1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997,1998,2003 Doug Rabson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 #include "opt_bus.h"
31 #include "opt_ddb.h"
32 #include "opt_iommu.h"
33
34 #include <sys/param.h>
35 #include <sys/conf.h>
36 #include <sys/domainset.h>
37 #include <sys/eventhandler.h>
38 #include <sys/jail.h>
39 #include <sys/lock.h>
40 #include <sys/kernel.h>
41 #include <sys/limits.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/mutex.h>
45 #include <sys/priv.h>
46 #include <machine/bus.h>
47 #include <sys/random.h>
48 #include <sys/refcount.h>
49 #include <sys/rman.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/systm.h>
54 #include <sys/taskqueue.h>
55 #include <sys/bus.h>
56 #include <sys/cpuset.h>
57 #ifdef INTRNG
58 #include <sys/intr.h>
59 #endif
60
61 #include <net/vnet.h>
62
63 #include <machine/cpu.h>
64 #include <machine/stdarg.h>
65
66 #include <vm/uma.h>
67 #include <vm/vm.h>
68
69 #include <dev/iommu/iommu.h>
70
71 #include <ddb/ddb.h>
72
73 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
74 NULL);
75 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
76 NULL);
77
78 static bool disable_failed_devs = false;
79 SYSCTL_BOOL(_hw_bus, OID_AUTO, disable_failed_devices, CTLFLAG_RWTUN, &disable_failed_devs,
80 0, "Do not retry attaching devices that return an error from DEVICE_ATTACH the first time");
81
82 /*
83 * Used to attach drivers to devclasses.
84 */
85 typedef struct driverlink *driverlink_t;
86 struct driverlink {
87 kobj_class_t driver;
88 TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */
89 int pass;
90 int flags;
91 #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */
92 TAILQ_ENTRY(driverlink) passlink;
93 };
94
95 /*
96 * Forward declarations
97 */
98 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
99 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
100 typedef TAILQ_HEAD(device_list, _device) device_list_t;
101
102 struct devclass {
103 TAILQ_ENTRY(devclass) link;
104 devclass_t parent; /* parent in devclass hierarchy */
105 driver_list_t drivers; /* bus devclasses store drivers for bus */
106 char *name;
107 device_t *devices; /* array of devices indexed by unit */
108 int maxunit; /* size of devices array */
109 int flags;
110 #define DC_HAS_CHILDREN 1
111
112 struct sysctl_ctx_list sysctl_ctx;
113 struct sysctl_oid *sysctl_tree;
114 };
115
116 struct device_prop_elm {
117 const char *name;
118 void *val;
119 void *dtr_ctx;
120 device_prop_dtr_t dtr;
121 LIST_ENTRY(device_prop_elm) link;
122 };
123
124 TASKQUEUE_DEFINE_THREAD(bus);
125
126 static void device_destroy_props(device_t dev);
127
128 /**
129 * @brief Implementation of _device.
130 *
131 * The structure is named "_device" instead of "device" to avoid type confusion
132 * caused by other subsystems defining a (struct device).
133 */
134 struct _device {
135 /*
136 * A device is a kernel object. The first field must be the
137 * current ops table for the object.
138 */
139 KOBJ_FIELDS;
140
141 /*
142 * Device hierarchy.
143 */
144 TAILQ_ENTRY(_device) link; /**< list of devices in parent */
145 TAILQ_ENTRY(_device) devlink; /**< global device list membership */
146 device_t parent; /**< parent of this device */
147 device_list_t children; /**< list of child devices */
148
149 /*
150 * Details of this device.
151 */
152 driver_t *driver; /**< current driver */
153 devclass_t devclass; /**< current device class */
154 int unit; /**< current unit number */
155 char* nameunit; /**< name+unit e.g. foodev0 */
156 char* desc; /**< driver specific description */
157 u_int busy; /**< count of calls to device_busy() */
158 device_state_t state; /**< current device state */
159 uint32_t devflags; /**< api level flags for device_get_flags() */
160 u_int flags; /**< internal device flags */
161 u_int order; /**< order from device_add_child_ordered() */
162 void *ivars; /**< instance variables */
163 void *softc; /**< current driver's variables */
164 LIST_HEAD(, device_prop_elm) props;
165
166 struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */
167 struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
168 };
169
170 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
171 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
172
173 EVENTHANDLER_LIST_DEFINE(device_attach);
174 EVENTHANDLER_LIST_DEFINE(device_detach);
175 EVENTHANDLER_LIST_DEFINE(device_nomatch);
176 EVENTHANDLER_LIST_DEFINE(dev_lookup);
177
178 static void devctl2_init(void);
179 static bool device_frozen;
180
181 #define DRIVERNAME(d) ((d)? d->name : "no driver")
182 #define DEVCLANAME(d) ((d)? d->name : "no devclass")
183
184 #ifdef BUS_DEBUG
185
186 static int bus_debug = 1;
187 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
188 "Bus debug level");
189 #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
190 #define DEVICENAME(d) ((d)? device_get_name(d): "no device")
191
192 /**
193 * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
194 * prevent syslog from deleting initial spaces
195 */
196 #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0)
197
198 static void print_device_short(device_t dev, int indent);
199 static void print_device(device_t dev, int indent);
200 void print_device_tree_short(device_t dev, int indent);
201 void print_device_tree(device_t dev, int indent);
202 static void print_driver_short(driver_t *driver, int indent);
203 static void print_driver(driver_t *driver, int indent);
204 static void print_driver_list(driver_list_t drivers, int indent);
205 static void print_devclass_short(devclass_t dc, int indent);
206 static void print_devclass(devclass_t dc, int indent);
207 void print_devclass_list_short(void);
208 void print_devclass_list(void);
209
210 #else
211 /* Make the compiler ignore the function calls */
212 #define PDEBUG(a) /* nop */
213 #define DEVICENAME(d) /* nop */
214
215 #define print_device_short(d,i) /* nop */
216 #define print_device(d,i) /* nop */
217 #define print_device_tree_short(d,i) /* nop */
218 #define print_device_tree(d,i) /* nop */
219 #define print_driver_short(d,i) /* nop */
220 #define print_driver(d,i) /* nop */
221 #define print_driver_list(d,i) /* nop */
222 #define print_devclass_short(d,i) /* nop */
223 #define print_devclass(d,i) /* nop */
224 #define print_devclass_list_short() /* nop */
225 #define print_devclass_list() /* nop */
226 #endif
227
228 /*
229 * dev sysctl tree
230 */
231
232 enum {
233 DEVCLASS_SYSCTL_PARENT,
234 };
235
236 static int
devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)237 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
