xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision 52418fc2be8efa5172b90a3a9e617017173612c4)
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "poison" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `poison` and fix all the uses later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, poison ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the poison in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/ADT/SmallVector.h"
97 #include "llvm/Analysis/AssumptionCache.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Analysis/ValueTracking.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Dominators.h"
104 #include "llvm/IR/Function.h"
105 #include "llvm/IR/IRBuilder.h"
106 #include "llvm/IR/InstIterator.h"
107 #include "llvm/IR/Instruction.h"
108 #include "llvm/IR/Instructions.h"
109 #include "llvm/IR/IntrinsicInst.h"
110 #include "llvm/IR/Intrinsics.h"
111 #include "llvm/IR/LLVMContext.h"
112 #include "llvm/IR/Operator.h"
113 #include "llvm/IR/PassManager.h"
114 #include "llvm/IR/Type.h"
115 #include "llvm/IR/Use.h"
116 #include "llvm/IR/User.h"
117 #include "llvm/IR/Value.h"
118 #include "llvm/IR/ValueHandle.h"
119 #include "llvm/InitializePasses.h"
120 #include "llvm/Pass.h"
121 #include "llvm/Support/Casting.h"
122 #include "llvm/Support/CommandLine.h"
123 #include "llvm/Support/Compiler.h"
124 #include "llvm/Support/Debug.h"
125 #include "llvm/Support/ErrorHandling.h"
126 #include "llvm/Support/raw_ostream.h"
127 #include "llvm/Transforms/Scalar.h"
128 #include "llvm/Transforms/Utils/Local.h"
129 #include "llvm/Transforms/Utils/ValueMapper.h"
130 #include <cassert>
131 #include <iterator>
132 #include <limits>
133 #include <utility>
134 #include <vector>
135 
136 #define DEBUG_TYPE "infer-address-spaces"
137 
138 using namespace llvm;
139 
140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
141     "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
142     cl::desc("The default address space is assumed as the flat address space. "
143              "This is mainly for test purpose."));
144 
145 static const unsigned UninitializedAddressSpace =
146     std::numeric_limits<unsigned>::max();
147 
148 namespace {
149 
150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
153 // addrspace is inferred on the *use* of a pointer. This map is introduced to
154 // infer addrspace from the addrspace predicate assumption built from assume
155 // intrinsic. In that scenario, only specific uses (under valid assumption
156 // context) could be inferred with a new addrspace.
157 using PredicatedAddrSpaceMapTy =
158     DenseMap<std::pair<const Value *, const Value *>, unsigned>;
159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
160 
161 class InferAddressSpaces : public FunctionPass {
162   unsigned FlatAddrSpace = 0;
163 
164 public:
165   static char ID;
166 
InferAddressSpaces()167   InferAddressSpaces()
168       : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {
169     initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
170   }
InferAddressSpaces(unsigned AS)171   InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {
172     initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
173   }
174 
getAnalysisUsage(AnalysisUsage & AU) const175   void getAnalysisUsage(AnalysisUsage &AU) const override {
176     AU.setPreservesCFG();
177     AU.addPreserved<DominatorTreeWrapperPass>();
178     AU.addRequired<AssumptionCacheTracker>();
179     AU.addRequired<TargetTransformInfoWrapperPass>();
180   }
181 
182   bool runOnFunction(Function &F) override;
183 };
184 
185 class InferAddressSpacesImpl {
186   AssumptionCache &AC;
187   const DominatorTree *DT = nullptr;
188   const TargetTransformInfo *TTI = nullptr;
189   const DataLayout *DL = nullptr;
190 
191   /// Target specific address space which uses of should be replaced if
192   /// possible.
193   unsigned FlatAddrSpace = 0;
194 
195   // Try to update the address space of V. If V is updated, returns true and
196   // false otherwise.
197   bool updateAddressSpace(const Value &V,
198                           ValueToAddrSpaceMapTy &InferredAddrSpace,
199                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
200 
201   // Tries to infer the specific address space of each address expression in
202   // Postorder.
203   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
204                           ValueToAddrSpaceMapTy &InferredAddrSpace,
205                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
206 
207   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
208 
209   Value *cloneInstructionWithNewAddressSpace(
210       Instruction *I, unsigned NewAddrSpace,
211       const ValueToValueMapTy &ValueWithNewAddrSpace,
212       const PredicatedAddrSpaceMapTy &PredicatedAS,
213       SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
214 
215   // Changes the flat address expressions in function F to point to specific
216   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
217   // all flat expressions in the use-def graph of function F.
218   bool
219   rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
220                               const ValueToAddrSpaceMapTy &InferredAddrSpace,
221                               const PredicatedAddrSpaceMapTy &PredicatedAS,
222                               Function *F) const;
223 
224   void appendsFlatAddressExpressionToPostorderStack(
225       Value *V, PostorderStackTy &PostorderStack,
226       DenseSet<Value *> &Visited) const;
227 
228   bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV,
229                                 Value *NewV) const;
230   void collectRewritableIntrinsicOperands(IntrinsicInst *II,
231                                           PostorderStackTy &PostorderStack,
232                                           DenseSet<Value *> &Visited) const;
233 
234   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
235 
236   Value *cloneValueWithNewAddressSpace(
237       Value *V, unsigned NewAddrSpace,
238       const ValueToValueMapTy &ValueWithNewAddrSpace,
239       const PredicatedAddrSpaceMapTy &PredicatedAS,
240       SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
241   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
242 
243   unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const;
244 
245 public:
InferAddressSpacesImpl(AssumptionCache & AC,const DominatorTree * DT,const TargetTransformInfo * TTI,unsigned FlatAddrSpace)246   InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
247                          const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
248       : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
249   bool run(Function &F);
250 };
251 
252 } // end anonymous namespace
253 
254 char InferAddressSpaces::ID = 0;
255 
256 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
257                       false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)258 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
259 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
260 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
261                     false, false)
262 
263 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) {
264   assert(Ty->isPtrOrPtrVectorTy());
265   PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace);
266   return Ty->getWithNewType(NPT);
267 }
268 
269 // Check whether that's no-op pointer bicast using a pair of
270 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
271 // different address spaces.
