 		 * See __perf_remove_from_context().
3495 		 */
3496 		WARN_ON_ONCE(ctx->is_active);
3497 		if (ctx->task)
3498 			WARN_ON_ONCE(cpuctx->task_ctx);
3499 		return;
3500 	}
3501 
3502 	/*
3503 	 * Always update time if it was set; not only when it changes.
3504 	 * Otherwise we can 'forget' to update time for any but the last
3505 	 * context we sched out. For example:
3506 	 *
3507 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3508 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3509 	 *
3510 	 * would only update time for the pinned events.
3511 	 */
3512 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3513 
3514 	/*
3515 	 * CPU-release for the below ->is_active store,
3516 	 * see __load_acquire() in perf_event_time_now()
3517 	 */
3518 	barrier();
3519 	ctx->is_active &= ~event_type;
3520 
3521 	if (!(ctx->is_active & EVENT_ALL)) {
3522 		/*
3523 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3524 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3525 		 */
3526 		if (ctx->is_active & EVENT_FROZEN)
3527 			ctx->is_active &= EVENT_TIME_FROZEN;
3528 		else
3529 			ctx->is_active = 0;
3530 	}
3531 
3532 	if (ctx->task) {
3533 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3534 		if (!(ctx->is_active & EVENT_ALL))
3535 			cpuctx->task_ctx = NULL;
3536 	}
3537 
3538 	is_active ^= ctx->is_active; /* changed bits */
3539 
3540 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3541 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3542 }
3543 
3544 /*
3545  * Test whether two contexts are equivalent, i.e. whether they have both been
3546  * cloned from the same version of the same context.
3547  *
3548  * Equivalence is measured using a generation number in the context that is
3549  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3550  * and list_del_event().
3551  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3552 static int context_equiv(struct perf_event_context *ctx1,
3553 			 struct perf_event_context *ctx2)
3554 {
3555 	lockdep_assert_held(&ctx1->lock);
3556 	lockdep_assert_held(&ctx2->lock);
3557 
3558 	/* Pinning disables the swap optimization */
3559 	if (ctx1->pin_count || ctx2->pin_count)
3560 		return 0;
3561 
3562 	/* If ctx1 is the parent of ctx2 */
3563 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3564 		return 1;
3565 
3566 	/* If ctx2 is the parent of ctx1 */
3567 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3568 		return 1;
3569 
3570 	/*
3571 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3572 	 * hierarchy, see perf_event_init_context().
3573 	 */
3574 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3575 			ctx1->parent_gen == ctx2->parent_gen)
3576 		return 1;
3577 
3578 	/* Unmatched */
3579 	return 0;
3580 }
3581 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3582 static void __perf_event_sync_stat(struct perf_event *event,
3583 				     struct perf_event *next_event)
3584 {
3585 	u64 value;
3586 
3587 	if (!event->attr.inherit_stat)
3588 		return;
3589 
3590 	/*
3591 	 * Update the event value, we cannot use perf_event_read()
3592 	 * because we're in the middle of a context switch and have IRQs
3593 	 * disabled, which upsets smp_call_function_single(), however
3594 	 * we know the event must be on the current CPU, therefore we
3595 	 * don't need to use it.
3596 	 */
3597 	perf_pmu_read(event);
3598 
3599 	perf_event_update_time(event);
3600 
3601 	/*
3602 	 * In order to keep per-task stats reliable we need to flip the event
3603 	 * values when we flip the contexts.
3604 	 */
3605 	value = local64_read(&next_event->count);
3606 	value = local64_xchg(&event->count, value);
3607 	local64_set(&next_event->count, value);
3608 
3609 	swap(event->total_time_enabled, next_event->total_time_enabled);
3610 	swap(event->total_time_running, next_event->total_time_running);
3611 
3612 	/*
3613 	 * Since we swizzled the values, update the user visible data too.
3614 	 */
3615 	perf_event_update_userpage(event);
3616 	perf_event_update_userpage(next_event);
3617 }
3618 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3619 static void perf_event_sync_stat(struct perf_event_context *ctx,
3620 				   struct perf_event_context *next_ctx)
3621 {
3622 	struct perf_event *event, *next_event;
3623 
3624 	if (!ctx->nr_stat)
3625 		return;
3626 
3627 	update_context_time(ctx);
3628 
3629 	event = list_first_entry(&ctx->event_list,
3630 				   struct perf_event, event_entry);
3631 
3632 	next_event = list_first_entry(&next_ctx->event_list,
3633 					struct perf_event, event_entry);
3634 
3635 	while (&event->event_entry != &ctx->event_list &&
3636 	       &next_event->event_entry != &next_ctx->event_list) {
3637 
3638 		__perf_event_sync_stat(event, next_event);
3639 
3640 		event = list_next_entry(event, event_entry);
3641 		next_event = list_next_entry(next_event, event_entry);
3642 	}
3643 }
3644 
perf_ctx_sched_task_cb(struct perf_event_context * ctx,struct task_struct * task,bool sched_in)3645 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx,
3646 				   struct task_struct *task, bool sched_in)
3647 {
3648 	struct perf_event_pmu_context *pmu_ctx;
3649 	struct perf_cpu_pmu_context *cpc;
3650 
3651 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3652 		cpc = this_cpc(pmu_ctx->pmu);
3653 
3654 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3655 			pmu_ctx->pmu->sched_task(pmu_ctx, task, sched_in);
3656 	}
3657 }
3658 
3659 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3660 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3661 {
3662 	struct perf_event_context *ctx = task->perf_event_ctxp;
3663 	struct perf_event_context *next_ctx;
3664 	struct perf_event_context *parent, *next_parent;
3665 	int do_switch = 1;
3666 
3667 	if (likely(!ctx))
3668 		return;
3669 
3670 	rcu_read_lock();
3671 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3672 	if (!next_ctx)
3673 		goto unlock;
3674 
3675 	parent = rcu_dereference(ctx->parent_ctx);
3676 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3677 
3678 	/* If neither context have a parent context; they cannot be clones. */
3679 	if (!parent && !next_parent)
3680 		goto unlock;
3681 
3682 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3683 		/*
3684 		 * Looks like the two contexts are clones, so we might be
3685 		 * able to optimize the context switch.  We lock both
3686 		 * contexts and check that they are clones under the
3687 		 * lock (including re-checking that neither has been
3688 		 * uncloned in the meantime).  It doesn't matter which
3689 		 * order we take the locks because no other cpu could
3690 		 * be trying to lock both of these tasks.
3691 		 */
3692 		raw_spin_lock(&ctx->lock);
3693 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3694 		if (context_equiv(ctx, next_ctx)) {
3695 
3696 			perf_ctx_disable(ctx, false);
3697 
3698 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3699 			if (local_read(&ctx->nr_no_switch_fast) ||
3700 			    local_read(&next_ctx->nr_no_switch_fast)) {
3701 				/*
3702 				 * Must not swap out ctx when there's pending
3703 				 * events that rely on the ctx->task relation.
3704 				 *
3705 				 * Likewise, when a context contains inherit +
3706 				 * SAMPLE_READ events they should be switched
3707 				 * out using the slow path so that they are
3708 				 * treated as if they were distinct contexts.
3709 				 */
3710 				raw_spin_unlock(&next_ctx->lock);
3711 				rcu_read_unlock();
3712 				goto inside_switch;
3713 			}
3714 
3715 			WRITE_ONCE(ctx->task, next);
3716 			WRITE_ONCE(next_ctx->task, task);
3717 
3718 			perf_ctx_sched_task_cb(ctx, task, false);
3719 
3720 			perf_ctx_enable(ctx, false);
3721 
3722 			/*
3723 			 * RCU_INIT_POINTER here is safe because we've not
3724 			 * modified the ctx and the above modification of
3725 			 * ctx->task is immaterial since this value is
3726 			 * always verified under ctx->lock which we're now
3727 			 * holding.
3728 			 */
3729 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3730 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3731 
3732 			do_switch = 0;
3733 
3734 			perf_event_sync_stat(ctx, next_ctx);
3735 		}
3736 		raw_spin_unlock(&next_ctx->lock);
3737 		raw_spin_unlock(&ctx->lock);
3738 	}
3739 unlock:
3740 	rcu_read_unlock();
3741 
3742 	if (do_switch) {
3743 		raw_spin_lock(&ctx->lock);
3744 		perf_ctx_disable(ctx, false);
3745 
3746 inside_switch:
3747 		perf_ctx_sched_task_cb(ctx, task, false);
3748 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3749 
3750 		perf_ctx_enable(ctx, false);
3751 		raw_spin_unlock(&ctx->lock);
3752 	}
3753 }
3754 
3755 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3756 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3757 
perf_sched_cb_dec(struct pmu * pmu)3758 void perf_sched_cb_dec(struct pmu *pmu)
3759 {
3760 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3761 
3762 	this_cpu_dec(perf_sched_cb_usages);
3763 	barrier();
3764 
3765 	if (!--cpc->sched_cb_usage)
3766 		list_del(&cpc->sched_cb_entry);
3767 }
3768 
3769 
perf_sched_cb_inc(struct pmu * pmu)3770 void perf_sched_cb_inc(struct pmu *pmu)
3771 {
3772 	struct perf_cpu_pmu_context *cpc = this_cpc(pmu);
3773 
3774 	if (!cpc->sched_cb_usage++)
3775 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3776 
3777 	barrier();
3778 	this_cpu_inc(perf_sched_cb_usages);
3779 }
3780 
3781 /*
3782  * This function provides the context switch callback to the lower code
3783  * layer. It is invoked ONLY when the context switch callback is enabled.
3784  *
3785  * This callback is relevant even to per-cpu events; for example multi event
3786  * PEBS requires this to provide PID/TID information. This requires we flush
3787  * all queued PEBS records before we context switch to a new task.
3788  */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,struct task_struct * task,bool sched_in)3789 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc,
3790 				  struct task_struct *task, bool sched_in)
3791 {
3792 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3793 	struct pmu *pmu;
3794 
3795 	pmu = cpc->epc.pmu;
3796 
3797 	/* software PMUs will not have sched_task */
3798 	if (WARN_ON_ONCE(!pmu->sched_task))
3799 		return;
3800 
3801 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3802 	perf_pmu_disable(pmu);
3803 
3804 	pmu->sched_task(cpc->task_epc, task, sched_in);
3805 
3806 	perf_pmu_enable(pmu);
3807 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3808 }
3809 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3810 static void perf_pmu_sched_task(struct task_struct *prev,
3811 				struct task_struct *next,
3812 				bool sched_in)
3813 {
3814 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3815 	struct perf_cpu_pmu_context *cpc;
3816 
3817 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3818 	if (prev == next || cpuctx->task_ctx)
3819 		return;
3820 
3821 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3822 		__perf_pmu_sched_task(cpc, sched_in ? next : prev, sched_in);
3823 }
3824 
3825 static void perf_event_switch(struct task_struct *task,
3826 			      struct task_struct *next_prev, bool sched_in);
3827 
3828 /*
3829  * Called from scheduler to remove the events of the current task,
3830  * with interrupts disabled.
3831  *
3832  * We stop each event and update the event value in event->count.
3833  *
3834  * This does not protect us against NMI, but disable()
3835  * sets the disabled bit in the control field of event _before_
3836  * accessing the event control register. If a NMI hits, then it will
3837  * not restart the event.
3838  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3839 void __perf_event_task_sched_out(struct task_struct *task,
3840 				 struct task_struct *next)
3841 {
3842 	if (__this_cpu_read(perf_sched_cb_usages))
3843 		perf_pmu_sched_task(task, next, false);
3844 
3845 	if (atomic_read(&nr_switch_events))
3846 		perf_event_switch(task, next, false);
3847 
3848 	perf_event_context_sched_out(task, next);
3849 
3850 	/*
3851 	 * if cgroup events exist on this CPU, then we need
3852 	 * to check if we have to switch out PMU state.
3853 	 * cgroup event are system-wide mode only
3854 	 */
3855 	perf_cgroup_switch(next);
3856 }
3857 
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3858 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3859 {
3860 	const struct perf_event *le = *(const struct perf_event **)l;
3861 	const struct perf_event *re = *(const struct perf_event **)r;
3862 
3863 	return le->group_index < re->group_index;
3864 }
3865 
3866 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3867 
3868 static const struct min_heap_callbacks perf_min_heap = {
3869 	.less = perf_less_group_idx,
3870 	.swp = NULL,
3871 };
3872 
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3873 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3874 {
3875 	struct perf_event **itrs = heap->data;
3876 
3877 	if (event) {
3878 		itrs[heap->nr] = event;
3879 		heap->nr++;
3880 	}
3881 }
3882 
__link_epc(struct perf_event_pmu_context * pmu_ctx)3883 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3884 {
3885 	struct perf_cpu_pmu_context *cpc;
3886 
3887 	if (!pmu_ctx->ctx->task)
3888 		return;
3889 
3890 	cpc = this_cpc(pmu_ctx->pmu);
3891 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3892 	cpc->task_epc = pmu_ctx;
3893 }
3894 
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3895 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3896 				struct perf_event_groups *groups, int cpu,
3897 				struct pmu *pmu,
3898 				int (*func)(struct perf_event *, void *),
3899 				void *data)
3900 {
3901 #ifdef CONFIG_CGROUP_PERF
3902 	struct cgroup_subsys_state *css = NULL;
3903 #endif
3904 	struct perf_cpu_context *cpuctx = NULL;
3905 	/* Space for per CPU and/or any CPU event iterators. */
3906 	struct perf_event *itrs[2];
3907 	struct perf_event_min_heap event_heap;
3908 	struct perf_event **evt;
3909 	int ret;
3910 
3911 	if (pmu->filter && pmu->filter(pmu, cpu))
3912 		return 0;
3913 
3914 	if (!ctx->task) {
3915 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3916 		event_heap = (struct perf_event_min_heap){
3917 			.data = cpuctx->heap,
3918 			.nr = 0,
3919 			.size = cpuctx->heap_size,
3920 		};
3921 
3922 		lockdep_assert_held(&cpuctx->ctx.lock);
3923 
3924 #ifdef CONFIG_CGROUP_PERF
3925 		if (cpuctx->cgrp)
3926 			css = &cpuctx->cgrp->css;
3927 #endif
3928 	} else {
3929 		event_heap = (struct perf_event_min_heap){
3930 			.data = itrs,
3931 			.nr = 0,
3932 			.size = ARRAY_SIZE(itrs),
3933 		};
3934 		/* Events not within a CPU context may be on any CPU. */
3935 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3936 	}
3937 	evt = event_heap.data;
3938 
3939 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3940 
3941 #ifdef CONFIG_CGROUP_PERF
3942 	for (; css; css = css->parent)
3943 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3944 #endif
3945 
3946 	if (event_heap.nr) {
3947 		__link_epc((*evt)->pmu_ctx);
3948 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3949 	}
3950 
3951 	min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3952 
3953 	while (event_heap.nr) {
3954 		ret = func(*evt, data);
3955 		if (ret)
3956 			return ret;
3957 
3958 		*evt = perf_event_groups_next(*evt, pmu);
3959 		if (*evt)
3960 			min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3961 		else
3962 			min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3963 	}
3964 
3965 	return 0;
3966 }
3967 
3968 /*
3969  * Because the userpage is strictly per-event (there is no concept of context,
3970  * so there cannot be a context indirection), every userpage must be updated
3971  * when context time starts :-(
3972  *
3973  * IOW, we must not miss EVENT_TIME edges.
3974  */
event_update_userpage(struct perf_event * event)3975 static inline bool event_update_userpage(struct perf_event *event)
3976 {
3977 	if (likely(!atomic_read(&event->mmap_count)))
3978 		return false;
3979 
3980 	perf_event_update_time(event);
3981 	perf_event_update_userpage(event);
3982 
3983 	return true;
3984 }
3985 
group_update_userpage(struct perf_event * group_event)3986 static inline void group_update_userpage(struct perf_event *group_event)
3987 {
3988 	struct perf_event *event;
3989 
3990 	if (!event_update_userpage(group_event))
3991 		return;
3992 
3993 	for_each_sibling_event(event, group_event)
3994 		event_update_userpage(event);
3995 }
3996 
merge_sched_in(struct perf_event * event,void * data)3997 static int merge_sched_in(struct perf_event *event, void *data)
3998 {
3999 	struct perf_event_context *ctx = event->ctx;
4000 	int *can_add_hw = data;
4001 
4002 	if (event->state <= PERF_EVENT_STATE_OFF)
4003 		return 0;
4004 
4005 	if (!event_filter_match(event))
4006 		return 0;
4007 
4008 	if (group_can_go_on(event, *can_add_hw)) {
4009 		if (!group_sched_in(event, ctx))
4010 			list_add_tail(&event->active_list, get_event_list(event));
4011 	}
4012 
4013 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
4014 		*can_add_hw = 0;
4015 		if (event->attr.pinned) {
4016 			perf_cgroup_event_disable(event, ctx);
4017 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
4018 
4019 			if (*perf_event_fasync(event))
4020 				event->pending_kill = POLL_ERR;
4021 
4022 			perf_event_wakeup(event);
4023 		} else {
4024 			struct perf_cpu_pmu_context *cpc = this_cpc(event->pmu_ctx->pmu);
4025 
4026 			event->pmu_ctx->rotate_necessary = 1;
4027 			perf_mux_hrtimer_restart(cpc);
4028 			group_update_userpage(event);
4029 		}
4030 	}
4031 
4032 	return 0;
4033 }
4034 
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)4035 static void pmu_groups_sched_in(struct perf_event_context *ctx,
4036 				struct perf_event_groups *groups,
4037 				struct pmu *pmu)
4038 {
4039 	int can_add_hw = 1;
4040 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
4041 			   merge_sched_in, &can_add_hw);
4042 }
4043 
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)4044 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
4045 			       enum event_type_t event_type)
4046 {
4047 	struct perf_event_context *ctx = pmu_ctx->ctx;
4048 
4049 	if (event_type & EVENT_PINNED)
4050 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
4051 	if (event_type & EVENT_FLEXIBLE)
4052 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
4053 }
4054 
4055 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)4056 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
4057 {
4058 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4059 	struct perf_event_pmu_context *pmu_ctx;
4060 	int is_active = ctx->is_active;
4061 	bool cgroup = event_type & EVENT_CGROUP;
4062 
4063 	event_type &= ~EVENT_CGROUP;
4064 
4065 	lockdep_assert_held(&ctx->lock);
4066 
4067 	if (likely(!ctx->nr_events))
4068 		return;
4069 
4070 	if (!(is_active & EVENT_TIME)) {
4071 		/* start ctx time */
4072 		__update_context_time(ctx, false);
4073 		perf_cgroup_set_timestamp(cpuctx);
4074 		/*
4075 		 * CPU-release for the below ->is_active store,
4076 		 * see __load_acquire() in perf_event_time_now()
4077 		 */
4078 		barrier();
4079 	}
4080 
4081 	ctx->is_active |= (event_type | EVENT_TIME);
4082 	if (ctx->task) {
4083 		if (!(is_active & EVENT_ALL))
4084 			cpuctx->task_ctx = ctx;
4085 		else
4086 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4087 	}
4088 
4089 	is_active ^= ctx->is_active; /* changed bits */
4090 
4091 	/*
4092 	 * First go through the list and put on any pinned groups
4093 	 * in order to give them the best chance of going on.
4094 	 */
4095 	if (is_active & EVENT_PINNED) {
4096 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4097 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4098 	}
4099 
4100 	/* Then walk through the lower prio flexible groups */
4101 	if (is_active & EVENT_FLEXIBLE) {
4102 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4103 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4104 	}
4105 }
4106 
perf_event_context_sched_in(struct task_struct * task)4107 static void perf_event_context_sched_in(struct task_struct *task)
4108 {
4109 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4110 	struct perf_event_context *ctx;
4111 
4112 	rcu_read_lock();
4113 	ctx = rcu_dereference(task->perf_event_ctxp);
4114 	if (!ctx)
4115 		goto rcu_unlock;
4116 
4117 	if (cpuctx->task_ctx == ctx) {
4118 		perf_ctx_lock(cpuctx, ctx);
4119 		perf_ctx_disable(ctx, false);
4120 
4121 		perf_ctx_sched_task_cb(ctx, task, true);
4122 
4123 		perf_ctx_enable(ctx, false);
4124 		perf_ctx_unlock(cpuctx, ctx);
4125 		goto rcu_unlock;
4126 	}
4127 
4128 	perf_ctx_lock(cpuctx, ctx);
4129 	/*
4130 	 * We must check ctx->nr_events while holding ctx->lock, such
4131 	 * that we serialize against perf_install_in_context().
4132 	 */
4133 	if (!ctx->nr_events)
4134 		goto unlock;
4135 
4136 	perf_ctx_disable(ctx, false);
4137 	/*
4138 	 * We want to keep the following priority order:
4139 	 * cpu pinned (that don't need to move), task pinned,
4140 	 * cpu flexible, task flexible.
4141 	 *
4142 	 * However, if task's ctx is not carrying any pinned
4143 	 * events, no need to flip the cpuctx's events around.
4144 	 */
4145 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4146 		perf_ctx_disable(&cpuctx->ctx, false);
4147 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4148 	}
4149 
4150 	perf_event_sched_in(cpuctx, ctx, NULL);
4151 
4152 	perf_ctx_sched_task_cb(cpuctx->task_ctx, task, true);
4153 
4154 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4155 		perf_ctx_enable(&cpuctx->ctx, false);
4156 
4157 	perf_ctx_enable(ctx, false);
4158 
4159 unlock:
4160 	perf_ctx_unlock(cpuctx, ctx);
4161 rcu_unlock:
4162 	rcu_read_unlock();
4163 }
4164 
4165 /*
4166  * Called from scheduler to add the events of the current task
4167  * with interrupts disabled.
4168  *
4169  * We restore the event value and then enable it.
4170  *
4171  * This does not protect us against NMI, but enable()
4172  * sets the enabled bit in the control field of event _before_
4173  * accessing the event control register. If a NMI hits, then it will
4174  * keep the event running.
4175  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4176 void __perf_event_task_sched_in(struct task_struct *prev,
4177 				struct task_struct *task)
4178 {
4179 	perf_event_context_sched_in(task);
4180 
4181 	if (atomic_read(&nr_switch_events))
4182 		perf_event_switch(task, prev, true);
4183 
4184 	if (__this_cpu_read(perf_sched_cb_usages))
4185 		perf_pmu_sched_task(prev, task, true);
4186 }
4187 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4188 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4189 {
4190 	u64 frequency = event->attr.sample_freq;
4191 	u64 sec = NSEC_PER_SEC;
4192 	u64 divisor, dividend;
4193 
4194 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4195 
4196 	count_fls = fls64(count);
4197 	nsec_fls = fls64(nsec);
4198 	frequency_fls = fls64(frequency);
4199 	sec_fls = 30;
4200 
4201 	/*
4202 	 * We got @count in @nsec, with a target of sample_freq HZ
4203 	 * the target period becomes:
4204 	 *
4205 	 *             @count * 10^9
4206 	 * period = -------------------
4207 	 *          @nsec * sample_freq
4208 	 *
4209 	 */
4210 
4211 	/*
4212 	 * Reduce accuracy by one bit such that @a and @b converge
4213 	 * to a similar magnitude.
4214 	 */
4215 #define REDUCE_FLS(a, b)		\
4216 do {					\
4217 	if (a##_fls > b##_fls) {	\
4218 		a >>= 1;		\
4219 		a##_fls--;		\
4220 	} else {			\
4221 		b >>= 1;		\
4222 		b##_fls--;		\
4223 	}				\
4224 } while (0)
4225 
4226 	/*
4227 	 * Reduce accuracy until either term fits in a u64, then proceed with
4228 	 * the other, so that finally we can do a u64/u64 division.
4229 	 */
4230 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4231 		REDUCE_FLS(nsec, frequency);
4232 		REDUCE_FLS(sec, count);
4233 	}
4234 
4235 	if (count_fls + sec_fls > 64) {
4236 		divisor = nsec * frequency;
4237 
4238 		while (count_fls + sec_fls > 64) {
4239 			REDUCE_FLS(count, sec);
4240 			divisor >>= 1;
4241 		}
4242 
4243 		dividend = count * sec;
4244 	} else {
4245 		dividend = count * sec;
4246 
4247 		while (nsec_fls + frequency_fls > 64) {
4248 			REDUCE_FLS(nsec, frequency);
4249 			dividend >>= 1;
4250 		}
4251 
4252 		divisor = nsec * frequency;
4253 	}
4254 
4255 	if (!divisor)
4256 		return dividend;
4257 
4258 	return div64_u64(dividend, divisor);
4259 }
4260 
4261 static DEFINE_PER_CPU(int, perf_throttled_count);
4262 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4263 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4264 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4265 {
4266 	struct hw_perf_event *hwc = &event->hw;
4267 	s64 period, sample_period;
4268 	s64 delta;
4269 
4270 	period = perf_calculate_period(event, nsec, count);
4271 
4272 	delta = (s64)(period - hwc->sample_period);
4273 	if (delta >= 0)
4274 		delta += 7;
4275 	else
4276 		delta -= 7;
4277 	delta /= 8; /* low pass filter */
4278 
4279 	sample_period = hwc->sample_period + delta;
4280 
4281 	if (!sample_period)
4282 		sample_period = 1;
4283 
4284 	hwc->sample_period = sample_period;
4285 
4286 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4287 		if (disable)
4288 			event->pmu->stop(event, PERF_EF_UPDATE);
4289 
4290 		local64_set(&hwc->period_left, 0);
4291 
4292 		if (disable)
4293 			event->pmu->start(event, PERF_EF_RELOAD);
4294 	}
4295 }
4296 
perf_adjust_freq_unthr_events(struct list_head * event_list)4297 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4298 {
4299 	struct perf_event *event;
4300 	struct hw_perf_event *hwc;
4301 	u64 now, period = TICK_NSEC;
4302 	s64 delta;
4303 
4304 	list_for_each_entry(event, event_list, active_list) {
4305 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4306 			continue;
4307 
4308 		// XXX use visit thingy to avoid the -1,cpu match
4309 		if (!event_filter_match(event))
4310 			continue;
4311 
4312 		hwc = &event->hw;
4313 
4314 		if (hwc->interrupts == MAX_INTERRUPTS)
4315 			perf_event_unthrottle_group(event, is_event_in_freq_mode(event));
4316 
4317 		if (!is_event_in_freq_mode(event))
4318 			continue;
4319 
4320 		/*
4321 		 * stop the event and update event->count
4322 		 */
4323 		event->pmu->stop(event, PERF_EF_UPDATE);
4324 
4325 		now = local64_read(&event->count);
4326 		delta = now - hwc->freq_count_stamp;
4327 		hwc->freq_count_stamp = now;
4328 
4329 		/*
4330 		 * restart the event
4331 		 * reload only if value has changed
4332 		 * we have stopped the event so tell that
4333 		 * to perf_adjust_period() to avoid stopping it
4334 		 * twice.
4335 		 */
4336 		if (delta > 0)
4337 			perf_adjust_period(event, period, delta, false);
4338 
4339 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4340 	}
4341 }
4342 
4343 /*
4344  * combine freq adjustment with unthrottling to avoid two passes over the
4345  * events. At the same time, make sure, having freq events does not change
4346  * the rate of unthrottling as that would introduce bias.
4347  */
4348 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4349 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4350 {
4351 	struct perf_event_pmu_context *pmu_ctx;
4352 
4353 	/*
4354 	 * only need to iterate over all events iff:
4355 	 * - context have events in frequency mode (needs freq adjust)
4356 	 * - there are events to unthrottle on this cpu
4357 	 */
4358 	if (!(ctx->nr_freq || unthrottle))
4359 		return;
4360 
4361 	raw_spin_lock(&ctx->lock);
4362 
4363 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4364 		if (!(pmu_ctx->nr_freq || unthrottle))
4365 			continue;
4366 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4367 			continue;
4368 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4369 			continue;
4370 
4371 		perf_pmu_disable(pmu_ctx->pmu);
4372 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4373 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4374 		perf_pmu_enable(pmu_ctx->pmu);
4375 	}
4376 
4377 	raw_spin_unlock(&ctx->lock);
4378 }
4379 
4380 /*
4381  * Move @event to the tail of the @ctx's elegible events.
4382  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4383 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4384 {
4385 	/*
4386 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4387 	 * disabled by the inheritance code.
4388 	 */
4389 	if (ctx->rotate_disable)
4390 		return;
4391 
4392 	perf_event_groups_delete(&ctx->flexible_groups, event);
4393 	perf_event_groups_insert(&ctx->flexible_groups, event);
4394 }
4395 
4396 /* pick an event from the flexible_groups to rotate */
4397 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4398 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4399 {
4400 	struct perf_event *event;
4401 	struct rb_node *node;
4402 	struct rb_root *tree;
4403 	struct __group_key key = {
4404 		.pmu = pmu_ctx->pmu,
4405 	};
4406 
4407 	/* pick the first active flexible event */
4408 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4409 					 struct perf_event, active_list);
4410 	if (event)
4411 		goto out;
4412 
4413 	/* if no active flexible event, pick the first event */
4414 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4415 
4416 	if (!pmu_ctx->ctx->task) {
4417 		key.cpu = smp_processor_id();
4418 
4419 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4420 		if (node)
4421 			event = __node_2_pe(node);
4422 		goto out;
4423 	}
4424 
4425 	key.cpu = -1;
4426 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4427 	if (node) {
4428 		event = __node_2_pe(node);
4429 		goto out;
4430 	}
4431 
4432 	key.cpu = smp_processor_id();
4433 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4434 	if (node)
4435 		event = __node_2_pe(node);
4436 
4437 out:
4438 	/*
4439 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4440 	 * finds there are unschedulable events, it will set it again.
4441 	 */
4442 	pmu_ctx->rotate_necessary = 0;
4443 
4444 	return event;
4445 }
4446 
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4447 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4448 {
4449 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4450 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4451 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4452 	int cpu_rotate, task_rotate;
4453 	struct pmu *pmu;
4454 
4455 	/*
4456 	 * Since we run this from IRQ context, nobody can install new
4457 	 * events, thus the event count values are stable.
4458 	 */
4459 
4460 	cpu_epc = &cpc->epc;
4461 	pmu = cpu_epc->pmu;
4462 	task_epc = cpc->task_epc;
4463 
4464 	cpu_rotate = cpu_epc->rotate_necessary;
4465 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4466 
4467 	if (!(cpu_rotate || task_rotate))
4468 		return false;
4469 
4470 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4471 	perf_pmu_disable(pmu);
4472 
4473 	if (task_rotate)
4474 		task_event = ctx_event_to_rotate(task_epc);
4475 	if (cpu_rotate)
4476 		cpu_event = ctx_event_to_rotate(cpu_epc);
4477 
4478 	/*
4479 	 * As per the order given at ctx_resched() first 'pop' task flexible
4480 	 * and then, if needed CPU flexible.
4481 	 */
4482 	if (task_event || (task_epc && cpu_event)) {
4483 		update_context_time(task_epc->ctx);
4484 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4485 	}
4486 
4487 	if (cpu_event) {
4488 		update_context_time(&cpuctx->ctx);
4489 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4490 		rotate_ctx(&cpuctx->ctx, cpu_event);
4491 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4492 	}
4493 
4494 	if (task_event)
4495 		rotate_ctx(task_epc->ctx, task_event);
4496 
4497 	if (task_event || (task_epc && cpu_event))
4498 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4499 
4500 	perf_pmu_enable(pmu);
4501 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4502 
4503 	return true;
4504 }
4505 
perf_event_task_tick(void)4506 void perf_event_task_tick(void)
4507 {
4508 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4509 	struct perf_event_context *ctx;
4510 	int throttled;
4511 
4512 	lockdep_assert_irqs_disabled();
4513 
4514 	__this_cpu_inc(perf_throttled_seq);
4515 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4516 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4517 
4518 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4519 
4520 	rcu_read_lock();
4521 	ctx = rcu_dereference(current->perf_event_ctxp);
4522 	if (ctx)
4523 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4524 	rcu_read_unlock();
4525 }
4526 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4527 static int event_enable_on_exec(struct perf_event *event,
4528 				struct perf_event_context *ctx)
4529 {
4530 	if (!event->attr.enable_on_exec)
4531 		return 0;
4532 
4533 	event->attr.enable_on_exec = 0;
4534 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4535 		return 0;
4536 
4537 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4538 
4539 	return 1;
4540 }
4541 
4542 /*
4543  * Enable all of a task's events that have been marked enable-on-exec.
4544  * This expects task == current.
4545  */
perf_event_enable_on_exec(struct perf_event_context * ctx)4546 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4547 {
4548 	struct perf_event_context *clone_ctx = NULL;
4549 	enum event_type_t event_type = 0;
4550 	struct perf_cpu_context *cpuctx;
4551 	struct perf_event *event;
4552 	unsigned long flags;
4553 	int enabled = 0;
4554 
4555 	local_irq_save(flags);
4556 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4557 		goto out;
4558 
4559 	if (!ctx->nr_events)
4560 		goto out;
4561 
4562 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4563 	perf_ctx_lock(cpuctx, ctx);
4564 	ctx_time_freeze(cpuctx, ctx);
4565 
4566 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4567 		enabled |= event_enable_on_exec(event, ctx);
4568 		event_type |= get_event_type(event);
4569 	}
4570 
4571 	/*
4572 	 * Unclone and reschedule this context if we enabled any event.
4573 	 */
4574 	if (enabled) {
4575 		clone_ctx = unclone_ctx(ctx);
4576 		ctx_resched(cpuctx, ctx, NULL, event_type);
4577 	}
4578 	perf_ctx_unlock(cpuctx, ctx);
4579 
4580 out:
4581 	local_irq_restore(flags);
4582 
4583 	if (clone_ctx)
4584 		put_ctx(clone_ctx);
4585 }
4586 
4587 static void perf_remove_from_owner(struct perf_event *event);
4588 static void perf_event_exit_event(struct perf_event *event,
4589 				  struct perf_event_context *ctx,
4590 				  bool revoke);
4591 
4592 /*
4593  * Removes all events from the current task that have been marked
4594  * remove-on-exec, and feeds their values back to parent events.
4595  */
perf_event_remove_on_exec(struct perf_event_context * ctx)4596 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4597 {
4598 	struct perf_event_context *clone_ctx = NULL;
4599 	struct perf_event *event, *next;
4600 	unsigned long flags;
4601 	bool modified = false;
4602 
4603 	mutex_lock(&ctx->mutex);
4604 
4605 	if (WARN_ON_ONCE(ctx->task != current))
4606 		goto unlock;
4607 
4608 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4609 		if (!event->attr.remove_on_exec)
4610 			continue;
4611 
4612 		if (!is_kernel_event(event))
4613 			perf_remove_from_owner(event);
4614 
4615 		modified = true;
4616 
4617 		perf_event_exit_event(event, ctx, false);
4618 	}
4619 
4620 	raw_spin_lock_irqsave(&ctx->lock, flags);
4621 	if (modified)
4622 		clone_ctx = unclone_ctx(ctx);
4623 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4624 
4625 unlock:
4626 	mutex_unlock(&ctx->mutex);
4627 
4628 	if (clone_ctx)
4629 		put_ctx(clone_ctx);
4630 }
4631 
4632 struct perf_read_data {
4633 	struct perf_event *event;
4634 	bool group;
4635 	int ret;
4636 };
4637 
4638 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4639 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4640 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4641 {
4642 	int local_cpu = smp_processor_id();
4643 	u16 local_pkg, event_pkg;
4644 
4645 	if ((unsigned)event_cpu >= nr_cpu_ids)
4646 		return event_cpu;
4647 
4648 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4649 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4650 
4651 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4652 			return local_cpu;
4653 	}
4654 
4655 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4656 		event_pkg = topology_physical_package_id(event_cpu);
4657 		local_pkg = topology_physical_package_id(local_cpu);
4658 
4659 		if (event_pkg == local_pkg)
4660 			return local_cpu;
4661 	}
4662 
4663 	return event_cpu;
4664 }
4665 
4666 /*
4667  * Cross CPU call to read the hardware event
4668  */
__perf_event_read(void * info)4669 static void __perf_event_read(void *info)
4670 {
4671 	struct perf_read_data *data = info;
4672 	struct perf_event *sub, *event = data->event;
4673 	struct perf_event_context *ctx = event->ctx;
4674 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4675 	struct pmu *pmu = event->pmu;
4676 
4677 	/*
4678 	 * If this is a task context, we need to check whether it is
4679 	 * the current task context of this cpu.  If not it has been
4680 	 * scheduled out before the smp call arrived.  In that case
4681 	 * event->count would have been updated to a recent sample
4682 	 * when the event was scheduled out.
4683 	 */
4684 	if (ctx->task && cpuctx->task_ctx != ctx)
4685 		return;
4686 
4687 	raw_spin_lock(&ctx->lock);
4688 	ctx_time_update_event(ctx, event);
4689 
4690 	perf_event_update_time(event);
4691 	if (data->group)
4692 		perf_event_update_sibling_time(event);
4693 
4694 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4695 		goto unlock;
4696 
4697 	if (!data->group) {
4698 		pmu->read(event);
4699 		data->ret = 0;
4700 		goto unlock;
4701 	}
4702 
4703 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4704 
4705 	pmu->read(event);
4706 
4707 	for_each_sibling_event(sub, event)
4708 		perf_pmu_read(sub);
4709 
4710 	data->ret = pmu->commit_txn(pmu);
4711 
4712 unlock:
4713 	raw_spin_unlock(&ctx->lock);
4714 }
4715 
perf_event_count(struct perf_event * event,bool self)4716 static inline u64 perf_event_count(struct perf_event *event, bool self)
4717 {
4718 	if (self)
4719 		return local64_read(&event->count);
4720 
4721 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4722 }
4723 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4724 static void calc_timer_values(struct perf_event *event,
4725 				u64 *now,
4726 				u64 *enabled,
4727 				u64 *running)
4728 {
4729 	u64 ctx_time;
4730 
4731 	*now = perf_clock();
4732 	ctx_time = perf_event_time_now(event, *now);
4733 	__perf_update_times(event, ctx_time, enabled, running);
4734 }
4735 
4736 /*
4737  * NMI-safe method to read a local event, that is an event that
4738  * is:
4739  *   - either for the current task, or for this CPU
4740  *   - does not have inherit set, for inherited task events
4741  *     will not be local and we cannot read them atomically
4742  *   - must not have a pmu::count method
4743  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4744 int perf_event_read_local(struct perf_event *event, u64 *value,
4745 			  u64 *enabled, u64 *running)
4746 {
4747 	unsigned long flags;
4748 	int event_oncpu;
4749 	int event_cpu;
4750 	int ret = 0;
4751 
4752 	/*
4753 	 * Disabling interrupts avoids all counter scheduling (context
4754 	 * switches, timer based rotation and IPIs).
4755 	 */
4756 	local_irq_save(flags);
4757 
4758 	/*
4759 	 * It must not be an event with inherit set, we cannot read
4760 	 * all child counters from atomic context.
4761 	 */
4762 	if (event->attr.inherit) {
4763 		ret = -EOPNOTSUPP;
4764 		goto out;
4765 	}
4766 
4767 	/* If this is a per-task event, it must be for current */
4768 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4769 	    event->hw.target != current) {
4770 		ret = -EINVAL;
4771 		goto out;
4772 	}
4773 
4774 	/*
4775 	 * Get the event CPU numbers, and adjust them to local if the event is
4776 	 * a per-package event that can be read locally
4777 	 */
4778 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4779 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4780 
4781 	/* If this is a per-CPU event, it must be for this CPU */
4782 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4783 	    event_cpu != smp_processor_id()) {
4784 		ret = -EINVAL;
4785 		goto out;
4786 	}
4787 
4788 	/* If this is a pinned event it must be running on this CPU */
4789 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4790 		ret = -EBUSY;
4791 		goto out;
4792 	}
4793 
4794 	/*
4795 	 * If the event is currently on this CPU, its either a per-task event,
4796 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4797 	 * oncpu == -1).
4798 	 */
4799 	if (event_oncpu == smp_processor_id())
4800 		event->pmu->read(event);
4801 
4802 	*value = local64_read(&event->count);
4803 	if (enabled || running) {
4804 		u64 __enabled, __running, __now;
4805 
4806 		calc_timer_values(event, &__now, &__enabled, &__running);
4807 		if (enabled)
4808 			*enabled = __enabled;
4809 		if (running)
4810 			*running = __running;
4811 	}
4812 out:
4813 	local_irq_restore(flags);
4814 
4815 	return ret;
4816 }
4817 
perf_event_read(struct perf_event * event,bool group)4818 static int perf_event_read(struct perf_event *event, bool group)
4819 {
4820 	enum perf_event_state state = READ_ONCE(event->state);
4821 	int event_cpu, ret = 0;
4822 
4823 	/*
4824 	 * If event is enabled and currently active on a CPU, update the
4825 	 * value in the event structure:
4826 	 */
4827 again:
4828 	if (state == PERF_EVENT_STATE_ACTIVE) {
4829 		struct perf_read_data data;
4830 
4831 		/*
4832 		 * Orders the ->state and ->oncpu loads such that if we see
4833 		 * ACTIVE we must also see the right ->oncpu.
4834 		 *
4835 		 * Matches the smp_wmb() from event_sched_in().
4836 		 */
4837 		smp_rmb();
4838 
4839 		event_cpu = READ_ONCE(event->oncpu);
4840 		if ((unsigned)event_cpu >= nr_cpu_ids)
4841 			return 0;
4842 
4843 		data = (struct perf_read_data){
4844 			.event = event,
4845 			.group = group,
4846 			.ret = 0,
4847 		};
4848 
4849 		preempt_disable();
4850 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4851 
4852 		/*
4853 		 * Purposely ignore the smp_call_function_single() return
4854 		 * value.
4855 		 *
4856 		 * If event_cpu isn't a valid CPU it means the event got
4857 		 * scheduled out and that will have updated the event count.
4858 		 *
4859 		 * Therefore, either way, we'll have an up-to-date event count
4860 		 * after this.
4861 		 */
4862 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4863 		preempt_enable();
4864 		ret = data.ret;
4865 
4866 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4867 		struct perf_event_context *ctx = event->ctx;
4868 		unsigned long flags;
4869 
4870 		raw_spin_lock_irqsave(&ctx->lock, flags);
4871 		state = event->state;
4872 		if (state != PERF_EVENT_STATE_INACTIVE) {
4873 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4874 			goto again;
4875 		}
4876 
4877 		/*
4878 		 * May read while context is not active (e.g., thread is
4879 		 * blocked), in that case we cannot update context time
4880 		 */
4881 		ctx_time_update_event(ctx, event);
4882 
4883 		perf_event_update_time(event);
4884 		if (group)
4885 			perf_event_update_sibling_time(event);
4886 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4887 	}
4888 
4889 	return ret;
4890 }
4891 
4892 /*
4893  * Initialize the perf_event context in a task_struct:
4894  */
__perf_event_init_context(struct perf_event_context * ctx)4895 static void __perf_event_init_context(struct perf_event_context *ctx)
4896 {
4897 	raw_spin_lock_init(&ctx->lock);
4898 	mutex_init(&ctx->mutex);
4899 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4900 	perf_event_groups_init(&ctx->pinned_groups);
4901 	perf_event_groups_init(&ctx->flexible_groups);
4902 	INIT_LIST_HEAD(&ctx->event_list);
4903 	refcount_set(&ctx->refcount, 1);
4904 }
4905 
4906 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4907 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4908 {
4909 	epc->pmu = pmu;
4910 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4911 	INIT_LIST_HEAD(&epc->pinned_active);
4912 	INIT_LIST_HEAD(&epc->flexible_active);
4913 	atomic_set(&epc->refcount, 1);
4914 }
4915 
4916 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4917 alloc_perf_context(struct task_struct *task)
4918 {
4919 	struct perf_event_context *ctx;
4920 
4921 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4922 	if (!ctx)
4923 		return NULL;
4924 
4925 	__perf_event_init_context(ctx);
4926 	if (task)
4927 		ctx->task = get_task_struct(task);
4928 
4929 	return ctx;
4930 }
4931 
4932 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4933 find_lively_task_by_vpid(pid_t vpid)
4934 {
4935 	struct task_struct *task;
4936 
4937 	rcu_read_lock();
4938 	if (!vpid)
4939 		task = current;
4940 	else
4941 		task = find_task_by_vpid(vpid);
4942 	if (task)
4943 		get_task_struct(task);
4944 	rcu_read_unlock();
4945 
4946 	if (!task)
4947 		return ERR_PTR(-ESRCH);
4948 
4949 	return task;
4950 }
4951 
4952 /*
4953  * Returns a matching context with refcount and pincount.
4954  */
4955 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4956 find_get_context(struct task_struct *task, struct perf_event *event)
4957 {
4958 	struct perf_event_context *ctx, *clone_ctx = NULL;
4959 	struct perf_cpu_context *cpuctx;
4960 	unsigned long flags;
4961 	int err;
4962 
4963 	if (!task) {
4964 		/* Must be root to operate on a CPU event: */
4965 		err = perf_allow_cpu();
4966 		if (err)
4967 			return ERR_PTR(err);
4968 
4969 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4970 		ctx = &cpuctx->ctx;
4971 		get_ctx(ctx);
4972 		raw_spin_lock_irqsave(&ctx->lock, flags);
4973 		++ctx->pin_count;
4974 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4975 
4976 		return ctx;
4977 	}
4978 
4979 	err = -EINVAL;
4980 retry:
4981 	ctx = perf_lock_task_context(task, &flags);
4982 	if (ctx) {
4983 		clone_ctx = unclone_ctx(ctx);
4984 		++ctx->pin_count;
4985 
4986 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4987 
4988 		if (clone_ctx)
4989 			put_ctx(clone_ctx);
4990 	} else {
4991 		ctx = alloc_perf_context(task);
4992 		err = -ENOMEM;
4993 		if (!ctx)
4994 			goto errout;
4995 
4996 		err = 0;
4997 		mutex_lock(&task->perf_event_mutex);
4998 		/*
4999 		 * If it has already passed perf_event_exit_task().