238 {
239 devclass_t dc = (devclass_t)arg1;
240 const char *value;
241
242 switch (arg2) {
243 case DEVCLASS_SYSCTL_PARENT:
244 value = dc->parent ? dc->parent->name : "";
245 break;
246 default:
247 return (EINVAL);
248 }
249 return (SYSCTL_OUT_STR(req, value));
250 }
251
252 static void
devclass_sysctl_init(devclass_t dc)253 devclass_sysctl_init(devclass_t dc)
254 {
255 if (dc->sysctl_tree != NULL)
256 return;
257 sysctl_ctx_init(&dc->sysctl_ctx);
258 dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
259 SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
260 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
261 SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
262 OID_AUTO, "%parent",
263 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
264 dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
265 "parent class");
266 }
267
268 enum {
269 DEVICE_SYSCTL_DESC,
270 DEVICE_SYSCTL_DRIVER,
271 DEVICE_SYSCTL_LOCATION,
272 DEVICE_SYSCTL_PNPINFO,
273 DEVICE_SYSCTL_PARENT,
274 DEVICE_SYSCTL_IOMMU,
275 };
276
277 static int
device_sysctl_handler(SYSCTL_HANDLER_ARGS)278 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
279 {
280 struct sbuf sb;
281 device_t dev = (device_t)arg1;
282 device_t iommu;
283 int error;
284 uint16_t rid;
285 const char *c;
286
287 sbuf_new_for_sysctl(&sb, NULL, 1024, req);
288 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
289 bus_topo_lock();
290 switch (arg2) {
291 case DEVICE_SYSCTL_DESC:
292 sbuf_cat(&sb, dev->desc ? dev->desc : "");
293 break;
294 case DEVICE_SYSCTL_DRIVER:
295 sbuf_cat(&sb, dev->driver ? dev->driver->name : "");
296 break;
297 case DEVICE_SYSCTL_LOCATION:
298 bus_child_location(dev, &sb);
299 break;
300 case DEVICE_SYSCTL_PNPINFO:
301 bus_child_pnpinfo(dev, &sb);
302 break;
303 case DEVICE_SYSCTL_PARENT:
304 sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : "");
305 break;
306 case DEVICE_SYSCTL_IOMMU:
307 iommu = NULL;
308 error = device_get_prop(dev, DEV_PROP_NAME_IOMMU,
309 (void **)&iommu);
310 c = "";
311 if (error == 0 && iommu != NULL) {
312 sbuf_printf(&sb, "unit=%s", device_get_nameunit(iommu));
313 c = " ";
314 }
315 rid = 0;
316 #ifdef IOMMU
317 iommu_get_requester(dev, &rid);
318 #endif
319 if (rid != 0)
320 sbuf_printf(&sb, "%srid=%#x", c, rid);
321 break;
322 default:
323 error = EINVAL;
324 goto out;
325 }
326 error = sbuf_finish(&sb);
327 out:
328 bus_topo_unlock();
329 sbuf_delete(&sb);
330 return (error);
331 }
332
333 static void
device_sysctl_init(device_t dev)334 device_sysctl_init(device_t dev)
335 {
336 devclass_t dc = dev->devclass;
337 int domain;
338
339 if (dev->sysctl_tree != NULL)
340 return;
341 devclass_sysctl_init(dc);
342 sysctl_ctx_init(&dev->sysctl_ctx);
343 dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
344 SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
345 dev->nameunit + strlen(dc->name),
346 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
347 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
348 OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
349 dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
350 "device description");
351 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
352 OID_AUTO, "%driver",
353 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
354 dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
355 "device driver name");
356 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
357 OID_AUTO, "%location",
358 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
359 dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
360 "device location relative to parent");
361 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
362 OID_AUTO, "%pnpinfo",
363 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
364 dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
365 "device identification");
366 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
367 OID_AUTO, "%parent",
368 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
369 dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
370 "parent device");
371 SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
372 OID_AUTO, "%iommu",
373 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
374 dev, DEVICE_SYSCTL_IOMMU, device_sysctl_handler, "A",
375 "iommu unit handling the device requests");
376 if (bus_get_domain(dev, &domain) == 0)
377 SYSCTL_ADD_INT(&dev->sysctl_ctx,
378 SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
379 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain");
380 }
381
382 static void
device_sysctl_update(device_t dev)383 device_sysctl_update(device_t dev)
384 {
385 devclass_t dc = dev->devclass;
386
387 if (dev->sysctl_tree == NULL)
388 return;
389 sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
390 }
391
392 static void
device_sysctl_fini(device_t dev)393 device_sysctl_fini(device_t dev)
394 {
395 if (dev->sysctl_tree == NULL)
396 return;
397 sysctl_ctx_free(&dev->sysctl_ctx);
398 dev->sysctl_tree = NULL;
399 }
400
401 static struct device_list bus_data_devices;
402 static int bus_data_generation = 1;
403
404 static kobj_method_t null_methods[] = {
405 KOBJMETHOD_END
406 };
407
408 DEFINE_CLASS(null, null_methods, 0);
409
410 void
bus_topo_assert(void)411 bus_topo_assert(void)
412 {
413
414 GIANT_REQUIRED;
415 }
416
417 struct mtx *
bus_topo_mtx(void)418 bus_topo_mtx(void)
419 {
420
421 return (&Giant);
422 }
423
424 void
bus_topo_lock(void)425 bus_topo_lock(void)
426 {
427
428 mtx_lock(bus_topo_mtx());
429 }
430
431 void
bus_topo_unlock(void)432 bus_topo_unlock(void)
433 {
434
435 mtx_unlock(bus_topo_mtx());
436 }
437
438 /*
439 * Bus pass implementation
440 */
441
442 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
443 static int bus_current_pass = BUS_PASS_ROOT;
444
445 /**
446 * @internal
447 * @brief Register the pass level of a new driver attachment
448 *
449 * Register a new driver attachment's pass level. If no driver
450 * attachment with the same pass level has been added, then @p new
451 * will be added to the global passes list.
452 *
453 * @param new the new driver attachment
454 */
455 static void
driver_register_pass(struct driverlink * new)456 driver_register_pass(struct driverlink *new)
457 {
458 struct driverlink *dl;
459
460 /* We only consider pass numbers during boot. */
461 if (bus_current_pass == BUS_PASS_DEFAULT)
462 return;
463
464 /*
465 * Walk the passes list. If we already know about this pass
466 * then there is nothing to do. If we don't, then insert this
467 * driver link into the list.
