xref: /illumos-gate/usr/src/uts/common/io/rge/rge_chip.c (revision fcdb3229a31dd4ff700c69238814e326aad49098)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  * Copyright 2025 Oxide Computer Company
26  */
27 
28 #include "rge.h"
29 
30 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
31 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
32 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
33 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
34 
35 /*
36  * Patchable globals:
37  *
38  *	rge_autorecover
39  *		Enables/disables automatic recovery after fault detection
40  */
41 static uint32_t rge_autorecover = 1;
42 
43 /*
44  * globals:
45  */
46 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
47 static uint32_t rge_watchdog_count	= 1 << 5;
48 static uint32_t rge_rx_watchdog_count	= 1 << 3;
49 
50 /*
51  * Operating register get/set access routines
52  */
53 
54 static uint32_t
rge_reg_get32(rge_t * rgep,uintptr_t regno)55 rge_reg_get32(rge_t *rgep, uintptr_t regno)
56 {
57 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
58 	    (void *)rgep, regno));
59 
60 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
61 }
62 
63 static void
rge_reg_put32(rge_t * rgep,uintptr_t regno,uint32_t data)64 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
65 {
66 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
67 	    (void *)rgep, regno, data));
68 
69 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
70 }
71 
72 static void
rge_reg_set32(rge_t * rgep,uintptr_t regno,uint32_t bits)73 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
74 {
75 	uint32_t regval;
76 
77 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
78 	    (void *)rgep, regno, bits));
79 
80 	regval = rge_reg_get32(rgep, regno);
81 	regval |= bits;
82 	rge_reg_put32(rgep, regno, regval);
83 }
84 
85 static void
rge_reg_clr32(rge_t * rgep,uintptr_t regno,uint32_t bits)86 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
87 {
88 	uint32_t regval;
89 
90 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
91 	    (void *)rgep, regno, bits));
92 
93 	regval = rge_reg_get32(rgep, regno);
94 	regval &= ~bits;
95 	rge_reg_put32(rgep, regno, regval);
96 }
97 
98 static uint16_t
rge_reg_get16(rge_t * rgep,uintptr_t regno)99 rge_reg_get16(rge_t *rgep, uintptr_t regno)
100 {
101 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
102 	    (void *)rgep, regno));
103 
104 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
105 }
106 
107 static void
rge_reg_put16(rge_t * rgep,uintptr_t regno,uint16_t data)108 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
109 {
110 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
111 	    (void *)rgep, regno, data));
112 
113 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
114 }
115 
116 static uint8_t
rge_reg_get8(rge_t * rgep,uintptr_t regno)117 rge_reg_get8(rge_t *rgep, uintptr_t regno)
118 {
119 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
120 	    (void *)rgep, regno));
121 
122 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
123 }
124 
125 static void
rge_reg_put8(rge_t * rgep,uintptr_t regno,uint8_t data)126 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
127 {
128 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
129 	    (void *)rgep, regno, data));
130 
131 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
132 }
133 
134 static void
rge_reg_set8(rge_t * rgep,uintptr_t regno,uint8_t bits)135 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
136 {
137 	uint8_t regval;
138 
139 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
140 	    (void *)rgep, regno, bits));
141 
142 	regval = rge_reg_get8(rgep, regno);
143 	regval |= bits;
144 	rge_reg_put8(rgep, regno, regval);
145 }
146 
147 static void
rge_reg_clr8(rge_t * rgep,uintptr_t regno,uint8_t bits)148 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
149 {
150 	uint8_t regval;
151 
152 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
153 	    (void *)rgep, regno, bits));
154 
155 	regval = rge_reg_get8(rgep, regno);
156 	regval &= ~bits;
157 	rge_reg_put8(rgep, regno, regval);
158 }
159 
160 uint16_t
rge_mii_get16(rge_t * rgep,uintptr_t mii)161 rge_mii_get16(rge_t *rgep, uintptr_t mii)
162 {
163 	uint32_t regval;
164 	uint32_t val32;
165 	uint32_t i;
166 
167 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
168 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
169 
170 	/*
171 	 * Waiting for PHY reading OK
172 	 */
173 	for (i = 0; i < PHY_RESET_LOOP; i++) {
174 		drv_usecwait(1000);
175 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
176 		if (val32 & PHY_ACCESS_WR_FLAG)
177 			return ((uint16_t)(val32 & 0xffff));
178 	}
179 
180 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
181 	return ((uint16_t)~0u);
182 }
183 
184 void
rge_mii_put16(rge_t * rgep,uintptr_t mii,uint16_t data)185 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
186 {
187 	uint32_t regval;
188 	uint32_t val32;
189 	uint32_t i;
190 
191 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
192 	regval |= data & PHY_DATA_MASK;
193 	regval |= PHY_ACCESS_WR_FLAG;
194 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
195 
196 	/*
197 	 * Waiting for PHY writing OK
198 	 */
199 	for (i = 0; i < PHY_RESET_LOOP; i++) {
200 		drv_usecwait(1000);
201 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
202 		if (!(val32 & PHY_ACCESS_WR_FLAG))
203 			return;
204 	}
205 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
206 	    mii, data));
207 }
208 
209 void
rge_ephy_put16(rge_t * rgep,uintptr_t emii,uint16_t data)210 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
211 {
212 	uint32_t regval;
213 	uint32_t val32;
214 	uint32_t i;
215 
216 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
217 	regval |= data & EPHY_DATA_MASK;
218 	regval |= EPHY_ACCESS_WR_FLAG;
219 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
220 
221 	/*
222 	 * Waiting for PHY writing OK
223 	 */
224 	for (i = 0; i < PHY_RESET_LOOP; i++) {
225 		drv_usecwait(1000);
226 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
227 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
228 			return;
229 	}
230 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
231 	    emii, data));
232 }
233 
234 /*
235  * Atomically shift a 32-bit word left, returning
236  * the value it had *before* the shift was applied
237  */
238 static uint32_t
rge_atomic_shl32(uint32_t * sp,uint_t count)239 rge_atomic_shl32(uint32_t *sp, uint_t count)
240 {
241 	uint32_t oldval;
242 	uint32_t newval;
243 
244 	/* ATOMICALLY */
245 	do {
246 		oldval = *sp;
247 		newval = oldval << count;
248 	} while (atomic_cas_32(sp, oldval, newval) != oldval);
249 
250 	return (oldval);
251 }
252 
253 /*
254  * PHY operation routines
255  */
256 #if	RGE_DEBUGGING
257 
258 void
rge_phydump(rge_t * rgep)259 rge_phydump(rge_t *rgep)
260 {
261 	uint16_t regs[32];
262 	int i;
263 
264 	ASSERT(mutex_owned(rgep->genlock));
265 
266 	for (i = 0; i < 32; ++i) {
267 		regs[i] = rge_mii_get16(rgep, i);
268 	}
269 
270 	for (i = 0; i < 32; i += 8)
271 		RGE_DEBUG(("rge_phydump: "
272 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
273 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
274 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
275 }
276 
277 #endif	/* RGE_DEBUGGING */
278 
279 static void
rge_phy_check(rge_t * rgep)280 rge_phy_check(rge_t *rgep)
281 {
282 	uint16_t gig_ctl;
283 
284 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
285 		/*
286 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
287 		 * every 15 seconds whin link down & advertise is 1000.
288 		 */
289 		if (rgep->chipid.phy_ver == PHY_VER_S) {
290 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
291 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
292 				rgep->link_down_count++;
293 				if (rgep->link_down_count > 15) {
294 					(void) rge_phy_reset(rgep);
295 					rgep->stats.phy_reset++;
296 					rgep->link_down_count = 0;
297 				}
298 			}
299 		}
300 	} else {
301 		rgep->link_down_count = 0;
302 	}
303 }
304 
305 /*
306  * Basic low-level function to reset the PHY.
307  * Doesn't incorporate any special-case workarounds.
