1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 // __shared__ float a[10];
27 // float v = a[i];
28 // to
29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 // %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 // CUDA: Compiling and optimizing for a GPU platform
48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 // ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 // %generic.input = addrspacecast float addrspace(3)* %input to float*
59 // loop:
60 // %y = phi [ %generic.input, %y2 ]
61 // %y2 = getelementptr %y, 1
62 // %v = load %y2
63 // br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 // uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "poison" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `poison` and fix all the uses later.
82 // For instance, our algorithm first converts %y to
83 // %y' = phi float addrspace(3)* [ %input, poison ]
84 // Then, it converts %y2 to
85 // %y2' = getelementptr %y', 1
86 // Finally, it fixes the poison in %y' so that
87 // %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90
91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/ADT/SmallVector.h"
97 #include "llvm/Analysis/AssumptionCache.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Analysis/ValueTracking.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Dominators.h"
104 #include "llvm/IR/Function.h"
105 #include "llvm/IR/IRBuilder.h"
106 #include "llvm/IR/InstIterator.h"
107 #include "llvm/IR/Instruction.h"
108 #include "llvm/IR/Instructions.h"
109 #include "llvm/IR/IntrinsicInst.h"
110 #include "llvm/IR/Intrinsics.h"
111 #include "llvm/IR/LLVMContext.h"
112 #include "llvm/IR/Operator.h"
113 #include "llvm/IR/PassManager.h"
114 #include "llvm/IR/Type.h"
115 #include "llvm/IR/Use.h"
116 #include "llvm/IR/User.h"
117 #include "llvm/IR/Value.h"
118 #include "llvm/IR/ValueHandle.h"
119 #include "llvm/InitializePasses.h"
120 #include "llvm/Pass.h"
121 #include "llvm/Support/Casting.h"
122 #include "llvm/Support/CommandLine.h"
123 #include "llvm/Support/Compiler.h"
124 #include "llvm/Support/Debug.h"
125 #include "llvm/Support/ErrorHandling.h"
126 #include "llvm/Support/raw_ostream.h"
127 #include "llvm/Transforms/Scalar.h"
128 #include "llvm/Transforms/Utils/Local.h"
129 #include "llvm/Transforms/Utils/ValueMapper.h"
130 #include <cassert>
131 #include <iterator>
132 #include <limits>
133 #include <utility>
134 #include <vector>
135
136 #define DEBUG_TYPE "infer-address-spaces"
137
138 using namespace llvm;
139
140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
141 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
142 cl::desc("The default address space is assumed as the flat address space. "
143 "This is mainly for test purpose."));
144
145 static const unsigned UninitializedAddressSpace =
146 std::numeric_limits<unsigned>::max();
147
148 namespace {
149
150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
153 // addrspace is inferred on the *use* of a pointer. This map is introduced to
154 // infer addrspace from the addrspace predicate assumption built from assume
155 // intrinsic. In that scenario, only specific uses (under valid assumption
156 // context) could be inferred with a new addrspace.
157 using PredicatedAddrSpaceMapTy =
158 DenseMap<std::pair<const Value *, const Value *>, unsigned>;
159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
160
161 class InferAddressSpaces : public FunctionPass {
162 unsigned FlatAddrSpace = 0;
163
164 public:
165 static char ID;
166
InferAddressSpaces()167 InferAddressSpaces()
168 : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {
169 initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
170 }
InferAddressSpaces(unsigned AS)171 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {
172 initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
173 }
174
getAnalysisUsage(AnalysisUsage & AU) const175 void getAnalysisUsage(AnalysisUsage &AU) const override {
176 AU.setPreservesCFG();
177 AU.addPreserved<DominatorTreeWrapperPass>();
178 AU.addRequired<AssumptionCacheTracker>();
179 AU.addRequired<TargetTransformInfoWrapperPass>();
180 }
181
182 bool runOnFunction(Function &F) override;
183 };
184
185 class InferAddressSpacesImpl {
186 AssumptionCache &AC;
187 const DominatorTree *DT = nullptr;
188 const TargetTransformInfo *TTI = nullptr;
189 const DataLayout *DL = nullptr;
190
191 /// Target specific address space which uses of should be replaced if
192 /// possible.
193 unsigned FlatAddrSpace = 0;
194
195 // Try to update the address space of V. If V is updated, returns true and
196 // false otherwise.
197 bool updateAddressSpace(const Value &V,
198 ValueToAddrSpaceMapTy &InferredAddrSpace,
199 PredicatedAddrSpaceMapTy &PredicatedAS) const;
200
201 // Tries to infer the specific address space of each address expression in
202 // Postorder.
203 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
204 ValueToAddrSpaceMapTy &InferredAddrSpace,
205 PredicatedAddrSpaceMapTy &PredicatedAS) const;
206
207 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
208
209 Value *cloneInstructionWithNewAddressSpace(
210 Instruction *I, unsigned NewAddrSpace,
211 const ValueToValueMapTy &ValueWithNewAddrSpace,
212 const PredicatedAddrSpaceMapTy &PredicatedAS,
213 SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
214
215 // Changes the flat address expressions in function F to point to specific
216 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
217 // all flat expressions in the use-def graph of function F.
218 bool
219 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
220 const ValueToAddrSpaceMapTy &InferredAddrSpace,
221 const PredicatedAddrSpaceMapTy &PredicatedAS,
222 Function *F) const;
223
224 void appendsFlatAddressExpressionToPostorderStack(
225 Value *V, PostorderStackTy &PostorderStack,
226 DenseSet<Value *> &Visited) const;
227
228 bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV,
229 Value *NewV) const;
230 void collectRewritableIntrinsicOperands(IntrinsicInst *II,
231 PostorderStackTy &PostorderStack,
232 DenseSet<Value *> &Visited) const;
233
234 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
235
236 Value *cloneValueWithNewAddressSpace(
237 Value *V, unsigned NewAddrSpace,
238 const ValueToValueMapTy &ValueWithNewAddrSpace,
239 const PredicatedAddrSpaceMapTy &PredicatedAS,
240 SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
241 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
242
243 unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const;
244
245 public:
InferAddressSpacesImpl(AssumptionCache & AC,const DominatorTree * DT,const TargetTransformInfo * TTI,unsigned FlatAddrSpace)246 InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
247 const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
248 : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
249 bool run(Function &F);
250 };
251
252 } // end anonymous namespace
253
254 char InferAddressSpaces::ID = 0;
255
256 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
257 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)258 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
259 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
260 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
261 false, false)
262
263 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) {
264 assert(Ty->isPtrOrPtrVectorTy());
265 PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace);
266 return Ty->getWithNewType(NPT);
267 }
268
269 // Check whether that's no-op pointer bicast using a pair of
270 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
271 // different address spaces.
isNoopPtrIntCastPair(const Operator * I2P,const DataLayout & DL,const TargetTransformInfo * TTI)272 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
273 const TargetTransformInfo *TTI) {
274 assert(I2P->getOpcode() == Instruction::IntToPtr);
275 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
276 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
277 return false;
278 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
279 // no-op cast. Besides checking both of them are no-op casts, as the
280 // reinterpreted pointer may be used in other pointer arithmetic, we also
281 // need to double-check that through the target-specific hook. That ensures
282 // the underlying target also agrees that's a no-op address space cast and
283 // pointer bits are preserved.
284 // The current IR spec doesn't have clear rules on address space casts,
285 // especially a clear definition for pointer bits in non-default address
286 // spaces. It would be undefined if that pointer is dereferenced after an
287 // invalid reinterpret cast. Also, due to the unclearness for the meaning of
288 // bits in non-default address spaces in the current spec, the pointer
289 // arithmetic may also be undefined after invalid pointer reinterpret cast.
290 // However, as we confirm through the target hooks that it's a no-op
291 // addrspacecast, it doesn't matter since the bits should be the same.
292 unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
293 unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
294 return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
295 I2P->getOperand(0)->getType(), I2P->getType(),
296 DL) &&
297 CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
298 P2I->getOperand(0)->getType(), P2I->getType(),
299 DL) &&
300 (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
301 }
302
303 // Returns true if V is an address expression.
304 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
305 // getelementptr operators.
isAddressExpression(const Value & V,const DataLayout & DL,const TargetTransformInfo * TTI)306 static bool isAddressExpression(const Value &V, const DataLayout &DL,
307 const TargetTransformInfo *TTI) {
308 const Operator *Op = dyn_cast<Operator>(&V);
309 if (!Op)
310 return false;
311
312 switch (Op->getOpcode()) {
313 case Instruction::PHI:
314 assert(Op->getType()->isPtrOrPtrVectorTy());
315 return true;
316 case Instruction::BitCast:
317 case Instruction::AddrSpaceCast:
318 case Instruction::GetElementPtr:
319 return true;
320 case Instruction::Select:
321 return Op->getType()->isPtrOrPtrVectorTy();
322 case Instruction::Call: {
323 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
324 return II && II->getIntrinsicID() == Intrinsic::ptrmask;
325 }
326 case Instruction::IntToPtr:
327 return isNoopPtrIntCastPair(Op, DL, TTI);
328 default:
329 // That value is an address expression if it has an assumed address space.
330 return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
331 }
332 }
333
334 // Returns the pointer operands of V.
335 //
336 // Precondition: V is an address expression.
337 static SmallVector<Value *, 2>
getPointerOperands(const Value & V,const DataLayout & DL,const TargetTransformInfo * TTI)338 getPointerOperands(const Value &V, const DataLayout &DL,
339 const TargetTransformInfo *TTI) {
340 const Operator &Op = cast<Operator>(V);
341 switch (Op.getOpcode()) {
342 case Instruction::PHI: {
343 auto IncomingValues = cast<PHINode>(Op).incoming_values();
344 return {IncomingValues.begin(), IncomingValues.end()};
345 }
346 case Instruction::BitCast:
347 case Instruction::AddrSpaceCast:
348 case Instruction::GetElementPtr:
349 return {Op.getOperand(0)};
350 case Instruction::Select:
351 return {Op.getOperand(1), Op.getOperand(2)};
352 case Instruction::Call: {
353 const IntrinsicInst &II = cast<IntrinsicInst>(Op);
354 assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
355 "unexpected intrinsic call");
356 return {II.getArgOperand(0)};
357 }
358 case Instruction::IntToPtr: {
359 assert(isNoopPtrIntCastPair(&Op, DL, TTI));
360 auto *P2I = cast<Operator>(Op.getOperand(0));
361 return {P2I->getOperand(0)};
362 }
363 default:
364 llvm_unreachable("Unexpected instruction type.");
365 }
366 }
367
rewriteIntrinsicOperands(IntrinsicInst * II,Value * OldV,Value * NewV) const368 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
369 Value *OldV,
370 Value *NewV) const {
371 Module *M = II->getParent()->getParent()->getParent();
372
373 switch (II->getIntrinsicID()) {
374 case Intrinsic::objectsize: {
375 Type *DestTy = II->getType();
376 Type *SrcTy = NewV->getType();
377 Function *NewDecl =
378 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
379 II->setArgOperand(0, NewV);
380 II->setCalledFunction(NewDecl);
381 return true;
382 }
383 case Intrinsic::ptrmask:
384 // This is handled as an address expression, not as a use memory operation.
385 return false;
386 case Intrinsic::masked_gather: {
387 Type *RetTy = II->getType();
388 Type *NewPtrTy = NewV->getType();
389 Function *NewDecl =
390 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {RetTy, NewPtrTy});
391 II->setArgOperand(0, NewV);
392 II->setCalledFunction(NewDecl);
393 return true;
394 }
395 case Intrinsic::masked_scatter: {
396 Type *ValueTy = II->getOperand(0)->getType();
397 Type *NewPtrTy = NewV->getType();
398 Function *NewDecl =
399 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy});
400 II->setArgOperand(1, NewV);
401 II->setCalledFunction(NewDecl);
402 return true;
403 }
404 default: {
405 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
406 if (!Rewrite)
407 return false;
408 if (Rewrite != II)
409 II->replaceAllUsesWith(Rewrite);
410 return true;
411 }
412 }
413 }
414
collectRewritableIntrinsicOperands(IntrinsicInst * II,PostorderStackTy & PostorderStack,DenseSet<Value * > & Visited) const415 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
416 IntrinsicInst *II, PostorderStackTy &PostorderStack,
417 DenseSet<Value *> &Visited) const {
418 auto IID = II->getIntrinsicID();
419 switch (IID) {
420 case Intrinsic::ptrmask:
421 case Intrinsic::objectsize:
422 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
423 PostorderStack, Visited);
424 break;
425 case Intrinsic::masked_gather:
426 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
427 PostorderStack, Visited);
428 break;
429 case Intrinsic::masked_scatter:
430 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1),
431 PostorderStack, Visited);
432 break;
433 default:
434 SmallVector<int, 2> OpIndexes;
435 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
436 for (int Idx : OpIndexes) {
437 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
438 PostorderStack, Visited);
439 }
440 }
441 break;
442 }
443 }
444
445 // Returns all flat address expressions in function F. The elements are
446 // If V is an unvisited flat address expression, appends V to PostorderStack
447 // and marks it as visited.
appendsFlatAddressExpressionToPostorderStack(Value * V,PostorderStackTy & PostorderStack,DenseSet<Value * > & Visited) const448 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
449 Value *V, PostorderStackTy &PostorderStack,
450 DenseSet<Value *> &Visited) const {
451 assert(V->getType()->isPtrOrPtrVectorTy());
452
453 // Generic addressing expressions may be hidden in nested constant
454 // expressions.
455 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
456 // TODO: Look in non-address parts, like icmp operands.
457 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
458 PostorderStack.emplace_back(CE, false);
459
460 return;
461 }
462
463 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
464 isAddressExpression(*V, *DL, TTI)) {
465 if (Visited.insert(V).second) {
466 PostorderStack.emplace_back(V, false);
467
468 Operator *Op = cast<Operator>(V);
469 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
470 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
471 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
472 PostorderStack.emplace_back(CE, false);
473 }
474 }
475 }
476 }
477 }
478
479 // Returns all flat address expressions in function F. The elements are ordered
480 // in postorder.
481 std::vector<WeakTrackingVH>
collectFlatAddressExpressions(Function & F) const482 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
483 // This function implements a non-recursive postorder traversal of a partial
484 // use-def graph of function F.
485 PostorderStackTy PostorderStack;
486 // The set of visited expressions.
487 DenseSet<Value *> Visited;
488
489 auto PushPtrOperand = [&](Value *Ptr) {
490 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited);
491 };
492
493 // Look at operations that may be interesting accelerate by moving to a known
494 // address space. We aim at generating after loads and stores, but pure
495 // addressing calculations may also be faster.
496 for (Instruction &I : instructions(F)) {
497 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
498 PushPtrOperand(GEP->getPointerOperand());
499 } else if (auto *LI = dyn_cast<LoadInst>(&I))
500 PushPtrOperand(LI->getPointerOperand());
501 else if (auto *SI = dyn_cast<StoreInst>(&I))
502 PushPtrOperand(SI->getPointerOperand());
503 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
504 PushPtrOperand(RMW->getPointerOperand());
505 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
506 PushPtrOperand(CmpX->getPointerOperand());
507 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
508 // For memset/memcpy/memmove, any pointer operand can be replaced.
509 PushPtrOperand(MI->getRawDest());
510
511 // Handle 2nd operand for memcpy/memmove.
512 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
513 PushPtrOperand(MTI->getRawSource());
514 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
515 collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
516 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
517 if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) {
518 PushPtrOperand(Cmp->getOperand(0));
519 PushPtrOperand(Cmp->getOperand(1));
520 }
521 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
522 PushPtrOperand(ASC->getPointerOperand());
523 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
524 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
525 PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0));
526 } else if (auto *RI = dyn_cast<ReturnInst>(&I)) {
527 if (auto *RV = RI->getReturnValue();
528 RV && RV->getType()->isPtrOrPtrVectorTy())
529 PushPtrOperand(RV);
530 }
531 }
532
533 std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
534 while (!PostorderStack.empty()) {
535 Value *TopVal = PostorderStack.back().getPointer();
536 // If the operands of the expression on the top are already explored,
537 // adds that expression to the resultant postorder.
538 if (PostorderStack.back().getInt()) {
539 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
540 Postorder.push_back(TopVal);
541 PostorderStack.pop_back();
542 continue;
543 }
544 // Otherwise, adds its operands to the stack and explores them.
545 PostorderStack.back().setInt(true);
546 // Skip values with an assumed address space.
547 if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
548 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
549 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
550 Visited);
551 }
552 }
553 }
554 return Postorder;
555 }
556
557 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
558 // of OperandUse.get() in the new address space. If the clone is not ready yet,
559 // returns poison in the new address space as a placeholder.
operandWithNewAddressSpaceOrCreatePoison(const Use & OperandUse,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * PoisonUsesToFix)560 static Value *operandWithNewAddressSpaceOrCreatePoison(
561 const Use &OperandUse, unsigned NewAddrSpace,
562 const ValueToValueMapTy &ValueWithNewAddrSpace,
563 const PredicatedAddrSpaceMapTy &PredicatedAS,
564 SmallVectorImpl<const Use *> *PoisonUsesToFix) {
565 Value *Operand = OperandUse.get();
566
567 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace);
568
569 if (Constant *C = dyn_cast<Constant>(Operand))
570 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
571
572 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
573 return NewOperand;
574
575 Instruction *Inst = cast<Instruction>(OperandUse.getUser());
576 auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
577 if (I != PredicatedAS.end()) {
578 // Insert an addrspacecast on that operand before the user.
579 unsigned NewAS = I->second;
580 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS);
581 auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
582 NewI->insertBefore(Inst);
583 NewI->setDebugLoc(Inst->getDebugLoc());
584 return NewI;
585 }
586
587 PoisonUsesToFix->push_back(&OperandUse);
588 return PoisonValue::get(NewPtrTy);
589 }
590
591 // Returns a clone of `I` with its operands converted to those specified in
592 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
593 // operand whose address space needs to be modified might not exist in
594 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and
595 // adds that operand use to PoisonUsesToFix so that caller can fix them later.
596 //
597 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
598 // from a pointer whose type already matches. Therefore, this function returns a
599 // Value* instead of an Instruction*.
600 //
601 // This may also return nullptr in the case the instruction could not be
602 // rewritten.
cloneInstructionWithNewAddressSpace(Instruction * I,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * PoisonUsesToFix) const603 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
604 Instruction *I, unsigned NewAddrSpace,
605 const ValueToValueMapTy &ValueWithNewAddrSpace,
606 const PredicatedAddrSpaceMapTy &PredicatedAS,
607 SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
608 Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace);
609
610 if (I->getOpcode() == Instruction::AddrSpaceCast) {
611 Value *Src = I->getOperand(0);
612 // Because `I` is flat, the source address space must be specific.
613 // Therefore, the inferred address space must be the source space, according
614 // to our algorithm.
615 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
616 if (Src->getType() != NewPtrType)
617 return new BitCastInst(Src, NewPtrType);
618 return Src;
619 }
620
621 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
622 // Technically the intrinsic ID is a pointer typed argument, so specially
623 // handle calls early.
624 assert(II->getIntrinsicID() == Intrinsic::ptrmask);
625 Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison(
626 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
627 PredicatedAS, PoisonUsesToFix);
628 Value *Rewrite =
629 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
630 if (Rewrite) {
631 assert(Rewrite != II && "cannot modify this pointer operation in place");
632 return Rewrite;
633 }
634
635 return nullptr;
636 }
637
638 unsigned AS = TTI->getAssumedAddrSpace(I);
639 if (AS != UninitializedAddressSpace) {
640 // For the assumed address space, insert an `addrspacecast` to make that
641 // explicit.
642 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS);
643 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
644 NewI->insertAfter(I);
645 NewI->setDebugLoc(I->getDebugLoc());
646 return NewI;
647 }
648
649 // Computes the converted pointer operands.
650 SmallVector<Value *, 4> NewPointerOperands;
651 for (const Use &OperandUse : I->operands()) {
652 if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy())
653 NewPointerOperands.push_back(nullptr);
654 else
655 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison(
656 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
657 PoisonUsesToFix));
658 }
659
660 switch (I->getOpcode()) {
661 case Instruction::BitCast:
662 return new BitCastInst(NewPointerOperands[0], NewPtrType);
663 case Instruction::PHI: {
664 assert(I->getType()->isPtrOrPtrVectorTy());
665 PHINode *PHI = cast<PHINode>(I);
666 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
667 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
668 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
669 NewPHI->addIncoming(NewPointerOperands[OperandNo],
670 PHI->getIncomingBlock(Index));
671 }
672 return NewPHI;
673 }
674 case Instruction::GetElementPtr: {
675 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
676 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
677 GEP->getSourceElementType(), NewPointerOperands[0],
678 SmallVector<Value *, 4>(GEP->indices()));
679 NewGEP->setIsInBounds(GEP->isInBounds());
680 return NewGEP;
681 }
682 case Instruction::Select:
683 assert(I->getType()->isPtrOrPtrVectorTy());
684 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
685 NewPointerOperands[2], "", nullptr, I);
686 case Instruction::IntToPtr: {
687 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
688 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
689 if (Src->getType() == NewPtrType)
690 return Src;
691
692 // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
693 // source address space from a generic pointer source need to insert a cast
694 // back.
695 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
696 }
697 default:
698 llvm_unreachable("Unexpected opcode");
699 }
700 }
701
702 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
703 // constant expression `CE` with its operands replaced as specified in
704 // ValueWithNewAddrSpace.
cloneConstantExprWithNewAddressSpace(ConstantExpr * CE,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const DataLayout * DL,const TargetTransformInfo * TTI)705 static Value *cloneConstantExprWithNewAddressSpace(
706 ConstantExpr *CE, unsigned NewAddrSpace,
707 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
708 const TargetTransformInfo *TTI) {
709 Type *TargetType =
710 CE->getType()->isPtrOrPtrVectorTy()
711 ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace)
712 : CE->getType();
713
714 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
715 // Because CE is flat, the source address space must be specific.
716 // Therefore, the inferred address space must be the source space according
717 // to our algorithm.
718 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
719 NewAddrSpace);
720 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
721 }
722
723 if (CE->getOpcode() == Instruction::BitCast) {
724 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
725 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
726 return ConstantExpr::getAddrSpaceCast(CE, TargetType);
727 }
728
729 if (CE->getOpcode() == Instruction::IntToPtr) {
730 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
731 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
732 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
733 return ConstantExpr::getBitCast(Src, TargetType);
734 }
735
736 // Computes the operands of the new constant expression.
737 bool IsNew = false;
738 SmallVector<Constant *, 4> NewOperands;
739 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
740 Constant *Operand = CE->getOperand(Index);
741 // If the address space of `Operand` needs to be modified, the new operand
742 // with the new address space should already be in ValueWithNewAddrSpace
743 // because (1) the constant expressions we consider (i.e. addrspacecast,
744 // bitcast, and getelementptr) do not incur cycles in the data flow graph
745 // and (2) this function is called on constant expressions in postorder.
746 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
747 IsNew = true;
748 NewOperands.push_back(cast<Constant>(NewOperand));
749 continue;
750 }
751 if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
752 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
753 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
754 IsNew = true;
755 NewOperands.push_back(cast<Constant>(NewOperand));
756 continue;
757 }
758 // Otherwise, reuses the old operand.
759 NewOperands.push_back(Operand);
760 }
761
762 // If !IsNew, we will replace the Value with itself. However, replaced values
763 // are assumed to wrapped in an addrspacecast cast later so drop it now.
764 if (!IsNew)
765 return nullptr;
766
767 if (CE->getOpcode() == Instruction::GetElementPtr) {
768 // Needs to specify the source type while constructing a getelementptr
769 // constant expression.
770 return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
771 cast<GEPOperator>(CE)->getSourceElementType());
772 }
773
774 return CE->getWithOperands(NewOperands, TargetType);
775 }
776
777 // Returns a clone of the value `V`, with its operands replaced as specified in
778 // ValueWithNewAddrSpace. This function is called on every flat address
779 // expression whose address space needs to be modified, in postorder.
780 //
781 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix.
cloneValueWithNewAddressSpace(Value * V,unsigned NewAddrSpace,const ValueToValueMapTy & ValueWithNewAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,SmallVectorImpl<const Use * > * PoisonUsesToFix) const782 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
783 Value *V, unsigned NewAddrSpace,
784 const ValueToValueMapTy &ValueWithNewAddrSpace,
785 const PredicatedAddrSpaceMapTy &PredicatedAS,
786 SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
787 // All values in Postorder are flat address expressions.
788 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
789 isAddressExpression(*V, *DL, TTI));
790
791 if (Instruction *I = dyn_cast<Instruction>(V)) {
792 Value *NewV = cloneInstructionWithNewAddressSpace(
793 I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix);
794 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
795 if (NewI->getParent() == nullptr) {
796 NewI->insertBefore(I);
797 NewI->takeName(I);
798 NewI->setDebugLoc(I->getDebugLoc());
799 }
800 }
801 return NewV;
802 }
803
804 return cloneConstantExprWithNewAddressSpace(
805 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
806 }
807
808 // Defines the join operation on the address space lattice (see the file header
809 // comments).
joinAddressSpaces(unsigned AS1,unsigned AS2) const810 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
811 unsigned AS2) const {
812 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
813 return FlatAddrSpace;
814
815 if (AS1 == UninitializedAddressSpace)
816 return AS2;
817 if (AS2 == UninitializedAddressSpace)
818 return AS1;
819
820 // The join of two different specific address spaces is flat.
821 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
822 }
823
run(Function & F)824 bool InferAddressSpacesImpl::run(Function &F) {
825 DL = &F.getDataLayout();
826
827 if (AssumeDefaultIsFlatAddressSpace)
828 FlatAddrSpace = 0;
829
830 if (FlatAddrSpace == UninitializedAddressSpace) {
831 FlatAddrSpace = TTI->getFlatAddressSpace();
832 if (FlatAddrSpace == UninitializedAddressSpace)
833 return false;
834 }
835
836 // Collects all flat address expressions in postorder.
837 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
838
839 // Runs a data-flow analysis to refine the address spaces of every expression
840 // in Postorder.
841 ValueToAddrSpaceMapTy InferredAddrSpace;
842 PredicatedAddrSpaceMapTy PredicatedAS;
843 inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
844
845 // Changes the address spaces of the flat address expressions who are inferred
846 // to point to a specific address space.
847 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS,
848 &F);
849 }
850
851 // Constants need to be tracked through RAUW to handle cases with nested
852 // constant expressions, so wrap values in WeakTrackingVH.
inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,ValueToAddrSpaceMapTy & InferredAddrSpace,PredicatedAddrSpaceMapTy & PredicatedAS) const853 void InferAddressSpacesImpl::inferAddressSpaces(
854 ArrayRef<WeakTrackingVH> Postorder,
855 ValueToAddrSpaceMapTy &InferredAddrSpace,
856 PredicatedAddrSpaceMapTy &PredicatedAS) const {
857 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
858 // Initially, all expressions are in the uninitialized address space.
859 for (Value *V : Postorder)
860 InferredAddrSpace[V] = UninitializedAddressSpace;
861
862 while (!Worklist.empty()) {
863 Value *V = Worklist.pop_back_val();
864
865 // Try to update the address space of the stack top according to the
866 // address spaces of its operands.
867 if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
868 continue;
869
870 for (Value *User : V->users()) {
871 // Skip if User is already in the worklist.
872 if (Worklist.count(User))
873 continue;
874
875 auto Pos = InferredAddrSpace.find(User);
876 // Our algorithm only updates the address spaces of flat address
877 // expressions, which are those in InferredAddrSpace.
878 if (Pos == InferredAddrSpace.end())
879 continue;
880
881 // Function updateAddressSpace moves the address space down a lattice
882 // path. Therefore, nothing to do if User is already inferred as flat (the
883 // bottom element in the lattice).
884 if (Pos->second == FlatAddrSpace)
885 continue;
886
887 Worklist.insert(User);
888 }
889 }
890 }
891
getPredicatedAddrSpace(const Value & V,Value * Opnd) const892 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V,
893 Value *Opnd) const {
894 const Instruction *I = dyn_cast<Instruction>(&V);
895 if (!I)
896 return UninitializedAddressSpace;
897
898 Opnd = Opnd->stripInBoundsOffsets();
899 for (auto &AssumeVH : AC.assumptionsFor(Opnd)) {
900 if (!AssumeVH)
901 continue;
902 CallInst *CI = cast<CallInst>(AssumeVH);
903 if (!isValidAssumeForContext(CI, I, DT))
904 continue;
905
906 const Value *Ptr;
907 unsigned AS;
908 std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
909 if (Ptr)
910 return AS;
911 }
912
913 return UninitializedAddressSpace;
914 }
915
updateAddressSpace(const Value & V,ValueToAddrSpaceMapTy & InferredAddrSpace,PredicatedAddrSpaceMapTy & PredicatedAS) const916 bool InferAddressSpacesImpl::updateAddressSpace(
917 const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
918 PredicatedAddrSpaceMapTy &PredicatedAS) const {
919 assert(InferredAddrSpace.count(&V));
920
921 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n');
922
923 // The new inferred address space equals the join of the address spaces
924 // of all its pointer operands.
925 unsigned NewAS = UninitializedAddressSpace;
926
927 const Operator &Op = cast<Operator>(V);
928 if (Op.getOpcode() == Instruction::Select) {
929 Value *Src0 = Op.getOperand(1);
930 Value *Src1 = Op.getOperand(2);
931
932 auto I = InferredAddrSpace.find(Src0);
933 unsigned Src0AS = (I != InferredAddrSpace.end())
934 ? I->second
935 : Src0->getType()->getPointerAddressSpace();
936
937 auto J = InferredAddrSpace.find(Src1);
938 unsigned Src1AS = (J != InferredAddrSpace.end())
939 ? J->second
940 : Src1->getType()->getPointerAddressSpace();
941
942 auto *C0 = dyn_cast<Constant>(Src0);
943 auto *C1 = dyn_cast<Constant>(Src1);
944
945 // If one of the inputs is a constant, we may be able to do a constant
946 // addrspacecast of it. Defer inferring the address space until the input
947 // address space is known.
948 if ((C1 && Src0AS == UninitializedAddressSpace) ||
949 (C0 && Src1AS == UninitializedAddressSpace))
950 return false;
951
952 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
953 NewAS = Src1AS;
954 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
955 NewAS = Src0AS;
956 else
957 NewAS = joinAddressSpaces(Src0AS, Src1AS);
958 } else {
959 unsigned AS = TTI->getAssumedAddrSpace(&V);
960 if (AS != UninitializedAddressSpace) {
961 // Use the assumed address space directly.
962 NewAS = AS;
963 } else {
964 // Otherwise, infer the address space from its pointer operands.
965 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
966 auto I = InferredAddrSpace.find(PtrOperand);
967 unsigned OperandAS;
968 if (I == InferredAddrSpace.end()) {
969 OperandAS = PtrOperand->getType()->getPointerAddressSpace();
970 if (OperandAS == FlatAddrSpace) {
971 // Check AC for assumption dominating V.
972 unsigned AS = getPredicatedAddrSpace(V, PtrOperand);
973 if (AS != UninitializedAddressSpace) {
974 LLVM_DEBUG(dbgs()
975 << " deduce operand AS from the predicate addrspace "
976 << AS << '\n');
977 OperandAS = AS;
978 // Record this use with the predicated AS.
979 PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
980 }
981 }
982 } else
983 OperandAS = I->second;
984
985 // join(flat, *) = flat. So we can break if NewAS is already flat.
986 NewAS = joinAddressSpaces(NewAS, OperandAS);
987 if (NewAS == FlatAddrSpace)
988 break;
989 }
990 }
991 }
992
993 unsigned OldAS = InferredAddrSpace.lookup(&V);
994 assert(OldAS != FlatAddrSpace);
995 if (OldAS == NewAS)
996 return false;
997
998 // If any updates are made, grabs its users to the worklist because
999 // their address spaces can also be possibly updated.
1000 LLVM_DEBUG(dbgs() << " to " << NewAS << '\n');
1001 InferredAddrSpace[&V] = NewAS;
1002 return true;
1003 }
1004
1005 /// \p returns true if \p U is the pointer operand of a memory instruction with
1006 /// a single pointer operand that can have its address space changed by simply
1007 /// mutating the use to a new value. If the memory instruction is volatile,
1008 /// return true only if the target allows the memory instruction to be volatile
1009 /// in the new address space.
isSimplePointerUseValidToReplace(const TargetTransformInfo & TTI,Use & U,unsigned AddrSpace)1010 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
1011 Use &U, unsigned AddrSpace) {
1012 User *Inst = U.getUser();
1013 unsigned OpNo = U.getOperandNo();
1014 bool VolatileIsAllowed = false;
1015 if (auto *I = dyn_cast<Instruction>(Inst))
1016 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
1017
1018 if (auto *LI = dyn_cast<LoadInst>(Inst))
1019 return OpNo == LoadInst::getPointerOperandIndex() &&
1020 (VolatileIsAllowed || !LI->isVolatile());
1021
1022 if (auto *SI = dyn_cast<StoreInst>(Inst))
1023 return OpNo == StoreInst::getPointerOperandIndex() &&
1024 (VolatileIsAllowed || !SI->isVolatile());
1025
1026 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1027 return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
1028 (VolatileIsAllowed || !RMW->isVolatile());
1029
1030 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1031 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
1032 (VolatileIsAllowed || !CmpX->isVolatile());
1033
1034 return false;
1035 }
1036
1037 /// Update memory intrinsic uses that require more complex processing than
1038 /// simple memory instructions. These require re-mangling and may have multiple
1039 /// pointer operands.
handleMemIntrinsicPtrUse(MemIntrinsic * MI,Value * OldV,Value * NewV)1040 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1041 Value *NewV) {
1042 IRBuilder<> B(MI);
1043 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1044 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1045 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1046
1047 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1048 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1049 false, // isVolatile
1050 TBAA, ScopeMD, NoAliasMD);
1051 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1052 Value *Src = MTI->getRawSource();
1053 Value *Dest = MTI->getRawDest();
1054
1055 // Be careful in case this is a self-to-self copy.
1056 if (Src == OldV)
1057 Src = NewV;
1058
1059 if (Dest == OldV)
1060 Dest = NewV;
1061
1062 if (isa<MemCpyInlineInst>(MTI)) {
1063 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1064 B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1065 MTI->getSourceAlign(), MTI->getLength(),
1066 false, // isVolatile
1067 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1068 } else if (isa<MemCpyInst>(MTI)) {
1069 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1070 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1071 MTI->getLength(),
1072 false, // isVolatile
1073 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1074 } else {
1075 assert(isa<MemMoveInst>(MTI));
1076 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1077 MTI->getLength(),
1078 false, // isVolatile
1079 TBAA, ScopeMD, NoAliasMD);
1080 }
1081 } else
1082 llvm_unreachable("unhandled MemIntrinsic");
1083
1084 MI->eraseFromParent();
1085 return true;
1086 }
1087
1088 // \p returns true if it is OK to change the address space of constant \p C with
1089 // a ConstantExpr addrspacecast.
isSafeToCastConstAddrSpace(Constant * C,unsigned NewAS) const1090 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1091 unsigned NewAS) const {
1092 assert(NewAS != UninitializedAddressSpace);
1093
1094 unsigned SrcAS = C->getType()->getPointerAddressSpace();
1095 if (SrcAS == NewAS || isa<UndefValue>(C))
1096 return true;
1097
1098 // Prevent illegal casts between different non-flat address spaces.
1099 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1100 return false;
1101
1102 if (isa<ConstantPointerNull>(C))
1103 return true;
1104
1105 if (auto *Op = dyn_cast<Operator>(C)) {
1106 // If we already have a constant addrspacecast, it should be safe to cast it
1107 // off.
1108 if (Op->getOpcode() == Instruction::AddrSpaceCast)
1109 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)),
1110 NewAS);
1111
1112 if (Op->getOpcode() == Instruction::IntToPtr &&
1113 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1114 return true;
1115 }
1116
1117 return false;
1118 }
1119
skipToNextUser(Value::use_iterator I,Value::use_iterator End)1120 static Value::use_iterator skipToNextUser(Value::use_iterator I,
1121 Value::use_iterator End) {
1122 User *CurUser = I->getUser();
1123 ++I;
1124
1125 while (I != End && I->getUser() == CurUser)
1126 ++I;
1127
1128 return I;
1129 }
1130
rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,const ValueToAddrSpaceMapTy & InferredAddrSpace,const PredicatedAddrSpaceMapTy & PredicatedAS,Function * F) const1131 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1132 ArrayRef<WeakTrackingVH> Postorder,
1133 const ValueToAddrSpaceMapTy &InferredAddrSpace,
1134 const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const {
1135 // For each address expression to be modified, creates a clone of it with its
1136 // pointer operands converted to the new address space. Since the pointer
1137 // operands are converted, the clone is naturally in the new address space by
1138 // construction.
1139 ValueToValueMapTy ValueWithNewAddrSpace;
1140 SmallVector<const Use *, 32> PoisonUsesToFix;
1141 for (Value *V : Postorder) {
1142 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1143
1144 // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1145 // not even infer the value to have its original address space.
1146 if (NewAddrSpace == UninitializedAddressSpace)
1147 continue;
1148
1149 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1150 Value *New =
1151 cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1152 PredicatedAS, &PoisonUsesToFix);
1153 if (New)
1154 ValueWithNewAddrSpace[V] = New;
1155 }
1156 }
1157
1158 if (ValueWithNewAddrSpace.empty())
1159 return false;
1160
1161 // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace.
1162 for (const Use *PoisonUse : PoisonUsesToFix) {
1163 User *V = PoisonUse->getUser();
1164 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1165 if (!NewV)
1166 continue;
1167
1168 unsigned OperandNo = PoisonUse->getOperandNo();
1169 assert(isa<PoisonValue>(NewV->getOperand(OperandNo)));
1170 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get()));
1171 }
1172
1173 SmallVector<Instruction *, 16> DeadInstructions;
1174 ValueToValueMapTy VMap;
1175 ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1176
1177 // Replaces the uses of the old address expressions with the new ones.
1178 for (const WeakTrackingVH &WVH : Postorder) {
1179 assert(WVH && "value was unexpectedly deleted");
1180 Value *V = WVH;
1181 Value *NewV = ValueWithNewAddrSpace.lookup(V);
1182 if (NewV == nullptr)
1183 continue;
1184
1185 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n "
1186 << *NewV << '\n');
1187
1188 if (Constant *C = dyn_cast<Constant>(V)) {
1189 Constant *Replace =
1190 ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType());
1191 if (C != Replace) {
1192 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1193 << ": " << *Replace << '\n');
1194 SmallVector<User *, 16> WorkList;
1195 for (User *U : make_early_inc_range(C->users())) {
1196 if (auto *I = dyn_cast<Instruction>(U)) {
1197 if (I->getFunction() == F)
1198 I->replaceUsesOfWith(C, Replace);
1199 } else {
1200 WorkList.append(U->user_begin(), U->user_end());
1201 }
1202 }
1203 if (!WorkList.empty()) {
1204 VMap[C] = Replace;
1205 DenseSet<User *> Visited{WorkList.begin(), WorkList.end()};
1206 while (!WorkList.empty()) {
1207 User *U = WorkList.pop_back_val();
1208 if (auto *I = dyn_cast<Instruction>(U)) {
1209 if (I->getFunction() == F)
1210 VMapper.remapInstruction(*I);
1211 continue;
1212 }
1213 for (User *U2 : U->users())
1214 if (Visited.insert(U2).second)
1215 WorkList.push_back(U2);
1216 }
1217 }
1218 V = Replace;
1219 }
1220 }
1221
1222 Value::use_iterator I, E, Next;
1223 for (I = V->use_begin(), E = V->use_end(); I != E;) {
1224 Use &U = *I;
1225 User *CurUser = U.getUser();
1226
1227 // Some users may see the same pointer operand in multiple operands. Skip
1228 // to the next instruction.
1229 I = skipToNextUser(I, E);
1230
1231 if (isSimplePointerUseValidToReplace(
1232 *TTI, U, V->getType()->getPointerAddressSpace())) {
1233 // If V is used as the pointer operand of a compatible memory operation,
1234 // sets the pointer operand to NewV. This replacement does not change
1235 // the element type, so the resultant load/store is still valid.
1236 U.set(NewV);
1237 continue;
1238 }
1239
1240 // Skip if the current user is the new value itself.
1241 if (CurUser == NewV)
1242 continue;
1243
1244 if (auto *CurUserI = dyn_cast<Instruction>(CurUser);
1245 CurUserI && CurUserI->getFunction() != F)
1246 continue;
1247
1248 // Handle more complex cases like intrinsic that need to be remangled.
1249 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1250 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1251 continue;
1252 }
1253
1254 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1255 if (rewriteIntrinsicOperands(II, V, NewV))
1256 continue;
1257 }
1258
1259 if (isa<Instruction>(CurUser)) {
1260 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
1261 // If we can infer that both pointers are in the same addrspace,
1262 // transform e.g.
1263 // %cmp = icmp eq float* %p, %q
1264 // into
1265 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1266
1267 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1268 int SrcIdx = U.getOperandNo();
1269 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1270 Value *OtherSrc = Cmp->getOperand(OtherIdx);
1271
1272 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1273 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1274 Cmp->setOperand(OtherIdx, OtherNewV);
1275 Cmp->setOperand(SrcIdx, NewV);
1276 continue;
1277 }
1278 }
1279
1280 // Even if the type mismatches, we can cast the constant.
1281 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1282 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1283 Cmp->setOperand(SrcIdx, NewV);
1284 Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(
1285 KOtherSrc, NewV->getType()));
1286 continue;
1287 }
1288 }
1289 }
1290
1291 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
1292 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1293 if (ASC->getDestAddressSpace() == NewAS) {
1294 ASC->replaceAllUsesWith(NewV);
1295 DeadInstructions.push_back(ASC);
1296 continue;
1297 }
1298 }
1299
1300 // Otherwise, replaces the use with flat(NewV).
1301 if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1302 // Don't create a copy of the original addrspacecast.
1303 if (U == V && isa<AddrSpaceCastInst>(V))
1304 continue;
1305
1306 // Insert the addrspacecast after NewV.
1307 BasicBlock::iterator InsertPos;
1308 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1309 InsertPos = std::next(NewVInst->getIterator());
1310 else
1311 InsertPos = std::next(VInst->getIterator());
1312
1313 while (isa<PHINode>(InsertPos))
1314 ++InsertPos;
1315 // This instruction may contain multiple uses of V, update them all.
1316 CurUser->replaceUsesOfWith(
1317 V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos));
1318 } else {
1319 CurUser->replaceUsesOfWith(
1320 V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1321 V->getType()));
1322 }
1323 }
1324 }
1325
1326 if (V->use_empty()) {
1327 if (Instruction *I = dyn_cast<Instruction>(V))
1328 DeadInstructions.push_back(I);
1329 }
1330 }
1331
1332 for (Instruction *I : DeadInstructions)
1333 RecursivelyDeleteTriviallyDeadInstructions(I);
1334
1335 return true;
1336 }
1337
runOnFunction(Function & F)1338 bool InferAddressSpaces::runOnFunction(Function &F) {
1339 if (skipFunction(F))
1340 return false;
1341
1342 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1343 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1344 return InferAddressSpacesImpl(
1345 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1346 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1347 FlatAddrSpace)
1348 .run(F);
1349 }
1350
createInferAddressSpacesPass(unsigned AddressSpace)1351 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1352 return new InferAddressSpaces(AddressSpace);
1353 }
1354
InferAddressSpacesPass()1355 InferAddressSpacesPass::InferAddressSpacesPass()
1356 : FlatAddrSpace(UninitializedAddressSpace) {}
InferAddressSpacesPass(unsigned AddressSpace)1357 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1358 : FlatAddrSpace(AddressSpace) {}
1359
run(Function & F,FunctionAnalysisManager & AM)1360 PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1361 FunctionAnalysisManager &AM) {
1362 bool Changed =
1363 InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1364 AM.getCachedResult<DominatorTreeAnalysis>(F),
1365 &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1366 .run(F);
1367 if (Changed) {
1368 PreservedAnalyses PA;
1369 PA.preserveSet<CFGAnalyses>();
1370 PA.preserve<DominatorTreeAnalysis>();
1371 return PA;
1372 }
1373 return PreservedAnalyses::all();
1374 }
1375