468 */
469 TAILQ_FOREACH(dl, &passes, passlink) {
470 if (dl->pass < new->pass)
471 continue;
472 if (dl->pass == new->pass)
473 return;
474 TAILQ_INSERT_BEFORE(dl, new, passlink);
475 return;
476 }
477 TAILQ_INSERT_TAIL(&passes, new, passlink);
478 }
479
480 /**
481 * @brief Retrieve the current bus pass
482 *
483 * Retrieves the current bus pass level. Call the BUS_NEW_PASS()
484 * method on the root bus to kick off a new device tree scan for each
485 * new pass level that has at least one driver.
486 */
487 int
bus_get_pass(void)488 bus_get_pass(void)
489 {
490
491 return (bus_current_pass);
492 }
493
494 /**
495 * @brief Raise the current bus pass
496 *
497 * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS()
498 * method on the root bus to kick off a new device tree scan for each
499 * new pass level that has at least one driver.
500 */
501 static void
bus_set_pass(int pass)502 bus_set_pass(int pass)
503 {
504 struct driverlink *dl;
505
506 if (bus_current_pass > pass)
507 panic("Attempt to lower bus pass level");
508
509 TAILQ_FOREACH(dl, &passes, passlink) {
510 /* Skip pass values below the current pass level. */
511 if (dl->pass <= bus_current_pass)
512 continue;
513
514 /*
515 * Bail once we hit a driver with a pass level that is
516 * too high.
517 */
518 if (dl->pass > pass)
519 break;
520
521 /*
522 * Raise the pass level to the next level and rescan
523 * the tree.
524 */
525 bus_current_pass = dl->pass;
526 BUS_NEW_PASS(root_bus);
527 }
528
529 /*
530 * If there isn't a driver registered for the requested pass,
531 * then bus_current_pass might still be less than 'pass'. Set
532 * it to 'pass' in that case.
533 */
534 if (bus_current_pass < pass)
535 bus_current_pass = pass;
536 KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
537 }
538
539 /*
540 * Devclass implementation
541 */
542
543 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
544
545 /**
546 * @internal
547 * @brief Find or create a device class
548 *
549 * If a device class with the name @p classname exists, return it,
550 * otherwise if @p create is non-zero create and return a new device
551 * class.
552 *
553 * If @p parentname is non-NULL, the parent of the devclass is set to
554 * the devclass of that name.
555 *
556 * @param classname the devclass name to find or create
557 * @param parentname the parent devclass name or @c NULL
558 * @param create non-zero to create a devclass
559 */
560 static devclass_t
devclass_find_internal(const char * classname,const char * parentname,int create)561 devclass_find_internal(const char *classname, const char *parentname,
562 int create)
563 {
564 devclass_t dc;
565
566 PDEBUG(("looking for %s", classname));
567 if (!classname)
568 return (NULL);
569
570 TAILQ_FOREACH(dc, &devclasses, link) {
571 if (!strcmp(dc->name, classname))
572 break;
573 }
574
575 if (create && !dc) {
576 PDEBUG(("creating %s", classname));
577 dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
578 M_BUS, M_WAITOK | M_ZERO);
579 dc->parent = NULL;
580 dc->name = (char*) (dc + 1);
581 strcpy(dc->name, classname);
582 TAILQ_INIT(&dc->drivers);
583 TAILQ_INSERT_TAIL(&devclasses, dc, link);
584
585 bus_data_generation_update();
586 }
587
588 /*
589 * If a parent class is specified, then set that as our parent so
590 * that this devclass will support drivers for the parent class as
591 * well. If the parent class has the same name don't do this though
592 * as it creates a cycle that can trigger an infinite loop in
593 * device_probe_child() if a device exists for which there is no
594 * suitable driver.
595 */
596 if (parentname && dc && !dc->parent &&
597 strcmp(classname, parentname) != 0) {
598 dc->parent = devclass_find_internal(parentname, NULL, TRUE);
599 dc->parent->flags |= DC_HAS_CHILDREN;
600 }
601
602 return (dc);
603 }
604
605 /**
606 * @brief Create a device class
607 *
608 * If a device class with the name @p classname exists, return it,
609 * otherwise create and return a new device class.
610 *
611 * @param classname the devclass name to find or create
612 */
613 devclass_t
devclass_create(const char * classname)614 devclass_create(const char *classname)
615 {
616 return (devclass_find_internal(classname, NULL, TRUE));
617 }
618
619 /**
620 * @brief Find a device class
621 *
622 * If a device class with the name @p classname exists, return it,
623 * otherwise return @c NULL.
624 *
625 * @param classname the devclass name to find
626 */
627 devclass_t
devclass_find(const char * classname)628 devclass_find(const char *classname)
629 {
630 return (devclass_find_internal(classname, NULL, FALSE));
631 }
632
633 /**
634 * @brief Register that a device driver has been added to a devclass
635 *
636 * Register that a device driver has been added to a devclass. This
637 * is called by devclass_add_driver to accomplish the recursive
638 * notification of all the children classes of dc, as well as dc.
639 * Each layer will have BUS_DRIVER_ADDED() called for all instances of
640 * the devclass.
641 *
642 * We do a full search here of the devclass list at each iteration
643 * level to save storing children-lists in the devclass structure. If
644 * we ever move beyond a few dozen devices doing this, we may need to
645 * reevaluate...
646 *
647 * @param dc the devclass to edit
648 * @param driver the driver that was just added
649 */
650 static void
devclass_driver_added(devclass_t dc,driver_t * driver)651 devclass_driver_added(devclass_t dc, driver_t *driver)
652 {
653 devclass_t parent;
654 int i;
655
656 /*
657 * Call BUS_DRIVER_ADDED for any existing buses in this class.
658 */
659 for (i = 0; i < dc->maxunit; i++)
660 if (dc->devices[i] && device_is_attached(dc->devices[i]))
661 BUS_DRIVER_ADDED(dc->devices[i], driver);
662
663 /*
664 * Walk through the children classes. Since we only keep a
665 * single parent pointer around, we walk the entire list of
666 * devclasses looking for children. We set the
667 * DC_HAS_CHILDREN flag when a child devclass is created on
668 * the parent, so we only walk the list for those devclasses
669 * that have children.