5000 		 * we must see PF_EXITING, it takes this mutex too.
5001 		 */
5002 		if (task->flags & PF_EXITING)
5003 			err = -ESRCH;
5004 		else if (task->perf_event_ctxp)
5005 			err = -EAGAIN;
5006 		else {
5007 			get_ctx(ctx);
5008 			++ctx->pin_count;
5009 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
5010 		}
5011 		mutex_unlock(&task->perf_event_mutex);
5012 
5013 		if (unlikely(err)) {
5014 			put_ctx(ctx);
5015 
5016 			if (err == -EAGAIN)
5017 				goto retry;
5018 			goto errout;
5019 		}
5020 	}
5021 
5022 	return ctx;
5023 
5024 errout:
5025 	return ERR_PTR(err);
5026 }
5027 
5028 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)5029 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
5030 		     struct perf_event *event)
5031 {
5032 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
5033 
5034 	if (!ctx->task) {
5035 		/*
5036 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
5037 		 * relies on the fact that find_get_pmu_context() cannot fail
5038 		 * for CPU contexts.
5039 		 */
5040 		struct perf_cpu_pmu_context *cpc;
5041 
5042 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
5043 		epc = &cpc->epc;
5044 		raw_spin_lock_irq(&ctx->lock);
5045 		if (!epc->ctx) {
5046 			/*
5047 			 * One extra reference for the pmu; see perf_pmu_free().
5048 			 */
5049 			atomic_set(&epc->refcount, 2);
5050 			epc->embedded = 1;
5051 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5052 			epc->ctx = ctx;
5053 		} else {
5054 			WARN_ON_ONCE(epc->ctx != ctx);
5055 			atomic_inc(&epc->refcount);
5056 		}
5057 		raw_spin_unlock_irq(&ctx->lock);
5058 		return epc;
5059 	}
5060 
5061 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
5062 	if (!new)
5063 		return ERR_PTR(-ENOMEM);
5064 
5065 	__perf_init_event_pmu_context(new, pmu);
5066 
5067 	/*
5068 	 * XXX
5069 	 *
5070 	 * lockdep_assert_held(&ctx->mutex);
5071 	 *
5072 	 * can't because perf_event_init_task() doesn't actually hold the
5073 	 * child_ctx->mutex.
5074 	 */
5075 
5076 	raw_spin_lock_irq(&ctx->lock);
5077 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5078 		if (epc->pmu == pmu) {
5079 			WARN_ON_ONCE(epc->ctx != ctx);
5080 			atomic_inc(&epc->refcount);
5081 			goto found_epc;
5082 		}
5083 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5084 		if (!pos && epc->pmu->type > pmu->type)
5085 			pos = epc;
5086 	}
5087 
5088 	epc = new;
5089 	new = NULL;
5090 
5091 	if (!pos)
5092 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5093 	else
5094 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5095 
5096 	epc->ctx = ctx;
5097 
5098 found_epc:
5099 	raw_spin_unlock_irq(&ctx->lock);
5100 	kfree(new);
5101 
5102 	return epc;
5103 }
5104 
get_pmu_ctx(struct perf_event_pmu_context * epc)5105 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5106 {
5107 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5108 }
5109 
free_cpc_rcu(struct rcu_head * head)5110 static void free_cpc_rcu(struct rcu_head *head)
5111 {
5112 	struct perf_cpu_pmu_context *cpc =
5113 		container_of(head, typeof(*cpc), epc.rcu_head);
5114 
5115 	kfree(cpc);
5116 }
5117 
free_epc_rcu(struct rcu_head * head)5118 static void free_epc_rcu(struct rcu_head *head)
5119 {
5120 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5121 
5122 	kfree(epc);
5123 }
5124 
put_pmu_ctx(struct perf_event_pmu_context * epc)5125 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5126 {
5127 	struct perf_event_context *ctx = epc->ctx;
5128 	unsigned long flags;
5129 
5130 	/*
5131 	 * XXX
5132 	 *
5133 	 * lockdep_assert_held(&ctx->mutex);
5134 	 *
5135 	 * can't because of the call-site in _free_event()/put_event()
5136 	 * which isn't always called under ctx->mutex.
5137 	 */
5138 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5139 		return;
5140 
5141 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5142 
5143 	list_del_init(&epc->pmu_ctx_entry);
5144 	epc->ctx = NULL;
5145 
5146 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5147 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5148 
5149 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5150 
5151 	if (epc->embedded) {
5152 		call_rcu(&epc->rcu_head, free_cpc_rcu);
5153 		return;
5154 	}
5155 
5156 	call_rcu(&epc->rcu_head, free_epc_rcu);
5157 }
5158 
5159 static void perf_event_free_filter(struct perf_event *event);
5160 
free_event_rcu(struct rcu_head * head)5161 static void free_event_rcu(struct rcu_head *head)
5162 {
5163 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5164 
5165 	if (event->ns)
5166 		put_pid_ns(event->ns);
5167 	perf_event_free_filter(event);
5168 	kmem_cache_free(perf_event_cache, event);
5169 }
5170 
5171 static void ring_buffer_attach(struct perf_event *event,
5172 			       struct perf_buffer *rb);
5173 
detach_sb_event(struct perf_event * event)5174 static void detach_sb_event(struct perf_event *event)
5175 {
5176 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5177 
5178 	raw_spin_lock(&pel->lock);
5179 	list_del_rcu(&event->sb_list);
5180 	raw_spin_unlock(&pel->lock);
5181 }
5182 
is_sb_event(struct perf_event * event)5183 static bool is_sb_event(struct perf_event *event)
5184 {
5185 	struct perf_event_attr *attr = &event->attr;
5186 
5187 	if (event->parent)
5188 		return false;
5189 
5190 	if (event->attach_state & PERF_ATTACH_TASK)
5191 		return false;
5192 
5193 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5194 	    attr->comm || attr->comm_exec ||
5195 	    attr->task || attr->ksymbol ||
5196 	    attr->context_switch || attr->text_poke ||
5197 	    attr->bpf_event)
5198 		return true;
5199 
5200 	return false;
5201 }
5202 
unaccount_pmu_sb_event(struct perf_event * event)5203 static void unaccount_pmu_sb_event(struct perf_event *event)
5204 {
5205 	if (is_sb_event(event))
5206 		detach_sb_event(event);
5207 }
5208 
5209 #ifdef CONFIG_NO_HZ_FULL
5210 static DEFINE_SPINLOCK(nr_freq_lock);
5211 #endif
5212 
unaccount_freq_event_nohz(void)5213 static void unaccount_freq_event_nohz(void)
5214 {
5215 #ifdef CONFIG_NO_HZ_FULL
5216 	spin_lock(&nr_freq_lock);
5217 	if (atomic_dec_and_test(&nr_freq_events))
5218 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5219 	spin_unlock(&nr_freq_lock);
5220 #endif
5221 }
5222 
unaccount_freq_event(void)5223 static void unaccount_freq_event(void)
5224 {
5225 	if (tick_nohz_full_enabled())
5226 		unaccount_freq_event_nohz();
5227 	else
5228 		atomic_dec(&nr_freq_events);
5229 }
5230 
5231 
5232 static struct perf_ctx_data *
alloc_perf_ctx_data(struct kmem_cache * ctx_cache,bool global)5233 alloc_perf_ctx_data(struct kmem_cache *ctx_cache, bool global)
5234 {
5235 	struct perf_ctx_data *cd;
5236 
5237 	cd = kzalloc(sizeof(*cd), GFP_KERNEL);
5238 	if (!cd)
5239 		return NULL;
5240 
5241 	cd->data = kmem_cache_zalloc(ctx_cache, GFP_KERNEL);
5242 	if (!cd->data) {
5243 		kfree(cd);
5244 		return NULL;
5245 	}
5246 
5247 	cd->global = global;
5248 	cd->ctx_cache = ctx_cache;
5249 	refcount_set(&cd->refcount, 1);
5250 
5251 	return cd;
5252 }
5253 
free_perf_ctx_data(struct perf_ctx_data * cd)5254 static void free_perf_ctx_data(struct perf_ctx_data *cd)
5255 {
5256 	kmem_cache_free(cd->ctx_cache, cd->data);
5257 	kfree(cd);
5258 }
5259 
__free_perf_ctx_data_rcu(struct rcu_head * rcu_head)5260 static void __free_perf_ctx_data_rcu(struct rcu_head *rcu_head)
5261 {
5262 	struct perf_ctx_data *cd;
5263 
5264 	cd = container_of(rcu_head, struct perf_ctx_data, rcu_head);
5265 	free_perf_ctx_data(cd);
5266 }
5267 
perf_free_ctx_data_rcu(struct perf_ctx_data * cd)5268 static inline void perf_free_ctx_data_rcu(struct perf_ctx_data *cd)
5269 {
5270 	call_rcu(&cd->rcu_head, __free_perf_ctx_data_rcu);
5271 }
5272 
5273 static int
attach_task_ctx_data(struct task_struct * task,struct kmem_cache * ctx_cache,bool global)5274 attach_task_ctx_data(struct task_struct *task, struct kmem_cache *ctx_cache,
5275 		     bool global)
5276 {
5277 	struct perf_ctx_data *cd, *old = NULL;
5278 
5279 	cd = alloc_perf_ctx_data(ctx_cache, global);
5280 	if (!cd)
5281 		return -ENOMEM;
5282 
5283 	for (;;) {
5284 		if (try_cmpxchg((struct perf_ctx_data **)&task->perf_ctx_data, &old, cd)) {
5285 			if (old)
5286 				perf_free_ctx_data_rcu(old);
5287 			return 0;
5288 		}
5289 
5290 		if (!old) {
5291 			/*
5292 			 * After seeing a dead @old, we raced with
5293 			 * removal and lost, try again to install @cd.
5294 			 */
5295 			continue;
5296 		}
5297 
5298 		if (refcount_inc_not_zero(&old->refcount)) {
5299 			free_perf_ctx_data(cd); /* unused */
5300 			return 0;
5301 		}
5302 
5303 		/*
5304 		 * @old is a dead object, refcount==0 is stable, try and
5305 		 * replace it with @cd.
5306 		 */
5307 	}
5308 	return 0;
5309 }
5310 
5311 static void __detach_global_ctx_data(void);
5312 DEFINE_STATIC_PERCPU_RWSEM(global_ctx_data_rwsem);
5313 static refcount_t global_ctx_data_ref;
5314 
5315 static int
attach_global_ctx_data(struct kmem_cache * ctx_cache)5316 attach_global_ctx_data(struct kmem_cache *ctx_cache)
5317 {
5318 	struct task_struct *g, *p;
5319 	struct perf_ctx_data *cd;
5320 	int ret;
5321 
5322 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5323 		return 0;
5324 
5325 	guard(percpu_write)(&global_ctx_data_rwsem);
5326 	if (refcount_inc_not_zero(&global_ctx_data_ref))
5327 		return 0;
5328 again:
5329 	/* Allocate everything */
5330 	scoped_guard (rcu) {
5331 		for_each_process_thread(g, p) {
5332 			cd = rcu_dereference(p->perf_ctx_data);
5333 			if (cd && !cd->global) {
5334 				cd->global = 1;
5335 				if (!refcount_inc_not_zero(&cd->refcount))
5336 					cd = NULL;
5337 			}
5338 			if (!cd) {
5339 				get_task_struct(p);
5340 				goto alloc;
5341 			}
5342 		}
5343 	}
5344 
5345 	refcount_set(&global_ctx_data_ref, 1);
5346 
5347 	return 0;
5348 alloc:
5349 	ret = attach_task_ctx_data(p, ctx_cache, true);
5350 	put_task_struct(p);
5351 	if (ret) {
5352 		__detach_global_ctx_data();
5353 		return ret;
5354 	}
5355 	goto again;
5356 }
5357 
5358 static int
attach_perf_ctx_data(struct perf_event * event)5359 attach_perf_ctx_data(struct perf_event *event)
5360 {
5361 	struct task_struct *task = event->hw.target;
5362 	struct kmem_cache *ctx_cache = event->pmu->task_ctx_cache;
5363 	int ret;
5364 
5365 	if (!ctx_cache)
5366 		return -ENOMEM;
5367 
5368 	if (task)
5369 		return attach_task_ctx_data(task, ctx_cache, false);
5370 
5371 	ret = attach_global_ctx_data(ctx_cache);
5372 	if (ret)
5373 		return ret;
5374 
5375 	event->attach_state |= PERF_ATTACH_GLOBAL_DATA;
5376 	return 0;
5377 }
5378 
5379 static void
detach_task_ctx_data(struct task_struct * p)5380 detach_task_ctx_data(struct task_struct *p)
5381 {
5382 	struct perf_ctx_data *cd;
5383 
5384 	scoped_guard (rcu) {
5385 		cd = rcu_dereference(p->perf_ctx_data);
5386 		if (!cd || !refcount_dec_and_test(&cd->refcount))
5387 			return;
5388 	}
5389 
5390 	/*
5391 	 * The old ctx_data may be lost because of the race.
5392 	 * Nothing is required to do for the case.
5393 	 * See attach_task_ctx_data().
5394 	 */
5395 	if (try_cmpxchg((struct perf_ctx_data **)&p->perf_ctx_data, &cd, NULL))
5396 		perf_free_ctx_data_rcu(cd);
5397 }
5398 
__detach_global_ctx_data(void)5399 static void __detach_global_ctx_data(void)
5400 {
5401 	struct task_struct *g, *p;
5402 	struct perf_ctx_data *cd;
5403 
5404 again:
5405 	scoped_guard (rcu) {
5406 		for_each_process_thread(g, p) {
5407 			cd = rcu_dereference(p->perf_ctx_data);
5408 			if (!cd || !cd->global)
5409 				continue;
5410 			cd->global = 0;
5411 			get_task_struct(p);
5412 			goto detach;
5413 		}
5414 	}
5415 	return;
5416 detach:
5417 	detach_task_ctx_data(p);
5418 	put_task_struct(p);
5419 	goto again;
5420 }
5421 
detach_global_ctx_data(void)5422 static void detach_global_ctx_data(void)
5423 {
5424 	if (refcount_dec_not_one(&global_ctx_data_ref))
5425 		return;
5426 
5427 	guard(percpu_write)(&global_ctx_data_rwsem);
5428 	if (!refcount_dec_and_test(&global_ctx_data_ref))
5429 		return;
5430 
5431 	/* remove everything */
5432 	__detach_global_ctx_data();
5433 }
5434 
detach_perf_ctx_data(struct perf_event * event)5435 static void detach_perf_ctx_data(struct perf_event *event)
5436 {
5437 	struct task_struct *task = event->hw.target;
5438 
5439 	event->attach_state &= ~PERF_ATTACH_TASK_DATA;
5440 
5441 	if (task)
5442 		return detach_task_ctx_data(task);
5443 
5444 	if (event->attach_state & PERF_ATTACH_GLOBAL_DATA) {
5445 		detach_global_ctx_data();
5446 		event->attach_state &= ~PERF_ATTACH_GLOBAL_DATA;
5447 	}
5448 }
5449 
unaccount_event(struct perf_event * event)5450 static void unaccount_event(struct perf_event *event)
5451 {
5452 	bool dec = false;
5453 
5454 	if (event->parent)
5455 		return;
5456 
5457 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5458 		dec = true;
5459 	if (event->attr.mmap || event->attr.mmap_data)
5460 		atomic_dec(&nr_mmap_events);
5461 	if (event->attr.build_id)
5462 		atomic_dec(&nr_build_id_events);
5463 	if (event->attr.comm)
5464 		atomic_dec(&nr_comm_events);
5465 	if (event->attr.namespaces)
5466 		atomic_dec(&nr_namespaces_events);
5467 	if (event->attr.cgroup)
5468 		atomic_dec(&nr_cgroup_events);
5469 	if (event->attr.task)
5470 		atomic_dec(&nr_task_events);
5471 	if (event->attr.freq)
5472 		unaccount_freq_event();
5473 	if (event->attr.context_switch) {
5474 		dec = true;
5475 		atomic_dec(&nr_switch_events);
5476 	}
5477 	if (is_cgroup_event(event))
5478 		dec = true;
5479 	if (has_branch_stack(event))
5480 		dec = true;
5481 	if (event->attr.ksymbol)
5482 		atomic_dec(&nr_ksymbol_events);
5483 	if (event->attr.bpf_event)
5484 		atomic_dec(&nr_bpf_events);
5485 	if (event->attr.text_poke)
5486 		atomic_dec(&nr_text_poke_events);
5487 
5488 	if (dec) {
5489 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5490 			schedule_delayed_work(&perf_sched_work, HZ);
5491 	}
5492 
5493 	unaccount_pmu_sb_event(event);
5494 }
5495 
perf_sched_delayed(struct work_struct * work)5496 static void perf_sched_delayed(struct work_struct *work)
5497 {
5498 	mutex_lock(&perf_sched_mutex);
5499 	if (atomic_dec_and_test(&perf_sched_count))
5500 		static_branch_disable(&perf_sched_events);
5501 	mutex_unlock(&perf_sched_mutex);
5502 }
5503 
5504 /*
5505  * The following implement mutual exclusion of events on "exclusive" pmus
5506  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5507  * at a time, so we disallow creating events that might conflict, namely:
5508  *
5509  *  1) cpu-wide events in the presence of per-task events,
5510  *  2) per-task events in the presence of cpu-wide events,
5511  *  3) two matching events on the same perf_event_context.
5512  *
5513  * The former two cases are handled in the allocation path (perf_event_alloc(),
5514  * _free_event()), the latter -- before the first perf_install_in_context().
5515  */
exclusive_event_init(struct perf_event * event)5516 static int exclusive_event_init(struct perf_event *event)
5517 {
5518 	struct pmu *pmu = event->pmu;
5519 
5520 	if (!is_exclusive_pmu(pmu))
5521 		return 0;
5522 
5523 	/*
5524 	 * Prevent co-existence of per-task and cpu-wide events on the
5525 	 * same exclusive pmu.
5526 	 *
5527 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5528 	 * events on this "exclusive" pmu, positive means there are
5529 	 * per-task events.
5530 	 *
5531 	 * Since this is called in perf_event_alloc() path, event::ctx
5532 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5533 	 * to mean "per-task event", because unlike other attach states it
5534 	 * never gets cleared.
5535 	 */
5536 	if (event->attach_state & PERF_ATTACH_TASK) {
5537 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5538 			return -EBUSY;
5539 	} else {
5540 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5541 			return -EBUSY;
5542 	}
5543 
5544 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5545 
5546 	return 0;
5547 }
5548 
exclusive_event_destroy(struct perf_event * event)5549 static void exclusive_event_destroy(struct perf_event *event)
5550 {
5551 	struct pmu *pmu = event->pmu;
5552 
5553 	/* see comment in exclusive_event_init() */
5554 	if (event->attach_state & PERF_ATTACH_TASK)
5555 		atomic_dec(&pmu->exclusive_cnt);
5556 	else
5557 		atomic_inc(&pmu->exclusive_cnt);
5558 
5559 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5560 }
5561 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5562 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5563 {
5564 	if ((e1->pmu == e2->pmu) &&
5565 	    (e1->cpu == e2->cpu ||
5566 	     e1->cpu == -1 ||
5567 	     e2->cpu == -1))
5568 		return true;
5569 	return false;
5570 }
5571 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5572 static bool exclusive_event_installable(struct perf_event *event,
5573 					struct perf_event_context *ctx)
5574 {
5575 	struct perf_event *iter_event;
5576 	struct pmu *pmu = event->pmu;
5577 
5578 	lockdep_assert_held(&ctx->mutex);
5579 
5580 	if (!is_exclusive_pmu(pmu))
5581 		return true;
5582 
5583 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5584 		if (exclusive_event_match(iter_event, event))
5585 			return false;
5586 	}
5587 
5588 	return true;
5589 }
5590 
5591 static void perf_free_addr_filters(struct perf_event *event);
5592 
5593 /* vs perf_event_alloc() error */
__free_event(struct perf_event * event)5594 static void __free_event(struct perf_event *event)
5595 {
5596 	struct pmu *pmu = event->pmu;
5597 
5598 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5599 		put_callchain_buffers();
5600 
5601 	kfree(event->addr_filter_ranges);
5602 
5603 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5604 		exclusive_event_destroy(event);
5605 
5606 	if (is_cgroup_event(event))
5607 		perf_detach_cgroup(event);
5608 
5609 	if (event->attach_state & PERF_ATTACH_TASK_DATA)
5610 		detach_perf_ctx_data(event);
5611 
5612 	if (event->destroy)
5613 		event->destroy(event);
5614 
5615 	/*
5616 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5617 	 * hw.target.
5618 	 */
5619 	if (event->hw.target)
5620 		put_task_struct(event->hw.target);
5621 
5622 	if (event->pmu_ctx) {
5623 		/*
5624 		 * put_pmu_ctx() needs an event->ctx reference, because of
5625 		 * epc->ctx.
5626 		 */
5627 		WARN_ON_ONCE(!pmu);
5628 		WARN_ON_ONCE(!event->ctx);
5629 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5630 		put_pmu_ctx(event->pmu_ctx);
5631 	}
5632 
5633 	/*
5634 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5635 	 * particular all task references must be cleaned up.
5636 	 */
5637 	if (event->ctx)
5638 		put_ctx(event->ctx);
5639 
5640 	if (pmu) {
5641 		module_put(pmu->module);
5642 		scoped_guard (spinlock, &pmu->events_lock) {
5643 			list_del(&event->pmu_list);
5644 			wake_up_var(pmu);
5645 		}
5646 	}
5647 
5648 	call_rcu(&event->rcu_head, free_event_rcu);
5649 }
5650 
DEFINE_FREE(__free_event,struct perf_event *,if (_T)__free_event (_T))5651 DEFINE_FREE(__free_event, struct perf_event *, if (_T) __free_event(_T))
5652 
5653 /* vs perf_event_alloc() success */
5654 static void _free_event(struct perf_event *event)
5655 {
5656 	irq_work_sync(&event->pending_irq);
5657 	irq_work_sync(&event->pending_disable_irq);
5658 
5659 	unaccount_event(event);
5660 
5661 	security_perf_event_free(event);
5662 
5663 	if (event->rb) {
5664 		/*
5665 		 * Can happen when we close an event with re-directed output.
5666 		 *
5667 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5668 		 * over us; possibly making our ring_buffer_put() the last.
5669 		 */
5670 		mutex_lock(&event->mmap_mutex);
5671 		ring_buffer_attach(event, NULL);
5672 		mutex_unlock(&event->mmap_mutex);
5673 	}
5674 
5675 	perf_event_free_bpf_prog(event);
5676 	perf_free_addr_filters(event);
5677 
5678 	__free_event(event);
5679 }
5680 
5681 /*
5682  * Used to free events which have a known refcount of 1, such as in error paths
5683  * of inherited events.
5684  */
free_event(struct perf_event * event)5685 static void free_event(struct perf_event *event)
5686 {
5687 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5688 				     "unexpected event refcount: %ld; ptr=%p\n",
5689 				     atomic_long_read(&event->refcount), event)) {
5690 		/* leak to avoid use-after-free */
5691 		return;
5692 	}
5693 
5694 	_free_event(event);
5695 }
5696 
5697 /*
5698  * Remove user event from the owner task.
5699  */
perf_remove_from_owner(struct perf_event * event)5700 static void perf_remove_from_owner(struct perf_event *event)
5701 {
5702 	struct task_struct *owner;
5703 
5704 	rcu_read_lock();
5705 	/*
5706 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5707 	 * observe !owner it means the list deletion is complete and we can
5708 	 * indeed free this event, otherwise we need to serialize on
5709 	 * owner->perf_event_mutex.
5710 	 */
5711 	owner = READ_ONCE(event->owner);
5712 	if (owner) {
5713 		/*
5714 		 * Since delayed_put_task_struct() also drops the last
5715 		 * task reference we can safely take a new reference
5716 		 * while holding the rcu_read_lock().
5717 		 */
5718 		get_task_struct(owner);
5719 	}
5720 	rcu_read_unlock();
5721 
5722 	if (owner) {
5723 		/*
5724 		 * If we're here through perf_event_exit_task() we're already
5725 		 * holding ctx->mutex which would be an inversion wrt. the
5726 		 * normal lock order.
5727 		 *
5728 		 * However we can safely take this lock because its the child
5729 		 * ctx->mutex.
5730 		 */
5731 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5732 
5733 		/*
5734 		 * We have to re-check the event->owner field, if it is cleared
5735 		 * we raced with perf_event_exit_task(), acquiring the mutex
5736 		 * ensured they're done, and we can proceed with freeing the
5737 		 * event.
5738 		 */
5739 		if (event->owner) {
5740 			list_del_init(&event->owner_entry);
5741 			smp_store_release(&event->owner, NULL);
5742 		}
5743 		mutex_unlock(&owner->perf_event_mutex);
5744 		put_task_struct(owner);
5745 	}
5746 }
5747 
put_event(struct perf_event * event)5748 static void put_event(struct perf_event *event)
5749 {
5750 	struct perf_event *parent;
5751 
5752 	if (!atomic_long_dec_and_test(&event->refcount))
5753 		return;
5754 
5755 	parent = event->parent;
5756 	_free_event(event);
5757 
5758 	/* Matches the refcount bump in inherit_event() */
5759 	if (parent)
5760 		put_event(parent);
5761 }
5762 
5763 /*
5764  * Kill an event dead; while event:refcount will preserve the event
5765  * object, it will not preserve its functionality. Once the last 'user'
5766  * gives up the object, we'll destroy the thing.
5767  */
perf_event_release_kernel(struct perf_event * event)5768 int perf_event_release_kernel(struct perf_event *event)
5769 {
5770 	struct perf_event_context *ctx = event->ctx;
5771 	struct perf_event *child, *tmp;
5772 
5773 	/*
5774 	 * If we got here through err_alloc: free_event(event); we will not
5775 	 * have attached to a context yet.
5776 	 */
5777 	if (!ctx) {
5778 		WARN_ON_ONCE(event->attach_state &
5779 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5780 		goto no_ctx;
5781 	}
5782 
5783 	if (!is_kernel_event(event))
5784 		perf_remove_from_owner(event);
5785 
5786 	ctx = perf_event_ctx_lock(event);
5787 	WARN_ON_ONCE(ctx->parent_ctx);
5788 
5789 	/*
5790 	 * Mark this event as STATE_DEAD, there is no external reference to it
5791 	 * anymore.
5792 	 *
5793 	 * Anybody acquiring event->child_mutex after the below loop _must_
5794 	 * also see this, most importantly inherit_event() which will avoid
5795 	 * placing more children on the list.
5796 	 *
5797 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5798 	 * child events.
5799 	 */
5800 	if (event->state > PERF_EVENT_STATE_REVOKED) {
5801 		perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5802 	} else {
5803 		event->state = PERF_EVENT_STATE_DEAD;
5804 	}
5805 
5806 	perf_event_ctx_unlock(event, ctx);
5807 
5808 again:
5809 	mutex_lock(&event->child_mutex);
5810 	list_for_each_entry(child, &event->child_list, child_list) {
5811 		/*
5812 		 * Cannot change, child events are not migrated, see the
5813 		 * comment with perf_event_ctx_lock_nested().
5814 		 */
5815 		ctx = READ_ONCE(child->ctx);
5816 		/*
5817 		 * Since child_mutex nests inside ctx::mutex, we must jump
5818 		 * through hoops. We start by grabbing a reference on the ctx.
5819 		 *
5820 		 * Since the event cannot get freed while we hold the
5821 		 * child_mutex, the context must also exist and have a !0
5822 		 * reference count.
5823 		 */
5824 		get_ctx(ctx);
5825 
5826 		/*
5827 		 * Now that we have a ctx ref, we can drop child_mutex, and
5828 		 * acquire ctx::mutex without fear of it going away. Then we
5829 		 * can re-acquire child_mutex.
5830 		 */
5831 		mutex_unlock(&event->child_mutex);
5832 		mutex_lock(&ctx->mutex);
5833 		mutex_lock(&event->child_mutex);
5834 
5835 		/*
5836 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5837 		 * state, if child is still the first entry, it didn't get freed
5838 		 * and we can continue doing so.
5839 		 */
5840 		tmp = list_first_entry_or_null(&event->child_list,
5841 					       struct perf_event, child_list);
5842 		if (tmp == child) {
5843 			perf_remove_from_context(child, DETACH_GROUP | DETACH_CHILD);
5844 		} else {
5845 			child = NULL;
5846 		}
5847 
5848 		mutex_unlock(&event->child_mutex);
5849 		mutex_unlock(&ctx->mutex);
5850 
5851 		if (child) {
5852 			/* Last reference unless ->pending_task work is pending */
5853 			put_event(child);
5854 		}
5855 		put_ctx(ctx);
5856 
5857 		goto again;
5858 	}
5859 	mutex_unlock(&event->child_mutex);
5860 
5861 no_ctx:
5862 	/*
5863 	 * Last reference unless ->pending_task work is pending on this event
5864 	 * or any of its children.
5865 	 */
5866 	put_event(event);
5867 	return 0;
5868 }
5869 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5870 
5871 /*
5872  * Called when the last reference to the file is gone.
5873  */
perf_release(struct inode * inode,struct file * file)5874 static int perf_release(struct inode *inode, struct file *file)
5875 {
5876 	perf_event_release_kernel(file->private_data);
5877 	return 0;
5878 }
5879 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5880 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5881 {
5882 	struct perf_event *child;
5883 	u64 total = 0;
5884 
5885 	*enabled = 0;
5886 	*running = 0;
5887 
5888 	mutex_lock(&event->child_mutex);
5889 
5890 	(void)perf_event_read(event, false);
5891 	total += perf_event_count(event, false);
5892 
5893 	*enabled += event->total_time_enabled +
5894 			atomic64_read(&event->child_total_time_enabled);
5895 	*running += event->total_time_running +
5896 			atomic64_read(&event->child_total_time_running);
5897 
5898 	list_for_each_entry(child, &event->child_list, child_list) {
5899 		(void)perf_event_read(child, false);
5900 		total += perf_event_count(child, false);
5901 		*enabled += child->total_time_enabled;
5902 		*running += child->total_time_running;
5903 	}
5904 	mutex_unlock(&event->child_mutex);
5905 
5906 	return total;
5907 }
5908 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5909 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5910 {
5911 	struct perf_event_context *ctx;
5912 	u64 count;
5913 
5914 	ctx = perf_event_ctx_lock(event);
5915 	count = __perf_event_read_value(event, enabled, running);
5916 	perf_event_ctx_unlock(event, ctx);
5917 
5918 	return count;
5919 }
5920 EXPORT_SYMBOL_GPL(perf_event_read_value);
5921 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5922 static int __perf_read_group_add(struct perf_event *leader,
5923 					u64 read_format, u64 *values)
5924 {
5925 	struct perf_event_context *ctx = leader->ctx;
5926 	struct perf_event *sub, *parent;
5927 	unsigned long flags;
5928 	int n = 1; /* skip @nr */
5929 	int ret;
5930 
5931 	ret = perf_event_read(leader, true);
5932 	if (ret)
5933 		return ret;
5934 
5935 	raw_spin_lock_irqsave(&ctx->lock, flags);
5936 	/*
5937 	 * Verify the grouping between the parent and child (inherited)
5938 	 * events is still in tact.
5939 	 *
5940 	 * Specifically:
5941 	 *  - leader->ctx->lock pins leader->sibling_list
5942 	 *  - parent->child_mutex pins parent->child_list
5943 	 *  - parent->ctx->mutex pins parent->sibling_list
5944 	 *
5945 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5946 	 * ctx->mutex), group destruction is not atomic between children, also
5947 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5948 	 * group.
5949 	 *
5950 	 * Therefore it is possible to have parent and child groups in a
5951 	 * different configuration and summing over such a beast makes no sense
5952 	 * what so ever.
5953 	 *
5954 	 * Reject this.
5955 	 */
5956 	parent = leader->parent;
5957 	if (parent &&
5958 	    (parent->group_generation != leader->group_generation ||
5959 	     parent->nr_siblings != leader->nr_siblings)) {
5960 		ret = -ECHILD;
5961 		goto unlock;
5962 	}
5963 
5964 	/*
5965 	 * Since we co-schedule groups, {enabled,running} times of siblings
5966 	 * will be identical to those of the leader, so we only publish one
5967 	 * set.
5968 	 */
5969 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5970 		values[n++] += leader->total_time_enabled +
5971 			atomic64_read(&leader->child_total_time_enabled);
5972 	}
5973 
5974 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5975 		values[n++] += leader->total_time_running +
5976 			atomic64_read(&leader->child_total_time_running);
5977 	}
5978 
5979 	/*
5980 	 * Write {count,id} tuples for every sibling.
5981 	 */
5982 	values[n++] += perf_event_count(leader, false);
5983 	if (read_format & PERF_FORMAT_ID)
5984 		values[n++] = primary_event_id(leader);
5985 	if (read_format & PERF_FORMAT_LOST)
5986 		values[n++] = atomic64_read(&leader->lost_samples);
5987 
5988 	for_each_sibling_event(sub, leader) {
5989 		values[n++] += perf_event_count(sub, false);
5990 		if (read_format & PERF_FORMAT_ID)
5991 			values[n++] = primary_event_id(sub);
5992 		if (read_format & PERF_FORMAT_LOST)
5993 			values[n++] = atomic64_read(&sub->lost_samples);
5994 	}
5995 
5996 unlock:
5997 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5998 	return ret;
5999 }
6000 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)6001 static int perf_read_group(struct perf_event *event,
6002 				   u64 read_format, char __user *buf)
6003 {
6004 	struct perf_event *leader = event->group_leader, *child;
6005 	struct perf_event_context *ctx = leader->ctx;
6006 	int ret;
6007 	u64 *values;
6008 
6009 	lockdep_assert_held(&ctx->mutex);
6010 
6011 	values = kzalloc(event->read_size, GFP_KERNEL);
6012 	if (!values)
6013 		return -ENOMEM;
6014 
6015 	values[0] = 1 + leader->nr_siblings;
6016 
6017 	mutex_lock(&leader->child_mutex);
6018 
6019 	ret = __perf_read_group_add(leader, read_format, values);
6020 	if (ret)
6021 		goto unlock;
6022 
6023 	list_for_each_entry(child, &leader->child_list, child_list) {
6024 		ret = __perf_read_group_add(child, read_format, values);
6025 		if (ret)
6026 			goto unlock;
6027 	}
6028 
6029 	mutex_unlock(&leader->child_mutex);
6030 
6031 	ret = event->read_size;
6032 	if (copy_to_user(buf, values, event->read_size))
6033 		ret = -EFAULT;
6034 	goto out;
6035 
6036 unlock:
6037 	mutex_unlock(&leader->child_mutex);
6038 out:
6039 	kfree(values);
6040 	return ret;
6041 }
6042 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)6043 static int perf_read_one(struct perf_event *event,
6044 				 u64 read_format, char __user *buf)
6045 {
6046 	u64 enabled, running;
6047 	u64 values[5];
6048 	int n = 0;
6049 
6050 	values[n++] = __perf_event_read_value(event, &enabled, &running);
6051 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6052 		values[n++] = enabled;
6053 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6054 		values[n++] = running;
6055 	if (read_format & PERF_FORMAT_ID)
6056 		values[n++] = primary_event_id(event);
6057 	if (read_format & PERF_FORMAT_LOST)
6058 		values[n++] = atomic64_read(&event->lost_samples);
6059 
6060 	if (copy_to_user(buf, values, n * sizeof(u64)))
6061 		return -EFAULT;
6062 
6063 	return n * sizeof(u64);
6064 }
6065 
is_event_hup(struct perf_event * event)6066 static bool is_event_hup(struct perf_event *event)
6067 {
6068 	bool no_children;
6069 
6070 	if (event->state > PERF_EVENT_STATE_EXIT)
6071 		return false;
6072 
6073 	mutex_lock(&event->child_mutex);
6074 	no_children = list_empty(&event->child_list);
6075 	mutex_unlock(&event->child_mutex);
6076 	return no_children;
6077 }
6078 
6079 /*
6080  * Read the performance event - simple non blocking version for now
6081  */
6082 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)6083 __perf_read(struct perf_event *event, char __user *buf, size_t count)
6084 {
6085 	u64 read_format = event->attr.read_format;
6086 	int ret;
6087 
6088 	/*
6089 	 * Return end-of-file for a read on an event that is in
6090 	 * error state (i.e. because it was pinned but it couldn't be
6091 	 * scheduled on to the CPU at some point).
6092 	 */
6093 	if (event->state == PERF_EVENT_STATE_ERROR)
6094 		return 0;
6095 
6096 	if (count < event->read_size)
6097 		return -ENOSPC;
6098 
6099 	WARN_ON_ONCE(event->ctx->parent_ctx);
6100 	if (read_format & PERF_FORMAT_GROUP)
6101 		ret = perf_read_group(event, read_format, buf);
6102 	else
6103 		ret = perf_read_one(event, read_format, buf);
6104 
6105 	return ret;
6106 }
6107 
6108 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)6109 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
6110 {
6111 	struct perf_event *event = file->private_data;
6112 	struct perf_event_context *ctx;
6113 	int ret;
6114 
6115 	ret = security_perf_event_read(event);
6116 	if (ret)
6117 		return ret;
6118 
6119 	ctx = perf_event_ctx_lock(event);
6120 	ret = __perf_read(event, buf, count);
6121 	perf_event_ctx_unlock(event, ctx);
6122 
6123 	return ret;
6124 }
6125 
perf_poll(struct file * file,poll_table * wait)6126 static __poll_t perf_poll(struct file *file, poll_table *wait)
6127 {
6128 	struct perf_event *event = file->private_data;
6129 	struct perf_buffer *rb;
6130 	__poll_t events = EPOLLHUP;
6131 
6132 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6133 		return EPOLLERR;
6134 
6135 	poll_wait(file, &event->waitq, wait);
6136 
6137 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6138 		return EPOLLERR;
6139 
6140 	if (is_event_hup(event))
6141 		return events;
6142 
6143 	if (unlikely(READ_ONCE(event->state) == PERF_EVENT_STATE_ERROR &&
6144 		     event->attr.pinned))
6145 		return EPOLLERR;
6146 
6147 	/*
6148 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
6149 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
6150 	 */
6151 	mutex_lock(&event->mmap_mutex);
6152 	rb = event->rb;
6153 	if (rb)
6154 		events = atomic_xchg(&rb->poll, 0);
6155 	mutex_unlock(&event->mmap_mutex);
6156 	return events;
6157 }
6158 
_perf_event_reset(struct perf_event * event)6159 static void _perf_event_reset(struct perf_event *event)
6160 {
6161 	(void)perf_event_read(event, false);
6162 	local64_set(&event->count, 0);
6163 	perf_event_update_userpage(event);
6164 }
6165 
6166 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)6167 u64 perf_event_pause(struct perf_event *event, bool reset)
6168 {
6169 	struct perf_event_context *ctx;
6170 	u64 count;
6171 
6172 	ctx = perf_event_ctx_lock(event);
6173 	WARN_ON_ONCE(event->attr.inherit);
6174 	_perf_event_disable(event);
6175 	count = local64_read(&event->count);
6176 	if (reset)
6177 		local64_set(&event->count, 0);
6178 	perf_event_ctx_unlock(event, ctx);
6179 
6180 	return count;
6181 }
6182 EXPORT_SYMBOL_GPL(perf_event_pause);
6183 
6184 /*
6185  * Holding the top-level event's child_mutex means that any
6186  * descendant process that has inherited this event will block
6187  * in perf_event_exit_event() if it goes to exit, thus satisfying the
6188  * task existence requirements of perf_event_enable/disable.
6189  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))6190 static void perf_event_for_each_child(struct perf_event *event,
6191 					void (*func)(struct perf_event *))
6192 {
6193 	struct perf_event *child;
6194 
6195 	WARN_ON_ONCE(event->ctx->parent_ctx);
6196 
6197 	mutex_lock(&event->child_mutex);
6198 	func(event);
6199 	list_for_each_entry(child, &event->child_list, child_list)
6200 		func(child);
6201 	mutex_unlock(&event->child_mutex);
6202 }
6203 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))6204 static void perf_event_for_each(struct perf_event *event,
6205 				  void (*func)(struct perf_event *))
6206 {
6207 	struct perf_event_context *ctx = event->ctx;
6208 	struct perf_event *sibling;
6209 
6210 	lockdep_assert_held(&ctx->mutex);
6211 
6212 	event = event->group_leader;
6213 
6214 	perf_event_for_each_child(event, func);
6215 	for_each_sibling_event(sibling, event)
6216 		perf_event_for_each_child(sibling, func);
6217 }
6218 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)6219 static void __perf_event_period(struct perf_event *event,
6220 				struct perf_cpu_context *cpuctx,
6221 				struct perf_event_context *ctx,
6222 				void *info)
6223 {
6224 	u64 value = *((u64 *)info);
6225 	bool active;
6226 
6227 	if (event->attr.freq) {
6228 		event->attr.sample_freq = value;
6229 	} else {
6230 		event->attr.sample_period = value;
6231 		event->hw.sample_period = value;
6232 	}
6233 
6234 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
6235 	if (active) {
6236 		perf_pmu_disable(event->pmu);
6237 		event->pmu->stop(event, PERF_EF_UPDATE);
6238 	}
6239 
6240 	local64_set(&event->hw.period_left, 0);
6241 
6242 	if (active) {
6243 		event->pmu->start(event, PERF_EF_RELOAD);
6244 		/*
6245 		 * Once the period is force-reset, the event starts immediately.
6246 		 * But the event/group could be throttled. Unthrottle the
6247 		 * event/group now to avoid the next tick trying to unthrottle
6248 		 * while we already re-started the event/group.