308  *
309  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
310  */
311 boolean_t
rge_phy_reset(rge_t * rgep)312 rge_phy_reset(rge_t *rgep)
313 {
314 	uint16_t control;
315 	uint_t count;
316 
317 	/*
318 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
319 	 */
320 	control = rge_mii_get16(rgep, MII_CONTROL);
321 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
322 	for (count = 0; count < 5; count++) {
323 		drv_usecwait(100);
324 		control = rge_mii_get16(rgep, MII_CONTROL);
325 		if (BIC(control, MII_CONTROL_RESET))
326 			return (B_TRUE);
327 	}
328 
329 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
330 	return (B_FALSE);
331 }
332 
333 /*
334  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
335  * and advertisements with the required settings as specified by the various
336  * param_* variables that can be poked via the NDD interface.
337  *
338  * We always reset the PHY and reprogram *all* the relevant registers,
339  * not just those changed.  This should cause the link to go down, and then
340  * back up again once the link is stable and autonegotiation (if enabled)
341  * is complete.  We should get a link state change interrupt somewhere along
342  * the way ...
343  *
344  * NOTE: <genlock> must already be held by the caller
345  */
346 void
rge_phy_update(rge_t * rgep)347 rge_phy_update(rge_t *rgep)
348 {
349 	boolean_t adv_autoneg;
350 	boolean_t adv_pause;
351 	boolean_t adv_asym_pause;
352 	boolean_t adv_1000fdx;
353 	boolean_t adv_1000hdx;
354 	boolean_t adv_100fdx;
355 	boolean_t adv_100hdx;
356 	boolean_t adv_10fdx;
357 	boolean_t adv_10hdx;
358 
359 	uint16_t control;
360 	uint16_t gigctrl;
361 	uint16_t anar;
362 
363 	ASSERT(mutex_owned(rgep->genlock));
364 
365 	RGE_DEBUG(("rge_phy_update: autoneg %d "
366 	    "pause %d asym_pause %d "
367 	    "1000fdx %d 1000hdx %d "
368 	    "100fdx %d 100hdx %d "
369 	    "10fdx %d 10hdx %d ",
370 	    rgep->param_adv_autoneg,
371 	    rgep->param_adv_pause, rgep->param_adv_asym_pause,
372 	    rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
373 	    rgep->param_adv_100fdx, rgep->param_adv_100hdx,
374 	    rgep->param_adv_10fdx, rgep->param_adv_10hdx));
375 
376 	control = gigctrl = anar = 0;
377 
378 	/*
379 	 * PHY settings are normally based on the param_* variables,
380 	 * but if any loopback mode is in effect, that takes precedence.
381 	 *
382 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
383 	 * and External loopback at a variety of speeds (with a special
384 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
385 	 * is turned ON, and the speed/mastership is forced.
386 	 */
387 	switch (rgep->param_loop_mode) {
388 	case RGE_LOOP_NONE:
389 	default:
390 		adv_autoneg = rgep->param_adv_autoneg;
391 		adv_pause = rgep->param_adv_pause;
392 		adv_asym_pause = rgep->param_adv_asym_pause;
393 		adv_1000fdx = rgep->param_adv_1000fdx;
394 		adv_1000hdx = rgep->param_adv_1000hdx;
395 		adv_100fdx = rgep->param_adv_100fdx;
396 		adv_100hdx = rgep->param_adv_100hdx;
397 		adv_10fdx = rgep->param_adv_10fdx;
398 		adv_10hdx = rgep->param_adv_10hdx;
399 		break;
400 
401 	case RGE_LOOP_INTERNAL_PHY:
402 	case RGE_LOOP_INTERNAL_MAC:
403 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
404 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
405 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
406 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
407 
408 		switch (rgep->param_loop_mode) {
409 		case RGE_LOOP_INTERNAL_PHY:
410 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
411 				rgep->param_link_speed = 1000;
412 				adv_1000fdx = B_TRUE;
413 			} else {
414 				rgep->param_link_speed = 100;
415 				adv_100fdx = B_TRUE;
416 			}
417 			control = MII_CONTROL_LOOPBACK;
418 			break;
419 
420 		case RGE_LOOP_INTERNAL_MAC:
421 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
422 				rgep->param_link_speed = 1000;
423 				adv_1000fdx = B_TRUE;
424 			} else {
425 				rgep->param_link_speed = 100;
426 				adv_100fdx = B_TRUE;
427 			}
428 			break;
429 		}
430 	}
431 
432 	RGE_DEBUG(("rge_phy_update: autoneg %d "
433 	    "pause %d asym_pause %d "
434 	    "1000fdx %d 1000hdx %d "
435 	    "100fdx %d 100hdx %d "
436 	    "10fdx %d 10hdx %d ",
437 	    adv_autoneg,
438 	    adv_pause, adv_asym_pause,
439 	    adv_1000fdx, adv_1000hdx,
440 	    adv_100fdx, adv_100hdx,
441 	    adv_10fdx, adv_10hdx));
442 
443 	/*
444 	 * We should have at least one technology capability set;
445 	 * if not, we select a default of 1000Mb/s full-duplex
446 	 */
447 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
448 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx) {
449 		if (rgep->chipid.mac_ver != MAC_VER_8101E) {
450 			adv_1000fdx = B_TRUE;
451 		} else {
452 			adv_100fdx = B_TRUE;
453 		}
454 	}
455 
456 	/*
457 	 * Now transform the adv_* variables into the proper settings
458 	 * of the PHY registers ...
459 	 *
460 	 * If autonegotiation is (now) enabled, we want to trigger
461 	 * a new autonegotiation cycle once the PHY has been
462 	 * programmed with the capabilities to be advertised.
463 	 *
464 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
465 	 */
466 	if (adv_autoneg)
467 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
468 
469 	if (adv_1000fdx)
470 		control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX;
471 	else if (adv_1000hdx)
472 		control |= MII_CONTROL_1GB;
473 	else if (adv_100fdx)
474 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
475 	else if (adv_100hdx)
476 		control |= MII_CONTROL_100MB;
477 	else if (adv_10fdx)
478 		control |= MII_CONTROL_FDUPLEX;
479 	else if (adv_10hdx)
480 		control |= 0;
481 	else
482 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
483 
484 	if (adv_1000fdx) {
485 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
486 		/*
487 		 * Chipset limitation: need set other capabilities to true
488 		 */
489 		if (rgep->chipid.is_pcie)
490 			adv_1000hdx = B_TRUE;
491 		adv_100fdx = B_TRUE;
492 		adv_100hdx  = B_TRUE;
493 		adv_10fdx = B_TRUE;
494 		adv_10hdx = B_TRUE;
495 	}
496 
497 	if (adv_1000hdx)
498 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
499 
500 	if (adv_100fdx)
501 		anar |= MII_ABILITY_100BASE_TX_FD;
502 	if (adv_100hdx)
503 		anar |= MII_ABILITY_100BASE_TX;
504 	if (adv_10fdx)
505 		anar |= MII_ABILITY_10BASE_T_FD;
506 	if (adv_10hdx)
507 		anar |= MII_ABILITY_10BASE_T;
508 
509 	if (adv_pause)
510 		anar |= MII_ABILITY_PAUSE;
511 	if (adv_asym_pause)
512 		anar |= MII_ABILITY_ASMPAUSE;
513 
514 	/*
515 	 * Munge in any other fixed bits we require ...
516 	 */
517 	anar |= MII_AN_SELECTOR_8023;
518 
519 	/*
520 	 * Restart the PHY and write the new values.  Note the
521 	 * time, so that we can say whether subsequent link state
522 	 * changes can be attributed to our reprogramming the PHY
523 	 */
524 	rge_phy_init(rgep);
525 	if (rgep->chipid.mac_ver == MAC_VER_8168B_B ||
526 	    rgep->chipid.mac_ver == MAC_VER_8168B_C) {
527 		/* power up PHY for RTL8168B chipset */
528 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
529 		rge_mii_put16(rgep, PHY_0E_REG, 0x0000);
530 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
531 	}
532 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
533 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
534 	rge_mii_put16(rgep, MII_CONTROL, control);
535 
536 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
537 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
538 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
539 }
540 
541 void
rge_phy_init(rge_t * rgep)542 rge_phy_init(rge_t *rgep)
543 {
544 	rgep->phy_mii_addr = 1;
545 
546 	/*
547 	 * Below phy config steps are copied from the Programming Guide
548 	 * (there's no detail comments for these steps.)