670 */
671 if (!(dc->flags & DC_HAS_CHILDREN))
672 return;
673 parent = dc;
674 TAILQ_FOREACH(dc, &devclasses, link) {
675 if (dc->parent == parent)
676 devclass_driver_added(dc, driver);
677 }
678 }
679
680 static void
device_handle_nomatch(device_t dev)681 device_handle_nomatch(device_t dev)
682 {
683 BUS_PROBE_NOMATCH(dev->parent, dev);
684 EVENTHANDLER_DIRECT_INVOKE(device_nomatch, dev);
685 dev->flags |= DF_DONENOMATCH;
686 }
687
688 /**
689 * @brief Add a device driver to a device class
690 *
691 * Add a device driver to a devclass. This is normally called
692 * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
693 * all devices in the devclass will be called to allow them to attempt
694 * to re-probe any unmatched children.
695 *
696 * @param dc the devclass to edit
697 * @param driver the driver to register
698 */
699 int
devclass_add_driver(devclass_t dc,driver_t * driver,int pass,devclass_t * dcp)700 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
701 {
702 driverlink_t dl;
703 devclass_t child_dc;
704 const char *parentname;
705
706 PDEBUG(("%s", DRIVERNAME(driver)));
707
708 /* Don't allow invalid pass values. */
709 if (pass <= BUS_PASS_ROOT)
710 return (EINVAL);
711
712 dl = malloc(sizeof *dl, M_BUS, M_WAITOK|M_ZERO);
713
714 /*
715 * Compile the driver's methods. Also increase the reference count
716 * so that the class doesn't get freed when the last instance
717 * goes. This means we can safely use static methods and avoids a
718 * double-free in devclass_delete_driver.
719 */
720 kobj_class_compile((kobj_class_t) driver);
721
722 /*
723 * If the driver has any base classes, make the
724 * devclass inherit from the devclass of the driver's
725 * first base class. This will allow the system to
726 * search for drivers in both devclasses for children
727 * of a device using this driver.
728 */
729 if (driver->baseclasses)
730 parentname = driver->baseclasses[0]->name;
731 else
732 parentname = NULL;
733 child_dc = devclass_find_internal(driver->name, parentname, TRUE);
734 if (dcp != NULL)
735 *dcp = child_dc;
736
737 dl->driver = driver;
738 TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
739 driver->refs++; /* XXX: kobj_mtx */
740 dl->pass = pass;
741 driver_register_pass(dl);
742
743 if (device_frozen) {
744 dl->flags |= DL_DEFERRED_PROBE;
745 } else {
746 devclass_driver_added(dc, driver);
747 }
748 bus_data_generation_update();
749 return (0);
750 }
751
752 /**
753 * @brief Register that a device driver has been deleted from a devclass
754 *
755 * Register that a device driver has been removed from a devclass.
756 * This is called by devclass_delete_driver to accomplish the
757 * recursive notification of all the children classes of busclass, as
758 * well as busclass. Each layer will attempt to detach the driver
759 * from any devices that are children of the bus's devclass. The function
760 * will return an error if a device fails to detach.
761 *
762 * We do a full search here of the devclass list at each iteration
763 * level to save storing children-lists in the devclass structure. If
764 * we ever move beyond a few dozen devices doing this, we may need to
765 * reevaluate...
766 *
767 * @param busclass the devclass of the parent bus
768 * @param dc the devclass of the driver being deleted
769 * @param driver the driver being deleted
770 */
771 static int
devclass_driver_deleted(devclass_t busclass,devclass_t dc,driver_t * driver)772 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
773 {
774 devclass_t parent;
775 device_t dev;
776 int error, i;
777
778 /*
779 * Disassociate from any devices. We iterate through all the
780 * devices in the devclass of the driver and detach any which are
781 * using the driver and which have a parent in the devclass which
782 * we are deleting from.
783 *
784 * Note that since a driver can be in multiple devclasses, we
785 * should not detach devices which are not children of devices in
786 * the affected devclass.
787 *
788 * If we're frozen, we don't generate NOMATCH events. Mark to
789 * generate later.
790 */
791 for (i = 0; i < dc->maxunit; i++) {
792 if (dc->devices[i]) {
793 dev = dc->devices[i];
794 if (dev->driver == driver && dev->parent &&
795 dev->parent->devclass == busclass) {
796 if ((error = device_detach(dev)) != 0)
797 return (error);
798 if (device_frozen) {
799 dev->flags &= ~DF_DONENOMATCH;
800 dev->flags |= DF_NEEDNOMATCH;
801 } else {
802 device_handle_nomatch(dev);
803 }
804 }
805 }
806 }
807
808 /*
809 * Walk through the children classes. Since we only keep a
810 * single parent pointer around, we walk the entire list of
811 * devclasses looking for children. We set the
812 * DC_HAS_CHILDREN flag when a child devclass is created on
813 * the parent, so we only walk the list for those devclasses
814 * that have children.
815 */
816 if (!(busclass->flags & DC_HAS_CHILDREN))
817 return (0);
818 parent = busclass;
819 TAILQ_FOREACH(busclass, &devclasses, link) {
820 if (busclass->parent == parent) {
821 error = devclass_driver_deleted(busclass, dc, driver);
822 if (error)
823 return (error);
824 }
825 }
826 return (0);
827 }
828
829 /**
830 * @brief Delete a device driver from a device class
831 *
832 * Delete a device driver from a devclass. This is normally called
833 * automatically by DRIVER_MODULE().
834 *
835 * If the driver is currently attached to any devices,
836 * devclass_delete_driver() will first attempt to detach from each
837 * device. If one of the detach calls fails, the driver will not be
838 * deleted.
839 *
840 * @param dc the devclass to edit
841 * @param driver the driver to unregister
842 */
843 int
devclass_delete_driver(devclass_t busclass,driver_t * driver)844 devclass_delete_driver(devclass_t busclass, driver_t *driver)
845 {
846 devclass_t dc = devclass_find(driver->name);
847 driverlink_t dl;
848 int error;
849
850 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
851
852 if (!dc)
853 return (0);
854
855 /*
856 * Find the link structure in the bus' list of drivers.
857 */
858 TAILQ_FOREACH(dl, &busclass->drivers, link) {
859 if (dl->driver == driver)
860 break;
861 }
862
863 if (!dl) {
864 PDEBUG(("%s not found in %s list", driver->name,
865 busclass->name));
866 return (ENOENT);
867 }
868
869 error = devclass_driver_deleted(busclass, dc, driver);
870 if (error != 0)
871 return (error);
872
873 TAILQ_REMOVE(&busclass->drivers, dl, link);
874 free(dl, M_BUS);
875
876 /* XXX: kobj_mtx */
877 driver->refs--;
878 if (driver->refs == 0)
879 kobj_class_free((kobj_class_t) driver);
880
881 bus_data_generation_update();
882 return (0);
883 }
884
885 /**
886 * @brief Quiesces a set of device drivers from a device class
887 *
888 * Quiesce a device driver from a devclass. This is normally called
889 * automatically by DRIVER_MODULE().