6249 		 */
6250 		if (event->hw.interrupts == MAX_INTERRUPTS)
6251 			perf_event_unthrottle_group(event, true);
6252 		perf_pmu_enable(event->pmu);
6253 	}
6254 }
6255 
perf_event_check_period(struct perf_event * event,u64 value)6256 static int perf_event_check_period(struct perf_event *event, u64 value)
6257 {
6258 	return event->pmu->check_period(event, value);
6259 }
6260 
_perf_event_period(struct perf_event * event,u64 value)6261 static int _perf_event_period(struct perf_event *event, u64 value)
6262 {
6263 	if (!is_sampling_event(event))
6264 		return -EINVAL;
6265 
6266 	if (!value)
6267 		return -EINVAL;
6268 
6269 	if (event->attr.freq) {
6270 		if (value > sysctl_perf_event_sample_rate)
6271 			return -EINVAL;
6272 	} else {
6273 		if (perf_event_check_period(event, value))
6274 			return -EINVAL;
6275 		if (value & (1ULL << 63))
6276 			return -EINVAL;
6277 	}
6278 
6279 	event_function_call(event, __perf_event_period, &value);
6280 
6281 	return 0;
6282 }
6283 
perf_event_period(struct perf_event * event,u64 value)6284 int perf_event_period(struct perf_event *event, u64 value)
6285 {
6286 	struct perf_event_context *ctx;
6287 	int ret;
6288 
6289 	ctx = perf_event_ctx_lock(event);
6290 	ret = _perf_event_period(event, value);
6291 	perf_event_ctx_unlock(event, ctx);
6292 
6293 	return ret;
6294 }
6295 EXPORT_SYMBOL_GPL(perf_event_period);
6296 
6297 static const struct file_operations perf_fops;
6298 
is_perf_file(struct fd f)6299 static inline bool is_perf_file(struct fd f)
6300 {
6301 	return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
6302 }
6303 
6304 static int perf_event_set_output(struct perf_event *event,
6305 				 struct perf_event *output_event);
6306 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6307 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6308 			  struct perf_event_attr *attr);
6309 static int __perf_event_set_bpf_prog(struct perf_event *event,
6310 				     struct bpf_prog *prog,
6311 				     u64 bpf_cookie);
6312 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6313 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6314 {
6315 	void (*func)(struct perf_event *);
6316 	u32 flags = arg;
6317 
6318 	if (event->state <= PERF_EVENT_STATE_REVOKED)
6319 		return -ENODEV;
6320 
6321 	switch (cmd) {
6322 	case PERF_EVENT_IOC_ENABLE:
6323 		func = _perf_event_enable;
6324 		break;
6325 	case PERF_EVENT_IOC_DISABLE:
6326 		func = _perf_event_disable;
6327 		break;
6328 	case PERF_EVENT_IOC_RESET:
6329 		func = _perf_event_reset;
6330 		break;
6331 
6332 	case PERF_EVENT_IOC_REFRESH:
6333 		return _perf_event_refresh(event, arg);
6334 
6335 	case PERF_EVENT_IOC_PERIOD:
6336 	{
6337 		u64 value;
6338 
6339 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6340 			return -EFAULT;
6341 
6342 		return _perf_event_period(event, value);
6343 	}
6344 	case PERF_EVENT_IOC_ID:
6345 	{
6346 		u64 id = primary_event_id(event);
6347 
6348 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6349 			return -EFAULT;
6350 		return 0;
6351 	}
6352 
6353 	case PERF_EVENT_IOC_SET_OUTPUT:
6354 	{
6355 		CLASS(fd, output)(arg);	     // arg == -1 => empty
6356 		struct perf_event *output_event = NULL;
6357 		if (arg != -1) {
6358 			if (!is_perf_file(output))
6359 				return -EBADF;
6360 			output_event = fd_file(output)->private_data;
6361 		}
6362 		return perf_event_set_output(event, output_event);
6363 	}
6364 
6365 	case PERF_EVENT_IOC_SET_FILTER:
6366 		return perf_event_set_filter(event, (void __user *)arg);
6367 
6368 	case PERF_EVENT_IOC_SET_BPF:
6369 	{
6370 		struct bpf_prog *prog;
6371 		int err;
6372 
6373 		prog = bpf_prog_get(arg);
6374 		if (IS_ERR(prog))
6375 			return PTR_ERR(prog);
6376 
6377 		err = __perf_event_set_bpf_prog(event, prog, 0);
6378 		if (err) {
6379 			bpf_prog_put(prog);
6380 			return err;
6381 		}
6382 
6383 		return 0;
6384 	}
6385 
6386 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6387 		struct perf_buffer *rb;
6388 
6389 		rcu_read_lock();
6390 		rb = rcu_dereference(event->rb);
6391 		if (!rb || !rb->nr_pages) {
6392 			rcu_read_unlock();
6393 			return -EINVAL;
6394 		}
6395 		rb_toggle_paused(rb, !!arg);
6396 		rcu_read_unlock();
6397 		return 0;
6398 	}
6399 
6400 	case PERF_EVENT_IOC_QUERY_BPF:
6401 		return perf_event_query_prog_array(event, (void __user *)arg);
6402 
6403 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6404 		struct perf_event_attr new_attr;
6405 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6406 					 &new_attr);
6407 
6408 		if (err)
6409 			return err;
6410 
6411 		return perf_event_modify_attr(event,  &new_attr);
6412 	}
6413 	default:
6414 		return -ENOTTY;
6415 	}
6416 
6417 	if (flags & PERF_IOC_FLAG_GROUP)
6418 		perf_event_for_each(event, func);
6419 	else
6420 		perf_event_for_each_child(event, func);
6421 
6422 	return 0;
6423 }
6424 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6425 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6426 {
6427 	struct perf_event *event = file->private_data;
6428 	struct perf_event_context *ctx;
6429 	long ret;
6430 
6431 	/* Treat ioctl like writes as it is likely a mutating operation. */
6432 	ret = security_perf_event_write(event);
6433 	if (ret)
6434 		return ret;
6435 
6436 	ctx = perf_event_ctx_lock(event);
6437 	ret = _perf_ioctl(event, cmd, arg);
6438 	perf_event_ctx_unlock(event, ctx);
6439 
6440 	return ret;
6441 }
6442 
6443 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6444 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6445 				unsigned long arg)
6446 {
6447 	switch (_IOC_NR(cmd)) {
6448 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6449 	case _IOC_NR(PERF_EVENT_IOC_ID):
6450 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6451 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6452 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6453 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6454 			cmd &= ~IOCSIZE_MASK;
6455 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6456 		}
6457 		break;
6458 	}
6459 	return perf_ioctl(file, cmd, arg);
6460 }
6461 #else
6462 # define perf_compat_ioctl NULL
6463 #endif
6464 
perf_event_task_enable(void)6465 int perf_event_task_enable(void)
6466 {
6467 	struct perf_event_context *ctx;
6468 	struct perf_event *event;
6469 
6470 	mutex_lock(&current->perf_event_mutex);
6471 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6472 		ctx = perf_event_ctx_lock(event);
6473 		perf_event_for_each_child(event, _perf_event_enable);
6474 		perf_event_ctx_unlock(event, ctx);
6475 	}
6476 	mutex_unlock(&current->perf_event_mutex);
6477 
6478 	return 0;
6479 }
6480 
perf_event_task_disable(void)6481 int perf_event_task_disable(void)
6482 {
6483 	struct perf_event_context *ctx;
6484 	struct perf_event *event;
6485 
6486 	mutex_lock(&current->perf_event_mutex);
6487 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6488 		ctx = perf_event_ctx_lock(event);
6489 		perf_event_for_each_child(event, _perf_event_disable);
6490 		perf_event_ctx_unlock(event, ctx);
6491 	}
6492 	mutex_unlock(&current->perf_event_mutex);
6493 
6494 	return 0;
6495 }
6496 
perf_event_index(struct perf_event * event)6497 static int perf_event_index(struct perf_event *event)
6498 {
6499 	if (event->hw.state & PERF_HES_STOPPED)
6500 		return 0;
6501 
6502 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6503 		return 0;
6504 
6505 	return event->pmu->event_idx(event);
6506 }
6507 
perf_event_init_userpage(struct perf_event * event)6508 static void perf_event_init_userpage(struct perf_event *event)
6509 {
6510 	struct perf_event_mmap_page *userpg;
6511 	struct perf_buffer *rb;
6512 
6513 	rcu_read_lock();
6514 	rb = rcu_dereference(event->rb);
6515 	if (!rb)
6516 		goto unlock;
6517 
6518 	userpg = rb->user_page;
6519 
6520 	/* Allow new userspace to detect that bit 0 is deprecated */
6521 	userpg->cap_bit0_is_deprecated = 1;
6522 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6523 	userpg->data_offset = PAGE_SIZE;
6524 	userpg->data_size = perf_data_size(rb);
6525 
6526 unlock:
6527 	rcu_read_unlock();
6528 }
6529 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6530 void __weak arch_perf_update_userpage(
6531 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6532 {
6533 }
6534 
6535 /*
6536  * Callers need to ensure there can be no nesting of this function, otherwise
6537  * the seqlock logic goes bad. We can not serialize this because the arch
6538  * code calls this from NMI context.
6539  */
perf_event_update_userpage(struct perf_event * event)6540 void perf_event_update_userpage(struct perf_event *event)
6541 {
6542 	struct perf_event_mmap_page *userpg;
6543 	struct perf_buffer *rb;
6544 	u64 enabled, running, now;
6545 
6546 	rcu_read_lock();
6547 	rb = rcu_dereference(event->rb);
6548 	if (!rb)
6549 		goto unlock;
6550 
6551 	/*
6552 	 * compute total_time_enabled, total_time_running
6553 	 * based on snapshot values taken when the event
6554 	 * was last scheduled in.
6555 	 *
6556 	 * we cannot simply called update_context_time()
6557 	 * because of locking issue as we can be called in
6558 	 * NMI context
6559 	 */
6560 	calc_timer_values(event, &now, &enabled, &running);
6561 
6562 	userpg = rb->user_page;
6563 	/*
6564 	 * Disable preemption to guarantee consistent time stamps are stored to
6565 	 * the user page.
6566 	 */
6567 	preempt_disable();
6568 	++userpg->lock;
6569 	barrier();
6570 	userpg->index = perf_event_index(event);
6571 	userpg->offset = perf_event_count(event, false);
6572 	if (userpg->index)
6573 		userpg->offset -= local64_read(&event->hw.prev_count);
6574 
6575 	userpg->time_enabled = enabled +
6576 			atomic64_read(&event->child_total_time_enabled);
6577 
6578 	userpg->time_running = running +
6579 			atomic64_read(&event->child_total_time_running);
6580 
6581 	arch_perf_update_userpage(event, userpg, now);
6582 
6583 	barrier();
6584 	++userpg->lock;
6585 	preempt_enable();
6586 unlock:
6587 	rcu_read_unlock();
6588 }
6589 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6590 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6591 static void ring_buffer_attach(struct perf_event *event,
6592 			       struct perf_buffer *rb)
6593 {
6594 	struct perf_buffer *old_rb = NULL;
6595 	unsigned long flags;
6596 
6597 	WARN_ON_ONCE(event->parent);
6598 
6599 	if (event->rb) {
6600 		/*
6601 		 * Should be impossible, we set this when removing
6602 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6603 		 */
6604 		WARN_ON_ONCE(event->rcu_pending);
6605 
6606 		old_rb = event->rb;
6607 		spin_lock_irqsave(&old_rb->event_lock, flags);
6608 		list_del_rcu(&event->rb_entry);
6609 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6610 
6611 		event->rcu_batches = get_state_synchronize_rcu();
6612 		event->rcu_pending = 1;
6613 	}
6614 
6615 	if (rb) {
6616 		if (event->rcu_pending) {
6617 			cond_synchronize_rcu(event->rcu_batches);
6618 			event->rcu_pending = 0;
6619 		}
6620 
6621 		spin_lock_irqsave(&rb->event_lock, flags);
6622 		list_add_rcu(&event->rb_entry, &rb->event_list);
6623 		spin_unlock_irqrestore(&rb->event_lock, flags);
6624 	}
6625 
6626 	/*
6627 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6628 	 * before swizzling the event::rb pointer; if it's getting
6629 	 * unmapped, its aux_mmap_count will be 0 and it won't
6630 	 * restart. See the comment in __perf_pmu_output_stop().
6631 	 *
6632 	 * Data will inevitably be lost when set_output is done in
6633 	 * mid-air, but then again, whoever does it like this is
6634 	 * not in for the data anyway.
6635 	 */
6636 	if (has_aux(event))
6637 		perf_event_stop(event, 0);
6638 
6639 	rcu_assign_pointer(event->rb, rb);
6640 
6641 	if (old_rb) {
6642 		ring_buffer_put(old_rb);
6643 		/*
6644 		 * Since we detached before setting the new rb, so that we
6645 		 * could attach the new rb, we could have missed a wakeup.
6646 		 * Provide it now.
6647 		 */
6648 		wake_up_all(&event->waitq);
6649 	}
6650 }
6651 
ring_buffer_wakeup(struct perf_event * event)6652 static void ring_buffer_wakeup(struct perf_event *event)
6653 {
6654 	struct perf_buffer *rb;
6655 
6656 	if (event->parent)
6657 		event = event->parent;
6658 
6659 	rcu_read_lock();
6660 	rb = rcu_dereference(event->rb);
6661 	if (rb) {
6662 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6663 			wake_up_all(&event->waitq);
6664 	}
6665 	rcu_read_unlock();
6666 }
6667 
ring_buffer_get(struct perf_event * event)6668 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6669 {
6670 	struct perf_buffer *rb;
6671 
6672 	if (event->parent)
6673 		event = event->parent;
6674 
6675 	rcu_read_lock();
6676 	rb = rcu_dereference(event->rb);
6677 	if (rb) {
6678 		if (!refcount_inc_not_zero(&rb->refcount))
6679 			rb = NULL;
6680 	}
6681 	rcu_read_unlock();
6682 
6683 	return rb;
6684 }
6685 
ring_buffer_put(struct perf_buffer * rb)6686 void ring_buffer_put(struct perf_buffer *rb)
6687 {
6688 	if (!refcount_dec_and_test(&rb->refcount))
6689 		return;
6690 
6691 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6692 
6693 	call_rcu(&rb->rcu_head, rb_free_rcu);
6694 }
6695 
6696 typedef void (*mapped_f)(struct perf_event *event, struct mm_struct *mm);
6697 
6698 #define get_mapped(event, func)			\
6699 ({	struct pmu *pmu;			\
6700 	mapped_f f = NULL;			\
6701 	guard(rcu)();				\
6702 	pmu = READ_ONCE(event->pmu);		\
6703 	if (pmu)				\
6704 		f = pmu->func;			\
6705 	f;					\
6706 })
6707 
perf_mmap_open(struct vm_area_struct * vma)6708 static void perf_mmap_open(struct vm_area_struct *vma)
6709 {
6710 	struct perf_event *event = vma->vm_file->private_data;
6711 	mapped_f mapped = get_mapped(event, event_mapped);
6712 
6713 	atomic_inc(&event->mmap_count);
6714 	atomic_inc(&event->rb->mmap_count);
6715 
6716 	if (vma->vm_pgoff)
6717 		atomic_inc(&event->rb->aux_mmap_count);
6718 
6719 	if (mapped)
6720 		mapped(event, vma->vm_mm);
6721 }
6722 
6723 static void perf_pmu_output_stop(struct perf_event *event);
6724 
6725 /*
6726  * A buffer can be mmap()ed multiple times; either directly through the same
6727  * event, or through other events by use of perf_event_set_output().
6728  *
6729  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6730  * the buffer here, where we still have a VM context. This means we need
6731  * to detach all events redirecting to us.
6732  */
perf_mmap_close(struct vm_area_struct * vma)6733 static void perf_mmap_close(struct vm_area_struct *vma)
6734 {
6735 	struct perf_event *event = vma->vm_file->private_data;
6736 	mapped_f unmapped = get_mapped(event, event_unmapped);
6737 	struct perf_buffer *rb = ring_buffer_get(event);
6738 	struct user_struct *mmap_user = rb->mmap_user;
6739 	int mmap_locked = rb->mmap_locked;
6740 	unsigned long size = perf_data_size(rb);
6741 	bool detach_rest = false;
6742 
6743 	/* FIXIES vs perf_pmu_unregister() */
6744 	if (unmapped)
6745 		unmapped(event, vma->vm_mm);
6746 
6747 	/*
6748 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6749 	 * to avoid complications.
6750 	 */
6751 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6752 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6753 		/*
6754 		 * Stop all AUX events that are writing to this buffer,
6755 		 * so that we can free its AUX pages and corresponding PMU
6756 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6757 		 * they won't start any more (see perf_aux_output_begin()).
6758 		 */
6759 		perf_pmu_output_stop(event);
6760 
6761 		/* now it's safe to free the pages */
6762 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6763 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6764 
6765 		/* this has to be the last one */
6766 		rb_free_aux(rb);
6767 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6768 
6769 		mutex_unlock(&rb->aux_mutex);
6770 	}
6771 
6772 	if (atomic_dec_and_test(&rb->mmap_count))
6773 		detach_rest = true;
6774 
6775 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6776 		goto out_put;
6777 
6778 	ring_buffer_attach(event, NULL);
6779 	mutex_unlock(&event->mmap_mutex);
6780 
6781 	/* If there's still other mmap()s of this buffer, we're done. */
6782 	if (!detach_rest)
6783 		goto out_put;
6784 
6785 	/*
6786 	 * No other mmap()s, detach from all other events that might redirect
6787 	 * into the now unreachable buffer. Somewhat complicated by the
6788 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6789 	 */
6790 again:
6791 	rcu_read_lock();
6792 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6793 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6794 			/*
6795 			 * This event is en-route to free_event() which will
6796 			 * detach it and remove it from the list.
6797 			 */
6798 			continue;
6799 		}
6800 		rcu_read_unlock();
6801 
6802 		mutex_lock(&event->mmap_mutex);
6803 		/*
6804 		 * Check we didn't race with perf_event_set_output() which can
6805 		 * swizzle the rb from under us while we were waiting to
6806 		 * acquire mmap_mutex.
6807 		 *
6808 		 * If we find a different rb; ignore this event, a next
6809 		 * iteration will no longer find it on the list. We have to
6810 		 * still restart the iteration to make sure we're not now
6811 		 * iterating the wrong list.
6812 		 */
6813 		if (event->rb == rb)
6814 			ring_buffer_attach(event, NULL);
6815 
6816 		mutex_unlock(&event->mmap_mutex);
6817 		put_event(event);
6818 
6819 		/*
6820 		 * Restart the iteration; either we're on the wrong list or
6821 		 * destroyed its integrity by doing a deletion.
6822 		 */
6823 		goto again;
6824 	}
6825 	rcu_read_unlock();
6826 
6827 	/*
6828 	 * It could be there's still a few 0-ref events on the list; they'll
6829 	 * get cleaned up by free_event() -- they'll also still have their
6830 	 * ref on the rb and will free it whenever they are done with it.
6831 	 *
6832 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6833 	 * undo the VM accounting.
6834 	 */
6835 
6836 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6837 			&mmap_user->locked_vm);
6838 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6839 	free_uid(mmap_user);
6840 
6841 out_put:
6842 	ring_buffer_put(rb); /* could be last */
6843 }
6844 
perf_mmap_pfn_mkwrite(struct vm_fault * vmf)6845 static vm_fault_t perf_mmap_pfn_mkwrite(struct vm_fault *vmf)
6846 {
6847 	/* The first page is the user control page, others are read-only. */
6848 	return vmf->pgoff == 0 ? 0 : VM_FAULT_SIGBUS;
6849 }
6850 
perf_mmap_may_split(struct vm_area_struct * vma,unsigned long addr)6851 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr)
6852 {
6853 	/*
6854 	 * Forbid splitting perf mappings to prevent refcount leaks due to
6855 	 * the resulting non-matching offsets and sizes. See open()/close().
6856 	 */
6857 	return -EINVAL;
6858 }
6859 
6860 static const struct vm_operations_struct perf_mmap_vmops = {
6861 	.open		= perf_mmap_open,
6862 	.close		= perf_mmap_close, /* non mergeable */
6863 	.pfn_mkwrite	= perf_mmap_pfn_mkwrite,
6864 	.may_split	= perf_mmap_may_split,
6865 };
6866 
map_range(struct perf_buffer * rb,struct vm_area_struct * vma)6867 static int map_range(struct perf_buffer *rb, struct vm_area_struct *vma)
6868 {
6869 	unsigned long nr_pages = vma_pages(vma);
6870 	int err = 0;
6871 	unsigned long pagenum;
6872 
6873 	/*
6874 	 * We map this as a VM_PFNMAP VMA.
6875 	 *
6876 	 * This is not ideal as this is designed broadly for mappings of PFNs
6877 	 * referencing memory-mapped I/O ranges or non-system RAM i.e. for which
6878 	 * !pfn_valid(pfn).
6879 	 *
6880 	 * We are mapping kernel-allocated memory (memory we manage ourselves)
6881 	 * which would more ideally be mapped using vm_insert_page() or a
6882 	 * similar mechanism, that is as a VM_MIXEDMAP mapping.
6883 	 *
6884 	 * However this won't work here, because:
6885 	 *
6886 	 * 1. It uses vma->vm_page_prot, but this field has not been completely
6887 	 *    setup at the point of the f_op->mmp() hook, so we are unable to
6888 	 *    indicate that this should be mapped CoW in order that the
6889 	 *    mkwrite() hook can be invoked to make the first page R/W and the
6890 	 *    rest R/O as desired.
6891 	 *
6892 	 * 2. Anything other than a VM_PFNMAP of valid PFNs will result in
6893 	 *    vm_normal_page() returning a struct page * pointer, which means
6894 	 *    vm_ops->page_mkwrite() will be invoked rather than
6895 	 *    vm_ops->pfn_mkwrite(), and this means we have to set page->mapping
6896 	 *    to work around retry logic in the fault handler, however this
6897 	 *    field is no longer allowed to be used within struct page.
6898 	 *
6899 	 * 3. Having a struct page * made available in the fault logic also
6900 	 *    means that the page gets put on the rmap and becomes
6901 	 *    inappropriately accessible and subject to map and ref counting.
6902 	 *
6903 	 * Ideally we would have a mechanism that could explicitly express our
6904 	 * desires, but this is not currently the case, so we instead use
6905 	 * VM_PFNMAP.
6906 	 *
6907 	 * We manage the lifetime of these mappings with internal refcounts (see
6908 	 * perf_mmap_open() and perf_mmap_close()) so we ensure the lifetime of
6909 	 * this mapping is maintained correctly.
6910 	 */
6911 	for (pagenum = 0; pagenum < nr_pages; pagenum++) {
6912 		unsigned long va = vma->vm_start + PAGE_SIZE * pagenum;
6913 		struct page *page = perf_mmap_to_page(rb, vma->vm_pgoff + pagenum);
6914 
6915 		if (page == NULL) {
6916 			err = -EINVAL;
6917 			break;
6918 		}
6919 
6920 		/* Map readonly, perf_mmap_pfn_mkwrite() called on write fault. */
6921 		err = remap_pfn_range(vma, va, page_to_pfn(page), PAGE_SIZE,
6922 				      vm_get_page_prot(vma->vm_flags & ~VM_SHARED));
6923 		if (err)
6924 			break;
6925 	}
6926 
6927 #ifdef CONFIG_MMU
6928 	/* Clear any partial mappings on error. */
6929 	if (err)
6930 		zap_page_range_single(vma, vma->vm_start, nr_pages * PAGE_SIZE, NULL);
6931 #endif
6932 
6933 	return err;
6934 }
6935 
perf_mmap(struct file * file,struct vm_area_struct * vma)6936 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6937 {
6938 	struct perf_event *event = file->private_data;
6939 	unsigned long user_locked, user_lock_limit;
6940 	struct user_struct *user = current_user();
6941 	struct mutex *aux_mutex = NULL;
6942 	struct perf_buffer *rb = NULL;
6943 	unsigned long locked, lock_limit;
6944 	unsigned long vma_size;
6945 	unsigned long nr_pages;
6946 	long user_extra = 0, extra = 0;
6947 	int ret, flags = 0;
6948 	mapped_f mapped;
6949 
6950 	/*
6951 	 * Don't allow mmap() of inherited per-task counters. This would
6952 	 * create a performance issue due to all children writing to the
6953 	 * same rb.
6954 	 */
6955 	if (event->cpu == -1 && event->attr.inherit)
6956 		return -EINVAL;
6957 
6958 	if (!(vma->vm_flags & VM_SHARED))
6959 		return -EINVAL;
6960 
6961 	ret = security_perf_event_read(event);
6962 	if (ret)
6963 		return ret;
6964 
6965 	vma_size = vma->vm_end - vma->vm_start;
6966 	nr_pages = vma_size / PAGE_SIZE;
6967 
6968 	if (nr_pages > INT_MAX)
6969 		return -ENOMEM;
6970 
6971 	if (vma_size != PAGE_SIZE * nr_pages)
6972 		return -EINVAL;
6973 
6974 	user_extra = nr_pages;
6975 
6976 	mutex_lock(&event->mmap_mutex);
6977 	ret = -EINVAL;
6978 
6979 	/*
6980 	 * This relies on __pmu_detach_event() taking mmap_mutex after marking
6981 	 * the event REVOKED. Either we observe the state, or __pmu_detach_event()
6982 	 * will detach the rb created here.
6983 	 */
6984 	if (event->state <= PERF_EVENT_STATE_REVOKED) {
6985 		ret = -ENODEV;
6986 		goto unlock;
6987 	}
6988 
6989 	if (vma->vm_pgoff == 0) {
6990 		nr_pages -= 1;
6991 
6992 		/*
6993 		 * If we have rb pages ensure they're a power-of-two number, so we
6994 		 * can do bitmasks instead of modulo.
6995 		 */
6996 		if (nr_pages != 0 && !is_power_of_2(nr_pages))
6997 			goto unlock;
6998 
6999 		WARN_ON_ONCE(event->ctx->parent_ctx);
7000 
7001 		if (event->rb) {
7002 			if (data_page_nr(event->rb) != nr_pages)
7003 				goto unlock;
7004 
7005 			if (atomic_inc_not_zero(&event->rb->mmap_count)) {
7006 				/*
7007 				 * Success -- managed to mmap() the same buffer
7008 				 * multiple times.
7009 				 */
7010 				ret = 0;
7011 				/* We need the rb to map pages. */
7012 				rb = event->rb;
7013 				goto unlock;
7014 			}
7015 
7016 			/*
7017 			 * Raced against perf_mmap_close()'s
7018 			 * atomic_dec_and_mutex_lock() remove the
7019 			 * event and continue as if !event->rb
7020 			 */
7021 			ring_buffer_attach(event, NULL);
7022 		}
7023 
7024 	} else {
7025 		/*
7026 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
7027 		 * mapped, all subsequent mappings should have the same size
7028 		 * and offset. Must be above the normal perf buffer.
7029 		 */
7030 		u64 aux_offset, aux_size;
7031 
7032 		rb = event->rb;
7033 		if (!rb)
7034 			goto aux_unlock;
7035 
7036 		aux_mutex = &rb->aux_mutex;
7037 		mutex_lock(aux_mutex);
7038 
7039 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
7040 		aux_size = READ_ONCE(rb->user_page->aux_size);
7041 
7042 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
7043 			goto aux_unlock;
7044 
7045 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
7046 			goto aux_unlock;
7047 
7048 		/* already mapped with a different offset */
7049 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
7050 			goto aux_unlock;
7051 
7052 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
7053 			goto aux_unlock;
7054 
7055 		/* already mapped with a different size */
7056 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
7057 			goto aux_unlock;
7058 
7059 		if (!is_power_of_2(nr_pages))
7060 			goto aux_unlock;
7061 
7062 		if (!atomic_inc_not_zero(&rb->mmap_count))
7063 			goto aux_unlock;
7064 
7065 		if (rb_has_aux(rb)) {
7066 			atomic_inc(&rb->aux_mmap_count);
7067 			ret = 0;
7068 			goto unlock;
7069 		}
7070 	}
7071 
7072 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
7073 
7074 	/*
7075 	 * Increase the limit linearly with more CPUs:
7076 	 */
7077 	user_lock_limit *= num_online_cpus();
7078 
7079 	user_locked = atomic_long_read(&user->locked_vm);
7080 
7081 	/*
7082 	 * sysctl_perf_event_mlock may have changed, so that
7083 	 *     user->locked_vm > user_lock_limit
7084 	 */
7085 	if (user_locked > user_lock_limit)
7086 		user_locked = user_lock_limit;
7087 	user_locked += user_extra;
7088 
7089 	if (user_locked > user_lock_limit) {
7090 		/*
7091 		 * charge locked_vm until it hits user_lock_limit;
7092 		 * charge the rest from pinned_vm
7093 		 */
7094 		extra = user_locked - user_lock_limit;
7095 		user_extra -= extra;
7096 	}
7097 
7098 	lock_limit = rlimit(RLIMIT_MEMLOCK);
7099 	lock_limit >>= PAGE_SHIFT;
7100 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7101 
7102 	if ((locked > lock_limit) && perf_is_paranoid() &&
7103 		!capable(CAP_IPC_LOCK)) {
7104 		ret = -EPERM;
7105 		goto unlock;
7106 	}
7107 
7108 	WARN_ON(!rb && event->rb);
7109 
7110 	if (vma->vm_flags & VM_WRITE)
7111 		flags |= RING_BUFFER_WRITABLE;
7112 
7113 	if (!rb) {
7114 		rb = rb_alloc(nr_pages,
7115 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
7116 			      event->cpu, flags);
7117 
7118 		if (!rb) {
7119 			ret = -ENOMEM;
7120 			goto unlock;
7121 		}
7122 
7123 		atomic_set(&rb->mmap_count, 1);
7124 		rb->mmap_user = get_current_user();
7125 		rb->mmap_locked = extra;
7126 
7127 		ring_buffer_attach(event, rb);
7128 
7129 		perf_event_update_time(event);
7130 		perf_event_init_userpage(event);
7131 		perf_event_update_userpage(event);
7132 		ret = 0;
7133 	} else {
7134 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
7135 				   event->attr.aux_watermark, flags);
7136 		if (!ret) {
7137 			atomic_set(&rb->aux_mmap_count, 1);
7138 			rb->aux_mmap_locked = extra;
7139 		}
7140 	}
7141 
7142 unlock:
7143 	if (!ret) {
7144 		atomic_long_add(user_extra, &user->locked_vm);
7145 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
7146 
7147 		atomic_inc(&event->mmap_count);
7148 	} else if (rb) {
7149 		/* AUX allocation failed */
7150 		atomic_dec(&rb->mmap_count);
7151 	}
7152 aux_unlock:
7153 	if (aux_mutex)
7154 		mutex_unlock(aux_mutex);
7155 	mutex_unlock(&event->mmap_mutex);
7156 
7157 	if (ret)
7158 		return ret;
7159 
7160 	/*
7161 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
7162 	 * vma.
7163 	 */
7164 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
7165 	vma->vm_ops = &perf_mmap_vmops;
7166 
7167 	mapped = get_mapped(event, event_mapped);
7168 	if (mapped)
7169 		mapped(event, vma->vm_mm);
7170 
7171 	/*
7172 	 * Try to map it into the page table. On fail, invoke
7173 	 * perf_mmap_close() to undo the above, as the callsite expects
7174 	 * full cleanup in this case and therefore does not invoke
7175 	 * vmops::close().
7176 	 */
7177 	ret = map_range(rb, vma);
7178 	if (ret)
7179 		perf_mmap_close(vma);
7180 
7181 	return ret;
7182 }
7183 
perf_fasync(int fd,struct file * filp,int on)7184 static int perf_fasync(int fd, struct file *filp, int on)
7185 {
7186 	struct inode *inode = file_inode(filp);
7187 	struct perf_event *event = filp->private_data;
7188 	int retval;
7189 
7190 	if (event->state <= PERF_EVENT_STATE_REVOKED)
7191 		return -ENODEV;
7192 
7193 	inode_lock(inode);
7194 	retval = fasync_helper(fd, filp, on, &event->fasync);
7195 	inode_unlock(inode);
7196 
7197 	if (retval < 0)
7198 		return retval;
7199 
7200 	return 0;
7201 }
7202 
7203 static const struct file_operations perf_fops = {
7204 	.release		= perf_release,
7205 	.read			= perf_read,
7206 	.poll			= perf_poll,
7207 	.unlocked_ioctl		= perf_ioctl,
7208 	.compat_ioctl		= perf_compat_ioctl,
7209 	.mmap			= perf_mmap,
7210 	.fasync			= perf_fasync,
7211 };
7212 
7213 /*
7214  * Perf event wakeup
7215  *
7216  * If there's data, ensure we set the poll() state and publish everything
7217  * to user-space before waking everybody up.
7218  */
7219 
perf_event_wakeup(struct perf_event * event)7220 void perf_event_wakeup(struct perf_event *event)
7221 {
7222 	ring_buffer_wakeup(event);
7223 
7224 	if (event->pending_kill) {
7225 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
7226 		event->pending_kill = 0;
7227 	}
7228 }
7229 
perf_sigtrap(struct perf_event * event)7230 static void perf_sigtrap(struct perf_event *event)
7231 {
7232 	/*
7233 	 * Both perf_pending_task() and perf_pending_irq() can race with the
7234 	 * task exiting.
7235 	 */
7236 	if (current->flags & PF_EXITING)
7237 		return;
7238 
7239 	/*
7240 	 * We'd expect this to only occur if the irq_work is delayed and either
7241 	 * ctx->task or current has changed in the meantime. This can be the
7242 	 * case on architectures that do not implement arch_irq_work_raise().
7243 	 */
7244 	if (WARN_ON_ONCE(event->ctx->task != current))
7245 		return;
7246 
7247 	send_sig_perf((void __user *)event->pending_addr,
7248 		      event->orig_type, event->attr.sig_data);
7249 }
7250 
7251 /*
7252  * Deliver the pending work in-event-context or follow the context.
7253  */
__perf_pending_disable(struct perf_event * event)7254 static void __perf_pending_disable(struct perf_event *event)
7255 {
7256 	int cpu = READ_ONCE(event->oncpu);
7257 
7258 	/*
7259 	 * If the event isn't running; we done. event_sched_out() will have
7260 	 * taken care of things.
7261 	 */
7262 	if (cpu < 0)
7263 		return;
7264 
7265 	/*
7266 	 * Yay, we hit home and are in the context of the event.
7267 	 */
7268 	if (cpu == smp_processor_id()) {
7269 		if (event->pending_disable) {
7270 			event->pending_disable = 0;
7271 			perf_event_disable_local(event);
7272 		}
7273 		return;
7274 	}
7275 
7276 	/*
7277 	 *  CPU-A			CPU-B
7278 	 *
7279 	 *  perf_event_disable_inatomic()
7280 	 *    @pending_disable = 1;
7281 	 *    irq_work_queue();
7282 	 *
7283 	 *  sched-out
7284 	 *    @pending_disable = 0;
7285 	 *
7286 	 *				sched-in
7287 	 *				perf_event_disable_inatomic()
7288 	 *				  @pending_disable = 1;
7289 	 *				  irq_work_queue(); // FAILS
7290 	 *
7291 	 *  irq_work_run()
7292 	 *    perf_pending_disable()
7293 	 *
7294 	 * But the event runs on CPU-B and wants disabling there.
7295 	 */
7296 	irq_work_queue_on(&event->pending_disable_irq, cpu);
7297 }
7298 
perf_pending_disable(struct irq_work * entry)7299 static void perf_pending_disable(struct irq_work *entry)
7300 {
7301 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
7302 	int rctx;
7303 
7304 	/*
7305 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7306 	 * and we won't recurse 'further'.
7307 	 */
7308 	rctx = perf_swevent_get_recursion_context();
7309 	__perf_pending_disable(event);
7310 	if (rctx >= 0)
7311 		perf_swevent_put_recursion_context(rctx);
7312 }
7313 
perf_pending_irq(struct irq_work * entry)7314 static void perf_pending_irq(struct irq_work *entry)
7315 {
7316 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
7317 	int rctx;
7318 
7319 	/*
7320 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7321 	 * and we won't recurse 'further'.
7322 	 */
7323 	rctx = perf_swevent_get_recursion_context();
7324 
7325 	/*
7326 	 * The wakeup isn't bound to the context of the event -- it can happen
7327 	 * irrespective of where the event is.
7328 	 */
7329 	if (event->pending_wakeup) {
7330 		event->pending_wakeup = 0;
7331 		perf_event_wakeup(event);
7332 	}
7333 
7334 	if (rctx >= 0)
7335 		perf_swevent_put_recursion_context(rctx);
7336 }
7337 
perf_pending_task(struct callback_head * head)7338 static void perf_pending_task(struct callback_head *head)
7339 {
7340 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7341 	int rctx;
7342 
7343 	/*
7344 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7345 	 * and we won't recurse 'further'.
7346 	 */
7347 	rctx = perf_swevent_get_recursion_context();
7348 
7349 	if (event->pending_work) {
7350 		event->pending_work = 0;
7351 		perf_sigtrap(event);
7352 		local_dec(&event->ctx->nr_no_switch_fast);
7353 	}
7354 	put_event(event);
7355 
7356 	if (rctx >= 0)
7357 		perf_swevent_put_recursion_context(rctx);
7358 }
7359 
7360 #ifdef CONFIG_GUEST_PERF_EVENTS
7361 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7362 
7363 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
7364 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
7365 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
7366 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7367 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7368 {
7369 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7370 		return;
7371 
7372 	rcu_assign_pointer(perf_guest_cbs, cbs);
7373 	static_call_update(__perf_guest_state, cbs->state);
7374 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
7375 
7376 	/* Implementing ->handle_intel_pt_intr is optional. */
7377 	if (cbs->handle_intel_pt_intr)
7378 		static_call_update(__perf_guest_handle_intel_pt_intr,
7379 				   cbs->handle_intel_pt_intr);
7380 }
7381 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7382 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7383 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7384 {
7385 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7386 		return;
7387 
7388 	rcu_assign_pointer(perf_guest_cbs, NULL);
7389 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
7390 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
7391 	static_call_update(__perf_guest_handle_intel_pt_intr,
7392 			   (void *)&__static_call_return0);
7393 	synchronize_rcu();
7394 }
7395 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7396 #endif
7397 
should_sample_guest(struct perf_event * event)7398 static bool should_sample_guest(struct perf_event *event)
7399 {
7400 	return !event->attr.exclude_guest && perf_guest_state();
7401 }
7402 
perf_misc_flags(struct perf_event * event,struct pt_regs * regs)7403 unsigned long perf_misc_flags(struct perf_event *event,
7404 			      struct pt_regs *regs)
7405 {
7406 	if (should_sample_guest(event))
7407 		return perf_arch_guest_misc_flags(regs);
7408 
7409 	return perf_arch_misc_flags(regs);
7410 }
7411 
perf_instruction_pointer(struct perf_event * event,struct pt_regs * regs)7412 unsigned long perf_instruction_pointer(struct perf_event *event,
7413 				       struct pt_regs *regs)
7414 {
7415 	if (should_sample_guest(event))
7416 		return perf_guest_get_ip();
7417 
7418 	return perf_arch_instruction_pointer(regs);
7419 }
7420 
7421 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7422 perf_output_sample_regs(struct perf_output_handle *handle,
7423 			struct pt_regs *regs, u64 mask)
7424 {
7425 	int bit;
7426 	DECLARE_BITMAP(_mask, 64);
7427 
7428 	bitmap_from_u64(_mask, mask);
7429 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7430 		u64 val;
7431 
7432 		val = perf_reg_value(regs, bit);
7433 		perf_output_put(handle, val);
7434 	}
7435 }
7436 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7437 static void perf_sample_regs_user(struct perf_regs *regs_user,
7438 				  struct pt_regs *regs)
7439 {
7440 	if (user_mode(regs)) {
7441 		regs_user->abi = perf_reg_abi(current);
7442 		regs_user->regs = regs;
7443 	} else if (!(current->flags & PF_KTHREAD)) {
7444 		perf_get_regs_user(regs_user, regs);
7445 	} else {
7446 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7447 		regs_user->regs = NULL;
7448 	}
7449 }
7450 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7451 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7452 				  struct pt_regs *regs)
7453 {
7454 	regs_intr->regs = regs;
7455 	regs_intr->abi  = perf_reg_abi(current);
7456 }
7457 
7458 
7459 /*
7460  * Get remaining task size from user stack pointer.
7461  *
7462  * It'd be better to take stack vma map and limit this more
7463  * precisely, but there's no way to get it safely under interrupt,
7464  * so using TASK_SIZE as limit.
7465  */
perf_ustack_task_size(struct pt_regs * regs)7466 static u64 perf_ustack_task_size(struct pt_regs *regs)
7467 {
7468 	unsigned long addr = perf_user_stack_pointer(regs);
7469 
7470 	if (!addr || addr >= TASK_SIZE)
7471 		return 0;
7472 
7473 	return TASK_SIZE - addr;
7474 }
7475 
7476 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7477 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7478 			struct pt_regs *regs)
7479 {
7480 	u64 task_size;
7481 
7482 	/* No regs, no stack pointer, no dump. */
7483 	if (!regs)
7484 		return 0;
7485 
7486 	/* No mm, no stack, no dump. */
7487 	if (!current->mm)
7488 		return 0;
7489 
7490 	/*
7491 	 * Check if we fit in with the requested stack size into the:
7492 	 * - TASK_SIZE
7493 	 *   If we don't, we limit the size to the TASK_SIZE.
7494 	 *
7495 	 * - remaining sample size
7496 	 *   If we don't, we customize the stack size to
7497 	 *   fit in to the remaining sample size.
7498 	 */
7499 
7500 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7501 	stack_size = min(stack_size, (u16) task_size);
7502 
7503 	/* Current header size plus static size and dynamic size. */
7504 	header_size += 2 * sizeof(u64);
7505 
7506 	/* Do we fit in with the current stack dump size? */
7507 	if ((u16) (header_size + stack_size) < header_size) {
7508 		/*
7509 		 * If we overflow the maximum size for the sample,
7510 		 * we customize the stack dump size to fit in.
7511 		 */
7512 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7513 		stack_size = round_up(stack_size, sizeof(u64));
7514 	}
7515 
7516 	return stack_size;
7517 }
7518 
7519 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7520 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7521 			  struct pt_regs *regs)
7522 {
7523 	/* Case of a kernel thread, nothing to dump */
7524 	if (!regs) {
7525 		u64 size = 0;
7526 		perf_output_put(handle, size);
7527 	} else {
7528 		unsigned long sp;
7529 		unsigned int rem;
7530 		u64 dyn_size;
7531 
7532 		/*
7533 		 * We dump:
7534 		 * static size
7535 		 *   - the size requested by user or the best one we can fit
7536 		 *     in to the sample max size
7537 		 * data
7538 		 *   - user stack dump data
7539 		 * dynamic size
7540 		 *   - the actual dumped size
7541 		 */
7542 
7543 		/* Static size. */
7544 		perf_output_put(handle, dump_size);
7545 
7546 		/* Data. */
7547 		sp = perf_user_stack_pointer(regs);
7548 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7549 		dyn_size = dump_size - rem;
7550 
7551 		perf_output_skip(handle, rem);
7552 
7553 		/* Dynamic size. */
7554 		perf_output_put(handle, dyn_size);
7555 	}
7556 }
7557 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7558 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7559 					  struct perf_sample_data *data,
7560 					  size_t size)
7561 {
7562 	struct perf_event *sampler = event->aux_event;
7563 	struct perf_buffer *rb;
7564 
7565 	data->aux_size = 0;
7566 
7567 	if (!sampler)
7568 		goto out;
7569 
7570 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7571 		goto out;
7572 
7573 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7574 		goto out;
7575 
7576 	rb = ring_buffer_get(sampler);
7577 	if (!rb)
7578 		goto out;
7579 
7580 	/*
7581 	 * If this is an NMI hit inside sampling code, don't take
7582 	 * the sample. See also perf_aux_sample_output().
7583 	 */
7584 	if (READ_ONCE(rb->aux_in_sampling)) {
7585 		data->aux_size = 0;
7586 	} else {
7587 		size = min_t(size_t, size, perf_aux_size(rb));
7588 		data->aux_size = ALIGN(size, sizeof(u64));
7589 	}
7590 	ring_buffer_put(rb);
7591 
7592 out:
7593 	return data->aux_size;
7594 }
7595 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7596 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7597                                  struct perf_event *event,
7598                                  struct perf_output_handle *handle,
7599                                  unsigned long size)
7600 {
7601 	unsigned long flags;
7602 	long ret;
7603 
7604 	/*
7605 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7606 	 * paths. If we start calling them in NMI context, they may race with
7607 	 * the IRQ ones, that is, for example, re-starting an event that's just
7608 	 * been stopped, which is why we're using a separate callback that
7609 	 * doesn't change the event state.
7610 	 *
7611 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7612 	 */
7613 	local_irq_save(flags);
7614 	/*
7615 	 * Guard against NMI hits inside the critical section;
7616 	 * see also perf_prepare_sample_aux().
7617 	 */
7618 	WRITE_ONCE(rb->aux_in_sampling, 1);
7619 	barrier();
7620 
7621 	ret = event->pmu->snapshot_aux(event, handle, size);
7622 
7623 	barrier();
7624 	WRITE_ONCE(rb->aux_in_sampling, 0);
7625 	local_irq_restore(flags);
7626 
7627 	return ret;
7628 }
7629 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7630 static void perf_aux_sample_output(struct perf_event *event,
7631 				   struct perf_output_handle *handle,
7632 				   struct perf_sample_data *data)
7633 {
7634 	struct perf_event *sampler = event->aux_event;
7635 	struct perf_buffer *rb;
7636 	unsigned long pad;
7637 	long size;
7638 
7639 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7640 		return;
7641 
7642 	rb = ring_buffer_get(sampler);
7643 	if (!rb)
7644 		return;
7645 
7646 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7647 
7648 	/*
7649 	 * An error here means that perf_output_copy() failed (returned a
7650 	 * non-zero surplus that it didn't copy), which in its current
7651 	 * enlightened implementation is not possible. If that changes, we'd
7652 	 * like to know.
7653 	 */
7654 	if (WARN_ON_ONCE(size < 0))
7655 		goto out_put;
7656 
7657 	/*
7658 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7659 	 * perf_prepare_sample_aux(), so should not be more than that.
7660 	 */
7661 	pad = data->aux_size - size;
7662 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7663 		pad = 8;
7664 
7665 	if (pad) {
7666 		u64 zero = 0;
7667 		perf_output_copy(handle, &zero, pad);
7668 	}
7669 
7670 out_put:
7671 	ring_buffer_put(rb);
7672 }
7673 
7674 /*
7675  * A set of common sample data types saved even for non-sample records
7676  * when event->attr.sample_id_all is set.