isNoopPtrIntCastPair(const Operator * I2P,const DataLayout & DL,const TargetTransformInfo * TTI)272 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
273                                  const TargetTransformInfo *TTI) {
274   assert(I2P->getOpcode() == Instruction::IntToPtr);
275   auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
276   if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
277     return false;
278   // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
279   // no-op cast. Besides checking both of them are no-op casts, as the
280   // reinterpreted pointer may be used in other pointer arithmetic, we also
281   // need to double-check that through the target-specific hook. That ensures
282   // the underlying target also agrees that's a no-op address space cast and
283   // pointer bits are preserved.
284   // The current IR spec doesn't have clear rules on address space casts,
285   // especially a clear definition for pointer bits in non-default address
286   // spaces. It would be undefined if that pointer is dereferenced after an
287   // invalid reinterpret cast. Also, due to the unclearness for the meaning of
288   // bits in non-default address spaces in the current spec, the pointer
289   // arithmetic may also be undefined after invalid pointer reinterpret cast.
290   // However, as we confirm through the target hooks that it's a no-op
291   // addrspacecast, it doesn't matter since the bits should be the same.
292   unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
293   unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
294   return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
295                               I2P->getOperand(0)->getType(), I2P->getType(),
296                               DL) &&
297          CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
298                               P2I->getOperand(0)->getType(), P2I->getType(),
299                               DL) &&
300          (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
301 }
302 
303 // Returns true if V is an address expression.
304 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
305 // getelementptr operators.
isAddressExpression(const Value & V,const DataLayout & DL,const TargetTransformInfo * TTI)306 static bool isAddressExpression(const Value &V, const DataLayout &DL,
307                                 const TargetTransformInfo *TTI) {
308   const Operator *Op = dyn_cast<Operator>(&V);
309   if (!Op)
310     return false;
311 
312   switch (Op->getOpcode()) {
313   case Instruction::PHI:
314     assert(Op->getType()->isPtrOrPtrVectorTy());
315     return true;
316   case Instruction::BitCast:
317   case Instruction::AddrSpaceCast:
318   case Instruction::GetElementPtr:
319     return true;
320   case Instruction::Select:
321     return Op->getType()->isPtrOrPtrVectorTy();
322   case Instruction::Call: {
323     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
324     return II && II->getIntrinsicID() == Intrinsic::ptrmask;
325   }
326   case Instruction::IntToPtr:
327     return isNoopPtrIntCastPair(Op, DL, TTI);
328   default:
329     // That value is an address expression if it has an assumed address space.
330     return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
331   }
332 }
333 
334 // Returns the pointer operands of V.
335 //
336 // Precondition: V is an address expression.
337 static SmallVector<Value *, 2>
getPointerOperands(const Value & V,const DataLayout & DL,const TargetTransformInfo * TTI)338 getPointerOperands(const Value &V, const DataLayout &DL,
339                    const TargetTransformInfo *TTI) {
340   const Operator &Op = cast<Operator>(V);
341   switch (Op.getOpcode()) {
342   case Instruction::PHI: {
343     auto IncomingValues = cast<PHINode>(Op).incoming_values();
344     return {IncomingValues.begin(), IncomingValues.end()};
345   }
346   case Instruction::BitCast:
347   case Instruction::AddrSpaceCast:
348   case Instruction::GetElementPtr:
349     return {Op.getOperand(0)};
350   case Instruction::Select:
351     return {Op.getOperand(1), Op.getOperand(2)};
352   case Instruction::Call: {
353     const IntrinsicInst &II = cast<IntrinsicInst>(Op);
354     assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
355            "unexpected intrinsic call");
356     return {II.getArgOperand(0)};
357   }
358   case Instruction::IntToPtr: {
359     assert(isNoopPtrIntCastPair(&Op, DL, TTI));
360     auto *P2I = cast<Operator>(Op.getOperand(0));
361     return {P2I->getOperand(0)};
362   }
363   default:
364     llvm_unreachable("Unexpected instruction type.");
365   }
366 }
367 
rewriteIntrinsicOperands(IntrinsicInst * II,Value * OldV,Value * NewV) const368 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
369                                                       Value *OldV,
370                                                       Value *NewV) const {
371   Module *M = II->getParent()->getParent()->getParent();
372 
373   switch (II->getIntrinsicID()) {
374   case Intrinsic::objectsize: {
375     Type *DestTy = II->getType();
376     Type *SrcTy = NewV->getType();
377     Function *NewDecl =
378         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
379     II->setArgOperand(0, NewV);
380     II->setCalledFunction(NewDecl);
381     return true;
382   }
383   case Intrinsic::ptrmask:
384     // This is handled as an address expression, not as a use memory operation.