890 *
891 * If the driver is currently attached to any devices,
892 * devclass_quiesece_driver() will first attempt to quiesce each
893 * device.
894 *
895 * @param dc the devclass to edit
896 * @param driver the driver to unregister
897 */
898 static int
devclass_quiesce_driver(devclass_t busclass,driver_t * driver)899 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
900 {
901 devclass_t dc = devclass_find(driver->name);
902 driverlink_t dl;
903 device_t dev;
904 int i;
905 int error;
906
907 PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
908
909 if (!dc)
910 return (0);
911
912 /*
913 * Find the link structure in the bus' list of drivers.
914 */
915 TAILQ_FOREACH(dl, &busclass->drivers, link) {
916 if (dl->driver == driver)
917 break;
918 }
919
920 if (!dl) {
921 PDEBUG(("%s not found in %s list", driver->name,
922 busclass->name));
923 return (ENOENT);
924 }
925
926 /*
927 * Quiesce all devices. We iterate through all the devices in
928 * the devclass of the driver and quiesce any which are using
929 * the driver and which have a parent in the devclass which we
930 * are quiescing.
931 *
932 * Note that since a driver can be in multiple devclasses, we
933 * should not quiesce devices which are not children of
934 * devices in the affected devclass.
935 */
936 for (i = 0; i < dc->maxunit; i++) {
937 if (dc->devices[i]) {
938 dev = dc->devices[i];
939 if (dev->driver == driver && dev->parent &&
940 dev->parent->devclass == busclass) {
941 if ((error = device_quiesce(dev)) != 0)
942 return (error);
943 }
944 }
945 }
946
947 return (0);
948 }
949
950 /**
951 * @internal
952 */
953 static driverlink_t
devclass_find_driver_internal(devclass_t dc,const char * classname)954 devclass_find_driver_internal(devclass_t dc, const char *classname)
955 {
956 driverlink_t dl;
957
958 PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
959
960 TAILQ_FOREACH(dl, &dc->drivers, link) {
961 if (!strcmp(dl->driver->name, classname))
962 return (dl);
963 }
964
965 PDEBUG(("not found"));
966 return (NULL);
967 }
968
969 /**
970 * @brief Return the name of the devclass
971 */
972 const char *
devclass_get_name(devclass_t dc)973 devclass_get_name(devclass_t dc)
974 {
975 return (dc->name);
976 }
977
978 /**
979 * @brief Find a device given a unit number
980 *
981 * @param dc the devclass to search
982 * @param unit the unit number to search for
983 *
984 * @returns the device with the given unit number or @c
985 * NULL if there is no such device
986 */
987 device_t
devclass_get_device(devclass_t dc,int unit)988 devclass_get_device(devclass_t dc, int unit)
989 {
990 if (dc == NULL || unit < 0 || unit >= dc->maxunit)
991 return (NULL);
992 return (dc->devices[unit]);
993 }
994
995 /**
996 * @brief Find the softc field of a device given a unit number
997 *
998 * @param dc the devclass to search
999 * @param unit the unit number to search for
1000 *
1001 * @returns the softc field of the device with the given
1002 * unit number or @c NULL if there is no such
1003 * device
1004 */
1005 void *
devclass_get_softc(devclass_t dc,int unit)1006 devclass_get_softc(devclass_t dc, int unit)
1007 {
1008 device_t dev;
1009
1010 dev = devclass_get_device(dc, unit);
1011 if (!dev)
1012 return (NULL);
1013
1014 return (device_get_softc(dev));
1015 }
1016
1017 /**
1018 * @brief Get a list of devices in the devclass
1019 *
1020 * An array containing a list of all the devices in the given devclass
1021 * is allocated and returned in @p *devlistp. The number of devices
1022 * in the array is returned in @p *devcountp. The caller should free
1023 * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
1024 *
1025 * @param dc the devclass to examine
1026 * @param devlistp points at location for array pointer return
1027 * value
1028 * @param devcountp points at location for array size return value
1029 *
1030 * @retval 0 success
1031 * @retval ENOMEM the array allocation failed
1032 */
1033 int
devclass_get_devices(devclass_t dc,device_t ** devlistp,int * devcountp)1034 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
1035 {
1036 int count, i;
1037 device_t *list;
1038
1039 count = devclass_get_count(dc);
1040 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1041 if (!list)
1042 return (ENOMEM);
1043
1044 count = 0;
1045 for (i = 0; i < dc->maxunit; i++) {
1046 if (dc->devices[i]) {
1047 list[count] = dc->devices[i];
1048 count++;
1049 }
1050 }
1051
1052 *devlistp = list;
1053 *devcountp = count;
1054
1055 return (0);
1056 }
1057
1058 /**
1059 * @brief Get a list of drivers in the devclass
1060 *
1061 * An array containing a list of pointers to all the drivers in the
1062 * given devclass is allocated and returned in @p *listp. The number
1063 * of drivers in the array is returned in @p *countp. The caller should
1064 * free the array using @c free(p, M_TEMP).
1065 *
1066 * @param dc the devclass to examine
1067 * @param listp gives location for array pointer return value
1068 * @param countp gives location for number of array elements
1069 * return value
1070 *
1071 * @retval 0 success
1072 * @retval ENOMEM the array allocation failed
1073 */
1074 int
devclass_get_drivers(devclass_t dc,driver_t *** listp,int * countp)1075 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
1076 {
1077 driverlink_t dl;
1078 driver_t **list;
1079 int count;
1080
1081 count = 0;
1082 TAILQ_FOREACH(dl, &dc->drivers, link)
1083 count++;
1084 list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
1085 if (list == NULL)
1086 return (ENOMEM);
1087
1088 count = 0;
1089 TAILQ_FOREACH(dl, &dc->drivers, link) {
1090 list[count] = dl->driver;
1091 count++;
1092 }
1093 *listp = list;
1094 *countp = count;
1095
1096 return (0);
1097 }
1098
1099 /**
1100 * @brief Get the number of devices in a devclass
1101 *
1102 * @param dc the devclass to examine
1103 */
1104 int
devclass_get_count(devclass_t dc)1105 devclass_get_count(devclass_t dc)
1106 {
1107 int count, i;
1108
1109 count = 0;
1110 for (i = 0; i < dc->maxunit; i++)
1111 if (dc->devices[i])
1112 count++;
1113 return (count);
1114 }
1115
1116 /**
1117 * @brief Get the maximum unit number used in a devclass
1118 *
1119 * Note that this is one greater than the highest currently-allocated unit. If
1120 * @p dc is NULL, @c -1 is returned to indicate that not even the devclass has
1121 * been allocated yet.