7677  */
7678 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7679 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7680 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7681 
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7682 static void __perf_event_header__init_id(struct perf_sample_data *data,
7683 					 struct perf_event *event,
7684 					 u64 sample_type)
7685 {
7686 	data->type = event->attr.sample_type;
7687 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7688 
7689 	if (sample_type & PERF_SAMPLE_TID) {
7690 		/* namespace issues */
7691 		data->tid_entry.pid = perf_event_pid(event, current);
7692 		data->tid_entry.tid = perf_event_tid(event, current);
7693 	}
7694 
7695 	if (sample_type & PERF_SAMPLE_TIME)
7696 		data->time = perf_event_clock(event);
7697 
7698 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7699 		data->id = primary_event_id(event);
7700 
7701 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7702 		data->stream_id = event->id;
7703 
7704 	if (sample_type & PERF_SAMPLE_CPU) {
7705 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7706 		data->cpu_entry.reserved = 0;
7707 	}
7708 }
7709 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7710 void perf_event_header__init_id(struct perf_event_header *header,
7711 				struct perf_sample_data *data,
7712 				struct perf_event *event)
7713 {
7714 	if (event->attr.sample_id_all) {
7715 		header->size += event->id_header_size;
7716 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7717 	}
7718 }
7719 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7720 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7721 					   struct perf_sample_data *data)
7722 {
7723 	u64 sample_type = data->type;
7724 
7725 	if (sample_type & PERF_SAMPLE_TID)
7726 		perf_output_put(handle, data->tid_entry);
7727 
7728 	if (sample_type & PERF_SAMPLE_TIME)
7729 		perf_output_put(handle, data->time);
7730 
7731 	if (sample_type & PERF_SAMPLE_ID)
7732 		perf_output_put(handle, data->id);
7733 
7734 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7735 		perf_output_put(handle, data->stream_id);
7736 
7737 	if (sample_type & PERF_SAMPLE_CPU)
7738 		perf_output_put(handle, data->cpu_entry);
7739 
7740 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7741 		perf_output_put(handle, data->id);
7742 }
7743 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7744 void perf_event__output_id_sample(struct perf_event *event,
7745 				  struct perf_output_handle *handle,
7746 				  struct perf_sample_data *sample)
7747 {
7748 	if (event->attr.sample_id_all)
7749 		__perf_event__output_id_sample(handle, sample);
7750 }
7751 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7752 static void perf_output_read_one(struct perf_output_handle *handle,
7753 				 struct perf_event *event,
7754 				 u64 enabled, u64 running)
7755 {
7756 	u64 read_format = event->attr.read_format;
7757 	u64 values[5];
7758 	int n = 0;
7759 
7760 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7761 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7762 		values[n++] = enabled +
7763 			atomic64_read(&event->child_total_time_enabled);
7764 	}
7765 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7766 		values[n++] = running +
7767 			atomic64_read(&event->child_total_time_running);
7768 	}
7769 	if (read_format & PERF_FORMAT_ID)
7770 		values[n++] = primary_event_id(event);
7771 	if (read_format & PERF_FORMAT_LOST)
7772 		values[n++] = atomic64_read(&event->lost_samples);
7773 
7774 	__output_copy(handle, values, n * sizeof(u64));
7775 }
7776 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7777 static void perf_output_read_group(struct perf_output_handle *handle,
7778 				   struct perf_event *event,
7779 				   u64 enabled, u64 running)
7780 {
7781 	struct perf_event *leader = event->group_leader, *sub;
7782 	u64 read_format = event->attr.read_format;
7783 	unsigned long flags;
7784 	u64 values[6];
7785 	int n = 0;
7786 	bool self = has_inherit_and_sample_read(&event->attr);
7787 
7788 	/*
7789 	 * Disabling interrupts avoids all counter scheduling
7790 	 * (context switches, timer based rotation and IPIs).
7791 	 */
7792 	local_irq_save(flags);
7793 
7794 	values[n++] = 1 + leader->nr_siblings;
7795 
7796 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7797 		values[n++] = enabled;
7798 
7799 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7800 		values[n++] = running;
7801 
7802 	if ((leader != event) && !handle->skip_read)
7803 		perf_pmu_read(leader);
7804 
7805 	values[n++] = perf_event_count(leader, self);
7806 	if (read_format & PERF_FORMAT_ID)
7807 		values[n++] = primary_event_id(leader);
7808 	if (read_format & PERF_FORMAT_LOST)
7809 		values[n++] = atomic64_read(&leader->lost_samples);
7810 
7811 	__output_copy(handle, values, n * sizeof(u64));
7812 
7813 	for_each_sibling_event(sub, leader) {
7814 		n = 0;
7815 
7816 		if ((sub != event) && !handle->skip_read)
7817 			perf_pmu_read(sub);
7818 
7819 		values[n++] = perf_event_count(sub, self);
7820 		if (read_format & PERF_FORMAT_ID)
7821 			values[n++] = primary_event_id(sub);
7822 		if (read_format & PERF_FORMAT_LOST)
7823 			values[n++] = atomic64_read(&sub->lost_samples);
7824 
7825 		__output_copy(handle, values, n * sizeof(u64));
7826 	}
7827 
7828 	local_irq_restore(flags);
7829 }
7830 
7831 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7832 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7833 
7834 /*
7835  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7836  *
7837  * The problem is that its both hard and excessively expensive to iterate the
7838  * child list, not to mention that its impossible to IPI the children running
7839  * on another CPU, from interrupt/NMI context.
7840  *
7841  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7842  * counts rather than attempting to accumulate some value across all children on
7843  * all cores.
7844  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7845 static void perf_output_read(struct perf_output_handle *handle,
7846 			     struct perf_event *event)
7847 {
7848 	u64 enabled = 0, running = 0, now;
7849 	u64 read_format = event->attr.read_format;
7850 
7851 	/*
7852 	 * compute total_time_enabled, total_time_running
7853 	 * based on snapshot values taken when the event
7854 	 * was last scheduled in.
7855 	 *
7856 	 * we cannot simply called update_context_time()
7857 	 * because of locking issue as we are called in
7858 	 * NMI context
7859 	 */
7860 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7861 		calc_timer_values(event, &now, &enabled, &running);
7862 
7863 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7864 		perf_output_read_group(handle, event, enabled, running);
7865 	else
7866 		perf_output_read_one(handle, event, enabled, running);
7867 }
7868 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7869 void perf_output_sample(struct perf_output_handle *handle,
7870 			struct perf_event_header *header,
7871 			struct perf_sample_data *data,
7872 			struct perf_event *event)
7873 {
7874 	u64 sample_type = data->type;
7875 
7876 	if (data->sample_flags & PERF_SAMPLE_READ)
7877 		handle->skip_read = 1;
7878 
7879 	perf_output_put(handle, *header);
7880 
7881 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7882 		perf_output_put(handle, data->id);
7883 
7884 	if (sample_type & PERF_SAMPLE_IP)
7885 		perf_output_put(handle, data->ip);
7886 
7887 	if (sample_type & PERF_SAMPLE_TID)
7888 		perf_output_put(handle, data->tid_entry);
7889 
7890 	if (sample_type & PERF_SAMPLE_TIME)
7891 		perf_output_put(handle, data->time);
7892 
7893 	if (sample_type & PERF_SAMPLE_ADDR)
7894 		perf_output_put(handle, data->addr);
7895 
7896 	if (sample_type & PERF_SAMPLE_ID)
7897 		perf_output_put(handle, data->id);
7898 
7899 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7900 		perf_output_put(handle, data->stream_id);
7901 
7902 	if (sample_type & PERF_SAMPLE_CPU)
7903 		perf_output_put(handle, data->cpu_entry);
7904 
7905 	if (sample_type & PERF_SAMPLE_PERIOD)
7906 		perf_output_put(handle, data->period);
7907 
7908 	if (sample_type & PERF_SAMPLE_READ)
7909 		perf_output_read(handle, event);
7910 
7911 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7912 		int size = 1;
7913 
7914 		size += data->callchain->nr;
7915 		size *= sizeof(u64);
7916 		__output_copy(handle, data->callchain, size);
7917 	}
7918 
7919 	if (sample_type & PERF_SAMPLE_RAW) {
7920 		struct perf_raw_record *raw = data->raw;
7921 
7922 		if (raw) {
7923 			struct perf_raw_frag *frag = &raw->frag;
7924 
7925 			perf_output_put(handle, raw->size);
7926 			do {
7927 				if (frag->copy) {
7928 					__output_custom(handle, frag->copy,
7929 							frag->data, frag->size);
7930 				} else {
7931 					__output_copy(handle, frag->data,
7932 						      frag->size);
7933 				}
7934 				if (perf_raw_frag_last(frag))
7935 					break;
7936 				frag = frag->next;
7937 			} while (1);
7938 			if (frag->pad)
7939 				__output_skip(handle, NULL, frag->pad);
7940 		} else {
7941 			struct {
7942 				u32	size;
7943 				u32	data;
7944 			} raw = {
7945 				.size = sizeof(u32),
7946 				.data = 0,
7947 			};
7948 			perf_output_put(handle, raw);
7949 		}
7950 	}
7951 
7952 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7953 		if (data->br_stack) {
7954 			size_t size;
7955 
7956 			size = data->br_stack->nr
7957 			     * sizeof(struct perf_branch_entry);
7958 
7959 			perf_output_put(handle, data->br_stack->nr);
7960 			if (branch_sample_hw_index(event))
7961 				perf_output_put(handle, data->br_stack->hw_idx);
7962 			perf_output_copy(handle, data->br_stack->entries, size);
7963 			/*
7964 			 * Add the extension space which is appended
7965 			 * right after the struct perf_branch_stack.
7966 			 */
7967 			if (data->br_stack_cntr) {
7968 				size = data->br_stack->nr * sizeof(u64);
7969 				perf_output_copy(handle, data->br_stack_cntr, size);
7970 			}
7971 		} else {
7972 			/*
7973 			 * we always store at least the value of nr
7974 			 */
7975 			u64 nr = 0;
7976 			perf_output_put(handle, nr);
7977 		}
7978 	}
7979 
7980 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7981 		u64 abi = data->regs_user.abi;
7982 
7983 		/*
7984 		 * If there are no regs to dump, notice it through
7985 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7986 		 */
7987 		perf_output_put(handle, abi);
7988 
7989 		if (abi) {
7990 			u64 mask = event->attr.sample_regs_user;
7991 			perf_output_sample_regs(handle,
7992 						data->regs_user.regs,
7993 						mask);
7994 		}
7995 	}
7996 
7997 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7998 		perf_output_sample_ustack(handle,
7999 					  data->stack_user_size,
8000 					  data->regs_user.regs);
8001 	}
8002 
8003 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
8004 		perf_output_put(handle, data->weight.full);
8005 
8006 	if (sample_type & PERF_SAMPLE_DATA_SRC)
8007 		perf_output_put(handle, data->data_src.val);
8008 
8009 	if (sample_type & PERF_SAMPLE_TRANSACTION)
8010 		perf_output_put(handle, data->txn);
8011 
8012 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
8013 		u64 abi = data->regs_intr.abi;
8014 		/*
8015 		 * If there are no regs to dump, notice it through
8016 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
8017 		 */
8018 		perf_output_put(handle, abi);
8019 
8020 		if (abi) {
8021 			u64 mask = event->attr.sample_regs_intr;
8022 
8023 			perf_output_sample_regs(handle,
8024 						data->regs_intr.regs,
8025 						mask);
8026 		}
8027 	}
8028 
8029 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
8030 		perf_output_put(handle, data->phys_addr);
8031 
8032 	if (sample_type & PERF_SAMPLE_CGROUP)
8033 		perf_output_put(handle, data->cgroup);
8034 
8035 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
8036 		perf_output_put(handle, data->data_page_size);
8037 
8038 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
8039 		perf_output_put(handle, data->code_page_size);
8040 
8041 	if (sample_type & PERF_SAMPLE_AUX) {
8042 		perf_output_put(handle, data->aux_size);
8043 
8044 		if (data->aux_size)
8045 			perf_aux_sample_output(event, handle, data);
8046 	}
8047 
8048 	if (!event->attr.watermark) {
8049 		int wakeup_events = event->attr.wakeup_events;
8050 
8051 		if (wakeup_events) {
8052 			struct perf_buffer *rb = handle->rb;
8053 			int events = local_inc_return(&rb->events);
8054 
8055 			if (events >= wakeup_events) {
8056 				local_sub(wakeup_events, &rb->events);
8057 				local_inc(&rb->wakeup);
8058 			}
8059 		}
8060 	}
8061 }
8062 
perf_virt_to_phys(u64 virt)8063 static u64 perf_virt_to_phys(u64 virt)
8064 {
8065 	u64 phys_addr = 0;
8066 
8067 	if (!virt)
8068 		return 0;
8069 
8070 	if (virt >= TASK_SIZE) {
8071 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
8072 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
8073 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
8074 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
8075 	} else {
8076 		/*
8077 		 * Walking the pages tables for user address.
8078 		 * Interrupts are disabled, so it prevents any tear down
8079 		 * of the page tables.
8080 		 * Try IRQ-safe get_user_page_fast_only first.
8081 		 * If failed, leave phys_addr as 0.
8082 		 */
8083 		if (current->mm != NULL) {
8084 			struct page *p;
8085 
8086 			pagefault_disable();
8087 			if (get_user_page_fast_only(virt, 0, &p)) {
8088 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
8089 				put_page(p);
8090 			}
8091 			pagefault_enable();
8092 		}
8093 	}
8094 
8095 	return phys_addr;
8096 }
8097 
8098 /*
8099  * Return the pagetable size of a given virtual address.
8100  */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)8101 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
8102 {
8103 	u64 size = 0;
8104 
8105 #ifdef CONFIG_HAVE_GUP_FAST
8106 	pgd_t *pgdp, pgd;
8107 	p4d_t *p4dp, p4d;
8108 	pud_t *pudp, pud;
8109 	pmd_t *pmdp, pmd;
8110 	pte_t *ptep, pte;
8111 
8112 	pgdp = pgd_offset(mm, addr);
8113 	pgd = READ_ONCE(*pgdp);
8114 	if (pgd_none(pgd))
8115 		return 0;
8116 
8117 	if (pgd_leaf(pgd))
8118 		return pgd_leaf_size(pgd);
8119 
8120 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
8121 	p4d = READ_ONCE(*p4dp);
8122 	if (!p4d_present(p4d))
8123 		return 0;
8124 
8125 	if (p4d_leaf(p4d))
8126 		return p4d_leaf_size(p4d);
8127 
8128 	pudp = pud_offset_lockless(p4dp, p4d, addr);
8129 	pud = READ_ONCE(*pudp);
8130 	if (!pud_present(pud))
8131 		return 0;
8132 
8133 	if (pud_leaf(pud))
8134 		return pud_leaf_size(pud);
8135 
8136 	pmdp = pmd_offset_lockless(pudp, pud, addr);
8137 again:
8138 	pmd = pmdp_get_lockless(pmdp);
8139 	if (!pmd_present(pmd))
8140 		return 0;
8141 
8142 	if (pmd_leaf(pmd))
8143 		return pmd_leaf_size(pmd);
8144 
8145 	ptep = pte_offset_map(&pmd, addr);
8146 	if (!ptep)
8147 		goto again;
8148 
8149 	pte = ptep_get_lockless(ptep);
8150 	if (pte_present(pte))
8151 		size = __pte_leaf_size(pmd, pte);
8152 	pte_unmap(ptep);
8153 #endif /* CONFIG_HAVE_GUP_FAST */
8154 
8155 	return size;
8156 }
8157 
perf_get_page_size(unsigned long addr)8158 static u64 perf_get_page_size(unsigned long addr)
8159 {
8160 	struct mm_struct *mm;
8161 	unsigned long flags;
8162 	u64 size;
8163 
8164 	if (!addr)
8165 		return 0;
8166 
8167 	/*
8168 	 * Software page-table walkers must disable IRQs,
8169 	 * which prevents any tear down of the page tables.
8170 	 */
8171 	local_irq_save(flags);
8172 
8173 	mm = current->mm;
8174 	if (!mm) {
8175 		/*
8176 		 * For kernel threads and the like, use init_mm so that
8177 		 * we can find kernel memory.
8178 		 */
8179 		mm = &init_mm;
8180 	}
8181 
8182 	size = perf_get_pgtable_size(mm, addr);
8183 
8184 	local_irq_restore(flags);
8185 
8186 	return size;
8187 }
8188 
8189 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
8190 
8191 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)8192 perf_callchain(struct perf_event *event, struct pt_regs *regs)
8193 {
8194 	bool kernel = !event->attr.exclude_callchain_kernel;
8195 	bool user   = !event->attr.exclude_callchain_user;
8196 	/* Disallow cross-task user callchains. */
8197 	bool crosstask = event->ctx->task && event->ctx->task != current;
8198 	const u32 max_stack = event->attr.sample_max_stack;
8199 	struct perf_callchain_entry *callchain;
8200 
8201 	if (!current->mm)
8202 		user = false;
8203 
8204 	if (!kernel && !user)
8205 		return &__empty_callchain;
8206 
8207 	callchain = get_perf_callchain(regs, 0, kernel, user,
8208 				       max_stack, crosstask, true);
8209 	return callchain ?: &__empty_callchain;
8210 }
8211 
__cond_set(u64 flags,u64 s,u64 d)8212 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
8213 {
8214 	return d * !!(flags & s);
8215 }
8216 
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8217 void perf_prepare_sample(struct perf_sample_data *data,
8218 			 struct perf_event *event,
8219 			 struct pt_regs *regs)
8220 {
8221 	u64 sample_type = event->attr.sample_type;
8222 	u64 filtered_sample_type;
8223 
8224 	/*
8225 	 * Add the sample flags that are dependent to others.  And clear the
8226 	 * sample flags that have already been done by the PMU driver.
8227 	 */
8228 	filtered_sample_type = sample_type;
8229 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
8230 					   PERF_SAMPLE_IP);
8231 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
8232 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
8233 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
8234 					   PERF_SAMPLE_REGS_USER);
8235 	filtered_sample_type &= ~data->sample_flags;
8236 
8237 	if (filtered_sample_type == 0) {
8238 		/* Make sure it has the correct data->type for output */
8239 		data->type = event->attr.sample_type;
8240 		return;
8241 	}
8242 
8243 	__perf_event_header__init_id(data, event, filtered_sample_type);
8244 
8245 	if (filtered_sample_type & PERF_SAMPLE_IP) {
8246 		data->ip = perf_instruction_pointer(event, regs);
8247 		data->sample_flags |= PERF_SAMPLE_IP;
8248 	}
8249 
8250 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
8251 		perf_sample_save_callchain(data, event, regs);
8252 
8253 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
8254 		data->raw = NULL;
8255 		data->dyn_size += sizeof(u64);
8256 		data->sample_flags |= PERF_SAMPLE_RAW;
8257 	}
8258 
8259 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
8260 		data->br_stack = NULL;
8261 		data->dyn_size += sizeof(u64);
8262 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
8263 	}
8264 
8265 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
8266 		perf_sample_regs_user(&data->regs_user, regs);
8267 
8268 	/*
8269 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
8270 	 * by STACK_USER (using __cond_set() above) and we don't want to update
8271 	 * the dyn_size if it's not requested by users.
8272 	 */
8273 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
8274 		/* regs dump ABI info */
8275 		int size = sizeof(u64);
8276 
8277 		if (data->regs_user.regs) {
8278 			u64 mask = event->attr.sample_regs_user;
8279 			size += hweight64(mask) * sizeof(u64);
8280 		}
8281 
8282 		data->dyn_size += size;
8283 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
8284 	}
8285 
8286 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
8287 		/*
8288 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
8289 		 * processed as the last one or have additional check added
8290 		 * in case new sample type is added, because we could eat
8291 		 * up the rest of the sample size.
8292 		 */
8293 		u16 stack_size = event->attr.sample_stack_user;
8294 		u16 header_size = perf_sample_data_size(data, event);
8295 		u16 size = sizeof(u64);
8296 
8297 		stack_size = perf_sample_ustack_size(stack_size, header_size,
8298 						     data->regs_user.regs);
8299 
8300 		/*
8301 		 * If there is something to dump, add space for the dump
8302 		 * itself and for the field that tells the dynamic size,
8303 		 * which is how many have been actually dumped.
8304 		 */
8305 		if (stack_size)
8306 			size += sizeof(u64) + stack_size;
8307 
8308 		data->stack_user_size = stack_size;
8309 		data->dyn_size += size;
8310 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
8311 	}
8312 
8313 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
8314 		data->weight.full = 0;
8315 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
8316 	}
8317 
8318 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
8319 		data->data_src.val = PERF_MEM_NA;
8320 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
8321 	}
8322 
8323 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
8324 		data->txn = 0;
8325 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
8326 	}
8327 
8328 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
8329 		data->addr = 0;
8330 		data->sample_flags |= PERF_SAMPLE_ADDR;
8331 	}
8332 
8333 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
8334 		/* regs dump ABI info */
8335 		int size = sizeof(u64);
8336 
8337 		perf_sample_regs_intr(&data->regs_intr, regs);
8338 
8339 		if (data->regs_intr.regs) {
8340 			u64 mask = event->attr.sample_regs_intr;
8341 
8342 			size += hweight64(mask) * sizeof(u64);
8343 		}
8344 
8345 		data->dyn_size += size;
8346 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
8347 	}
8348 
8349 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
8350 		data->phys_addr = perf_virt_to_phys(data->addr);
8351 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
8352 	}
8353 
8354 #ifdef CONFIG_CGROUP_PERF
8355 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
8356 		struct cgroup *cgrp;
8357 
8358 		/* protected by RCU */
8359 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8360 		data->cgroup = cgroup_id(cgrp);
8361 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8362 	}
8363 #endif
8364 
8365 	/*
8366 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8367 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8368 	 * but the value will not dump to the userspace.
8369 	 */
8370 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8371 		data->data_page_size = perf_get_page_size(data->addr);
8372 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8373 	}
8374 
8375 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8376 		data->code_page_size = perf_get_page_size(data->ip);
8377 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8378 	}
8379 
8380 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8381 		u64 size;
8382 		u16 header_size = perf_sample_data_size(data, event);
8383 
8384 		header_size += sizeof(u64); /* size */
8385 
8386 		/*
8387 		 * Given the 16bit nature of header::size, an AUX sample can
8388 		 * easily overflow it, what with all the preceding sample bits.
8389 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8390 		 * per sample in total (rounded down to 8 byte boundary).
8391 		 */
8392 		size = min_t(size_t, U16_MAX - header_size,
8393 			     event->attr.aux_sample_size);
8394 		size = rounddown(size, 8);
8395 		size = perf_prepare_sample_aux(event, data, size);
8396 
8397 		WARN_ON_ONCE(size + header_size > U16_MAX);
8398 		data->dyn_size += size + sizeof(u64); /* size above */
8399 		data->sample_flags |= PERF_SAMPLE_AUX;
8400 	}
8401 }
8402 
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8403 void perf_prepare_header(struct perf_event_header *header,
8404 			 struct perf_sample_data *data,
8405 			 struct perf_event *event,
8406 			 struct pt_regs *regs)
8407 {
8408 	header->type = PERF_RECORD_SAMPLE;
8409 	header->size = perf_sample_data_size(data, event);
8410 	header->misc = perf_misc_flags(event, regs);
8411 
8412 	/*
8413 	 * If you're adding more sample types here, you likely need to do
8414 	 * something about the overflowing header::size, like repurpose the
8415 	 * lowest 3 bits of size, which should be always zero at the moment.
8416 	 * This raises a more important question, do we really need 512k sized
8417 	 * samples and why, so good argumentation is in order for whatever you
8418 	 * do here next.
8419 	 */
8420 	WARN_ON_ONCE(header->size & 7);
8421 }
8422 
__perf_event_aux_pause(struct perf_event * event,bool pause)8423 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8424 {
8425 	if (pause) {
8426 		if (!event->hw.aux_paused) {
8427 			event->hw.aux_paused = 1;
8428 			event->pmu->stop(event, PERF_EF_PAUSE);
8429 		}
8430 	} else {
8431 		if (event->hw.aux_paused) {
8432 			event->hw.aux_paused = 0;
8433 			event->pmu->start(event, PERF_EF_RESUME);
8434 		}
8435 	}
8436 }
8437 
perf_event_aux_pause(struct perf_event * event,bool pause)8438 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8439 {
8440 	struct perf_buffer *rb;
8441 
8442 	if (WARN_ON_ONCE(!event))
8443 		return;
8444 
8445 	rb = ring_buffer_get(event);
8446 	if (!rb)
8447 		return;
8448 
8449 	scoped_guard (irqsave) {
8450 		/*
8451 		 * Guard against self-recursion here. Another event could trip
8452 		 * this same from NMI context.
8453 		 */
8454 		if (READ_ONCE(rb->aux_in_pause_resume))
8455 			break;
8456 
8457 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8458 		barrier();
8459 		__perf_event_aux_pause(event, pause);
8460 		barrier();
8461 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8462 	}
8463 	ring_buffer_put(rb);
8464 }
8465 
8466 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8467 __perf_event_output(struct perf_event *event,
8468 		    struct perf_sample_data *data,
8469 		    struct pt_regs *regs,
8470 		    int (*output_begin)(struct perf_output_handle *,
8471 					struct perf_sample_data *,
8472 					struct perf_event *,
8473 					unsigned int))
8474 {
8475 	struct perf_output_handle handle;
8476 	struct perf_event_header header;
8477 	int err;
8478 
8479 	/* protect the callchain buffers */
8480 	rcu_read_lock();
8481 
8482 	perf_prepare_sample(data, event, regs);
8483 	perf_prepare_header(&header, data, event, regs);
8484 
8485 	err = output_begin(&handle, data, event, header.size);
8486 	if (err)
8487 		goto exit;
8488 
8489 	perf_output_sample(&handle, &header, data, event);
8490 
8491 	perf_output_end(&handle);
8492 
8493 exit:
8494 	rcu_read_unlock();
8495 	return err;
8496 }
8497 
8498 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8499 perf_event_output_forward(struct perf_event *event,
8500 			 struct perf_sample_data *data,
8501 			 struct pt_regs *regs)
8502 {
8503 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8504 }
8505 
8506 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8507 perf_event_output_backward(struct perf_event *event,
8508 			   struct perf_sample_data *data,
8509 			   struct pt_regs *regs)
8510 {
8511 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8512 }
8513 
8514 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8515 perf_event_output(struct perf_event *event,
8516 		  struct perf_sample_data *data,
8517 		  struct pt_regs *regs)
8518 {
8519 	return __perf_event_output(event, data, regs, perf_output_begin);
8520 }
8521 
8522 /*
8523  * read event_id
8524  */
8525 
8526 struct perf_read_event {
8527 	struct perf_event_header	header;
8528 
8529 	u32				pid;
8530 	u32				tid;
8531 };
8532 
8533 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8534 perf_event_read_event(struct perf_event *event,
8535 			struct task_struct *task)
8536 {
8537 	struct perf_output_handle handle;
8538 	struct perf_sample_data sample;
8539 	struct perf_read_event read_event = {
8540 		.header = {
8541 			.type = PERF_RECORD_READ,
8542 			.misc = 0,
8543 			.size = sizeof(read_event) + event->read_size,
8544 		},
8545 		.pid = perf_event_pid(event, task),
8546 		.tid = perf_event_tid(event, task),
8547 	};
8548 	int ret;
8549 
8550 	perf_event_header__init_id(&read_event.header, &sample, event);
8551 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8552 	if (ret)
8553 		return;
8554 
8555 	perf_output_put(&handle, read_event);
8556 	perf_output_read(&handle, event);
8557 	perf_event__output_id_sample(event, &handle, &sample);
8558 
8559 	perf_output_end(&handle);
8560 }
8561 
8562 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8563 
8564 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8565 perf_iterate_ctx(struct perf_event_context *ctx,
8566 		   perf_iterate_f output,
8567 		   void *data, bool all)
8568 {
8569 	struct perf_event *event;
8570 
8571 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8572 		if (!all) {
8573 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8574 				continue;
8575 			if (!event_filter_match(event))
8576 				continue;
8577 		}
8578 
8579 		output(event, data);
8580 	}
8581 }
8582 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8583 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8584 {
8585 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8586 	struct perf_event *event;
8587 
8588 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8589 		/*
8590 		 * Skip events that are not fully formed yet; ensure that
8591 		 * if we observe event->ctx, both event and ctx will be
8592 		 * complete enough. See perf_install_in_context().
8593 		 */
8594 		if (!smp_load_acquire(&event->ctx))
8595 			continue;
8596 
8597 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8598 			continue;
8599 		if (!event_filter_match(event))
8600 			continue;
8601 		output(event, data);
8602 	}
8603 }
8604 
8605 /*
8606  * Iterate all events that need to receive side-band events.
8607  *
8608  * For new callers; ensure that account_pmu_sb_event() includes
8609  * your event, otherwise it might not get delivered.
8610  */
8611 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8612 perf_iterate_sb(perf_iterate_f output, void *data,
8613 	       struct perf_event_context *task_ctx)
8614 {
8615 	struct perf_event_context *ctx;
8616 
8617 	rcu_read_lock();
8618 	preempt_disable();
8619 
8620 	/*
8621 	 * If we have task_ctx != NULL we only notify the task context itself.
8622 	 * The task_ctx is set only for EXIT events before releasing task
8623 	 * context.
8624 	 */
8625 	if (task_ctx) {
8626 		perf_iterate_ctx(task_ctx, output, data, false);
8627 		goto done;
8628 	}
8629 
8630 	perf_iterate_sb_cpu(output, data);
8631 
8632 	ctx = rcu_dereference(current->perf_event_ctxp);
8633 	if (ctx)
8634 		perf_iterate_ctx(ctx, output, data, false);
8635 done:
8636 	preempt_enable();
8637 	rcu_read_unlock();
8638 }
8639 
8640 /*
8641  * Clear all file-based filters at exec, they'll have to be
8642  * re-instated when/if these objects are mmapped again.
8643  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8644 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8645 {
8646 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8647 	struct perf_addr_filter *filter;
8648 	unsigned int restart = 0, count = 0;
8649 	unsigned long flags;
8650 
8651 	if (!has_addr_filter(event))
8652 		return;
8653 
8654 	raw_spin_lock_irqsave(&ifh->lock, flags);
8655 	list_for_each_entry(filter, &ifh->list, entry) {
8656 		if (filter->path.dentry) {
8657 			event->addr_filter_ranges[count].start = 0;
8658 			event->addr_filter_ranges[count].size = 0;
8659 			restart++;
8660 		}
8661 
8662 		count++;
8663 	}
8664 
8665 	if (restart)
8666 		event->addr_filters_gen++;
8667 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8668 
8669 	if (restart)
8670 		perf_event_stop(event, 1);
8671 }
8672 
perf_event_exec(void)8673 void perf_event_exec(void)
8674 {
8675 	struct perf_event_context *ctx;
8676 
8677 	ctx = perf_pin_task_context(current);
8678 	if (!ctx)
8679 		return;
8680 
8681 	perf_event_enable_on_exec(ctx);
8682 	perf_event_remove_on_exec(ctx);
8683 	scoped_guard(rcu)
8684 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8685 
8686 	perf_unpin_context(ctx);
8687 	put_ctx(ctx);
8688 }
8689 
8690 struct remote_output {
8691 	struct perf_buffer	*rb;
8692 	int			err;
8693 };
8694 
__perf_event_output_stop(struct perf_event * event,void * data)8695 static void __perf_event_output_stop(struct perf_event *event, void *data)
8696 {
8697 	struct perf_event *parent = event->parent;
8698 	struct remote_output *ro = data;
8699 	struct perf_buffer *rb = ro->rb;
8700 	struct stop_event_data sd = {
8701 		.event	= event,
8702 	};
8703 
8704 	if (!has_aux(event))
8705 		return;
8706 
8707 	if (!parent)
8708 		parent = event;
8709 
8710 	/*
8711 	 * In case of inheritance, it will be the parent that links to the
8712 	 * ring-buffer, but it will be the child that's actually using it.
8713 	 *
8714 	 * We are using event::rb to determine if the event should be stopped,
8715 	 * however this may race with ring_buffer_attach() (through set_output),
8716 	 * which will make us skip the event that actually needs to be stopped.
8717 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8718 	 * its rb pointer.
8719 	 */
8720 	if (rcu_dereference(parent->rb) == rb)
8721 		ro->err = __perf_event_stop(&sd);
8722 }
8723 
__perf_pmu_output_stop(void * info)8724 static int __perf_pmu_output_stop(void *info)
8725 {
8726 	struct perf_event *event = info;
8727 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8728 	struct remote_output ro = {
8729 		.rb	= event->rb,
8730 	};
8731 
8732 	rcu_read_lock();
8733 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8734 	if (cpuctx->task_ctx)
8735 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8736 				   &ro, false);
8737 	rcu_read_unlock();
8738 
8739 	return ro.err;
8740 }
8741 
perf_pmu_output_stop(struct perf_event * event)8742 static void perf_pmu_output_stop(struct perf_event *event)
8743 {
8744 	struct perf_event *iter;
8745 	int err, cpu;
8746 
8747 restart:
8748 	rcu_read_lock();
8749 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8750 		/*
8751 		 * For per-CPU events, we need to make sure that neither they
8752 		 * nor their children are running; for cpu==-1 events it's
8753 		 * sufficient to stop the event itself if it's active, since
8754 		 * it can't have children.
8755 		 */
8756 		cpu = iter->cpu;
8757 		if (cpu == -1)
8758 			cpu = READ_ONCE(iter->oncpu);
8759 
8760 		if (cpu == -1)
8761 			continue;
8762 
8763 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8764 		if (err == -EAGAIN) {
8765 			rcu_read_unlock();
8766 			goto restart;
8767 		}
8768 	}
8769 	rcu_read_unlock();
8770 }
8771 
8772 /*
8773  * task tracking -- fork/exit
8774  *
8775  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8776  */
8777 
8778 struct perf_task_event {
8779 	struct task_struct		*task;
8780 	struct perf_event_context	*task_ctx;
8781 
8782 	struct {
8783 		struct perf_event_header	header;
8784 
8785 		u32				pid;
8786 		u32				ppid;
8787 		u32				tid;
8788 		u32				ptid;
8789 		u64				time;
8790 	} event_id;
8791 };
8792 
perf_event_task_match(struct perf_event * event)8793 static int perf_event_task_match(struct perf_event *event)
8794 {
8795 	return event->attr.comm  || event->attr.mmap ||
8796 	       event->attr.mmap2 || event->attr.mmap_data ||
8797 	       event->attr.task;
8798 }
8799 
perf_event_task_output(struct perf_event * event,void * data)8800 static void perf_event_task_output(struct perf_event *event,
8801 				   void *data)
8802 {
8803 	struct perf_task_event *task_event = data;
8804 	struct perf_output_handle handle;
8805 	struct perf_sample_data	sample;
8806 	struct task_struct *task = task_event->task;
8807 	int ret, size = task_event->event_id.header.size;
8808 
8809 	if (!perf_event_task_match(event))
8810 		return;
8811 
8812 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8813 
8814 	ret = perf_output_begin(&handle, &sample, event,
8815 				task_event->event_id.header.size);
8816 	if (ret)
8817 		goto out;
8818 
8819 	task_event->event_id.pid = perf_event_pid(event, task);
8820 	task_event->event_id.tid = perf_event_tid(event, task);
8821 
8822 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8823 		task_event->event_id.ppid = perf_event_pid(event,
8824 							task->real_parent);
8825 		task_event->event_id.ptid = perf_event_pid(event,
8826 							task->real_parent);
8827 	} else {  /* PERF_RECORD_FORK */
8828 		task_event->event_id.ppid = perf_event_pid(event, current);
8829 		task_event->event_id.ptid = perf_event_tid(event, current);
8830 	}
8831 
8832 	task_event->event_id.time = perf_event_clock(event);
8833 
8834 	perf_output_put(&handle, task_event->event_id);
8835 
8836 	perf_event__output_id_sample(event, &handle, &sample);
8837 
8838 	perf_output_end(&handle);
8839 out:
8840 	task_event->event_id.header.size = size;
8841 }
8842 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8843 static void perf_event_task(struct task_struct *task,
8844 			      struct perf_event_context *task_ctx,
8845 			      int new)
8846 {
8847 	struct perf_task_event task_event;
8848 
8849 	if (!atomic_read(&nr_comm_events) &&
8850 	    !atomic_read(&nr_mmap_events) &&
8851 	    !atomic_read(&nr_task_events))
8852 		return;
8853 
8854 	task_event = (struct perf_task_event){
8855 		.task	  = task,
8856 		.task_ctx = task_ctx,
8857 		.event_id    = {
8858 			.header = {
8859 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8860 				.misc = 0,
8861 				.size = sizeof(task_event.event_id),
8862 			},
8863 			/* .pid  */
8864 			/* .ppid */
8865 			/* .tid  */
8866 			/* .ptid */
8867 			/* .time */
8868 		},
8869 	};
8870 
8871 	perf_iterate_sb(perf_event_task_output,
8872 		       &task_event,
8873 		       task_ctx);
8874 }
8875 
8876 /*
8877  * Allocate data for a new task when profiling system-wide
8878  * events which require PMU specific data
8879  */
8880 static void
perf_event_alloc_task_data(struct task_struct * child,struct task_struct * parent)8881 perf_event_alloc_task_data(struct task_struct *child,
8882 			   struct task_struct *parent)
8883 {
8884 	struct kmem_cache *ctx_cache = NULL;
8885 	struct perf_ctx_data *cd;
8886 
8887 	if (!refcount_read(&global_ctx_data_ref))
8888 		return;
8889 
8890 	scoped_guard (rcu) {
8891 		cd = rcu_dereference(parent->perf_ctx_data);
8892 		if (cd)
8893 			ctx_cache = cd->ctx_cache;
8894 	}
8895 
8896 	if (!ctx_cache)
8897 		return;
8898 
8899 	guard(percpu_read)(&global_ctx_data_rwsem);
8900 	scoped_guard (rcu) {
8901 		cd = rcu_dereference(child->perf_ctx_data);
8902 		if (!cd) {
8903 			/*
8904 			 * A system-wide event may be unaccount,
8905 			 * when attaching the perf_ctx_data.
8906 			 */
8907 			if (!refcount_read(&global_ctx_data_ref))
8908 				return;
8909 			goto attach;
8910 		}
8911 
8912 		if (!cd->global) {
8913 			cd->global = 1;
8914 			refcount_inc(&cd->refcount);
8915 		}
8916 	}
8917 
8918 	return;
8919 attach:
8920 	attach_task_ctx_data(child, ctx_cache, true);
8921 }
8922 
perf_event_fork(struct task_struct * task)8923 void perf_event_fork(struct task_struct *task)
8924 {
8925 	perf_event_task(task, NULL, 1);
8926 	perf_event_namespaces(task);
8927 	perf_event_alloc_task_data(task, current);
8928 }
8929 
8930 /*
8931  * comm tracking
8932  */
8933 
8934 struct perf_comm_event {
8935 	struct task_struct	*task;
8936 	char			*comm;
8937 	int			comm_size;
8938 
8939 	struct {
8940 		struct perf_event_header	header;
8941 
8942 		u32				pid;
8943 		u32				tid;
8944 	} event_id;
8945 };
8946 
perf_event_comm_match(struct perf_event * event)8947 static int perf_event_comm_match(struct perf_event *event)
8948 {
8949 	return event->attr.comm;
8950 }
8951 
perf_event_comm_output(struct perf_event * event,void * data)8952 static void perf_event_comm_output(struct perf_event *event,
8953 				   void *data)
8954 {
8955 	struct perf_comm_event *comm_event = data;
8956 	struct perf_output_handle handle;
8957 	struct perf_sample_data sample;
8958 	int size = comm_event->event_id.header.size;
8959 	int ret;
8960 
8961 	if (!perf_event_comm_match(event))
8962 		return;
8963 
8964 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8965 	ret = perf_output_begin(&handle, &sample, event,
8966 				comm_event->event_id.header.size);
8967 
8968 	if (ret)
8969 		goto out;
8970 
8971 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8972 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8973 
8974 	perf_output_put(&handle, comm_event->event_id);
8975 	__output_copy(&handle, comm_event->comm,
8976 				   comm_event->comm_size);
8977 
8978 	perf_event__output_id_sample(event, &handle, &sample);
8979 
8980 	perf_output_end(&handle);
8981 out:
8982 	comm_event->event_id.header.size = size;
8983 }
8984 
perf_event_comm_event(struct perf_comm_event * comm_event)8985 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8986 {
8987 	char comm[TASK_COMM_LEN];
8988 	unsigned int size;
8989 
8990 	memset(comm, 0, sizeof(comm));
8991 	strscpy(comm, comm_event->task->comm);
8992 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8993 
8994 	comm_event->comm = comm;
8995 	comm_event->comm_size = size;
8996 
8997 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8998 
8999 	perf_iterate_sb(perf_event_comm_output,
9000 		       comm_event,
9001 		       NULL);
9002 }
9003 
perf_event_comm(struct task_struct * task,bool exec)9004 void perf_event_comm(struct task_struct *task, bool exec)
9005 {
9006 	struct perf_comm_event comm_event;
9007 
9008 	if (!atomic_read(&nr_comm_events))
9009 		return;
9010 
9011 	comm_event = (struct perf_comm_event){
9012 		.task	= task,
9013 		/* .comm      */
9014 		/* .comm_size */
9015 		.event_id  = {
9016 			.header = {
9017 				.type = PERF_RECORD_COMM,
9018 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
9019 				/* .size */
9020 			},
9021 			/* .pid */
9022 			/* .tid */
9023 		},
9024 	};
9025 
9026 	perf_event_comm_event(&comm_event);
9027 }
9028 
9029 /*
9030  * namespaces tracking
9031  */
9032 
9033 struct perf_namespaces_event {
9034 	struct task_struct		*task;
9035 
9036 	struct {
9037 		struct perf_event_header	header;
9038 
9039 		u32				pid;
9040 		u32				tid;
9041 		u64				nr_namespaces;
9042 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
9043 	} event_id;
9044 };
9045 
perf_event_namespaces_match(struct perf_event * event)9046 static int perf_event_namespaces_match(struct perf_event *event)
9047 {
9048 	return event->attr.namespaces;
9049 }
9050 
perf_event_namespaces_output(struct perf_event * event,void * data)9051 static void perf_event_namespaces_output(struct perf_event *event,
9052 					 void *data)
9053 {
9054 	struct perf_namespaces_event *namespaces_event = data;
9055 	struct perf_output_handle handle;
9056 	struct perf_sample_data sample;
9057 	u16 header_size = namespaces_event->event_id.header.size;
9058 	int ret;
9059 
9060 	if (!perf_event_namespaces_match(event))
9061 		return;
9062 
9063 	perf_event_header__init_id(&namespaces_event->event_id.header,
9064 				   &sample, event);
9065 	ret = perf_output_begin(&handle, &sample, event,
9066 				namespaces_event->event_id.header.size);
9067 	if (ret)
9068 		goto out;
9069 
9070 	namespaces_event->event_id.pid = perf_event_pid(event,
9071 							namespaces_event->task);
9072 	namespaces_event->event_id.tid = perf_event_tid(event,
9073 							namespaces_event->task);
9074 
9075 	perf_output_put(&handle, namespaces_event->event_id);
9076 
9077 	perf_event__output_id_sample(event, &handle, &sample);
9078 
9079 	perf_output_end(&handle);
9080 out:
9081 	namespaces_event->event_id.header.size = header_size;
9082 }
9083 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)9084 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
9085 				   struct task_struct *task,
9086 				   const struct proc_ns_operations *ns_ops)
9087 {
9088 	struct path ns_path;
9089 	struct inode *ns_inode;
9090 	int error;
9091 
9092 	error = ns_get_path(&ns_path, task, ns_ops);
9093 	if (!error) {
9094 		ns_inode = ns_path.dentry->d_inode;
9095 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
9096 		ns_link_info->ino = ns_inode->i_ino;
9097 		path_put(&ns_path);
9098 	}
9099 }
9100 
perf_event_namespaces(struct task_struct * task)9101 void perf_event_namespaces(struct task_struct *task)
9102 {
9103 	struct perf_namespaces_event namespaces_event;
9104 	struct perf_ns_link_info *ns_link_info;
9105 
9106 	if (!atomic_read(&nr_namespaces_events))
9107 		return;
9108 
9109 	namespaces_event = (struct perf_namespaces_event){
9110 		.task	= task,
9111 		.event_id  = {
9112 			.header = {
9113 				.type = PERF_RECORD_NAMESPACES,
9114 				.misc = 0,
9115 				.size = sizeof(namespaces_event.event_id),
9116 			},
9117 			/* .pid */
9118 			/* .tid */
9119 			.nr_namespaces = NR_NAMESPACES,
9120 			/* .link_info[NR_NAMESPACES] */
9121 		},
9122 	};
9123 
9124 	ns_link_info = namespaces_event.event_id.link_info;
9125 
9126 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
9127 			       task, &mntns_operations);
9128 
9129 #ifdef CONFIG_USER_NS
9130 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
9131 			       task, &userns_operations);
9132 #endif
9133 #ifdef CONFIG_NET_NS
9134 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
9135 			       task, &netns_operations);
9136 #endif
9137 #ifdef CONFIG_UTS_NS
9138 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
9139 			       task, &utsns_operations);
9140 #endif
9141 #ifdef CONFIG_IPC_NS
9142 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
9143 			       task, &ipcns_operations);
9144 #endif
9145 #ifdef CONFIG_PID_NS
9146 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
9147 			       task, &pidns_operations);
9148 #endif
9149 #ifdef CONFIG_CGROUPS
9150 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
9151 			       task, &cgroupns_operations);
9152 #endif
9153 
9154 	perf_iterate_sb(perf_event_namespaces_output,
9155 			&namespaces_event,
9156 			NULL);
9157 }
9158 
9159 /*
9160  * cgroup tracking
9161  */
9162 #ifdef CONFIG_CGROUP_PERF
9163 
9164 struct perf_cgroup_event {
9165 	char				*path;
9166 	int				path_size;
9167 	struct {
9168 		struct perf_event_header	header;
9169 		u64				id;
9170 		char				path[];
9171 	} event_id;
9172 };
9173 
perf_event_cgroup_match(struct perf_event * event)9174 static int perf_event_cgroup_match(struct perf_event *event)
9175 {
9176 	return event->attr.cgroup;
9177 }
9178 
perf_event_cgroup_output(struct perf_event * event,void * data)9179 static void perf_event_cgroup_output(struct perf_event *event, void *data)
9180 {
9181 	struct perf_cgroup_event *cgroup_event = data;
9182 	struct perf_output_handle handle;
9183 	struct perf_sample_data sample;
9184 	u16 header_size = cgroup_event->event_id.header.size;
9185 	int ret;
9186 
9187 	if (!perf_event_cgroup_match(event))
9188 		return;
9189 
9190 	perf_event_header__init_id(&cgroup_event->event_id.header,
9191 				   &sample, event);
9192 	ret = perf_output_begin(&handle, &sample, event,
9193 				cgroup_event->event_id.header.size);
9194 	if (ret)
9195 		goto out;
9196 
9197 	perf_output_put(&handle, cgroup_event->event_id);
9198 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
9199 
9200 	perf_event__output_id_sample(event, &handle, &sample);
9201 
9202 	perf_output_end(&handle);
9203 out:
9204 	cgroup_event->event_id.header.size = header_size;
9205 }
9206 
perf_event_cgroup(struct cgroup * cgrp)9207 static void perf_event_cgroup(struct cgroup *cgrp)
9208 {
9209 	struct perf_cgroup_event cgroup_event;
9210 	char path_enomem[16] = "//enomem";
9211 	char *pathname;
9212 	size_t size;
9213 
9214 	if (!atomic_read(&nr_cgroup_events))
9215 		return;
9216 
9217 	cgroup_event = (struct perf_cgroup_event){
9218 		.event_id  = {
9219 			.header = {
9220 				.type = PERF_RECORD_CGROUP,
9221 				.misc = 0,
9222 				.size = sizeof(cgroup_event.event_id),
9223 			},
9224 			.id = cgroup_id(cgrp),
9225 		},
9226 	};
9227 
9228 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
9229 	if (pathname == NULL) {
9230 		cgroup_event.path = path_enomem;
9231 	} else {
9232 		/* just to be sure to have enough space for alignment */
9233 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
9234 		cgroup_event.path = pathname;
9235 	}
9236 
9237 	/*
9238 	 * Since our buffer works in 8 byte units we need to align our string
9239 	 * size to a multiple of 8. However, we must guarantee the tail end is
9240 	 * zero'd out to avoid leaking random bits to userspace.
