xref: /freebsd/sys/kern/subr_smp.c (revision fdafd315ad0d0f28a11b9fb4476a9ab059c62b92)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * This module holds the global variables and machine independent functions
30  * used for the kernel SMP support.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/ktr.h>
37 #include <sys/proc.h>
38 #include <sys/bus.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/pcpu.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/sysctl.h>
46 
47 #include <machine/cpu.h>
48 #include <machine/pcb.h>
49 #include <machine/smp.h>
50 
51 #include "opt_sched.h"
52 
53 #ifdef SMP
54 MALLOC_DEFINE(M_TOPO, "toponodes", "SMP topology data");
55 
56 volatile cpuset_t stopped_cpus;
57 volatile cpuset_t started_cpus;
58 volatile cpuset_t suspended_cpus;
59 cpuset_t hlt_cpus_mask;
60 cpuset_t logical_cpus_mask;
61 
62 void (*cpustop_restartfunc)(void);
63 #endif
64 
65 static int sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS);
66 
67 /* This is used in modules that need to work in both SMP and UP. */
68 cpuset_t all_cpus;
69 
70 int mp_ncpus;
71 /* export this for libkvm consumers. */
72 int mp_maxcpus = MAXCPU;
73 
74 volatile int smp_started;
75 u_int mp_maxid;
76 
77 /* Array of CPU contexts saved during a panic. */
78 struct pcb *stoppcbs;
79 
80 static SYSCTL_NODE(_kern, OID_AUTO, smp,
81     CTLFLAG_RD | CTLFLAG_CAPRD | CTLFLAG_MPSAFE, NULL,
82     "Kernel SMP");
83 
84 SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxid, 0,
85     "Max CPU ID.");
86 
87 SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_maxcpus,
88     0, "Max number of CPUs that the system was compiled for.");
89 
90 SYSCTL_PROC(_kern_smp, OID_AUTO, active, CTLFLAG_RD|CTLTYPE_INT|CTLFLAG_MPSAFE,
91     NULL, 0, sysctl_kern_smp_active, "I",
92     "Indicates system is running in SMP mode");
93 
94 int smp_disabled = 0;	/* has smp been disabled? */
95 SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN|CTLFLAG_CAPRD,
96     &smp_disabled, 0, "SMP has been disabled from the loader");
97 
98 int smp_cpus = 1;	/* how many cpu's running */
99 SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD|CTLFLAG_CAPRD, &smp_cpus, 0,
100     "Number of CPUs online");
101 
102 int smp_threads_per_core = 1;	/* how many SMT threads are running per core */
103 SYSCTL_INT(_kern_smp, OID_AUTO, threads_per_core, CTLFLAG_RD|CTLFLAG_CAPRD,
104     &smp_threads_per_core, 0, "Number of SMT threads online per core");
105 
106 int mp_ncores = -1;	/* how many physical cores running */
107 SYSCTL_INT(_kern_smp, OID_AUTO, cores, CTLFLAG_RD|CTLFLAG_CAPRD, &mp_ncores, 0,
108     "Number of physical cores online");
109 
110 int smp_topology = 0;	/* Which topology we're using. */
111 SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RDTUN, &smp_topology, 0,
112     "Topology override setting; 0 is default provided by hardware.");
113 
114 #ifdef SMP
115 /* Variables needed for SMP rendezvous. */
116 static volatile int smp_rv_ncpus;
117 static void (*volatile smp_rv_setup_func)(void *arg);
118 static void (*volatile smp_rv_action_func)(void *arg);
119 static void (*volatile smp_rv_teardown_func)(void *arg);
120 static void *volatile smp_rv_func_arg;
121 static volatile int smp_rv_waiters[4];
122 
123 /*
124  * Shared mutex to restrict busywaits between smp_rendezvous() and
125  * smp(_targeted)_tlb_shootdown().  A deadlock occurs if both of these
126  * functions trigger at once and cause multiple CPUs to busywait with
127  * interrupts disabled.
128  */
129 struct mtx smp_ipi_mtx;
130 
131 /*
132  * Let the MD SMP code initialize mp_maxid very early if it can.
133  */
134 static void
mp_setmaxid(void * dummy)135 mp_setmaxid(void *dummy)
136 {
137 
138 	cpu_mp_setmaxid();
139 
140 	KASSERT(mp_ncpus >= 1, ("%s: CPU count < 1", __func__));
141 	KASSERT(mp_ncpus > 1 || mp_maxid == 0,
142 	    ("%s: one CPU but mp_maxid is not zero", __func__));
143 	KASSERT(mp_maxid >= mp_ncpus - 1,
144 	    ("%s: counters out of sync: max %d, count %d", __func__,
145 		mp_maxid, mp_ncpus));
146 
147 	cpusetsizemin = howmany(mp_maxid + 1, NBBY);
148 }
149 SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
150 
151 /*
152  * Call the MD SMP initialization code.
153  */
154 static void
mp_start(void * dummy)155 mp_start(void *dummy)
156 {
157 
158 	mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
159 
160 	/* Probe for MP hardware. */
161 	if (smp_disabled != 0 || cpu_mp_probe() == 0) {
162 		mp_ncores = 1;
163 		mp_ncpus = 1;
164 		CPU_SETOF(PCPU_GET(cpuid), &all_cpus);
165 		return;
166 	}
167 
168 	cpu_mp_start();
169 	printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
170 	    mp_ncpus);
171 
172 	/* Provide a default for most architectures that don't have SMT/HTT. */
173 	if (mp_ncores < 0)
174 		mp_ncores = mp_ncpus;
175 
176 	stoppcbs = mallocarray(mp_maxid + 1, sizeof(struct pcb), M_DEVBUF,
177 	    M_WAITOK | M_ZERO);
178 
179 	cpu_mp_announce();
180 }
181 SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
182 
183 void
forward_signal(struct thread * td)184 forward_signal(struct thread *td)
185 {
186 	int id;
187 
188 	/*
189 	 * signotify() has already set TDA_AST and TDA_SIG on td_ast for
190 	 * this thread, so all we need to do is poke it if it is currently
191 	 * executing so that it executes ast().
192 	 */
193 	THREAD_LOCK_ASSERT(td, MA_OWNED);
194 	KASSERT(TD_IS_RUNNING(td),
195 	    ("forward_signal: thread is not TDS_RUNNING"));
196 
197 	CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
198 
199 	if (!smp_started || cold || KERNEL_PANICKED())
200 		return;
201 
202 	/* No need to IPI ourself. */
203 	if (td == curthread)
204 		return;
205 
206 	id = td->td_oncpu;
207 	if (id == NOCPU)
208 		return;
209 	ipi_cpu(id, IPI_AST);
210 }
211 
212 /*
213  * When called the executing CPU will send an IPI to all other CPUs
214  *  requesting that they halt execution.
215  *
216  * Usually (but not necessarily) called with 'other_cpus' as its arg.
217  *
218  *  - Signals all CPUs in map to stop.
219  *  - Waits for each to stop.
220  *
221  * Returns:
222  *  -1: error
223  *   0: NA
224  *   1: ok
225  *
226  */
227 #if defined(__amd64__) || defined(__i386__)
228 #define	X86	1
229 #else
230 #define	X86	0
231 #endif
232 static int
generic_stop_cpus(cpuset_t map,u_int type)233 generic_stop_cpus(cpuset_t map, u_int type)
234 {
235 #ifdef KTR
236 	char cpusetbuf[CPUSETBUFSIZ];
237 #endif
238 	static volatile u_int stopping_cpu = NOCPU;
239 	int i;
240 	volatile cpuset_t *cpus;
241 
242 	KASSERT(
243 	    type == IPI_STOP || type == IPI_STOP_HARD
244 #if X86
245 	    || type == IPI_SUSPEND
246 #endif
247 	    , ("%s: invalid stop type", __func__));
248 
249 	if (!smp_started)
250 		return (0);
251 
252 	CTR2(KTR_SMP, "stop_cpus(%s) with %u type",
253 	    cpusetobj_strprint(cpusetbuf, &map), type);
254 
255 #if X86
256 	/*
257 	 * When suspending, ensure there are are no IPIs in progress.
258 	 * IPIs that have been issued, but not yet delivered (e.g.
259 	 * not pending on a vCPU when running under virtualization)
260 	 * will be lost, violating FreeBSD's assumption of reliable
261 	 * IPI delivery.
262 	 */
263 	if (type == IPI_SUSPEND)
264 		mtx_lock_spin(&smp_ipi_mtx);
265 #endif
266 
267 #if X86
268 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
269 #endif
270 	if (stopping_cpu != PCPU_GET(cpuid))
271 		while (atomic_cmpset_int(&stopping_cpu, NOCPU,
272 		    PCPU_GET(cpuid)) == 0)
273 			while (stopping_cpu != NOCPU)
274 				cpu_spinwait(); /* spin */
275 
276 	/* send the stop IPI to all CPUs in map */
277 	ipi_selected(map, type);
278 #if X86
279 	}
280 #endif
281 
282 #if X86
283 	if (type == IPI_SUSPEND)
284 		cpus = &suspended_cpus;
285 	else
286 #endif
287 		cpus = &stopped_cpus;
288 
289 	i = 0;
290 	while (!CPU_SUBSET(cpus, &map)) {
291 		/* spin */
292 		cpu_spinwait();
293 		i++;
294 		if (i == 100000000) {
295 			printf("timeout stopping cpus\n");
296 			break;
297 		}
298 	}
299 
300 #if X86
301 	if (type == IPI_SUSPEND)
302 		mtx_unlock_spin(&smp_ipi_mtx);
303 #endif
304 
305 	stopping_cpu = NOCPU;
306 	return (1);
307 }
308 
309 int
stop_cpus(cpuset_t map)310 stop_cpus(cpuset_t map)
311 {
312 
313 	return (generic_stop_cpus(map, IPI_STOP));
314 }
315 
316 int
stop_cpus_hard(cpuset_t map)317 stop_cpus_hard(cpuset_t map)
318 {
319 
320 	return (generic_stop_cpus(map, IPI_STOP_HARD));
321 }
322 
323 #if X86
324 int
suspend_cpus(cpuset_t map)325 suspend_cpus(cpuset_t map)
326 {
327 
328 	return (generic_stop_cpus(map, IPI_SUSPEND));
329 }
330 #endif
331 
332 /*
333  * Called by a CPU to restart stopped CPUs.
334  *
335  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
336  *
337  *  - Signals all CPUs in map to restart.
338  *  - Waits for each to restart.
339  *
340  * Returns:
341  *  -1: error
342  *   0: NA
343  *   1: ok
344  */
345 static int
generic_restart_cpus(cpuset_t map,u_int type)346 generic_restart_cpus(cpuset_t map, u_int type)
347 {
348 #ifdef KTR
349 	char cpusetbuf[CPUSETBUFSIZ];
350 #endif
351 	volatile cpuset_t *cpus;
352 
353 #if X86
354 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD
355 	    || type == IPI_SUSPEND, ("%s: invalid stop type", __func__));
356 
357 	if (!smp_started)
358 		return (0);
359 
360 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
361 
362 	if (type == IPI_SUSPEND)
363 		cpus = &resuming_cpus;
364 	else
365 		cpus = &stopped_cpus;
366 
367 	/* signal other cpus to restart */
368 	if (type == IPI_SUSPEND)
369 		CPU_COPY_STORE_REL(&map, &toresume_cpus);
370 	else
371 		CPU_COPY_STORE_REL(&map, &started_cpus);
372 
373 	/*
374 	 * Wake up any CPUs stopped with MWAIT.  From MI code we can't tell if
375 	 * MONITOR/MWAIT is enabled, but the potentially redundant writes are
376 	 * relatively inexpensive.
377 	 */
378 	if (type == IPI_STOP) {
379 		struct monitorbuf *mb;
380 		u_int id;
381 
382 		CPU_FOREACH(id) {
383 			if (!CPU_ISSET(id, &map))
384 				continue;
385 
386 			mb = &pcpu_find(id)->pc_monitorbuf;
387 			atomic_store_int(&mb->stop_state,
388 			    MONITOR_STOPSTATE_RUNNING);
389 		}
390 	}
391 
392 	if (!nmi_is_broadcast || nmi_kdb_lock == 0) {
393 		/* wait for each to clear its bit */
394 		while (CPU_OVERLAP(cpus, &map))
395 			cpu_spinwait();
396 	}
397 #else /* !X86 */
398 	KASSERT(type == IPI_STOP || type == IPI_STOP_HARD,
399 	    ("%s: invalid stop type", __func__));
400 
401 	if (!smp_started)
402 		return (0);
403 
404 	CTR1(KTR_SMP, "restart_cpus(%s)", cpusetobj_strprint(cpusetbuf, &map));
405 
406 	cpus = &stopped_cpus;
407 
408 	/* signal other cpus to restart */
409 	CPU_COPY_STORE_REL(&map, &started_cpus);
410 
411 	/* wait for each to clear its bit */
412 	while (CPU_OVERLAP(cpus, &map))
413 		cpu_spinwait();
414 #endif
415 	return (1);
416 }
417 
418 int
restart_cpus(cpuset_t map)419 restart_cpus(cpuset_t map)
420 {
421 
422 	return (generic_restart_cpus(map, IPI_STOP));
423 }
424 
425 #if X86
426 int
resume_cpus(cpuset_t map)427 resume_cpus(cpuset_t map)
428 {
429 
430 	return (generic_restart_cpus(map, IPI_SUSPEND));
431 }
432 #endif
433 #undef X86
434 
435 /*
436  * All-CPU rendezvous.  CPUs are signalled, all execute the setup function
437  * (if specified), rendezvous, execute the action function (if specified),
438  * rendezvous again, execute the teardown function (if specified), and then
439  * resume.
440  *
441  * Note that the supplied external functions _must_ be reentrant and aware
442  * that they are running in parallel and in an unknown lock context.
443  */
444 void
smp_rendezvous_action(void)445 smp_rendezvous_action(void)
446 {
447 	struct thread *td;
448 	void *local_func_arg;
449 	void (*local_setup_func)(void*);
450 	void (*local_action_func)(void*);
451 	void (*local_teardown_func)(void*);
452 #ifdef INVARIANTS
453 	int owepreempt;
454 #endif
455 
456 	/* Ensure we have up-to-date values. */
457 	atomic_add_acq_int(&smp_rv_waiters[0], 1);
458 	while (smp_rv_waiters[0] < smp_rv_ncpus)
459 		cpu_spinwait();
460 
461 	/* Fetch rendezvous parameters after acquire barrier. */
462 	local_func_arg = smp_rv_func_arg;
463 	local_setup_func = smp_rv_setup_func;
464 	local_action_func = smp_rv_action_func;
465 	local_teardown_func = smp_rv_teardown_func;
466 
467 	/*
468 	 * Use a nested critical section to prevent any preemptions
469 	 * from occurring during a rendezvous action routine.
470 	 * Specifically, if a rendezvous handler is invoked via an IPI
471 	 * and the interrupted thread was in the critical_exit()
472 	 * function after setting td_critnest to 0 but before
473 	 * performing a deferred preemption, this routine can be
474 	 * invoked with td_critnest set to 0 and td_owepreempt true.
475 	 * In that case, a critical_exit() during the rendezvous
476 	 * action would trigger a preemption which is not permitted in
477 	 * a rendezvous action.  To fix this, wrap all of the
478 	 * rendezvous action handlers in a critical section.  We
479 	 * cannot use a regular critical section however as having
480 	 * critical_exit() preempt from this routine would also be
481 	 * problematic (the preemption must not occur before the IPI
482 	 * has been acknowledged via an EOI).  Instead, we
483 	 * intentionally ignore td_owepreempt when leaving the
484 	 * critical section.  This should be harmless because we do
485 	 * not permit rendezvous action routines to schedule threads,
486 	 * and thus td_owepreempt should never transition from 0 to 1
487 	 * during this routine.
488 	 */
489 	td = curthread;
490 	td->td_critnest++;
491 #ifdef INVARIANTS
492 	owepreempt = td->td_owepreempt;
493 #endif
494 
495 	/*
496 	 * If requested, run a setup function before the main action
497 	 * function.  Ensure all CPUs have completed the setup
498 	 * function before moving on to the action function.
499 	 */
500 	if (local_setup_func != smp_no_rendezvous_barrier) {
501 		if (local_setup_func != NULL)
502 			local_setup_func(local_func_arg);
503 		atomic_add_int(&smp_rv_waiters[1], 1);
504 		while (smp_rv_waiters[1] < smp_rv_ncpus)
505                 	cpu_spinwait();
506 	}
507 
508 	if (local_action_func != NULL)
509 		local_action_func(local_func_arg);
510 
511 	if (local_teardown_func != smp_no_rendezvous_barrier) {
512 		/*
513 		 * Signal that the main action has been completed.  If a
514 		 * full exit rendezvous is requested, then all CPUs will
515 		 * wait here until all CPUs have finished the main action.
516 		 */
517 		atomic_add_int(&smp_rv_waiters[2], 1);
518 		while (smp_rv_waiters[2] < smp_rv_ncpus)
519 			cpu_spinwait();
520 
521 		if (local_teardown_func != NULL)
522 			local_teardown_func(local_func_arg);
523 	}
524 
525 	/*
526 	 * Signal that the rendezvous is fully completed by this CPU.
527 	 * This means that no member of smp_rv_* pseudo-structure will be
528 	 * accessed by this target CPU after this point; in particular,
529 	 * memory pointed by smp_rv_func_arg.
530 	 *
531 	 * The release semantic ensures that all accesses performed by
532 	 * the current CPU are visible when smp_rendezvous_cpus()
533 	 * returns, by synchronizing with the
534 	 * atomic_load_acq_int(&smp_rv_waiters[3]).
535 	 */
536 	atomic_add_rel_int(&smp_rv_waiters[3], 1);
537 
538 	td->td_critnest--;
539 	KASSERT(owepreempt == td->td_owepreempt,
540 	    ("rendezvous action changed td_owepreempt"));
541 }
542 
543 void
smp_rendezvous_cpus(cpuset_t map,void (* setup_func)(void *),void (* action_func)(void *),void (* teardown_func)(void *),void * arg)544 smp_rendezvous_cpus(cpuset_t map,
545 	void (* setup_func)(void *),
546 	void (* action_func)(void *),
547 	void (* teardown_func)(void *),
548 	void *arg)
549 {
550 	int curcpumap, i, ncpus = 0;
551 
552 	/* See comments in the !SMP case. */
553 	if (!smp_started) {
554 		spinlock_enter();
555 		if (setup_func != NULL)
556 			setup_func(arg);
557 		if (action_func != NULL)
558 			action_func(arg);
559 		if (teardown_func != NULL)
560 			teardown_func(arg);
561 		spinlock_exit();
562 		return;
563 	}
564 
565 	/*
566 	 * Make sure we come here with interrupts enabled.  Otherwise we
567 	 * livelock if smp_ipi_mtx is owned by a thread which sent us an IPI.
568 	 */
569 	MPASS(curthread->td_md.md_spinlock_count == 0);
570 
571 	CPU_FOREACH(i) {
572 		if (CPU_ISSET(i, &map))
573 			ncpus++;
574 	}
575 	if (ncpus == 0)
576 		panic("ncpus is 0 with non-zero map");
577 
578 	mtx_lock_spin(&smp_ipi_mtx);
579 
580 	/* Pass rendezvous parameters via global variables. */
581 	smp_rv_ncpus = ncpus;
582 	smp_rv_setup_func = setup_func;
583 	smp_rv_action_func = action_func;
584 	smp_rv_teardown_func = teardown_func;
585 	smp_rv_func_arg = arg;
586 	smp_rv_waiters[1] = 0;
587 	smp_rv_waiters[2] = 0;
588 	smp_rv_waiters[3] = 0;
589 	atomic_store_rel_int(&smp_rv_waiters[0], 0);
590 
591 	/*
592 	 * Signal other processors, which will enter the IPI with
593 	 * interrupts off.
594 	 */
595 	curcpumap = CPU_ISSET(curcpu, &map);
596 	CPU_CLR(curcpu, &map);
597 	ipi_selected(map, IPI_RENDEZVOUS);
598 
599 	/* Check if the current CPU is in the map */
600 	if (curcpumap != 0)
601 		smp_rendezvous_action();
602 
603 	/*
604 	 * Ensure that the master CPU waits for all the other
605 	 * CPUs to finish the rendezvous, so that smp_rv_*
606 	 * pseudo-structure and the arg are guaranteed to not
607 	 * be in use.
608 	 *
609 	 * Load acquire synchronizes with the release add in
610 	 * smp_rendezvous_action(), which ensures that our caller sees
611 	 * all memory actions done by the called functions on other
612 	 * CPUs.
613 	 */
614 	while (atomic_load_acq_int(&smp_rv_waiters[3]) < ncpus)
615 		cpu_spinwait();
616 
617 	mtx_unlock_spin(&smp_ipi_mtx);
618 }
619 
620 void
smp_rendezvous(void (* setup_func)(void *),void (* action_func)(void *),void (* teardown_func)(void *),void * arg)621 smp_rendezvous(void (* setup_func)(void *),
622 	       void (* action_func)(void *),
623 	       void (* teardown_func)(void *),
624 	       void *arg)
625 {
626 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
627 }
628 
629 static void
smp_topo_fill(struct cpu_group * cg)630 smp_topo_fill(struct cpu_group *cg)
631 {
632 	int c;
633 
634 	for (c = 0; c < cg->cg_children; c++)
635 		smp_topo_fill(&cg->cg_child[c]);
636 	cg->cg_first = CPU_FFS(&cg->cg_mask) - 1;
637 	cg->cg_last = CPU_FLS(&cg->cg_mask) - 1;
638 }
639 
640 struct cpu_group *
smp_topo(void)641 smp_topo(void)
642 {
643 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
644 	static struct cpu_group *top = NULL;
645 
646 	/*
647 	 * The first call to smp_topo() is guaranteed to occur
648 	 * during the kernel boot while we are still single-threaded.
649 	 */
650 	if (top != NULL)
651 		return (top);
652 
653 	/*
654 	 * Check for a fake topology request for debugging purposes.
655 	 */
656 	switch (smp_topology) {
657 	case 1:
658 		/* Dual core with no sharing.  */
659 		top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
660 		break;
661 	case 2:
662 		/* No topology, all cpus are equal. */
663 		top = smp_topo_none();
664 		break;
665 	case 3:
666 		/* Dual core with shared L2.  */
667 		top = smp_topo_1level(CG_SHARE_L2, 2, 0);
668 		break;
669 	case 4:
670 		/* quad core, shared l3 among each package, private l2.  */
671 		top = smp_topo_1level(CG_SHARE_L3, 4, 0);
672 		break;
673 	case 5:
674 		/* quad core,  2 dualcore parts on each package share l2.  */
675 		top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
676 		break;
677 	case 6:
678 		/* Single-core 2xHTT */
679 		top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
680 		break;
681 	case 7:
682 		/* quad core with a shared l3, 8 threads sharing L2.  */
683 		top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
684 		    CG_FLAG_SMT);
685 		break;
686 	default:
687 		/* Default, ask the system what it wants. */
688 		top = cpu_topo();
689 		break;
690 	}
691 	/*
692 	 * Verify the returned topology.
693 	 */
694 	if (top->cg_count != mp_ncpus)
695 		panic("Built bad topology at %p.  CPU count %d != %d",
696 		    top, top->cg_count, mp_ncpus);
697 	if (CPU_CMP(&top->cg_mask, &all_cpus))
698 		panic("Built bad topology at %p.  CPU mask (%s) != (%s)",
699 		    top, cpusetobj_strprint(cpusetbuf, &top->cg_mask),
700 		    cpusetobj_strprint(cpusetbuf2, &all_cpus));
701 
702 	/*
703 	 * Collapse nonsense levels that may be created out of convenience by
704 	 * the MD layers.  They cause extra work in the search functions.
705 	 */
706 	while (top->cg_children == 1) {
707 		top = &top->cg_child[0];
708 		top->cg_parent = NULL;
709 	}
710 	smp_topo_fill(top);
711 	return (top);
712 }
713 
714 struct cpu_group *
smp_topo_alloc(u_int count)715 smp_topo_alloc(u_int count)
716 {
717 	static struct cpu_group *group = NULL;
718 	static u_int index;
719 	u_int curr;
720 
721 	if (group == NULL) {
722 		group = mallocarray((mp_maxid + 1) * MAX_CACHE_LEVELS + 1,
723 		    sizeof(*group), M_DEVBUF, M_WAITOK | M_ZERO);
724 	}
725 	curr = index;
726 	index += count;
727 	return (&group[curr]);
728 }
729 
730 struct cpu_group *
smp_topo_none(void)731 smp_topo_none(void)
732 {
733 	struct cpu_group *top;
734 
735 	top = smp_topo_alloc(1);
736 	top->cg_parent = NULL;
737 	top->cg_child = NULL;
738 	top->cg_mask = all_cpus;
739 	top->cg_count = mp_ncpus;
740 	top->cg_children = 0;
741 	top->cg_level = CG_SHARE_NONE;
742 	top->cg_flags = 0;
743 
744 	return (top);
745 }
746 
747 static int
smp_topo_addleaf(struct cpu_group * parent,struct cpu_group * child,int share,int count,int flags,int start)748 smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
749     int count, int flags, int start)
750 {
751 	char cpusetbuf[CPUSETBUFSIZ], cpusetbuf2[CPUSETBUFSIZ];
752 	cpuset_t mask;
753 	int i;
754 
755 	CPU_ZERO(&mask);
756 	for (i = 0; i < count; i++, start++)
757 		CPU_SET(start, &mask);
758 	child->cg_parent = parent;
759 	child->cg_child = NULL;
760 	child->cg_children = 0;
761 	child->cg_level = share;
762 	child->cg_count = count;
763 	child->cg_flags = flags;
764 	child->cg_mask = mask;
765 	parent->cg_children++;
766 	for (; parent != NULL; parent = parent->cg_parent) {
767 		if (CPU_OVERLAP(&parent->cg_mask, &child->cg_mask))
768 			panic("Duplicate children in %p.  mask (%s) child (%s)",
769 			    parent,
770 			    cpusetobj_strprint(cpusetbuf, &parent->cg_mask),
771 			    cpusetobj_strprint(cpusetbuf2, &child->cg_mask));
772 		CPU_OR(&parent->cg_mask, &parent->cg_mask, &child->cg_mask);
773 		parent->cg_count += child->cg_count;
774 	}
775 
776 	return (start);
777 }
778 
779 struct cpu_group *
smp_topo_1level(int share,int count,int flags)780 smp_topo_1level(int share, int count, int flags)
781 {
782 	struct cpu_group *child;
783 	struct cpu_group *top;
784 	int packages;
785 	int cpu;
786 	int i;
787 
788 	cpu = 0;
789 	packages = mp_ncpus / count;
790 	top = smp_topo_alloc(1 + packages);
791 	top->cg_child = child = top + 1;
792 	top->cg_level = CG_SHARE_NONE;
793 	for (i = 0; i < packages; i++, child++)
794 		cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
795 	return (top);
796 }
797 
798 struct cpu_group *
smp_topo_2level(int l2share,int l2count,int l1share,int l1count,int l1flags)799 smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
800     int l1flags)
801 {
802 	struct cpu_group *top;
803 	struct cpu_group *l1g;
804 	struct cpu_group *l2g;
805 	int cpu;
806 	int i;
807 	int j;
808 
809 	cpu = 0;
810 	top = smp_topo_alloc(1 + mp_ncpus / (l2count * l1count) +
811 	    mp_ncpus / l1count);
812 	l2g = top + 1;
813 	top->cg_child = l2g;
814 	top->cg_level = CG_SHARE_NONE;
815 	top->cg_children = mp_ncpus / (l2count * l1count);
816 	l1g = l2g + top->cg_children;
817 	for (i = 0; i < top->cg_children; i++, l2g++) {
818 		l2g->cg_parent = top;
819 		l2g->cg_child = l1g;
820 		l2g->cg_level = l2share;
821 		for (j = 0; j < l2count; j++, l1g++)
822 			cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
823 			    l1flags, cpu);
824 	}
825 	return (top);
826 }
827 
828 struct cpu_group *
smp_topo_find(struct cpu_group * top,int cpu)829 smp_topo_find(struct cpu_group *top, int cpu)
830 {
831 	struct cpu_group *cg;
832 	cpuset_t mask;
833 	int children;
834 	int i;
835 
836 	CPU_SETOF(cpu, &mask);
837 	cg = top;
838 	for (;;) {
839 		if (!CPU_OVERLAP(&cg->cg_mask, &mask))
840 			return (NULL);
841 		if (cg->cg_children == 0)
842 			return (cg);
843 		children = cg->cg_children;
844 		for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
845 			if (CPU_OVERLAP(&cg->cg_mask, &mask))
846 				break;
847 	}
848 	return (NULL);
849 }
850 #else /* !SMP */
851 
852 void
smp_rendezvous_cpus(cpuset_t map,void (* setup_func)(void *),void (* action_func)(void *),void (* teardown_func)(void *),void * arg)853 smp_rendezvous_cpus(cpuset_t map,
854 	void (*setup_func)(void *),
855 	void (*action_func)(void *),
856 	void (*teardown_func)(void *),
857 	void *arg)
858 {
859 	/*
860 	 * In the !SMP case we just need to ensure the same initial conditions
861 	 * as the SMP case.
862 	 */
863 	spinlock_enter();
864 	if (setup_func != NULL)
865 		setup_func(arg);
866 	if (action_func != NULL)
867 		action_func(arg);
868 	if (teardown_func != NULL)
869 		teardown_func(arg);
870 	spinlock_exit();
871 }
872 
873 void
smp_rendezvous(void (* setup_func)(void *),void (* action_func)(void *),void (* teardown_func)(void *),void * arg)874 smp_rendezvous(void (*setup_func)(void *),
875 	       void (*action_func)(void *),
876 	       void (*teardown_func)(void *),
877 	       void *arg)
878 {
879 
880 	smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func,
881 	    arg);
882 }
883 
884 /*
885  * Provide dummy SMP support for UP kernels.  Modules that need to use SMP
886  * APIs will still work using this dummy support.
887  */
888 static void
mp_setvariables_for_up(void * dummy)889 mp_setvariables_for_up(void *dummy)
890 {
891 	mp_ncpus = 1;
892 	mp_ncores = 1;
893 	mp_maxid = PCPU_GET(cpuid);
894 	CPU_SETOF(mp_maxid, &all_cpus);
895 	KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
896 }
897 SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
898     mp_setvariables_for_up, NULL);
899 #endif /* SMP */
900 
901 void
smp_no_rendezvous_barrier(void * dummy)902 smp_no_rendezvous_barrier(void *dummy)
903 {
904 #ifdef SMP
905 	KASSERT((!smp_started),("smp_no_rendezvous called and smp is started"));
906 #endif
907 }
908 
909 void
smp_rendezvous_cpus_retry(cpuset_t map,void (* setup_func)(void *),void (* action_func)(void *),void (* teardown_func)(void *),void (* wait_func)(void *,int),struct smp_rendezvous_cpus_retry_arg * arg)910 smp_rendezvous_cpus_retry(cpuset_t map,
911 	void (* setup_func)(void *),
912 	void (* action_func)(void *),
913 	void (* teardown_func)(void *),
914 	void (* wait_func)(void *, int),
915 	struct smp_rendezvous_cpus_retry_arg *arg)
916 {
917 	int cpu;
918 
919 	CPU_COPY(&map, &arg->cpus);
920 
921 	/*
922 	 * Only one CPU to execute on.
923 	 */
924 	if (!smp_started) {
925 		spinlock_enter();
926 		if (setup_func != NULL)
927 			setup_func(arg);
928 		if (action_func != NULL)
929 			action_func(arg);
930 		if (teardown_func != NULL)
931 			teardown_func(arg);
932 		spinlock_exit();
933 		return;
934 	}
935 
936 	/*
937 	 * Execute an action on all specified CPUs while retrying until they
938 	 * all acknowledge completion.
939 	 */
940 	for (;;) {
941 		smp_rendezvous_cpus(
942 		    arg->cpus,
943 		    setup_func,
944 		    action_func,
945 		    teardown_func,
946 		    arg);
947 
948 		if (CPU_EMPTY(&arg->cpus))
949 			break;
950 
951 		CPU_FOREACH(cpu) {
952 			if (!CPU_ISSET(cpu, &arg->cpus))
953 				continue;
954 			wait_func(arg, cpu);
955 		}
956 	}
957 }
958 
959 void
smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg * arg)960 smp_rendezvous_cpus_done(struct smp_rendezvous_cpus_retry_arg *arg)
961 {
962 
963 	CPU_CLR_ATOMIC(curcpu, &arg->cpus);
964 }
965 
966 /*
967  * If (prio & PDROP) == 0:
968  * Wait for specified idle threads to switch once.  This ensures that even
969  * preempted threads have cycled through the switch function once,
970  * exiting their codepaths.  This allows us to change global pointers
971  * with no other synchronization.
972  * If (prio & PDROP) != 0:
973  * Force the specified CPUs to switch context at least once.
974  */
975 int
quiesce_cpus(cpuset_t map,const char * wmesg,int prio)976 quiesce_cpus(cpuset_t map, const char *wmesg, int prio)
977 {
978 	struct pcpu *pcpu;
979 	u_int *gen;
980 	int error;
981 	int cpu;
982 
983 	error = 0;
984 	if ((prio & PDROP) == 0) {
985 		gen = mallocarray(sizeof(u_int), mp_maxid + 1, M_TEMP,
986 		    M_WAITOK);
987 		for (cpu = 0; cpu <= mp_maxid; cpu++) {
988 			if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
989 				continue;
990 			pcpu = pcpu_find(cpu);
991 			gen[cpu] = pcpu->pc_idlethread->td_generation;
992 		}
993 	}
994 	for (cpu = 0; cpu <= mp_maxid; cpu++) {
995 		if (!CPU_ISSET(cpu, &map) || CPU_ABSENT(cpu))
996 			continue;
997 		pcpu = pcpu_find(cpu);
998 		thread_lock(curthread);
999 		sched_bind(curthread, cpu);
1000 		thread_unlock(curthread);
1001 		if ((prio & PDROP) != 0)
1002 			continue;
1003 		while (gen[cpu] == pcpu->pc_idlethread->td_generation) {
1004 			error = tsleep(quiesce_cpus, prio & ~PDROP, wmesg, 1);
1005 			if (error != EWOULDBLOCK)
1006 				goto out;
1007 			error = 0;
1008 		}
1009 	}
1010 out:
1011 	thread_lock(curthread);
1012 	sched_unbind(curthread);
1013 	thread_unlock(curthread);
1014 	if ((prio & PDROP) == 0)
1015 		free(gen, M_TEMP);
1016 
1017 	return (error);
1018 }
1019 
1020 int
quiesce_all_cpus(const char * wmesg,int prio)1021 quiesce_all_cpus(const char *wmesg, int prio)
1022 {
1023 
1024 	return quiesce_cpus(all_cpus, wmesg, prio);
1025 }
1026 
1027 /*
1028  * Observe all CPUs not executing in critical section.
1029  * We are not in one so the check for us is safe. If the found
1030  * thread changes to something else we know the section was
1031  * exited as well.
1032  */
1033 void
quiesce_all_critical(void)1034 quiesce_all_critical(void)
1035 {
1036 	struct thread *td, *newtd;
1037 	struct pcpu *pcpu;
1038 	int cpu;
1039 
1040 	MPASS(curthread->td_critnest == 0);
1041 
1042 	CPU_FOREACH(cpu) {
1043 		pcpu = cpuid_to_pcpu[cpu];
1044 		td = pcpu->pc_curthread;
1045 		for (;;) {
1046 			if (td->td_critnest == 0)
1047 				break;
1048 			cpu_spinwait();
1049 			newtd = (struct thread *)
1050 			    atomic_load_acq_ptr((void *)pcpu->pc_curthread);
1051 			if (td != newtd)
1052 				break;
1053 		}
1054 	}
1055 }
1056 
1057 static void
cpus_fence_seq_cst_issue(void * arg __unused)1058 cpus_fence_seq_cst_issue(void *arg __unused)
1059 {
1060 
1061 	atomic_thread_fence_seq_cst();
1062 }
1063 
1064 /*
1065  * Send an IPI forcing a sequentially consistent fence.
1066  *
1067  * Allows replacement of an explicitly fence with a compiler barrier.
1068  * Trades speed up during normal execution for a significant slowdown when
1069  * the barrier is needed.
1070  */
1071 void
cpus_fence_seq_cst(void)1072 cpus_fence_seq_cst(void)
1073 {
1074 
1075 #ifdef SMP
1076 	smp_rendezvous(
1077 	    smp_no_rendezvous_barrier,
1078 	    cpus_fence_seq_cst_issue,
1079 	    smp_no_rendezvous_barrier,
1080 	    NULL
1081 	);
1082 #else
1083 	cpus_fence_seq_cst_issue(NULL);
1084 #endif
1085 }
1086 
1087 /* Extra care is taken with this sysctl because the data type is volatile */
1088 static int
sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)1089 sysctl_kern_smp_active(SYSCTL_HANDLER_ARGS)
1090 {
1091 	int error, active;
1092 
1093 	active = smp_started;
1094 	error = SYSCTL_OUT(req, &active, sizeof(active));
1095 	return (error);
1096 }
1097 
1098 #ifdef SMP
1099 void
topo_init_node(struct topo_node * node)1100 topo_init_node(struct topo_node *node)
1101 {
1102 
1103 	bzero(node, sizeof(*node));
1104 	TAILQ_INIT(&node->children);
1105 }
1106 
1107 void
topo_init_root(struct topo_node * root)1108 topo_init_root(struct topo_node *root)
1109 {
1110 
1111 	topo_init_node(root);
1112 	root->type = TOPO_TYPE_SYSTEM;
1113 }
1114 
1115 /*
1116  * Add a child node with the given ID under the given parent.
1117  * Do nothing if there is already a child with that ID.
1118  */
1119 struct topo_node *
topo_add_node_by_hwid(struct topo_node * parent,int hwid,topo_node_type type,uintptr_t subtype)1120 topo_add_node_by_hwid(struct topo_node *parent, int hwid,
1121     topo_node_type type, uintptr_t subtype)
1122 {
1123 	struct topo_node *node;
1124 
1125 	TAILQ_FOREACH_REVERSE(node, &parent->children,
1126 	    topo_children, siblings) {
1127 		if (node->hwid == hwid
1128 		    && node->type == type && node->subtype == subtype) {
1129 			return (node);
1130 		}
1131 	}
1132 
1133 	node = malloc(sizeof(*node), M_TOPO, M_WAITOK);
1134 	topo_init_node(node);
1135 	node->parent = parent;
1136 	node->hwid = hwid;
1137 	node->type = type;
1138 	node->subtype = subtype;
1139 	TAILQ_INSERT_TAIL(&parent->children, node, siblings);
1140 	parent->nchildren++;
1141 
1142 	return (node);
1143 }
1144 
1145 /*
1146  * Find a child node with the given ID under the given parent.
1147  */
1148 struct topo_node *
topo_find_node_by_hwid(struct topo_node * parent,int hwid,topo_node_type type,uintptr_t subtype)1149 topo_find_node_by_hwid(struct topo_node *parent, int hwid,
1150     topo_node_type type, uintptr_t subtype)
1151 {
1152 
1153 	struct topo_node *node;
1154 
1155 	TAILQ_FOREACH(node, &parent->children, siblings) {
1156 		if (node->hwid == hwid
1157 		    && node->type == type && node->subtype == subtype) {
1158 			return (node);
1159 		}
1160 	}
1161 
1162 	return (NULL);
1163 }
1164 
1165 /*
1166  * Given a node change the order of its parent's child nodes such
1167  * that the node becomes the firt child while preserving the cyclic
1168  * order of the children.  In other words, the given node is promoted
1169  * by rotation.
1170  */
1171 void
topo_promote_child(struct topo_node * child)1172 topo_promote_child(struct topo_node *child)
1173 {
1174 	struct topo_node *next;
1175 	struct topo_node *node;
1176 	struct topo_node *parent;
1177 
1178 	parent = child->parent;
1179 	next = TAILQ_NEXT(child, siblings);
1180 	TAILQ_REMOVE(&parent->children, child, siblings);
1181 	TAILQ_INSERT_HEAD(&parent->children, child, siblings);
1182 
1183 	while (next != NULL) {
1184 		node = next;
1185 		next = TAILQ_NEXT(node, siblings);
1186 		TAILQ_REMOVE(&parent->children, node, siblings);
1187 		TAILQ_INSERT_AFTER(&parent->children, child, node, siblings);
1188 		child = node;
1189 	}
1190 }
1191 
1192 /*
1193  * Iterate to the next node in the depth-first search (traversal) of
1194  * the topology tree.
1195  */
1196 struct topo_node *
topo_next_node(struct topo_node * top,struct topo_node * node)1197 topo_next_node(struct topo_node *top, struct topo_node *node)
1198 {
1199 	struct topo_node *next;
1200 
1201 	if ((next = TAILQ_FIRST(&node->children)) != NULL)
1202 		return (next);
1203 
1204 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1205 		return (next);
1206 
1207 	while (node != top && (node = node->parent) != top)
1208 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1209 			return (next);
1210 
1211 	return (NULL);
1212 }
1213 
1214 /*
1215  * Iterate to the next node in the depth-first search of the topology tree,
1216  * but without descending below the current node.
1217  */
1218 struct topo_node *
topo_next_nonchild_node(struct topo_node * top,struct topo_node * node)1219 topo_next_nonchild_node(struct topo_node *top, struct topo_node *node)
1220 {
1221 	struct topo_node *next;
1222 
1223 	if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1224 		return (next);
1225 
1226 	while (node != top && (node = node->parent) != top)
1227 		if ((next = TAILQ_NEXT(node, siblings)) != NULL)
1228 			return (next);
1229 
1230 	return (NULL);
1231 }
1232 
1233 /*
1234  * Assign the given ID to the given topology node that represents a logical
1235  * processor.
1236  */
1237 void
topo_set_pu_id(struct topo_node * node,cpuid_t id)1238 topo_set_pu_id(struct topo_node *node, cpuid_t id)
1239 {
1240 
1241 	KASSERT(node->type == TOPO_TYPE_PU,
1242 	    ("topo_set_pu_id: wrong node type: %u", node->type));
1243 	KASSERT(CPU_EMPTY(&node->cpuset) && node->cpu_count == 0,
1244 	    ("topo_set_pu_id: cpuset already not empty"));
1245 	node->id = id;
1246 	CPU_SET(id, &node->cpuset);
1247 	node->cpu_count = 1;
1248 	node->subtype = 1;
1249 
1250 	while ((node = node->parent) != NULL) {
1251 		KASSERT(!CPU_ISSET(id, &node->cpuset),
1252 		    ("logical ID %u is already set in node %p", id, node));
1253 		CPU_SET(id, &node->cpuset);
1254 		node->cpu_count++;
1255 	}
1256 }
1257 
1258 static struct topology_spec {
1259 	topo_node_type	type;
1260 	bool		match_subtype;
1261 	uintptr_t	subtype;
1262 } topology_level_table[TOPO_LEVEL_COUNT] = {
1263 	[TOPO_LEVEL_PKG] = { .type = TOPO_TYPE_PKG, },
1264 	[TOPO_LEVEL_GROUP] = { .type = TOPO_TYPE_GROUP, },
1265 	[TOPO_LEVEL_CACHEGROUP] = {
1266 		.type = TOPO_TYPE_CACHE,
1267 		.match_subtype = true,
1268 		.subtype = CG_SHARE_L3,
1269 	},
1270 	[TOPO_LEVEL_CORE] = { .type = TOPO_TYPE_CORE, },
1271 	[TOPO_LEVEL_THREAD] = { .type = TOPO_TYPE_PU, },
1272 };
1273 
1274 static bool
topo_analyze_table(struct topo_node * root,int all,enum topo_level level,struct topo_analysis * results)1275 topo_analyze_table(struct topo_node *root, int all, enum topo_level level,
1276     struct topo_analysis *results)
1277 {
1278 	struct topology_spec *spec;
1279 	struct topo_node *node;
1280 	int count;
1281 
1282 	if (level >= TOPO_LEVEL_COUNT)
1283 		return (true);
1284 
1285 	spec = &topology_level_table[level];
1286 	count = 0;
1287 	node = topo_next_node(root, root);
1288 
1289 	while (node != NULL) {
1290 		if (node->type != spec->type ||
1291 		    (spec->match_subtype && node->subtype != spec->subtype)) {
1292 			node = topo_next_node(root, node);
1293 			continue;
1294 		}
1295 		if (!all && CPU_EMPTY(&node->cpuset)) {
1296 			node = topo_next_nonchild_node(root, node);
1297 			continue;
1298 		}
1299 
1300 		count++;
1301 
1302 		if (!topo_analyze_table(node, all, level + 1, results))
1303 			return (false);
1304 
1305 		node = topo_next_nonchild_node(root, node);
1306 	}
1307 
1308 	/* No explicit subgroups is essentially one subgroup. */
1309 	if (count == 0) {
1310 		count = 1;
1311 
1312 		if (!topo_analyze_table(root, all, level + 1, results))
1313 			return (false);
1314 	}
1315 
1316 	if (results->entities[level] == -1)
1317 		results->entities[level] = count;
1318 	else if (results->entities[level] != count)
1319 		return (false);
1320 
1321 	return (true);
1322 }
1323 
1324 /*
1325  * Check if the topology is uniform, that is, each package has the same number
1326  * of cores in it and each core has the same number of threads (logical
1327  * processors) in it.  If so, calculate the number of packages, the number of
1328  * groups per package, the number of cachegroups per group, and the number of
1329  * logical processors per cachegroup.  'all' parameter tells whether to include
1330  * administratively disabled logical processors into the analysis.
1331  */
1332 int
topo_analyze(struct topo_node * topo_root,int all,struct topo_analysis * results)1333 topo_analyze(struct topo_node *topo_root, int all,
1334     struct topo_analysis *results)
1335 {
1336 
1337 	results->entities[TOPO_LEVEL_PKG] = -1;
1338 	results->entities[TOPO_LEVEL_CORE] = -1;
1339 	results->entities[TOPO_LEVEL_THREAD] = -1;
1340 	results->entities[TOPO_LEVEL_GROUP] = -1;
1341 	results->entities[TOPO_LEVEL_CACHEGROUP] = -1;
1342 
1343 	if (!topo_analyze_table(topo_root, all, TOPO_LEVEL_PKG, results))
1344 		return (0);
1345 
1346 	KASSERT(results->entities[TOPO_LEVEL_PKG] > 0,
1347 		("bug in topology or analysis"));
1348 
1349 	return (1);
1350 }
1351 
1352 #endif /* SMP */
1353