1122 *
1123 * @param dc the devclass to examine
1124 */
1125 int
devclass_get_maxunit(devclass_t dc)1126 devclass_get_maxunit(devclass_t dc)
1127 {
1128 if (dc == NULL)
1129 return (-1);
1130 return (dc->maxunit);
1131 }
1132
1133 /**
1134 * @brief Find a free unit number in a devclass
1135 *
1136 * This function searches for the first unused unit number greater
1137 * that or equal to @p unit. Note: This can return INT_MAX which
1138 * may be rejected elsewhere.
1139 *
1140 * @param dc the devclass to examine
1141 * @param unit the first unit number to check
1142 */
1143 int
devclass_find_free_unit(devclass_t dc,int unit)1144 devclass_find_free_unit(devclass_t dc, int unit)
1145 {
1146 if (dc == NULL)
1147 return (unit);
1148 while (unit < dc->maxunit && dc->devices[unit] != NULL)
1149 unit++;
1150 return (unit);
1151 }
1152
1153 /**
1154 * @brief Set the parent of a devclass
1155 *
1156 * The parent class is normally initialised automatically by
1157 * DRIVER_MODULE().
1158 *
1159 * @param dc the devclass to edit
1160 * @param pdc the new parent devclass
1161 */
1162 void
devclass_set_parent(devclass_t dc,devclass_t pdc)1163 devclass_set_parent(devclass_t dc, devclass_t pdc)
1164 {
1165 dc->parent = pdc;
1166 }
1167
1168 /**
1169 * @brief Get the parent of a devclass
1170 *
1171 * @param dc the devclass to examine
1172 */
1173 devclass_t
devclass_get_parent(devclass_t dc)1174 devclass_get_parent(devclass_t dc)
1175 {
1176 return (dc->parent);
1177 }
1178
1179 struct sysctl_ctx_list *
devclass_get_sysctl_ctx(devclass_t dc)1180 devclass_get_sysctl_ctx(devclass_t dc)
1181 {
1182 return (&dc->sysctl_ctx);
1183 }
1184
1185 struct sysctl_oid *
devclass_get_sysctl_tree(devclass_t dc)1186 devclass_get_sysctl_tree(devclass_t dc)
1187 {
1188 return (dc->sysctl_tree);
1189 }
1190
1191 /**
1192 * @internal
1193 * @brief Allocate a unit number
1194 *
1195 * On entry, @p *unitp is the desired unit number (or @c DEVICE_UNIT_ANY if any
1196 * will do). The allocated unit number is returned in @p *unitp.
1197 *
1198 * @param dc the devclass to allocate from
1199 * @param unitp points at the location for the allocated unit
1200 * number
1201 *
1202 * @retval 0 success
1203 * @retval EEXIST the requested unit number is already allocated
1204 * @retval ENOMEM memory allocation failure
1205 * @retval EINVAL unit is negative or we've run out of units
1206 */
1207 static int
devclass_alloc_unit(devclass_t dc,device_t dev,int * unitp)1208 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
1209 {
1210 const char *s;
1211 int unit = *unitp;
1212
1213 PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
1214
1215 /* Ask the parent bus if it wants to wire this device. */
1216 if (unit == DEVICE_UNIT_ANY)
1217 BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
1218 &unit);
1219
1220 /* Unit numbers are either DEVICE_UNIT_ANY or in [0,INT_MAX) */
1221 if ((unit < 0 && unit != DEVICE_UNIT_ANY) || unit == INT_MAX)
1222 return (EINVAL);
1223
1224 /* If we were given a wired unit number, check for existing device */
1225 if (unit != DEVICE_UNIT_ANY) {
1226 if (unit < dc->maxunit && dc->devices[unit] != NULL) {
1227 if (bootverbose)
1228 printf("%s: %s%d already exists; skipping it\n",
1229 dc->name, dc->name, *unitp);
1230 return (EEXIST);
1231 }
1232 } else {
1233 /* Unwired device, find the next available slot for it */
1234 unit = 0;
1235 for (unit = 0; unit < INT_MAX; unit++) {
1236 /* If this device slot is already in use, skip it. */
1237 if (unit < dc->maxunit && dc->devices[unit] != NULL)
1238 continue;
1239
1240 /* If there is an "at" hint for a unit then skip it. */
1241 if (resource_string_value(dc->name, unit, "at", &s) ==
1242 0)
1243 continue;
1244
1245 break;
1246 }
1247 }
1248
1249 /*
1250 * Unit numbers must be in the range [0, INT_MAX), so exclude INT_MAX as
1251 * too large. We constrain maxunit below to be <= INT_MAX. This means we
1252 * can treat unit and maxunit as normal integers with normal math
1253 * everywhere and we only have to flag INT_MAX as invalid.
1254 */
1255 if (unit == INT_MAX)
1256 return (EINVAL);
1257
1258 /*
1259 * We've selected a unit beyond the length of the table, so let's extend
1260 * the table to make room for all units up to and including this one.
1261 */
1262 if (unit >= dc->maxunit) {
1263 int newsize;
1264
1265 newsize = unit + 1;
1266 dc->devices = reallocf(dc->devices,
1267 newsize * sizeof(*dc->devices), M_BUS, M_WAITOK);
1268 memset(dc->devices + dc->maxunit, 0,
1269 sizeof(device_t) * (newsize - dc->maxunit));
1270 dc->maxunit = newsize;
1271 }
1272 PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
1273
1274 *unitp = unit;
1275 return (0);
1276 }
1277
1278 /**
1279 * @internal
1280 * @brief Add a device to a devclass
1281 *
1282 * A unit number is allocated for the device (using the device's
1283 * preferred unit number if any) and the device is registered in the
1284 * devclass. This allows the device to be looked up by its unit
1285 * number, e.g. by decoding a dev_t minor number.
1286 *
1287 * @param dc the devclass to add to
1288 * @param dev the device to add
1289 *
1290 * @retval 0 success
1291 * @retval EEXIST the requested unit number is already allocated
1292 * @retval ENOMEM memory allocation failure
1293 * @retval EINVAL Unit number invalid or too many units
1294 */
1295 static int
devclass_add_device(devclass_t dc,device_t dev)1296 devclass_add_device(devclass_t dc, device_t dev)
1297 {
1298 int buflen, error;
1299
1300 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1301
1302 buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
1303 if (buflen < 0)
1304 return (ENOMEM);
1305 dev->nameunit = malloc(buflen, M_BUS, M_WAITOK|M_ZERO);
1306
1307 if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
1308 free(dev->nameunit, M_BUS);
1309 dev->nameunit = NULL;
1310 return (error);
1311 }
1312 dc->devices[dev->unit] = dev;
1313 dev->devclass = dc;
1314 snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
1315
1316 return (0);
1317 }
1318
1319 /**
1320 * @internal
1321 * @brief Delete a device from a devclass
1322 *
1323 * The device is removed from the devclass's device list and its unit
1324 * number is freed.