9241 	 */
9242 	size = strlen(cgroup_event.path) + 1;
9243 	while (!IS_ALIGNED(size, sizeof(u64)))
9244 		cgroup_event.path[size++] = '\0';
9245 
9246 	cgroup_event.event_id.header.size += size;
9247 	cgroup_event.path_size = size;
9248 
9249 	perf_iterate_sb(perf_event_cgroup_output,
9250 			&cgroup_event,
9251 			NULL);
9252 
9253 	kfree(pathname);
9254 }
9255 
9256 #endif
9257 
9258 /*
9259  * mmap tracking
9260  */
9261 
9262 struct perf_mmap_event {
9263 	struct vm_area_struct	*vma;
9264 
9265 	const char		*file_name;
9266 	int			file_size;
9267 	int			maj, min;
9268 	u64			ino;
9269 	u64			ino_generation;
9270 	u32			prot, flags;
9271 	u8			build_id[BUILD_ID_SIZE_MAX];
9272 	u32			build_id_size;
9273 
9274 	struct {
9275 		struct perf_event_header	header;
9276 
9277 		u32				pid;
9278 		u32				tid;
9279 		u64				start;
9280 		u64				len;
9281 		u64				pgoff;
9282 	} event_id;
9283 };
9284 
perf_event_mmap_match(struct perf_event * event,void * data)9285 static int perf_event_mmap_match(struct perf_event *event,
9286 				 void *data)
9287 {
9288 	struct perf_mmap_event *mmap_event = data;
9289 	struct vm_area_struct *vma = mmap_event->vma;
9290 	int executable = vma->vm_flags & VM_EXEC;
9291 
9292 	return (!executable && event->attr.mmap_data) ||
9293 	       (executable && (event->attr.mmap || event->attr.mmap2));
9294 }
9295 
perf_event_mmap_output(struct perf_event * event,void * data)9296 static void perf_event_mmap_output(struct perf_event *event,
9297 				   void *data)
9298 {
9299 	struct perf_mmap_event *mmap_event = data;
9300 	struct perf_output_handle handle;
9301 	struct perf_sample_data sample;
9302 	int size = mmap_event->event_id.header.size;
9303 	u32 type = mmap_event->event_id.header.type;
9304 	bool use_build_id;
9305 	int ret;
9306 
9307 	if (!perf_event_mmap_match(event, data))
9308 		return;
9309 
9310 	if (event->attr.mmap2) {
9311 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
9312 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
9313 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
9314 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
9315 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
9316 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
9317 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
9318 	}
9319 
9320 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
9321 	ret = perf_output_begin(&handle, &sample, event,
9322 				mmap_event->event_id.header.size);
9323 	if (ret)
9324 		goto out;
9325 
9326 	mmap_event->event_id.pid = perf_event_pid(event, current);
9327 	mmap_event->event_id.tid = perf_event_tid(event, current);
9328 
9329 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
9330 
9331 	if (event->attr.mmap2 && use_build_id)
9332 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
9333 
9334 	perf_output_put(&handle, mmap_event->event_id);
9335 
9336 	if (event->attr.mmap2) {
9337 		if (use_build_id) {
9338 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
9339 
9340 			__output_copy(&handle, size, 4);
9341 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
9342 		} else {
9343 			perf_output_put(&handle, mmap_event->maj);
9344 			perf_output_put(&handle, mmap_event->min);
9345 			perf_output_put(&handle, mmap_event->ino);
9346 			perf_output_put(&handle, mmap_event->ino_generation);
9347 		}
9348 		perf_output_put(&handle, mmap_event->prot);
9349 		perf_output_put(&handle, mmap_event->flags);
9350 	}
9351 
9352 	__output_copy(&handle, mmap_event->file_name,
9353 				   mmap_event->file_size);
9354 
9355 	perf_event__output_id_sample(event, &handle, &sample);
9356 
9357 	perf_output_end(&handle);
9358 out:
9359 	mmap_event->event_id.header.size = size;
9360 	mmap_event->event_id.header.type = type;
9361 }
9362 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)9363 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
9364 {
9365 	struct vm_area_struct *vma = mmap_event->vma;
9366 	struct file *file = vma->vm_file;
9367 	int maj = 0, min = 0;
9368 	u64 ino = 0, gen = 0;
9369 	u32 prot = 0, flags = 0;
9370 	unsigned int size;
9371 	char tmp[16];
9372 	char *buf = NULL;
9373 	char *name = NULL;
9374 
9375 	if (vma->vm_flags & VM_READ)
9376 		prot |= PROT_READ;
9377 	if (vma->vm_flags & VM_WRITE)
9378 		prot |= PROT_WRITE;
9379 	if (vma->vm_flags & VM_EXEC)
9380 		prot |= PROT_EXEC;
9381 
9382 	if (vma->vm_flags & VM_MAYSHARE)
9383 		flags = MAP_SHARED;
9384 	else
9385 		flags = MAP_PRIVATE;
9386 
9387 	if (vma->vm_flags & VM_LOCKED)
9388 		flags |= MAP_LOCKED;
9389 	if (is_vm_hugetlb_page(vma))
9390 		flags |= MAP_HUGETLB;
9391 
9392 	if (file) {
9393 		struct inode *inode;
9394 		dev_t dev;
9395 
9396 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
9397 		if (!buf) {
9398 			name = "//enomem";
9399 			goto cpy_name;
9400 		}
9401 		/*
9402 		 * d_path() works from the end of the rb backwards, so we
9403 		 * need to add enough zero bytes after the string to handle
9404 		 * the 64bit alignment we do later.
9405 		 */
9406 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
9407 		if (IS_ERR(name)) {
9408 			name = "//toolong";
9409 			goto cpy_name;
9410 		}
9411 		inode = file_inode(vma->vm_file);
9412 		dev = inode->i_sb->s_dev;
9413 		ino = inode->i_ino;
9414 		gen = inode->i_generation;
9415 		maj = MAJOR(dev);
9416 		min = MINOR(dev);
9417 
9418 		goto got_name;
9419 	} else {
9420 		if (vma->vm_ops && vma->vm_ops->name)
9421 			name = (char *) vma->vm_ops->name(vma);
9422 		if (!name)
9423 			name = (char *)arch_vma_name(vma);
9424 		if (!name) {
9425 			if (vma_is_initial_heap(vma))
9426 				name = "[heap]";
9427 			else if (vma_is_initial_stack(vma))
9428 				name = "[stack]";
9429 			else
9430 				name = "//anon";
9431 		}
9432 	}
9433 
9434 cpy_name:
9435 	strscpy(tmp, name);
9436 	name = tmp;
9437 got_name:
9438 	/*
9439 	 * Since our buffer works in 8 byte units we need to align our string
9440 	 * size to a multiple of 8. However, we must guarantee the tail end is
9441 	 * zero'd out to avoid leaking random bits to userspace.
9442 	 */
9443 	size = strlen(name)+1;
9444 	while (!IS_ALIGNED(size, sizeof(u64)))
9445 		name[size++] = '\0';
9446 
9447 	mmap_event->file_name = name;
9448 	mmap_event->file_size = size;
9449 	mmap_event->maj = maj;
9450 	mmap_event->min = min;
9451 	mmap_event->ino = ino;
9452 	mmap_event->ino_generation = gen;
9453 	mmap_event->prot = prot;
9454 	mmap_event->flags = flags;
9455 
9456 	if (!(vma->vm_flags & VM_EXEC))
9457 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9458 
9459 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9460 
9461 	if (atomic_read(&nr_build_id_events))
9462 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9463 
9464 	perf_iterate_sb(perf_event_mmap_output,
9465 		       mmap_event,
9466 		       NULL);
9467 
9468 	kfree(buf);
9469 }
9470 
9471 /*
9472  * Check whether inode and address range match filter criteria.
9473  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)9474 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9475 				     struct file *file, unsigned long offset,
9476 				     unsigned long size)
9477 {
9478 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9479 	if (!filter->path.dentry)
9480 		return false;
9481 
9482 	if (d_inode(filter->path.dentry) != file_inode(file))
9483 		return false;
9484 
9485 	if (filter->offset > offset + size)
9486 		return false;
9487 
9488 	if (filter->offset + filter->size < offset)
9489 		return false;
9490 
9491 	return true;
9492 }
9493 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)9494 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9495 					struct vm_area_struct *vma,
9496 					struct perf_addr_filter_range *fr)
9497 {
9498 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9499 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9500 	struct file *file = vma->vm_file;
9501 
9502 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9503 		return false;
9504 
9505 	if (filter->offset < off) {
9506 		fr->start = vma->vm_start;
9507 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9508 	} else {
9509 		fr->start = vma->vm_start + filter->offset - off;
9510 		fr->size = min(vma->vm_end - fr->start, filter->size);
9511 	}
9512 
9513 	return true;
9514 }
9515 
__perf_addr_filters_adjust(struct perf_event * event,void * data)9516 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9517 {
9518 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9519 	struct vm_area_struct *vma = data;
9520 	struct perf_addr_filter *filter;
9521 	unsigned int restart = 0, count = 0;
9522 	unsigned long flags;
9523 
9524 	if (!has_addr_filter(event))
9525 		return;
9526 
9527 	if (!vma->vm_file)
9528 		return;
9529 
9530 	raw_spin_lock_irqsave(&ifh->lock, flags);
9531 	list_for_each_entry(filter, &ifh->list, entry) {
9532 		if (perf_addr_filter_vma_adjust(filter, vma,
9533 						&event->addr_filter_ranges[count]))
9534 			restart++;
9535 
9536 		count++;
9537 	}
9538 
9539 	if (restart)
9540 		event->addr_filters_gen++;
9541 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9542 
9543 	if (restart)
9544 		perf_event_stop(event, 1);
9545 }
9546 
9547 /*
9548  * Adjust all task's events' filters to the new vma
9549  */
perf_addr_filters_adjust(struct vm_area_struct * vma)9550 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9551 {
9552 	struct perf_event_context *ctx;
9553 
9554 	/*
9555 	 * Data tracing isn't supported yet and as such there is no need
9556 	 * to keep track of anything that isn't related to executable code:
9557 	 */
9558 	if (!(vma->vm_flags & VM_EXEC))
9559 		return;
9560 
9561 	rcu_read_lock();
9562 	ctx = rcu_dereference(current->perf_event_ctxp);
9563 	if (ctx)
9564 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9565 	rcu_read_unlock();
9566 }
9567 
perf_event_mmap(struct vm_area_struct * vma)9568 void perf_event_mmap(struct vm_area_struct *vma)
9569 {
9570 	struct perf_mmap_event mmap_event;
9571 
9572 	if (!atomic_read(&nr_mmap_events))
9573 		return;
9574 
9575 	mmap_event = (struct perf_mmap_event){
9576 		.vma	= vma,
9577 		/* .file_name */
9578 		/* .file_size */
9579 		.event_id  = {
9580 			.header = {
9581 				.type = PERF_RECORD_MMAP,
9582 				.misc = PERF_RECORD_MISC_USER,
9583 				/* .size */
9584 			},
9585 			/* .pid */
9586 			/* .tid */
9587 			.start  = vma->vm_start,
9588 			.len    = vma->vm_end - vma->vm_start,
9589 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9590 		},
9591 		/* .maj (attr_mmap2 only) */
9592 		/* .min (attr_mmap2 only) */
9593 		/* .ino (attr_mmap2 only) */
9594 		/* .ino_generation (attr_mmap2 only) */
9595 		/* .prot (attr_mmap2 only) */
9596 		/* .flags (attr_mmap2 only) */
9597 	};
9598 
9599 	perf_addr_filters_adjust(vma);
9600 	perf_event_mmap_event(&mmap_event);
9601 }
9602 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9603 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9604 			  unsigned long size, u64 flags)
9605 {
9606 	struct perf_output_handle handle;
9607 	struct perf_sample_data sample;
9608 	struct perf_aux_event {
9609 		struct perf_event_header	header;
9610 		u64				offset;
9611 		u64				size;
9612 		u64				flags;
9613 	} rec = {
9614 		.header = {
9615 			.type = PERF_RECORD_AUX,
9616 			.misc = 0,
9617 			.size = sizeof(rec),
9618 		},
9619 		.offset		= head,
9620 		.size		= size,
9621 		.flags		= flags,
9622 	};
9623 	int ret;
9624 
9625 	perf_event_header__init_id(&rec.header, &sample, event);
9626 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9627 
9628 	if (ret)
9629 		return;
9630 
9631 	perf_output_put(&handle, rec);
9632 	perf_event__output_id_sample(event, &handle, &sample);
9633 
9634 	perf_output_end(&handle);
9635 }
9636 
9637 /*
9638  * Lost/dropped samples logging
9639  */
perf_log_lost_samples(struct perf_event * event,u64 lost)9640 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9641 {
9642 	struct perf_output_handle handle;
9643 	struct perf_sample_data sample;
9644 	int ret;
9645 
9646 	struct {
9647 		struct perf_event_header	header;
9648 		u64				lost;
9649 	} lost_samples_event = {
9650 		.header = {
9651 			.type = PERF_RECORD_LOST_SAMPLES,
9652 			.misc = 0,
9653 			.size = sizeof(lost_samples_event),
9654 		},
9655 		.lost		= lost,
9656 	};
9657 
9658 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9659 
9660 	ret = perf_output_begin(&handle, &sample, event,
9661 				lost_samples_event.header.size);
9662 	if (ret)
9663 		return;
9664 
9665 	perf_output_put(&handle, lost_samples_event);
9666 	perf_event__output_id_sample(event, &handle, &sample);
9667 	perf_output_end(&handle);
9668 }
9669 
9670 /*
9671  * context_switch tracking
9672  */
9673 
9674 struct perf_switch_event {
9675 	struct task_struct	*task;
9676 	struct task_struct	*next_prev;
9677 
9678 	struct {
9679 		struct perf_event_header	header;
9680 		u32				next_prev_pid;
9681 		u32				next_prev_tid;
9682 	} event_id;
9683 };
9684 
perf_event_switch_match(struct perf_event * event)9685 static int perf_event_switch_match(struct perf_event *event)
9686 {
9687 	return event->attr.context_switch;
9688 }
9689 
perf_event_switch_output(struct perf_event * event,void * data)9690 static void perf_event_switch_output(struct perf_event *event, void *data)
9691 {
9692 	struct perf_switch_event *se = data;
9693 	struct perf_output_handle handle;
9694 	struct perf_sample_data sample;
9695 	int ret;
9696 
9697 	if (!perf_event_switch_match(event))
9698 		return;
9699 
9700 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9701 	if (event->ctx->task) {
9702 		se->event_id.header.type = PERF_RECORD_SWITCH;
9703 		se->event_id.header.size = sizeof(se->event_id.header);
9704 	} else {
9705 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9706 		se->event_id.header.size = sizeof(se->event_id);
9707 		se->event_id.next_prev_pid =
9708 					perf_event_pid(event, se->next_prev);
9709 		se->event_id.next_prev_tid =
9710 					perf_event_tid(event, se->next_prev);
9711 	}
9712 
9713 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9714 
9715 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9716 	if (ret)
9717 		return;
9718 
9719 	if (event->ctx->task)
9720 		perf_output_put(&handle, se->event_id.header);
9721 	else
9722 		perf_output_put(&handle, se->event_id);
9723 
9724 	perf_event__output_id_sample(event, &handle, &sample);
9725 
9726 	perf_output_end(&handle);
9727 }
9728 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9729 static void perf_event_switch(struct task_struct *task,
9730 			      struct task_struct *next_prev, bool sched_in)
9731 {
9732 	struct perf_switch_event switch_event;
9733 
9734 	/* N.B. caller checks nr_switch_events != 0 */
9735 
9736 	switch_event = (struct perf_switch_event){
9737 		.task		= task,
9738 		.next_prev	= next_prev,
9739 		.event_id	= {
9740 			.header = {
9741 				/* .type */
9742 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9743 				/* .size */
9744 			},
9745 			/* .next_prev_pid */
9746 			/* .next_prev_tid */
9747 		},
9748 	};
9749 
9750 	if (!sched_in && task_is_runnable(task)) {
9751 		switch_event.event_id.header.misc |=
9752 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9753 	}
9754 
9755 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9756 }
9757 
9758 /*
9759  * IRQ throttle logging
9760  */
9761 
perf_log_throttle(struct perf_event * event,int enable)9762 static void perf_log_throttle(struct perf_event *event, int enable)
9763 {
9764 	struct perf_output_handle handle;
9765 	struct perf_sample_data sample;
9766 	int ret;
9767 
9768 	struct {
9769 		struct perf_event_header	header;
9770 		u64				time;
9771 		u64				id;
9772 		u64				stream_id;
9773 	} throttle_event = {
9774 		.header = {
9775 			.type = PERF_RECORD_THROTTLE,
9776 			.misc = 0,
9777 			.size = sizeof(throttle_event),
9778 		},
9779 		.time		= perf_event_clock(event),
9780 		.id		= primary_event_id(event),
9781 		.stream_id	= event->id,
9782 	};
9783 
9784 	if (enable)
9785 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9786 
9787 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9788 
9789 	ret = perf_output_begin(&handle, &sample, event,
9790 				throttle_event.header.size);
9791 	if (ret)
9792 		return;
9793 
9794 	perf_output_put(&handle, throttle_event);
9795 	perf_event__output_id_sample(event, &handle, &sample);
9796 	perf_output_end(&handle);
9797 }
9798 
9799 /*
9800  * ksymbol register/unregister tracking
9801  */
9802 
9803 struct perf_ksymbol_event {
9804 	const char	*name;
9805 	int		name_len;
9806 	struct {
9807 		struct perf_event_header        header;
9808 		u64				addr;
9809 		u32				len;
9810 		u16				ksym_type;
9811 		u16				flags;
9812 	} event_id;
9813 };
9814 
perf_event_ksymbol_match(struct perf_event * event)9815 static int perf_event_ksymbol_match(struct perf_event *event)
9816 {
9817 	return event->attr.ksymbol;
9818 }
9819 
perf_event_ksymbol_output(struct perf_event * event,void * data)9820 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9821 {
9822 	struct perf_ksymbol_event *ksymbol_event = data;
9823 	struct perf_output_handle handle;
9824 	struct perf_sample_data sample;
9825 	int ret;
9826 
9827 	if (!perf_event_ksymbol_match(event))
9828 		return;
9829 
9830 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9831 				   &sample, event);
9832 	ret = perf_output_begin(&handle, &sample, event,
9833 				ksymbol_event->event_id.header.size);
9834 	if (ret)
9835 		return;
9836 
9837 	perf_output_put(&handle, ksymbol_event->event_id);
9838 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9839 	perf_event__output_id_sample(event, &handle, &sample);
9840 
9841 	perf_output_end(&handle);
9842 }
9843 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9844 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9845 			const char *sym)
9846 {
9847 	struct perf_ksymbol_event ksymbol_event;
9848 	char name[KSYM_NAME_LEN];
9849 	u16 flags = 0;
9850 	int name_len;
9851 
9852 	if (!atomic_read(&nr_ksymbol_events))
9853 		return;
9854 
9855 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9856 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9857 		goto err;
9858 
9859 	strscpy(name, sym);
9860 	name_len = strlen(name) + 1;
9861 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9862 		name[name_len++] = '\0';
9863 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9864 
9865 	if (unregister)
9866 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9867 
9868 	ksymbol_event = (struct perf_ksymbol_event){
9869 		.name = name,
9870 		.name_len = name_len,
9871 		.event_id = {
9872 			.header = {
9873 				.type = PERF_RECORD_KSYMBOL,
9874 				.size = sizeof(ksymbol_event.event_id) +
9875 					name_len,
9876 			},
9877 			.addr = addr,
9878 			.len = len,
9879 			.ksym_type = ksym_type,
9880 			.flags = flags,
9881 		},
9882 	};
9883 
9884 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9885 	return;
9886 err:
9887 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9888 }
9889 
9890 /*
9891  * bpf program load/unload tracking
9892  */
9893 
9894 struct perf_bpf_event {
9895 	struct bpf_prog	*prog;
9896 	struct {
9897 		struct perf_event_header        header;
9898 		u16				type;
9899 		u16				flags;
9900 		u32				id;
9901 		u8				tag[BPF_TAG_SIZE];
9902 	} event_id;
9903 };
9904 
perf_event_bpf_match(struct perf_event * event)9905 static int perf_event_bpf_match(struct perf_event *event)
9906 {
9907 	return event->attr.bpf_event;
9908 }
9909 
perf_event_bpf_output(struct perf_event * event,void * data)9910 static void perf_event_bpf_output(struct perf_event *event, void *data)
9911 {
9912 	struct perf_bpf_event *bpf_event = data;
9913 	struct perf_output_handle handle;
9914 	struct perf_sample_data sample;
9915 	int ret;
9916 
9917 	if (!perf_event_bpf_match(event))
9918 		return;
9919 
9920 	perf_event_header__init_id(&bpf_event->event_id.header,
9921 				   &sample, event);
9922 	ret = perf_output_begin(&handle, &sample, event,
9923 				bpf_event->event_id.header.size);
9924 	if (ret)
9925 		return;
9926 
9927 	perf_output_put(&handle, bpf_event->event_id);
9928 	perf_event__output_id_sample(event, &handle, &sample);
9929 
9930 	perf_output_end(&handle);
9931 }
9932 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9933 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9934 					 enum perf_bpf_event_type type)
9935 {
9936 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9937 	int i;
9938 
9939 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9940 			   (u64)(unsigned long)prog->bpf_func,
9941 			   prog->jited_len, unregister,
9942 			   prog->aux->ksym.name);
9943 
9944 	for (i = 1; i < prog->aux->func_cnt; i++) {
9945 		struct bpf_prog *subprog = prog->aux->func[i];
9946 
9947 		perf_event_ksymbol(
9948 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9949 			(u64)(unsigned long)subprog->bpf_func,
9950 			subprog->jited_len, unregister,
9951 			subprog->aux->ksym.name);
9952 	}
9953 }
9954 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9955 void perf_event_bpf_event(struct bpf_prog *prog,
9956 			  enum perf_bpf_event_type type,
9957 			  u16 flags)
9958 {
9959 	struct perf_bpf_event bpf_event;
9960 
9961 	switch (type) {
9962 	case PERF_BPF_EVENT_PROG_LOAD:
9963 	case PERF_BPF_EVENT_PROG_UNLOAD:
9964 		if (atomic_read(&nr_ksymbol_events))
9965 			perf_event_bpf_emit_ksymbols(prog, type);
9966 		break;
9967 	default:
9968 		return;
9969 	}
9970 
9971 	if (!atomic_read(&nr_bpf_events))
9972 		return;
9973 
9974 	bpf_event = (struct perf_bpf_event){
9975 		.prog = prog,
9976 		.event_id = {
9977 			.header = {
9978 				.type = PERF_RECORD_BPF_EVENT,
9979 				.size = sizeof(bpf_event.event_id),
9980 			},
9981 			.type = type,
9982 			.flags = flags,
9983 			.id = prog->aux->id,
9984 		},
9985 	};
9986 
9987 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9988 
9989 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9990 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9991 }
9992 
9993 struct perf_text_poke_event {
9994 	const void		*old_bytes;
9995 	const void		*new_bytes;
9996 	size_t			pad;
9997 	u16			old_len;
9998 	u16			new_len;
9999 
10000 	struct {
10001 		struct perf_event_header	header;
10002 
10003 		u64				addr;
10004 	} event_id;
10005 };
10006 
perf_event_text_poke_match(struct perf_event * event)10007 static int perf_event_text_poke_match(struct perf_event *event)
10008 {
10009 	return event->attr.text_poke;
10010 }
10011 
perf_event_text_poke_output(struct perf_event * event,void * data)10012 static void perf_event_text_poke_output(struct perf_event *event, void *data)
10013 {
10014 	struct perf_text_poke_event *text_poke_event = data;
10015 	struct perf_output_handle handle;
10016 	struct perf_sample_data sample;
10017 	u64 padding = 0;
10018 	int ret;
10019 
10020 	if (!perf_event_text_poke_match(event))
10021 		return;
10022 
10023 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
10024 
10025 	ret = perf_output_begin(&handle, &sample, event,
10026 				text_poke_event->event_id.header.size);
10027 	if (ret)
10028 		return;
10029 
10030 	perf_output_put(&handle, text_poke_event->event_id);
10031 	perf_output_put(&handle, text_poke_event->old_len);
10032 	perf_output_put(&handle, text_poke_event->new_len);
10033 
10034 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
10035 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
10036 
10037 	if (text_poke_event->pad)
10038 		__output_copy(&handle, &padding, text_poke_event->pad);
10039 
10040 	perf_event__output_id_sample(event, &handle, &sample);
10041 
10042 	perf_output_end(&handle);
10043 }
10044 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)10045 void perf_event_text_poke(const void *addr, const void *old_bytes,
10046 			  size_t old_len, const void *new_bytes, size_t new_len)
10047 {
10048 	struct perf_text_poke_event text_poke_event;
10049 	size_t tot, pad;
10050 
10051 	if (!atomic_read(&nr_text_poke_events))
10052 		return;
10053 
10054 	tot  = sizeof(text_poke_event.old_len) + old_len;
10055 	tot += sizeof(text_poke_event.new_len) + new_len;
10056 	pad  = ALIGN(tot, sizeof(u64)) - tot;
10057 
10058 	text_poke_event = (struct perf_text_poke_event){
10059 		.old_bytes    = old_bytes,
10060 		.new_bytes    = new_bytes,
10061 		.pad          = pad,
10062 		.old_len      = old_len,
10063 		.new_len      = new_len,
10064 		.event_id  = {
10065 			.header = {
10066 				.type = PERF_RECORD_TEXT_POKE,
10067 				.misc = PERF_RECORD_MISC_KERNEL,
10068 				.size = sizeof(text_poke_event.event_id) + tot + pad,
10069 			},
10070 			.addr = (unsigned long)addr,
10071 		},
10072 	};
10073 
10074 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
10075 }
10076 
perf_event_itrace_started(struct perf_event * event)10077 void perf_event_itrace_started(struct perf_event *event)
10078 {
10079 	WRITE_ONCE(event->attach_state, event->attach_state | PERF_ATTACH_ITRACE);
10080 }
10081 
perf_log_itrace_start(struct perf_event * event)10082 static void perf_log_itrace_start(struct perf_event *event)
10083 {
10084 	struct perf_output_handle handle;
10085 	struct perf_sample_data sample;
10086 	struct perf_aux_event {
10087 		struct perf_event_header        header;
10088 		u32				pid;
10089 		u32				tid;
10090 	} rec;
10091 	int ret;
10092 
10093 	if (event->parent)
10094 		event = event->parent;
10095 
10096 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
10097 	    event->attach_state & PERF_ATTACH_ITRACE)
10098 		return;
10099 
10100 	rec.header.type	= PERF_RECORD_ITRACE_START;
10101 	rec.header.misc	= 0;
10102 	rec.header.size	= sizeof(rec);
10103 	rec.pid	= perf_event_pid(event, current);
10104 	rec.tid	= perf_event_tid(event, current);
10105 
10106 	perf_event_header__init_id(&rec.header, &sample, event);
10107 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10108 
10109 	if (ret)
10110 		return;
10111 
10112 	perf_output_put(&handle, rec);
10113 	perf_event__output_id_sample(event, &handle, &sample);
10114 
10115 	perf_output_end(&handle);
10116 }
10117 
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)10118 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
10119 {
10120 	struct perf_output_handle handle;
10121 	struct perf_sample_data sample;
10122 	struct perf_aux_event {
10123 		struct perf_event_header        header;
10124 		u64				hw_id;
10125 	} rec;
10126 	int ret;
10127 
10128 	if (event->parent)
10129 		event = event->parent;
10130 
10131 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
10132 	rec.header.misc	= 0;
10133 	rec.header.size	= sizeof(rec);
10134 	rec.hw_id	= hw_id;
10135 
10136 	perf_event_header__init_id(&rec.header, &sample, event);
10137 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
10138 
10139 	if (ret)
10140 		return;
10141 
10142 	perf_output_put(&handle, rec);
10143 	perf_event__output_id_sample(event, &handle, &sample);
10144 
10145 	perf_output_end(&handle);
10146 }
10147 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
10148 
10149 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)10150 __perf_event_account_interrupt(struct perf_event *event, int throttle)
10151 {
10152 	struct hw_perf_event *hwc = &event->hw;
10153 	int ret = 0;
10154 	u64 seq;
10155 
10156 	seq = __this_cpu_read(perf_throttled_seq);
10157 	if (seq != hwc->interrupts_seq) {
10158 		hwc->interrupts_seq = seq;
10159 		hwc->interrupts = 1;
10160 	} else {
10161 		hwc->interrupts++;
10162 	}
10163 
10164 	if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
10165 		__this_cpu_inc(perf_throttled_count);
10166 		tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
10167 		perf_event_throttle_group(event);
10168 		ret = 1;
10169 	}
10170 
10171 	if (event->attr.freq) {
10172 		u64 now = perf_clock();
10173 		s64 delta = now - hwc->freq_time_stamp;
10174 
10175 		hwc->freq_time_stamp = now;
10176 
10177 		if (delta > 0 && delta < 2*TICK_NSEC)
10178 			perf_adjust_period(event, delta, hwc->last_period, true);
10179 	}
10180 
10181 	return ret;
10182 }
10183 
perf_event_account_interrupt(struct perf_event * event)10184 int perf_event_account_interrupt(struct perf_event *event)
10185 {
10186 	return __perf_event_account_interrupt(event, 1);
10187 }
10188 
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)10189 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
10190 {
10191 	/*
10192 	 * Due to interrupt latency (AKA "skid"), we may enter the
10193 	 * kernel before taking an overflow, even if the PMU is only
10194 	 * counting user events.
10195 	 */
10196 	if (event->attr.exclude_kernel && !user_mode(regs))
10197 		return false;
10198 
10199 	return true;
10200 }
10201 
10202 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10203 static int bpf_overflow_handler(struct perf_event *event,
10204 				struct perf_sample_data *data,
10205 				struct pt_regs *regs)
10206 {
10207 	struct bpf_perf_event_data_kern ctx = {
10208 		.data = data,
10209 		.event = event,
10210 	};
10211 	struct bpf_prog *prog;
10212 	int ret = 0;
10213 
10214 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10215 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10216 		goto out;
10217 	rcu_read_lock();
10218 	prog = READ_ONCE(event->prog);
10219 	if (prog) {
10220 		perf_prepare_sample(data, event, regs);
10221 		ret = bpf_prog_run(prog, &ctx);
10222 	}
10223 	rcu_read_unlock();
10224 out:
10225 	__this_cpu_dec(bpf_prog_active);
10226 
10227 	return ret;
10228 }
10229 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10230 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10231 					     struct bpf_prog *prog,
10232 					     u64 bpf_cookie)
10233 {
10234 	if (event->overflow_handler_context)
10235 		/* hw breakpoint or kernel counter */
10236 		return -EINVAL;
10237 
10238 	if (event->prog)
10239 		return -EEXIST;
10240 
10241 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10242 		return -EINVAL;
10243 
10244 	if (event->attr.precise_ip &&
10245 	    prog->call_get_stack &&
10246 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10247 	     event->attr.exclude_callchain_kernel ||
10248 	     event->attr.exclude_callchain_user)) {
10249 		/*
10250 		 * On perf_event with precise_ip, calling bpf_get_stack()
10251 		 * may trigger unwinder warnings and occasional crashes.
10252 		 * bpf_get_[stack|stackid] works around this issue by using
10253 		 * callchain attached to perf_sample_data. If the
10254 		 * perf_event does not full (kernel and user) callchain
10255 		 * attached to perf_sample_data, do not allow attaching BPF
10256 		 * program that calls bpf_get_[stack|stackid].
10257 		 */
10258 		return -EPROTO;
10259 	}
10260 
10261 	event->prog = prog;
10262 	event->bpf_cookie = bpf_cookie;
10263 	return 0;
10264 }
10265 
perf_event_free_bpf_handler(struct perf_event * event)10266 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10267 {
10268 	struct bpf_prog *prog = event->prog;
10269 
10270 	if (!prog)
10271 		return;
10272 
10273 	event->prog = NULL;
10274 	bpf_prog_put(prog);
10275 }
10276 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10277 static inline int bpf_overflow_handler(struct perf_event *event,
10278 				       struct perf_sample_data *data,
10279 				       struct pt_regs *regs)
10280 {
10281 	return 1;
10282 }
10283 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10284 static inline int perf_event_set_bpf_handler(struct perf_event *event,
10285 					     struct bpf_prog *prog,
10286 					     u64 bpf_cookie)
10287 {
10288 	return -EOPNOTSUPP;
10289 }
10290 
perf_event_free_bpf_handler(struct perf_event * event)10291 static inline void perf_event_free_bpf_handler(struct perf_event *event)
10292 {
10293 }
10294 #endif
10295 
10296 /*
10297  * Generic event overflow handling, sampling.
10298  */
10299 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)10300 static int __perf_event_overflow(struct perf_event *event,
10301 				 int throttle, struct perf_sample_data *data,
10302 				 struct pt_regs *regs)
10303 {
10304 	int events = atomic_read(&event->event_limit);
10305 	int ret = 0;
10306 
10307 	/*
10308 	 * Non-sampling counters might still use the PMI to fold short
10309 	 * hardware counters, ignore those.
10310 	 */
10311 	if (unlikely(!is_sampling_event(event)))
10312 		return 0;
10313 
10314 	ret = __perf_event_account_interrupt(event, throttle);
10315 
10316 	if (event->attr.aux_pause)
10317 		perf_event_aux_pause(event->aux_event, true);
10318 
10319 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
10320 	    !bpf_overflow_handler(event, data, regs))
10321 		goto out;
10322 
10323 	/*
10324 	 * XXX event_limit might not quite work as expected on inherited
10325 	 * events
10326 	 */
10327 
10328 	event->pending_kill = POLL_IN;
10329 	if (events && atomic_dec_and_test(&event->event_limit)) {
10330 		ret = 1;
10331 		event->pending_kill = POLL_HUP;
10332 		perf_event_disable_inatomic(event);
10333 	}
10334 
10335 	if (event->attr.sigtrap) {
10336 		/*
10337 		 * The desired behaviour of sigtrap vs invalid samples is a bit
10338 		 * tricky; on the one hand, one should not loose the SIGTRAP if
10339 		 * it is the first event, on the other hand, we should also not
10340 		 * trigger the WARN or override the data address.
10341 		 */
10342 		bool valid_sample = sample_is_allowed(event, regs);
10343 		unsigned int pending_id = 1;
10344 		enum task_work_notify_mode notify_mode;
10345 
10346 		if (regs)
10347 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
10348 
10349 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
10350 
10351 		if (!event->pending_work &&
10352 		    !task_work_add(current, &event->pending_task, notify_mode)) {
10353 			event->pending_work = pending_id;
10354 			local_inc(&event->ctx->nr_no_switch_fast);
10355 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
10356 
10357 			event->pending_addr = 0;
10358 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
10359 				event->pending_addr = data->addr;
10360 
10361 		} else if (event->attr.exclude_kernel && valid_sample) {
10362 			/*
10363 			 * Should not be able to return to user space without
10364 			 * consuming pending_work; with exceptions:
10365 			 *
10366 			 *  1. Where !exclude_kernel, events can overflow again
10367 			 *     in the kernel without returning to user space.
10368 			 *
10369 			 *  2. Events that can overflow again before the IRQ-
10370 			 *     work without user space progress (e.g. hrtimer).
10371 			 *     To approximate progress (with false negatives),
10372 			 *     check 32-bit hash of the current IP.
10373 			 */
10374 			WARN_ON_ONCE(event->pending_work != pending_id);
10375 		}
10376 	}
10377 
10378 	READ_ONCE(event->overflow_handler)(event, data, regs);
10379 
10380 	if (*perf_event_fasync(event) && event->pending_kill) {
10381 		event->pending_wakeup = 1;
10382 		irq_work_queue(&event->pending_irq);
10383 	}
10384 out:
10385 	if (event->attr.aux_resume)
10386 		perf_event_aux_pause(event->aux_event, false);
10387 
10388 	return ret;
10389 }
10390 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10391 int perf_event_overflow(struct perf_event *event,
10392 			struct perf_sample_data *data,
10393 			struct pt_regs *regs)
10394 {
10395 	return __perf_event_overflow(event, 1, data, regs);
10396 }
10397 
10398 /*
10399  * Generic software event infrastructure
10400  */
10401 
10402 struct swevent_htable {
10403 	struct swevent_hlist		*swevent_hlist;
10404 	struct mutex			hlist_mutex;
10405 	int				hlist_refcount;
10406 };
10407 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10408 
10409 /*
10410  * We directly increment event->count and keep a second value in
10411  * event->hw.period_left to count intervals. This period event
10412  * is kept in the range [-sample_period, 0] so that we can use the
10413  * sign as trigger.
10414  */
10415 
perf_swevent_set_period(struct perf_event * event)10416 u64 perf_swevent_set_period(struct perf_event *event)
10417 {
10418 	struct hw_perf_event *hwc = &event->hw;
10419 	u64 period = hwc->last_period;
10420 	u64 nr, offset;
10421 	s64 old, val;
10422 
10423 	hwc->last_period = hwc->sample_period;
10424 
10425 	old = local64_read(&hwc->period_left);
10426 	do {
10427 		val = old;
10428 		if (val < 0)
10429 			return 0;
10430 
10431 		nr = div64_u64(period + val, period);
10432 		offset = nr * period;
10433 		val -= offset;
10434 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10435 
10436 	return nr;
10437 }
10438 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)10439 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10440 				    struct perf_sample_data *data,
10441 				    struct pt_regs *regs)
10442 {
10443 	struct hw_perf_event *hwc = &event->hw;
10444 	int throttle = 0;
10445 
10446 	if (!overflow)
10447 		overflow = perf_swevent_set_period(event);
10448 
10449 	if (hwc->interrupts == MAX_INTERRUPTS)
10450 		return;
10451 
10452 	for (; overflow; overflow--) {
10453 		if (__perf_event_overflow(event, throttle,
10454 					    data, regs)) {
10455 			/*
10456 			 * We inhibit the overflow from happening when
10457 			 * hwc->interrupts == MAX_INTERRUPTS.
10458 			 */
10459 			break;
10460 		}
10461 		throttle = 1;
10462 	}
10463 }
10464 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10465 static void perf_swevent_event(struct perf_event *event, u64 nr,
10466 			       struct perf_sample_data *data,
10467 			       struct pt_regs *regs)
10468 {
10469 	struct hw_perf_event *hwc = &event->hw;
10470 
10471 	local64_add(nr, &event->count);
10472 
10473 	if (!regs)
10474 		return;
10475 
10476 	if (!is_sampling_event(event))
10477 		return;
10478 
10479 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10480 		data->period = nr;
10481 		return perf_swevent_overflow(event, 1, data, regs);
10482 	} else
10483 		data->period = event->hw.last_period;
10484 
10485 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10486 		return perf_swevent_overflow(event, 1, data, regs);
10487 
10488 	if (local64_add_negative(nr, &hwc->period_left))
10489 		return;
10490 
10491 	perf_swevent_overflow(event, 0, data, regs);
10492 }
10493 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)10494 int perf_exclude_event(struct perf_event *event, struct pt_regs *regs)
10495 {
10496 	if (event->hw.state & PERF_HES_STOPPED)
10497 		return 1;
10498 
10499 	if (regs) {
10500 		if (event->attr.exclude_user && user_mode(regs))
10501 			return 1;
10502 
10503 		if (event->attr.exclude_kernel && !user_mode(regs))
10504 			return 1;
10505 	}
10506 
10507 	return 0;
10508 }
10509 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10510 static int perf_swevent_match(struct perf_event *event,
10511 				enum perf_type_id type,
10512 				u32 event_id,
10513 				struct perf_sample_data *data,
10514 				struct pt_regs *regs)
10515 {
10516 	if (event->attr.type != type)
10517 		return 0;
10518 
10519 	if (event->attr.config != event_id)
10520 		return 0;
10521 
10522 	if (perf_exclude_event(event, regs))
10523 		return 0;
10524 
10525 	return 1;
10526 }
10527 
swevent_hash(u64 type,u32 event_id)10528 static inline u64 swevent_hash(u64 type, u32 event_id)
10529 {
10530 	u64 val = event_id | (type << 32);
10531 
10532 	return hash_64(val, SWEVENT_HLIST_BITS);
10533 }
10534 
10535 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10536 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10537 {
10538 	u64 hash = swevent_hash(type, event_id);
10539 
10540 	return &hlist->heads[hash];
10541 }
10542 
10543 /* For the read side: events when they trigger */
10544 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10545 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10546 {
10547 	struct swevent_hlist *hlist;
10548 
10549 	hlist = rcu_dereference(swhash->swevent_hlist);
10550 	if (!hlist)
10551 		return NULL;
10552 
10553 	return __find_swevent_head(hlist, type, event_id);
10554 }
10555 
10556 /* For the event head insertion and removal in the hlist */
10557 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10558 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10559 {
10560 	struct swevent_hlist *hlist;
10561 	u32 event_id = event->attr.config;
10562 	u64 type = event->attr.type;
10563 
10564 	/*
10565 	 * Event scheduling is always serialized against hlist allocation
10566 	 * and release. Which makes the protected version suitable here.
10567 	 * The context lock guarantees that.