385     return false;
386   case Intrinsic::masked_gather: {
387     Type *RetTy = II->getType();
388     Type *NewPtrTy = NewV->getType();
389     Function *NewDecl =
390         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {RetTy, NewPtrTy});
391     II->setArgOperand(0, NewV);
392     II->setCalledFunction(NewDecl);
393     return true;
394   }
395   case Intrinsic::masked_scatter: {
396     Type *ValueTy = II->getOperand(0)->getType();
397     Type *NewPtrTy = NewV->getType();
398     Function *NewDecl =
399         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy});
400     II->setArgOperand(1, NewV);
401     II->setCalledFunction(NewDecl);
402     return true;
403   }
404   default: {
405     Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
406     if (!Rewrite)
407       return false;
408     if (Rewrite != II)
409       II->replaceAllUsesWith(Rewrite);
410     return true;
411   }
412   }
413 }
414 
collectRewritableIntrinsicOperands(IntrinsicInst * II,PostorderStackTy & PostorderStack,DenseSet<Value * > & Visited) const415 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
416     IntrinsicInst *II, PostorderStackTy &PostorderStack,
417     DenseSet<Value *> &Visited) const {
418   auto IID = II->getIntrinsicID();
419   switch (IID) {
420   case Intrinsic::ptrmask:
421   case Intrinsic::objectsize:
422     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
423                                                  PostorderStack, Visited);
424     break;
425   case Intrinsic::masked_gather:
426     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
427                                                  PostorderStack, Visited);
428     break;
429   case Intrinsic::masked_scatter:
430     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1),
431                                                  PostorderStack, Visited);
432     break;
433   default:
434     SmallVector<int, 2> OpIndexes;
435     if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
436       for (int Idx : OpIndexes) {
437         appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
438                                                      PostorderStack, Visited);
439       }
440     }
441     break;
442   }
443 }
444 
445 // Returns all flat address expressions in function F. The elements are
446 // If V is an unvisited flat address expression, appends V to PostorderStack
447 // and marks it as visited.
appendsFlatAddressExpressionToPostorderStack(Value * V,PostorderStackTy & PostorderStack,DenseSet<Value * > & Visited) const448 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
449     Value *V, PostorderStackTy &PostorderStack,
450     DenseSet<Value *> &Visited) const {
451   assert(V->getType()->isPtrOrPtrVectorTy());
452 
453   // Generic addressing expressions may be hidden in nested constant
454   // expressions.
455   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
456     // TODO: Look in non-address parts, like icmp operands.
457     if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
458       PostorderStack.emplace_back(CE, false);
459 
460     return;
461   }
462 
463   if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
464       isAddressExpression(*V, *DL, TTI)) {
465     if (Visited.insert(V).second) {
466       PostorderStack.emplace_back(V, false);
467 
468       Operator *Op = cast<Operator>(V);
469       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
470         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
471           if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
472             PostorderStack.emplace_back(CE, false);
473         }
474       }
475     }
476   }
477 }
478 
479 // Returns all flat address expressions in function F. The elements are ordered
480 // in postorder.
481 std::vector<WeakTrackingVH>
collectFlatAddressExpressions(Function & F) const482 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
483   // This function implements a non-recursive postorder traversal of a partial
484   // use-def graph of function F.
485   PostorderStackTy PostorderStack;
486   // The set of visited expressions.
487   DenseSet<Value *> Visited;
488 
489   auto PushPtrOperand = [&](Value *Ptr) {
490     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited);
491   };
492 
493   // Look at operations that may be interesting accelerate by moving to a known
494   // address space. We aim at generating after loads and stores, but pure
495   // addressing calculations may also be faster.
496   for (Instruction &I : instructions(F)) {
497     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
498       PushPtrOperand(GEP->getPointerOperand());
499     } else if (auto *LI = dyn_cast<LoadInst>(&I))
500       PushPtrOperand(LI->getPointerOperand());
501     else if (auto *SI = dyn_cast<StoreInst>(&I))
502       PushPtrOperand(SI->getPointerOperand());
503     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
504       PushPtrOperand(RMW->getPointerOperand());
505     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
506       PushPtrOperand(CmpX->getPointerOperand());
507     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
508       // For memset/memcpy/memmove, any pointer operand can be replaced.
509       PushPtrOperand(MI->getRawDest());
510 
511       // Handle 2nd operand for memcpy/memmove.
512       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
513         PushPtrOperand(MTI->getRawSource());
514     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
515       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
516     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
517       if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) {
518         PushPtrOperand(Cmp->getOperand(0));
519         PushPtrOperand(Cmp->getOperand(1));
520       }
521     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
522       PushPtrOperand(ASC->getPointerOperand());
523     } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
524       if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
525         PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0));
526     } else if (auto *RI = dyn_cast<ReturnInst>(&I)) {
527       if (auto *RV = RI->getReturnValue();
528           RV && RV->getType()->isPtrOrPtrVectorTy())
529         PushPtrOperand(RV);
530     }
531   }
532 
533   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
534   while (!PostorderStack.empty()) {
535     Value *TopVal = PostorderStack.back().getPointer();
536     // If the operands of the expression on the top are already explored,
537     // adds that expression to the resultant postorder.
538     if (PostorderStack.back().getInt()) {
539       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
540         Postorder.push_back(TopVal);
541       PostorderStack.pop_back();
542       continue;
543     }
544     // Otherwise, adds its operands to the stack and explores them.
545     PostorderStack.back().setInt(true);
546     // Skip values with an assumed address space.
547     if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
548       for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
549         appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
550                                                      Visited);
551       }
552     }
553   }
554   return Postorder;
555 }
556 
557 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
558 // of OperandUse.get() in the new address space. If the clone is not ready yet,
559 // returns poison in the new address space as a placeholder.
operandWithNewAddressSpaceOrCreatePoison(const Use & OperandUse,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * PoisonUsesToFix)560 static Value *operandWithNewAddressSpaceOrCreatePoison(
561     const Use &OperandUse, unsigned NewAddrSpace,
562     const ValueToValueMapTy &ValueWithNewAddrSpace,
563     const PredicatedAddrSpaceMapTy &PredicatedAS,
564     SmallVectorImpl<const Use *> *PoisonUsesToFix) {
565   Value *Operand = OperandUse.get();
566 
567   Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace);
568 
569   if (Constant *C = dyn_cast<Constant>(Operand))
570     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
571 
572   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
573     return NewOperand;
574 
575   Instruction *Inst = cast<Instruction>(OperandUse.getUser());
576   auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
577   if (I != PredicatedAS.end()) {
578     // Insert an addrspacecast on that operand before the user.
579     unsigned NewAS = I->second;
580     Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS);
581     auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
582     NewI->insertBefore(Inst);
583     NewI->setDebugLoc(Inst->getDebugLoc());
584     return NewI;
585   }
586 
587   PoisonUsesToFix->push_back(&OperandUse);
588   return PoisonValue::get(NewPtrTy);
589 }
590 
591 // Returns a clone of `I` with its operands converted to those specified in
592 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
593 // operand whose address space needs to be modified might not exist in
594 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and
595 // adds that operand use to PoisonUsesToFix so that caller can fix them later.
596 //
597 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
598 // from a pointer whose type already matches. Therefore, this function returns a
599 // Value* instead of an Instruction*.
600 //
601 // This may also return nullptr in the case the instruction could not be
602 // rewritten.
cloneInstructionWithNewAddressSpace(Instruction * I,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * PoisonUsesToFix) const603 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
604     Instruction *I, unsigned NewAddrSpace,
605     const ValueToValueMapTy &ValueWithNewAddrSpace,
606     const PredicatedAddrSpaceMapTy &PredicatedAS,
607     SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
608   Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace);
609 
610   if (I->getOpcode() == Instruction::AddrSpaceCast) {
611     Value *Src = I->getOperand(0);
612     // Because `I` is flat, the source address space must be specific.
613     // Therefore, the inferred address space must be the source space, according
614     // to our algorithm.
615     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
616     if (Src->getType() != NewPtrType)
617       return new BitCastInst(Src, NewPtrType);
618     return Src;
619   }
620 
621   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
622     // Technically the intrinsic ID is a pointer typed argument, so specially
623     // handle calls early.
624     assert(II->getIntrinsicID() == Intrinsic::ptrmask);
625     Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison(
626         II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
627         PredicatedAS, PoisonUsesToFix);
628     Value *Rewrite =
629         TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
630     if (Rewrite) {
631       assert(Rewrite != II && "cannot modify this pointer operation in place");
632       return Rewrite;
633     }
634 
635     return nullptr;
636   }
637 
638   unsigned AS = TTI->getAssumedAddrSpace(I);
639   if (AS != UninitializedAddressSpace) {
640     // For the assumed address space, insert an `addrspacecast` to make that
641     // explicit.
642     Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS);
643     auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
644     NewI->insertAfter(I);
645     NewI->setDebugLoc(I->getDebugLoc());
646     return NewI;
647   }
648 
649   // Computes the converted pointer operands.
650   SmallVector<Value *, 4> NewPointerOperands;
651   for (const Use &OperandUse : I->operands()) {
652     if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy())
653       NewPointerOperands.push_back(nullptr);
654     else
655       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison(
656           OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
657           PoisonUsesToFix));
658   }
659 
660   switch (I->getOpcode()) {
661   case Instruction::BitCast:
662     return new BitCastInst(NewPointerOperands[0], NewPtrType);
663   case Instruction::PHI: {
664     assert(I->getType()->isPtrOrPtrVectorTy());
665     PHINode *PHI = cast<PHINode>(I);
666     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
667     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
668       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
669       NewPHI->addIncoming(NewPointerOperands[OperandNo],
670                           PHI->getIncomingBlock(Index));
671     }
672     return NewPHI;
673   }
674   case Instruction::GetElementPtr: {
675     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
676     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
677         GEP->getSourceElementType(), NewPointerOperands[0],
678         SmallVector<Value *, 4>(GEP->indices()));
679     NewGEP->setIsInBounds(GEP->isInBounds());
680     return NewGEP;
681   }
682   case Instruction::Select:
683     assert(I->getType()->isPtrOrPtrVectorTy());
684     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
685                               NewPointerOperands[2], "", nullptr, I);
686   case Instruction::IntToPtr: {
687     assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
688     Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
689     if (Src->getType() == NewPtrType)
690       return Src;
691 
692     // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
693     // source address space from a generic pointer source need to insert a cast
694     // back.
695     return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
696   }
697   default:
698     llvm_unreachable("Unexpected opcode");
699   }
700 }
701 
702 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
703 // constant expression `CE` with its operands replaced as specified in
704 // ValueWithNewAddrSpace.
cloneConstantExprWithNewAddressSpace(ConstantExpr * CE,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const DataLayout * DL,const TargetTransformInfo * TTI)705 static Value *cloneConstantExprWithNewAddressSpace(
706     ConstantExpr *CE, unsigned NewAddrSpace,
707     const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
708     const TargetTransformInfo *TTI) {
709   Type *TargetType =
710       CE->getType()->isPtrOrPtrVectorTy()
711           ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace)
712           : CE->getType();
713 
714   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
715     // Because CE is flat, the source address space must be specific.
716     // Therefore, the inferred address space must be the source space according
717     // to our algorithm.
718     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
719            NewAddrSpace);
720     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
721   }
722 
723   if (CE->getOpcode() == Instruction::BitCast) {
724     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
725       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
726     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
727   }
728 
729   if (CE->getOpcode() == Instruction::IntToPtr) {
730     assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
731     Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
732     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
733     return ConstantExpr::getBitCast(Src, TargetType);
734   }
735 
736   // Computes the operands of the new constant expression.
737   bool IsNew = false;
738   SmallVector<Constant *, 4> NewOperands;
739   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
740     Constant *Operand = CE->getOperand(Index);
741     // If the address space of `Operand` needs to be modified, the new operand
742     // with the new address space should already be in ValueWithNewAddrSpace
743     // because (1) the constant expressions we consider (i.e. addrspacecast,
744     // bitcast, and getelementptr) do not incur cycles in the data flow graph
745     // and (2) this function is called on constant expressions in postorder.
746     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
747       IsNew = true;
748       NewOperands.push_back(cast<Constant>(NewOperand));
749       continue;
750     }
751     if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
752       if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
753               CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
754         IsNew = true;
755         NewOperands.push_back(cast<Constant>(NewOperand));
756         continue;
757       }
758     // Otherwise, reuses the old operand.
759     NewOperands.push_back(Operand);
760   }
761 
762   // If !IsNew, we will replace the Value with itself. However, replaced values
763   // are assumed to wrapped in an addrspacecast cast later so drop it now.
764   if (!IsNew)
765     return nullptr;
766 
767   if (CE->getOpcode() == Instruction::GetElementPtr) {
768     // Needs to specify the source type while constructing a getelementptr
769     // constant expression.
770     return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
771                                cast<GEPOperator>(CE)->getSourceElementType());
772   }
773 
774   return CE->getWithOperands(NewOperands, TargetType);
775 }
776 
777 // Returns a clone of the value `V`, with its operands replaced as specified in
778 // ValueWithNewAddrSpace. This function is called on every flat address
779 // expression whose address space needs to be modified, in postorder.
780 //
781 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix.
cloneValueWithNewAddressSpace(Value * V,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * PoisonUsesToFix) const782 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
783     Value *V, unsigned NewAddrSpace,
784     const ValueToValueMapTy &ValueWithNewAddrSpace,
785     const PredicatedAddrSpaceMapTy &PredicatedAS,
786     SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
787   // All values in Postorder are flat address expressions.
788   assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
789          isAddressExpression(*V, *DL, TTI));
790 
791   if (Instruction *I = dyn_cast<Instruction>(V)) {
792     Value *NewV = cloneInstructionWithNewAddressSpace(
793         I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix);
794     if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
795       if (NewI->getParent() == nullptr) {
796         NewI->insertBefore(I);
797         NewI->takeName(I);
798         NewI->setDebugLoc(I->getDebugLoc());
799       }
800     }
801     return NewV;
802   }
803 
804   return cloneConstantExprWithNewAddressSpace(
805       cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
806 }
807 
808 // Defines the join operation on the address space lattice (see the file header
809 // comments).
joinAddressSpaces(unsigned AS1,unsigned AS2) const810 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
811                                                    unsigned AS2) const {
812   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
813     return FlatAddrSpace;
814 
815   if (AS1 == UninitializedAddressSpace)
816     return AS2;
817   if (AS2 == UninitializedAddressSpace)
818     return AS1;
819 
820   // The join of two different specific address spaces is flat.
821   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
822 }
823 
run(Function & F)824 bool InferAddressSpacesImpl::run(Function &F) {
825   DL = &F.getDataLayout();
826 
827   if (AssumeDefaultIsFlatAddressSpace)
828     FlatAddrSpace = 0;
829 
830   if (FlatAddrSpace == UninitializedAddressSpace) {
831     FlatAddrSpace = TTI->getFlatAddressSpace();
832     if (FlatAddrSpace == UninitializedAddressSpace)
833       return false;
834   }
835 
836   // Collects all flat address expressions in postorder.
837   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
838 
839   // Runs a data-flow analysis to refine the address spaces of every expression
840   // in Postorder.
841   ValueToAddrSpaceMapTy InferredAddrSpace;
842   PredicatedAddrSpaceMapTy PredicatedAS;
843   inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
844 
845   // Changes the address spaces of the flat address expressions who are inferred
846   // to point to a specific address space.
847   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS,
848                                      &F);
849 }
850 
851 // Constants need to be tracked through RAUW to handle cases with nested
852 // constant expressions, so wrap values in WeakTrackingVH.
inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,ValueToAddrSpaceMapTy & InferredAddrSpace,PredicatedAddrSpaceMapTy & PredicatedAS) const853 void InferAddressSpacesImpl::inferAddressSpaces(
854     ArrayRef<WeakTrackingVH> Postorder,
855     ValueToAddrSpaceMapTy &InferredAddrSpace,
856     PredicatedAddrSpaceMapTy &PredicatedAS) const {
857   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
858   // Initially, all expressions are in the uninitialized address space.
859   for (Value *V : Postorder)
860     InferredAddrSpace[V] = UninitializedAddressSpace;
861 
862   while (!Worklist.empty()) {
863     Value *V = Worklist.pop_back_val();
864 
865     // Try to update the address space of the stack top according to the
866     // address spaces of its operands.
867     if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
868       continue;
869 
870     for (Value *User : V->users()) {
871       // Skip if User is already in the worklist.
872       if (Worklist.count(User))
873         continue;
874 
875       auto Pos = InferredAddrSpace.find(User);
876       // Our algorithm only updates the address spaces of flat address
877       // expressions, which are those in InferredAddrSpace.
878       if (Pos == InferredAddrSpace.end())
879         continue;
880 
881       // Function updateAddressSpace moves the address space down a lattice
882       // path. Therefore, nothing to do if User is already inferred as flat (the
883       // bottom element in the lattice).
884       if (Pos->second == FlatAddrSpace)
885         continue;
886 
887       Worklist.insert(User);
888     }
889   }
890 }
891 
getPredicatedAddrSpace(const Value & V,Value * Opnd) const892 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V,
893                                                         Value *Opnd) const {
894   const Instruction *I = dyn_cast<Instruction>(&V);
895   if (!I)
896     return UninitializedAddressSpace;
897 
898   Opnd = Opnd->stripInBoundsOffsets();
899   for (auto &AssumeVH : AC.assumptionsFor(Opnd)) {
900     if (!AssumeVH)
901       continue;
902     CallInst *CI = cast<CallInst>(AssumeVH);
903     if (!isValidAssumeForContext(CI, I, DT))
904       continue;
905 
906     const Value *Ptr;
907     unsigned AS;
908     std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
909     if (Ptr)
910       return AS;
911   }
912 
913   return UninitializedAddressSpace;
914 }
915 
updateAddressSpace(const Value & V,ValueToAddrSpaceMapTy & InferredAddrSpace,PredicatedAddrSpaceMapTy & PredicatedAS) const916 bool InferAddressSpacesImpl::updateAddressSpace(
917     const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
918     PredicatedAddrSpaceMapTy &PredicatedAS) const {
919   assert(InferredAddrSpace.count(&V));
920 
921   LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << V << '\n');
922 
923   // The new inferred address space equals the join of the address spaces
924   // of all its pointer operands.
925   unsigned NewAS = UninitializedAddressSpace;
926 
927   const Operator &Op = cast<Operator>(V);
928   if (Op.getOpcode() == Instruction::Select) {
929     Value *Src0 = Op.getOperand(1);
930     Value *Src1 = Op.getOperand(2);
931 
932     auto I = InferredAddrSpace.find(Src0);
933     unsigned Src0AS = (I != InferredAddrSpace.end())
934                           ? I->second
935                           : Src0->getType()->getPointerAddressSpace();
936 
937     auto J = InferredAddrSpace.find(Src1);
938     unsigned Src1AS = (J != InferredAddrSpace.end())
939                           ? J->second
940                           : Src1->getType()->getPointerAddressSpace();
941 
942     auto *C0 = dyn_cast<Constant>(Src0);
943     auto *C1 = dyn_cast<Constant>(Src1);
944 
945     // If one of the inputs is a constant, we may be able to do a constant
946     // addrspacecast of it. Defer inferring the address space until the input
947     // address space is known.
948     if ((C1 && Src0AS == UninitializedAddressSpace) ||
949         (C0 && Src1AS == UninitializedAddressSpace))
950       return false;
951 
952     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
953       NewAS = Src1AS;
954     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
955       NewAS = Src0AS;
956     else
957       NewAS = joinAddressSpaces(Src0AS, Src1AS);
958   } else {
959     unsigned AS = TTI->getAssumedAddrSpace(&V);
960     if (AS != UninitializedAddressSpace) {
961       // Use the assumed address space directly.
962       NewAS = AS;
963     } else {
964       // Otherwise, infer the address space from its pointer operands.
965       for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
966         auto I = InferredAddrSpace.find(PtrOperand);
967         unsigned OperandAS;
968         if (I == InferredAddrSpace.end()) {
969           OperandAS = PtrOperand->getType()->getPointerAddressSpace();
970           if (OperandAS == FlatAddrSpace) {
971             // Check AC for assumption dominating V.
972             unsigned AS = getPredicatedAddrSpace(V, PtrOperand);
973             if (AS != UninitializedAddressSpace) {
974               LLVM_DEBUG(dbgs()
975                          << "  deduce operand AS from the predicate addrspace "
976                          << AS << '\n');
977               OperandAS = AS;
978               // Record this use with the predicated AS.
979               PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
980             }
981           }
982         } else
983           OperandAS = I->second;
984 
985         // join(flat, *) = flat. So we can break if NewAS is already flat.
986         NewAS = joinAddressSpaces(NewAS, OperandAS);
987         if (NewAS == FlatAddrSpace)
988           break;
989       }
990     }
991   }
992 
993   unsigned OldAS = InferredAddrSpace.lookup(&V);
994   assert(OldAS != FlatAddrSpace);
995   if (OldAS == NewAS)
996     return false;
997 
998   // If any updates are made, grabs its users to the worklist because
999   // their address spaces can also be possibly updated.
1000   LLVM_DEBUG(dbgs() << "  to " << NewAS << '\n');
1001   InferredAddrSpace[&V] = NewAS;
1002   return true;
1003 }
1004 
1005 /// \p returns true if \p U is the pointer operand of a memory instruction with
1006 /// a single pointer operand that can have its address space changed by simply
1007 /// mutating the use to a new value. If the memory instruction is volatile,
1008 /// return true only if the target allows the memory instruction to be volatile
1009 /// in the new address space.
isSimplePointerUseValidToReplace(const TargetTransformInfo & TTI,Use & U,unsigned AddrSpace)1010 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
1011                                              Use &U, unsigned AddrSpace) {
1012   User *Inst = U.getUser();
1013   unsigned OpNo = U.getOperandNo();
1014   bool VolatileIsAllowed = false;
1015   if (auto *I = dyn_cast<Instruction>(Inst))
1016     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
1017 
1018   if (auto *LI = dyn_cast<LoadInst>(Inst))
1019     return OpNo == LoadInst::getPointerOperandIndex() &&
1020            (VolatileIsAllowed || !LI->isVolatile());
1021 
1022   if (auto *SI = dyn_cast<StoreInst>(Inst))
1023     return OpNo == StoreInst::getPointerOperandIndex() &&
1024            (VolatileIsAllowed || !SI->isVolatile());
1025 
1026   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1027     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
1028            (VolatileIsAllowed || !RMW->isVolatile());
1029 
1030   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1031     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
1032            (VolatileIsAllowed || !CmpX->isVolatile());
1033 
1034   return false;
1035 }
1036 
1037 /// Update memory intrinsic uses that require more complex processing than
1038 /// simple memory instructions. These require re-mangling and may have multiple
1039 /// pointer operands.
handleMemIntrinsicPtrUse(MemIntrinsic * MI,Value * OldV,Value * NewV)1040 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1041                                      Value *NewV) {
1042   IRBuilder<> B(MI);
1043   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1044   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1045   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1046 
1047   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1048     B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1049                    false, // isVolatile
1050                    TBAA, ScopeMD, NoAliasMD);
1051   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1052     Value *Src = MTI->getRawSource();
1053     Value *Dest = MTI->getRawDest();
1054 
1055     // Be careful in case this is a self-to-self copy.
1056     if (Src == OldV)
1057       Src = NewV;
1058 
1059     if (Dest == OldV)
1060       Dest = NewV;
1061 
1062     if (isa<MemCpyInlineInst>(MTI)) {
1063       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1064       B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1065                            MTI->getSourceAlign(), MTI->getLength(),
1066                            false, // isVolatile
1067                            TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1068     } else if (isa<MemCpyInst>(MTI)) {
1069       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1070       B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1071                      MTI->getLength(),
1072                      false, // isVolatile
1073                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1074     } else {
1075       assert(isa<MemMoveInst>(MTI));
1076       B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1077                       MTI->getLength(),
1078                       false, // isVolatile
1079                       TBAA, ScopeMD, NoAliasMD);
1080     }
1081   } else
1082     llvm_unreachable("unhandled MemIntrinsic");
1083 
1084   MI->eraseFromParent();
1085   return true;
1086 }
1087 
1088 // \p returns true if it is OK to change the address space of constant \p C with
1089 // a ConstantExpr addrspacecast.
isSafeToCastConstAddrSpace(Constant * C,unsigned NewAS) const1090 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1091                                                         unsigned NewAS) const {
1092   assert(NewAS != UninitializedAddressSpace);
1093 
1094   unsigned SrcAS = C->getType()->getPointerAddressSpace();
1095   if (SrcAS == NewAS || isa<UndefValue>(C))
1096     return true;
1097 
1098   // Prevent illegal casts between different non-flat address spaces.
1099   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1100     return false;
1101 
1102   if (isa<ConstantPointerNull>(C))
1103     return true;
1104 
1105   if (auto *Op = dyn_cast<Operator>(C)) {
1106     // If we already have a constant addrspacecast, it should be safe to cast it
1107     // off.
1108     if (Op->getOpcode() == Instruction::AddrSpaceCast)
1109       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)),
1110                                         NewAS);
1111 
1112     if (Op->getOpcode() == Instruction::IntToPtr &&
1113         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1114       return true;
1115   }
1116 
1117   return false;
1118 }
1119 
skipToNextUser(Value::use_iterator I,Value::use_iterator End)1120 static Value::use_iterator skipToNextUser(Value::use_iterator I,
1121                                           Value::use_iterator End) {
1122   User *CurUser = I->getUser();
1123   ++I;
1124 
1125   while (I != End && I->getUser() == CurUser)
1126     ++I;
1127 
1128   return I;
1129 }
1130 
rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,const ValueToAddrSpaceMapTy & InferredAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,Function * F) const1131 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1132     ArrayRef<WeakTrackingVH> Postorder,
1133     const ValueToAddrSpaceMapTy &InferredAddrSpace,
1134     const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const {
1135   // For each address expression to be modified, creates a clone of it with its
1136   // pointer operands converted to the new address space. Since the pointer
1137   // operands are converted, the clone is naturally in the new address space by
1138   // construction.
1139   ValueToValueMapTy ValueWithNewAddrSpace;
1140   SmallVector<const Use *, 32> PoisonUsesToFix;
1141   for (Value *V : Postorder) {
1142     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1143 
1144     // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1145     // not even infer the value to have its original address space.
1146     if (NewAddrSpace == UninitializedAddressSpace)
1147       continue;
1148 
1149     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1150       Value *New =
1151           cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1152                                         PredicatedAS, &PoisonUsesToFix);
1153       if (New)
1154         ValueWithNewAddrSpace[V] = New;
1155     }
1156   }
1157 
1158   if (ValueWithNewAddrSpace.empty())
1159     return false;
1160 
1161   // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace.
1162   for (const Use *PoisonUse : PoisonUsesToFix) {
1163     User *V = PoisonUse->getUser();
1164     User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1165     if (!NewV)
1166       continue;
1167 
1168     unsigned OperandNo = PoisonUse->getOperandNo();
1169     assert(isa<PoisonValue>(NewV->getOperand(OperandNo)));
1170     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get()));
1171   }
1172 
1173   SmallVector<Instruction *, 16> DeadInstructions;
1174   ValueToValueMapTy VMap;
1175   ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1176 
1177   // Replaces the uses of the old address expressions with the new ones.
1178   for (const WeakTrackingVH &WVH : Postorder) {
1179     assert(WVH && "value was unexpectedly deleted");
1180     Value *V = WVH;
1181     Value *NewV = ValueWithNewAddrSpace.lookup(V);
1182     if (NewV == nullptr)
1183       continue;
1184 
1185     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
1186                       << *NewV << '\n');
1187 
1188     if (Constant *C = dyn_cast<Constant>(V)) {
1189       Constant *Replace =
1190           ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType());
1191       if (C != Replace) {
1192         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1193                           << ": " << *Replace << '\n');
1194         SmallVector<User *, 16> WorkList;
1195         for (User *U : make_early_inc_range(C->users())) {
1196           if (auto *I = dyn_cast<Instruction>(U)) {
1197             if (I->getFunction() == F)
1198               I->replaceUsesOfWith(C, Replace);
1199           } else {
1200             WorkList.append(U->user_begin(), U->user_end());
1201           }
1202         }
1203         if (!WorkList.empty()) {
1204           VMap[C] = Replace;
1205           DenseSet<User *> Visited{WorkList.begin(), WorkList.end()};
1206           while (!WorkList.empty()) {
1207             User *U = WorkList.pop_back_val();
1208             if (auto *I = dyn_cast<Instruction>(U)) {
1209               if (I->getFunction() == F)
1210                 VMapper.remapInstruction(*I);
1211               continue;
1212             }
1213             for (User *U2 : U->users())
1214               if (Visited.insert(U2).second)
1215                 WorkList.push_back(U2);
1216           }
1217         }
1218         V = Replace;
1219       }
1220     }
1221 
1222     Value::use_iterator I, E, Next;
1223     for (I = V->use_begin(), E = V->use_end(); I != E;) {
1224       Use &U = *I;
1225       User *CurUser = U.getUser();
1226 
1227       // Some users may see the same pointer operand in multiple operands. Skip
1228       // to the next instruction.
1229       I = skipToNextUser(I, E);
1230 
1231       if (isSimplePointerUseValidToReplace(
1232               *TTI, U, V->getType()->getPointerAddressSpace())) {
1233         // If V is used as the pointer operand of a compatible memory operation,
1234         // sets the pointer operand to NewV. This replacement does not change
1235         // the element type, so the resultant load/store is still valid.
1236         U.set(NewV);
1237         continue;
1238       }
1239 
1240       // Skip if the current user is the new value itself.
1241       if (CurUser == NewV)
1242         continue;
1243 
1244       if (auto *CurUserI = dyn_cast<Instruction>(CurUser);
1245           CurUserI && CurUserI->getFunction() != F)
1246         continue;
1247 
1248       // Handle more complex cases like intrinsic that need to be remangled.
1249       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1250         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1251           continue;
1252       }
1253 
1254       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1255         if (rewriteIntrinsicOperands(II, V, NewV))
1256           continue;
1257       }
1258 
1259       if (isa<Instruction>(CurUser)) {
1260         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
1261           // If we can infer that both pointers are in the same addrspace,
1262           // transform e.g.
1263           //   %cmp = icmp eq float* %p, %q
1264           // into
1265           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1266 
1267           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1268           int SrcIdx = U.getOperandNo();
1269           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1270           Value *OtherSrc = Cmp->getOperand(OtherIdx);
1271 
1272           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1273             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1274               Cmp->setOperand(OtherIdx, OtherNewV);
1275               Cmp->setOperand(SrcIdx, NewV);
1276               continue;
1277             }
1278           }
1279 
1280           // Even if the type mismatches, we can cast the constant.
1281           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1282             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1283               Cmp->setOperand(SrcIdx, NewV);
1284               Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(
1285                                             KOtherSrc, NewV->getType()));
1286               continue;
1287             }
1288           }
1289         }
1290 
1291         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
1292           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1293           if (ASC->getDestAddressSpace() == NewAS) {
1294             ASC->replaceAllUsesWith(NewV);
1295             DeadInstructions.push_back(ASC);
1296             continue;
1297           }
1298         }
1299 
1300         // Otherwise, replaces the use with flat(NewV).
1301         if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1302           // Don't create a copy of the original addrspacecast.
1303           if (U == V && isa<AddrSpaceCastInst>(V))
1304             continue;
1305 
1306           // Insert the addrspacecast after NewV.
1307           BasicBlock::iterator InsertPos;
1308           if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1309             InsertPos = std::next(NewVInst->getIterator());
1310           else
1311             InsertPos = std::next(VInst->getIterator());
1312 
1313           while (isa<PHINode>(InsertPos))
1314             ++InsertPos;
1315           // This instruction may contain multiple uses of V, update them all.
1316           CurUser->replaceUsesOfWith(
1317               V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos));
1318         } else {
1319           CurUser->replaceUsesOfWith(
1320               V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1321                                                 V->getType()));
1322         }
1323       }
1324     }
1325 
1326     if (V->use_empty()) {
1327       if (Instruction *I = dyn_cast<Instruction>(V))
1328         DeadInstructions.push_back(I);
1329     }
1330   }
1331 
1332   for (Instruction *I : DeadInstructions)
1333     RecursivelyDeleteTriviallyDeadInstructions(I);
1334 
1335   return true;
1336 }
1337 
runOnFunction(Function & F)1338 bool InferAddressSpaces::runOnFunction(Function &F) {
1339   if (skipFunction(F))
1340     return false;
1341 
1342   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1343   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1344   return InferAddressSpacesImpl(
1345              getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1346              &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1347              FlatAddrSpace)
1348       .run(F);
1349 }
1350 
createInferAddressSpacesPass(unsigned AddressSpace)1351 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1352   return new InferAddressSpaces(AddressSpace);
1353 }
1354 
InferAddressSpacesPass()1355 InferAddressSpacesPass::InferAddressSpacesPass()
1356     : FlatAddrSpace(UninitializedAddressSpace) {}
InferAddressSpacesPass(unsigned AddressSpace)1357 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1358     : FlatAddrSpace(AddressSpace) {}
1359 
run(Function & F,FunctionAnalysisManager & AM)1360 PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1361                                               FunctionAnalysisManager &AM) {
1362   bool Changed =
1363       InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1364                              AM.getCachedResult<DominatorTreeAnalysis>(F),
1365                              &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1366           .run(F);
1367   if (Changed) {
1368     PreservedAnalyses PA;
1369     PA.preserveSet<CFGAnalyses>();
1370     PA.preserve<DominatorTreeAnalysis>();
1371     return PA;
1372   }
1373   return PreservedAnalyses::all();
1374 }
1375