xref: /illumos-gate/usr/src/uts/common/io/rge/rge_chip.c (revision f7d66c59c5d009ee6a80e9e6a472c86a851bb021)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  * Copyright 2025 Oxide Computer Company
26  */
27 
28 #include "rge.h"
29 
30 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
31 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
32 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
33 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
34 
35 /*
36  * Patchable globals:
37  *
38  *	rge_autorecover
39  *		Enables/disables automatic recovery after fault detection
40  */
41 static uint32_t rge_autorecover = 1;
42 
43 /*
44  * globals:
45  */
46 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
47 static uint32_t rge_watchdog_count	= 1 << 5;
48 static uint32_t rge_rx_watchdog_count	= 1 << 3;
49 
50 /*
51  * Operating register get/set access routines
52  */
53 
54 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
55 #pragma	inline(rge_reg_get32)
56 
57 static uint32_t
rge_reg_get32(rge_t * rgep,uintptr_t regno)58 rge_reg_get32(rge_t *rgep, uintptr_t regno)
59 {
60 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
61 	    (void *)rgep, regno));
62 
63 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
64 }
65 
66 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
67 #pragma	inline(rge_reg_put32)
68 
69 static void
rge_reg_put32(rge_t * rgep,uintptr_t regno,uint32_t data)70 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
71 {
72 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
73 	    (void *)rgep, regno, data));
74 
75 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
76 }
77 
78 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
79 #pragma	inline(rge_reg_set32)
80 
81 static void
rge_reg_set32(rge_t * rgep,uintptr_t regno,uint32_t bits)82 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
83 {
84 	uint32_t regval;
85 
86 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
87 	    (void *)rgep, regno, bits));
88 
89 	regval = rge_reg_get32(rgep, regno);
90 	regval |= bits;
91 	rge_reg_put32(rgep, regno, regval);
92 }
93 
94 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
95 #pragma	inline(rge_reg_clr32)
96 
97 static void
rge_reg_clr32(rge_t * rgep,uintptr_t regno,uint32_t bits)98 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
99 {
100 	uint32_t regval;
101 
102 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
103 	    (void *)rgep, regno, bits));
104 
105 	regval = rge_reg_get32(rgep, regno);
106 	regval &= ~bits;
107 	rge_reg_put32(rgep, regno, regval);
108 }
109 
110 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
111 #pragma	inline(rge_reg_get16)
112 
113 static uint16_t
rge_reg_get16(rge_t * rgep,uintptr_t regno)114 rge_reg_get16(rge_t *rgep, uintptr_t regno)
115 {
116 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
117 	    (void *)rgep, regno));
118 
119 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
120 }
121 
122 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
123 #pragma	inline(rge_reg_put16)
124 
125 static void
rge_reg_put16(rge_t * rgep,uintptr_t regno,uint16_t data)126 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
127 {
128 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
129 	    (void *)rgep, regno, data));
130 
131 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
132 }
133 
134 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
135 #pragma	inline(rge_reg_get8)
136 
137 static uint8_t
rge_reg_get8(rge_t * rgep,uintptr_t regno)138 rge_reg_get8(rge_t *rgep, uintptr_t regno)
139 {
140 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
141 	    (void *)rgep, regno));
142 
143 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
144 }
145 
146 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
147 #pragma	inline(rge_reg_put8)
148 
149 static void
rge_reg_put8(rge_t * rgep,uintptr_t regno,uint8_t data)150 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
151 {
152 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
153 	    (void *)rgep, regno, data));
154 
155 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
156 }
157 
158 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
159 #pragma	inline(rge_reg_set8)
160 
161 static void
rge_reg_set8(rge_t * rgep,uintptr_t regno,uint8_t bits)162 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
163 {
164 	uint8_t regval;
165 
166 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
167 	    (void *)rgep, regno, bits));
168 
169 	regval = rge_reg_get8(rgep, regno);
170 	regval |= bits;
171 	rge_reg_put8(rgep, regno, regval);
172 }
173 
174 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
175 #pragma	inline(rge_reg_clr8)
176 
177 static void
rge_reg_clr8(rge_t * rgep,uintptr_t regno,uint8_t bits)178 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
179 {
180 	uint8_t regval;
181 
182 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
183 	    (void *)rgep, regno, bits));
184 
185 	regval = rge_reg_get8(rgep, regno);
186 	regval &= ~bits;
187 	rge_reg_put8(rgep, regno, regval);
188 }
189 
190 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
191 #pragma	no_inline(rge_mii_get16)
192 
193 uint16_t
rge_mii_get16(rge_t * rgep,uintptr_t mii)194 rge_mii_get16(rge_t *rgep, uintptr_t mii)
195 {
196 	uint32_t regval;
197 	uint32_t val32;
198 	uint32_t i;
199 
200 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
201 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
202 
203 	/*
204 	 * Waiting for PHY reading OK
205 	 */
206 	for (i = 0; i < PHY_RESET_LOOP; i++) {
207 		drv_usecwait(1000);
208 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
209 		if (val32 & PHY_ACCESS_WR_FLAG)
210 			return ((uint16_t)(val32 & 0xffff));
211 	}
212 
213 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
214 	return ((uint16_t)~0u);
215 }
216 
217 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
218 #pragma	no_inline(rge_mii_put16)
219 
220 void
rge_mii_put16(rge_t * rgep,uintptr_t mii,uint16_t data)221 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
222 {
223 	uint32_t regval;
224 	uint32_t val32;
225 	uint32_t i;
226 
227 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
228 	regval |= data & PHY_DATA_MASK;
229 	regval |= PHY_ACCESS_WR_FLAG;
230 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
231 
232 	/*
233 	 * Waiting for PHY writing OK
234 	 */
235 	for (i = 0; i < PHY_RESET_LOOP; i++) {
236 		drv_usecwait(1000);
237 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
238 		if (!(val32 & PHY_ACCESS_WR_FLAG))
239 			return;
240 	}
241 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
242 	    mii, data));
243 }
244 
245 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
246 #pragma	no_inline(rge_ephy_put16)
247 
248 void
rge_ephy_put16(rge_t * rgep,uintptr_t emii,uint16_t data)249 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
250 {
251 	uint32_t regval;
252 	uint32_t val32;
253 	uint32_t i;
254 
255 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
256 	regval |= data & EPHY_DATA_MASK;
257 	regval |= EPHY_ACCESS_WR_FLAG;
258 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
259 
260 	/*
261 	 * Waiting for PHY writing OK
262 	 */
263 	for (i = 0; i < PHY_RESET_LOOP; i++) {
264 		drv_usecwait(1000);
265 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
266 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
267 			return;
268 	}
269 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
270 	    emii, data));
271 }
272 
273 /*
274  * Atomically shift a 32-bit word left, returning
275  * the value it had *before* the shift was applied
276  */
277 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
278 #pragma	inline(rge_mii_put16)
279 
280 static uint32_t
rge_atomic_shl32(uint32_t * sp,uint_t count)281 rge_atomic_shl32(uint32_t *sp, uint_t count)
282 {
283 	uint32_t oldval;
284 	uint32_t newval;
285 
286 	/* ATOMICALLY */
287 	do {
288 		oldval = *sp;
289 		newval = oldval << count;
290 	} while (atomic_cas_32(sp, oldval, newval) != oldval);
291 
292 	return (oldval);
293 }
294 
295 /*
296  * PHY operation routines
297  */
298 #if	RGE_DEBUGGING
299 
300 void
rge_phydump(rge_t * rgep)301 rge_phydump(rge_t *rgep)
302 {
303 	uint16_t regs[32];
304 	int i;
305 
306 	ASSERT(mutex_owned(rgep->genlock));
307 
308 	for (i = 0; i < 32; ++i) {
309 		regs[i] = rge_mii_get16(rgep, i);
310 	}
311 
312 	for (i = 0; i < 32; i += 8)
313 		RGE_DEBUG(("rge_phydump: "
314 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
315 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
316 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
317 }
318 
319 #endif	/* RGE_DEBUGGING */
320 
321 static void
rge_phy_check(rge_t * rgep)322 rge_phy_check(rge_t *rgep)
323 {
324 	uint16_t gig_ctl;
325 
326 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
327 		/*
328 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
329 		 * every 15 seconds whin link down & advertise is 1000.
330 		 */
331 		if (rgep->chipid.phy_ver == PHY_VER_S) {
332 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
333 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
334 				rgep->link_down_count++;
335 				if (rgep->link_down_count > 15) {
336 					(void) rge_phy_reset(rgep);
337 					rgep->stats.phy_reset++;
338 					rgep->link_down_count = 0;
339 				}
340 			}
341 		}
342 	} else {
343 		rgep->link_down_count = 0;
344 	}
345 }
346 
347 /*
348  * Basic low-level function to reset the PHY.
349  * Doesn't incorporate any special-case workarounds.
350  *
351  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
352  */
353 boolean_t
rge_phy_reset(rge_t * rgep)354 rge_phy_reset(rge_t *rgep)
355 {
356 	uint16_t control;
357 	uint_t count;
358 
359 	/*
360 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
361 	 */
362 	control = rge_mii_get16(rgep, MII_CONTROL);
363 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
364 	for (count = 0; count < 5; count++) {
365 		drv_usecwait(100);
366 		control = rge_mii_get16(rgep, MII_CONTROL);
367 		if (BIC(control, MII_CONTROL_RESET))
368 			return (B_TRUE);
369 	}
370 
371 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
372 	return (B_FALSE);
373 }
374 
375 /*
376  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
377  * and advertisements with the required settings as specified by the various
378  * param_* variables that can be poked via the NDD interface.
379  *
380  * We always reset the PHY and reprogram *all* the relevant registers,
381  * not just those changed.  This should cause the link to go down, and then
382  * back up again once the link is stable and autonegotiation (if enabled)
383  * is complete.  We should get a link state change interrupt somewhere along
384  * the way ...
385  *
386  * NOTE: <genlock> must already be held by the caller
387  */
388 void
rge_phy_update(rge_t * rgep)389 rge_phy_update(rge_t *rgep)
390 {
391 	boolean_t adv_autoneg;
392 	boolean_t adv_pause;
393 	boolean_t adv_asym_pause;
394 	boolean_t adv_1000fdx;
395 	boolean_t adv_1000hdx;
396 	boolean_t adv_100fdx;
397 	boolean_t adv_100hdx;
398 	boolean_t adv_10fdx;
399 	boolean_t adv_10hdx;
400 
401 	uint16_t control;
402 	uint16_t gigctrl;
403 	uint16_t anar;
404 
405 	ASSERT(mutex_owned(rgep->genlock));
406 
407 	RGE_DEBUG(("rge_phy_update: autoneg %d "
408 	    "pause %d asym_pause %d "
409 	    "1000fdx %d 1000hdx %d "
410 	    "100fdx %d 100hdx %d "
411 	    "10fdx %d 10hdx %d ",
412 	    rgep->param_adv_autoneg,
413 	    rgep->param_adv_pause, rgep->param_adv_asym_pause,
414 	    rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
415 	    rgep->param_adv_100fdx, rgep->param_adv_100hdx,
416 	    rgep->param_adv_10fdx, rgep->param_adv_10hdx));
417 
418 	control = gigctrl = anar = 0;
419 
420 	/*
421 	 * PHY settings are normally based on the param_* variables,
422 	 * but if any loopback mode is in effect, that takes precedence.
423 	 *
424 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
425 	 * and External loopback at a variety of speeds (with a special
426 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
427 	 * is turned ON, and the speed/mastership is forced.
428 	 */
429 	switch (rgep->param_loop_mode) {
430 	case RGE_LOOP_NONE:
431 	default:
432 		adv_autoneg = rgep->param_adv_autoneg;
433 		adv_pause = rgep->param_adv_pause;
434 		adv_asym_pause = rgep->param_adv_asym_pause;
435 		adv_1000fdx = rgep->param_adv_1000fdx;
436 		adv_1000hdx = rgep->param_adv_1000hdx;
437 		adv_100fdx = rgep->param_adv_100fdx;
438 		adv_100hdx = rgep->param_adv_100hdx;
439 		adv_10fdx = rgep->param_adv_10fdx;
440 		adv_10hdx = rgep->param_adv_10hdx;
441 		break;
442 
443 	case RGE_LOOP_INTERNAL_PHY:
444 	case RGE_LOOP_INTERNAL_MAC:
445 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
446 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
447 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
448 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
449 
450 		switch (rgep->param_loop_mode) {
451 		case RGE_LOOP_INTERNAL_PHY:
452 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
453 				rgep->param_link_speed = 1000;
454 				adv_1000fdx = B_TRUE;
455 			} else {
456 				rgep->param_link_speed = 100;
457 				adv_100fdx = B_TRUE;
458 			}
459 			control = MII_CONTROL_LOOPBACK;
460 			break;
461 
462 		case RGE_LOOP_INTERNAL_MAC:
463 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
464 				rgep->param_link_speed = 1000;
465 				adv_1000fdx = B_TRUE;
466 			} else {
467 				rgep->param_link_speed = 100;
468 				adv_100fdx = B_TRUE;
469 			}
470 			break;
471 		}
472 	}
473 
474 	RGE_DEBUG(("rge_phy_update: autoneg %d "
475 	    "pause %d asym_pause %d "
476 	    "1000fdx %d 1000hdx %d "
477 	    "100fdx %d 100hdx %d "
478 	    "10fdx %d 10hdx %d ",
479 	    adv_autoneg,
480 	    adv_pause, adv_asym_pause,
481 	    adv_1000fdx, adv_1000hdx,
482 	    adv_100fdx, adv_100hdx,
483 	    adv_10fdx, adv_10hdx));
484 
485 	/*
486 	 * We should have at least one technology capability set;
487 	 * if not, we select a default of 1000Mb/s full-duplex
488 	 */
489 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
490 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx) {
491 		if (rgep->chipid.mac_ver != MAC_VER_8101E) {
492 			adv_1000fdx = B_TRUE;
493 		} else {
494 			adv_100fdx = B_TRUE;
495 		}
496 	}
497 
498 	/*
499 	 * Now transform the adv_* variables into the proper settings
500 	 * of the PHY registers ...
501 	 *
502 	 * If autonegotiation is (now) enabled, we want to trigger
503 	 * a new autonegotiation cycle once the PHY has been
504 	 * programmed with the capabilities to be advertised.
505 	 *
506 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
507 	 */
508 	if (adv_autoneg)
509 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
510 
511 	if (adv_1000fdx)
512 		control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX;
513 	else if (adv_1000hdx)
514 		control |= MII_CONTROL_1GB;
515 	else if (adv_100fdx)
516 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
517 	else if (adv_100hdx)
518 		control |= MII_CONTROL_100MB;
519 	else if (adv_10fdx)
520 		control |= MII_CONTROL_FDUPLEX;
521 	else if (adv_10hdx)
522 		control |= 0;
523 	else
524 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
525 
526 	if (adv_1000fdx) {
527 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
528 		/*
529 		 * Chipset limitation: need set other capabilities to true
530 		 */
531 		if (rgep->chipid.is_pcie)
532 			adv_1000hdx = B_TRUE;
533 		adv_100fdx = B_TRUE;
534 		adv_100hdx  = B_TRUE;
535 		adv_10fdx = B_TRUE;
536 		adv_10hdx = B_TRUE;
537 	}
538 
539 	if (adv_1000hdx)
540 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
541 
542 	if (adv_100fdx)
543 		anar |= MII_ABILITY_100BASE_TX_FD;
544 	if (adv_100hdx)
545 		anar |= MII_ABILITY_100BASE_TX;
546 	if (adv_10fdx)
547 		anar |= MII_ABILITY_10BASE_T_FD;
548 	if (adv_10hdx)
549 		anar |= MII_ABILITY_10BASE_T;
550 
551 	if (adv_pause)
552 		anar |= MII_ABILITY_PAUSE;
553 	if (adv_asym_pause)
554 		anar |= MII_ABILITY_ASMPAUSE;
555 
556 	/*
557 	 * Munge in any other fixed bits we require ...
558 	 */
559 	anar |= MII_AN_SELECTOR_8023;
560 
561 	/*
562 	 * Restart the PHY and write the new values.  Note the
563 	 * time, so that we can say whether subsequent link state
564 	 * changes can be attributed to our reprogramming the PHY
565 	 */
566 	rge_phy_init(rgep);
567 	if (rgep->chipid.mac_ver == MAC_VER_8168B_B ||
568 	    rgep->chipid.mac_ver == MAC_VER_8168B_C) {
569 		/* power up PHY for RTL8168B chipset */
570 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
571 		rge_mii_put16(rgep, PHY_0E_REG, 0x0000);
572 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
573 	}
574 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
575 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
576 	rge_mii_put16(rgep, MII_CONTROL, control);
577 
578 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
579 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
580 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
581 }
582 
583 void rge_phy_init(rge_t *rgep);
584 #pragma	no_inline(rge_phy_init)
585 
586 void
rge_phy_init(rge_t * rgep)587 rge_phy_init(rge_t *rgep)
588 {
589 	rgep->phy_mii_addr = 1;
590 
591 	/*
592 	 * Below phy config steps are copied from the Programming Guide
593 	 * (there's no detail comments for these steps.)
594 	 */
595 	switch (rgep->chipid.mac_ver) {
596 	case MAC_VER_8169S_D:
597 	case MAC_VER_8169S_E:
598 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
599 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
600 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
601 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
602 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
603 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
604 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
605 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
606 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
607 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
608 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
609 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
610 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
611 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
612 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
613 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
614 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
615 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
616 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
617 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
618 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
619 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
620 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
621 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
622 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
623 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
624 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
625 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
626 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
627 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
628 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
629 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
630 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
631 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
632 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
633 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
634 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
635 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
636 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
637 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
638 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
639 		break;
640 
641 	case MAC_VER_8169SB:
642 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
643 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
644 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
645 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
646 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
647 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
648 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
649 		break;
650 
651 	case MAC_VER_8169SC:
652 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
653 		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
654 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
655 		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
656 		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
657 		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
658 		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
659 		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
660 		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
661 		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
662 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
663 		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
664 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
665 		break;
666 
667 	case MAC_VER_8168:
668 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
669 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
670 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
671 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
672 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
673 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
674 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
675 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
676 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
677 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
678 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
679 		break;
680 
681 	case MAC_VER_8168B_B:
682 	case MAC_VER_8168B_C:
683 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
684 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
685 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
686 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
687 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
688 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
689 		break;
690 	}
691 }
692 
693 void rge_chip_ident(rge_t *rgep);
694 #pragma	no_inline(rge_chip_ident)
695 
696 void
rge_chip_ident(rge_t * rgep)697 rge_chip_ident(rge_t *rgep)
698 {
699 	chip_id_t *chip = &rgep->chipid;
700 	uint32_t val32;
701 	uint16_t val16;
702 
703 	/*
704 	 * Read and record MAC version
705 	 */
706 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
707 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
708 	chip->mac_ver = val32;
709 	chip->is_pcie = pci_lcap_locate(rgep->cfg_handle,
710 	    PCI_CAP_ID_PCI_E, &val16) == DDI_SUCCESS;
711 
712 	/*
713 	 * Workaround for 8101E_C
714 	 */
715 	chip->enable_mac_first = !chip->is_pcie;
716 	if (chip->mac_ver == MAC_VER_8101E_C) {
717 		chip->is_pcie = B_FALSE;
718 	}
719 
720 	/*
721 	 * Read and record PHY version
722 	 */
723 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
724 	val16 &= PHY_VER_MASK;
725 	chip->phy_ver = val16;
726 
727 	/* set pci latency timer */
728 	if (chip->mac_ver == MAC_VER_8169 ||
729 	    chip->mac_ver == MAC_VER_8169S_D ||
730 	    chip->mac_ver == MAC_VER_8169S_E ||
731 	    chip->mac_ver == MAC_VER_8169SC)
732 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
733 
734 	if (chip->mac_ver == MAC_VER_8169SC) {
735 		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
736 		val16 &= 0x0300;
737 		if (val16 == 0x1)	/* 66Mhz PCI */
738 			rge_reg_put32(rgep, 0x7c, 0x000700ff);
739 		else if (val16 == 0x0) /* 33Mhz PCI */
740 			rge_reg_put32(rgep, 0x7c, 0x0007ff00);
741 	}
742 
743 	/*
744 	 * PCIE chipset require the Rx buffer start address must be
745 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
746 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
747 	 */
748 	if (chip->is_pcie) {
749 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
750 		if (rgep->default_mtu > ETHERMTU) {
751 			rge_notice(rgep, "Jumbo packets not supported "
752 			    "for this PCIE chipset");
753 			rgep->default_mtu = ETHERMTU;
754 		}
755 	}
756 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
757 		rgep->head_room = 0;
758 	else
759 		rgep->head_room = RGE_HEADROOM;
760 
761 	/*
762 	 * Initialize other variables.
763 	 */
764 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
765 		rgep->default_mtu = ETHERMTU;
766 	if (rgep->default_mtu > ETHERMTU) {
767 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
768 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
769 		rgep->ethmax_size = RGE_JUMBO_SIZE;
770 	} else {
771 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
772 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
773 		rgep->ethmax_size = ETHERMAX;
774 	}
775 	chip->rxconfig = RX_CONFIG_DEFAULT;
776 	chip->txconfig = TX_CONFIG_DEFAULT;
777 
778 	/* interval to update statistics for polling mode */
779 	rgep->tick_delta = drv_usectohz(1000*1000/CLK_TICK);
780 
781 	/* ensure we are not in polling mode */
782 	rgep->curr_tick = ddi_get_lbolt() - 2*rgep->tick_delta;
783 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
784 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
785 }
786 
787 /*
788  * Perform first-stage chip (re-)initialisation, using only config-space
789  * accesses:
790  *
791  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
792  *   returning the data in the structure pointed to by <idp>.
793  * + Enable Memory Space accesses.
794  * + Enable Bus Mastering according.
795  */
796 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
797 #pragma	no_inline(rge_chip_cfg_init)
798 
799 void
rge_chip_cfg_init(rge_t * rgep,chip_id_t * cidp)800 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
801 {
802 	ddi_acc_handle_t handle;
803 	uint16_t commd;
804 
805 	handle = rgep->cfg_handle;
806 
807 	/*
808 	 * Save PCI cache line size and subsystem vendor ID
809 	 */
810 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
811 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
812 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
813 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
814 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
815 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
816 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
817 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
818 
819 	/*
820 	 * Turn on Master Enable (DMA) and IO Enable bits.
821 	 * Enable PCI Memory Space accesses
822 	 */
823 	commd = cidp->command;
824 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
825 	pci_config_put16(handle, PCI_CONF_COMM, commd);
826 
827 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
828 	    cidp->vendor, cidp->device, cidp->revision));
829 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
830 	    cidp->subven, cidp->subdev));
831 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
832 	    cidp->clsize, cidp->latency, cidp->command));
833 }
834 
835 int rge_chip_reset(rge_t *rgep);
836 #pragma	no_inline(rge_chip_reset)
837 
838 int
rge_chip_reset(rge_t * rgep)839 rge_chip_reset(rge_t *rgep)
840 {
841 	int i;
842 	uint8_t val8;
843 
844 	/*
845 	 * Chip should be in STOP state
846 	 */
847 	rge_reg_clr8(rgep, RT_COMMAND_REG,
848 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
849 
850 	/*
851 	 * Disable interrupt
852 	 */
853 	rgep->int_mask = INT_MASK_NONE;
854 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
855 
856 	/*
857 	 * Clear pended interrupt
858 	 */
859 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
860 
861 	/*
862 	 * Reset chip
863 	 */
864 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
865 
866 	/*
867 	 * Wait for reset success
868 	 */
869 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
870 		drv_usecwait(10);
871 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
872 		if (!(val8 & RT_COMMAND_RESET)) {
873 			rgep->rge_chip_state = RGE_CHIP_RESET;
874 			return (0);
875 		}
876 	}
877 	RGE_REPORT((rgep, "rge_chip_reset fail."));
878 	return (-1);
879 }
880 
881 void rge_chip_init(rge_t *rgep);
882 #pragma	no_inline(rge_chip_init)
883 
884 void
rge_chip_init(rge_t * rgep)885 rge_chip_init(rge_t *rgep)
886 {
887 	uint32_t val32;
888 	uint32_t val16;
889 	uint32_t *hashp;
890 	chip_id_t *chip = &rgep->chipid;
891 
892 	/*
893 	 * Increase the threshold voltage of RX sensitivity
894 	 */
895 	if (chip->mac_ver == MAC_VER_8168B_B ||
896 	    chip->mac_ver == MAC_VER_8168B_C ||
897 	    chip->mac_ver == MAC_VER_8101E) {
898 		rge_ephy_put16(rgep, 0x01, 0x1bd3);
899 	}
900 
901 	if (chip->mac_ver == MAC_VER_8168 ||
902 	    chip->mac_ver == MAC_VER_8168B_B) {
903 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
904 		val16 = 0x12<<8 | val16;
905 		rge_reg_put16(rgep, PHY_STATUS_REG, val16);
906 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
907 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
908 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
909 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
910 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
911 		val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
912 		val32 |= 0x7000;
913 		val32 &= 0xffff5fff;
914 		rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
915 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
916 	}
917 
918 	/*
919 	 * Config MII register
920 	 */
921 	rgep->param_link_up = LINK_STATE_DOWN;
922 	rge_phy_update(rgep);
923 
924 	/*
925 	 * Enable Rx checksum offload.
926 	 *  Then for vlan support, we must enable receive vlan de-tagging.
927 	 *  Otherwise, there'll be checksum error.
928 	 */
929 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
930 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
931 	if (chip->mac_ver == MAC_VER_8169S_D) {
932 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
933 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
934 	}
935 	if (chip->mac_ver == MAC_VER_8169S_E ||
936 	    chip->mac_ver == MAC_VER_8169SC) {
937 		val16 |= MUL_PCI_RW_ENABLE;
938 	}
939 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
940 
941 	/*
942 	 * Start transmit/receive before set tx/rx configuration register
943 	 */
944 	if (chip->enable_mac_first)
945 		rge_reg_set8(rgep, RT_COMMAND_REG,
946 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
947 
948 	/*
949 	 * Change to config register write enable mode
950 	 */
951 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
952 
953 	/*
954 	 * Set Tx/Rx maximum packet size
955 	 */
956 	if (rgep->default_mtu > ETHERMTU) {
957 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
958 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
959 	} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
960 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
961 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
962 	} else {
963 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
964 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
965 	}
966 
967 	/*
968 	 * Set receive configuration register
969 	 */
970 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
971 	val32 &= RX_CONFIG_REG_RESV;
972 	if (rgep->promisc)
973 		val32 |= RX_ACCEPT_ALL_PKT;
974 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
975 
976 	/*
977 	 * Set transmit configuration register
978 	 */
979 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
980 	val32 &= TX_CONFIG_REG_RESV;
981 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
982 
983 	/*
984 	 * Set Tx/Rx descriptor register
985 	 */
986 	val32 = rgep->tx_desc.cookie.dmac_laddress;
987 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
988 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
989 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
990 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
991 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
992 	val32 = rgep->rx_desc.cookie.dmac_laddress;
993 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
994 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
995 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
996 
997 	/*
998 	 * Suggested setting from Realtek
999 	 */
1000 	if (rgep->chipid.mac_ver != MAC_VER_8101E)
1001 		rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1002 	else
1003 		rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
1004 
1005 	/*
1006 	 * Set multicast register
1007 	 */
1008 	hashp = (uint32_t *)rgep->mcast_hash;
1009 	if (rgep->promisc) {
1010 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1011 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1012 	} else {
1013 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1014 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1015 	}
1016 
1017 	/*
1018 	 * Msic register setting:
1019 	 *   -- Missed packet counter: clear it
1020 	 *   -- TimerInt Register
1021 	 *   -- Timer count register
1022 	 */
1023 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1024 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1025 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1026 
1027 	/*
1028 	 * disable the Unicast Wakeup Frame capability
1029 	 */
1030 	rge_reg_clr8(rgep, RT_CONFIG_5_REG, RT_UNI_WAKE_FRAME);
1031 
1032 	/*
1033 	 * Return to normal network/host communication mode
1034 	 */
1035 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1036 	drv_usecwait(20);
1037 }
1038 
1039 /*
1040  * rge_chip_start() -- start the chip transmitting and/or receiving,
1041  * including enabling interrupts
1042  */
1043 void rge_chip_start(rge_t *rgep);
1044 #pragma	no_inline(rge_chip_start)
1045 
1046 void
rge_chip_start(rge_t * rgep)1047 rge_chip_start(rge_t *rgep)
1048 {
1049 	/*
1050 	 * Clear statistics
1051 	 */
1052 	bzero(&rgep->stats, sizeof (rge_stats_t));
1053 	DMA_ZERO(rgep->dma_area_stats);
1054 
1055 	/*
1056 	 * Start transmit/receive
1057 	 */
1058 	rge_reg_set8(rgep, RT_COMMAND_REG,
1059 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1060 
1061 	/*
1062 	 * Enable interrupt
1063 	 */
1064 	rgep->int_mask = RGE_INT_MASK;
1065 	if (rgep->chipid.is_pcie) {
1066 		rgep->int_mask |= NO_TXDESC_INT;
1067 	}
1068 	rgep->rx_fifo_ovf = 0;
1069 	rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
1070 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1071 
1072 	/*
1073 	 * All done!
1074 	 */
1075 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1076 }
1077 
1078 /*
1079  * rge_chip_stop() -- stop board receiving
1080  *
1081  * Since this function is also invoked by rge_quiesce(), it
1082  * must not block; also, no tracing or logging takes place
1083  * when invoked by rge_quiesce().
1084  */
1085 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1086 #pragma	no_inline(rge_chip_stop)
1087 
1088 void
rge_chip_stop(rge_t * rgep,boolean_t fault)1089 rge_chip_stop(rge_t *rgep, boolean_t fault)
1090 {
1091 	/*
1092 	 * Disable interrupt
1093 	 */
1094 	rgep->int_mask = INT_MASK_NONE;
1095 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1096 
1097 	/*
1098 	 * Clear pended interrupt
1099 	 */
1100 	if (!rgep->suspended) {
1101 		rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1102 	}
1103 
1104 	/*
1105 	 * Stop the board and disable transmit/receive
1106 	 */
1107 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1108 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1109 
1110 	if (fault)
1111 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1112 	else
1113 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1114 }
1115 
1116 /*
1117  * rge_get_mac_addr() -- get the MAC address on NIC
1118  */
1119 static void rge_get_mac_addr(rge_t *rgep);
1120 #pragma	inline(rge_get_mac_addr)
1121 
1122 static void
rge_get_mac_addr(rge_t * rgep)1123 rge_get_mac_addr(rge_t *rgep)
1124 {
1125 	uint8_t *macaddr = rgep->netaddr;
1126 	uint32_t val32;
1127 
1128 	/*
1129 	 * Read first 4-byte of mac address
1130 	 */
1131 	val32 = rge_reg_get32(rgep, ID_0_REG);
1132 	macaddr[0] = val32 & 0xff;
1133 	val32 = val32 >> 8;
1134 	macaddr[1] = val32 & 0xff;
1135 	val32 = val32 >> 8;
1136 	macaddr[2] = val32 & 0xff;
1137 	val32 = val32 >> 8;
1138 	macaddr[3] = val32 & 0xff;
1139 
1140 	/*
1141 	 * Read last 2-byte of mac address
1142 	 */
1143 	val32 = rge_reg_get32(rgep, ID_4_REG);
1144 	macaddr[4] = val32 & 0xff;
1145 	val32 = val32 >> 8;
1146 	macaddr[5] = val32 & 0xff;
1147 }
1148 
1149 static void rge_set_mac_addr(rge_t *rgep);
1150 #pragma	inline(rge_set_mac_addr)
1151 
1152 static void
rge_set_mac_addr(rge_t * rgep)1153 rge_set_mac_addr(rge_t *rgep)
1154 {
1155 	uint8_t *p = rgep->netaddr;
1156 	uint32_t val32;
1157 
1158 	/*
1159 	 * Change to config register write enable mode
1160 	 */
1161 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1162 
1163 	/*
1164 	 * Get first 4 bytes of mac address
1165 	 */
1166 	val32 = p[3];
1167 	val32 = val32 << 8;
1168 	val32 |= p[2];
1169 	val32 = val32 << 8;
1170 	val32 |= p[1];
1171 	val32 = val32 << 8;
1172 	val32 |= p[0];
1173 
1174 	/*
1175 	 * Set first 4 bytes of mac address
1176 	 */
1177 	rge_reg_put32(rgep, ID_0_REG, val32);
1178 
1179 	/*
1180 	 * Get last 2 bytes of mac address
1181 	 */
1182 	val32 = p[5];
1183 	val32 = val32 << 8;
1184 	val32 |= p[4];
1185 
1186 	/*
1187 	 * Set last 2 bytes of mac address
1188 	 */
1189 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1190 	rge_reg_put32(rgep, ID_4_REG, val32);
1191 
1192 	/*
1193 	 * Return to normal network/host communication mode
1194 	 */
1195 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1196 }
1197 
1198 static void rge_set_multi_addr(rge_t *rgep);
1199 #pragma	inline(rge_set_multi_addr)
1200 
1201 static void
rge_set_multi_addr(rge_t * rgep)1202 rge_set_multi_addr(rge_t *rgep)
1203 {
1204 	uint32_t *hashp;
1205 
1206 	hashp = (uint32_t *)rgep->mcast_hash;
1207 
1208 	/*
1209 	 * Change to config register write enable mode
1210 	 */
1211 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1212 		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1213 	}
1214 	if (rgep->promisc) {
1215 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1216 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1217 	} else {
1218 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1219 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1220 	}
1221 
1222 	/*
1223 	 * Return to normal network/host communication mode
1224 	 */
1225 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1226 		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1227 	}
1228 }
1229 
1230 static void rge_set_promisc(rge_t *rgep);
1231 #pragma	inline(rge_set_promisc)
1232 
1233 static void
rge_set_promisc(rge_t * rgep)1234 rge_set_promisc(rge_t *rgep)
1235 {
1236 	if (rgep->promisc)
1237 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1238 	else
1239 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1240 }
1241 
1242 /*
1243  * rge_chip_sync() -- program the chip with the unicast MAC address,
1244  * the multicast hash table, the required level of promiscuity, and
1245  * the current loopback mode ...
1246  */
1247 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1248 #pragma	no_inline(rge_chip_sync)
1249 
1250 void
rge_chip_sync(rge_t * rgep,enum rge_sync_op todo)1251 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1252 {
1253 	switch (todo) {
1254 	case RGE_GET_MAC:
1255 		rge_get_mac_addr(rgep);
1256 		break;
1257 	case RGE_SET_MAC:
1258 		/* Reprogram the unicast MAC address(es) ... */
1259 		rge_set_mac_addr(rgep);
1260 		break;
1261 	case RGE_SET_MUL:
1262 		/* Reprogram the hashed multicast address table ... */
1263 		rge_set_multi_addr(rgep);
1264 		break;
1265 	case RGE_SET_PROMISC:
1266 		/* Set or clear the PROMISCUOUS mode bit */
1267 		rge_set_multi_addr(rgep);
1268 		rge_set_promisc(rgep);
1269 		break;
1270 	default:
1271 		break;
1272 	}
1273 }
1274 
1275 void rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag);
1276 #pragma	no_inline(rge_chip_blank)
1277 
1278 /* ARGSUSED */
1279 void
rge_chip_blank(void * arg,time_t ticks,uint_t count,int flag)1280 rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
1281 {
1282 	_NOTE(ARGUNUSED(arg, ticks, count));
1283 }
1284 
1285 void rge_tx_trigger(rge_t *rgep);
1286 #pragma	no_inline(rge_tx_trigger)
1287 
1288 void
rge_tx_trigger(rge_t * rgep)1289 rge_tx_trigger(rge_t *rgep)
1290 {
1291 	rge_reg_put8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1292 }
1293 
1294 void rge_hw_stats_dump(rge_t *rgep);
1295 #pragma	no_inline(rge_tx_trigger)
1296 
1297 void
rge_hw_stats_dump(rge_t * rgep)1298 rge_hw_stats_dump(rge_t *rgep)
1299 {
1300 	uint32_t regval = 0;
1301 
1302 	if (rgep->rge_mac_state == RGE_MAC_STOPPED)
1303 		return;
1304 
1305 	/*
1306 	 * Set the stats counter dump address.  First, set the high part of the
1307 	 * address and read it back to ensure it's flushed out.
1308 	 */
1309 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1,
1310 	    rgep->dma_area_stats.cookie.dmac_laddress >> 32);
1311 	(void) rge_reg_get32(rgep, DUMP_COUNTER_REG_1);
1312 
1313 	/*
1314 	 * Then set the low part of the address, preserving the reserved bits:
1315 	 */
1316 	regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1317 	regval &= DUMP_COUNTER_REG_RESV;
1318 	regval |= rgep->dma_area_stats.cookie.dmac_laddress;
1319 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, regval);
1320 
1321 	/*
1322 	 * Set the command bit to start dumping statistics:
1323 	 */
1324 	regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1325 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, regval | DUMP_START);
1326 
1327 	for (uint_t i = 0; i < STATS_DUMP_LOOP; i++) {
1328 		drv_usecwait(100);
1329 
1330 		/*
1331 		 * Check to see if the dump has completed:
1332 		 */
1333 		regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1334 		if ((regval & DUMP_START) == 0) {
1335 			DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1336 			return;
1337 		}
1338 	}
1339 
1340 	RGE_DEBUG(("rge h/w statistics dump fail!"));
1341 	rgep->rge_chip_state = RGE_CHIP_ERROR;
1342 }
1343 
1344 /*
1345  * ========== Hardware interrupt handler ==========
1346  */
1347 
1348 #undef	RGE_DBG
1349 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1350 
1351 static void rge_wake_factotum(rge_t *rgep);
1352 #pragma	inline(rge_wake_factotum)
1353 
1354 static void
rge_wake_factotum(rge_t * rgep)1355 rge_wake_factotum(rge_t *rgep)
1356 {
1357 	if (rgep->factotum_flag == 0) {
1358 		rgep->factotum_flag = 1;
1359 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1360 	}
1361 }
1362 
1363 /*
1364  *	rge_intr() -- handle chip interrupts
1365  */
1366 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1367 #pragma	no_inline(rge_intr)
1368 
1369 uint_t
rge_intr(caddr_t arg1,caddr_t arg2)1370 rge_intr(caddr_t arg1, caddr_t arg2)
1371 {
1372 	rge_t *rgep = (rge_t *)arg1;
1373 	uint16_t int_status;
1374 	clock_t	now;
1375 	uint32_t tx_pkts;
1376 	uint32_t rx_pkts;
1377 	uint32_t poll_rate;
1378 	uint32_t opt_pkts;
1379 	uint32_t opt_intrs;
1380 	boolean_t update_int_mask = B_FALSE;
1381 	uint32_t itimer;
1382 
1383 	_NOTE(ARGUNUSED(arg2))
1384 
1385 	mutex_enter(rgep->genlock);
1386 
1387 	if (rgep->suspended) {
1388 		mutex_exit(rgep->genlock);
1389 		return (DDI_INTR_UNCLAIMED);
1390 	}
1391 
1392 	/*
1393 	 * Was this interrupt caused by our device...
1394 	 */
1395 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1396 	if (!(int_status & rgep->int_mask)) {
1397 		mutex_exit(rgep->genlock);
1398 		return (DDI_INTR_UNCLAIMED);
1399 				/* indicate it wasn't our interrupt */
1400 	}
1401 	rgep->stats.intr++;
1402 
1403 	/*
1404 	 * Clear interrupt
1405 	 *	For PCIE chipset, we need disable interrupt first.
1406 	 */
1407 	if (rgep->chipid.is_pcie) {
1408 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1409 		update_int_mask = B_TRUE;
1410 	}
1411 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1412 
1413 	/*
1414 	 * Calculate optimal polling interval
1415 	 */
1416 	now = ddi_get_lbolt();
1417 	if (now - rgep->curr_tick >= rgep->tick_delta &&
1418 	    (rgep->param_link_speed == RGE_SPEED_1000M ||
1419 	    rgep->param_link_speed == RGE_SPEED_100M)) {
1420 		/* number of rx and tx packets in the last tick */
1421 		tx_pkts = rgep->stats.opackets - rgep->last_opackets;
1422 		rx_pkts = rgep->stats.rpackets - rgep->last_rpackets;
1423 
1424 		rgep->last_opackets = rgep->stats.opackets;
1425 		rgep->last_rpackets = rgep->stats.rpackets;
1426 
1427 		/* restore interrupt mask */
1428 		rgep->int_mask |= TX_OK_INT | RX_OK_INT;
1429 		if (rgep->chipid.is_pcie) {
1430 			rgep->int_mask |= NO_TXDESC_INT;
1431 		}
1432 
1433 		/* optimal number of packets in a tick */
1434 		if (rgep->param_link_speed == RGE_SPEED_1000M) {
1435 			opt_pkts = (1000*1000*1000/8)/ETHERMTU/CLK_TICK;
1436 		} else {
1437 			opt_pkts = (100*1000*1000/8)/ETHERMTU/CLK_TICK;
1438 		}
1439 
1440 		/*
1441 		 * calculate polling interval based on rx and tx packets
1442 		 * in the last tick
1443 		 */
1444 		poll_rate = 0;
1445 		if (now - rgep->curr_tick < 2*rgep->tick_delta) {
1446 			opt_intrs = opt_pkts/TX_COALESC;
1447 			if (tx_pkts > opt_intrs) {
1448 				poll_rate = max(tx_pkts/TX_COALESC, opt_intrs);
1449 				rgep->int_mask &= ~(TX_OK_INT | NO_TXDESC_INT);
1450 			}
1451 
1452 			opt_intrs = opt_pkts/RX_COALESC;
1453 			if (rx_pkts > opt_intrs) {
1454 				opt_intrs = max(rx_pkts/RX_COALESC, opt_intrs);
1455 				poll_rate = max(opt_intrs, poll_rate);
1456 				rgep->int_mask &= ~RX_OK_INT;
1457 			}
1458 			/* ensure poll_rate reasonable */
1459 			poll_rate = min(poll_rate, opt_pkts*4);
1460 		}
1461 
1462 		if (poll_rate) {
1463 			/* move to polling mode */
1464 			if (rgep->chipid.is_pcie) {
1465 				itimer = (TIMER_CLK_PCIE/CLK_TICK)/poll_rate;
1466 			} else {
1467 				itimer = (TIMER_CLK_PCI/CLK_TICK)/poll_rate;
1468 			}
1469 		} else {
1470 			/* move to normal mode */
1471 			itimer = 0;
1472 		}
1473 		RGE_DEBUG(("%s: poll: itimer:%d int_mask:0x%x",
1474 		    __func__, itimer, rgep->int_mask));
1475 		rge_reg_put32(rgep, TIMER_INT_REG, itimer);
1476 
1477 		/* update timestamp for statistics */
1478 		rgep->curr_tick = now;
1479 
1480 		/* reset timer */
1481 		int_status |= TIME_OUT_INT;
1482 
1483 		update_int_mask = B_TRUE;
1484 	}
1485 
1486 	if (int_status & TIME_OUT_INT) {
1487 		rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1488 	}
1489 
1490 	/* flush post writes */
1491 	(void) rge_reg_get16(rgep, INT_STATUS_REG);
1492 
1493 	/*
1494 	 * Cable link change interrupt
1495 	 */
1496 	if (int_status & LINK_CHANGE_INT) {
1497 		rge_chip_cyclic(rgep);
1498 	}
1499 
1500 	if (int_status & RX_FIFO_OVERFLOW_INT) {
1501 		/* start rx watchdog timeout detection */
1502 		rgep->rx_fifo_ovf = 1;
1503 		if (rgep->int_mask & RX_FIFO_OVERFLOW_INT) {
1504 			rgep->int_mask &= ~RX_FIFO_OVERFLOW_INT;
1505 			update_int_mask = B_TRUE;
1506 		}
1507 	} else if (int_status & RGE_RX_INT) {
1508 		/* stop rx watchdog timeout detection */
1509 		rgep->rx_fifo_ovf = 0;
1510 		if ((rgep->int_mask & RX_FIFO_OVERFLOW_INT) == 0) {
1511 			rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
1512 			update_int_mask = B_TRUE;
1513 		}
1514 	}
1515 
1516 	mutex_exit(rgep->genlock);
1517 
1518 	/*
1519 	 * Receive interrupt
1520 	 */
1521 	if (int_status & RGE_RX_INT)
1522 		rge_receive(rgep);
1523 
1524 	/*
1525 	 * Transmit interrupt
1526 	 */
1527 	if (int_status & TX_ERR_INT) {
1528 		RGE_REPORT((rgep, "tx error happened, resetting the chip "));
1529 		mutex_enter(rgep->genlock);
1530 		rgep->rge_chip_state = RGE_CHIP_ERROR;
1531 		mutex_exit(rgep->genlock);
1532 	} else if ((rgep->chipid.is_pcie && (int_status & NO_TXDESC_INT)) ||
1533 	    ((int_status & TX_OK_INT) && rgep->tx_free < RGE_SEND_SLOTS/8)) {
1534 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1535 	}
1536 
1537 	/*
1538 	 * System error interrupt
1539 	 */
1540 	if (int_status & SYS_ERR_INT) {
1541 		RGE_REPORT((rgep, "sys error happened, resetting the chip "));
1542 		mutex_enter(rgep->genlock);
1543 		rgep->rge_chip_state = RGE_CHIP_ERROR;
1544 		mutex_exit(rgep->genlock);
1545 	}
1546 
1547 	/*
1548 	 * Re-enable interrupt for PCIE chipset or install new int_mask
1549 	 */
1550 	if (update_int_mask)
1551 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1552 
1553 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1554 }
1555 
1556 /*
1557  * ========== Factotum, implemented as a softint handler ==========
1558  */
1559 
1560 #undef	RGE_DBG
1561 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1562 
1563 static boolean_t rge_factotum_link_check(rge_t *rgep);
1564 #pragma	no_inline(rge_factotum_link_check)
1565 
1566 static boolean_t
rge_factotum_link_check(rge_t * rgep)1567 rge_factotum_link_check(rge_t *rgep)
1568 {
1569 	uint8_t media_status;
1570 	int32_t link;
1571 
1572 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1573 	link = (media_status & PHY_STATUS_LINK_UP) ?
1574 	    LINK_STATE_UP : LINK_STATE_DOWN;
1575 	if (rgep->param_link_up != link) {
1576 		/*
1577 		 * Link change.
1578 		 */
1579 		rgep->param_link_up = link;
1580 
1581 		if (link == LINK_STATE_UP) {
1582 			if (media_status & PHY_STATUS_1000MF) {
1583 				rgep->param_link_speed = RGE_SPEED_1000M;
1584 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1585 			} else {
1586 				rgep->param_link_speed =
1587 				    (media_status & PHY_STATUS_100M) ?
1588 				    RGE_SPEED_100M : RGE_SPEED_10M;
1589 				rgep->param_link_duplex =
1590 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1591 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1592 			}
1593 		}
1594 		return (B_TRUE);
1595 	}
1596 	return (B_FALSE);
1597 }
1598 
1599 /*
1600  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1601  */
1602 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1603 #pragma	no_inline(rge_factotum_stall_check)
1604 
1605 static boolean_t
rge_factotum_stall_check(rge_t * rgep)1606 rge_factotum_stall_check(rge_t *rgep)
1607 {
1608 	uint32_t dogval;
1609 
1610 	ASSERT(mutex_owned(rgep->genlock));
1611 
1612 	/*
1613 	 * Specific check for RX stall ...
1614 	 */
1615 	rgep->rx_fifo_ovf <<= 1;
1616 	if (rgep->rx_fifo_ovf > rge_rx_watchdog_count) {
1617 		RGE_REPORT((rgep, "rx_hang detected"));
1618 		return (B_TRUE);
1619 	}
1620 
1621 	/*
1622 	 * Specific check for Tx stall ...
1623 	 *
1624 	 * The 'watchdog' counter is incremented whenever a packet
1625 	 * is queued, reset to 1 when some (but not all) buffers
1626 	 * are reclaimed, reset to 0 (disabled) when all buffers
1627 	 * are reclaimed, and shifted left here.  If it exceeds the
1628 	 * threshold value, the chip is assumed to have stalled and
1629 	 * is put into the ERROR state.  The factotum will then reset
1630 	 * it on the next pass.
1631 	 *
1632 	 * All of which should ensure that we don't get into a state
1633 	 * where packets are left pending indefinitely!
1634 	 */
1635 	if (rgep->resched_needed)
1636 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1637 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1638 	if (dogval < rge_watchdog_count)
1639 		return (B_FALSE);
1640 
1641 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1642 	return (B_TRUE);
1643 
1644 }
1645 
1646 /*
1647  * The factotum is woken up when there's something to do that we'd rather
1648  * not do from inside a hardware interrupt handler or high-level cyclic.
1649  * Its two main tasks are:
1650  *	reset & restart the chip after an error
1651  *	check the link status whenever necessary
1652  */
1653 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1654 #pragma	no_inline(rge_chip_factotum)
1655 
1656 uint_t
rge_chip_factotum(caddr_t arg1,caddr_t arg2)1657 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1658 {
1659 	rge_t *rgep;
1660 	uint_t result;
1661 	boolean_t error;
1662 	boolean_t linkchg;
1663 
1664 	rgep = (rge_t *)arg1;
1665 	_NOTE(ARGUNUSED(arg2))
1666 
1667 	if (rgep->factotum_flag == 0)
1668 		return (DDI_INTR_UNCLAIMED);
1669 
1670 	rgep->factotum_flag = 0;
1671 	result = DDI_INTR_CLAIMED;
1672 	error = B_FALSE;
1673 	linkchg = B_FALSE;
1674 
1675 	mutex_enter(rgep->genlock);
1676 	switch (rgep->rge_chip_state) {
1677 	default:
1678 		break;
1679 
1680 	case RGE_CHIP_RUNNING:
1681 		linkchg = rge_factotum_link_check(rgep);
1682 		error = rge_factotum_stall_check(rgep);
1683 		break;
1684 
1685 	case RGE_CHIP_ERROR:
1686 		error = B_TRUE;
1687 		break;
1688 
1689 	case RGE_CHIP_FAULT:
1690 		/*
1691 		 * Fault detected, time to reset ...
1692 		 */
1693 		if (rge_autorecover) {
1694 			RGE_REPORT((rgep, "automatic recovery activated"));
1695 			rge_restart(rgep);
1696 		}
1697 		break;
1698 	}
1699 
1700 	/*
1701 	 * If an error is detected, stop the chip now, marking it as
1702 	 * faulty, so that it will be reset next time through ...
1703 	 */
1704 	if (error)
1705 		rge_chip_stop(rgep, B_TRUE);
1706 	mutex_exit(rgep->genlock);
1707 
1708 	/*
1709 	 * If the link state changed, tell the world about it.
1710 	 * Note: can't do this while still holding the mutex.
1711 	 */
1712 	if (linkchg)
1713 		mac_link_update(rgep->mh, rgep->param_link_up);
1714 
1715 	return (result);
1716 }
1717 
1718 /*
1719  * High-level cyclic handler
1720  *
1721  * This routine schedules a (low-level) softint callback to the
1722  * factotum, and prods the chip to update the status block (which
1723  * will cause a hardware interrupt when complete).
1724  */
1725 void rge_chip_cyclic(void *arg);
1726 #pragma	no_inline(rge_chip_cyclic)
1727 
1728 void
rge_chip_cyclic(void * arg)1729 rge_chip_cyclic(void *arg)
1730 {
1731 	rge_t *rgep;
1732 
1733 	rgep = arg;
1734 
1735 	switch (rgep->rge_chip_state) {
1736 	default:
1737 		return;
1738 
1739 	case RGE_CHIP_RUNNING:
1740 		rge_phy_check(rgep);
1741 		if (rgep->tx_free < RGE_SEND_SLOTS)
1742 			rge_send_recycle(rgep);
1743 		break;
1744 
1745 	case RGE_CHIP_FAULT:
1746 	case RGE_CHIP_ERROR:
1747 		break;
1748 	}
1749 
1750 	rge_wake_factotum(rgep);
1751 }
1752 
1753 
1754 /*
1755  * ========== Ioctl subfunctions ==========
1756  */
1757 
1758 #undef	RGE_DBG
1759 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1760 
1761 #if	RGE_DEBUGGING || RGE_DO_PPIO
1762 
1763 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1764 #pragma	no_inline(rge_chip_peek_cfg)
1765 
1766 static void
rge_chip_peek_cfg(rge_t * rgep,rge_peekpoke_t * ppd)1767 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1768 {
1769 	uint64_t regval;
1770 	uint64_t regno;
1771 
1772 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1773 	    (void *)rgep, (void *)ppd));
1774 
1775 	regno = ppd->pp_acc_offset;
1776 
1777 	switch (ppd->pp_acc_size) {
1778 	case 1:
1779 		regval = pci_config_get8(rgep->cfg_handle, regno);
1780 		break;
1781 
1782 	case 2:
1783 		regval = pci_config_get16(rgep->cfg_handle, regno);
1784 		break;
1785 
1786 	case 4:
1787 		regval = pci_config_get32(rgep->cfg_handle, regno);
1788 		break;
1789 
1790 	case 8:
1791 		regval = pci_config_get64(rgep->cfg_handle, regno);
1792 		break;
1793 	}
1794 
1795 	ppd->pp_acc_data = regval;
1796 }
1797 
1798 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1799 #pragma	no_inline(rge_chip_poke_cfg)
1800 
1801 static void
rge_chip_poke_cfg(rge_t * rgep,rge_peekpoke_t * ppd)1802 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1803 {
1804 	uint64_t regval;
1805 	uint64_t regno;
1806 
1807 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1808 	    (void *)rgep, (void *)ppd));
1809 
1810 	regno = ppd->pp_acc_offset;
1811 	regval = ppd->pp_acc_data;
1812 
1813 	switch (ppd->pp_acc_size) {
1814 	case 1:
1815 		pci_config_put8(rgep->cfg_handle, regno, regval);
1816 		break;
1817 
1818 	case 2:
1819 		pci_config_put16(rgep->cfg_handle, regno, regval);
1820 		break;
1821 
1822 	case 4:
1823 		pci_config_put32(rgep->cfg_handle, regno, regval);
1824 		break;
1825 
1826 	case 8:
1827 		pci_config_put64(rgep->cfg_handle, regno, regval);
1828 		break;
1829 	}
1830 }
1831 
1832 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1833 #pragma	no_inline(rge_chip_peek_reg)
1834 
1835 static void
rge_chip_peek_reg(rge_t * rgep,rge_peekpoke_t * ppd)1836 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1837 {
1838 	uint64_t regval;
1839 	void *regaddr;
1840 
1841 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1842 	    (void *)rgep, (void *)ppd));
1843 
1844 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1845 
1846 	switch (ppd->pp_acc_size) {
1847 	case 1:
1848 		regval = ddi_get8(rgep->io_handle, regaddr);
1849 		break;
1850 
1851 	case 2:
1852 		regval = ddi_get16(rgep->io_handle, regaddr);
1853 		break;
1854 
1855 	case 4:
1856 		regval = ddi_get32(rgep->io_handle, regaddr);
1857 		break;
1858 
1859 	case 8:
1860 		regval = ddi_get64(rgep->io_handle, regaddr);
1861 		break;
1862 	}
1863 
1864 	ppd->pp_acc_data = regval;
1865 }
1866 
1867 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1868 #pragma	no_inline(rge_chip_peek_reg)
1869 
1870 static void
rge_chip_poke_reg(rge_t * rgep,rge_peekpoke_t * ppd)1871 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1872 {
1873 	uint64_t regval;
1874 	void *regaddr;
1875 
1876 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1877 	    (void *)rgep, (void *)ppd));
1878 
1879 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1880 	regval = ppd->pp_acc_data;
1881 
1882 	switch (ppd->pp_acc_size) {
1883 	case 1:
1884 		ddi_put8(rgep->io_handle, regaddr, regval);
1885 		break;
1886 
1887 	case 2:
1888 		ddi_put16(rgep->io_handle, regaddr, regval);
1889 		break;
1890 
1891 	case 4:
1892 		ddi_put32(rgep->io_handle, regaddr, regval);
1893 		break;
1894 
1895 	case 8:
1896 		ddi_put64(rgep->io_handle, regaddr, regval);
1897 		break;
1898 	}
1899 }
1900 
1901 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1902 #pragma	no_inline(rge_chip_peek_mii)
1903 
1904 static void
rge_chip_peek_mii(rge_t * rgep,rge_peekpoke_t * ppd)1905 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1906 {
1907 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1908 	    (void *)rgep, (void *)ppd));
1909 
1910 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1911 }
1912 
1913 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1914 #pragma	no_inline(rge_chip_poke_mii)
1915 
1916 static void
rge_chip_poke_mii(rge_t * rgep,rge_peekpoke_t * ppd)1917 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1918 {
1919 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1920 	    (void *)rgep, (void *)ppd));
1921 
1922 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1923 }
1924 
1925 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1926 #pragma	no_inline(rge_chip_peek_mem)
1927 
1928 static void
rge_chip_peek_mem(rge_t * rgep,rge_peekpoke_t * ppd)1929 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1930 {
1931 	uint64_t regval;
1932 	void *vaddr;
1933 
1934 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1935 	    (void *)rgep, (void *)ppd));
1936 
1937 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1938 
1939 	switch (ppd->pp_acc_size) {
1940 	case 1:
1941 		regval = *(uint8_t *)vaddr;
1942 		break;
1943 
1944 	case 2:
1945 		regval = *(uint16_t *)vaddr;
1946 		break;
1947 
1948 	case 4:
1949 		regval = *(uint32_t *)vaddr;
1950 		break;
1951 
1952 	case 8:
1953 		regval = *(uint64_t *)vaddr;
1954 		break;
1955 	}
1956 
1957 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1958 	    (void *)rgep, (void *)ppd, regval, vaddr));
1959 
1960 	ppd->pp_acc_data = regval;
1961 }
1962 
1963 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1964 #pragma	no_inline(rge_chip_poke_mem)
1965 
1966 static void
rge_chip_poke_mem(rge_t * rgep,rge_peekpoke_t * ppd)1967 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1968 {
1969 	uint64_t regval;
1970 	void *vaddr;
1971 
1972 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1973 	    (void *)rgep, (void *)ppd));
1974 
1975 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1976 	regval = ppd->pp_acc_data;
1977 
1978 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1979 	    (void *)rgep, (void *)ppd, regval, vaddr));
1980 
1981 	switch (ppd->pp_acc_size) {
1982 	case 1:
1983 		*(uint8_t *)vaddr = (uint8_t)regval;
1984 		break;
1985 
1986 	case 2:
1987 		*(uint16_t *)vaddr = (uint16_t)regval;
1988 		break;
1989 
1990 	case 4:
1991 		*(uint32_t *)vaddr = (uint32_t)regval;
1992 		break;
1993 
1994 	case 8:
1995 		*(uint64_t *)vaddr = (uint64_t)regval;
1996 		break;
1997 	}
1998 }
1999 
2000 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2001 					struct iocblk *iocp);
2002 #pragma	no_inline(rge_pp_ioctl)
2003 
2004 static enum ioc_reply
rge_pp_ioctl(rge_t * rgep,int cmd,mblk_t * mp,struct iocblk * iocp)2005 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2006 {
2007 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
2008 	rge_peekpoke_t *ppd;
2009 	dma_area_t *areap;
2010 	uint64_t sizemask;
2011 	uint64_t mem_va;
2012 	uint64_t maxoff;
2013 	boolean_t peek;
2014 
2015 	switch (cmd) {
2016 	default:
2017 		/* NOTREACHED */
2018 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
2019 		return (IOC_INVAL);
2020 
2021 	case RGE_PEEK:
2022 		peek = B_TRUE;
2023 		break;
2024 
2025 	case RGE_POKE:
2026 		peek = B_FALSE;
2027 		break;
2028 	}
2029 
2030 	/*
2031 	 * Validate format of ioctl
2032 	 */
2033 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
2034 		return (IOC_INVAL);
2035 	if (mp->b_cont == NULL)
2036 		return (IOC_INVAL);
2037 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
2038 
2039 	/*
2040 	 * Validate request parameters
2041 	 */
2042 	switch (ppd->pp_acc_space) {
2043 	default:
2044 		return (IOC_INVAL);
2045 
2046 	case RGE_PP_SPACE_CFG:
2047 		/*
2048 		 * Config space
2049 		 */
2050 		sizemask = 8|4|2|1;
2051 		mem_va = 0;
2052 		maxoff = PCI_CONF_HDR_SIZE;
2053 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
2054 		break;
2055 
2056 	case RGE_PP_SPACE_REG:
2057 		/*
2058 		 * Memory-mapped I/O space
2059 		 */
2060 		sizemask = 8|4|2|1;
2061 		mem_va = 0;
2062 		maxoff = RGE_REGISTER_MAX;
2063 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
2064 		break;
2065 
2066 	case RGE_PP_SPACE_MII:
2067 		/*
2068 		 * PHY's MII registers
2069 		 * NB: all PHY registers are two bytes, but the
2070 		 * addresses increment in ones (word addressing).
2071 		 * So we scale the address here, then undo the
2072 		 * transformation inside the peek/poke functions.
2073 		 */
2074 		ppd->pp_acc_offset *= 2;
2075 		sizemask = 2;
2076 		mem_va = 0;
2077 		maxoff = (MII_MAXREG+1)*2;
2078 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
2079 		break;
2080 
2081 	case RGE_PP_SPACE_RGE:
2082 		/*
2083 		 * RGE data structure!
2084 		 */
2085 		sizemask = 8|4|2|1;
2086 		mem_va = (uintptr_t)rgep;
2087 		maxoff = sizeof (*rgep);
2088 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
2089 		break;
2090 
2091 	case RGE_PP_SPACE_STATISTICS:
2092 	case RGE_PP_SPACE_TXDESC:
2093 	case RGE_PP_SPACE_TXBUFF:
2094 	case RGE_PP_SPACE_RXDESC:
2095 	case RGE_PP_SPACE_RXBUFF:
2096 		/*
2097 		 * Various DMA_AREAs
2098 		 */
2099 		switch (ppd->pp_acc_space) {
2100 		case RGE_PP_SPACE_TXDESC:
2101 			areap = &rgep->dma_area_txdesc;
2102 			break;
2103 		case RGE_PP_SPACE_RXDESC:
2104 			areap = &rgep->dma_area_rxdesc;
2105 			break;
2106 		case RGE_PP_SPACE_STATISTICS:
2107 			areap = &rgep->dma_area_stats;
2108 			break;
2109 		}
2110 
2111 		sizemask = 8|4|2|1;
2112 		mem_va = (uintptr_t)areap->mem_va;
2113 		maxoff = areap->alength;
2114 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
2115 		break;
2116 	}
2117 
2118 	switch (ppd->pp_acc_size) {
2119 	default:
2120 		return (IOC_INVAL);
2121 
2122 	case 8:
2123 	case 4:
2124 	case 2:
2125 	case 1:
2126 		if ((ppd->pp_acc_size & sizemask) == 0)
2127 			return (IOC_INVAL);
2128 		break;
2129 	}
2130 
2131 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
2132 		return (IOC_INVAL);
2133 
2134 	if (ppd->pp_acc_offset >= maxoff)
2135 		return (IOC_INVAL);
2136 
2137 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
2138 		return (IOC_INVAL);
2139 
2140 	/*
2141 	 * All OK - go do it!
2142 	 */
2143 	ppd->pp_acc_offset += mem_va;
2144 	(*ppfn)(rgep, ppd);
2145 	return (peek ? IOC_REPLY : IOC_ACK);
2146 }
2147 
2148 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2149 					struct iocblk *iocp);
2150 #pragma	no_inline(rge_diag_ioctl)
2151 
2152 static enum ioc_reply
rge_diag_ioctl(rge_t * rgep,int cmd,mblk_t * mp,struct iocblk * iocp)2153 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2154 {
2155 	ASSERT(mutex_owned(rgep->genlock));
2156 
2157 	switch (cmd) {
2158 	default:
2159 		/* NOTREACHED */
2160 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
2161 		return (IOC_INVAL);
2162 
2163 	case RGE_DIAG:
2164 		/*
2165 		 * Currently a no-op
2166 		 */
2167 		return (IOC_ACK);
2168 
2169 	case RGE_PEEK:
2170 	case RGE_POKE:
2171 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
2172 
2173 	case RGE_PHY_RESET:
2174 		return (IOC_RESTART_ACK);
2175 
2176 	case RGE_SOFT_RESET:
2177 	case RGE_HARD_RESET:
2178 		/*
2179 		 * Reset and reinitialise the 570x hardware
2180 		 */
2181 		rge_restart(rgep);
2182 		return (IOC_ACK);
2183 	}
2184 
2185 	/* NOTREACHED */
2186 }
2187 
2188 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2189 
2190 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2191 				    struct iocblk *iocp);
2192 #pragma	no_inline(rge_mii_ioctl)
2193 
2194 static enum ioc_reply
rge_mii_ioctl(rge_t * rgep,int cmd,mblk_t * mp,struct iocblk * iocp)2195 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2196 {
2197 	struct rge_mii_rw *miirwp;
2198 
2199 	/*
2200 	 * Validate format of ioctl
2201 	 */
2202 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2203 		return (IOC_INVAL);
2204 	if (mp->b_cont == NULL)
2205 		return (IOC_INVAL);
2206 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2207 
2208 	/*
2209 	 * Validate request parameters ...
2210 	 */
2211 	if (miirwp->mii_reg > MII_MAXREG)
2212 		return (IOC_INVAL);
2213 
2214 	switch (cmd) {
2215 	default:
2216 		/* NOTREACHED */
2217 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2218 		return (IOC_INVAL);
2219 
2220 	case RGE_MII_READ:
2221 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2222 		return (IOC_REPLY);
2223 
2224 	case RGE_MII_WRITE:
2225 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2226 		return (IOC_ACK);
2227 	}
2228 
2229 	/* NOTREACHED */
2230 }
2231 
2232 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2233 				struct iocblk *iocp);
2234 #pragma	no_inline(rge_chip_ioctl)
2235 
2236 enum ioc_reply
rge_chip_ioctl(rge_t * rgep,queue_t * wq,mblk_t * mp,struct iocblk * iocp)2237 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2238 {
2239 	int cmd;
2240 
2241 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2242 	    (void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2243 
2244 	ASSERT(mutex_owned(rgep->genlock));
2245 
2246 	cmd = iocp->ioc_cmd;
2247 	switch (cmd) {
2248 	default:
2249 		/* NOTREACHED */
2250 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2251 		return (IOC_INVAL);
2252 
2253 	case RGE_DIAG:
2254 	case RGE_PEEK:
2255 	case RGE_POKE:
2256 	case RGE_PHY_RESET:
2257 	case RGE_SOFT_RESET:
2258 	case RGE_HARD_RESET:
2259 #if	RGE_DEBUGGING || RGE_DO_PPIO
2260 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2261 #else
2262 		return (IOC_INVAL);
2263 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2264 
2265 	case RGE_MII_READ:
2266 	case RGE_MII_WRITE:
2267 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2268 
2269 	}
2270 
2271 	/* NOTREACHED */
2272 }
2273