10568 	 */
10569 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10570 					  lockdep_is_held(&event->ctx->lock));
10571 	if (!hlist)
10572 		return NULL;
10573 
10574 	return __find_swevent_head(hlist, type, event_id);
10575 }
10576 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10577 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10578 				    u64 nr,
10579 				    struct perf_sample_data *data,
10580 				    struct pt_regs *regs)
10581 {
10582 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10583 	struct perf_event *event;
10584 	struct hlist_head *head;
10585 
10586 	rcu_read_lock();
10587 	head = find_swevent_head_rcu(swhash, type, event_id);
10588 	if (!head)
10589 		goto end;
10590 
10591 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10592 		if (perf_swevent_match(event, type, event_id, data, regs))
10593 			perf_swevent_event(event, nr, data, regs);
10594 	}
10595 end:
10596 	rcu_read_unlock();
10597 }
10598 
10599 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10600 
perf_swevent_get_recursion_context(void)10601 int perf_swevent_get_recursion_context(void)
10602 {
10603 	return get_recursion_context(current->perf_recursion);
10604 }
10605 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10606 
perf_swevent_put_recursion_context(int rctx)10607 void perf_swevent_put_recursion_context(int rctx)
10608 {
10609 	put_recursion_context(current->perf_recursion, rctx);
10610 }
10611 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10612 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10613 {
10614 	struct perf_sample_data data;
10615 
10616 	if (WARN_ON_ONCE(!regs))
10617 		return;
10618 
10619 	perf_sample_data_init(&data, addr, 0);
10620 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10621 }
10622 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10623 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10624 {
10625 	int rctx;
10626 
10627 	preempt_disable_notrace();
10628 	rctx = perf_swevent_get_recursion_context();
10629 	if (unlikely(rctx < 0))
10630 		goto fail;
10631 
10632 	___perf_sw_event(event_id, nr, regs, addr);
10633 
10634 	perf_swevent_put_recursion_context(rctx);
10635 fail:
10636 	preempt_enable_notrace();
10637 }
10638 
perf_swevent_read(struct perf_event * event)10639 static void perf_swevent_read(struct perf_event *event)
10640 {
10641 }
10642 
perf_swevent_add(struct perf_event * event,int flags)10643 static int perf_swevent_add(struct perf_event *event, int flags)
10644 {
10645 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10646 	struct hw_perf_event *hwc = &event->hw;
10647 	struct hlist_head *head;
10648 
10649 	if (is_sampling_event(event)) {
10650 		hwc->last_period = hwc->sample_period;
10651 		perf_swevent_set_period(event);
10652 	}
10653 
10654 	hwc->state = !(flags & PERF_EF_START);
10655 
10656 	head = find_swevent_head(swhash, event);
10657 	if (WARN_ON_ONCE(!head))
10658 		return -EINVAL;
10659 
10660 	hlist_add_head_rcu(&event->hlist_entry, head);
10661 	perf_event_update_userpage(event);
10662 
10663 	return 0;
10664 }
10665 
perf_swevent_del(struct perf_event * event,int flags)10666 static void perf_swevent_del(struct perf_event *event, int flags)
10667 {
10668 	hlist_del_rcu(&event->hlist_entry);
10669 }
10670 
perf_swevent_start(struct perf_event * event,int flags)10671 static void perf_swevent_start(struct perf_event *event, int flags)
10672 {
10673 	event->hw.state = 0;
10674 }
10675 
perf_swevent_stop(struct perf_event * event,int flags)10676 static void perf_swevent_stop(struct perf_event *event, int flags)
10677 {
10678 	event->hw.state = PERF_HES_STOPPED;
10679 }
10680 
10681 /* Deref the hlist from the update side */
10682 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10683 swevent_hlist_deref(struct swevent_htable *swhash)
10684 {
10685 	return rcu_dereference_protected(swhash->swevent_hlist,
10686 					 lockdep_is_held(&swhash->hlist_mutex));
10687 }
10688 
swevent_hlist_release(struct swevent_htable * swhash)10689 static void swevent_hlist_release(struct swevent_htable *swhash)
10690 {
10691 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10692 
10693 	if (!hlist)
10694 		return;
10695 
10696 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10697 	kfree_rcu(hlist, rcu_head);
10698 }
10699 
swevent_hlist_put_cpu(int cpu)10700 static void swevent_hlist_put_cpu(int cpu)
10701 {
10702 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10703 
10704 	mutex_lock(&swhash->hlist_mutex);
10705 
10706 	if (!--swhash->hlist_refcount)
10707 		swevent_hlist_release(swhash);
10708 
10709 	mutex_unlock(&swhash->hlist_mutex);
10710 }
10711 
swevent_hlist_put(void)10712 static void swevent_hlist_put(void)
10713 {
10714 	int cpu;
10715 
10716 	for_each_possible_cpu(cpu)
10717 		swevent_hlist_put_cpu(cpu);
10718 }
10719 
swevent_hlist_get_cpu(int cpu)10720 static int swevent_hlist_get_cpu(int cpu)
10721 {
10722 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10723 	int err = 0;
10724 
10725 	mutex_lock(&swhash->hlist_mutex);
10726 	if (!swevent_hlist_deref(swhash) &&
10727 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10728 		struct swevent_hlist *hlist;
10729 
10730 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10731 		if (!hlist) {
10732 			err = -ENOMEM;
10733 			goto exit;
10734 		}
10735 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10736 	}
10737 	swhash->hlist_refcount++;
10738 exit:
10739 	mutex_unlock(&swhash->hlist_mutex);
10740 
10741 	return err;
10742 }
10743 
swevent_hlist_get(void)10744 static int swevent_hlist_get(void)
10745 {
10746 	int err, cpu, failed_cpu;
10747 
10748 	mutex_lock(&pmus_lock);
10749 	for_each_possible_cpu(cpu) {
10750 		err = swevent_hlist_get_cpu(cpu);
10751 		if (err) {
10752 			failed_cpu = cpu;
10753 			goto fail;
10754 		}
10755 	}
10756 	mutex_unlock(&pmus_lock);
10757 	return 0;
10758 fail:
10759 	for_each_possible_cpu(cpu) {
10760 		if (cpu == failed_cpu)
10761 			break;
10762 		swevent_hlist_put_cpu(cpu);
10763 	}
10764 	mutex_unlock(&pmus_lock);
10765 	return err;
10766 }
10767 
10768 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10769 
sw_perf_event_destroy(struct perf_event * event)10770 static void sw_perf_event_destroy(struct perf_event *event)
10771 {
10772 	u64 event_id = event->attr.config;
10773 
10774 	WARN_ON(event->parent);
10775 
10776 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10777 	swevent_hlist_put();
10778 }
10779 
10780 static struct pmu perf_cpu_clock; /* fwd declaration */
10781 static struct pmu perf_task_clock;
10782 
perf_swevent_init(struct perf_event * event)10783 static int perf_swevent_init(struct perf_event *event)
10784 {
10785 	u64 event_id = event->attr.config;
10786 
10787 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10788 		return -ENOENT;
10789 
10790 	/*
10791 	 * no branch sampling for software events
10792 	 */
10793 	if (has_branch_stack(event))
10794 		return -EOPNOTSUPP;
10795 
10796 	switch (event_id) {
10797 	case PERF_COUNT_SW_CPU_CLOCK:
10798 		event->attr.type = perf_cpu_clock.type;
10799 		return -ENOENT;
10800 	case PERF_COUNT_SW_TASK_CLOCK:
10801 		event->attr.type = perf_task_clock.type;
10802 		return -ENOENT;
10803 
10804 	default:
10805 		break;
10806 	}
10807 
10808 	if (event_id >= PERF_COUNT_SW_MAX)
10809 		return -ENOENT;
10810 
10811 	if (!event->parent) {
10812 		int err;
10813 
10814 		err = swevent_hlist_get();
10815 		if (err)
10816 			return err;
10817 
10818 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10819 		event->destroy = sw_perf_event_destroy;
10820 	}
10821 
10822 	return 0;
10823 }
10824 
10825 static struct pmu perf_swevent = {
10826 	.task_ctx_nr	= perf_sw_context,
10827 
10828 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10829 
10830 	.event_init	= perf_swevent_init,
10831 	.add		= perf_swevent_add,
10832 	.del		= perf_swevent_del,
10833 	.start		= perf_swevent_start,
10834 	.stop		= perf_swevent_stop,
10835 	.read		= perf_swevent_read,
10836 };
10837 
10838 #ifdef CONFIG_EVENT_TRACING
10839 
tp_perf_event_destroy(struct perf_event * event)10840 static void tp_perf_event_destroy(struct perf_event *event)
10841 {
10842 	perf_trace_destroy(event);
10843 }
10844 
perf_tp_event_init(struct perf_event * event)10845 static int perf_tp_event_init(struct perf_event *event)
10846 {
10847 	int err;
10848 
10849 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10850 		return -ENOENT;
10851 
10852 	/*
10853 	 * no branch sampling for tracepoint events
10854 	 */
10855 	if (has_branch_stack(event))
10856 		return -EOPNOTSUPP;
10857 
10858 	err = perf_trace_init(event);
10859 	if (err)
10860 		return err;
10861 
10862 	event->destroy = tp_perf_event_destroy;
10863 
10864 	return 0;
10865 }
10866 
10867 static struct pmu perf_tracepoint = {
10868 	.task_ctx_nr	= perf_sw_context,
10869 
10870 	.event_init	= perf_tp_event_init,
10871 	.add		= perf_trace_add,
10872 	.del		= perf_trace_del,
10873 	.start		= perf_swevent_start,
10874 	.stop		= perf_swevent_stop,
10875 	.read		= perf_swevent_read,
10876 };
10877 
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10878 static int perf_tp_filter_match(struct perf_event *event,
10879 				struct perf_raw_record *raw)
10880 {
10881 	void *record = raw->frag.data;
10882 
10883 	/* only top level events have filters set */
10884 	if (event->parent)
10885 		event = event->parent;
10886 
10887 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10888 		return 1;
10889 	return 0;
10890 }
10891 
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10892 static int perf_tp_event_match(struct perf_event *event,
10893 				struct perf_raw_record *raw,
10894 				struct pt_regs *regs)
10895 {
10896 	if (event->hw.state & PERF_HES_STOPPED)
10897 		return 0;
10898 	/*
10899 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10900 	 */
10901 	if (event->attr.exclude_kernel && !user_mode(regs))
10902 		return 0;
10903 
10904 	if (!perf_tp_filter_match(event, raw))
10905 		return 0;
10906 
10907 	return 1;
10908 }
10909 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10910 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10911 			       struct trace_event_call *call, u64 count,
10912 			       struct pt_regs *regs, struct hlist_head *head,
10913 			       struct task_struct *task)
10914 {
10915 	if (bpf_prog_array_valid(call)) {
10916 		*(struct pt_regs **)raw_data = regs;
10917 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10918 			perf_swevent_put_recursion_context(rctx);
10919 			return;
10920 		}
10921 	}
10922 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10923 		      rctx, task);
10924 }
10925 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10926 
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10927 static void __perf_tp_event_target_task(u64 count, void *record,
10928 					struct pt_regs *regs,
10929 					struct perf_sample_data *data,
10930 					struct perf_raw_record *raw,
10931 					struct perf_event *event)
10932 {
10933 	struct trace_entry *entry = record;
10934 
10935 	if (event->attr.config != entry->type)
10936 		return;
10937 	/* Cannot deliver synchronous signal to other task. */
10938 	if (event->attr.sigtrap)
10939 		return;
10940 	if (perf_tp_event_match(event, raw, regs)) {
10941 		perf_sample_data_init(data, 0, 0);
10942 		perf_sample_save_raw_data(data, event, raw);
10943 		perf_swevent_event(event, count, data, regs);
10944 	}
10945 }
10946 
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10947 static void perf_tp_event_target_task(u64 count, void *record,
10948 				      struct pt_regs *regs,
10949 				      struct perf_sample_data *data,
10950 				      struct perf_raw_record *raw,
10951 				      struct perf_event_context *ctx)
10952 {
10953 	unsigned int cpu = smp_processor_id();
10954 	struct pmu *pmu = &perf_tracepoint;
10955 	struct perf_event *event, *sibling;
10956 
10957 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10958 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10959 		for_each_sibling_event(sibling, event)
10960 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10961 	}
10962 
10963 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10964 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10965 		for_each_sibling_event(sibling, event)
10966 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10967 	}
10968 }
10969 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10970 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10971 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10972 		   struct task_struct *task)
10973 {
10974 	struct perf_sample_data data;
10975 	struct perf_event *event;
10976 
10977 	struct perf_raw_record raw = {
10978 		.frag = {
10979 			.size = entry_size,
10980 			.data = record,
10981 		},
10982 	};
10983 
10984 	perf_trace_buf_update(record, event_type);
10985 
10986 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10987 		if (perf_tp_event_match(event, &raw, regs)) {
10988 			/*
10989 			 * Here use the same on-stack perf_sample_data,
10990 			 * some members in data are event-specific and
10991 			 * need to be re-computed for different sweveents.
10992 			 * Re-initialize data->sample_flags safely to avoid
10993 			 * the problem that next event skips preparing data
10994 			 * because data->sample_flags is set.
10995 			 */
10996 			perf_sample_data_init(&data, 0, 0);
10997 			perf_sample_save_raw_data(&data, event, &raw);
10998 			perf_swevent_event(event, count, &data, regs);
10999 		}
11000 	}
11001 
11002 	/*
11003 	 * If we got specified a target task, also iterate its context and
11004 	 * deliver this event there too.
11005 	 */
11006 	if (task && task != current) {
11007 		struct perf_event_context *ctx;
11008 
11009 		rcu_read_lock();
11010 		ctx = rcu_dereference(task->perf_event_ctxp);
11011 		if (!ctx)
11012 			goto unlock;
11013 
11014 		raw_spin_lock(&ctx->lock);
11015 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
11016 		raw_spin_unlock(&ctx->lock);
11017 unlock:
11018 		rcu_read_unlock();
11019 	}
11020 
11021 	perf_swevent_put_recursion_context(rctx);
11022 }
11023 EXPORT_SYMBOL_GPL(perf_tp_event);
11024 
11025 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
11026 /*
11027  * Flags in config, used by dynamic PMU kprobe and uprobe
11028  * The flags should match following PMU_FORMAT_ATTR().
11029  *
11030  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
11031  *                               if not set, create kprobe/uprobe
11032  *
11033  * The following values specify a reference counter (or semaphore in the
11034  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
11035  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
11036  *
11037  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
11038  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
11039  */
11040 enum perf_probe_config {
11041 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
11042 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
11043 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
11044 };
11045 
11046 PMU_FORMAT_ATTR(retprobe, "config:0");
11047 #endif
11048 
11049 #ifdef CONFIG_KPROBE_EVENTS
11050 static struct attribute *kprobe_attrs[] = {
11051 	&format_attr_retprobe.attr,
11052 	NULL,
11053 };
11054 
11055 static struct attribute_group kprobe_format_group = {
11056 	.name = "format",
11057 	.attrs = kprobe_attrs,
11058 };
11059 
11060 static const struct attribute_group *kprobe_attr_groups[] = {
11061 	&kprobe_format_group,
11062 	NULL,
11063 };
11064 
11065 static int perf_kprobe_event_init(struct perf_event *event);
11066 static struct pmu perf_kprobe = {
11067 	.task_ctx_nr	= perf_sw_context,
11068 	.event_init	= perf_kprobe_event_init,
11069 	.add		= perf_trace_add,
11070 	.del		= perf_trace_del,
11071 	.start		= perf_swevent_start,
11072 	.stop		= perf_swevent_stop,
11073 	.read		= perf_swevent_read,
11074 	.attr_groups	= kprobe_attr_groups,
11075 };
11076 
perf_kprobe_event_init(struct perf_event * event)11077 static int perf_kprobe_event_init(struct perf_event *event)
11078 {
11079 	int err;
11080 	bool is_retprobe;
11081 
11082 	if (event->attr.type != perf_kprobe.type)
11083 		return -ENOENT;
11084 
11085 	if (!perfmon_capable())
11086 		return -EACCES;
11087 
11088 	/*
11089 	 * no branch sampling for probe events
11090 	 */
11091 	if (has_branch_stack(event))
11092 		return -EOPNOTSUPP;
11093 
11094 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11095 	err = perf_kprobe_init(event, is_retprobe);
11096 	if (err)
11097 		return err;
11098 
11099 	event->destroy = perf_kprobe_destroy;
11100 
11101 	return 0;
11102 }
11103 #endif /* CONFIG_KPROBE_EVENTS */
11104 
11105 #ifdef CONFIG_UPROBE_EVENTS
11106 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
11107 
11108 static struct attribute *uprobe_attrs[] = {
11109 	&format_attr_retprobe.attr,
11110 	&format_attr_ref_ctr_offset.attr,
11111 	NULL,
11112 };
11113 
11114 static struct attribute_group uprobe_format_group = {
11115 	.name = "format",
11116 	.attrs = uprobe_attrs,
11117 };
11118 
11119 static const struct attribute_group *uprobe_attr_groups[] = {
11120 	&uprobe_format_group,
11121 	NULL,
11122 };
11123 
11124 static int perf_uprobe_event_init(struct perf_event *event);
11125 static struct pmu perf_uprobe = {
11126 	.task_ctx_nr	= perf_sw_context,
11127 	.event_init	= perf_uprobe_event_init,
11128 	.add		= perf_trace_add,
11129 	.del		= perf_trace_del,
11130 	.start		= perf_swevent_start,
11131 	.stop		= perf_swevent_stop,
11132 	.read		= perf_swevent_read,
11133 	.attr_groups	= uprobe_attr_groups,
11134 };
11135 
perf_uprobe_event_init(struct perf_event * event)11136 static int perf_uprobe_event_init(struct perf_event *event)
11137 {
11138 	int err;
11139 	unsigned long ref_ctr_offset;
11140 	bool is_retprobe;
11141 
11142 	if (event->attr.type != perf_uprobe.type)
11143 		return -ENOENT;
11144 
11145 	if (!capable(CAP_SYS_ADMIN))
11146 		return -EACCES;
11147 
11148 	/*
11149 	 * no branch sampling for probe events
11150 	 */
11151 	if (has_branch_stack(event))
11152 		return -EOPNOTSUPP;
11153 
11154 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
11155 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11156 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
11157 	if (err)
11158 		return err;
11159 
11160 	event->destroy = perf_uprobe_destroy;
11161 
11162 	return 0;
11163 }
11164 #endif /* CONFIG_UPROBE_EVENTS */
11165 
perf_tp_register(void)11166 static inline void perf_tp_register(void)
11167 {
11168 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
11169 #ifdef CONFIG_KPROBE_EVENTS
11170 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
11171 #endif
11172 #ifdef CONFIG_UPROBE_EVENTS
11173 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
11174 #endif
11175 }
11176 
perf_event_free_filter(struct perf_event * event)11177 static void perf_event_free_filter(struct perf_event *event)
11178 {
11179 	ftrace_profile_free_filter(event);
11180 }
11181 
11182 /*
11183  * returns true if the event is a tracepoint, or a kprobe/upprobe created
11184  * with perf_event_open()
11185  */
perf_event_is_tracing(struct perf_event * event)11186 static inline bool perf_event_is_tracing(struct perf_event *event)
11187 {
11188 	if (event->pmu == &perf_tracepoint)
11189 		return true;
11190 #ifdef CONFIG_KPROBE_EVENTS
11191 	if (event->pmu == &perf_kprobe)
11192 		return true;
11193 #endif
11194 #ifdef CONFIG_UPROBE_EVENTS
11195 	if (event->pmu == &perf_uprobe)
11196 		return true;
11197 #endif
11198 	return false;
11199 }
11200 
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11201 static int __perf_event_set_bpf_prog(struct perf_event *event,
11202 				     struct bpf_prog *prog,
11203 				     u64 bpf_cookie)
11204 {
11205 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
11206 
11207 	if (event->state <= PERF_EVENT_STATE_REVOKED)
11208 		return -ENODEV;
11209 
11210 	if (!perf_event_is_tracing(event))
11211 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
11212 
11213 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
11214 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
11215 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
11216 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
11217 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
11218 		/* bpf programs can only be attached to u/kprobe or tracepoint */
11219 		return -EINVAL;
11220 
11221 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
11222 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
11223 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
11224 		return -EINVAL;
11225 
11226 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
11227 		/* only uprobe programs are allowed to be sleepable */
11228 		return -EINVAL;
11229 
11230 	/* Kprobe override only works for kprobes, not uprobes. */
11231 	if (prog->kprobe_override && !is_kprobe)
11232 		return -EINVAL;
11233 
11234 	if (is_tracepoint || is_syscall_tp) {
11235 		int off = trace_event_get_offsets(event->tp_event);
11236 
11237 		if (prog->aux->max_ctx_offset > off)
11238 			return -EACCES;
11239 	}
11240 
11241 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
11242 }
11243 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11244 int perf_event_set_bpf_prog(struct perf_event *event,
11245 			    struct bpf_prog *prog,
11246 			    u64 bpf_cookie)
11247 {
11248 	struct perf_event_context *ctx;
11249 	int ret;
11250 
11251 	ctx = perf_event_ctx_lock(event);
11252 	ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
11253 	perf_event_ctx_unlock(event, ctx);
11254 
11255 	return ret;
11256 }
11257 
perf_event_free_bpf_prog(struct perf_event * event)11258 void perf_event_free_bpf_prog(struct perf_event *event)
11259 {
11260 	if (!event->prog)
11261 		return;
11262 
11263 	if (!perf_event_is_tracing(event)) {
11264 		perf_event_free_bpf_handler(event);
11265 		return;
11266 	}
11267 	perf_event_detach_bpf_prog(event);
11268 }
11269 
11270 #else
11271 
perf_tp_register(void)11272 static inline void perf_tp_register(void)
11273 {
11274 }
11275 
perf_event_free_filter(struct perf_event * event)11276 static void perf_event_free_filter(struct perf_event *event)
11277 {
11278 }
11279 
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11280 static int __perf_event_set_bpf_prog(struct perf_event *event,
11281 				     struct bpf_prog *prog,
11282 				     u64 bpf_cookie)
11283 {
11284 	return -ENOENT;
11285 }
11286 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)11287 int perf_event_set_bpf_prog(struct perf_event *event,
11288 			    struct bpf_prog *prog,
11289 			    u64 bpf_cookie)
11290 {
11291 	return -ENOENT;
11292 }
11293 
perf_event_free_bpf_prog(struct perf_event * event)11294 void perf_event_free_bpf_prog(struct perf_event *event)
11295 {
11296 }
11297 #endif /* CONFIG_EVENT_TRACING */
11298 
11299 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)11300 void perf_bp_event(struct perf_event *bp, void *data)
11301 {
11302 	struct perf_sample_data sample;
11303 	struct pt_regs *regs = data;
11304 
11305 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
11306 
11307 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
11308 		perf_swevent_event(bp, 1, &sample, regs);
11309 }
11310 #endif
11311 
11312 /*
11313  * Allocate a new address filter
11314  */
11315 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)11316 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
11317 {
11318 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
11319 	struct perf_addr_filter *filter;
11320 
11321 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
11322 	if (!filter)
11323 		return NULL;
11324 
11325 	INIT_LIST_HEAD(&filter->entry);
11326 	list_add_tail(&filter->entry, filters);
11327 
11328 	return filter;
11329 }
11330 
free_filters_list(struct list_head * filters)11331 static void free_filters_list(struct list_head *filters)
11332 {
11333 	struct perf_addr_filter *filter, *iter;
11334 
11335 	list_for_each_entry_safe(filter, iter, filters, entry) {
11336 		path_put(&filter->path);
11337 		list_del(&filter->entry);
11338 		kfree(filter);
11339 	}
11340 }
11341 
11342 /*
11343  * Free existing address filters and optionally install new ones
11344  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)11345 static void perf_addr_filters_splice(struct perf_event *event,
11346 				     struct list_head *head)
11347 {
11348 	unsigned long flags;
11349 	LIST_HEAD(list);
11350 
11351 	if (!has_addr_filter(event))
11352 		return;
11353 
11354 	/* don't bother with children, they don't have their own filters */
11355 	if (event->parent)
11356 		return;
11357 
11358 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
11359 
11360 	list_splice_init(&event->addr_filters.list, &list);
11361 	if (head)
11362 		list_splice(head, &event->addr_filters.list);
11363 
11364 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
11365 
11366 	free_filters_list(&list);
11367 }
11368 
perf_free_addr_filters(struct perf_event * event)11369 static void perf_free_addr_filters(struct perf_event *event)
11370 {
11371 	/*
11372 	 * Used during free paths, there is no concurrency.
11373 	 */
11374 	if (list_empty(&event->addr_filters.list))
11375 		return;
11376 
11377 	perf_addr_filters_splice(event, NULL);
11378 }
11379 
11380 /*
11381  * Scan through mm's vmas and see if one of them matches the
11382  * @filter; if so, adjust filter's address range.
11383  * Called with mm::mmap_lock down for reading.
11384  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)11385 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
11386 				   struct mm_struct *mm,
11387 				   struct perf_addr_filter_range *fr)
11388 {
11389 	struct vm_area_struct *vma;
11390 	VMA_ITERATOR(vmi, mm, 0);
11391 
11392 	for_each_vma(vmi, vma) {
11393 		if (!vma->vm_file)
11394 			continue;
11395 
11396 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
11397 			return;
11398 	}
11399 }
11400 
11401 /*
11402  * Update event's address range filters based on the
11403  * task's existing mappings, if any.
11404  */
perf_event_addr_filters_apply(struct perf_event * event)11405 static void perf_event_addr_filters_apply(struct perf_event *event)
11406 {
11407 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11408 	struct task_struct *task = READ_ONCE(event->ctx->task);
11409 	struct perf_addr_filter *filter;
11410 	struct mm_struct *mm = NULL;
11411 	unsigned int count = 0;
11412 	unsigned long flags;
11413 
11414 	/*
11415 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
11416 	 * will stop on the parent's child_mutex that our caller is also holding
11417 	 */
11418 	if (task == TASK_TOMBSTONE)
11419 		return;
11420 
11421 	if (ifh->nr_file_filters) {
11422 		mm = get_task_mm(task);
11423 		if (!mm)
11424 			goto restart;
11425 
11426 		mmap_read_lock(mm);
11427 	}
11428 
11429 	raw_spin_lock_irqsave(&ifh->lock, flags);
11430 	list_for_each_entry(filter, &ifh->list, entry) {
11431 		if (filter->path.dentry) {
11432 			/*
11433 			 * Adjust base offset if the filter is associated to a
11434 			 * binary that needs to be mapped:
11435 			 */
11436 			event->addr_filter_ranges[count].start = 0;
11437 			event->addr_filter_ranges[count].size = 0;
11438 
11439 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11440 		} else {
11441 			event->addr_filter_ranges[count].start = filter->offset;
11442 			event->addr_filter_ranges[count].size  = filter->size;
11443 		}
11444 
11445 		count++;
11446 	}
11447 
11448 	event->addr_filters_gen++;
11449 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11450 
11451 	if (ifh->nr_file_filters) {
11452 		mmap_read_unlock(mm);
11453 
11454 		mmput(mm);
11455 	}
11456 
11457 restart:
11458 	perf_event_stop(event, 1);
11459 }
11460 
11461 /*
11462  * Address range filtering: limiting the data to certain
11463  * instruction address ranges. Filters are ioctl()ed to us from
11464  * userspace as ascii strings.
11465  *
11466  * Filter string format:
11467  *
11468  * ACTION RANGE_SPEC
11469  * where ACTION is one of the
11470  *  * "filter": limit the trace to this region
11471  *  * "start": start tracing from this address
11472  *  * "stop": stop tracing at this address/region;
11473  * RANGE_SPEC is
11474  *  * for kernel addresses: <start address>[/<size>]
11475  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11476  *
11477  * if <size> is not specified or is zero, the range is treated as a single
11478  * address; not valid for ACTION=="filter".
11479  */
11480 enum {
11481 	IF_ACT_NONE = -1,
11482 	IF_ACT_FILTER,
11483 	IF_ACT_START,
11484 	IF_ACT_STOP,
11485 	IF_SRC_FILE,
11486 	IF_SRC_KERNEL,
11487 	IF_SRC_FILEADDR,
11488 	IF_SRC_KERNELADDR,
11489 };
11490 
11491 enum {
11492 	IF_STATE_ACTION = 0,
11493 	IF_STATE_SOURCE,
11494 	IF_STATE_END,
11495 };
11496 
11497 static const match_table_t if_tokens = {
11498 	{ IF_ACT_FILTER,	"filter" },
11499 	{ IF_ACT_START,		"start" },
11500 	{ IF_ACT_STOP,		"stop" },
11501 	{ IF_SRC_FILE,		"%u/%u@%s" },
11502 	{ IF_SRC_KERNEL,	"%u/%u" },
11503 	{ IF_SRC_FILEADDR,	"%u@%s" },
11504 	{ IF_SRC_KERNELADDR,	"%u" },
11505 	{ IF_ACT_NONE,		NULL },
11506 };
11507 
11508 /*
11509  * Address filter string parser
11510  */
11511 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)11512 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11513 			     struct list_head *filters)
11514 {
11515 	struct perf_addr_filter *filter = NULL;
11516 	char *start, *orig, *filename = NULL;
11517 	substring_t args[MAX_OPT_ARGS];
11518 	int state = IF_STATE_ACTION, token;
11519 	unsigned int kernel = 0;
11520 	int ret = -EINVAL;
11521 
11522 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11523 	if (!fstr)
11524 		return -ENOMEM;
11525 
11526 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11527 		static const enum perf_addr_filter_action_t actions[] = {
11528 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11529 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11530 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11531 		};
11532 		ret = -EINVAL;
11533 
11534 		if (!*start)
11535 			continue;
11536 
11537 		/* filter definition begins */
11538 		if (state == IF_STATE_ACTION) {
11539 			filter = perf_addr_filter_new(event, filters);
11540 			if (!filter)
11541 				goto fail;
11542 		}
11543 
11544 		token = match_token(start, if_tokens, args);
11545 		switch (token) {
11546 		case IF_ACT_FILTER:
11547 		case IF_ACT_START:
11548 		case IF_ACT_STOP:
11549 			if (state != IF_STATE_ACTION)
11550 				goto fail;
11551 
11552 			filter->action = actions[token];
11553 			state = IF_STATE_SOURCE;
11554 			break;
11555 
11556 		case IF_SRC_KERNELADDR:
11557 		case IF_SRC_KERNEL:
11558 			kernel = 1;
11559 			fallthrough;
11560 
11561 		case IF_SRC_FILEADDR:
11562 		case IF_SRC_FILE:
11563 			if (state != IF_STATE_SOURCE)
11564 				goto fail;
11565 
11566 			*args[0].to = 0;
11567 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11568 			if (ret)
11569 				goto fail;
11570 
11571 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11572 				*args[1].to = 0;
11573 				ret = kstrtoul(args[1].from, 0, &filter->size);
11574 				if (ret)
11575 					goto fail;
11576 			}
11577 
11578 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11579 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11580 
11581 				kfree(filename);
11582 				filename = match_strdup(&args[fpos]);
11583 				if (!filename) {
11584 					ret = -ENOMEM;
11585 					goto fail;
11586 				}
11587 			}
11588 
11589 			state = IF_STATE_END;
11590 			break;
11591 
11592 		default:
11593 			goto fail;
11594 		}
11595 
11596 		/*
11597 		 * Filter definition is fully parsed, validate and install it.
11598 		 * Make sure that it doesn't contradict itself or the event's
11599 		 * attribute.
11600 		 */
11601 		if (state == IF_STATE_END) {
11602 			ret = -EINVAL;
11603 
11604 			/*
11605 			 * ACTION "filter" must have a non-zero length region
11606 			 * specified.
11607 			 */
11608 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11609 			    !filter->size)
11610 				goto fail;
11611 
11612 			if (!kernel) {
11613 				if (!filename)
11614 					goto fail;
11615 
11616 				/*
11617 				 * For now, we only support file-based filters
11618 				 * in per-task events; doing so for CPU-wide
11619 				 * events requires additional context switching
11620 				 * trickery, since same object code will be
11621 				 * mapped at different virtual addresses in
11622 				 * different processes.
11623 				 */
11624 				ret = -EOPNOTSUPP;
11625 				if (!event->ctx->task)
11626 					goto fail;
11627 
11628 				/* look up the path and grab its inode */
11629 				ret = kern_path(filename, LOOKUP_FOLLOW,
11630 						&filter->path);
11631 				if (ret)
11632 					goto fail;
11633 
11634 				ret = -EINVAL;
11635 				if (!filter->path.dentry ||
11636 				    !S_ISREG(d_inode(filter->path.dentry)
11637 					     ->i_mode))
11638 					goto fail;
11639 
11640 				event->addr_filters.nr_file_filters++;
11641 			}
11642 
11643 			/* ready to consume more filters */
11644 			kfree(filename);
11645 			filename = NULL;
11646 			state = IF_STATE_ACTION;
11647 			filter = NULL;
11648 			kernel = 0;
11649 		}
11650 	}
11651 
11652 	if (state != IF_STATE_ACTION)
11653 		goto fail;
11654 
11655 	kfree(filename);
11656 	kfree(orig);
11657 
11658 	return 0;
11659 
11660 fail:
11661 	kfree(filename);
11662 	free_filters_list(filters);
11663 	kfree(orig);
11664 
11665 	return ret;
11666 }
11667 
11668 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11669 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11670 {
11671 	LIST_HEAD(filters);
11672 	int ret;
11673 
11674 	/*
11675 	 * Since this is called in perf_ioctl() path, we're already holding
11676 	 * ctx::mutex.
11677 	 */
11678 	lockdep_assert_held(&event->ctx->mutex);
11679 
11680 	if (WARN_ON_ONCE(event->parent))
11681 		return -EINVAL;
11682 
11683 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11684 	if (ret)
11685 		goto fail_clear_files;
11686 
11687 	ret = event->pmu->addr_filters_validate(&filters);
11688 	if (ret)
11689 		goto fail_free_filters;
11690 
11691 	/* remove existing filters, if any */
11692 	perf_addr_filters_splice(event, &filters);
11693 
11694 	/* install new filters */
11695 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11696 
11697 	return ret;
11698 
11699 fail_free_filters:
11700 	free_filters_list(&filters);
11701 
11702 fail_clear_files:
11703 	event->addr_filters.nr_file_filters = 0;
11704 
11705 	return ret;
11706 }
11707 
perf_event_set_filter(struct perf_event * event,void __user * arg)11708 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11709 {
11710 	int ret = -EINVAL;
11711 	char *filter_str;
11712 
11713 	filter_str = strndup_user(arg, PAGE_SIZE);
11714 	if (IS_ERR(filter_str))
11715 		return PTR_ERR(filter_str);
11716 
11717 #ifdef CONFIG_EVENT_TRACING
11718 	if (perf_event_is_tracing(event)) {
11719 		struct perf_event_context *ctx = event->ctx;
11720 
11721 		/*
11722 		 * Beware, here be dragons!!
11723 		 *
11724 		 * the tracepoint muck will deadlock against ctx->mutex, but
11725 		 * the tracepoint stuff does not actually need it. So
11726 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11727 		 * already have a reference on ctx.
11728 		 *
11729 		 * This can result in event getting moved to a different ctx,
11730 		 * but that does not affect the tracepoint state.
11731 		 */
11732 		mutex_unlock(&ctx->mutex);
11733 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11734 		mutex_lock(&ctx->mutex);
11735 	} else
11736 #endif
11737 	if (has_addr_filter(event))
11738 		ret = perf_event_set_addr_filter(event, filter_str);
11739 
11740 	kfree(filter_str);
11741 	return ret;
11742 }
11743 
11744 /*
11745  * hrtimer based swevent callback
11746  */
11747 
perf_swevent_hrtimer(struct hrtimer * hrtimer)11748 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11749 {
11750 	enum hrtimer_restart ret = HRTIMER_RESTART;
11751 	struct perf_sample_data data;
11752 	struct pt_regs *regs;
11753 	struct perf_event *event;
11754 	u64 period;
11755 
11756 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11757 
11758 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11759 		return HRTIMER_NORESTART;
11760 
11761 	event->pmu->read(event);
11762 
11763 	perf_sample_data_init(&data, 0, event->hw.last_period);
11764 	regs = get_irq_regs();
11765 
11766 	if (regs && !perf_exclude_event(event, regs)) {
11767 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11768 			if (__perf_event_overflow(event, 1, &data, regs))
11769 				ret = HRTIMER_NORESTART;
11770 	}
11771 
11772 	period = max_t(u64, 10000, event->hw.sample_period);
11773 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11774 
11775 	return ret;
11776 }
11777 
perf_swevent_start_hrtimer(struct perf_event * event)11778 static void perf_swevent_start_hrtimer(struct perf_event *event)
11779 {
11780 	struct hw_perf_event *hwc = &event->hw;
11781 	s64 period;
11782 
11783 	if (!is_sampling_event(event))
11784 		return;
11785 
11786 	period = local64_read(&hwc->period_left);
11787 	if (period) {
11788 		if (period < 0)
11789 			period = 10000;
11790 
11791 		local64_set(&hwc->period_left, 0);
11792 	} else {
11793 		period = max_t(u64, 10000, hwc->sample_period);
11794 	}
11795 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11796 		      HRTIMER_MODE_REL_PINNED_HARD);
11797 }
11798 
perf_swevent_cancel_hrtimer(struct perf_event * event)11799 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11800 {
11801 	struct hw_perf_event *hwc = &event->hw;
11802 
11803 	/*
11804 	 * The throttle can be triggered in the hrtimer handler.
11805 	 * The HRTIMER_NORESTART should be used to stop the timer,
11806 	 * rather than hrtimer_cancel(). See perf_swevent_hrtimer()
11807 	 */
11808 	if (is_sampling_event(event) && (hwc->interrupts != MAX_INTERRUPTS)) {
11809 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11810 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11811 
11812 		hrtimer_cancel(&hwc->hrtimer);
11813 	}
11814 }
11815 
perf_swevent_init_hrtimer(struct perf_event * event)11816 static void perf_swevent_init_hrtimer(struct perf_event *event)
11817 {
11818 	struct hw_perf_event *hwc = &event->hw;
11819 
11820 	if (!is_sampling_event(event))
11821 		return;
11822 
11823 	hrtimer_setup(&hwc->hrtimer, perf_swevent_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11824 
11825 	/*
11826 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11827 	 * mapping and avoid the whole period adjust feedback stuff.
11828 	 */
11829 	if (event->attr.freq) {
11830 		long freq = event->attr.sample_freq;
11831 
11832 		event->attr.sample_period = NSEC_PER_SEC / freq;
11833 		hwc->sample_period = event->attr.sample_period;
11834 		local64_set(&hwc->period_left, hwc->sample_period);
11835 		hwc->last_period = hwc->sample_period;
11836 		event->attr.freq = 0;
11837 	}
11838 }
11839 
11840 /*
11841  * Software event: cpu wall time clock
11842  */
11843 
cpu_clock_event_update(struct perf_event * event)11844 static void cpu_clock_event_update(struct perf_event *event)
11845 {
11846 	s64 prev;
11847 	u64 now;
11848 
11849 	now = local_clock();
11850 	prev = local64_xchg(&event->hw.prev_count, now);
11851 	local64_add(now - prev, &event->count);
11852 }
11853 
cpu_clock_event_start(struct perf_event * event,int flags)11854 static void cpu_clock_event_start(struct perf_event *event, int flags)
11855 {
11856 	local64_set(&event->hw.prev_count, local_clock());
11857 	perf_swevent_start_hrtimer(event);
11858 }
11859 
cpu_clock_event_stop(struct perf_event * event,int flags)11860 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11861 {
11862 	perf_swevent_cancel_hrtimer(event);
11863 	if (flags & PERF_EF_UPDATE)
11864 		cpu_clock_event_update(event);
11865 }
11866 
cpu_clock_event_add(struct perf_event * event,int flags)11867 static int cpu_clock_event_add(struct perf_event *event, int flags)
11868 {
11869 	if (flags & PERF_EF_START)
11870 		cpu_clock_event_start(event, flags);
11871 	perf_event_update_userpage(event);
11872 
11873 	return 0;
11874 }
11875 
cpu_clock_event_del(struct perf_event * event,int flags)11876 static void cpu_clock_event_del(struct perf_event *event, int flags)
11877 {
11878 	cpu_clock_event_stop(event, flags);
11879 }
11880 
cpu_clock_event_read(struct perf_event * event)11881 static void cpu_clock_event_read(struct perf_event *event)
11882 {
11883 	cpu_clock_event_update(event);
11884 }
11885 
cpu_clock_event_init(struct perf_event * event)11886 static int cpu_clock_event_init(struct perf_event *event)
11887 {
11888 	if (event->attr.type != perf_cpu_clock.type)
11889 		return -ENOENT;
11890 
11891 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11892 		return -ENOENT;
11893 
11894 	/*
11895 	 * no branch sampling for software events
11896 	 */
11897 	if (has_branch_stack(event))
11898 		return -EOPNOTSUPP;
11899 
11900 	perf_swevent_init_hrtimer(event);
11901 
11902 	return 0;
11903 }
11904 
11905 static struct pmu perf_cpu_clock = {
11906 	.task_ctx_nr	= perf_sw_context,
11907 
11908 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11909 	.dev		= PMU_NULL_DEV,
11910 
11911 	.event_init	= cpu_clock_event_init,
11912 	.add		= cpu_clock_event_add,
11913 	.del		= cpu_clock_event_del,
11914 	.start		= cpu_clock_event_start,
11915 	.stop		= cpu_clock_event_stop,
11916 	.read		= cpu_clock_event_read,
11917 };
11918 
11919 /*
11920  * Software event: task time clock
11921  */
11922 
task_clock_event_update(struct perf_event * event,u64 now)11923 static void task_clock_event_update(struct perf_event *event, u64 now)
11924 {
11925 	u64 prev;
11926 	s64 delta;
11927 
11928 	prev = local64_xchg(&event->hw.prev_count, now);
11929 	delta = now - prev;
11930 	local64_add(delta, &event->count);
11931 }
11932 
task_clock_event_start(struct perf_event * event,int flags)11933 static void task_clock_event_start(struct perf_event *event, int flags)
11934 {
11935 	local64_set(&event->hw.prev_count, event->ctx->time);
11936 	perf_swevent_start_hrtimer(event);
11937 }
11938 
task_clock_event_stop(struct perf_event * event,int flags)11939 static void task_clock_event_stop(struct perf_event *event, int flags)
11940 {
11941 	perf_swevent_cancel_hrtimer(event);
11942 	if (flags & PERF_EF_UPDATE)
11943 		task_clock_event_update(event, event->ctx->time);
11944 }
11945 
task_clock_event_add(struct perf_event * event,int flags)11946 static int task_clock_event_add(struct perf_event *event, int flags)
11947 {
11948 	if (flags & PERF_EF_START)
11949 		task_clock_event_start(event, flags);
11950 	perf_event_update_userpage(event);
11951 
11952 	return 0;
11953 }
11954 
task_clock_event_del(struct perf_event * event,int flags)11955 static void task_clock_event_del(struct perf_event *event, int flags)
11956 {
11957 	task_clock_event_stop(event, PERF_EF_UPDATE);
11958 }
11959 
task_clock_event_read(struct perf_event * event)11960 static void task_clock_event_read(struct perf_event *event)
11961 {
11962 	u64 now = perf_clock();
11963 	u64 delta = now - event->ctx->timestamp;
11964 	u64 time = event->ctx->time + delta;
11965 
11966 	task_clock_event_update(event, time);
11967 }
11968 
task_clock_event_init(struct perf_event * event)11969 static int task_clock_event_init(struct perf_event *event)
11970 {
11971 	if (event->attr.type != perf_task_clock.type)
11972 		return -ENOENT;
11973 
11974 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11975 		return -ENOENT;
11976 
11977 	/*
11978 	 * no branch sampling for software events
11979 	 */
11980 	if (has_branch_stack(event))
11981 		return -EOPNOTSUPP;
11982 
11983 	perf_swevent_init_hrtimer(event);
11984 
11985 	return 0;
11986 }
11987 
11988 static struct pmu perf_task_clock = {
11989 	.task_ctx_nr	= perf_sw_context,
11990 
11991 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11992 	.dev		= PMU_NULL_DEV,
11993 
11994 	.event_init	= task_clock_event_init,
11995 	.add		= task_clock_event_add,
11996 	.del		= task_clock_event_del,
11997 	.start		= task_clock_event_start,
11998 	.stop		= task_clock_event_stop,
11999 	.read		= task_clock_event_read,
12000 };
12001 
perf_pmu_nop_void(struct pmu * pmu)12002 static void perf_pmu_nop_void(struct pmu *pmu)
12003 {
12004 }
12005 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)12006 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
12007 {
12008 }
12009 
perf_pmu_nop_int(struct pmu * pmu)12010 static int perf_pmu_nop_int(struct pmu *pmu)
12011 {
12012 	return 0;
12013 }
12014 
perf_event_nop_int(struct perf_event * event,u64 value)12015 static int perf_event_nop_int(struct perf_event *event, u64 value)
12016 {
12017 	return 0;
12018 }
12019 
12020 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
12021 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)12022 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
12023 {
12024 	__this_cpu_write(nop_txn_flags, flags);
12025 
12026 	if (flags & ~PERF_PMU_TXN_ADD)
12027 		return;
12028 
12029 	perf_pmu_disable(pmu);
12030 }
12031 
perf_pmu_commit_txn(struct pmu * pmu)12032 static int perf_pmu_commit_txn(struct pmu *pmu)
12033 {
12034 	unsigned int flags = __this_cpu_read(nop_txn_flags);
12035 
12036 	__this_cpu_write(nop_txn_flags, 0);
12037 
12038 	if (flags & ~PERF_PMU_TXN_ADD)
12039 		return 0;
12040 
12041 	perf_pmu_enable(pmu);
12042 	return 0;
12043 }
12044 
perf_pmu_cancel_txn(struct pmu * pmu)12045 static void perf_pmu_cancel_txn(struct pmu *pmu)
12046 {
12047 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
12048 
12049 	__this_cpu_write(nop_txn_flags, 0);
12050 
12051 	if (flags & ~PERF_PMU_TXN_ADD)
12052 		return;
12053 
12054 	perf_pmu_enable(pmu);
12055 }
12056 
perf_event_idx_default(struct perf_event * event)12057 static int perf_event_idx_default(struct perf_event *event)
12058 {
12059 	return 0;
12060 }
12061 
12062 /*
12063  * Let userspace know that this PMU supports address range filtering:
12064  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)12065 static ssize_t nr_addr_filters_show(struct device *dev,
12066 				    struct device_attribute *attr,
12067 				    char *page)
12068 {
12069 	struct pmu *pmu = dev_get_drvdata(dev);
12070 
12071 	return sysfs_emit(page, "%d\n", pmu->nr_addr_filters);
12072 }
12073 DEVICE_ATTR_RO(nr_addr_filters);
12074 
12075 static struct idr pmu_idr;
12076 
12077 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)12078 type_show(struct device *dev, struct device_attribute *attr, char *page)
12079 {
12080 	struct pmu *pmu = dev_get_drvdata(dev);
12081 
12082 	return sysfs_emit(page, "%d\n", pmu->type);
12083 }
12084 static DEVICE_ATTR_RO(type);
12085 
12086 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)12087 perf_event_mux_interval_ms_show(struct device *dev,
12088 				struct device_attribute *attr,
12089 				char *page)
12090 {
12091 	struct pmu *pmu = dev_get_drvdata(dev);
12092 
12093 	return sysfs_emit(page, "%d\n", pmu->hrtimer_interval_ms);
12094 }
12095 
12096 static DEFINE_MUTEX(mux_interval_mutex);
12097 
12098 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)12099 perf_event_mux_interval_ms_store(struct device *dev,
12100 				 struct device_attribute *attr,
12101 				 const char *buf, size_t count)
12102 {
12103 	struct pmu *pmu = dev_get_drvdata(dev);
12104 	int timer, cpu, ret;
12105 
12106 	ret = kstrtoint(buf, 0, &timer);
12107 	if (ret)
12108 		return ret;
12109 
12110 	if (timer < 1)
12111 		return -EINVAL;
12112 
12113 	/* same value, noting to do */
12114 	if (timer == pmu->hrtimer_interval_ms)
12115 		return count;
12116 
12117 	mutex_lock(&mux_interval_mutex);
12118 	pmu->hrtimer_interval_ms = timer;
12119 
12120 	/* update all cpuctx for this PMU */
12121 	cpus_read_lock();
12122 	for_each_online_cpu(cpu) {
12123 		struct perf_cpu_pmu_context *cpc;
12124 		cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12125 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
12126 
12127 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
12128 	}
12129 	cpus_read_unlock();
12130 	mutex_unlock(&mux_interval_mutex);
12131 
12132 	return count;
12133 }
12134 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
12135 
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)12136 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
12137 {
12138 	switch (scope) {
12139 	case PERF_PMU_SCOPE_CORE:
12140 		return topology_sibling_cpumask(cpu);
12141 	case PERF_PMU_SCOPE_DIE:
12142 		return topology_die_cpumask(cpu);
12143 	case PERF_PMU_SCOPE_CLUSTER:
12144 		return topology_cluster_cpumask(cpu);
12145 	case PERF_PMU_SCOPE_PKG:
12146 		return topology_core_cpumask(cpu);
12147 	case PERF_PMU_SCOPE_SYS_WIDE:
12148 		return cpu_online_mask;
12149 	}
12150 
12151 	return NULL;
12152 }
12153 
perf_scope_cpumask(unsigned int scope)12154 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
12155 {
12156 	switch (scope) {
12157 	case PERF_PMU_SCOPE_CORE:
12158 		return perf_online_core_mask;
12159 	case PERF_PMU_SCOPE_DIE:
12160 		return perf_online_die_mask;
12161 	case PERF_PMU_SCOPE_CLUSTER:
12162 		return perf_online_cluster_mask;
12163 	case PERF_PMU_SCOPE_PKG:
12164 		return perf_online_pkg_mask;
12165 	case PERF_PMU_SCOPE_SYS_WIDE:
12166 		return perf_online_sys_mask;
12167 	}
12168 
12169 	return NULL;
12170 }
12171 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)12172 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
12173 			    char *buf)
12174 {
12175 	struct pmu *pmu = dev_get_drvdata(dev);
12176 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
12177 
12178 	if (mask)
12179 		return cpumap_print_to_pagebuf(true, buf, mask);
12180 	return 0;
12181 }
12182 
12183 static DEVICE_ATTR_RO(cpumask);
12184 
12185 static struct attribute *pmu_dev_attrs[] = {
12186 	&dev_attr_type.attr,
12187 	&dev_attr_perf_event_mux_interval_ms.attr,
12188 	&dev_attr_nr_addr_filters.attr,
12189 	&dev_attr_cpumask.attr,
12190 	NULL,
12191 };
12192 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)12193 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
12194 {
12195 	struct device *dev = kobj_to_dev(kobj);
12196 	struct pmu *pmu = dev_get_drvdata(dev);
12197 
12198 	if (n == 2 && !pmu->nr_addr_filters)
12199 		return 0;
12200 
12201 	/* cpumask */
12202 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
12203 		return 0;
12204 
12205 	return a->mode;
12206 }
12207 
12208 static struct attribute_group pmu_dev_attr_group = {
12209 	.is_visible = pmu_dev_is_visible,
12210 	.attrs = pmu_dev_attrs,
12211 };
12212 
12213 static const struct attribute_group *pmu_dev_groups[] = {
12214 	&pmu_dev_attr_group,
12215 	NULL,
12216 };
12217 
12218 static int pmu_bus_running;
12219 static struct bus_type pmu_bus = {
12220 	.name		= "event_source",
12221 	.dev_groups	= pmu_dev_groups,
12222 };
12223 
pmu_dev_release(struct device * dev)12224 static void pmu_dev_release(struct device *dev)
12225 {
12226 	kfree(dev);
12227 }
12228 
pmu_dev_alloc(struct pmu * pmu)12229 static int pmu_dev_alloc(struct pmu *pmu)
12230 {
12231 	int ret = -ENOMEM;
12232 
12233 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
12234 	if (!pmu->dev)
12235 		goto out;
12236 
12237 	pmu->dev->groups = pmu->attr_groups;
12238 	device_initialize(pmu->dev);
12239 
12240 	dev_set_drvdata(pmu->dev, pmu);
12241 	pmu->dev->bus = &pmu_bus;
12242 	pmu->dev->parent = pmu->parent;
12243 	pmu->dev->release = pmu_dev_release;
12244 
12245 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
12246 	if (ret)
12247 		goto free_dev;
12248 
12249 	ret = device_add(pmu->dev);
12250 	if (ret)
12251 		goto free_dev;
12252 
12253 	if (pmu->attr_update) {
12254 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
12255 		if (ret)
12256 			goto del_dev;
12257 	}
12258 
12259 out:
12260 	return ret;
12261 
12262 del_dev:
12263 	device_del(pmu->dev);
12264 
12265 free_dev:
12266 	put_device(pmu->dev);
12267 	pmu->dev = NULL;
12268 	goto out;
12269 }
12270 
12271 static struct lock_class_key cpuctx_mutex;
12272 static struct lock_class_key cpuctx_lock;
12273 
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)12274 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
12275 {
12276 	void *tmp, *val = idr_find(idr, id);
12277 
12278 	if (val != old)
12279 		return false;
12280 
12281 	tmp = idr_replace(idr, new, id);
12282 	if (IS_ERR(tmp))
12283 		return false;
12284 
12285 	WARN_ON_ONCE(tmp != val);
12286 	return true;
12287 }
12288 
perf_pmu_free(struct pmu * pmu)12289 static void perf_pmu_free(struct pmu *pmu)
12290 {
12291 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
12292 		if (pmu->nr_addr_filters)
12293 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
12294 		device_del(pmu->dev);
12295 		put_device(pmu->dev);
12296 	}
12297 
12298 	if (pmu->cpu_pmu_context) {
12299 		int cpu;
12300 
12301 		for_each_possible_cpu(cpu) {
12302 			struct perf_cpu_pmu_context *cpc;
12303 
12304 			cpc = *per_cpu_ptr(pmu->cpu_pmu_context, cpu);
12305 			if (!cpc)
12306 				continue;
12307 			if (cpc->epc.embedded) {
12308 				/* refcount managed */
12309 				put_pmu_ctx(&cpc->epc);
12310 				continue;
12311 			}
12312 			kfree(cpc);
12313 		}
12314 		free_percpu(pmu->cpu_pmu_context);
12315 	}
12316 }
12317 
DEFINE_FREE(pmu_unregister,struct pmu *,if (_T)perf_pmu_free (_T))12318 DEFINE_FREE(pmu_unregister, struct pmu *, if (_T) perf_pmu_free(_T))
12319 
12320 int perf_pmu_register(struct pmu *_pmu, const char *name, int type)
12321 {
12322 	int cpu, max = PERF_TYPE_MAX;
12323 
12324 	struct pmu *pmu __free(pmu_unregister) = _pmu;
12325 	guard(mutex)(&pmus_lock);
12326 
12327 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n"))
12328 		return -EINVAL;
12329 
12330 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE,
12331 		      "Can not register a pmu with an invalid scope.\n"))
12332 		return -EINVAL;
12333 
12334 	pmu->name = name;
12335 
12336 	if (type >= 0)
12337 		max = type;
12338 
12339 	CLASS(idr_alloc, pmu_type)(&pmu_idr, NULL, max, 0, GFP_KERNEL);
12340 	if (pmu_type.id < 0)
12341 		return pmu_type.id;
12342 
12343 	WARN_ON(type >= 0 && pmu_type.id != type);
12344 
12345 	pmu->type = pmu_type.id;
12346 	atomic_set(&pmu->exclusive_cnt, 0);
12347 
12348 	if (pmu_bus_running && !pmu->dev) {
12349 		int ret = pmu_dev_alloc(pmu);
12350 		if (ret)
12351 			return ret;
12352 	}
12353 
12354 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context *);
12355 	if (!pmu->cpu_pmu_context)
12356 		return -ENOMEM;
12357 
12358 	for_each_possible_cpu(cpu) {
12359 		struct perf_cpu_pmu_context *cpc =
12360 			kmalloc_node(sizeof(struct perf_cpu_pmu_context),
12361 				     GFP_KERNEL | __GFP_ZERO,
12362 				     cpu_to_node(cpu));
12363 
12364 		if (!cpc)
12365 			return -ENOMEM;
12366 
12367 		*per_cpu_ptr(pmu->cpu_pmu_context, cpu) = cpc;
12368 		__perf_init_event_pmu_context(&cpc->epc, pmu);
12369 		__perf_mux_hrtimer_init(cpc, cpu);
12370 	}
12371 
12372 	if (!pmu->start_txn) {
12373 		if (pmu->pmu_enable) {
12374 			/*
12375 			 * If we have pmu_enable/pmu_disable calls, install
12376 			 * transaction stubs that use that to try and batch
12377 			 * hardware accesses.