1325
1326 * @param dc the devclass to delete from
1327 * @param dev the device to delete
1328 *
1329 * @retval 0 success
1330 */
1331 static int
devclass_delete_device(devclass_t dc,device_t dev)1332 devclass_delete_device(devclass_t dc, device_t dev)
1333 {
1334 if (!dc || !dev)
1335 return (0);
1336
1337 PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
1338
1339 if (dev->devclass != dc || dc->devices[dev->unit] != dev)
1340 panic("devclass_delete_device: inconsistent device class");
1341 dc->devices[dev->unit] = NULL;
1342 if (dev->flags & DF_WILDCARD)
1343 dev->unit = DEVICE_UNIT_ANY;
1344 dev->devclass = NULL;
1345 free(dev->nameunit, M_BUS);
1346 dev->nameunit = NULL;
1347
1348 return (0);
1349 }
1350
1351 /**
1352 * @internal
1353 * @brief Make a new device and add it as a child of @p parent
1354 *
1355 * @param parent the parent of the new device
1356 * @param name the devclass name of the new device or @c NULL
1357 * to leave the devclass unspecified
1358 * @parem unit the unit number of the new device of @c DEVICE_UNIT_ANY
1359 * to leave the unit number unspecified
1360 *
1361 * @returns the new device
1362 */
1363 static device_t
make_device(device_t parent,const char * name,int unit)1364 make_device(device_t parent, const char *name, int unit)
1365 {
1366 device_t dev;
1367 devclass_t dc;
1368
1369 PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
1370
1371 if (name) {
1372 dc = devclass_find_internal(name, NULL, TRUE);
1373 if (!dc) {
1374 printf("make_device: can't find device class %s\n",
1375 name);
1376 return (NULL);
1377 }
1378 } else {
1379 dc = NULL;
1380 }
1381
1382 dev = malloc(sizeof(*dev), M_BUS, M_WAITOK|M_ZERO);
1383 dev->parent = parent;
1384 TAILQ_INIT(&dev->children);
1385 kobj_init((kobj_t) dev, &null_class);
1386 dev->driver = NULL;
1387 dev->devclass = NULL;
1388 dev->unit = unit;
1389 dev->nameunit = NULL;
1390 dev->desc = NULL;
1391 dev->busy = 0;
1392 dev->devflags = 0;
1393 dev->flags = DF_ENABLED;
1394 dev->order = 0;
1395 if (unit == DEVICE_UNIT_ANY)
1396 dev->flags |= DF_WILDCARD;
1397 if (name) {
1398 dev->flags |= DF_FIXEDCLASS;
1399 if (devclass_add_device(dc, dev)) {
1400 kobj_delete((kobj_t) dev, M_BUS);
1401 return (NULL);
1402 }
1403 }
1404 if (parent != NULL && device_has_quiet_children(parent))
1405 dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
1406 dev->ivars = NULL;
1407 dev->softc = NULL;
1408 LIST_INIT(&dev->props);
1409
1410 dev->state = DS_NOTPRESENT;
1411
1412 TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
1413 bus_data_generation_update();
1414
1415 return (dev);
1416 }
1417
1418 /**
1419 * @internal
1420 * @brief Print a description of a device.
1421 */
1422 static int
device_print_child(device_t dev,device_t child)1423 device_print_child(device_t dev, device_t child)
1424 {
1425 int retval = 0;
1426
1427 if (device_is_alive(child))
1428 retval += BUS_PRINT_CHILD(dev, child);
1429 else
1430 retval += device_printf(child, " not found\n");
1431
1432 return (retval);
1433 }
1434
1435 /**
1436 * @brief Create a new device
1437 *
1438 * This creates a new device and adds it as a child of an existing
1439 * parent device. The new device will be added after the last existing
1440 * child with order zero.
1441 *
1442 * @param dev the device which will be the parent of the
1443 * new child device
1444 * @param name devclass name for new device or @c NULL if not
1445 * specified
1446 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not
1447 * specified
1448 *
1449 * @returns the new device
1450 */
1451 device_t
device_add_child(device_t dev,const char * name,int unit)1452 device_add_child(device_t dev, const char *name, int unit)
1453 {
1454 return (device_add_child_ordered(dev, 0, name, unit));
1455 }
1456
1457 /**
1458 * @brief Create a new device
1459 *
1460 * This creates a new device and adds it as a child of an existing
1461 * parent device. The new device will be added after the last existing
1462 * child with the same order.
1463 *
1464 * @param dev the device which will be the parent of the
1465 * new child device
1466 * @param order a value which is used to partially sort the
1467 * children of @p dev - devices created using
1468 * lower values of @p order appear first in @p
1469 * dev's list of children
1470 * @param name devclass name for new device or @c NULL if not
1471 * specified
1472 * @param unit unit number for new device or @c DEVICE_UNIT_ANY if not
1473 * specified
1474 *
1475 * @returns the new device
1476 */
1477 device_t
device_add_child_ordered(device_t dev,u_int order,const char * name,int unit)1478 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
1479 {
1480 device_t child;
1481 device_t place;
1482
1483 PDEBUG(("%s at %s with order %u as unit %d",
1484 name, DEVICENAME(dev), order, unit));
1485 KASSERT(name != NULL || unit == DEVICE_UNIT_ANY,
1486 ("child device with wildcard name and specific unit number"));
1487
1488 child = make_device(dev, name, unit);
1489 if (child == NULL)
1490 return (child);
1491 child->order = order;
1492
1493 TAILQ_FOREACH(place, &dev->children, link) {
1494 if (place->order > order)
1495 break;
1496 }
1497
1498 if (place) {
1499 /*
1500 * The device 'place' is the first device whose order is
1501 * greater than the new child.
1502 */
1503 TAILQ_INSERT_BEFORE(place, child, link);
1504 } else {
1505 /*
1506 * The new child's order is greater or equal to the order of
1507 * any existing device. Add the child to the tail of the list.
1508 */
1509 TAILQ_INSERT_TAIL(&dev->children, child, link);
1510 }
1511
1512 bus_data_generation_update();
1513 return (child);
1514 }
1515
1516 /**
1517 * @brief Delete a device
1518 *
1519 * This function deletes a device along with all of its children. If
1520 * the device currently has a driver attached to it, the device is
1521 * detached first using device_detach().