549 	 */
550 	switch (rgep->chipid.mac_ver) {
551 	case MAC_VER_8169S_D:
552 	case MAC_VER_8169S_E:
553 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
554 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
555 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
556 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
557 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
558 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
559 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
560 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
561 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
562 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
563 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
564 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
565 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
566 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
567 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
568 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
569 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
570 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
571 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
572 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
573 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
574 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
575 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
576 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
577 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
578 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
579 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
580 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
581 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
582 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
583 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
584 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
585 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
586 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
587 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
588 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
589 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
590 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
591 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
592 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
593 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
594 		break;
595 
596 	case MAC_VER_8169SB:
597 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
598 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
599 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
600 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
601 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
602 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
603 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
604 		break;
605 
606 	case MAC_VER_8169SC:
607 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
608 		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
609 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
610 		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
611 		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
612 		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
613 		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
614 		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
615 		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
616 		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
617 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
618 		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
619 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
620 		break;
621 
622 	case MAC_VER_8168:
623 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
624 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
625 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
626 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
627 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
628 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
629 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
630 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
631 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
632 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
633 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
634 		break;
635 
636 	case MAC_VER_8168B_B:
637 	case MAC_VER_8168B_C:
638 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
639 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
640 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
641 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
642 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
643 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
644 		break;
645 	}
646 }
647 
648 void
rge_chip_ident(rge_t * rgep)649 rge_chip_ident(rge_t *rgep)
650 {
651 	chip_id_t *chip = &rgep->chipid;
652 	uint32_t val32;
653 	uint16_t val16;
654 
655 	/*
656 	 * Read and record MAC version
657 	 */
658 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
659 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
660 	chip->mac_ver = val32;
661 	chip->is_pcie = pci_lcap_locate(rgep->cfg_handle,
662 	    PCI_CAP_ID_PCI_E, &val16) == DDI_SUCCESS;
663 
664 	/*
665 	 * Workaround for 8101E_C
666 	 */
667 	chip->enable_mac_first = !chip->is_pcie;
668 	if (chip->mac_ver == MAC_VER_8101E_C) {
669 		chip->is_pcie = B_FALSE;
670 	}
671 
672 	/*
673 	 * Read and record PHY version
674 	 */
675 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
676 	val16 &= PHY_VER_MASK;
677 	chip->phy_ver = val16;
678 
679 	/* set pci latency timer */
680 	if (chip->mac_ver == MAC_VER_8169 ||
681 	    chip->mac_ver == MAC_VER_8169S_D ||
682 	    chip->mac_ver == MAC_VER_8169S_E ||
683 	    chip->mac_ver == MAC_VER_8169SC)
684 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
685 
686 	if (chip->mac_ver == MAC_VER_8169SC) {
687 		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
688 		val16 &= 0x0300;
689 		if (val16 == 0x1)	/* 66Mhz PCI */
690 			rge_reg_put32(rgep, 0x7c, 0x000700ff);
691 		else if (val16 == 0x0) /* 33Mhz PCI */
692 			rge_reg_put32(rgep, 0x7c, 0x0007ff00);
693 	}
694 
695 	/*
696 	 * PCIE chipset require the Rx buffer start address must be
697 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
698 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
699 	 */
700 	if (chip->is_pcie) {
701 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
702 		if (rgep->default_mtu > ETHERMTU) {
703 			rge_notice(rgep, "Jumbo packets not supported "
704 			    "for this PCIE chipset");
705 			rgep->default_mtu = ETHERMTU;
706 		}
707 	}
708 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
709 		rgep->head_room = 0;
710 	else
711 		rgep->head_room = RGE_HEADROOM;
712 
713 	/*
714 	 * Initialize other variables.
715 	 */
716 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
717 		rgep->default_mtu = ETHERMTU;
718 	if (rgep->default_mtu > ETHERMTU) {
719 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
720 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
721 		rgep->ethmax_size = RGE_JUMBO_SIZE;
722 	} else {
723 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
724 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
725 		rgep->ethmax_size = ETHERMAX;
726 	}
727 	chip->rxconfig = RX_CONFIG_DEFAULT;
728 	chip->txconfig = TX_CONFIG_DEFAULT;
729 
730 	/* interval to update statistics for polling mode */
731 	rgep->tick_delta = drv_usectohz(1000*1000/CLK_TICK);
732 
733 	/* ensure we are not in polling mode */
734 	rgep->curr_tick = ddi_get_lbolt() - 2*rgep->tick_delta;
735 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
736 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
737 }
738 
739 /*
740  * Perform first-stage chip (re-)initialisation, using only config-space
741  * accesses:
742  *
743  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
744  *   returning the data in the structure pointed to by <idp>.
745  * + Enable Memory Space accesses.
746  * + Enable Bus Mastering according.
747  */
748 void
rge_chip_cfg_init(rge_t * rgep,chip_id_t * cidp)749 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
750 {
751 	ddi_acc_handle_t handle;
752 	uint16_t commd;
753 
754 	handle = rgep->cfg_handle;
755 
756 	/*
757 	 * Save PCI cache line size and subsystem vendor ID
758 	 */
759 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
760 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
761 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
762 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
763 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
764 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
765 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
766 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
767 
768 	/*
769 	 * Turn on Master Enable (DMA) and IO Enable bits.
770 	 * Enable PCI Memory Space accesses
771 	 */
772 	commd = cidp->command;
773 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
774 	pci_config_put16(handle, PCI_CONF_COMM, commd);
775 
776 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
777 	    cidp->vendor, cidp->device, cidp->revision));
778 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
779 	    cidp->subven, cidp->subdev));
780 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
781 	    cidp->clsize, cidp->latency, cidp->command));
782 }
783 
784 int
rge_chip_reset(rge_t * rgep)785 rge_chip_reset(rge_t *rgep)
786 {
787 	int i;
788 	uint8_t val8;
789 
790 	/*
791 	 * Chip should be in STOP state
792 	 */
793 	rge_reg_clr8(rgep, RT_COMMAND_REG,
794 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
795 
796 	/*
797 	 * Disable interrupt
798 	 */
799 	rgep->int_mask = INT_MASK_NONE;
800 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
801 
802 	/*
803 	 * Clear pended interrupt
804 	 */
805 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
806 
807 	/*
808 	 * Reset chip
809 	 */
810 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
811 
812 	/*
813 	 * Wait for reset success
814 	 */
815 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
816 		drv_usecwait(10);
817 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
818 		if (!(val8 & RT_COMMAND_RESET)) {
819 			rgep->rge_chip_state = RGE_CHIP_RESET;
820 			return (0);
821 		}
822 	}
823 	RGE_REPORT((rgep, "rge_chip_reset fail."));
824 	return (-1);
825 }
826 
827 void
rge_chip_init(rge_t * rgep)828 rge_chip_init(rge_t *rgep)
829 {
830 	uint32_t val32;
831 	uint32_t val16;
832 	uint32_t *hashp;
833 	chip_id_t *chip = &rgep->chipid;
834 
835 	/*
836 	 * Increase the threshold voltage of RX sensitivity
837 	 */
838 	if (chip->mac_ver == MAC_VER_8168B_B ||
839 	    chip->mac_ver == MAC_VER_8168B_C ||
840 	    chip->mac_ver == MAC_VER_8101E) {
841 		rge_ephy_put16(rgep, 0x01, 0x1bd3);
842 	}
843 
844 	if (chip->mac_ver == MAC_VER_8168 ||
845 	    chip->mac_ver == MAC_VER_8168B_B) {
846 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
847 		val16 = 0x12<<8 | val16;
848 		rge_reg_put16(rgep, PHY_STATUS_REG, val16);
849 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
850 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
851 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
852 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
853 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
854 		val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
855 		val32 |= 0x7000;
856 		val32 &= 0xffff5fff;
857 		rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
858 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
859 	}
860 
861 	/*
862 	 * Config MII register
863 	 */
864 	rgep->param_link_up = LINK_STATE_DOWN;
865 	rge_phy_update(rgep);
866 
867 	/*
868 	 * Enable Rx checksum offload.
869 	 *  Then for vlan support, we must enable receive vlan de-tagging.
870 	 *  Otherwise, there'll be checksum error.
871 	 */
872 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
873 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
874 	if (chip->mac_ver == MAC_VER_8169S_D) {
875 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
876 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
877 	}
878 	if (chip->mac_ver == MAC_VER_8169S_E ||
879 	    chip->mac_ver == MAC_VER_8169SC) {
880 		val16 |= MUL_PCI_RW_ENABLE;
881 	}
882 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
883 
884 	/*
885 	 * Start transmit/receive before set tx/rx configuration register
886 	 */
887 	if (chip->enable_mac_first)
888 		rge_reg_set8(rgep, RT_COMMAND_REG,
889 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
890 
891 	/*
892 	 * Change to config register write enable mode
893 	 */
894 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
895 
896 	/*
897 	 * Set Tx/Rx maximum packet size
898 	 */
899 	if (rgep->default_mtu > ETHERMTU) {
900 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
901 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
902 	} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
903 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
904 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
905 	} else {
906 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
907 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
908 	}
909 
910 	/*
911 	 * Set receive configuration register
912 	 */
913 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
914 	val32 &= RX_CONFIG_REG_RESV;
915 	if (rgep->promisc)
916 		val32 |= RX_ACCEPT_ALL_PKT;
917 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
918 
919 	/*
920 	 * Set transmit configuration register
921 	 */
922 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
923 	val32 &= TX_CONFIG_REG_RESV;
924 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
925 
926 	/*
927 	 * Set Tx/Rx descriptor register
928 	 */
929 	val32 = rgep->tx_desc.cookie.dmac_laddress;
930 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
931 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
932 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
933 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
934 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
935 	val32 = rgep->rx_desc.cookie.dmac_laddress;
936 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
937 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
938 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
939 
940 	/*
941 	 * Suggested setting from Realtek
942 	 */
943 	if (rgep->chipid.mac_ver != MAC_VER_8101E)
944 		rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
945 	else
946 		rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
947 
948 	/*
949 	 * Set multicast register
950 	 */
951 	hashp = (uint32_t *)rgep->mcast_hash;
952 	if (rgep->promisc) {
953 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
954 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
955 	} else {
956 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
957 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
958 	}
959 
960 	/*
961 	 * Msic register setting:
962 	 *   -- Missed packet counter: clear it
963 	 *   -- TimerInt Register
964 	 *   -- Timer count register
965 	 */
966 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
967 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
968 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
969 
970 	/*
971 	 * disable the Unicast Wakeup Frame capability
972 	 */
973 	rge_reg_clr8(rgep, RT_CONFIG_5_REG, RT_UNI_WAKE_FRAME);
974 
975 	/*
976 	 * Return to normal network/host communication mode
977 	 */
978 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
979 	drv_usecwait(20);
980 }
981 
982 /*
983  * rge_chip_start() -- start the chip transmitting and/or receiving,
984  * including enabling interrupts
985  */
986 void
rge_chip_start(rge_t * rgep)987 rge_chip_start(rge_t *rgep)
988 {
989 	/*
990 	 * Clear statistics
991 	 */
992 	bzero(&rgep->stats, sizeof (rge_stats_t));
993 	DMA_ZERO(rgep->dma_area_stats);
994 
995 	/*
996 	 * Start transmit/receive
997 	 */
998 	rge_reg_set8(rgep, RT_COMMAND_REG,
999 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1000 
1001 	/*
1002 	 * Enable interrupt
1003 	 */
1004 	rgep->int_mask = RGE_INT_MASK;
1005 	if (rgep->chipid.is_pcie) {
1006 		rgep->int_mask |= NO_TXDESC_INT;
1007 	}
1008 	rgep->rx_fifo_ovf = 0;
1009 	rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
1010 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1011 
1012 	/*
1013 	 * All done!
1014 	 */
1015 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1016 }
1017 
1018 /*
1019  * rge_chip_stop() -- stop board receiving
1020  *
1021  * Since this function is also invoked by rge_quiesce(), it
1022  * must not block; also, no tracing or logging takes place
1023  * when invoked by rge_quiesce().
1024  */
1025 void
rge_chip_stop(rge_t * rgep,boolean_t fault)1026 rge_chip_stop(rge_t *rgep, boolean_t fault)
1027 {
1028 	/*
1029 	 * Disable interrupt
1030 	 */
1031 	rgep->int_mask = INT_MASK_NONE;
1032 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1033 
1034 	/*
1035 	 * Clear pended interrupt
1036 	 */
1037 	if (!rgep->suspended) {
1038 		rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1039 	}
1040 
1041 	/*
1042 	 * Stop the board and disable transmit/receive
1043 	 */
1044 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1045 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1046 
1047 	if (fault)
1048 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1049 	else
1050 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1051 }
1052 
1053 /*
1054  * rge_get_mac_addr() -- get the MAC address on NIC
1055  */
1056 static void
rge_get_mac_addr(rge_t * rgep)1057 rge_get_mac_addr(rge_t *rgep)
1058 {
1059 	uint8_t *macaddr = rgep->netaddr;
1060 	uint32_t val32;
1061 
1062 	/*
1063 	 * Read first 4-byte of mac address
1064 	 */
1065 	val32 = rge_reg_get32(rgep, ID_0_REG);
1066 	macaddr[0] = val32 & 0xff;
1067 	val32 = val32 >> 8;
1068 	macaddr[1] = val32 & 0xff;
1069 	val32 = val32 >> 8;
1070 	macaddr[2] = val32 & 0xff;
1071 	val32 = val32 >> 8;
1072 	macaddr[3] = val32 & 0xff;
1073 
1074 	/*
1075 	 * Read last 2-byte of mac address
1076 	 */
1077 	val32 = rge_reg_get32(rgep, ID_4_REG);
1078 	macaddr[4] = val32 & 0xff;
1079 	val32 = val32 >> 8;
1080 	macaddr[5] = val32 & 0xff;
1081 }
1082 
1083 static void
rge_set_mac_addr(rge_t * rgep)1084 rge_set_mac_addr(rge_t *rgep)
1085 {
1086 	uint8_t *p = rgep->netaddr;
1087 	uint32_t val32;
1088 
1089 	/*
1090 	 * Change to config register write enable mode
1091 	 */
1092 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1093 
1094 	/*
1095 	 * Get first 4 bytes of mac address
1096 	 */
1097 	val32 = p[3];
1098 	val32 = val32 << 8;
1099 	val32 |= p[2];
1100 	val32 = val32 << 8;
1101 	val32 |= p[1];
1102 	val32 = val32 << 8;
1103 	val32 |= p[0];
1104 
1105 	/*
1106 	 * Set first 4 bytes of mac address
1107 	 */
1108 	rge_reg_put32(rgep, ID_0_REG, val32);
1109 
1110 	/*
1111 	 * Get last 2 bytes of mac address
1112 	 */
1113 	val32 = p[5];
1114 	val32 = val32 << 8;
1115 	val32 |= p[4];
1116 
1117 	/*
1118 	 * Set last 2 bytes of mac address
1119 	 */
1120 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1121 	rge_reg_put32(rgep, ID_4_REG, val32);
1122 
1123 	/*
1124 	 * Return to normal network/host communication mode
1125 	 */
1126 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1127 }
1128 
1129 static void
rge_set_multi_addr(rge_t * rgep)1130 rge_set_multi_addr(rge_t *rgep)
1131 {
1132 	uint32_t *hashp;
1133 
1134 	hashp = (uint32_t *)rgep->mcast_hash;
1135 
1136 	/*
1137 	 * Change to config register write enable mode
1138 	 */
1139 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1140 		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1141 	}
1142 	if (rgep->promisc) {
1143 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1144 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1145 	} else {
1146 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1147 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1148 	}
1149 
1150 	/*
1151 	 * Return to normal network/host communication mode
1152 	 */
1153 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1154 		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1155 	}
1156 }
1157 
1158 static void
rge_set_promisc(rge_t * rgep)1159 rge_set_promisc(rge_t *rgep)
1160 {
1161 	if (rgep->promisc)
1162 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1163 	else
1164 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1165 }
1166 
1167 /*
1168  * rge_chip_sync() -- program the chip with the unicast MAC address,
1169  * the multicast hash table, the required level of promiscuity, and
1170  * the current loopback mode ...
1171  */
1172 void
rge_chip_sync(rge_t * rgep,enum rge_sync_op todo)1173 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1174 {
1175 	switch (todo) {
1176 	case RGE_GET_MAC:
1177 		rge_get_mac_addr(rgep);
1178 		break;
1179 	case RGE_SET_MAC:
1180 		/* Reprogram the unicast MAC address(es) ... */
1181 		rge_set_mac_addr(rgep);
1182 		break;
1183 	case RGE_SET_MUL:
1184 		/* Reprogram the hashed multicast address table ... */
1185 		rge_set_multi_addr(rgep);
1186 		break;
1187 	case RGE_SET_PROMISC:
1188 		/* Set or clear the PROMISCUOUS mode bit */
1189 		rge_set_multi_addr(rgep);
1190 		rge_set_promisc(rgep);
1191 		break;
1192 	default:
1193 		break;
1194 	}
1195 }
1196 
1197 /* ARGSUSED */
1198 void
rge_chip_blank(void * arg,time_t ticks,uint_t count,int flag)1199 rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
1200 {
1201 	_NOTE(ARGUNUSED(arg, ticks, count));
1202 }
1203 
1204 void
rge_tx_trigger(rge_t * rgep)1205 rge_tx_trigger(rge_t *rgep)
1206 {
1207 	rge_reg_put8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1208 }
1209 
1210 void
rge_hw_stats_dump(rge_t * rgep)1211 rge_hw_stats_dump(rge_t *rgep)
1212 {
1213 	uint32_t regval = 0;
1214 
1215 	if (rgep->rge_mac_state == RGE_MAC_STOPPED)
1216 		return;
1217 
1218 	/*
1219 	 * Set the stats counter dump address.  First, set the high part of the
1220 	 * address and read it back to ensure it's flushed out.
1221 	 */
1222 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1,
1223 	    rgep->dma_area_stats.cookie.dmac_laddress >> 32);
1224 	(void) rge_reg_get32(rgep, DUMP_COUNTER_REG_1);
1225 
1226 	/*
1227 	 * Then set the low part of the address, preserving the reserved bits:
1228 	 */
1229 	regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1230 	regval &= DUMP_COUNTER_REG_RESV;
1231 	regval |= rgep->dma_area_stats.cookie.dmac_laddress;
1232 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, regval);
1233 
1234 	/*
1235 	 * Set the command bit to start dumping statistics:
1236 	 */
1237 	regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1238 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, regval | DUMP_START);
1239 
1240 	for (uint_t i = 0; i < STATS_DUMP_LOOP; i++) {
1241 		drv_usecwait(100);
1242 
1243 		/*
1244 		 * Check to see if the dump has completed:
1245 		 */
1246 		regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1247 		if ((regval & DUMP_START) == 0) {
1248 			DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1249 			return;
1250 		}
1251 	}
1252 
1253 	RGE_DEBUG(("rge h/w statistics dump fail!"));
1254 	rgep->rge_chip_state = RGE_CHIP_ERROR;
1255 }
1256 
1257 /*
1258  * ========== Hardware interrupt handler ==========
1259  */
1260 
1261 #undef	RGE_DBG
1262 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1263 
1264 static void
rge_wake_factotum(rge_t * rgep)1265 rge_wake_factotum(rge_t *rgep)
1266 {
1267 	if (rgep->factotum_flag == 0) {
1268 		rgep->factotum_flag = 1;
1269 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1270 	}
1271 }
1272 
1273 /*
1274  *	rge_intr() -- handle chip interrupts
1275  */
1276 uint_t
rge_intr(caddr_t arg1,caddr_t arg2)1277 rge_intr(caddr_t arg1, caddr_t arg2)
1278 {
1279 	rge_t *rgep = (rge_t *)arg1;
1280 	uint16_t int_status;
1281 	clock_t	now;
1282 	uint32_t tx_pkts;
1283 	uint32_t rx_pkts;
1284 	uint32_t poll_rate;
1285 	uint32_t opt_pkts;
1286 	uint32_t opt_intrs;
1287 	boolean_t update_int_mask = B_FALSE;
1288 	uint32_t itimer;
1289 
1290 	_NOTE(ARGUNUSED(arg2))
1291 
1292 	mutex_enter(rgep->genlock);
1293 
1294 	if (rgep->suspended) {
1295 		mutex_exit(rgep->genlock);
1296 		return (DDI_INTR_UNCLAIMED);
1297 	}
1298 
1299 	/*
1300 	 * Was this interrupt caused by our device...
1301 	 */
1302 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1303 	if (!(int_status & rgep->int_mask)) {
1304 		mutex_exit(rgep->genlock);
1305 		return (DDI_INTR_UNCLAIMED);
1306 				/* indicate it wasn't our interrupt */
1307 	}
1308 	rgep->stats.intr++;
1309 
1310 	/*
1311 	 * Clear interrupt
1312 	 *	For PCIE chipset, we need disable interrupt first.
1313 	 */
1314 	if (rgep->chipid.is_pcie) {
1315 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1316 		update_int_mask = B_TRUE;
1317 	}
1318 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1319 
1320 	/*
1321 	 * Calculate optimal polling interval
1322 	 */
1323 	now = ddi_get_lbolt();
1324 	if (now - rgep->curr_tick >= rgep->tick_delta &&
1325 	    (rgep->param_link_speed == RGE_SPEED_1000M ||
1326 	    rgep->param_link_speed == RGE_SPEED_100M)) {
1327 		/* number of rx and tx packets in the last tick */
1328 		tx_pkts = rgep->stats.opackets - rgep->last_opackets;
1329 		rx_pkts = rgep->stats.rpackets - rgep->last_rpackets;
1330 
1331 		rgep->last_opackets = rgep->stats.opackets;
1332 		rgep->last_rpackets = rgep->stats.rpackets;
1333 
1334 		/* restore interrupt mask */
1335 		rgep->int_mask |= TX_OK_INT | RX_OK_INT;
1336 		if (rgep->chipid.is_pcie) {
1337 			rgep->int_mask |= NO_TXDESC_INT;
1338 		}
1339 
1340 		/* optimal number of packets in a tick */
1341 		if (rgep->param_link_speed == RGE_SPEED_1000M) {
1342 			opt_pkts = (1000*1000*1000/8)/ETHERMTU/CLK_TICK;
1343 		} else {
1344 			opt_pkts = (100*1000*1000/8)/ETHERMTU/CLK_TICK;
1345 		}
1346 
1347 		/*
1348 		 * calculate polling interval based on rx and tx packets
1349 		 * in the last tick
1350 		 */
1351 		poll_rate = 0;
1352 		if (now - rgep->curr_tick < 2*rgep->tick_delta) {
1353 			opt_intrs = opt_pkts/TX_COALESC;
1354 			if (tx_pkts > opt_intrs) {
1355 				poll_rate = max(tx_pkts/TX_COALESC, opt_intrs);
1356 				rgep->int_mask &= ~(TX_OK_INT | NO_TXDESC_INT);
1357 			}
1358 
1359 			opt_intrs = opt_pkts/RX_COALESC;
1360 			if (rx_pkts > opt_intrs) {
1361 				opt_intrs = max(rx_pkts/RX_COALESC, opt_intrs);
1362 				poll_rate = max(opt_intrs, poll_rate);
1363 				rgep->int_mask &= ~RX_OK_INT;
1364 			}
1365 			/* ensure poll_rate reasonable */
1366 			poll_rate = min(poll_rate, opt_pkts*4);
1367 		}
1368 
1369 		if (poll_rate) {
1370 			/* move to polling mode */
1371 			if (rgep->chipid.is_pcie) {
1372 				itimer = (TIMER_CLK_PCIE/CLK_TICK)/poll_rate;
1373 			} else {
1374 				itimer = (TIMER_CLK_PCI/CLK_TICK)/poll_rate;
1375 			}
1376 		} else {
1377 			/* move to normal mode */
1378 			itimer = 0;
1379 		}
1380 		RGE_DEBUG(("%s: poll: itimer:%d int_mask:0x%x",
1381 		    __func__, itimer, rgep->int_mask));
1382 		rge_reg_put32(rgep, TIMER_INT_REG, itimer);
1383 
1384 		/* update timestamp for statistics */
1385 		rgep->curr_tick = now;
1386 
1387 		/* reset timer */
1388 		int_status |= TIME_OUT_INT;
1389 
1390 		update_int_mask = B_TRUE;
1391 	}
1392 
1393 	if (int_status & TIME_OUT_INT) {
1394 		rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1395 	}
1396 
1397 	/* flush post writes */
1398 	(void) rge_reg_get16(rgep, INT_STATUS_REG);
1399 
1400 	/*
1401 	 * Cable link change interrupt
1402 	 */
1403 	if (int_status & LINK_CHANGE_INT) {
1404 		rge_chip_cyclic(rgep);
1405 	}
1406 
1407 	if (int_status & RX_FIFO_OVERFLOW_INT) {
1408 		/* start rx watchdog timeout detection */
1409 		rgep->rx_fifo_ovf = 1;
1410 		if (rgep->int_mask & RX_FIFO_OVERFLOW_INT) {
1411 			rgep->int_mask &= ~RX_FIFO_OVERFLOW_INT;
1412 			update_int_mask = B_TRUE;
1413 		}
1414 	} else if (int_status & RGE_RX_INT) {
1415 		/* stop rx watchdog timeout detection */
1416 		rgep->rx_fifo_ovf = 0;
1417 		if ((rgep->int_mask & RX_FIFO_OVERFLOW_INT) == 0) {
1418 			rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
1419 			update_int_mask = B_TRUE;
1420 		}
1421 	}
1422 
1423 	mutex_exit(rgep->genlock);
1424 
1425 	/*
1426 	 * Receive interrupt
1427 	 */
1428 	if (int_status & RGE_RX_INT)
1429 		rge_receive(rgep);
1430 
1431 	/*
1432 	 * Transmit interrupt
1433 	 */
1434 	if (int_status & TX_ERR_INT) {
1435 		RGE_REPORT((rgep, "tx error happened, resetting the chip "));
1436 		mutex_enter(rgep->genlock);
1437 		rgep->rge_chip_state = RGE_CHIP_ERROR;
1438 		mutex_exit(rgep->genlock);
1439 	} else if ((rgep->chipid.is_pcie && (int_status & NO_TXDESC_INT)) ||
1440 	    ((int_status & TX_OK_INT) && rgep->tx_free < RGE_SEND_SLOTS/8)) {
1441 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1442 	}
1443 
1444 	/*
1445 	 * System error interrupt
1446 	 */
1447 	if (int_status & SYS_ERR_INT) {
1448 		RGE_REPORT((rgep, "sys error happened, resetting the chip "));
1449 		mutex_enter(rgep->genlock);
1450 		rgep->rge_chip_state = RGE_CHIP_ERROR;
1451 		mutex_exit(rgep->genlock);
1452 	}
1453 
1454 	/*
1455 	 * Re-enable interrupt for PCIE chipset or install new int_mask
1456 	 */
1457 	if (update_int_mask)
1458 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1459 
1460 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1461 }
1462 
1463 /*
1464  * ========== Factotum, implemented as a softint handler ==========
1465  */
1466 
1467 #undef	RGE_DBG
1468 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1469 
1470 static boolean_t
rge_factotum_link_check(rge_t * rgep)1471 rge_factotum_link_check(rge_t *rgep)
1472 {
1473 	uint8_t media_status;
1474 	int32_t link;
1475 
1476 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1477 	link = (media_status & PHY_STATUS_LINK_UP) ?
1478 	    LINK_STATE_UP : LINK_STATE_DOWN;
1479 	if (rgep->param_link_up != link) {
1480 		/*
1481 		 * Link change.
1482 		 */
1483 		rgep->param_link_up = link;
1484 
1485 		if (link == LINK_STATE_UP) {
1486 			if (media_status & PHY_STATUS_1000MF) {
1487 				rgep->param_link_speed = RGE_SPEED_1000M;
1488 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1489 			} else {
1490 				rgep->param_link_speed =
1491 				    (media_status & PHY_STATUS_100M) ?
1492 				    RGE_SPEED_100M : RGE_SPEED_10M;
1493 				rgep->param_link_duplex =
1494 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1495 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1496 			}
1497 		}
1498 		return (B_TRUE);
1499 	}
1500 	return (B_FALSE);
1501 }
1502 
1503 /*
1504  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1505  */
1506 static boolean_t
rge_factotum_stall_check(rge_t * rgep)1507 rge_factotum_stall_check(rge_t *rgep)
1508 {
1509 	uint32_t dogval;
1510 
1511 	ASSERT(mutex_owned(rgep->genlock));
1512 
1513 	/*
1514 	 * Specific check for RX stall ...
1515 	 */
1516 	rgep->rx_fifo_ovf <<= 1;
1517 	if (rgep->rx_fifo_ovf > rge_rx_watchdog_count) {
1518 		RGE_REPORT((rgep, "rx_hang detected"));
1519 		return (B_TRUE);
1520 	}
1521 
1522 	/*
1523 	 * Specific check for Tx stall ...
1524 	 *
1525 	 * The 'watchdog' counter is incremented whenever a packet
1526 	 * is queued, reset to 1 when some (but not all) buffers
1527 	 * are reclaimed, reset to 0 (disabled) when all buffers
1528 	 * are reclaimed, and shifted left here.  If it exceeds the
1529 	 * threshold value, the chip is assumed to have stalled and
1530 	 * is put into the ERROR state.  The factotum will then reset
1531 	 * it on the next pass.
1532 	 *
1533 	 * All of which should ensure that we don't get into a state
1534 	 * where packets are left pending indefinitely!
1535 	 */
1536 	if (rgep->resched_needed)
1537 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1538 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1539 	if (dogval < rge_watchdog_count)
1540 		return (B_FALSE);
1541 
1542 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1543 	return (B_TRUE);
1544 
1545 }
1546 
1547 /*
1548  * The factotum is woken up when there's something to do that we'd rather
1549  * not do from inside a hardware interrupt handler or high-level cyclic.
1550  * Its two main tasks are:
1551  *	reset & restart the chip after an error
1552  *	check the link status whenever necessary
1553  */
1554 uint_t
rge_chip_factotum(caddr_t arg1,caddr_t arg2)1555 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1556 {
1557 	rge_t *rgep;
1558 	uint_t result;
1559 	boolean_t error;
1560 	boolean_t linkchg;
1561 
1562 	rgep = (rge_t *)arg1;
1563 	_NOTE(ARGUNUSED(arg2))
1564 
1565 	if (rgep->factotum_flag == 0)
1566 		return (DDI_INTR_UNCLAIMED);
1567 
1568 	rgep->factotum_flag = 0;
1569 	result = DDI_INTR_CLAIMED;
1570 	error = B_FALSE;
1571 	linkchg = B_FALSE;
1572 
1573 	mutex_enter(rgep->genlock);
1574 	switch (rgep->rge_chip_state) {
1575 	default:
1576 		break;
1577 
1578 	case RGE_CHIP_RUNNING:
1579 		linkchg = rge_factotum_link_check(rgep);
1580 		error = rge_factotum_stall_check(rgep);
1581 		break;
1582 
1583 	case RGE_CHIP_ERROR:
1584 		error = B_TRUE;
1585 		break;
1586 
1587 	case RGE_CHIP_FAULT:
1588 		/*
1589 		 * Fault detected, time to reset ...
1590 		 */
1591 		if (rge_autorecover) {
1592 			RGE_REPORT((rgep, "automatic recovery activated"));
1593 			rge_restart(rgep);
1594 		}
1595 		break;
1596 	}
1597 
1598 	/*
1599 	 * If an error is detected, stop the chip now, marking it as
1600 	 * faulty, so that it will be reset next time through ...
1601 	 */
1602 	if (error)
1603 		rge_chip_stop(rgep, B_TRUE);
1604 	mutex_exit(rgep->genlock);
1605 
1606 	/*
1607 	 * If the link state changed, tell the world about it.
1608 	 * Note: can't do this while still holding the mutex.
1609 	 */
1610 	if (linkchg)
1611 		mac_link_update(rgep->mh, rgep->param_link_up);
1612 
1613 	return (result);
1614 }
1615 
1616 /*
1617  * High-level cyclic handler
1618  *
1619  * This routine schedules a (low-level) softint callback to the
1620  * factotum, and prods the chip to update the status block (which
1621  * will cause a hardware interrupt when complete).
1622  */
1623 void
rge_chip_cyclic(void * arg)1624 rge_chip_cyclic(void *arg)
1625 {
1626 	rge_t *rgep;
1627 
1628 	rgep = arg;
1629 
1630 	switch (rgep->rge_chip_state) {
1631 	default:
1632 		return;
1633 
1634 	case RGE_CHIP_RUNNING:
1635 		rge_phy_check(rgep);
1636 		if (rgep->tx_free < RGE_SEND_SLOTS)
1637 			rge_send_recycle(rgep);
1638 		break;
1639 
1640 	case RGE_CHIP_FAULT:
1641 	case RGE_CHIP_ERROR:
1642 		break;
1643 	}
1644 
1645 	rge_wake_factotum(rgep);
1646 }
1647 
1648 
1649 /*
1650  * ========== Ioctl subfunctions ==========
1651  */
1652 
1653 #undef	RGE_DBG
1654 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1655 
1656 #if	RGE_DEBUGGING || RGE_DO_PPIO
1657 
1658 static void
rge_chip_peek_cfg(rge_t * rgep,rge_peekpoke_t * ppd)1659 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1660 {
1661 	uint64_t regval;
1662 	uint64_t regno;
1663 
1664 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1665 	    (void *)rgep, (void *)ppd));
1666 
1667 	regno = ppd->pp_acc_offset;
1668 
1669 	switch (ppd->pp_acc_size) {
1670 	case 1:
1671 		regval = pci_config_get8(rgep->cfg_handle, regno);
1672 		break;
1673 
1674 	case 2:
1675 		regval = pci_config_get16(rgep->cfg_handle, regno);
1676 		break;
1677 
1678 	case 4:
1679 		regval = pci_config_get32(rgep->cfg_handle, regno);
1680 		break;
1681 
1682 	case 8:
1683 		regval = pci_config_get64(rgep->cfg_handle, regno);
1684 		break;
1685 	}
1686 
1687 	ppd->pp_acc_data = regval;
1688 }
1689 
1690 static void
rge_chip_poke_cfg(rge_t * rgep,rge_peekpoke_t * ppd)1691 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1692 {
1693 	uint64_t regval;
1694 	uint64_t regno;
1695 
1696 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1697 	    (void *)rgep, (void *)ppd));
1698 
1699 	regno = ppd->pp_acc_offset;
1700 	regval = ppd->pp_acc_data;
1701 
1702 	switch (ppd->pp_acc_size) {
1703 	case 1:
1704 		pci_config_put8(rgep->cfg_handle, regno, regval);
1705 		break;
1706 
1707 	case 2:
1708 		pci_config_put16(rgep->cfg_handle, regno, regval);
1709 		break;
1710 
1711 	case 4:
1712 		pci_config_put32(rgep->cfg_handle, regno, regval);
1713 		break;
1714 
1715 	case 8:
1716 		pci_config_put64(rgep->cfg_handle, regno, regval);
1717 		break;
1718 	}
1719 }
1720 
1721 static void
rge_chip_peek_reg(rge_t * rgep,rge_peekpoke_t * ppd)1722 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1723 {
1724 	uint64_t regval;
1725 	void *regaddr;
1726 
1727 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1728 	    (void *)rgep, (void *)ppd));
1729 
1730 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1731 
1732 	switch (ppd->pp_acc_size) {
1733 	case 1:
1734 		regval = ddi_get8(rgep->io_handle, regaddr);
1735 		break;
1736 
1737 	case 2:
1738 		regval = ddi_get16(rgep->io_handle, regaddr);
1739 		break;
1740 
1741 	case 4:
1742 		regval = ddi_get32(rgep->io_handle, regaddr);
1743 		break;
1744 
1745 	case 8:
1746 		regval = ddi_get64(rgep->io_handle, regaddr);
1747 		break;
1748 	}
1749 
1750 	ppd->pp_acc_data = regval;
1751 }
1752 
1753 static void
rge_chip_poke_reg(rge_t * rgep,rge_peekpoke_t * ppd)1754 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1755 {
1756 	uint64_t regval;
1757 	void *regaddr;
1758 
1759 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1760 	    (void *)rgep, (void *)ppd));
1761 
1762 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1763 	regval = ppd->pp_acc_data;
1764 
1765 	switch (ppd->pp_acc_size) {
1766 	case 1:
1767 		ddi_put8(rgep->io_handle, regaddr, regval);
1768 		break;
1769 
1770 	case 2:
1771 		ddi_put16(rgep->io_handle, regaddr, regval);
1772 		break;
1773 
1774 	case 4:
1775 		ddi_put32(rgep->io_handle, regaddr, regval);
1776 		break;
1777 
1778 	case 8:
1779 		ddi_put64(rgep->io_handle, regaddr, regval);
1780 		break;
1781 	}
1782 }
1783 
1784 static void
rge_chip_peek_mii(rge_t * rgep,rge_peekpoke_t * ppd)1785 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1786 {
1787 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1788 	    (void *)rgep, (void *)ppd));
1789 
1790 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1791 }
1792 
1793 static void
rge_chip_poke_mii(rge_t * rgep,rge_peekpoke_t * ppd)1794 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1795 {
1796 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1797 	    (void *)rgep, (void *)ppd));
1798 
1799 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1800 }
1801 
1802 static void
rge_chip_peek_mem(rge_t * rgep,rge_peekpoke_t * ppd)1803 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1804 {
1805 	uint64_t regval;
1806 	void *vaddr;
1807 
1808 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1809 	    (void *)rgep, (void *)ppd));
1810 
1811 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1812 
1813 	switch (ppd->pp_acc_size) {
1814 	case 1:
1815 		regval = *(uint8_t *)vaddr;
1816 		break;
1817 
1818 	case 2:
1819 		regval = *(uint16_t *)vaddr;
1820 		break;
1821 
1822 	case 4:
1823 		regval = *(uint32_t *)vaddr;
1824 		break;
1825 
1826 	case 8:
1827 		regval = *(uint64_t *)vaddr;
1828 		break;
1829 	}
1830 
1831 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1832 	    (void *)rgep, (void *)ppd, regval, vaddr));
1833 
1834 	ppd->pp_acc_data = regval;
1835 }
1836 
1837 static void
rge_chip_poke_mem(rge_t * rgep,rge_peekpoke_t * ppd)1838 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1839 {
1840 	uint64_t regval;
1841 	void *vaddr;
1842 
1843 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1844 	    (void *)rgep, (void *)ppd));
1845 
1846 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1847 	regval = ppd->pp_acc_data;
1848 
1849 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1850 	    (void *)rgep, (void *)ppd, regval, vaddr));
1851 
1852 	switch (ppd->pp_acc_size) {
1853 	case 1:
1854 		*(uint8_t *)vaddr = (uint8_t)regval;
1855 		break;
1856 
1857 	case 2:
1858 		*(uint16_t *)vaddr = (uint16_t)regval;
1859 		break;
1860 
1861 	case 4:
1862 		*(uint32_t *)vaddr = (uint32_t)regval;
1863 		break;
1864 
1865 	case 8:
1866 		*(uint64_t *)vaddr = (uint64_t)regval;
1867 		break;
1868 	}
1869 }
1870 
1871 static enum ioc_reply
rge_pp_ioctl(rge_t * rgep,int cmd,mblk_t * mp,struct iocblk * iocp)1872 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1873 {
1874 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1875 	rge_peekpoke_t *ppd;
1876 	dma_area_t *areap;
1877 	uint64_t sizemask;
1878 	uint64_t mem_va;
1879 	uint64_t maxoff;
1880 	boolean_t peek;
1881 
1882 	switch (cmd) {
1883 	default:
1884 		/* NOTREACHED */
1885 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
1886 		return (IOC_INVAL);
1887 
1888 	case RGE_PEEK:
1889 		peek = B_TRUE;
1890 		break;
1891 
1892 	case RGE_POKE:
1893 		peek = B_FALSE;
1894 		break;
1895 	}
1896 
1897 	/*
1898 	 * Validate format of ioctl
1899 	 */
1900 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
1901 		return (IOC_INVAL);
1902 	if (mp->b_cont == NULL)
1903 		return (IOC_INVAL);
1904 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
1905 
1906 	/*
1907 	 * Validate request parameters
1908 	 */
1909 	switch (ppd->pp_acc_space) {
1910 	default:
1911 		return (IOC_INVAL);
1912 
1913 	case RGE_PP_SPACE_CFG:
1914 		/*
1915 		 * Config space
1916 		 */
1917 		sizemask = 8|4|2|1;
1918 		mem_va = 0;
1919 		maxoff = PCI_CONF_HDR_SIZE;
1920 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
1921 		break;
1922 
1923 	case RGE_PP_SPACE_REG:
1924 		/*
1925 		 * Memory-mapped I/O space
1926 		 */
1927 		sizemask = 8|4|2|1;
1928 		mem_va = 0;
1929 		maxoff = RGE_REGISTER_MAX;
1930 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
1931 		break;
1932 
1933 	case RGE_PP_SPACE_MII:
1934 		/*
1935 		 * PHY's MII registers
1936 		 * NB: all PHY registers are two bytes, but the
1937 		 * addresses increment in ones (word addressing).
1938 		 * So we scale the address here, then undo the
1939 		 * transformation inside the peek/poke functions.
1940 		 */
1941 		ppd->pp_acc_offset *= 2;
1942 		sizemask = 2;
1943 		mem_va = 0;
1944 		maxoff = (MII_MAXREG+1)*2;
1945 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
1946 		break;
1947 
1948 	case RGE_PP_SPACE_RGE:
1949 		/*
1950 		 * RGE data structure!
1951 		 */
1952 		sizemask = 8|4|2|1;
1953 		mem_va = (uintptr_t)rgep;
1954 		maxoff = sizeof (*rgep);
1955 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1956 		break;
1957 
1958 	case RGE_PP_SPACE_STATISTICS:
1959 	case RGE_PP_SPACE_TXDESC:
1960 	case RGE_PP_SPACE_TXBUFF:
1961 	case RGE_PP_SPACE_RXDESC:
1962 	case RGE_PP_SPACE_RXBUFF:
1963 		/*
1964 		 * Various DMA_AREAs
1965 		 */
1966 		switch (ppd->pp_acc_space) {
1967 		case RGE_PP_SPACE_TXDESC:
1968 			areap = &rgep->dma_area_txdesc;
1969 			break;
1970 		case RGE_PP_SPACE_RXDESC:
1971 			areap = &rgep->dma_area_rxdesc;
1972 			break;
1973 		case RGE_PP_SPACE_STATISTICS:
1974 			areap = &rgep->dma_area_stats;
1975 			break;
1976 		}
1977 
1978 		sizemask = 8|4|2|1;
1979 		mem_va = (uintptr_t)areap->mem_va;
1980 		maxoff = areap->alength;
1981 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
1982 		break;
1983 	}
1984 
1985 	switch (ppd->pp_acc_size) {
1986 	default:
1987 		return (IOC_INVAL);
1988 
1989 	case 8:
1990 	case 4:
1991 	case 2:
1992 	case 1:
1993 		if ((ppd->pp_acc_size & sizemask) == 0)
1994 			return (IOC_INVAL);
1995 		break;
1996 	}
1997 
1998 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
1999 		return (IOC_INVAL);
2000 
2001 	if (ppd->pp_acc_offset >= maxoff)
2002 		return (IOC_INVAL);
2003 
2004 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
2005 		return (IOC_INVAL);
2006 
2007 	/*
2008 	 * All OK - go do it!
2009 	 */
2010 	ppd->pp_acc_offset += mem_va;
2011 	(*ppfn)(rgep, ppd);
2012 	return (peek ? IOC_REPLY : IOC_ACK);
2013 }
2014 
2015 static enum ioc_reply
rge_diag_ioctl(rge_t * rgep,int cmd,mblk_t * mp,struct iocblk * iocp)2016 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2017 {
2018 	ASSERT(mutex_owned(rgep->genlock));
2019 
2020 	switch (cmd) {
2021 	default:
2022 		/* NOTREACHED */
2023 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
2024 		return (IOC_INVAL);
2025 
2026 	case RGE_DIAG:
2027 		/*
2028 		 * Currently a no-op
2029 		 */
2030 		return (IOC_ACK);
2031 
2032 	case RGE_PEEK:
2033 	case RGE_POKE:
2034 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
2035 
2036 	case RGE_PHY_RESET:
2037 		return (IOC_RESTART_ACK);
2038 
2039 	case RGE_SOFT_RESET:
2040 	case RGE_HARD_RESET:
2041 		/*
2042 		 * Reset and reinitialise the 570x hardware
2043 		 */
2044 		rge_restart(rgep);
2045 		return (IOC_ACK);
2046 	}
2047 
2048 	/* NOTREACHED */
2049 }
2050 
2051 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2052 
2053 static enum ioc_reply
rge_mii_ioctl(rge_t * rgep,int cmd,mblk_t * mp,struct iocblk * iocp)2054 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2055 {
2056 	struct rge_mii_rw *miirwp;
2057 
2058 	/*
2059 	 * Validate format of ioctl
2060 	 */
2061 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2062 		return (IOC_INVAL);
2063 	if (mp->b_cont == NULL)
2064 		return (IOC_INVAL);
2065 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2066 
2067 	/*
2068 	 * Validate request parameters ...
2069 	 */
2070 	if (miirwp->mii_reg > MII_MAXREG)
2071 		return (IOC_INVAL);
2072 
2073 	switch (cmd) {
2074 	default:
2075 		/* NOTREACHED */
2076 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2077 		return (IOC_INVAL);
2078 
2079 	case RGE_MII_READ:
2080 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2081 		return (IOC_REPLY);
2082 
2083 	case RGE_MII_WRITE:
2084 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2085 		return (IOC_ACK);
2086 	}
2087 
2088 	/* NOTREACHED */
2089 }
2090 
2091 enum ioc_reply
rge_chip_ioctl(rge_t * rgep,queue_t * wq,mblk_t * mp,struct iocblk * iocp)2092 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2093 {
2094 	int cmd;
2095 
2096 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2097 	    (void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2098 
2099 	ASSERT(mutex_owned(rgep->genlock));
2100 
2101 	cmd = iocp->ioc_cmd;
2102 	switch (cmd) {
2103 	default:
2104 		/* NOTREACHED */
2105 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2106 		return (IOC_INVAL);
2107 
2108 	case RGE_DIAG:
2109 	case RGE_PEEK:
2110 	case RGE_POKE:
2111 	case RGE_PHY_RESET:
2112 	case RGE_SOFT_RESET:
2113 	case RGE_HARD_RESET:
2114 #if	RGE_DEBUGGING || RGE_DO_PPIO
2115 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2116 #else
2117 		return (IOC_INVAL);
2118 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2119 
2120 	case RGE_MII_READ:
2121 	case RGE_MII_WRITE:
2122 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2123 
2124 	}
2125 
2126 	/* NOTREACHED */
2127 }
2128