12378 			 */
12379 			pmu->start_txn  = perf_pmu_start_txn;
12380 			pmu->commit_txn = perf_pmu_commit_txn;
12381 			pmu->cancel_txn = perf_pmu_cancel_txn;
12382 		} else {
12383 			pmu->start_txn  = perf_pmu_nop_txn;
12384 			pmu->commit_txn = perf_pmu_nop_int;
12385 			pmu->cancel_txn = perf_pmu_nop_void;
12386 		}
12387 	}
12388 
12389 	if (!pmu->pmu_enable) {
12390 		pmu->pmu_enable  = perf_pmu_nop_void;
12391 		pmu->pmu_disable = perf_pmu_nop_void;
12392 	}
12393 
12394 	if (!pmu->check_period)
12395 		pmu->check_period = perf_event_nop_int;
12396 
12397 	if (!pmu->event_idx)
12398 		pmu->event_idx = perf_event_idx_default;
12399 
12400 	INIT_LIST_HEAD(&pmu->events);
12401 	spin_lock_init(&pmu->events_lock);
12402 
12403 	/*
12404 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
12405 	 */
12406 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
12407 		return -EINVAL;
12408 	list_add_rcu(&pmu->entry, &pmus);
12409 
12410 	take_idr_id(pmu_type);
12411 	_pmu = no_free_ptr(pmu); // let it rip
12412 	return 0;
12413 }
12414 EXPORT_SYMBOL_GPL(perf_pmu_register);
12415 
__pmu_detach_event(struct pmu * pmu,struct perf_event * event,struct perf_event_context * ctx)12416 static void __pmu_detach_event(struct pmu *pmu, struct perf_event *event,
12417 			       struct perf_event_context *ctx)
12418 {
12419 	/*
12420 	 * De-schedule the event and mark it REVOKED.
12421 	 */
12422 	perf_event_exit_event(event, ctx, true);
12423 
12424 	/*
12425 	 * All _free_event() bits that rely on event->pmu:
12426 	 *
12427 	 * Notably, perf_mmap() relies on the ordering here.
12428 	 */
12429 	scoped_guard (mutex, &event->mmap_mutex) {
12430 		WARN_ON_ONCE(pmu->event_unmapped);
12431 		/*
12432 		 * Mostly an empty lock sequence, such that perf_mmap(), which
12433 		 * relies on mmap_mutex, is sure to observe the state change.
12434 		 */
12435 	}
12436 
12437 	perf_event_free_bpf_prog(event);
12438 	perf_free_addr_filters(event);
12439 
12440 	if (event->destroy) {
12441 		event->destroy(event);
12442 		event->destroy = NULL;
12443 	}
12444 
12445 	if (event->pmu_ctx) {
12446 		put_pmu_ctx(event->pmu_ctx);
12447 		event->pmu_ctx = NULL;
12448 	}
12449 
12450 	exclusive_event_destroy(event);
12451 	module_put(pmu->module);
12452 
12453 	event->pmu = NULL; /* force fault instead of UAF */
12454 }
12455 
pmu_detach_event(struct pmu * pmu,struct perf_event * event)12456 static void pmu_detach_event(struct pmu *pmu, struct perf_event *event)
12457 {
12458 	struct perf_event_context *ctx;
12459 
12460 	ctx = perf_event_ctx_lock(event);
12461 	__pmu_detach_event(pmu, event, ctx);
12462 	perf_event_ctx_unlock(event, ctx);
12463 
12464 	scoped_guard (spinlock, &pmu->events_lock)
12465 		list_del(&event->pmu_list);
12466 }
12467 
pmu_get_event(struct pmu * pmu)12468 static struct perf_event *pmu_get_event(struct pmu *pmu)
12469 {
12470 	struct perf_event *event;
12471 
12472 	guard(spinlock)(&pmu->events_lock);
12473 	list_for_each_entry(event, &pmu->events, pmu_list) {
12474 		if (atomic_long_inc_not_zero(&event->refcount))
12475 			return event;
12476 	}
12477 
12478 	return NULL;
12479 }
12480 
pmu_empty(struct pmu * pmu)12481 static bool pmu_empty(struct pmu *pmu)
12482 {
12483 	guard(spinlock)(&pmu->events_lock);
12484 	return list_empty(&pmu->events);
12485 }
12486 
pmu_detach_events(struct pmu * pmu)12487 static void pmu_detach_events(struct pmu *pmu)
12488 {
12489 	struct perf_event *event;
12490 
12491 	for (;;) {
12492 		event = pmu_get_event(pmu);
12493 		if (!event)
12494 			break;
12495 
12496 		pmu_detach_event(pmu, event);
12497 		put_event(event);
12498 	}
12499 
12500 	/*
12501 	 * wait for pending _free_event()s
12502 	 */
12503 	wait_var_event(pmu, pmu_empty(pmu));
12504 }
12505 
perf_pmu_unregister(struct pmu * pmu)12506 int perf_pmu_unregister(struct pmu *pmu)
12507 {
12508 	scoped_guard (mutex, &pmus_lock) {
12509 		if (!idr_cmpxchg(&pmu_idr, pmu->type, pmu, NULL))
12510 			return -EINVAL;
12511 
12512 		list_del_rcu(&pmu->entry);
12513 	}
12514 
12515 	/*
12516 	 * We dereference the pmu list under both SRCU and regular RCU, so
12517 	 * synchronize against both of those.
12518 	 *
12519 	 * Notably, the entirety of event creation, from perf_init_event()
12520 	 * (which will now fail, because of the above) until
12521 	 * perf_install_in_context() should be under SRCU such that
12522 	 * this synchronizes against event creation. This avoids trying to
12523 	 * detach events that are not fully formed.
12524 	 */
12525 	synchronize_srcu(&pmus_srcu);
12526 	synchronize_rcu();
12527 
12528 	if (pmu->event_unmapped && !pmu_empty(pmu)) {
12529 		/*
12530 		 * Can't force remove events when pmu::event_unmapped()
12531 		 * is used in perf_mmap_close().
12532 		 */
12533 		guard(mutex)(&pmus_lock);
12534 		idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu);
12535 		list_add_rcu(&pmu->entry, &pmus);
12536 		return -EBUSY;
12537 	}
12538 
12539 	scoped_guard (mutex, &pmus_lock)
12540 		idr_remove(&pmu_idr, pmu->type);
12541 
12542 	/*
12543 	 * PMU is removed from the pmus list, so no new events will
12544 	 * be created, now take care of the existing ones.
12545 	 */
12546 	pmu_detach_events(pmu);
12547 
12548 	/*
12549 	 * PMU is unused, make it go away.
12550 	 */
12551 	perf_pmu_free(pmu);
12552 	return 0;
12553 }
12554 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12555 
has_extended_regs(struct perf_event * event)12556 static inline bool has_extended_regs(struct perf_event *event)
12557 {
12558 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12559 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12560 }
12561 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)12562 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12563 {
12564 	struct perf_event_context *ctx = NULL;
12565 	int ret;
12566 
12567 	if (!try_module_get(pmu->module))
12568 		return -ENODEV;
12569 
12570 	/*
12571 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12572 	 * for example, validate if the group fits on the PMU. Therefore,
12573 	 * if this is a sibling event, acquire the ctx->mutex to protect
12574 	 * the sibling_list.
12575 	 */
12576 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12577 		/*
12578 		 * This ctx->mutex can nest when we're called through
12579 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12580 		 */
12581 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12582 						 SINGLE_DEPTH_NESTING);
12583 		BUG_ON(!ctx);
12584 	}
12585 
12586 	event->pmu = pmu;
12587 	ret = pmu->event_init(event);
12588 
12589 	if (ctx)
12590 		perf_event_ctx_unlock(event->group_leader, ctx);
12591 
12592 	if (ret)
12593 		goto err_pmu;
12594 
12595 	if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12596 	    has_extended_regs(event)) {
12597 		ret = -EOPNOTSUPP;
12598 		goto err_destroy;
12599 	}
12600 
12601 	if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12602 	    event_has_any_exclude_flag(event)) {
12603 		ret = -EINVAL;
12604 		goto err_destroy;
12605 	}
12606 
12607 	if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12608 		const struct cpumask *cpumask;
12609 		struct cpumask *pmu_cpumask;
12610 		int cpu;
12611 
12612 		cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12613 		pmu_cpumask = perf_scope_cpumask(pmu->scope);
12614 
12615 		ret = -ENODEV;
12616 		if (!pmu_cpumask || !cpumask)
12617 			goto err_destroy;
12618 
12619 		cpu = cpumask_any_and(pmu_cpumask, cpumask);
12620 		if (cpu >= nr_cpu_ids)
12621 			goto err_destroy;
12622 
12623 		event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12624 	}
12625 
12626 	return 0;
12627 
12628 err_destroy:
12629 	if (event->destroy) {
12630 		event->destroy(event);
12631 		event->destroy = NULL;
12632 	}
12633 
12634 err_pmu:
12635 	event->pmu = NULL;
12636 	module_put(pmu->module);
12637 	return ret;
12638 }
12639 
perf_init_event(struct perf_event * event)12640 static struct pmu *perf_init_event(struct perf_event *event)
12641 {
12642 	bool extended_type = false;
12643 	struct pmu *pmu;
12644 	int type, ret;
12645 
12646 	guard(srcu)(&pmus_srcu); /* pmu idr/list access */
12647 
12648 	/*
12649 	 * Save original type before calling pmu->event_init() since certain
12650 	 * pmus overwrites event->attr.type to forward event to another pmu.
12651 	 */
12652 	event->orig_type = event->attr.type;
12653 
12654 	/* Try parent's PMU first: */
12655 	if (event->parent && event->parent->pmu) {
12656 		pmu = event->parent->pmu;
12657 		ret = perf_try_init_event(pmu, event);
12658 		if (!ret)
12659 			return pmu;
12660 	}
12661 
12662 	/*
12663 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12664 	 * are often aliases for PERF_TYPE_RAW.
12665 	 */
12666 	type = event->attr.type;
12667 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12668 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12669 		if (!type) {
12670 			type = PERF_TYPE_RAW;
12671 		} else {
12672 			extended_type = true;
12673 			event->attr.config &= PERF_HW_EVENT_MASK;
12674 		}
12675 	}
12676 
12677 again:
12678 	scoped_guard (rcu)
12679 		pmu = idr_find(&pmu_idr, type);
12680 	if (pmu) {
12681 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12682 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12683 			return ERR_PTR(-ENOENT);
12684 
12685 		ret = perf_try_init_event(pmu, event);
12686 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12687 			type = event->attr.type;
12688 			goto again;
12689 		}
12690 
12691 		if (ret)
12692 			return ERR_PTR(ret);
12693 
12694 		return pmu;
12695 	}
12696 
12697 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12698 		ret = perf_try_init_event(pmu, event);
12699 		if (!ret)
12700 			return pmu;
12701 
12702 		if (ret != -ENOENT)
12703 			return ERR_PTR(ret);
12704 	}
12705 
12706 	return ERR_PTR(-ENOENT);
12707 }
12708 
attach_sb_event(struct perf_event * event)12709 static void attach_sb_event(struct perf_event *event)
12710 {
12711 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12712 
12713 	raw_spin_lock(&pel->lock);
12714 	list_add_rcu(&event->sb_list, &pel->list);
12715 	raw_spin_unlock(&pel->lock);
12716 }
12717 
12718 /*
12719  * We keep a list of all !task (and therefore per-cpu) events
12720  * that need to receive side-band records.
12721  *
12722  * This avoids having to scan all the various PMU per-cpu contexts
12723  * looking for them.
12724  */
account_pmu_sb_event(struct perf_event * event)12725 static void account_pmu_sb_event(struct perf_event *event)
12726 {
12727 	if (is_sb_event(event))
12728 		attach_sb_event(event);
12729 }
12730 
12731 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12732 static void account_freq_event_nohz(void)
12733 {
12734 #ifdef CONFIG_NO_HZ_FULL
12735 	/* Lock so we don't race with concurrent unaccount */
12736 	spin_lock(&nr_freq_lock);
12737 	if (atomic_inc_return(&nr_freq_events) == 1)
12738 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12739 	spin_unlock(&nr_freq_lock);
12740 #endif
12741 }
12742 
account_freq_event(void)12743 static void account_freq_event(void)
12744 {
12745 	if (tick_nohz_full_enabled())
12746 		account_freq_event_nohz();
12747 	else
12748 		atomic_inc(&nr_freq_events);
12749 }
12750 
12751 
account_event(struct perf_event * event)12752 static void account_event(struct perf_event *event)
12753 {
12754 	bool inc = false;
12755 
12756 	if (event->parent)
12757 		return;
12758 
12759 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12760 		inc = true;
12761 	if (event->attr.mmap || event->attr.mmap_data)
12762 		atomic_inc(&nr_mmap_events);
12763 	if (event->attr.build_id)
12764 		atomic_inc(&nr_build_id_events);
12765 	if (event->attr.comm)
12766 		atomic_inc(&nr_comm_events);
12767 	if (event->attr.namespaces)
12768 		atomic_inc(&nr_namespaces_events);
12769 	if (event->attr.cgroup)
12770 		atomic_inc(&nr_cgroup_events);
12771 	if (event->attr.task)
12772 		atomic_inc(&nr_task_events);
12773 	if (event->attr.freq)
12774 		account_freq_event();
12775 	if (event->attr.context_switch) {
12776 		atomic_inc(&nr_switch_events);
12777 		inc = true;
12778 	}
12779 	if (has_branch_stack(event))
12780 		inc = true;
12781 	if (is_cgroup_event(event))
12782 		inc = true;
12783 	if (event->attr.ksymbol)
12784 		atomic_inc(&nr_ksymbol_events);
12785 	if (event->attr.bpf_event)
12786 		atomic_inc(&nr_bpf_events);
12787 	if (event->attr.text_poke)
12788 		atomic_inc(&nr_text_poke_events);
12789 
12790 	if (inc) {
12791 		/*
12792 		 * We need the mutex here because static_branch_enable()
12793 		 * must complete *before* the perf_sched_count increment
12794 		 * becomes visible.
12795 		 */
12796 		if (atomic_inc_not_zero(&perf_sched_count))
12797 			goto enabled;
12798 
12799 		mutex_lock(&perf_sched_mutex);
12800 		if (!atomic_read(&perf_sched_count)) {
12801 			static_branch_enable(&perf_sched_events);
12802 			/*
12803 			 * Guarantee that all CPUs observe they key change and
12804 			 * call the perf scheduling hooks before proceeding to
12805 			 * install events that need them.
12806 			 */
12807 			synchronize_rcu();
12808 		}
12809 		/*
12810 		 * Now that we have waited for the sync_sched(), allow further
12811 		 * increments to by-pass the mutex.
12812 		 */
12813 		atomic_inc(&perf_sched_count);
12814 		mutex_unlock(&perf_sched_mutex);
12815 	}
12816 enabled:
12817 
12818 	account_pmu_sb_event(event);
12819 }
12820 
12821 /*
12822  * Allocate and initialize an event structure
12823  */
12824 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12825 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12826 		 struct task_struct *task,
12827 		 struct perf_event *group_leader,
12828 		 struct perf_event *parent_event,
12829 		 perf_overflow_handler_t overflow_handler,
12830 		 void *context, int cgroup_fd)
12831 {
12832 	struct pmu *pmu;
12833 	struct hw_perf_event *hwc;
12834 	long err = -EINVAL;
12835 	int node;
12836 
12837 	if ((unsigned)cpu >= nr_cpu_ids) {
12838 		if (!task || cpu != -1)
12839 			return ERR_PTR(-EINVAL);
12840 	}
12841 	if (attr->sigtrap && !task) {
12842 		/* Requires a task: avoid signalling random tasks. */
12843 		return ERR_PTR(-EINVAL);
12844 	}
12845 
12846 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12847 	struct perf_event *event __free(__free_event) =
12848 		kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, node);
12849 	if (!event)
12850 		return ERR_PTR(-ENOMEM);
12851 
12852 	/*
12853 	 * Single events are their own group leaders, with an
12854 	 * empty sibling list:
12855 	 */
12856 	if (!group_leader)
12857 		group_leader = event;
12858 
12859 	mutex_init(&event->child_mutex);
12860 	INIT_LIST_HEAD(&event->child_list);
12861 
12862 	INIT_LIST_HEAD(&event->event_entry);
12863 	INIT_LIST_HEAD(&event->sibling_list);
12864 	INIT_LIST_HEAD(&event->active_list);
12865 	init_event_group(event);
12866 	INIT_LIST_HEAD(&event->rb_entry);
12867 	INIT_LIST_HEAD(&event->active_entry);
12868 	INIT_LIST_HEAD(&event->addr_filters.list);
12869 	INIT_HLIST_NODE(&event->hlist_entry);
12870 	INIT_LIST_HEAD(&event->pmu_list);
12871 
12872 
12873 	init_waitqueue_head(&event->waitq);
12874 	init_irq_work(&event->pending_irq, perf_pending_irq);
12875 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12876 	init_task_work(&event->pending_task, perf_pending_task);
12877 
12878 	mutex_init(&event->mmap_mutex);
12879 	raw_spin_lock_init(&event->addr_filters.lock);
12880 
12881 	atomic_long_set(&event->refcount, 1);
12882 	event->cpu		= cpu;
12883 	event->attr		= *attr;
12884 	event->group_leader	= group_leader;
12885 	event->pmu		= NULL;
12886 	event->oncpu		= -1;
12887 
12888 	event->parent		= parent_event;
12889 
12890 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12891 	event->id		= atomic64_inc_return(&perf_event_id);
12892 
12893 	event->state		= PERF_EVENT_STATE_INACTIVE;
12894 
12895 	if (parent_event)
12896 		event->event_caps = parent_event->event_caps;
12897 
12898 	if (task) {
12899 		event->attach_state = PERF_ATTACH_TASK;
12900 		/*
12901 		 * XXX pmu::event_init needs to know what task to account to
12902 		 * and we cannot use the ctx information because we need the
12903 		 * pmu before we get a ctx.
12904 		 */
12905 		event->hw.target = get_task_struct(task);
12906 	}
12907 
12908 	event->clock = &local_clock;
12909 	if (parent_event)
12910 		event->clock = parent_event->clock;
12911 
12912 	if (!overflow_handler && parent_event) {
12913 		overflow_handler = parent_event->overflow_handler;
12914 		context = parent_event->overflow_handler_context;
12915 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12916 		if (parent_event->prog) {
12917 			struct bpf_prog *prog = parent_event->prog;
12918 
12919 			bpf_prog_inc(prog);
12920 			event->prog = prog;
12921 		}
12922 #endif
12923 	}
12924 
12925 	if (overflow_handler) {
12926 		event->overflow_handler	= overflow_handler;
12927 		event->overflow_handler_context = context;
12928 	} else if (is_write_backward(event)){
12929 		event->overflow_handler = perf_event_output_backward;
12930 		event->overflow_handler_context = NULL;
12931 	} else {
12932 		event->overflow_handler = perf_event_output_forward;
12933 		event->overflow_handler_context = NULL;
12934 	}
12935 
12936 	perf_event__state_init(event);
12937 
12938 	pmu = NULL;
12939 
12940 	hwc = &event->hw;
12941 	hwc->sample_period = attr->sample_period;
12942 	if (is_event_in_freq_mode(event))
12943 		hwc->sample_period = 1;
12944 	hwc->last_period = hwc->sample_period;
12945 
12946 	local64_set(&hwc->period_left, hwc->sample_period);
12947 
12948 	/*
12949 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12950 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12951 	 * collect per-thread samples.
12952 	 * See perf_output_read().
12953 	 */
12954 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12955 		return ERR_PTR(-EINVAL);
12956 
12957 	if (!has_branch_stack(event))
12958 		event->attr.branch_sample_type = 0;
12959 
12960 	pmu = perf_init_event(event);
12961 	if (IS_ERR(pmu))
12962 		return (void*)pmu;
12963 
12964 	/*
12965 	 * The PERF_ATTACH_TASK_DATA is set in the event_init()->hw_config().
12966 	 * The attach should be right after the perf_init_event().
12967 	 * Otherwise, the __free_event() would mistakenly detach the non-exist
12968 	 * perf_ctx_data because of the other errors between them.
12969 	 */
12970 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
12971 		err = attach_perf_ctx_data(event);
12972 		if (err)
12973 			return ERR_PTR(err);
12974 	}
12975 
12976 	/*
12977 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12978 	 * events (they don't make sense as the cgroup will be different
12979 	 * on other CPUs in the uncore mask).
12980 	 */
12981 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1))
12982 		return ERR_PTR(-EINVAL);
12983 
12984 	if (event->attr.aux_output &&
12985 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12986 	     event->attr.aux_pause || event->attr.aux_resume))
12987 		return ERR_PTR(-EOPNOTSUPP);
12988 
12989 	if (event->attr.aux_pause && event->attr.aux_resume)
12990 		return ERR_PTR(-EINVAL);
12991 
12992 	if (event->attr.aux_start_paused) {
12993 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
12994 			return ERR_PTR(-EOPNOTSUPP);
12995 		event->hw.aux_paused = 1;
12996 	}
12997 
12998 	if (cgroup_fd != -1) {
12999 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
13000 		if (err)
13001 			return ERR_PTR(err);
13002 	}
13003 
13004 	err = exclusive_event_init(event);
13005 	if (err)
13006 		return ERR_PTR(err);
13007 
13008 	if (has_addr_filter(event)) {
13009 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
13010 						    sizeof(struct perf_addr_filter_range),
13011 						    GFP_KERNEL);
13012 		if (!event->addr_filter_ranges)
13013 			return ERR_PTR(-ENOMEM);
13014 
13015 		/*
13016 		 * Clone the parent's vma offsets: they are valid until exec()
13017 		 * even if the mm is not shared with the parent.
13018 		 */
13019 		if (event->parent) {
13020 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
13021 
13022 			raw_spin_lock_irq(&ifh->lock);
13023 			memcpy(event->addr_filter_ranges,
13024 			       event->parent->addr_filter_ranges,
13025 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
13026 			raw_spin_unlock_irq(&ifh->lock);
13027 		}
13028 
13029 		/* force hw sync on the address filters */
13030 		event->addr_filters_gen = 1;
13031 	}
13032 
13033 	if (!event->parent) {
13034 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
13035 			err = get_callchain_buffers(attr->sample_max_stack);
13036 			if (err)
13037 				return ERR_PTR(err);
13038 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
13039 		}
13040 	}
13041 
13042 	err = security_perf_event_alloc(event);
13043 	if (err)
13044 		return ERR_PTR(err);
13045 
13046 	/* symmetric to unaccount_event() in _free_event() */
13047 	account_event(event);
13048 
13049 	/*
13050 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13051 	 */
13052 	lockdep_assert_held(&pmus_srcu);
13053 	scoped_guard (spinlock, &pmu->events_lock)
13054 		list_add(&event->pmu_list, &pmu->events);
13055 
13056 	return_ptr(event);
13057 }
13058 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)13059 static int perf_copy_attr(struct perf_event_attr __user *uattr,
13060 			  struct perf_event_attr *attr)
13061 {
13062 	u32 size;
13063 	int ret;
13064 
13065 	/* Zero the full structure, so that a short copy will be nice. */
13066 	memset(attr, 0, sizeof(*attr));
13067 
13068 	ret = get_user(size, &uattr->size);
13069 	if (ret)
13070 		return ret;
13071 
13072 	/* ABI compatibility quirk: */
13073 	if (!size)
13074 		size = PERF_ATTR_SIZE_VER0;
13075 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
13076 		goto err_size;
13077 
13078 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
13079 	if (ret) {
13080 		if (ret == -E2BIG)
13081 			goto err_size;
13082 		return ret;
13083 	}
13084 
13085 	attr->size = size;
13086 
13087 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
13088 		return -EINVAL;
13089 
13090 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
13091 		return -EINVAL;
13092 
13093 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
13094 		return -EINVAL;
13095 
13096 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
13097 		u64 mask = attr->branch_sample_type;
13098 
13099 		/* only using defined bits */
13100 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
13101 			return -EINVAL;
13102 
13103 		/* at least one branch bit must be set */
13104 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
13105 			return -EINVAL;
13106 
13107 		/* propagate priv level, when not set for branch */
13108 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
13109 
13110 			/* exclude_kernel checked on syscall entry */
13111 			if (!attr->exclude_kernel)
13112 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
13113 
13114 			if (!attr->exclude_user)
13115 				mask |= PERF_SAMPLE_BRANCH_USER;
13116 
13117 			if (!attr->exclude_hv)
13118 				mask |= PERF_SAMPLE_BRANCH_HV;
13119 			/*
13120 			 * adjust user setting (for HW filter setup)
13121 			 */
13122 			attr->branch_sample_type = mask;
13123 		}
13124 		/* privileged levels capture (kernel, hv): check permissions */
13125 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
13126 			ret = perf_allow_kernel();
13127 			if (ret)
13128 				return ret;
13129 		}
13130 	}
13131 
13132 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
13133 		ret = perf_reg_validate(attr->sample_regs_user);
13134 		if (ret)
13135 			return ret;
13136 	}
13137 
13138 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
13139 		if (!arch_perf_have_user_stack_dump())
13140 			return -ENOSYS;
13141 
13142 		/*
13143 		 * We have __u32 type for the size, but so far
13144 		 * we can only use __u16 as maximum due to the
13145 		 * __u16 sample size limit.
13146 		 */
13147 		if (attr->sample_stack_user >= USHRT_MAX)
13148 			return -EINVAL;
13149 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
13150 			return -EINVAL;
13151 	}
13152 
13153 	if (!attr->sample_max_stack)
13154 		attr->sample_max_stack = sysctl_perf_event_max_stack;
13155 
13156 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
13157 		ret = perf_reg_validate(attr->sample_regs_intr);
13158 
13159 #ifndef CONFIG_CGROUP_PERF
13160 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
13161 		return -EINVAL;
13162 #endif
13163 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
13164 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
13165 		return -EINVAL;
13166 
13167 	if (!attr->inherit && attr->inherit_thread)
13168 		return -EINVAL;
13169 
13170 	if (attr->remove_on_exec && attr->enable_on_exec)
13171 		return -EINVAL;
13172 
13173 	if (attr->sigtrap && !attr->remove_on_exec)
13174 		return -EINVAL;
13175 
13176 out:
13177 	return ret;
13178 
13179 err_size:
13180 	put_user(sizeof(*attr), &uattr->size);
13181 	ret = -E2BIG;
13182 	goto out;
13183 }
13184 
mutex_lock_double(struct mutex * a,struct mutex * b)13185 static void mutex_lock_double(struct mutex *a, struct mutex *b)
13186 {
13187 	if (b < a)
13188 		swap(a, b);
13189 
13190 	mutex_lock(a);
13191 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
13192 }
13193 
13194 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)13195 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
13196 {
13197 	struct perf_buffer *rb = NULL;
13198 	int ret = -EINVAL;
13199 
13200 	if (!output_event) {
13201 		mutex_lock(&event->mmap_mutex);
13202 		goto set;
13203 	}
13204 
13205 	/* don't allow circular references */
13206 	if (event == output_event)
13207 		goto out;
13208 
13209 	/*
13210 	 * Don't allow cross-cpu buffers
13211 	 */
13212 	if (output_event->cpu != event->cpu)
13213 		goto out;
13214 
13215 	/*
13216 	 * If its not a per-cpu rb, it must be the same task.
13217 	 */
13218 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
13219 		goto out;
13220 
13221 	/*
13222 	 * Mixing clocks in the same buffer is trouble you don't need.
13223 	 */
13224 	if (output_event->clock != event->clock)
13225 		goto out;
13226 
13227 	/*
13228 	 * Either writing ring buffer from beginning or from end.
13229 	 * Mixing is not allowed.
13230 	 */
13231 	if (is_write_backward(output_event) != is_write_backward(event))
13232 		goto out;
13233 
13234 	/*
13235 	 * If both events generate aux data, they must be on the same PMU
13236 	 */
13237 	if (has_aux(event) && has_aux(output_event) &&
13238 	    event->pmu != output_event->pmu)
13239 		goto out;
13240 
13241 	/*
13242 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
13243 	 * output_event is already on rb->event_list, and the list iteration
13244 	 * restarts after every removal, it is guaranteed this new event is
13245 	 * observed *OR* if output_event is already removed, it's guaranteed we
13246 	 * observe !rb->mmap_count.
13247 	 */
13248 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
13249 set:
13250 	/* Can't redirect output if we've got an active mmap() */
13251 	if (atomic_read(&event->mmap_count))
13252 		goto unlock;
13253 
13254 	if (output_event) {
13255 		if (output_event->state <= PERF_EVENT_STATE_REVOKED)
13256 			goto unlock;
13257 
13258 		/* get the rb we want to redirect to */
13259 		rb = ring_buffer_get(output_event);
13260 		if (!rb)
13261 			goto unlock;
13262 
13263 		/* did we race against perf_mmap_close() */
13264 		if (!atomic_read(&rb->mmap_count)) {
13265 			ring_buffer_put(rb);
13266 			goto unlock;
13267 		}
13268 	}
13269 
13270 	ring_buffer_attach(event, rb);
13271 
13272 	ret = 0;
13273 unlock:
13274 	mutex_unlock(&event->mmap_mutex);
13275 	if (output_event)
13276 		mutex_unlock(&output_event->mmap_mutex);
13277 
13278 out:
13279 	return ret;
13280 }
13281 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)13282 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
13283 {
13284 	bool nmi_safe = false;
13285 
13286 	switch (clk_id) {
13287 	case CLOCK_MONOTONIC:
13288 		event->clock = &ktime_get_mono_fast_ns;
13289 		nmi_safe = true;
13290 		break;
13291 
13292 	case CLOCK_MONOTONIC_RAW:
13293 		event->clock = &ktime_get_raw_fast_ns;
13294 		nmi_safe = true;
13295 		break;
13296 
13297 	case CLOCK_REALTIME:
13298 		event->clock = &ktime_get_real_ns;
13299 		break;
13300 
13301 	case CLOCK_BOOTTIME:
13302 		event->clock = &ktime_get_boottime_ns;
13303 		break;
13304 
13305 	case CLOCK_TAI:
13306 		event->clock = &ktime_get_clocktai_ns;
13307 		break;
13308 
13309 	default:
13310 		return -EINVAL;
13311 	}
13312 
13313 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
13314 		return -EINVAL;
13315 
13316 	return 0;
13317 }
13318 
13319 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)13320 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
13321 {
13322 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
13323 	bool is_capable = perfmon_capable();
13324 
13325 	if (attr->sigtrap) {
13326 		/*
13327 		 * perf_event_attr::sigtrap sends signals to the other task.
13328 		 * Require the current task to also have CAP_KILL.
13329 		 */
13330 		rcu_read_lock();
13331 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
13332 		rcu_read_unlock();
13333 
13334 		/*
13335 		 * If the required capabilities aren't available, checks for
13336 		 * ptrace permissions: upgrade to ATTACH, since sending signals
13337 		 * can effectively change the target task.
13338 		 */
13339 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
13340 	}
13341 
13342 	/*
13343 	 * Preserve ptrace permission check for backwards compatibility. The
13344 	 * ptrace check also includes checks that the current task and other
13345 	 * task have matching uids, and is therefore not done here explicitly.
13346 	 */
13347 	return is_capable || ptrace_may_access(task, ptrace_mode);
13348 }
13349 
13350 /**
13351  * sys_perf_event_open - open a performance event, associate it to a task/cpu
13352  *
13353  * @attr_uptr:	event_id type attributes for monitoring/sampling
13354  * @pid:		target pid
13355  * @cpu:		target cpu
13356  * @group_fd:		group leader event fd
13357  * @flags:		perf event open flags
13358  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)13359 SYSCALL_DEFINE5(perf_event_open,
13360 		struct perf_event_attr __user *, attr_uptr,
13361 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
13362 {
13363 	struct perf_event *group_leader = NULL, *output_event = NULL;
13364 	struct perf_event_pmu_context *pmu_ctx;
13365 	struct perf_event *event, *sibling;
13366 	struct perf_event_attr attr;
13367 	struct perf_event_context *ctx;
13368 	struct file *event_file = NULL;
13369 	struct task_struct *task = NULL;
13370 	struct pmu *pmu;
13371 	int event_fd;
13372 	int move_group = 0;
13373 	int err;
13374 	int f_flags = O_RDWR;
13375 	int cgroup_fd = -1;
13376 
13377 	/* for future expandability... */
13378 	if (flags & ~PERF_FLAG_ALL)
13379 		return -EINVAL;
13380 
13381 	err = perf_copy_attr(attr_uptr, &attr);
13382 	if (err)
13383 		return err;
13384 
13385 	/* Do we allow access to perf_event_open(2) ? */
13386 	err = security_perf_event_open(PERF_SECURITY_OPEN);
13387 	if (err)
13388 		return err;
13389 
13390 	if (!attr.exclude_kernel) {
13391 		err = perf_allow_kernel();
13392 		if (err)
13393 			return err;
13394 	}
13395 
13396 	if (attr.namespaces) {
13397 		if (!perfmon_capable())
13398 			return -EACCES;
13399 	}
13400 
13401 	if (attr.freq) {
13402 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
13403 			return -EINVAL;
13404 	} else {
13405 		if (attr.sample_period & (1ULL << 63))
13406 			return -EINVAL;
13407 	}
13408 
13409 	/* Only privileged users can get physical addresses */
13410 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
13411 		err = perf_allow_kernel();
13412 		if (err)
13413 			return err;
13414 	}
13415 
13416 	/* REGS_INTR can leak data, lockdown must prevent this */
13417 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
13418 		err = security_locked_down(LOCKDOWN_PERF);
13419 		if (err)
13420 			return err;
13421 	}
13422 
13423 	/*
13424 	 * In cgroup mode, the pid argument is used to pass the fd
13425 	 * opened to the cgroup directory in cgroupfs. The cpu argument
13426 	 * designates the cpu on which to monitor threads from that
13427 	 * cgroup.
13428 	 */
13429 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
13430 		return -EINVAL;
13431 
13432 	if (flags & PERF_FLAG_FD_CLOEXEC)
13433 		f_flags |= O_CLOEXEC;
13434 
13435 	event_fd = get_unused_fd_flags(f_flags);
13436 	if (event_fd < 0)
13437 		return event_fd;
13438 
13439 	/*
13440 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13441 	 */
13442 	guard(srcu)(&pmus_srcu);
13443 
13444 	CLASS(fd, group)(group_fd);     // group_fd == -1 => empty
13445 	if (group_fd != -1) {
13446 		if (!is_perf_file(group)) {
13447 			err = -EBADF;
13448 			goto err_fd;
13449 		}
13450 		group_leader = fd_file(group)->private_data;
13451 		if (group_leader->state <= PERF_EVENT_STATE_REVOKED) {
13452 			err = -ENODEV;
13453 			goto err_fd;
13454 		}
13455 		if (flags & PERF_FLAG_FD_OUTPUT)
13456 			output_event = group_leader;
13457 		if (flags & PERF_FLAG_FD_NO_GROUP)
13458 			group_leader = NULL;
13459 	}
13460 
13461 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
13462 		task = find_lively_task_by_vpid(pid);
13463 		if (IS_ERR(task)) {
13464 			err = PTR_ERR(task);
13465 			goto err_fd;
13466 		}
13467 	}
13468 
13469 	if (task && group_leader &&
13470 	    group_leader->attr.inherit != attr.inherit) {
13471 		err = -EINVAL;
13472 		goto err_task;
13473 	}
13474 
13475 	if (flags & PERF_FLAG_PID_CGROUP)
13476 		cgroup_fd = pid;
13477 
13478 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
13479 				 NULL, NULL, cgroup_fd);
13480 	if (IS_ERR(event)) {
13481 		err = PTR_ERR(event);
13482 		goto err_task;
13483 	}
13484 
13485 	if (is_sampling_event(event)) {
13486 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
13487 			err = -EOPNOTSUPP;
13488 			goto err_alloc;
13489 		}
13490 	}
13491 
13492 	/*
13493 	 * Special case software events and allow them to be part of
13494 	 * any hardware group.
13495 	 */
13496 	pmu = event->pmu;
13497 
13498 	if (attr.use_clockid) {
13499 		err = perf_event_set_clock(event, attr.clockid);
13500 		if (err)
13501 			goto err_alloc;
13502 	}
13503 
13504 	if (pmu->task_ctx_nr == perf_sw_context)
13505 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13506 
13507 	if (task) {
13508 		err = down_read_interruptible(&task->signal->exec_update_lock);
13509 		if (err)
13510 			goto err_alloc;
13511 
13512 		/*
13513 		 * We must hold exec_update_lock across this and any potential
13514 		 * perf_install_in_context() call for this new event to
13515 		 * serialize against exec() altering our credentials (and the
13516 		 * perf_event_exit_task() that could imply).