1522 *
1523 * @param dev the parent device
1524 * @param child the device to delete
1525 *
1526 * @retval 0 success
1527 * @retval non-zero a unit error code describing the error
1528 */
1529 int
device_delete_child(device_t dev,device_t child)1530 device_delete_child(device_t dev, device_t child)
1531 {
1532 int error;
1533 device_t grandchild;
1534
1535 PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
1536
1537 /*
1538 * Detach child. Ideally this cleans up any grandchild
1539 * devices.
1540 */
1541 if ((error = device_detach(child)) != 0)
1542 return (error);
1543
1544 /* Delete any grandchildren left after detach. */
1545 while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
1546 error = device_delete_child(child, grandchild);
1547 if (error)
1548 return (error);
1549 }
1550
1551 device_destroy_props(dev);
1552 if (child->devclass)
1553 devclass_delete_device(child->devclass, child);
1554 if (child->parent)
1555 BUS_CHILD_DELETED(dev, child);
1556 TAILQ_REMOVE(&dev->children, child, link);
1557 TAILQ_REMOVE(&bus_data_devices, child, devlink);
1558 kobj_delete((kobj_t) child, M_BUS);
1559
1560 bus_data_generation_update();
1561 return (0);
1562 }
1563
1564 /**
1565 * @brief Delete all children devices of the given device, if any.
1566 *
1567 * This function deletes all children devices of the given device, if
1568 * any, using the device_delete_child() function for each device it
1569 * finds. If a child device cannot be deleted, this function will
1570 * return an error code.
1571 *
1572 * @param dev the parent device
1573 *
1574 * @retval 0 success
1575 * @retval non-zero a device would not detach
1576 */
1577 int
device_delete_children(device_t dev)1578 device_delete_children(device_t dev)
1579 {
1580 device_t child;
1581 int error;
1582
1583 PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
1584
1585 error = 0;
1586
1587 while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
1588 error = device_delete_child(dev, child);
1589 if (error) {
1590 PDEBUG(("Failed deleting %s", DEVICENAME(child)));
1591 break;
1592 }
1593 }
1594 return (error);
1595 }
1596
1597 /**
1598 * @brief Find a device given a unit number
1599 *
1600 * This is similar to devclass_get_devices() but only searches for
1601 * devices which have @p dev as a parent.
1602 *
1603 * @param dev the parent device to search
1604 * @param unit the unit number to search for. If the unit is
1605 * @c DEVICE_UNIT_ANY, return the first child of @p dev
1606 * which has name @p classname (that is, the one with the
1607 * lowest unit.)
1608 *
1609 * @returns the device with the given unit number or @c
1610 * NULL if there is no such device
1611 */
1612 device_t
device_find_child(device_t dev,const char * classname,int unit)1613 device_find_child(device_t dev, const char *classname, int unit)
1614 {
1615 devclass_t dc;
1616 device_t child;
1617
1618 dc = devclass_find(classname);
1619 if (!dc)
1620 return (NULL);
1621
1622 if (unit != DEVICE_UNIT_ANY) {
1623 child = devclass_get_device(dc, unit);
1624 if (child && child->parent == dev)
1625 return (child);
1626 } else {
1627 for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
1628 child = devclass_get_device(dc, unit);
1629 if (child && child->parent == dev)
1630 return (child);
1631 }
1632 }
1633 return (NULL);
1634 }
1635
1636 /**
1637 * @internal
1638 */
1639 static driverlink_t
first_matching_driver(devclass_t dc,device_t dev)1640 first_matching_driver(devclass_t dc, device_t dev)
1641 {
1642 if (dev->devclass)
1643 return (devclass_find_driver_internal(dc, dev->devclass->name));
1644 return (TAILQ_FIRST(&dc->drivers));
1645 }
1646
1647 /**
1648 * @internal
1649 */
1650 static driverlink_t
next_matching_driver(devclass_t dc,device_t dev,driverlink_t last)1651 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
1652 {
1653 if (dev->devclass) {
1654 driverlink_t dl;
1655 for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
1656 if (!strcmp(dev->devclass->name, dl->driver->name))
1657 return (dl);
1658 return (NULL);
1659 }
1660 return (TAILQ_NEXT(last, link));
1661 }
1662
1663 /**
1664 * @internal
1665 */
1666 int
device_probe_child(device_t dev,device_t child)1667 device_probe_child(device_t dev, device_t child)
1668 {
1669 devclass_t dc;
1670 driverlink_t best = NULL;
1671 driverlink_t dl;
1672 int result, pri = 0;
1673 /* We should preserve the devclass (or lack of) set by the bus. */
1674 int hasclass = (child->devclass != NULL);
1675
1676 bus_topo_assert();
1677
1678 dc = dev->devclass;
1679 if (!dc)
1680 panic("device_probe_child: parent device has no devclass");
1681
1682 /*
1683 * If the state is already probed, then return.
1684 */
1685 if (child->state == DS_ALIVE)
1686 return (0);
1687
1688 for (; dc; dc = dc->parent) {
1689 for (dl = first_matching_driver(dc, child);
1690 dl;
1691 dl = next_matching_driver(dc, child, dl)) {
1692 /* If this driver's pass is too high, then ignore it. */
1693 if (dl->pass > bus_current_pass)
1694 continue;
1695
1696 PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
1697 result = device_set_driver(child, dl->driver);
1698 if (result == ENOMEM)
1699 return (result);
1700 else if (result != 0)
1701 continue;
1702 if (!hasclass) {
1703 if (device_set_devclass(child,
1704 dl->driver->name) != 0) {
1705 char const * devname =
1706 device_get_name(child);
1707 if (devname == NULL)
1708 devname = "(unknown)";
1709 printf("driver bug: Unable to set "
1710 "devclass (class: %s "
1711 "devname: %s)\n",
1712 dl->driver->name,
1713 devname);
1714 (void)device_set_driver(child, NULL);
1715 continue;
1716 }
1717 }
1718
1719 /* Fetch any flags for the device before probing. */
1720 resource_int_value(dl->driver->name, child->unit,
1721 "flags", &child->devflags);
1722
1723 result = DEVICE_PROBE(child);
1724
1725 /*
1726 * If probe returns 0, this is the driver that wins this
1727 * device.
1728 */
1729 if (result == 0) {
1730 best = dl;
1731 pri = 0;
1732 goto exact_match; /* C doesn't have break 2 */
1733 }
1734
1735 /* