1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * User-space Probes (UProbes) 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 7 * Srikar Dronamraju 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 18 #include <linux/export.h> 19 #include <linux/rmap.h> /* anon_vma_prepare */ 20 #include <linux/mmu_notifier.h> 21 #include <linux/swap.h> /* folio_free_swap */ 22 #include <linux/ptrace.h> /* user_enable_single_step */ 23 #include <linux/kdebug.h> /* notifier mechanism */ 24 #include <linux/percpu-rwsem.h> 25 #include <linux/task_work.h> 26 #include <linux/shmem_fs.h> 27 #include <linux/khugepaged.h> 28 #include <linux/rcupdate_trace.h> 29 #include <linux/workqueue.h> 30 #include <linux/srcu.h> 31 #include <linux/oom.h> /* check_stable_address_space */ 32 #include <linux/pagewalk.h> 33 34 #include <linux/uprobes.h> 35 36 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 37 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 38 39 static struct rb_root uprobes_tree = RB_ROOT; 40 /* 41 * allows us to skip the uprobe_mmap if there are no uprobe events active 42 * at this time. Probably a fine grained per inode count is better? 43 */ 44 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 45 46 static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */ 47 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock); 48 49 #define UPROBES_HASH_SZ 13 50 /* serialize uprobe->pending_list */ 51 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 52 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 53 54 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 55 56 /* Covers return_instance's uprobe lifetime. */ 57 DEFINE_STATIC_SRCU(uretprobes_srcu); 58 59 /* Have a copy of original instruction */ 60 #define UPROBE_COPY_INSN 0 61 62 struct uprobe { 63 struct rb_node rb_node; /* node in the rb tree */ 64 refcount_t ref; 65 struct rw_semaphore register_rwsem; 66 struct rw_semaphore consumer_rwsem; 67 struct list_head pending_list; 68 struct list_head consumers; 69 struct inode *inode; /* Also hold a ref to inode */ 70 union { 71 struct rcu_head rcu; 72 struct work_struct work; 73 }; 74 loff_t offset; 75 loff_t ref_ctr_offset; 76 unsigned long flags; /* "unsigned long" so bitops work */ 77 78 /* 79 * The generic code assumes that it has two members of unknown type 80 * owned by the arch-specific code: 81 * 82 * insn - copy_insn() saves the original instruction here for 83 * arch_uprobe_analyze_insn(). 84 * 85 * ixol - potentially modified instruction to execute out of 86 * line, copied to xol_area by xol_get_insn_slot(). 87 */ 88 struct arch_uprobe arch; 89 }; 90 91 struct delayed_uprobe { 92 struct list_head list; 93 struct uprobe *uprobe; 94 struct mm_struct *mm; 95 }; 96 97 static DEFINE_MUTEX(delayed_uprobe_lock); 98 static LIST_HEAD(delayed_uprobe_list); 99 100 /* 101 * Execute out of line area: anonymous executable mapping installed 102 * by the probed task to execute the copy of the original instruction 103 * mangled by set_swbp(). 104 * 105 * On a breakpoint hit, thread contests for a slot. It frees the 106 * slot after singlestep. Currently a fixed number of slots are 107 * allocated. 108 */ 109 struct xol_area { 110 wait_queue_head_t wq; /* if all slots are busy */ 111 unsigned long *bitmap; /* 0 = free slot */ 112 113 struct page *page; 114 /* 115 * We keep the vma's vm_start rather than a pointer to the vma 116 * itself. The probed process or a naughty kernel module could make 117 * the vma go away, and we must handle that reasonably gracefully. 118 */ 119 unsigned long vaddr; /* Page(s) of instruction slots */ 120 }; 121 122 static void uprobe_warn(struct task_struct *t, const char *msg) 123 { 124 pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg); 125 } 126 127 /* 128 * valid_vma: Verify if the specified vma is an executable vma 129 * Relax restrictions while unregistering: vm_flags might have 130 * changed after breakpoint was inserted. 131 * - is_register: indicates if we are in register context. 132 * - Return 1 if the specified virtual address is in an 133 * executable vma. 134 */ 135 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 136 { 137 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 138 139 if (is_register) 140 flags |= VM_WRITE; 141 142 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 143 } 144 145 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 146 { 147 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 148 } 149 150 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 151 { 152 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 153 } 154 155 /** 156 * is_swbp_insn - check if instruction is breakpoint instruction. 157 * @insn: instruction to be checked. 158 * Default implementation of is_swbp_insn 159 * Returns true if @insn is a breakpoint instruction. 160 */ 161 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 162 { 163 return *insn == UPROBE_SWBP_INSN; 164 } 165 166 /** 167 * is_trap_insn - check if instruction is breakpoint instruction. 168 * @insn: instruction to be checked. 169 * Default implementation of is_trap_insn 170 * Returns true if @insn is a breakpoint instruction. 171 * 172 * This function is needed for the case where an architecture has multiple 173 * trap instructions (like powerpc). 174 */ 175 bool __weak is_trap_insn(uprobe_opcode_t *insn) 176 { 177 return is_swbp_insn(insn); 178 } 179 180 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 181 { 182 void *kaddr = kmap_atomic(page); 183 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 184 kunmap_atomic(kaddr); 185 } 186 187 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 188 { 189 void *kaddr = kmap_atomic(page); 190 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 191 kunmap_atomic(kaddr); 192 } 193 194 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 195 { 196 uprobe_opcode_t old_opcode; 197 bool is_swbp; 198 199 /* 200 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 201 * We do not check if it is any other 'trap variant' which could 202 * be conditional trap instruction such as the one powerpc supports. 203 * 204 * The logic is that we do not care if the underlying instruction 205 * is a trap variant; uprobes always wins over any other (gdb) 206 * breakpoint. 207 */ 208 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 209 is_swbp = is_swbp_insn(&old_opcode); 210 211 if (is_swbp_insn(new_opcode)) { 212 if (is_swbp) /* register: already installed? */ 213 return 0; 214 } else { 215 if (!is_swbp) /* unregister: was it changed by us? */ 216 return 0; 217 } 218 219 return 1; 220 } 221 222 static struct delayed_uprobe * 223 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 224 { 225 struct delayed_uprobe *du; 226 227 list_for_each_entry(du, &delayed_uprobe_list, list) 228 if (du->uprobe == uprobe && du->mm == mm) 229 return du; 230 return NULL; 231 } 232 233 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 234 { 235 struct delayed_uprobe *du; 236 237 if (delayed_uprobe_check(uprobe, mm)) 238 return 0; 239 240 du = kzalloc(sizeof(*du), GFP_KERNEL); 241 if (!du) 242 return -ENOMEM; 243 244 du->uprobe = uprobe; 245 du->mm = mm; 246 list_add(&du->list, &delayed_uprobe_list); 247 return 0; 248 } 249 250 static void delayed_uprobe_delete(struct delayed_uprobe *du) 251 { 252 if (WARN_ON(!du)) 253 return; 254 list_del(&du->list); 255 kfree(du); 256 } 257 258 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 259 { 260 struct list_head *pos, *q; 261 struct delayed_uprobe *du; 262 263 if (!uprobe && !mm) 264 return; 265 266 list_for_each_safe(pos, q, &delayed_uprobe_list) { 267 du = list_entry(pos, struct delayed_uprobe, list); 268 269 if (uprobe && du->uprobe != uprobe) 270 continue; 271 if (mm && du->mm != mm) 272 continue; 273 274 delayed_uprobe_delete(du); 275 } 276 } 277 278 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 279 struct vm_area_struct *vma) 280 { 281 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 282 283 return uprobe->ref_ctr_offset && 284 vma->vm_file && 285 file_inode(vma->vm_file) == uprobe->inode && 286 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 287 vma->vm_start <= vaddr && 288 vma->vm_end > vaddr; 289 } 290 291 static struct vm_area_struct * 292 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 293 { 294 VMA_ITERATOR(vmi, mm, 0); 295 struct vm_area_struct *tmp; 296 297 for_each_vma(vmi, tmp) 298 if (valid_ref_ctr_vma(uprobe, tmp)) 299 return tmp; 300 301 return NULL; 302 } 303 304 static int 305 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 306 { 307 void *kaddr; 308 struct page *page; 309 int ret; 310 short *ptr; 311 312 if (!vaddr || !d) 313 return -EINVAL; 314 315 ret = get_user_pages_remote(mm, vaddr, 1, 316 FOLL_WRITE, &page, NULL); 317 if (unlikely(ret <= 0)) { 318 /* 319 * We are asking for 1 page. If get_user_pages_remote() fails, 320 * it may return 0, in that case we have to return error. 321 */ 322 return ret == 0 ? -EBUSY : ret; 323 } 324 325 kaddr = kmap_atomic(page); 326 ptr = kaddr + (vaddr & ~PAGE_MASK); 327 328 if (unlikely(*ptr + d < 0)) { 329 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 330 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 331 ret = -EINVAL; 332 goto out; 333 } 334 335 *ptr += d; 336 ret = 0; 337 out: 338 kunmap_atomic(kaddr); 339 put_page(page); 340 return ret; 341 } 342 343 static void update_ref_ctr_warn(struct uprobe *uprobe, 344 struct mm_struct *mm, short d) 345 { 346 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 347 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%p\n", 348 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 349 (unsigned long long) uprobe->offset, 350 (unsigned long long) uprobe->ref_ctr_offset, mm); 351 } 352 353 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 354 short d) 355 { 356 struct vm_area_struct *rc_vma; 357 unsigned long rc_vaddr; 358 int ret = 0; 359 360 rc_vma = find_ref_ctr_vma(uprobe, mm); 361 362 if (rc_vma) { 363 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 364 ret = __update_ref_ctr(mm, rc_vaddr, d); 365 if (ret) 366 update_ref_ctr_warn(uprobe, mm, d); 367 368 if (d > 0) 369 return ret; 370 } 371 372 mutex_lock(&delayed_uprobe_lock); 373 if (d > 0) 374 ret = delayed_uprobe_add(uprobe, mm); 375 else 376 delayed_uprobe_remove(uprobe, mm); 377 mutex_unlock(&delayed_uprobe_lock); 378 379 return ret; 380 } 381 382 static bool orig_page_is_identical(struct vm_area_struct *vma, 383 unsigned long vaddr, struct page *page, bool *pmd_mappable) 384 { 385 const pgoff_t index = vaddr_to_offset(vma, vaddr) >> PAGE_SHIFT; 386 struct folio *orig_folio = filemap_get_folio(vma->vm_file->f_mapping, 387 index); 388 struct page *orig_page; 389 bool identical; 390 391 if (IS_ERR(orig_folio)) 392 return false; 393 orig_page = folio_file_page(orig_folio, index); 394 395 *pmd_mappable = folio_test_pmd_mappable(orig_folio); 396 identical = folio_test_uptodate(orig_folio) && 397 pages_identical(page, orig_page); 398 folio_put(orig_folio); 399 return identical; 400 } 401 402 static int __uprobe_write_opcode(struct vm_area_struct *vma, 403 struct folio_walk *fw, struct folio *folio, 404 unsigned long opcode_vaddr, uprobe_opcode_t opcode) 405 { 406 const unsigned long vaddr = opcode_vaddr & PAGE_MASK; 407 const bool is_register = !!is_swbp_insn(&opcode); 408 bool pmd_mappable; 409 410 /* For now, we'll only handle PTE-mapped folios. */ 411 if (fw->level != FW_LEVEL_PTE) 412 return -EFAULT; 413 414 /* 415 * See can_follow_write_pte(): we'd actually prefer a writable PTE here, 416 * but the VMA might not be writable. 417 */ 418 if (!pte_write(fw->pte)) { 419 if (!PageAnonExclusive(fw->page)) 420 return -EFAULT; 421 if (unlikely(userfaultfd_pte_wp(vma, fw->pte))) 422 return -EFAULT; 423 /* SOFTDIRTY is handled via pte_mkdirty() below. */ 424 } 425 426 /* 427 * We'll temporarily unmap the page and flush the TLB, such that we can 428 * modify the page atomically. 429 */ 430 flush_cache_page(vma, vaddr, pte_pfn(fw->pte)); 431 fw->pte = ptep_clear_flush(vma, vaddr, fw->ptep); 432 copy_to_page(fw->page, opcode_vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 433 434 /* 435 * When unregistering, we may only zap a PTE if uffd is disabled and 436 * there are no unexpected folio references ... 437 */ 438 if (is_register || userfaultfd_missing(vma) || 439 (folio_ref_count(folio) != folio_expected_ref_count(folio) + 1)) 440 goto remap; 441 442 /* 443 * ... and the mapped page is identical to the original page that 444 * would get faulted in on next access. 445 */ 446 if (!orig_page_is_identical(vma, vaddr, fw->page, &pmd_mappable)) 447 goto remap; 448 449 dec_mm_counter(vma->vm_mm, MM_ANONPAGES); 450 folio_remove_rmap_pte(folio, fw->page, vma); 451 if (!folio_mapped(folio) && folio_test_swapcache(folio) && 452 folio_trylock(folio)) { 453 folio_free_swap(folio); 454 folio_unlock(folio); 455 } 456 folio_put(folio); 457 458 return pmd_mappable; 459 remap: 460 /* 461 * Make sure that our copy_to_page() changes become visible before the 462 * set_pte_at() write. 463 */ 464 smp_wmb(); 465 /* We modified the page. Make sure to mark the PTE dirty. */ 466 set_pte_at(vma->vm_mm, vaddr, fw->ptep, pte_mkdirty(fw->pte)); 467 return 0; 468 } 469 470 /* 471 * NOTE: 472 * Expect the breakpoint instruction to be the smallest size instruction for 473 * the architecture. If an arch has variable length instruction and the 474 * breakpoint instruction is not of the smallest length instruction 475 * supported by that architecture then we need to modify is_trap_at_addr and 476 * uprobe_write_opcode accordingly. This would never be a problem for archs 477 * that have fixed length instructions. 478 * 479 * uprobe_write_opcode - write the opcode at a given virtual address. 480 * @auprobe: arch specific probepoint information. 481 * @vma: the probed virtual memory area. 482 * @opcode_vaddr: the virtual address to store the opcode. 483 * @opcode: opcode to be written at @opcode_vaddr. 484 * 485 * Called with mm->mmap_lock held for read or write. 486 * Return 0 (success) or a negative errno. 487 */ 488 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct vm_area_struct *vma, 489 const unsigned long opcode_vaddr, uprobe_opcode_t opcode) 490 { 491 const unsigned long vaddr = opcode_vaddr & PAGE_MASK; 492 struct mm_struct *mm = vma->vm_mm; 493 struct uprobe *uprobe; 494 int ret, is_register, ref_ctr_updated = 0; 495 unsigned int gup_flags = FOLL_FORCE; 496 struct mmu_notifier_range range; 497 struct folio_walk fw; 498 struct folio *folio; 499 struct page *page; 500 501 is_register = is_swbp_insn(&opcode); 502 uprobe = container_of(auprobe, struct uprobe, arch); 503 504 if (WARN_ON_ONCE(!is_cow_mapping(vma->vm_flags))) 505 return -EINVAL; 506 507 /* 508 * When registering, we have to break COW to get an exclusive anonymous 509 * page that we can safely modify. Use FOLL_WRITE to trigger a write 510 * fault if required. When unregistering, we might be lucky and the 511 * anon page is already gone. So defer write faults until really 512 * required. Use FOLL_SPLIT_PMD, because __uprobe_write_opcode() 513 * cannot deal with PMDs yet. 514 */ 515 if (is_register) 516 gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD; 517 518 retry: 519 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, &page, NULL); 520 if (ret <= 0) 521 goto out; 522 folio = page_folio(page); 523 524 ret = verify_opcode(page, opcode_vaddr, &opcode); 525 if (ret <= 0) { 526 folio_put(folio); 527 goto out; 528 } 529 530 /* We are going to replace instruction, update ref_ctr. */ 531 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 532 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 533 if (ret) { 534 folio_put(folio); 535 goto out; 536 } 537 538 ref_ctr_updated = 1; 539 } 540 541 ret = 0; 542 if (unlikely(!folio_test_anon(folio) || folio_is_zone_device(folio))) { 543 VM_WARN_ON_ONCE(is_register); 544 folio_put(folio); 545 goto out; 546 } 547 548 if (!is_register) { 549 /* 550 * In the common case, we'll be able to zap the page when 551 * unregistering. So trigger MMU notifiers now, as we won't 552 * be able to do it under PTL. 553 */ 554 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 555 vaddr, vaddr + PAGE_SIZE); 556 mmu_notifier_invalidate_range_start(&range); 557 } 558 559 ret = -EAGAIN; 560 /* Walk the page tables again, to perform the actual update. */ 561 if (folio_walk_start(&fw, vma, vaddr, 0)) { 562 if (fw.page == page) 563 ret = __uprobe_write_opcode(vma, &fw, folio, opcode_vaddr, opcode); 564 folio_walk_end(&fw, vma); 565 } 566 567 if (!is_register) 568 mmu_notifier_invalidate_range_end(&range); 569 570 folio_put(folio); 571 switch (ret) { 572 case -EFAULT: 573 gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD; 574 fallthrough; 575 case -EAGAIN: 576 goto retry; 577 default: 578 break; 579 } 580 581 out: 582 /* Revert back reference counter if instruction update failed. */ 583 if (ret < 0 && is_register && ref_ctr_updated) 584 update_ref_ctr(uprobe, mm, -1); 585 586 /* try collapse pmd for compound page */ 587 if (ret > 0) 588 collapse_pte_mapped_thp(mm, vaddr, false); 589 590 return ret < 0 ? ret : 0; 591 } 592 593 /** 594 * set_swbp - store breakpoint at a given address. 595 * @auprobe: arch specific probepoint information. 596 * @vma: the probed virtual memory area. 597 * @vaddr: the virtual address to insert the opcode. 598 * 599 * For mm @mm, store the breakpoint instruction at @vaddr. 600 * Return 0 (success) or a negative errno. 601 */ 602 int __weak set_swbp(struct arch_uprobe *auprobe, struct vm_area_struct *vma, 603 unsigned long vaddr) 604 { 605 return uprobe_write_opcode(auprobe, vma, vaddr, UPROBE_SWBP_INSN); 606 } 607 608 /** 609 * set_orig_insn - Restore the original instruction. 610 * @vma: the probed virtual memory area. 611 * @auprobe: arch specific probepoint information. 612 * @vaddr: the virtual address to insert the opcode. 613 * 614 * For mm @mm, restore the original opcode (opcode) at @vaddr. 615 * Return 0 (success) or a negative errno. 616 */ 617 int __weak set_orig_insn(struct arch_uprobe *auprobe, 618 struct vm_area_struct *vma, unsigned long vaddr) 619 { 620 return uprobe_write_opcode(auprobe, vma, vaddr, 621 *(uprobe_opcode_t *)&auprobe->insn); 622 } 623 624 /* uprobe should have guaranteed positive refcount */ 625 static struct uprobe *get_uprobe(struct uprobe *uprobe) 626 { 627 refcount_inc(&uprobe->ref); 628 return uprobe; 629 } 630 631 /* 632 * uprobe should have guaranteed lifetime, which can be either of: 633 * - caller already has refcount taken (and wants an extra one); 634 * - uprobe is RCU protected and won't be freed until after grace period; 635 * - we are holding uprobes_treelock (for read or write, doesn't matter). 636 */ 637 static struct uprobe *try_get_uprobe(struct uprobe *uprobe) 638 { 639 if (refcount_inc_not_zero(&uprobe->ref)) 640 return uprobe; 641 return NULL; 642 } 643 644 static inline bool uprobe_is_active(struct uprobe *uprobe) 645 { 646 return !RB_EMPTY_NODE(&uprobe->rb_node); 647 } 648 649 static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu) 650 { 651 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); 652 653 kfree(uprobe); 654 } 655 656 static void uprobe_free_srcu(struct rcu_head *rcu) 657 { 658 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); 659 660 call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace); 661 } 662 663 static void uprobe_free_deferred(struct work_struct *work) 664 { 665 struct uprobe *uprobe = container_of(work, struct uprobe, work); 666 667 write_lock(&uprobes_treelock); 668 669 if (uprobe_is_active(uprobe)) { 670 write_seqcount_begin(&uprobes_seqcount); 671 rb_erase(&uprobe->rb_node, &uprobes_tree); 672 write_seqcount_end(&uprobes_seqcount); 673 } 674 675 write_unlock(&uprobes_treelock); 676 677 /* 678 * If application munmap(exec_vma) before uprobe_unregister() 679 * gets called, we don't get a chance to remove uprobe from 680 * delayed_uprobe_list from remove_breakpoint(). Do it here. 681 */ 682 mutex_lock(&delayed_uprobe_lock); 683 delayed_uprobe_remove(uprobe, NULL); 684 mutex_unlock(&delayed_uprobe_lock); 685 686 /* start srcu -> rcu_tasks_trace -> kfree chain */ 687 call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu); 688 } 689 690 static void put_uprobe(struct uprobe *uprobe) 691 { 692 if (!refcount_dec_and_test(&uprobe->ref)) 693 return; 694 695 INIT_WORK(&uprobe->work, uprobe_free_deferred); 696 schedule_work(&uprobe->work); 697 } 698 699 /* Initialize hprobe as SRCU-protected "leased" uprobe */ 700 static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx) 701 { 702 WARN_ON(!uprobe); 703 hprobe->state = HPROBE_LEASED; 704 hprobe->uprobe = uprobe; 705 hprobe->srcu_idx = srcu_idx; 706 } 707 708 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */ 709 static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe) 710 { 711 hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE; 712 hprobe->uprobe = uprobe; 713 hprobe->srcu_idx = -1; 714 } 715 716 /* 717 * hprobe_consume() fetches hprobe's underlying uprobe and detects whether 718 * uprobe is SRCU protected or is refcounted. hprobe_consume() can be 719 * used only once for a given hprobe. 720 * 721 * Caller has to call hprobe_finalize() and pass previous hprobe_state, so 722 * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever 723 * is appropriate. 724 */ 725 static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate) 726 { 727 *hstate = xchg(&hprobe->state, HPROBE_CONSUMED); 728 switch (*hstate) { 729 case HPROBE_LEASED: 730 case HPROBE_STABLE: 731 return hprobe->uprobe; 732 case HPROBE_GONE: /* uprobe is NULL, no SRCU */ 733 case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */ 734 return NULL; 735 default: 736 WARN(1, "hprobe invalid state %d", *hstate); 737 return NULL; 738 } 739 } 740 741 /* 742 * Reset hprobe state and, if hprobe was LEASED, release SRCU lock. 743 * hprobe_finalize() can only be used from current context after 744 * hprobe_consume() call (which determines uprobe and hstate value). 745 */ 746 static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate) 747 { 748 switch (hstate) { 749 case HPROBE_LEASED: 750 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); 751 break; 752 case HPROBE_STABLE: 753 put_uprobe(hprobe->uprobe); 754 break; 755 case HPROBE_GONE: 756 case HPROBE_CONSUMED: 757 break; 758 default: 759 WARN(1, "hprobe invalid state %d", hstate); 760 break; 761 } 762 } 763 764 /* 765 * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED) 766 * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of 767 * them can win the race to perform SRCU unlocking. Whoever wins must perform 768 * SRCU unlock. 769 * 770 * Returns underlying valid uprobe or NULL, if there was no underlying uprobe 771 * to begin with or we failed to bump its refcount and it's going away. 772 * 773 * Returned non-NULL uprobe can be still safely used within an ongoing SRCU 774 * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has 775 * an extra refcount for caller to assume and use. Otherwise, it's not 776 * guaranteed that returned uprobe has a positive refcount, so caller has to 777 * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current 778 * SRCU lock region. See dup_utask(). 779 */ 780 static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get) 781 { 782 enum hprobe_state hstate; 783 784 /* 785 * Caller should guarantee that return_instance is not going to be 786 * freed from under us. This can be achieved either through holding 787 * rcu_read_lock() or by owning return_instance in the first place. 788 * 789 * Underlying uprobe is itself protected from reuse by SRCU, so ensure 790 * SRCU lock is held properly. 791 */ 792 lockdep_assert(srcu_read_lock_held(&uretprobes_srcu)); 793 794 hstate = READ_ONCE(hprobe->state); 795 switch (hstate) { 796 case HPROBE_STABLE: 797 /* uprobe has positive refcount, bump refcount, if necessary */ 798 return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe; 799 case HPROBE_GONE: 800 /* 801 * SRCU was unlocked earlier and we didn't manage to take 802 * uprobe refcnt, so it's effectively NULL 803 */ 804 return NULL; 805 case HPROBE_CONSUMED: 806 /* 807 * uprobe was consumed, so it's effectively NULL as far as 808 * uretprobe processing logic is concerned 809 */ 810 return NULL; 811 case HPROBE_LEASED: { 812 struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe); 813 /* 814 * Try to switch hprobe state, guarding against 815 * hprobe_consume() or another hprobe_expire() racing with us. 816 * Note, if we failed to get uprobe refcount, we use special 817 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't 818 * be used as it will be freed after SRCU is unlocked. 819 */ 820 if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) { 821 /* We won the race, we are the ones to unlock SRCU */ 822 __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); 823 return get ? get_uprobe(uprobe) : uprobe; 824 } 825 826 /* 827 * We lost the race, undo refcount bump (if it ever happened), 828 * unless caller would like an extra refcount anyways. 829 */ 830 if (uprobe && !get) 831 put_uprobe(uprobe); 832 /* 833 * Even if hprobe_consume() or another hprobe_expire() wins 834 * the state update race and unlocks SRCU from under us, we 835 * still have a guarantee that underyling uprobe won't be 836 * freed due to ongoing caller's SRCU lock region, so we can 837 * return it regardless. Also, if `get` was true, we also have 838 * an extra ref for the caller to own. This is used in dup_utask(). 839 */ 840 return uprobe; 841 } 842 default: 843 WARN(1, "unknown hprobe state %d", hstate); 844 return NULL; 845 } 846 } 847 848 static __always_inline 849 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 850 const struct uprobe *r) 851 { 852 if (l_inode < r->inode) 853 return -1; 854 855 if (l_inode > r->inode) 856 return 1; 857 858 if (l_offset < r->offset) 859 return -1; 860 861 if (l_offset > r->offset) 862 return 1; 863 864 return 0; 865 } 866 867 #define __node_2_uprobe(node) \ 868 rb_entry((node), struct uprobe, rb_node) 869 870 struct __uprobe_key { 871 struct inode *inode; 872 loff_t offset; 873 }; 874 875 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 876 { 877 const struct __uprobe_key *a = key; 878 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 879 } 880 881 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 882 { 883 struct uprobe *u = __node_2_uprobe(a); 884 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 885 } 886 887 /* 888 * Assumes being inside RCU protected region. 889 * No refcount is taken on returned uprobe. 890 */ 891 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset) 892 { 893 struct __uprobe_key key = { 894 .inode = inode, 895 .offset = offset, 896 }; 897 struct rb_node *node; 898 unsigned int seq; 899 900 lockdep_assert(rcu_read_lock_trace_held()); 901 902 do { 903 seq = read_seqcount_begin(&uprobes_seqcount); 904 node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key); 905 /* 906 * Lockless RB-tree lookups can result only in false negatives. 907 * If the element is found, it is correct and can be returned 908 * under RCU protection. If we find nothing, we need to 909 * validate that seqcount didn't change. If it did, we have to 910 * try again as we might have missed the element (false 911 * negative). If seqcount is unchanged, search truly failed. 912 */ 913 if (node) 914 return __node_2_uprobe(node); 915 } while (read_seqcount_retry(&uprobes_seqcount, seq)); 916 917 return NULL; 918 } 919 920 /* 921 * Attempt to insert a new uprobe into uprobes_tree. 922 * 923 * If uprobe already exists (for given inode+offset), we just increment 924 * refcount of previously existing uprobe. 925 * 926 * If not, a provided new instance of uprobe is inserted into the tree (with 927 * assumed initial refcount == 1). 928 * 929 * In any case, we return a uprobe instance that ends up being in uprobes_tree. 930 * Caller has to clean up new uprobe instance, if it ended up not being 931 * inserted into the tree. 932 * 933 * We assume that uprobes_treelock is held for writing. 934 */ 935 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 936 { 937 struct rb_node *node; 938 again: 939 node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 940 if (node) { 941 struct uprobe *u = __node_2_uprobe(node); 942 943 if (!try_get_uprobe(u)) { 944 rb_erase(node, &uprobes_tree); 945 RB_CLEAR_NODE(&u->rb_node); 946 goto again; 947 } 948 949 return u; 950 } 951 952 return uprobe; 953 } 954 955 /* 956 * Acquire uprobes_treelock and insert uprobe into uprobes_tree 957 * (or reuse existing one, see __insert_uprobe() comments above). 958 */ 959 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 960 { 961 struct uprobe *u; 962 963 write_lock(&uprobes_treelock); 964 write_seqcount_begin(&uprobes_seqcount); 965 u = __insert_uprobe(uprobe); 966 write_seqcount_end(&uprobes_seqcount); 967 write_unlock(&uprobes_treelock); 968 969 return u; 970 } 971 972 static void 973 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 974 { 975 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 976 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 977 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 978 (unsigned long long) cur_uprobe->ref_ctr_offset, 979 (unsigned long long) uprobe->ref_ctr_offset); 980 } 981 982 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 983 loff_t ref_ctr_offset) 984 { 985 struct uprobe *uprobe, *cur_uprobe; 986 987 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 988 if (!uprobe) 989 return ERR_PTR(-ENOMEM); 990 991 uprobe->inode = inode; 992 uprobe->offset = offset; 993 uprobe->ref_ctr_offset = ref_ctr_offset; 994 INIT_LIST_HEAD(&uprobe->consumers); 995 init_rwsem(&uprobe->register_rwsem); 996 init_rwsem(&uprobe->consumer_rwsem); 997 RB_CLEAR_NODE(&uprobe->rb_node); 998 refcount_set(&uprobe->ref, 1); 999 1000 /* add to uprobes_tree, sorted on inode:offset */ 1001 cur_uprobe = insert_uprobe(uprobe); 1002 /* a uprobe exists for this inode:offset combination */ 1003 if (cur_uprobe != uprobe) { 1004 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 1005 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 1006 put_uprobe(cur_uprobe); 1007 kfree(uprobe); 1008 return ERR_PTR(-EINVAL); 1009 } 1010 kfree(uprobe); 1011 uprobe = cur_uprobe; 1012 } 1013 1014 return uprobe; 1015 } 1016 1017 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 1018 { 1019 static atomic64_t id; 1020 1021 down_write(&uprobe->consumer_rwsem); 1022 list_add_rcu(&uc->cons_node, &uprobe->consumers); 1023 uc->id = (__u64) atomic64_inc_return(&id); 1024 up_write(&uprobe->consumer_rwsem); 1025 } 1026 1027 /* 1028 * For uprobe @uprobe, delete the consumer @uc. 1029 * Should never be called with consumer that's not part of @uprobe->consumers. 1030 */ 1031 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 1032 { 1033 down_write(&uprobe->consumer_rwsem); 1034 list_del_rcu(&uc->cons_node); 1035 up_write(&uprobe->consumer_rwsem); 1036 } 1037 1038 static int __copy_insn(struct address_space *mapping, struct file *filp, 1039 void *insn, int nbytes, loff_t offset) 1040 { 1041 struct page *page; 1042 /* 1043 * Ensure that the page that has the original instruction is populated 1044 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), 1045 * see uprobe_register(). 1046 */ 1047 if (mapping->a_ops->read_folio) 1048 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 1049 else 1050 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 1051 if (IS_ERR(page)) 1052 return PTR_ERR(page); 1053 1054 copy_from_page(page, offset, insn, nbytes); 1055 put_page(page); 1056 1057 return 0; 1058 } 1059 1060 static int copy_insn(struct uprobe *uprobe, struct file *filp) 1061 { 1062 struct address_space *mapping = uprobe->inode->i_mapping; 1063 loff_t offs = uprobe->offset; 1064 void *insn = &uprobe->arch.insn; 1065 int size = sizeof(uprobe->arch.insn); 1066 int len, err = -EIO; 1067 1068 /* Copy only available bytes, -EIO if nothing was read */ 1069 do { 1070 if (offs >= i_size_read(uprobe->inode)) 1071 break; 1072 1073 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 1074 err = __copy_insn(mapping, filp, insn, len, offs); 1075 if (err) 1076 break; 1077 1078 insn += len; 1079 offs += len; 1080 size -= len; 1081 } while (size); 1082 1083 return err; 1084 } 1085 1086 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 1087 struct mm_struct *mm, unsigned long vaddr) 1088 { 1089 int ret = 0; 1090 1091 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 1092 return ret; 1093 1094 /* TODO: move this into _register, until then we abuse this sem. */ 1095 down_write(&uprobe->consumer_rwsem); 1096 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 1097 goto out; 1098 1099 ret = copy_insn(uprobe, file); 1100 if (ret) 1101 goto out; 1102 1103 ret = -ENOTSUPP; 1104 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 1105 goto out; 1106 1107 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 1108 if (ret) 1109 goto out; 1110 1111 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 1112 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 1113 1114 out: 1115 up_write(&uprobe->consumer_rwsem); 1116 1117 return ret; 1118 } 1119 1120 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm) 1121 { 1122 return !uc->filter || uc->filter(uc, mm); 1123 } 1124 1125 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm) 1126 { 1127 struct uprobe_consumer *uc; 1128 bool ret = false; 1129 1130 down_read(&uprobe->consumer_rwsem); 1131 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 1132 ret = consumer_filter(uc, mm); 1133 if (ret) 1134 break; 1135 } 1136 up_read(&uprobe->consumer_rwsem); 1137 1138 return ret; 1139 } 1140 1141 static int install_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma, 1142 unsigned long vaddr) 1143 { 1144 struct mm_struct *mm = vma->vm_mm; 1145 bool first_uprobe; 1146 int ret; 1147 1148 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 1149 if (ret) 1150 return ret; 1151 1152 /* 1153 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 1154 * the task can hit this breakpoint right after __replace_page(). 1155 */ 1156 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 1157 if (first_uprobe) 1158 set_bit(MMF_HAS_UPROBES, &mm->flags); 1159 1160 ret = set_swbp(&uprobe->arch, vma, vaddr); 1161 if (!ret) 1162 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 1163 else if (first_uprobe) 1164 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1165 1166 return ret; 1167 } 1168 1169 static int remove_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma, 1170 unsigned long vaddr) 1171 { 1172 struct mm_struct *mm = vma->vm_mm; 1173 1174 set_bit(MMF_RECALC_UPROBES, &mm->flags); 1175 return set_orig_insn(&uprobe->arch, vma, vaddr); 1176 } 1177 1178 struct map_info { 1179 struct map_info *next; 1180 struct mm_struct *mm; 1181 unsigned long vaddr; 1182 }; 1183 1184 static inline struct map_info *free_map_info(struct map_info *info) 1185 { 1186 struct map_info *next = info->next; 1187 kfree(info); 1188 return next; 1189 } 1190 1191 static struct map_info * 1192 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 1193 { 1194 unsigned long pgoff = offset >> PAGE_SHIFT; 1195 struct vm_area_struct *vma; 1196 struct map_info *curr = NULL; 1197 struct map_info *prev = NULL; 1198 struct map_info *info; 1199 int more = 0; 1200 1201 again: 1202 i_mmap_lock_read(mapping); 1203 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1204 if (!valid_vma(vma, is_register)) 1205 continue; 1206 1207 if (!prev && !more) { 1208 /* 1209 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 1210 * reclaim. This is optimistic, no harm done if it fails. 1211 */ 1212 prev = kmalloc(sizeof(struct map_info), 1213 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 1214 if (prev) 1215 prev->next = NULL; 1216 } 1217 if (!prev) { 1218 more++; 1219 continue; 1220 } 1221 1222 if (!mmget_not_zero(vma->vm_mm)) 1223 continue; 1224 1225 info = prev; 1226 prev = prev->next; 1227 info->next = curr; 1228 curr = info; 1229 1230 info->mm = vma->vm_mm; 1231 info->vaddr = offset_to_vaddr(vma, offset); 1232 } 1233 i_mmap_unlock_read(mapping); 1234 1235 if (!more) 1236 goto out; 1237 1238 prev = curr; 1239 while (curr) { 1240 mmput(curr->mm); 1241 curr = curr->next; 1242 } 1243 1244 do { 1245 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1246 if (!info) { 1247 curr = ERR_PTR(-ENOMEM); 1248 goto out; 1249 } 1250 info->next = prev; 1251 prev = info; 1252 } while (--more); 1253 1254 goto again; 1255 out: 1256 while (prev) 1257 prev = free_map_info(prev); 1258 return curr; 1259 } 1260 1261 static int 1262 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1263 { 1264 bool is_register = !!new; 1265 struct map_info *info; 1266 int err = 0; 1267 1268 percpu_down_write(&dup_mmap_sem); 1269 info = build_map_info(uprobe->inode->i_mapping, 1270 uprobe->offset, is_register); 1271 if (IS_ERR(info)) { 1272 err = PTR_ERR(info); 1273 goto out; 1274 } 1275 1276 while (info) { 1277 struct mm_struct *mm = info->mm; 1278 struct vm_area_struct *vma; 1279 1280 if (err && is_register) 1281 goto free; 1282 /* 1283 * We take mmap_lock for writing to avoid the race with 1284 * find_active_uprobe_rcu() which takes mmap_lock for reading. 1285 * Thus this install_breakpoint() can not make 1286 * is_trap_at_addr() true right after find_uprobe_rcu() 1287 * returns NULL in find_active_uprobe_rcu(). 1288 */ 1289 mmap_write_lock(mm); 1290 if (check_stable_address_space(mm)) 1291 goto unlock; 1292 1293 vma = find_vma(mm, info->vaddr); 1294 if (!vma || !valid_vma(vma, is_register) || 1295 file_inode(vma->vm_file) != uprobe->inode) 1296 goto unlock; 1297 1298 if (vma->vm_start > info->vaddr || 1299 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1300 goto unlock; 1301 1302 if (is_register) { 1303 /* consult only the "caller", new consumer. */ 1304 if (consumer_filter(new, mm)) 1305 err = install_breakpoint(uprobe, vma, info->vaddr); 1306 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1307 if (!filter_chain(uprobe, mm)) 1308 err |= remove_breakpoint(uprobe, vma, info->vaddr); 1309 } 1310 1311 unlock: 1312 mmap_write_unlock(mm); 1313 free: 1314 mmput(mm); 1315 info = free_map_info(info); 1316 } 1317 out: 1318 percpu_up_write(&dup_mmap_sem); 1319 return err; 1320 } 1321 1322 /** 1323 * uprobe_unregister_nosync - unregister an already registered probe. 1324 * @uprobe: uprobe to remove 1325 * @uc: identify which probe if multiple probes are colocated. 1326 */ 1327 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc) 1328 { 1329 int err; 1330 1331 down_write(&uprobe->register_rwsem); 1332 consumer_del(uprobe, uc); 1333 err = register_for_each_vma(uprobe, NULL); 1334 up_write(&uprobe->register_rwsem); 1335 1336 /* TODO : cant unregister? schedule a worker thread */ 1337 if (unlikely(err)) { 1338 uprobe_warn(current, "unregister, leaking uprobe"); 1339 return; 1340 } 1341 1342 put_uprobe(uprobe); 1343 } 1344 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync); 1345 1346 void uprobe_unregister_sync(void) 1347 { 1348 /* 1349 * Now that handler_chain() and handle_uretprobe_chain() iterate over 1350 * uprobe->consumers list under RCU protection without holding 1351 * uprobe->register_rwsem, we need to wait for RCU grace period to 1352 * make sure that we can't call into just unregistered 1353 * uprobe_consumer's callbacks anymore. If we don't do that, fast and 1354 * unlucky enough caller can free consumer's memory and cause 1355 * handler_chain() or handle_uretprobe_chain() to do an use-after-free. 1356 */ 1357 synchronize_rcu_tasks_trace(); 1358 synchronize_srcu(&uretprobes_srcu); 1359 } 1360 EXPORT_SYMBOL_GPL(uprobe_unregister_sync); 1361 1362 /** 1363 * uprobe_register - register a probe 1364 * @inode: the file in which the probe has to be placed. 1365 * @offset: offset from the start of the file. 1366 * @ref_ctr_offset: offset of SDT marker / reference counter 1367 * @uc: information on howto handle the probe.. 1368 * 1369 * Apart from the access refcount, uprobe_register() takes a creation 1370 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1371 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1372 * tuple). Creation refcount stops uprobe_unregister from freeing the 1373 * @uprobe even before the register operation is complete. Creation 1374 * refcount is released when the last @uc for the @uprobe 1375 * unregisters. Caller of uprobe_register() is required to keep @inode 1376 * (and the containing mount) referenced. 1377 * 1378 * Return: pointer to the new uprobe on success or an ERR_PTR on failure. 1379 */ 1380 struct uprobe *uprobe_register(struct inode *inode, 1381 loff_t offset, loff_t ref_ctr_offset, 1382 struct uprobe_consumer *uc) 1383 { 1384 struct uprobe *uprobe; 1385 int ret; 1386 1387 /* Uprobe must have at least one set consumer */ 1388 if (!uc->handler && !uc->ret_handler) 1389 return ERR_PTR(-EINVAL); 1390 1391 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1392 if (!inode->i_mapping->a_ops->read_folio && 1393 !shmem_mapping(inode->i_mapping)) 1394 return ERR_PTR(-EIO); 1395 /* Racy, just to catch the obvious mistakes */ 1396 if (offset > i_size_read(inode)) 1397 return ERR_PTR(-EINVAL); 1398 1399 /* 1400 * This ensures that copy_from_page(), copy_to_page() and 1401 * __update_ref_ctr() can't cross page boundary. 1402 */ 1403 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1404 return ERR_PTR(-EINVAL); 1405 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1406 return ERR_PTR(-EINVAL); 1407 1408 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1409 if (IS_ERR(uprobe)) 1410 return uprobe; 1411 1412 down_write(&uprobe->register_rwsem); 1413 consumer_add(uprobe, uc); 1414 ret = register_for_each_vma(uprobe, uc); 1415 up_write(&uprobe->register_rwsem); 1416 1417 if (ret) { 1418 uprobe_unregister_nosync(uprobe, uc); 1419 /* 1420 * Registration might have partially succeeded, so we can have 1421 * this consumer being called right at this time. We need to 1422 * sync here. It's ok, it's unlikely slow path. 1423 */ 1424 uprobe_unregister_sync(); 1425 return ERR_PTR(ret); 1426 } 1427 1428 return uprobe; 1429 } 1430 EXPORT_SYMBOL_GPL(uprobe_register); 1431 1432 /** 1433 * uprobe_apply - add or remove the breakpoints according to @uc->filter 1434 * @uprobe: uprobe which "owns" the breakpoint 1435 * @uc: consumer which wants to add more or remove some breakpoints 1436 * @add: add or remove the breakpoints 1437 * Return: 0 on success or negative error code. 1438 */ 1439 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add) 1440 { 1441 struct uprobe_consumer *con; 1442 int ret = -ENOENT; 1443 1444 down_write(&uprobe->register_rwsem); 1445 1446 rcu_read_lock_trace(); 1447 list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 1448 if (con == uc) { 1449 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1450 break; 1451 } 1452 } 1453 rcu_read_unlock_trace(); 1454 1455 up_write(&uprobe->register_rwsem); 1456 1457 return ret; 1458 } 1459 1460 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1461 { 1462 VMA_ITERATOR(vmi, mm, 0); 1463 struct vm_area_struct *vma; 1464 int err = 0; 1465 1466 mmap_read_lock(mm); 1467 for_each_vma(vmi, vma) { 1468 unsigned long vaddr; 1469 loff_t offset; 1470 1471 if (!valid_vma(vma, false) || 1472 file_inode(vma->vm_file) != uprobe->inode) 1473 continue; 1474 1475 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1476 if (uprobe->offset < offset || 1477 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1478 continue; 1479 1480 vaddr = offset_to_vaddr(vma, uprobe->offset); 1481 err |= remove_breakpoint(uprobe, vma, vaddr); 1482 } 1483 mmap_read_unlock(mm); 1484 1485 return err; 1486 } 1487 1488 static struct rb_node * 1489 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1490 { 1491 struct rb_node *n = uprobes_tree.rb_node; 1492 1493 while (n) { 1494 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1495 1496 if (inode < u->inode) { 1497 n = n->rb_left; 1498 } else if (inode > u->inode) { 1499 n = n->rb_right; 1500 } else { 1501 if (max < u->offset) 1502 n = n->rb_left; 1503 else if (min > u->offset) 1504 n = n->rb_right; 1505 else 1506 break; 1507 } 1508 } 1509 1510 return n; 1511 } 1512 1513 /* 1514 * For a given range in vma, build a list of probes that need to be inserted. 1515 */ 1516 static void build_probe_list(struct inode *inode, 1517 struct vm_area_struct *vma, 1518 unsigned long start, unsigned long end, 1519 struct list_head *head) 1520 { 1521 loff_t min, max; 1522 struct rb_node *n, *t; 1523 struct uprobe *u; 1524 1525 INIT_LIST_HEAD(head); 1526 min = vaddr_to_offset(vma, start); 1527 max = min + (end - start) - 1; 1528 1529 read_lock(&uprobes_treelock); 1530 n = find_node_in_range(inode, min, max); 1531 if (n) { 1532 for (t = n; t; t = rb_prev(t)) { 1533 u = rb_entry(t, struct uprobe, rb_node); 1534 if (u->inode != inode || u->offset < min) 1535 break; 1536 /* if uprobe went away, it's safe to ignore it */ 1537 if (try_get_uprobe(u)) 1538 list_add(&u->pending_list, head); 1539 } 1540 for (t = n; (t = rb_next(t)); ) { 1541 u = rb_entry(t, struct uprobe, rb_node); 1542 if (u->inode != inode || u->offset > max) 1543 break; 1544 /* if uprobe went away, it's safe to ignore it */ 1545 if (try_get_uprobe(u)) 1546 list_add(&u->pending_list, head); 1547 } 1548 } 1549 read_unlock(&uprobes_treelock); 1550 } 1551 1552 /* @vma contains reference counter, not the probed instruction. */ 1553 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1554 { 1555 struct list_head *pos, *q; 1556 struct delayed_uprobe *du; 1557 unsigned long vaddr; 1558 int ret = 0, err = 0; 1559 1560 mutex_lock(&delayed_uprobe_lock); 1561 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1562 du = list_entry(pos, struct delayed_uprobe, list); 1563 1564 if (du->mm != vma->vm_mm || 1565 !valid_ref_ctr_vma(du->uprobe, vma)) 1566 continue; 1567 1568 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1569 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1570 if (ret) { 1571 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1572 if (!err) 1573 err = ret; 1574 } 1575 delayed_uprobe_delete(du); 1576 } 1577 mutex_unlock(&delayed_uprobe_lock); 1578 return err; 1579 } 1580 1581 /* 1582 * Called from mmap_region/vma_merge with mm->mmap_lock acquired. 1583 * 1584 * Currently we ignore all errors and always return 0, the callers 1585 * can't handle the failure anyway. 1586 */ 1587 int uprobe_mmap(struct vm_area_struct *vma) 1588 { 1589 struct list_head tmp_list; 1590 struct uprobe *uprobe, *u; 1591 struct inode *inode; 1592 1593 if (no_uprobe_events()) 1594 return 0; 1595 1596 if (vma->vm_file && 1597 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1598 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1599 delayed_ref_ctr_inc(vma); 1600 1601 if (!valid_vma(vma, true)) 1602 return 0; 1603 1604 inode = file_inode(vma->vm_file); 1605 if (!inode) 1606 return 0; 1607 1608 mutex_lock(uprobes_mmap_hash(inode)); 1609 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1610 /* 1611 * We can race with uprobe_unregister(), this uprobe can be already 1612 * removed. But in this case filter_chain() must return false, all 1613 * consumers have gone away. 1614 */ 1615 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1616 if (!fatal_signal_pending(current) && 1617 filter_chain(uprobe, vma->vm_mm)) { 1618 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1619 install_breakpoint(uprobe, vma, vaddr); 1620 } 1621 put_uprobe(uprobe); 1622 } 1623 mutex_unlock(uprobes_mmap_hash(inode)); 1624 1625 return 0; 1626 } 1627 1628 static bool 1629 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1630 { 1631 loff_t min, max; 1632 struct inode *inode; 1633 struct rb_node *n; 1634 1635 inode = file_inode(vma->vm_file); 1636 1637 min = vaddr_to_offset(vma, start); 1638 max = min + (end - start) - 1; 1639 1640 read_lock(&uprobes_treelock); 1641 n = find_node_in_range(inode, min, max); 1642 read_unlock(&uprobes_treelock); 1643 1644 return !!n; 1645 } 1646 1647 /* 1648 * Called in context of a munmap of a vma. 1649 */ 1650 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1651 { 1652 if (no_uprobe_events() || !valid_vma(vma, false)) 1653 return; 1654 1655 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1656 return; 1657 1658 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1659 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1660 return; 1661 1662 if (vma_has_uprobes(vma, start, end)) 1663 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1664 } 1665 1666 static vm_fault_t xol_fault(const struct vm_special_mapping *sm, 1667 struct vm_area_struct *vma, struct vm_fault *vmf) 1668 { 1669 struct xol_area *area = vma->vm_mm->uprobes_state.xol_area; 1670 1671 vmf->page = area->page; 1672 get_page(vmf->page); 1673 return 0; 1674 } 1675 1676 static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) 1677 { 1678 return -EPERM; 1679 } 1680 1681 static const struct vm_special_mapping xol_mapping = { 1682 .name = "[uprobes]", 1683 .fault = xol_fault, 1684 .mremap = xol_mremap, 1685 }; 1686 1687 /* Slot allocation for XOL */ 1688 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1689 { 1690 struct vm_area_struct *vma; 1691 int ret; 1692 1693 if (mmap_write_lock_killable(mm)) 1694 return -EINTR; 1695 1696 if (mm->uprobes_state.xol_area) { 1697 ret = -EALREADY; 1698 goto fail; 1699 } 1700 1701 if (!area->vaddr) { 1702 /* Try to map as high as possible, this is only a hint. */ 1703 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1704 PAGE_SIZE, 0, 0); 1705 if (IS_ERR_VALUE(area->vaddr)) { 1706 ret = area->vaddr; 1707 goto fail; 1708 } 1709 } 1710 1711 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1712 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO| 1713 VM_SEALED_SYSMAP, 1714 &xol_mapping); 1715 if (IS_ERR(vma)) { 1716 ret = PTR_ERR(vma); 1717 goto fail; 1718 } 1719 1720 ret = 0; 1721 /* pairs with get_xol_area() */ 1722 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1723 fail: 1724 mmap_write_unlock(mm); 1725 1726 return ret; 1727 } 1728 1729 void * __weak arch_uprobe_trampoline(unsigned long *psize) 1730 { 1731 static uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1732 1733 *psize = UPROBE_SWBP_INSN_SIZE; 1734 return &insn; 1735 } 1736 1737 static struct xol_area *__create_xol_area(unsigned long vaddr) 1738 { 1739 struct mm_struct *mm = current->mm; 1740 unsigned long insns_size; 1741 struct xol_area *area; 1742 void *insns; 1743 1744 area = kzalloc(sizeof(*area), GFP_KERNEL); 1745 if (unlikely(!area)) 1746 goto out; 1747 1748 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1749 GFP_KERNEL); 1750 if (!area->bitmap) 1751 goto free_area; 1752 1753 area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO); 1754 if (!area->page) 1755 goto free_bitmap; 1756 1757 area->vaddr = vaddr; 1758 init_waitqueue_head(&area->wq); 1759 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1760 set_bit(0, area->bitmap); 1761 insns = arch_uprobe_trampoline(&insns_size); 1762 arch_uprobe_copy_ixol(area->page, 0, insns, insns_size); 1763 1764 if (!xol_add_vma(mm, area)) 1765 return area; 1766 1767 __free_page(area->page); 1768 free_bitmap: 1769 kfree(area->bitmap); 1770 free_area: 1771 kfree(area); 1772 out: 1773 return NULL; 1774 } 1775 1776 /* 1777 * get_xol_area - Allocate process's xol_area if necessary. 1778 * This area will be used for storing instructions for execution out of line. 1779 * 1780 * Returns the allocated area or NULL. 1781 */ 1782 static struct xol_area *get_xol_area(void) 1783 { 1784 struct mm_struct *mm = current->mm; 1785 struct xol_area *area; 1786 1787 if (!mm->uprobes_state.xol_area) 1788 __create_xol_area(0); 1789 1790 /* Pairs with xol_add_vma() smp_store_release() */ 1791 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1792 return area; 1793 } 1794 1795 /* 1796 * uprobe_clear_state - Free the area allocated for slots. 1797 */ 1798 void uprobe_clear_state(struct mm_struct *mm) 1799 { 1800 struct xol_area *area = mm->uprobes_state.xol_area; 1801 1802 mutex_lock(&delayed_uprobe_lock); 1803 delayed_uprobe_remove(NULL, mm); 1804 mutex_unlock(&delayed_uprobe_lock); 1805 1806 if (!area) 1807 return; 1808 1809 put_page(area->page); 1810 kfree(area->bitmap); 1811 kfree(area); 1812 } 1813 1814 void uprobe_start_dup_mmap(void) 1815 { 1816 percpu_down_read(&dup_mmap_sem); 1817 } 1818 1819 void uprobe_end_dup_mmap(void) 1820 { 1821 percpu_up_read(&dup_mmap_sem); 1822 } 1823 1824 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1825 { 1826 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1827 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1828 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1829 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1830 } 1831 } 1832 1833 static unsigned long xol_get_slot_nr(struct xol_area *area) 1834 { 1835 unsigned long slot_nr; 1836 1837 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1838 if (slot_nr < UINSNS_PER_PAGE) { 1839 if (!test_and_set_bit(slot_nr, area->bitmap)) 1840 return slot_nr; 1841 } 1842 1843 return UINSNS_PER_PAGE; 1844 } 1845 1846 /* 1847 * xol_get_insn_slot - allocate a slot for xol. 1848 */ 1849 static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask) 1850 { 1851 struct xol_area *area = get_xol_area(); 1852 unsigned long slot_nr; 1853 1854 if (!area) 1855 return false; 1856 1857 wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE); 1858 1859 utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES; 1860 arch_uprobe_copy_ixol(area->page, utask->xol_vaddr, 1861 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1862 return true; 1863 } 1864 1865 /* 1866 * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot() 1867 */ 1868 static void xol_free_insn_slot(struct uprobe_task *utask) 1869 { 1870 struct xol_area *area = current->mm->uprobes_state.xol_area; 1871 unsigned long offset = utask->xol_vaddr - area->vaddr; 1872 unsigned int slot_nr; 1873 1874 utask->xol_vaddr = 0; 1875 /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */ 1876 if (WARN_ON_ONCE(offset >= PAGE_SIZE)) 1877 return; 1878 1879 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1880 clear_bit(slot_nr, area->bitmap); 1881 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1882 if (waitqueue_active(&area->wq)) 1883 wake_up(&area->wq); 1884 } 1885 1886 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1887 void *src, unsigned long len) 1888 { 1889 /* Initialize the slot */ 1890 copy_to_page(page, vaddr, src, len); 1891 1892 /* 1893 * We probably need flush_icache_user_page() but it needs vma. 1894 * This should work on most of architectures by default. If 1895 * architecture needs to do something different it can define 1896 * its own version of the function. 1897 */ 1898 flush_dcache_page(page); 1899 } 1900 1901 /** 1902 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1903 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1904 * instruction. 1905 * Return the address of the breakpoint instruction. 1906 */ 1907 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1908 { 1909 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1910 } 1911 1912 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1913 { 1914 struct uprobe_task *utask = current->utask; 1915 1916 if (unlikely(utask && utask->active_uprobe)) 1917 return utask->vaddr; 1918 1919 return instruction_pointer(regs); 1920 } 1921 1922 static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri) 1923 { 1924 ri->cons_cnt = 0; 1925 ri->next = utask->ri_pool; 1926 utask->ri_pool = ri; 1927 } 1928 1929 static struct return_instance *ri_pool_pop(struct uprobe_task *utask) 1930 { 1931 struct return_instance *ri = utask->ri_pool; 1932 1933 if (likely(ri)) 1934 utask->ri_pool = ri->next; 1935 1936 return ri; 1937 } 1938 1939 static void ri_free(struct return_instance *ri) 1940 { 1941 kfree(ri->extra_consumers); 1942 kfree_rcu(ri, rcu); 1943 } 1944 1945 static void free_ret_instance(struct uprobe_task *utask, 1946 struct return_instance *ri, bool cleanup_hprobe) 1947 { 1948 unsigned seq; 1949 1950 if (cleanup_hprobe) { 1951 enum hprobe_state hstate; 1952 1953 (void)hprobe_consume(&ri->hprobe, &hstate); 1954 hprobe_finalize(&ri->hprobe, hstate); 1955 } 1956 1957 /* 1958 * At this point return_instance is unlinked from utask's 1959 * return_instances list and this has become visible to ri_timer(). 1960 * If seqcount now indicates that ri_timer's return instance 1961 * processing loop isn't active, we can return ri into the pool of 1962 * to-be-reused return instances for future uretprobes. If ri_timer() 1963 * happens to be running right now, though, we fallback to safety and 1964 * just perform RCU-delated freeing of ri. 1965 * Admittedly, this is a rather simple use of seqcount, but it nicely 1966 * abstracts away all the necessary memory barriers, so we use 1967 * a well-supported kernel primitive here. 1968 */ 1969 if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) { 1970 /* immediate reuse of ri without RCU GP is OK */ 1971 ri_pool_push(utask, ri); 1972 } else { 1973 /* we might be racing with ri_timer(), so play it safe */ 1974 ri_free(ri); 1975 } 1976 } 1977 1978 /* 1979 * Called with no locks held. 1980 * Called in context of an exiting or an exec-ing thread. 1981 */ 1982 void uprobe_free_utask(struct task_struct *t) 1983 { 1984 struct uprobe_task *utask = t->utask; 1985 struct return_instance *ri, *ri_next; 1986 1987 if (!utask) 1988 return; 1989 1990 t->utask = NULL; 1991 WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr); 1992 1993 timer_delete_sync(&utask->ri_timer); 1994 1995 ri = utask->return_instances; 1996 while (ri) { 1997 ri_next = ri->next; 1998 free_ret_instance(utask, ri, true /* cleanup_hprobe */); 1999 ri = ri_next; 2000 } 2001 2002 /* free_ret_instance() above might add to ri_pool, so this loop should come last */ 2003 ri = utask->ri_pool; 2004 while (ri) { 2005 ri_next = ri->next; 2006 ri_free(ri); 2007 ri = ri_next; 2008 } 2009 2010 kfree(utask); 2011 } 2012 2013 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */ 2014 2015 #define for_each_ret_instance_rcu(pos, head) \ 2016 for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next)) 2017 2018 static void ri_timer(struct timer_list *timer) 2019 { 2020 struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer); 2021 struct return_instance *ri; 2022 2023 /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */ 2024 guard(srcu)(&uretprobes_srcu); 2025 /* RCU protects return_instance from freeing. */ 2026 guard(rcu)(); 2027 2028 /* 2029 * See free_ret_instance() for notes on seqcount use. 2030 * We also employ raw API variants to avoid lockdep false-positive 2031 * warning complaining about enabled preemption. The timer can only be 2032 * invoked once for a uprobe_task. Therefore there can only be one 2033 * writer. The reader does not require an even sequence count to make 2034 * progress, so it is OK to remain preemptible on PREEMPT_RT. 2035 */ 2036 raw_write_seqcount_begin(&utask->ri_seqcount); 2037 2038 for_each_ret_instance_rcu(ri, utask->return_instances) 2039 hprobe_expire(&ri->hprobe, false); 2040 2041 raw_write_seqcount_end(&utask->ri_seqcount); 2042 } 2043 2044 static struct uprobe_task *alloc_utask(void) 2045 { 2046 struct uprobe_task *utask; 2047 2048 utask = kzalloc(sizeof(*utask), GFP_KERNEL); 2049 if (!utask) 2050 return NULL; 2051 2052 timer_setup(&utask->ri_timer, ri_timer, 0); 2053 seqcount_init(&utask->ri_seqcount); 2054 2055 return utask; 2056 } 2057 2058 /* 2059 * Allocate a uprobe_task object for the task if necessary. 2060 * Called when the thread hits a breakpoint. 2061 * 2062 * Returns: 2063 * - pointer to new uprobe_task on success 2064 * - NULL otherwise 2065 */ 2066 static struct uprobe_task *get_utask(void) 2067 { 2068 if (!current->utask) 2069 current->utask = alloc_utask(); 2070 return current->utask; 2071 } 2072 2073 static struct return_instance *alloc_return_instance(struct uprobe_task *utask) 2074 { 2075 struct return_instance *ri; 2076 2077 ri = ri_pool_pop(utask); 2078 if (ri) 2079 return ri; 2080 2081 ri = kzalloc(sizeof(*ri), GFP_KERNEL); 2082 if (!ri) 2083 return ZERO_SIZE_PTR; 2084 2085 return ri; 2086 } 2087 2088 static struct return_instance *dup_return_instance(struct return_instance *old) 2089 { 2090 struct return_instance *ri; 2091 2092 ri = kmemdup(old, sizeof(*ri), GFP_KERNEL); 2093 if (!ri) 2094 return NULL; 2095 2096 if (unlikely(old->cons_cnt > 1)) { 2097 ri->extra_consumers = kmemdup(old->extra_consumers, 2098 sizeof(ri->extra_consumers[0]) * (old->cons_cnt - 1), 2099 GFP_KERNEL); 2100 if (!ri->extra_consumers) { 2101 kfree(ri); 2102 return NULL; 2103 } 2104 } 2105 2106 return ri; 2107 } 2108 2109 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 2110 { 2111 struct uprobe_task *n_utask; 2112 struct return_instance **p, *o, *n; 2113 struct uprobe *uprobe; 2114 2115 n_utask = alloc_utask(); 2116 if (!n_utask) 2117 return -ENOMEM; 2118 t->utask = n_utask; 2119 2120 /* protect uprobes from freeing, we'll need try_get_uprobe() them */ 2121 guard(srcu)(&uretprobes_srcu); 2122 2123 p = &n_utask->return_instances; 2124 for (o = o_utask->return_instances; o; o = o->next) { 2125 n = dup_return_instance(o); 2126 if (!n) 2127 return -ENOMEM; 2128 2129 /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */ 2130 uprobe = hprobe_expire(&o->hprobe, true); 2131 2132 /* 2133 * New utask will have stable properly refcounted uprobe or 2134 * NULL. Even if we failed to get refcounted uprobe, we still 2135 * need to preserve full set of return_instances for proper 2136 * uretprobe handling and nesting in forked task. 2137 */ 2138 hprobe_init_stable(&n->hprobe, uprobe); 2139 2140 n->next = NULL; 2141 rcu_assign_pointer(*p, n); 2142 p = &n->next; 2143 2144 n_utask->depth++; 2145 } 2146 2147 return 0; 2148 } 2149 2150 static void dup_xol_work(struct callback_head *work) 2151 { 2152 if (current->flags & PF_EXITING) 2153 return; 2154 2155 if (!__create_xol_area(current->utask->dup_xol_addr) && 2156 !fatal_signal_pending(current)) 2157 uprobe_warn(current, "dup xol area"); 2158 } 2159 2160 /* 2161 * Called in context of a new clone/fork from copy_process. 2162 */ 2163 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 2164 { 2165 struct uprobe_task *utask = current->utask; 2166 struct mm_struct *mm = current->mm; 2167 struct xol_area *area; 2168 2169 t->utask = NULL; 2170 2171 if (!utask || !utask->return_instances) 2172 return; 2173 2174 if (mm == t->mm && !(flags & CLONE_VFORK)) 2175 return; 2176 2177 if (dup_utask(t, utask)) 2178 return uprobe_warn(t, "dup ret instances"); 2179 2180 /* The task can fork() after dup_xol_work() fails */ 2181 area = mm->uprobes_state.xol_area; 2182 if (!area) 2183 return uprobe_warn(t, "dup xol area"); 2184 2185 if (mm == t->mm) 2186 return; 2187 2188 t->utask->dup_xol_addr = area->vaddr; 2189 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 2190 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 2191 } 2192 2193 /* 2194 * Current area->vaddr notion assume the trampoline address is always 2195 * equal area->vaddr. 2196 * 2197 * Returns -1 in case the xol_area is not allocated. 2198 */ 2199 unsigned long uprobe_get_trampoline_vaddr(void) 2200 { 2201 unsigned long trampoline_vaddr = UPROBE_NO_TRAMPOLINE_VADDR; 2202 struct xol_area *area; 2203 2204 /* Pairs with xol_add_vma() smp_store_release() */ 2205 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 2206 if (area) 2207 trampoline_vaddr = area->vaddr; 2208 2209 return trampoline_vaddr; 2210 } 2211 2212 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 2213 struct pt_regs *regs) 2214 { 2215 struct return_instance *ri = utask->return_instances, *ri_next; 2216 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 2217 2218 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 2219 ri_next = ri->next; 2220 rcu_assign_pointer(utask->return_instances, ri_next); 2221 utask->depth--; 2222 2223 free_ret_instance(utask, ri, true /* cleanup_hprobe */); 2224 ri = ri_next; 2225 } 2226 } 2227 2228 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs, 2229 struct return_instance *ri) 2230 { 2231 struct uprobe_task *utask = current->utask; 2232 unsigned long orig_ret_vaddr, trampoline_vaddr; 2233 bool chained; 2234 int srcu_idx; 2235 2236 if (!get_xol_area()) 2237 goto free; 2238 2239 if (utask->depth >= MAX_URETPROBE_DEPTH) { 2240 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 2241 " nestedness limit pid/tgid=%d/%d\n", 2242 current->pid, current->tgid); 2243 goto free; 2244 } 2245 2246 trampoline_vaddr = uprobe_get_trampoline_vaddr(); 2247 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 2248 if (orig_ret_vaddr == -1) 2249 goto free; 2250 2251 /* drop the entries invalidated by longjmp() */ 2252 chained = (orig_ret_vaddr == trampoline_vaddr); 2253 cleanup_return_instances(utask, chained, regs); 2254 2255 /* 2256 * We don't want to keep trampoline address in stack, rather keep the 2257 * original return address of first caller thru all the consequent 2258 * instances. This also makes breakpoint unwrapping easier. 2259 */ 2260 if (chained) { 2261 if (!utask->return_instances) { 2262 /* 2263 * This situation is not possible. Likely we have an 2264 * attack from user-space. 2265 */ 2266 uprobe_warn(current, "handle tail call"); 2267 goto free; 2268 } 2269 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 2270 } 2271 2272 /* __srcu_read_lock() because SRCU lock survives switch to user space */ 2273 srcu_idx = __srcu_read_lock(&uretprobes_srcu); 2274 2275 ri->func = instruction_pointer(regs); 2276 ri->stack = user_stack_pointer(regs); 2277 ri->orig_ret_vaddr = orig_ret_vaddr; 2278 ri->chained = chained; 2279 2280 utask->depth++; 2281 2282 hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx); 2283 ri->next = utask->return_instances; 2284 rcu_assign_pointer(utask->return_instances, ri); 2285 2286 mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD); 2287 2288 return; 2289 free: 2290 ri_free(ri); 2291 } 2292 2293 /* Prepare to single-step probed instruction out of line. */ 2294 static int 2295 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 2296 { 2297 struct uprobe_task *utask = current->utask; 2298 int err; 2299 2300 if (!try_get_uprobe(uprobe)) 2301 return -EINVAL; 2302 2303 if (!xol_get_insn_slot(uprobe, utask)) { 2304 err = -ENOMEM; 2305 goto err_out; 2306 } 2307 2308 utask->vaddr = bp_vaddr; 2309 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 2310 if (unlikely(err)) { 2311 xol_free_insn_slot(utask); 2312 goto err_out; 2313 } 2314 2315 utask->active_uprobe = uprobe; 2316 utask->state = UTASK_SSTEP; 2317 return 0; 2318 err_out: 2319 put_uprobe(uprobe); 2320 return err; 2321 } 2322 2323 /* 2324 * If we are singlestepping, then ensure this thread is not connected to 2325 * non-fatal signals until completion of singlestep. When xol insn itself 2326 * triggers the signal, restart the original insn even if the task is 2327 * already SIGKILL'ed (since coredump should report the correct ip). This 2328 * is even more important if the task has a handler for SIGSEGV/etc, The 2329 * _same_ instruction should be repeated again after return from the signal 2330 * handler, and SSTEP can never finish in this case. 2331 */ 2332 bool uprobe_deny_signal(void) 2333 { 2334 struct task_struct *t = current; 2335 struct uprobe_task *utask = t->utask; 2336 2337 if (likely(!utask || !utask->active_uprobe)) 2338 return false; 2339 2340 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 2341 2342 if (task_sigpending(t)) { 2343 utask->signal_denied = true; 2344 clear_tsk_thread_flag(t, TIF_SIGPENDING); 2345 2346 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 2347 utask->state = UTASK_SSTEP_TRAPPED; 2348 set_tsk_thread_flag(t, TIF_UPROBE); 2349 } 2350 } 2351 2352 return true; 2353 } 2354 2355 static void mmf_recalc_uprobes(struct mm_struct *mm) 2356 { 2357 VMA_ITERATOR(vmi, mm, 0); 2358 struct vm_area_struct *vma; 2359 2360 for_each_vma(vmi, vma) { 2361 if (!valid_vma(vma, false)) 2362 continue; 2363 /* 2364 * This is not strictly accurate, we can race with 2365 * uprobe_unregister() and see the already removed 2366 * uprobe if delete_uprobe() was not yet called. 2367 * Or this uprobe can be filtered out. 2368 */ 2369 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2370 return; 2371 } 2372 2373 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2374 } 2375 2376 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2377 { 2378 struct page *page; 2379 uprobe_opcode_t opcode; 2380 int result; 2381 2382 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2383 return -EINVAL; 2384 2385 pagefault_disable(); 2386 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2387 pagefault_enable(); 2388 2389 if (likely(result == 0)) 2390 goto out; 2391 2392 result = get_user_pages(vaddr, 1, FOLL_FORCE, &page); 2393 if (result < 0) 2394 return result; 2395 2396 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2397 put_page(page); 2398 out: 2399 /* This needs to return true for any variant of the trap insn */ 2400 return is_trap_insn(&opcode); 2401 } 2402 2403 static struct uprobe *find_active_uprobe_speculative(unsigned long bp_vaddr) 2404 { 2405 struct mm_struct *mm = current->mm; 2406 struct uprobe *uprobe = NULL; 2407 struct vm_area_struct *vma; 2408 struct file *vm_file; 2409 loff_t offset; 2410 unsigned int seq; 2411 2412 guard(rcu)(); 2413 2414 if (!mmap_lock_speculate_try_begin(mm, &seq)) 2415 return NULL; 2416 2417 vma = vma_lookup(mm, bp_vaddr); 2418 if (!vma) 2419 return NULL; 2420 2421 /* 2422 * vm_file memory can be reused for another instance of struct file, 2423 * but can't be freed from under us, so it's safe to read fields from 2424 * it, even if the values are some garbage values; ultimately 2425 * find_uprobe_rcu() + mmap_lock_speculation_end() check will ensure 2426 * that whatever we speculatively found is correct 2427 */ 2428 vm_file = READ_ONCE(vma->vm_file); 2429 if (!vm_file) 2430 return NULL; 2431 2432 offset = (loff_t)(vma->vm_pgoff << PAGE_SHIFT) + (bp_vaddr - vma->vm_start); 2433 uprobe = find_uprobe_rcu(vm_file->f_inode, offset); 2434 if (!uprobe) 2435 return NULL; 2436 2437 /* now double check that nothing about MM changed */ 2438 if (mmap_lock_speculate_retry(mm, seq)) 2439 return NULL; 2440 2441 return uprobe; 2442 } 2443 2444 /* assumes being inside RCU protected region */ 2445 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp) 2446 { 2447 struct mm_struct *mm = current->mm; 2448 struct uprobe *uprobe = NULL; 2449 struct vm_area_struct *vma; 2450 2451 uprobe = find_active_uprobe_speculative(bp_vaddr); 2452 if (uprobe) 2453 return uprobe; 2454 2455 mmap_read_lock(mm); 2456 vma = vma_lookup(mm, bp_vaddr); 2457 if (vma) { 2458 if (vma->vm_file) { 2459 struct inode *inode = file_inode(vma->vm_file); 2460 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2461 2462 uprobe = find_uprobe_rcu(inode, offset); 2463 } 2464 2465 if (!uprobe) 2466 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2467 } else { 2468 *is_swbp = -EFAULT; 2469 } 2470 2471 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2472 mmf_recalc_uprobes(mm); 2473 mmap_read_unlock(mm); 2474 2475 return uprobe; 2476 } 2477 2478 static struct return_instance *push_consumer(struct return_instance *ri, __u64 id, __u64 cookie) 2479 { 2480 struct return_consumer *ric; 2481 2482 if (unlikely(ri == ZERO_SIZE_PTR)) 2483 return ri; 2484 2485 if (unlikely(ri->cons_cnt > 0)) { 2486 ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL); 2487 if (!ric) { 2488 ri_free(ri); 2489 return ZERO_SIZE_PTR; 2490 } 2491 ri->extra_consumers = ric; 2492 } 2493 2494 ric = likely(ri->cons_cnt == 0) ? &ri->consumer : &ri->extra_consumers[ri->cons_cnt - 1]; 2495 ric->id = id; 2496 ric->cookie = cookie; 2497 2498 ri->cons_cnt++; 2499 return ri; 2500 } 2501 2502 static struct return_consumer * 2503 return_consumer_find(struct return_instance *ri, int *iter, int id) 2504 { 2505 struct return_consumer *ric; 2506 int idx; 2507 2508 for (idx = *iter; idx < ri->cons_cnt; idx++) 2509 { 2510 ric = likely(idx == 0) ? &ri->consumer : &ri->extra_consumers[idx - 1]; 2511 if (ric->id == id) { 2512 *iter = idx + 1; 2513 return ric; 2514 } 2515 } 2516 2517 return NULL; 2518 } 2519 2520 static bool ignore_ret_handler(int rc) 2521 { 2522 return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE; 2523 } 2524 2525 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2526 { 2527 struct uprobe_consumer *uc; 2528 bool has_consumers = false, remove = true; 2529 struct return_instance *ri = NULL; 2530 struct uprobe_task *utask = current->utask; 2531 2532 utask->auprobe = &uprobe->arch; 2533 2534 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 2535 bool session = uc->handler && uc->ret_handler; 2536 __u64 cookie = 0; 2537 int rc = 0; 2538 2539 if (uc->handler) { 2540 rc = uc->handler(uc, regs, &cookie); 2541 WARN(rc < 0 || rc > 2, 2542 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2543 } 2544 2545 remove &= rc == UPROBE_HANDLER_REMOVE; 2546 has_consumers = true; 2547 2548 if (!uc->ret_handler || ignore_ret_handler(rc)) 2549 continue; 2550 2551 if (!ri) 2552 ri = alloc_return_instance(utask); 2553 2554 if (session) 2555 ri = push_consumer(ri, uc->id, cookie); 2556 } 2557 utask->auprobe = NULL; 2558 2559 if (!ZERO_OR_NULL_PTR(ri)) 2560 prepare_uretprobe(uprobe, regs, ri); 2561 2562 if (remove && has_consumers) { 2563 down_read(&uprobe->register_rwsem); 2564 2565 /* re-check that removal is still required, this time under lock */ 2566 if (!filter_chain(uprobe, current->mm)) { 2567 WARN_ON(!uprobe_is_active(uprobe)); 2568 unapply_uprobe(uprobe, current->mm); 2569 } 2570 2571 up_read(&uprobe->register_rwsem); 2572 } 2573 } 2574 2575 static void 2576 handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs) 2577 { 2578 struct return_consumer *ric; 2579 struct uprobe_consumer *uc; 2580 int ric_idx = 0; 2581 2582 /* all consumers unsubscribed meanwhile */ 2583 if (unlikely(!uprobe)) 2584 return; 2585 2586 rcu_read_lock_trace(); 2587 list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { 2588 bool session = uc->handler && uc->ret_handler; 2589 2590 if (uc->ret_handler) { 2591 ric = return_consumer_find(ri, &ric_idx, uc->id); 2592 if (!session || ric) 2593 uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL); 2594 } 2595 } 2596 rcu_read_unlock_trace(); 2597 } 2598 2599 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2600 { 2601 bool chained; 2602 2603 do { 2604 chained = ri->chained; 2605 ri = ri->next; /* can't be NULL if chained */ 2606 } while (chained); 2607 2608 return ri; 2609 } 2610 2611 void uprobe_handle_trampoline(struct pt_regs *regs) 2612 { 2613 struct uprobe_task *utask; 2614 struct return_instance *ri, *ri_next, *next_chain; 2615 struct uprobe *uprobe; 2616 enum hprobe_state hstate; 2617 bool valid; 2618 2619 utask = current->utask; 2620 if (!utask) 2621 goto sigill; 2622 2623 ri = utask->return_instances; 2624 if (!ri) 2625 goto sigill; 2626 2627 do { 2628 /* 2629 * We should throw out the frames invalidated by longjmp(). 2630 * If this chain is valid, then the next one should be alive 2631 * or NULL; the latter case means that nobody but ri->func 2632 * could hit this trampoline on return. TODO: sigaltstack(). 2633 */ 2634 next_chain = find_next_ret_chain(ri); 2635 valid = !next_chain || arch_uretprobe_is_alive(next_chain, RP_CHECK_RET, regs); 2636 2637 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2638 do { 2639 /* pop current instance from the stack of pending return instances, 2640 * as it's not pending anymore: we just fixed up original 2641 * instruction pointer in regs and are about to call handlers; 2642 * this allows fixup_uretprobe_trampoline_entries() to properly fix up 2643 * captured stack traces from uretprobe handlers, in which pending 2644 * trampoline addresses on the stack are replaced with correct 2645 * original return addresses 2646 */ 2647 ri_next = ri->next; 2648 rcu_assign_pointer(utask->return_instances, ri_next); 2649 utask->depth--; 2650 2651 uprobe = hprobe_consume(&ri->hprobe, &hstate); 2652 if (valid) 2653 handle_uretprobe_chain(ri, uprobe, regs); 2654 hprobe_finalize(&ri->hprobe, hstate); 2655 2656 /* We already took care of hprobe, no need to waste more time on that. */ 2657 free_ret_instance(utask, ri, false /* !cleanup_hprobe */); 2658 ri = ri_next; 2659 } while (ri != next_chain); 2660 } while (!valid); 2661 2662 return; 2663 2664 sigill: 2665 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2666 force_sig(SIGILL); 2667 } 2668 2669 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2670 { 2671 return false; 2672 } 2673 2674 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2675 struct pt_regs *regs) 2676 { 2677 return true; 2678 } 2679 2680 /* 2681 * Run handler and ask thread to singlestep. 2682 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2683 */ 2684 static void handle_swbp(struct pt_regs *regs) 2685 { 2686 struct uprobe *uprobe; 2687 unsigned long bp_vaddr; 2688 int is_swbp; 2689 2690 bp_vaddr = uprobe_get_swbp_addr(regs); 2691 if (bp_vaddr == uprobe_get_trampoline_vaddr()) 2692 return uprobe_handle_trampoline(regs); 2693 2694 rcu_read_lock_trace(); 2695 2696 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp); 2697 if (!uprobe) { 2698 if (is_swbp > 0) { 2699 /* No matching uprobe; signal SIGTRAP. */ 2700 force_sig(SIGTRAP); 2701 } else { 2702 /* 2703 * Either we raced with uprobe_unregister() or we can't 2704 * access this memory. The latter is only possible if 2705 * another thread plays with our ->mm. In both cases 2706 * we can simply restart. If this vma was unmapped we 2707 * can pretend this insn was not executed yet and get 2708 * the (correct) SIGSEGV after restart. 2709 */ 2710 instruction_pointer_set(regs, bp_vaddr); 2711 } 2712 goto out; 2713 } 2714 2715 /* change it in advance for ->handler() and restart */ 2716 instruction_pointer_set(regs, bp_vaddr); 2717 2718 /* 2719 * TODO: move copy_insn/etc into _register and remove this hack. 2720 * After we hit the bp, _unregister + _register can install the 2721 * new and not-yet-analyzed uprobe at the same address, restart. 2722 */ 2723 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2724 goto out; 2725 2726 /* 2727 * Pairs with the smp_wmb() in prepare_uprobe(). 2728 * 2729 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2730 * we must also see the stores to &uprobe->arch performed by the 2731 * prepare_uprobe() call. 2732 */ 2733 smp_rmb(); 2734 2735 /* Tracing handlers use ->utask to communicate with fetch methods */ 2736 if (!get_utask()) 2737 goto out; 2738 2739 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2740 goto out; 2741 2742 handler_chain(uprobe, regs); 2743 2744 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2745 goto out; 2746 2747 if (pre_ssout(uprobe, regs, bp_vaddr)) 2748 goto out; 2749 2750 out: 2751 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2752 rcu_read_unlock_trace(); 2753 } 2754 2755 /* 2756 * Perform required fix-ups and disable singlestep. 2757 * Allow pending signals to take effect. 2758 */ 2759 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2760 { 2761 struct uprobe *uprobe; 2762 int err = 0; 2763 2764 uprobe = utask->active_uprobe; 2765 if (utask->state == UTASK_SSTEP_ACK) 2766 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2767 else if (utask->state == UTASK_SSTEP_TRAPPED) 2768 arch_uprobe_abort_xol(&uprobe->arch, regs); 2769 else 2770 WARN_ON_ONCE(1); 2771 2772 put_uprobe(uprobe); 2773 utask->active_uprobe = NULL; 2774 utask->state = UTASK_RUNNING; 2775 xol_free_insn_slot(utask); 2776 2777 if (utask->signal_denied) { 2778 set_thread_flag(TIF_SIGPENDING); 2779 utask->signal_denied = false; 2780 } 2781 2782 if (unlikely(err)) { 2783 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2784 force_sig(SIGILL); 2785 } 2786 } 2787 2788 /* 2789 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2790 * allows the thread to return from interrupt. After that handle_swbp() 2791 * sets utask->active_uprobe. 2792 * 2793 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2794 * and allows the thread to return from interrupt. 2795 * 2796 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2797 * uprobe_notify_resume(). 2798 */ 2799 void uprobe_notify_resume(struct pt_regs *regs) 2800 { 2801 struct uprobe_task *utask; 2802 2803 clear_thread_flag(TIF_UPROBE); 2804 2805 utask = current->utask; 2806 if (utask && utask->active_uprobe) 2807 handle_singlestep(utask, regs); 2808 else 2809 handle_swbp(regs); 2810 } 2811 2812 /* 2813 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2814 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2815 */ 2816 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2817 { 2818 if (!current->mm) 2819 return 0; 2820 2821 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2822 (!current->utask || !current->utask->return_instances)) 2823 return 0; 2824 2825 set_thread_flag(TIF_UPROBE); 2826 return 1; 2827 } 2828 2829 /* 2830 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2831 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2832 */ 2833 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2834 { 2835 struct uprobe_task *utask = current->utask; 2836 2837 if (!current->mm || !utask || !utask->active_uprobe) 2838 /* task is currently not uprobed */ 2839 return 0; 2840 2841 utask->state = UTASK_SSTEP_ACK; 2842 set_thread_flag(TIF_UPROBE); 2843 return 1; 2844 } 2845 2846 static struct notifier_block uprobe_exception_nb = { 2847 .notifier_call = arch_uprobe_exception_notify, 2848 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2849 }; 2850 2851 void __init uprobes_init(void) 2852 { 2853 int i; 2854 2855 for (i = 0; i < UPROBES_HASH_SZ; i++) 2856 mutex_init(&uprobes_mmap_mutex[i]); 2857 2858 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2859 } 2860