13517 		 */
13518 		err = -EACCES;
13519 		if (!perf_check_permission(&attr, task))
13520 			goto err_cred;
13521 	}
13522 
13523 	/*
13524 	 * Get the target context (task or percpu):
13525 	 */
13526 	ctx = find_get_context(task, event);
13527 	if (IS_ERR(ctx)) {
13528 		err = PTR_ERR(ctx);
13529 		goto err_cred;
13530 	}
13531 
13532 	mutex_lock(&ctx->mutex);
13533 
13534 	if (ctx->task == TASK_TOMBSTONE) {
13535 		err = -ESRCH;
13536 		goto err_locked;
13537 	}
13538 
13539 	if (!task) {
13540 		/*
13541 		 * Check if the @cpu we're creating an event for is online.
13542 		 *
13543 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13544 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13545 		 */
13546 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
13547 
13548 		if (!cpuctx->online) {
13549 			err = -ENODEV;
13550 			goto err_locked;
13551 		}
13552 	}
13553 
13554 	if (group_leader) {
13555 		err = -EINVAL;
13556 
13557 		/*
13558 		 * Do not allow a recursive hierarchy (this new sibling
13559 		 * becoming part of another group-sibling):
13560 		 */
13561 		if (group_leader->group_leader != group_leader)
13562 			goto err_locked;
13563 
13564 		/* All events in a group should have the same clock */
13565 		if (group_leader->clock != event->clock)
13566 			goto err_locked;
13567 
13568 		/*
13569 		 * Make sure we're both events for the same CPU;
13570 		 * grouping events for different CPUs is broken; since
13571 		 * you can never concurrently schedule them anyhow.
13572 		 */
13573 		if (group_leader->cpu != event->cpu)
13574 			goto err_locked;
13575 
13576 		/*
13577 		 * Make sure we're both on the same context; either task or cpu.
13578 		 */
13579 		if (group_leader->ctx != ctx)
13580 			goto err_locked;
13581 
13582 		/*
13583 		 * Only a group leader can be exclusive or pinned
13584 		 */
13585 		if (attr.exclusive || attr.pinned)
13586 			goto err_locked;
13587 
13588 		if (is_software_event(event) &&
13589 		    !in_software_context(group_leader)) {
13590 			/*
13591 			 * If the event is a sw event, but the group_leader
13592 			 * is on hw context.
13593 			 *
13594 			 * Allow the addition of software events to hw
13595 			 * groups, this is safe because software events
13596 			 * never fail to schedule.
13597 			 *
13598 			 * Note the comment that goes with struct
13599 			 * perf_event_pmu_context.
13600 			 */
13601 			pmu = group_leader->pmu_ctx->pmu;
13602 		} else if (!is_software_event(event)) {
13603 			if (is_software_event(group_leader) &&
13604 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13605 				/*
13606 				 * In case the group is a pure software group, and we
13607 				 * try to add a hardware event, move the whole group to
13608 				 * the hardware context.
13609 				 */
13610 				move_group = 1;
13611 			}
13612 
13613 			/* Don't allow group of multiple hw events from different pmus */
13614 			if (!in_software_context(group_leader) &&
13615 			    group_leader->pmu_ctx->pmu != pmu)
13616 				goto err_locked;
13617 		}
13618 	}
13619 
13620 	/*
13621 	 * Now that we're certain of the pmu; find the pmu_ctx.
13622 	 */
13623 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13624 	if (IS_ERR(pmu_ctx)) {
13625 		err = PTR_ERR(pmu_ctx);
13626 		goto err_locked;
13627 	}
13628 	event->pmu_ctx = pmu_ctx;
13629 
13630 	if (output_event) {
13631 		err = perf_event_set_output(event, output_event);
13632 		if (err)
13633 			goto err_context;
13634 	}
13635 
13636 	if (!perf_event_validate_size(event)) {
13637 		err = -E2BIG;
13638 		goto err_context;
13639 	}
13640 
13641 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13642 		err = -EINVAL;
13643 		goto err_context;
13644 	}
13645 
13646 	/*
13647 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13648 	 * because we need to serialize with concurrent event creation.
13649 	 */
13650 	if (!exclusive_event_installable(event, ctx)) {
13651 		err = -EBUSY;
13652 		goto err_context;
13653 	}
13654 
13655 	WARN_ON_ONCE(ctx->parent_ctx);
13656 
13657 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13658 	if (IS_ERR(event_file)) {
13659 		err = PTR_ERR(event_file);
13660 		event_file = NULL;
13661 		goto err_context;
13662 	}
13663 
13664 	/*
13665 	 * This is the point on no return; we cannot fail hereafter. This is
13666 	 * where we start modifying current state.
13667 	 */
13668 
13669 	if (move_group) {
13670 		perf_remove_from_context(group_leader, 0);
13671 		put_pmu_ctx(group_leader->pmu_ctx);
13672 
13673 		for_each_sibling_event(sibling, group_leader) {
13674 			perf_remove_from_context(sibling, 0);
13675 			put_pmu_ctx(sibling->pmu_ctx);
13676 		}
13677 
13678 		/*
13679 		 * Install the group siblings before the group leader.
13680 		 *
13681 		 * Because a group leader will try and install the entire group
13682 		 * (through the sibling list, which is still in-tact), we can
13683 		 * end up with siblings installed in the wrong context.
13684 		 *
13685 		 * By installing siblings first we NO-OP because they're not
13686 		 * reachable through the group lists.
13687 		 */
13688 		for_each_sibling_event(sibling, group_leader) {
13689 			sibling->pmu_ctx = pmu_ctx;
13690 			get_pmu_ctx(pmu_ctx);
13691 			perf_event__state_init(sibling);
13692 			perf_install_in_context(ctx, sibling, sibling->cpu);
13693 		}
13694 
13695 		/*
13696 		 * Removing from the context ends up with disabled
13697 		 * event. What we want here is event in the initial
13698 		 * startup state, ready to be add into new context.
13699 		 */
13700 		group_leader->pmu_ctx = pmu_ctx;
13701 		get_pmu_ctx(pmu_ctx);
13702 		perf_event__state_init(group_leader);
13703 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13704 	}
13705 
13706 	/*
13707 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13708 	 * that we're serialized against further additions and before
13709 	 * perf_install_in_context() which is the point the event is active and
13710 	 * can use these values.
13711 	 */
13712 	perf_event__header_size(event);
13713 	perf_event__id_header_size(event);
13714 
13715 	event->owner = current;
13716 
13717 	perf_install_in_context(ctx, event, event->cpu);
13718 	perf_unpin_context(ctx);
13719 
13720 	mutex_unlock(&ctx->mutex);
13721 
13722 	if (task) {
13723 		up_read(&task->signal->exec_update_lock);
13724 		put_task_struct(task);
13725 	}
13726 
13727 	mutex_lock(&current->perf_event_mutex);
13728 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13729 	mutex_unlock(&current->perf_event_mutex);
13730 
13731 	/*
13732 	 * File reference in group guarantees that group_leader has been
13733 	 * kept alive until we place the new event on the sibling_list.
13734 	 * This ensures destruction of the group leader will find
13735 	 * the pointer to itself in perf_group_detach().
13736 	 */
13737 	fd_install(event_fd, event_file);
13738 	return event_fd;
13739 
13740 err_context:
13741 	put_pmu_ctx(event->pmu_ctx);
13742 	event->pmu_ctx = NULL; /* _free_event() */
13743 err_locked:
13744 	mutex_unlock(&ctx->mutex);
13745 	perf_unpin_context(ctx);
13746 	put_ctx(ctx);
13747 err_cred:
13748 	if (task)
13749 		up_read(&task->signal->exec_update_lock);
13750 err_alloc:
13751 	put_event(event);
13752 err_task:
13753 	if (task)
13754 		put_task_struct(task);
13755 err_fd:
13756 	put_unused_fd(event_fd);
13757 	return err;
13758 }
13759 
13760 /**
13761  * perf_event_create_kernel_counter
13762  *
13763  * @attr: attributes of the counter to create
13764  * @cpu: cpu in which the counter is bound
13765  * @task: task to profile (NULL for percpu)
13766  * @overflow_handler: callback to trigger when we hit the event
13767  * @context: context data could be used in overflow_handler callback
13768  */
13769 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13770 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13771 				 struct task_struct *task,
13772 				 perf_overflow_handler_t overflow_handler,
13773 				 void *context)
13774 {
13775 	struct perf_event_pmu_context *pmu_ctx;
13776 	struct perf_event_context *ctx;
13777 	struct perf_event *event;
13778 	struct pmu *pmu;
13779 	int err;
13780 
13781 	/*
13782 	 * Grouping is not supported for kernel events, neither is 'AUX',
13783 	 * make sure the caller's intentions are adjusted.
13784 	 */
13785 	if (attr->aux_output || attr->aux_action)
13786 		return ERR_PTR(-EINVAL);
13787 
13788 	/*
13789 	 * Event creation should be under SRCU, see perf_pmu_unregister().
13790 	 */
13791 	guard(srcu)(&pmus_srcu);
13792 
13793 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13794 				 overflow_handler, context, -1);
13795 	if (IS_ERR(event)) {
13796 		err = PTR_ERR(event);
13797 		goto err;
13798 	}
13799 
13800 	/* Mark owner so we could distinguish it from user events. */
13801 	event->owner = TASK_TOMBSTONE;
13802 	pmu = event->pmu;
13803 
13804 	if (pmu->task_ctx_nr == perf_sw_context)
13805 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13806 
13807 	/*
13808 	 * Get the target context (task or percpu):
13809 	 */
13810 	ctx = find_get_context(task, event);
13811 	if (IS_ERR(ctx)) {
13812 		err = PTR_ERR(ctx);
13813 		goto err_alloc;
13814 	}
13815 
13816 	WARN_ON_ONCE(ctx->parent_ctx);
13817 	mutex_lock(&ctx->mutex);
13818 	if (ctx->task == TASK_TOMBSTONE) {
13819 		err = -ESRCH;
13820 		goto err_unlock;
13821 	}
13822 
13823 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13824 	if (IS_ERR(pmu_ctx)) {
13825 		err = PTR_ERR(pmu_ctx);
13826 		goto err_unlock;
13827 	}
13828 	event->pmu_ctx = pmu_ctx;
13829 
13830 	if (!task) {
13831 		/*
13832 		 * Check if the @cpu we're creating an event for is online.
13833 		 *
13834 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13835 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13836 		 */
13837 		struct perf_cpu_context *cpuctx =
13838 			container_of(ctx, struct perf_cpu_context, ctx);
13839 		if (!cpuctx->online) {
13840 			err = -ENODEV;
13841 			goto err_pmu_ctx;
13842 		}
13843 	}
13844 
13845 	if (!exclusive_event_installable(event, ctx)) {
13846 		err = -EBUSY;
13847 		goto err_pmu_ctx;
13848 	}
13849 
13850 	perf_install_in_context(ctx, event, event->cpu);
13851 	perf_unpin_context(ctx);
13852 	mutex_unlock(&ctx->mutex);
13853 
13854 	return event;
13855 
13856 err_pmu_ctx:
13857 	put_pmu_ctx(pmu_ctx);
13858 	event->pmu_ctx = NULL; /* _free_event() */
13859 err_unlock:
13860 	mutex_unlock(&ctx->mutex);
13861 	perf_unpin_context(ctx);
13862 	put_ctx(ctx);
13863 err_alloc:
13864 	put_event(event);
13865 err:
13866 	return ERR_PTR(err);
13867 }
13868 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13869 
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13870 static void __perf_pmu_remove(struct perf_event_context *ctx,
13871 			      int cpu, struct pmu *pmu,
13872 			      struct perf_event_groups *groups,
13873 			      struct list_head *events)
13874 {
13875 	struct perf_event *event, *sibling;
13876 
13877 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13878 		perf_remove_from_context(event, 0);
13879 		put_pmu_ctx(event->pmu_ctx);
13880 		list_add(&event->migrate_entry, events);
13881 
13882 		for_each_sibling_event(sibling, event) {
13883 			perf_remove_from_context(sibling, 0);
13884 			put_pmu_ctx(sibling->pmu_ctx);
13885 			list_add(&sibling->migrate_entry, events);
13886 		}
13887 	}
13888 }
13889 
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13890 static void __perf_pmu_install_event(struct pmu *pmu,
13891 				     struct perf_event_context *ctx,
13892 				     int cpu, struct perf_event *event)
13893 {
13894 	struct perf_event_pmu_context *epc;
13895 	struct perf_event_context *old_ctx = event->ctx;
13896 
13897 	get_ctx(ctx); /* normally find_get_context() */
13898 
13899 	event->cpu = cpu;
13900 	epc = find_get_pmu_context(pmu, ctx, event);
13901 	event->pmu_ctx = epc;
13902 
13903 	if (event->state >= PERF_EVENT_STATE_OFF)
13904 		event->state = PERF_EVENT_STATE_INACTIVE;
13905 	perf_install_in_context(ctx, event, cpu);
13906 
13907 	/*
13908 	 * Now that event->ctx is updated and visible, put the old ctx.
13909 	 */
13910 	put_ctx(old_ctx);
13911 }
13912 
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13913 static void __perf_pmu_install(struct perf_event_context *ctx,
13914 			       int cpu, struct pmu *pmu, struct list_head *events)
13915 {
13916 	struct perf_event *event, *tmp;
13917 
13918 	/*
13919 	 * Re-instate events in 2 passes.
13920 	 *
13921 	 * Skip over group leaders and only install siblings on this first
13922 	 * pass, siblings will not get enabled without a leader, however a
13923 	 * leader will enable its siblings, even if those are still on the old
13924 	 * context.
13925 	 */
13926 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13927 		if (event->group_leader == event)
13928 			continue;
13929 
13930 		list_del(&event->migrate_entry);
13931 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13932 	}
13933 
13934 	/*
13935 	 * Once all the siblings are setup properly, install the group leaders
13936 	 * to make it go.
13937 	 */
13938 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13939 		list_del(&event->migrate_entry);
13940 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13941 	}
13942 }
13943 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13944 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13945 {
13946 	struct perf_event_context *src_ctx, *dst_ctx;
13947 	LIST_HEAD(events);
13948 
13949 	/*
13950 	 * Since per-cpu context is persistent, no need to grab an extra
13951 	 * reference.
13952 	 */
13953 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13954 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13955 
13956 	/*
13957 	 * See perf_event_ctx_lock() for comments on the details
13958 	 * of swizzling perf_event::ctx.
13959 	 */
13960 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13961 
13962 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13963 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13964 
13965 	if (!list_empty(&events)) {
13966 		/*
13967 		 * Wait for the events to quiesce before re-instating them.
13968 		 */
13969 		synchronize_rcu();
13970 
13971 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13972 	}
13973 
13974 	mutex_unlock(&dst_ctx->mutex);
13975 	mutex_unlock(&src_ctx->mutex);
13976 }
13977 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13978 
sync_child_event(struct perf_event * child_event)13979 static void sync_child_event(struct perf_event *child_event)
13980 {
13981 	struct perf_event *parent_event = child_event->parent;
13982 	u64 child_val;
13983 
13984 	if (child_event->attr.inherit_stat) {
13985 		struct task_struct *task = child_event->ctx->task;
13986 
13987 		if (task && task != TASK_TOMBSTONE)
13988 			perf_event_read_event(child_event, task);
13989 	}
13990 
13991 	child_val = perf_event_count(child_event, false);
13992 
13993 	/*
13994 	 * Add back the child's count to the parent's count:
13995 	 */
13996 	atomic64_add(child_val, &parent_event->child_count);
13997 	atomic64_add(child_event->total_time_enabled,
13998 		     &parent_event->child_total_time_enabled);
13999 	atomic64_add(child_event->total_time_running,
14000 		     &parent_event->child_total_time_running);
14001 }
14002 
14003 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx,bool revoke)14004 perf_event_exit_event(struct perf_event *event,
14005 		      struct perf_event_context *ctx, bool revoke)
14006 {
14007 	struct perf_event *parent_event = event->parent;
14008 	unsigned long detach_flags = DETACH_EXIT;
14009 	unsigned int attach_state;
14010 
14011 	if (parent_event) {
14012 		/*
14013 		 * Do not destroy the 'original' grouping; because of the
14014 		 * context switch optimization the original events could've
14015 		 * ended up in a random child task.
14016 		 *
14017 		 * If we were to destroy the original group, all group related
14018 		 * operations would cease to function properly after this
14019 		 * random child dies.
14020 		 *
14021 		 * Do destroy all inherited groups, we don't care about those
14022 		 * and being thorough is better.
14023 		 */
14024 		detach_flags |= DETACH_GROUP | DETACH_CHILD;
14025 		mutex_lock(&parent_event->child_mutex);
14026 		/* PERF_ATTACH_ITRACE might be set concurrently */
14027 		attach_state = READ_ONCE(event->attach_state);
14028 	}
14029 
14030 	if (revoke)
14031 		detach_flags |= DETACH_GROUP | DETACH_REVOKE;
14032 
14033 	perf_remove_from_context(event, detach_flags);
14034 	/*
14035 	 * Child events can be freed.
14036 	 */
14037 	if (parent_event) {
14038 		mutex_unlock(&parent_event->child_mutex);
14039 
14040 		/*
14041 		 * Match the refcount initialization. Make sure it doesn't happen
14042 		 * twice if pmu_detach_event() calls it on an already exited task.
14043 		 */
14044 		if (attach_state & PERF_ATTACH_CHILD) {
14045 			/*
14046 			 * Kick perf_poll() for is_event_hup();
14047 			 */
14048 			perf_event_wakeup(parent_event);
14049 			/*
14050 			 * pmu_detach_event() will have an extra refcount.
14051 			 * perf_pending_task() might have one too.
14052 			 */
14053 			put_event(event);
14054 		}
14055 
14056 		return;
14057 	}
14058 
14059 	/*
14060 	 * Parent events are governed by their filedesc, retain them.
14061 	 */
14062 	perf_event_wakeup(event);
14063 }
14064 
perf_event_exit_task_context(struct task_struct * task,bool exit)14065 static void perf_event_exit_task_context(struct task_struct *task, bool exit)
14066 {
14067 	struct perf_event_context *ctx, *clone_ctx = NULL;
14068 	struct perf_event *child_event, *next;
14069 
14070 	ctx = perf_pin_task_context(task);
14071 	if (!ctx)
14072 		return;
14073 
14074 	/*
14075 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
14076 	 * ctx::mutex over the entire thing. This serializes against almost
14077 	 * everything that wants to access the ctx.
14078 	 *
14079 	 * The exception is sys_perf_event_open() /
14080 	 * perf_event_create_kernel_count() which does find_get_context()
14081 	 * without ctx::mutex (it cannot because of the move_group double mutex
14082 	 * lock thing). See the comments in perf_install_in_context().
14083 	 */
14084 	mutex_lock(&ctx->mutex);
14085 
14086 	/*
14087 	 * In a single ctx::lock section, de-schedule the events and detach the
14088 	 * context from the task such that we cannot ever get it scheduled back
14089 	 * in.
14090 	 */
14091 	raw_spin_lock_irq(&ctx->lock);
14092 	if (exit)
14093 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
14094 
14095 	/*
14096 	 * Now that the context is inactive, destroy the task <-> ctx relation
14097 	 * and mark the context dead.
14098 	 */
14099 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
14100 	put_ctx(ctx); /* cannot be last */
14101 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
14102 	put_task_struct(task); /* cannot be last */
14103 
14104 	clone_ctx = unclone_ctx(ctx);
14105 	raw_spin_unlock_irq(&ctx->lock);
14106 
14107 	if (clone_ctx)
14108 		put_ctx(clone_ctx);
14109 
14110 	/*
14111 	 * Report the task dead after unscheduling the events so that we
14112 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
14113 	 * get a few PERF_RECORD_READ events.
14114 	 */
14115 	if (exit)
14116 		perf_event_task(task, ctx, 0);
14117 
14118 	list_for_each_entry_safe(child_event, next, &ctx->event_list, event_entry)
14119 		perf_event_exit_event(child_event, ctx, false);
14120 
14121 	mutex_unlock(&ctx->mutex);
14122 
14123 	if (!exit) {
14124 		/*
14125 		 * perf_event_release_kernel() could still have a reference on
14126 		 * this context. In that case we must wait for these events to
14127 		 * have been freed (in particular all their references to this
14128 		 * task must've been dropped).
14129 		 *
14130 		 * Without this copy_process() will unconditionally free this
14131 		 * task (irrespective of its reference count) and
14132 		 * _free_event()'s put_task_struct(event->hw.target) will be a
14133 		 * use-after-free.
14134 		 *
14135 		 * Wait for all events to drop their context reference.
14136 		 */
14137 		wait_var_event(&ctx->refcount,
14138 			       refcount_read(&ctx->refcount) == 1);
14139 	}
14140 	put_ctx(ctx);
14141 }
14142 
14143 /*
14144  * When a task exits, feed back event values to parent events.
14145  *
14146  * Can be called with exec_update_lock held when called from
14147  * setup_new_exec().
14148  */
perf_event_exit_task(struct task_struct * task)14149 void perf_event_exit_task(struct task_struct *task)
14150 {
14151 	struct perf_event *event, *tmp;
14152 
14153 	WARN_ON_ONCE(task != current);
14154 
14155 	mutex_lock(&task->perf_event_mutex);
14156 	list_for_each_entry_safe(event, tmp, &task->perf_event_list,
14157 				 owner_entry) {
14158 		list_del_init(&event->owner_entry);
14159 
14160 		/*
14161 		 * Ensure the list deletion is visible before we clear
14162 		 * the owner, closes a race against perf_release() where
14163 		 * we need to serialize on the owner->perf_event_mutex.
14164 		 */
14165 		smp_store_release(&event->owner, NULL);
14166 	}
14167 	mutex_unlock(&task->perf_event_mutex);
14168 
14169 	perf_event_exit_task_context(task, true);
14170 
14171 	/*
14172 	 * The perf_event_exit_task_context calls perf_event_task
14173 	 * with task's task_ctx, which generates EXIT events for
14174 	 * task contexts and sets task->perf_event_ctxp[] to NULL.
14175 	 * At this point we need to send EXIT events to cpu contexts.
14176 	 */
14177 	perf_event_task(task, NULL, 0);
14178 
14179 	/*
14180 	 * Detach the perf_ctx_data for the system-wide event.
14181 	 */
14182 	guard(percpu_read)(&global_ctx_data_rwsem);
14183 	detach_task_ctx_data(task);
14184 }
14185 
14186 /*
14187  * Free a context as created by inheritance by perf_event_init_task() below,
14188  * used by fork() in case of fail.
14189  *
14190  * Even though the task has never lived, the context and events have been
14191  * exposed through the child_list, so we must take care tearing it all down.
14192  */
perf_event_free_task(struct task_struct * task)14193 void perf_event_free_task(struct task_struct *task)
14194 {
14195 	perf_event_exit_task_context(task, false);
14196 }
14197 
perf_event_delayed_put(struct task_struct * task)14198 void perf_event_delayed_put(struct task_struct *task)
14199 {
14200 	WARN_ON_ONCE(task->perf_event_ctxp);
14201 }
14202 
perf_event_get(unsigned int fd)14203 struct file *perf_event_get(unsigned int fd)
14204 {
14205 	struct file *file = fget(fd);
14206 	if (!file)
14207 		return ERR_PTR(-EBADF);
14208 
14209 	if (file->f_op != &perf_fops) {
14210 		fput(file);
14211 		return ERR_PTR(-EBADF);
14212 	}
14213 
14214 	return file;
14215 }
14216 
perf_get_event(struct file * file)14217 const struct perf_event *perf_get_event(struct file *file)
14218 {
14219 	if (file->f_op != &perf_fops)
14220 		return ERR_PTR(-EINVAL);
14221 
14222 	return file->private_data;
14223 }
14224 
perf_event_attrs(struct perf_event * event)14225 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
14226 {
14227 	if (!event)
14228 		return ERR_PTR(-EINVAL);
14229 
14230 	return &event->attr;
14231 }
14232 
perf_allow_kernel(void)14233 int perf_allow_kernel(void)
14234 {
14235 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
14236 		return -EACCES;
14237 
14238 	return security_perf_event_open(PERF_SECURITY_KERNEL);
14239 }
14240 EXPORT_SYMBOL_GPL(perf_allow_kernel);
14241 
14242 /*
14243  * Inherit an event from parent task to child task.
14244  *
14245  * Returns:
14246  *  - valid pointer on success
14247  *  - NULL for orphaned events
14248  *  - IS_ERR() on error
14249  */
14250 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)14251 inherit_event(struct perf_event *parent_event,
14252 	      struct task_struct *parent,
14253 	      struct perf_event_context *parent_ctx,
14254 	      struct task_struct *child,
14255 	      struct perf_event *group_leader,
14256 	      struct perf_event_context *child_ctx)
14257 {
14258 	enum perf_event_state parent_state = parent_event->state;
14259 	struct perf_event_pmu_context *pmu_ctx;
14260 	struct perf_event *child_event;
14261 	unsigned long flags;
14262 
14263 	/*
14264 	 * Instead of creating recursive hierarchies of events,
14265 	 * we link inherited events back to the original parent,
14266 	 * which has a filp for sure, which we use as the reference
14267 	 * count:
14268 	 */
14269 	if (parent_event->parent)
14270 		parent_event = parent_event->parent;
14271 
14272 	if (parent_event->state <= PERF_EVENT_STATE_REVOKED)
14273 		return NULL;
14274 
14275 	/*
14276 	 * Event creation should be under SRCU, see perf_pmu_unregister().
14277 	 */
14278 	guard(srcu)(&pmus_srcu);
14279 
14280 	child_event = perf_event_alloc(&parent_event->attr,
14281 					   parent_event->cpu,
14282 					   child,
14283 					   group_leader, parent_event,
14284 					   NULL, NULL, -1);
14285 	if (IS_ERR(child_event))
14286 		return child_event;
14287 
14288 	get_ctx(child_ctx);
14289 	child_event->ctx = child_ctx;
14290 
14291 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
14292 	if (IS_ERR(pmu_ctx)) {
14293 		free_event(child_event);
14294 		return ERR_CAST(pmu_ctx);
14295 	}
14296 	child_event->pmu_ctx = pmu_ctx;
14297 
14298 	/*
14299 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
14300 	 * must be under the same lock in order to serialize against
14301 	 * perf_event_release_kernel(), such that either we must observe
14302 	 * is_orphaned_event() or they will observe us on the child_list.
14303 	 */
14304 	mutex_lock(&parent_event->child_mutex);
14305 	if (is_orphaned_event(parent_event) ||
14306 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
14307 		mutex_unlock(&parent_event->child_mutex);
14308 		free_event(child_event);
14309 		return NULL;
14310 	}
14311 
14312 	/*
14313 	 * Make the child state follow the state of the parent event,
14314 	 * not its attr.disabled bit.  We hold the parent's mutex,
14315 	 * so we won't race with perf_event_{en, dis}able_family.
14316 	 */
14317 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
14318 		child_event->state = PERF_EVENT_STATE_INACTIVE;
14319 	else
14320 		child_event->state = PERF_EVENT_STATE_OFF;
14321 
14322 	if (parent_event->attr.freq) {
14323 		u64 sample_period = parent_event->hw.sample_period;
14324 		struct hw_perf_event *hwc = &child_event->hw;
14325 
14326 		hwc->sample_period = sample_period;
14327 		hwc->last_period   = sample_period;
14328 
14329 		local64_set(&hwc->period_left, sample_period);
14330 	}
14331 
14332 	child_event->overflow_handler = parent_event->overflow_handler;
14333 	child_event->overflow_handler_context
14334 		= parent_event->overflow_handler_context;
14335 
14336 	/*
14337 	 * Precalculate sample_data sizes
14338 	 */
14339 	perf_event__header_size(child_event);
14340 	perf_event__id_header_size(child_event);
14341 
14342 	/*
14343 	 * Link it up in the child's context:
14344 	 */
14345 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
14346 	add_event_to_ctx(child_event, child_ctx);
14347 	child_event->attach_state |= PERF_ATTACH_CHILD;
14348 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
14349 
14350 	/*
14351 	 * Link this into the parent event's child list
14352 	 */
14353 	list_add_tail(&child_event->child_list, &parent_event->child_list);
14354 	mutex_unlock(&parent_event->child_mutex);
14355 
14356 	return child_event;
14357 }
14358 
14359 /*
14360  * Inherits an event group.
14361  *
14362  * This will quietly suppress orphaned events; !inherit_event() is not an error.
14363  * This matches with perf_event_release_kernel() removing all child events.
14364  *
14365  * Returns:
14366  *  - 0 on success
14367  *  - <0 on error
14368  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)14369 static int inherit_group(struct perf_event *parent_event,
14370 	      struct task_struct *parent,
14371 	      struct perf_event_context *parent_ctx,
14372 	      struct task_struct *child,
14373 	      struct perf_event_context *child_ctx)
14374 {
14375 	struct perf_event *leader;
14376 	struct perf_event *sub;
14377 	struct perf_event *child_ctr;
14378 
14379 	leader = inherit_event(parent_event, parent, parent_ctx,
14380 				 child, NULL, child_ctx);
14381 	if (IS_ERR(leader))
14382 		return PTR_ERR(leader);
14383 	/*
14384 	 * @leader can be NULL here because of is_orphaned_event(). In this
14385 	 * case inherit_event() will create individual events, similar to what
14386 	 * perf_group_detach() would do anyway.
14387 	 */
14388 	for_each_sibling_event(sub, parent_event) {
14389 		child_ctr = inherit_event(sub, parent, parent_ctx,
14390 					    child, leader, child_ctx);
14391 		if (IS_ERR(child_ctr))
14392 			return PTR_ERR(child_ctr);
14393 
14394 		if (sub->aux_event == parent_event && child_ctr &&
14395 		    !perf_get_aux_event(child_ctr, leader))
14396 			return -EINVAL;
14397 	}
14398 	if (leader)
14399 		leader->group_generation = parent_event->group_generation;
14400 	return 0;
14401 }
14402 
14403 /*
14404  * Creates the child task context and tries to inherit the event-group.
14405  *
14406  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
14407  * inherited_all set when we 'fail' to inherit an orphaned event; this is
14408  * consistent with perf_event_release_kernel() removing all child events.
14409  *
14410  * Returns:
14411  *  - 0 on success
14412  *  - <0 on error
14413  */
14414 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)14415 inherit_task_group(struct perf_event *event, struct task_struct *parent,
14416 		   struct perf_event_context *parent_ctx,
14417 		   struct task_struct *child,
14418 		   u64 clone_flags, int *inherited_all)
14419 {
14420 	struct perf_event_context *child_ctx;
14421 	int ret;
14422 
14423 	if (!event->attr.inherit ||
14424 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
14425 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
14426 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
14427 		*inherited_all = 0;
14428 		return 0;
14429 	}
14430 
14431 	child_ctx = child->perf_event_ctxp;
14432 	if (!child_ctx) {
14433 		/*
14434 		 * This is executed from the parent task context, so
14435 		 * inherit events that have been marked for cloning.
14436 		 * First allocate and initialize a context for the
14437 		 * child.
14438 		 */
14439 		child_ctx = alloc_perf_context(child);
14440 		if (!child_ctx)
14441 			return -ENOMEM;
14442 
14443 		child->perf_event_ctxp = child_ctx;
14444 	}
14445 
14446 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
14447 	if (ret)
14448 		*inherited_all = 0;
14449 
14450 	return ret;
14451 }
14452 
14453 /*
14454  * Initialize the perf_event context in task_struct
14455  */
perf_event_init_context(struct task_struct * child,u64 clone_flags)14456 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
14457 {
14458 	struct perf_event_context *child_ctx, *parent_ctx;
14459 	struct perf_event_context *cloned_ctx;
14460 	struct perf_event *event;
14461 	struct task_struct *parent = current;
14462 	int inherited_all = 1;
14463 	unsigned long flags;
14464 	int ret = 0;
14465 
14466 	if (likely(!parent->perf_event_ctxp))
14467 		return 0;
14468 
14469 	/*
14470 	 * If the parent's context is a clone, pin it so it won't get
14471 	 * swapped under us.
14472 	 */
14473 	parent_ctx = perf_pin_task_context(parent);
14474 	if (!parent_ctx)
14475 		return 0;
14476 
14477 	/*
14478 	 * No need to check if parent_ctx != NULL here; since we saw
14479 	 * it non-NULL earlier, the only reason for it to become NULL
14480 	 * is if we exit, and since we're currently in the middle of
14481 	 * a fork we can't be exiting at the same time.
14482 	 */
14483 
14484 	/*
14485 	 * Lock the parent list. No need to lock the child - not PID
14486 	 * hashed yet and not running, so nobody can access it.
14487 	 */
14488 	mutex_lock(&parent_ctx->mutex);
14489 
14490 	/*
14491 	 * We dont have to disable NMIs - we are only looking at
14492 	 * the list, not manipulating it:
14493 	 */
14494 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
14495 		ret = inherit_task_group(event, parent, parent_ctx,
14496 					 child, clone_flags, &inherited_all);
14497 		if (ret)
14498 			goto out_unlock;
14499 	}
14500 
14501 	/*
14502 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
14503 	 * to allocations, but we need to prevent rotation because
14504 	 * rotate_ctx() will change the list from interrupt context.
14505 	 */
14506 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14507 	parent_ctx->rotate_disable = 1;
14508 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14509 
14510 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
14511 		ret = inherit_task_group(event, parent, parent_ctx,
14512 					 child, clone_flags, &inherited_all);
14513 		if (ret)
14514 			goto out_unlock;
14515 	}
14516 
14517 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
14518 	parent_ctx->rotate_disable = 0;
14519 
14520 	child_ctx = child->perf_event_ctxp;
14521 
14522 	if (child_ctx && inherited_all) {
14523 		/*
14524 		 * Mark the child context as a clone of the parent
14525 		 * context, or of whatever the parent is a clone of.
14526 		 *
14527 		 * Note that if the parent is a clone, the holding of
14528 		 * parent_ctx->lock avoids it from being uncloned.
14529 		 */
14530 		cloned_ctx = parent_ctx->parent_ctx;
14531 		if (cloned_ctx) {
14532 			child_ctx->parent_ctx = cloned_ctx;
14533 			child_ctx->parent_gen = parent_ctx->parent_gen;
14534 		} else {
14535 			child_ctx->parent_ctx = parent_ctx;
14536 			child_ctx->parent_gen = parent_ctx->generation;
14537 		}
14538 		get_ctx(child_ctx->parent_ctx);
14539 	}
14540 
14541 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
14542 out_unlock:
14543 	mutex_unlock(&parent_ctx->mutex);
14544 
14545 	perf_unpin_context(parent_ctx);
14546 	put_ctx(parent_ctx);
14547 
14548 	return ret;
14549 }
14550 
14551 /*
14552  * Initialize the perf_event context in task_struct
14553  */
perf_event_init_task(struct task_struct * child,u64 clone_flags)14554 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14555 {
14556 	int ret;
14557 
14558 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14559 	child->perf_event_ctxp = NULL;
14560 	mutex_init(&child->perf_event_mutex);
14561 	INIT_LIST_HEAD(&child->perf_event_list);
14562 	child->perf_ctx_data = NULL;
14563 
14564 	ret = perf_event_init_context(child, clone_flags);
14565 	if (ret) {
14566 		perf_event_free_task(child);
14567 		return ret;
14568 	}
14569 
14570 	return 0;
14571 }
14572 
perf_event_init_all_cpus(void)14573 static void __init perf_event_init_all_cpus(void)
14574 {
14575 	struct swevent_htable *swhash;
14576 	struct perf_cpu_context *cpuctx;
14577 	int cpu;
14578 
14579 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14580 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14581 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14582 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14583 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14584 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14585 
14586 
14587 	for_each_possible_cpu(cpu) {
14588 		swhash = &per_cpu(swevent_htable, cpu);
14589 		mutex_init(&swhash->hlist_mutex);
14590 
14591 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14592 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14593 
14594 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14595 
14596 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14597 		__perf_event_init_context(&cpuctx->ctx);
14598 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14599 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14600 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14601 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14602 		cpuctx->heap = cpuctx->heap_default;
14603 	}
14604 }
14605 
perf_swevent_init_cpu(unsigned int cpu)14606 static void perf_swevent_init_cpu(unsigned int cpu)
14607 {
14608 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14609 
14610 	mutex_lock(&swhash->hlist_mutex);
14611 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14612 		struct swevent_hlist *hlist;
14613 
14614 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14615 		WARN_ON(!hlist);
14616 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14617 	}
14618 	mutex_unlock(&swhash->hlist_mutex);
14619 }
14620 
14621 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)14622 static void __perf_event_exit_context(void *__info)
14623 {
14624 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14625 	struct perf_event_context *ctx = __info;
14626 	struct perf_event *event;
14627 
14628 	raw_spin_lock(&ctx->lock);
14629 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14630 	list_for_each_entry(event, &ctx->event_list, event_entry)
14631 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14632 	raw_spin_unlock(&ctx->lock);
14633 }
14634 
perf_event_clear_cpumask(unsigned int cpu)14635 static void perf_event_clear_cpumask(unsigned int cpu)
14636 {
14637 	int target[PERF_PMU_MAX_SCOPE];
14638 	unsigned int scope;
14639 	struct pmu *pmu;
14640 
14641 	cpumask_clear_cpu(cpu, perf_online_mask);
14642 
14643 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14644 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14645 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14646 
14647 		target[scope] = -1;
14648 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14649 			continue;
14650 
14651 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14652 			continue;
14653 		target[scope] = cpumask_any_but(cpumask, cpu);
14654 		if (target[scope] < nr_cpu_ids)
14655 			cpumask_set_cpu(target[scope], pmu_cpumask);
14656 	}
14657 
14658 	/* migrate */
14659 	list_for_each_entry(pmu, &pmus, entry) {
14660 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14661 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14662 			continue;
14663 
14664 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14665 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14666 	}
14667 }
14668 
perf_event_exit_cpu_context(int cpu)14669 static void perf_event_exit_cpu_context(int cpu)
14670 {
14671 	struct perf_cpu_context *cpuctx;
14672 	struct perf_event_context *ctx;
14673 
14674 	// XXX simplify cpuctx->online
14675 	mutex_lock(&pmus_lock);
14676 	/*
14677 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14678 	 * Must be invoked before the __perf_event_exit_context.
14679 	 */
14680 	perf_event_clear_cpumask(cpu);
14681 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14682 	ctx = &cpuctx->ctx;
14683 
14684 	mutex_lock(&ctx->mutex);
14685 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14686 	cpuctx->online = 0;
14687 	mutex_unlock(&ctx->mutex);
14688 	mutex_unlock(&pmus_lock);
14689 }
14690 #else
14691 
perf_event_exit_cpu_context(int cpu)14692 static void perf_event_exit_cpu_context(int cpu) { }
14693 
14694 #endif
14695 
perf_event_setup_cpumask(unsigned int cpu)14696 static void perf_event_setup_cpumask(unsigned int cpu)
14697 {
14698 	struct cpumask *pmu_cpumask;
14699 	unsigned int scope;
14700 
14701 	/*
14702 	 * Early boot stage, the cpumask hasn't been set yet.
14703 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14704 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14705 	 */
14706 	if (cpumask_empty(perf_online_mask)) {
14707 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14708 			pmu_cpumask = perf_scope_cpumask(scope);
14709 			if (WARN_ON_ONCE(!pmu_cpumask))
14710 				continue;
14711 			cpumask_set_cpu(cpu, pmu_cpumask);
14712 		}
14713 		goto end;
14714 	}
14715 
14716 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14717 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14718 
14719 		pmu_cpumask = perf_scope_cpumask(scope);
14720 
14721 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14722 			continue;
14723 
14724 		if (!cpumask_empty(cpumask) &&
14725 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14726 			cpumask_set_cpu(cpu, pmu_cpumask);
14727 	}
14728 end:
14729 	cpumask_set_cpu(cpu, perf_online_mask);
14730 }
14731 
perf_event_init_cpu(unsigned int cpu)14732 int perf_event_init_cpu(unsigned int cpu)
14733 {
14734 	struct perf_cpu_context *cpuctx;
14735 	struct perf_event_context *ctx;
14736 
14737 	perf_swevent_init_cpu(cpu);
14738 
14739 	mutex_lock(&pmus_lock);
14740 	perf_event_setup_cpumask(cpu);
14741 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14742 	ctx = &cpuctx->ctx;
14743 
14744 	mutex_lock(&ctx->mutex);
14745 	cpuctx->online = 1;
14746 	mutex_unlock(&ctx->mutex);
14747 	mutex_unlock(&pmus_lock);
14748 
14749 	return 0;
14750 }
14751 
perf_event_exit_cpu(unsigned int cpu)14752 int perf_event_exit_cpu(unsigned int cpu)
14753 {
14754 	perf_event_exit_cpu_context(cpu);
14755 	return 0;
14756 }
14757 
14758 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14759 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14760 {
14761 	int cpu;
14762 
14763 	for_each_online_cpu(cpu)
14764 		perf_event_exit_cpu(cpu);
14765 
14766 	return NOTIFY_OK;
14767 }
14768 
14769 /*
14770  * Run the perf reboot notifier at the very last possible moment so that
14771  * the generic watchdog code runs as long as possible.
14772  */
14773 static struct notifier_block perf_reboot_notifier = {
14774 	.notifier_call = perf_reboot,
14775 	.priority = INT_MIN,
14776 };
14777 
perf_event_init(void)14778 void __init perf_event_init(void)
14779 {
14780 	int ret;
14781 
14782 	idr_init(&pmu_idr);
14783 
14784 	perf_event_init_all_cpus();
14785 	init_srcu_struct(&pmus_srcu);
14786 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14787 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14788 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14789 	perf_tp_register();
14790 	perf_event_init_cpu(smp_processor_id());
14791 	register_reboot_notifier(&perf_reboot_notifier);
14792 
14793 	ret = init_hw_breakpoint();
14794 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14795 
14796 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14797 
14798 	/*
14799 	 * Build time assertion that we keep the data_head at the intended
14800 	 * location.  IOW, validation we got the __reserved[] size right.
14801 	 */
14802 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14803 		     != 1024);
14804 }
14805 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14806 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14807 			      char *page)
14808 {
14809 	struct perf_pmu_events_attr *pmu_attr =
14810 		container_of(attr, struct perf_pmu_events_attr, attr);
14811 
14812 	if (pmu_attr->event_str)
14813 		return sprintf(page, "%s\n", pmu_attr->event_str);
14814 
14815 	return 0;
14816 }
14817 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14818 
perf_event_sysfs_init(void)14819 static int __init perf_event_sysfs_init(void)
14820 {
14821 	struct pmu *pmu;
14822 	int ret;
14823 
14824 	mutex_lock(&pmus_lock);
14825 
14826 	ret = bus_register(&pmu_bus);
14827 	if (ret)
14828 		goto unlock;
14829 
14830 	list_for_each_entry(pmu, &pmus, entry) {
14831 		if (pmu->dev)
14832 			continue;
14833 
14834 		ret = pmu_dev_alloc(pmu);
14835 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14836 	}
14837 	pmu_bus_running = 1;
14838 	ret = 0;
14839 
14840 unlock:
14841 	mutex_unlock(&pmus_lock);
14842 
14843 	return ret;
14844 }
14845 device_initcall(perf_event_sysfs_init);
14846 
14847 #ifdef CONFIG_CGROUP_PERF
14848 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14849 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14850 {
14851 	struct perf_cgroup *jc;
14852 
14853 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14854 	if (!jc)
14855 		return ERR_PTR(-ENOMEM);
14856 
14857 	jc->info = alloc_percpu(struct perf_cgroup_info);
14858 	if (!jc->info) {
14859 		kfree(jc);
14860 		return ERR_PTR(-ENOMEM);
14861 	}
14862 
14863 	return &jc->css;
14864 }
14865 
perf_cgroup_css_free(struct cgroup_subsys_state * css)14866 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14867 {
14868 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14869 
14870 	free_percpu(jc->info);
14871 	kfree(jc);
14872 }
14873 
perf_cgroup_css_online(struct cgroup_subsys_state * css)14874 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14875 {
14876 	perf_event_cgroup(css->cgroup);
14877 	return 0;
14878 }
14879 
__perf_cgroup_move(void * info)14880 static int __perf_cgroup_move(void *info)
14881 {
14882 	struct task_struct *task = info;
14883 
14884 	preempt_disable();
14885 	perf_cgroup_switch(task);
14886 	preempt_enable();
14887 
14888 	return 0;
14889 }
14890 
perf_cgroup_attach(struct cgroup_taskset * tset)14891 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14892 {
14893 	struct task_struct *task;
14894 	struct cgroup_subsys_state *css;
14895 
14896 	cgroup_taskset_for_each(task, css, tset)
14897 		task_function_call(task, __perf_cgroup_move, task);
14898 }
14899 
14900 struct cgroup_subsys perf_event_cgrp_subsys = {
14901 	.css_alloc	= perf_cgroup_css_alloc,
14902 	.css_free	= perf_cgroup_css_free,
14903 	.css_online	= perf_cgroup_css_online,
14904 	.attach		= perf_cgroup_attach,
14905 	/*
14906 	 * Implicitly enable on dfl hierarchy so that perf events can
14907 	 * always be filtered by cgroup2 path as long as perf_event
14908 	 * controller is not mounted on a legacy hierarchy.
14909 	 */
14910 	.implicit_on_dfl = true,
14911 	.threaded	= true,
14912 };
14913 #endif /* CONFIG_CGROUP_PERF */
14914 
14915 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14916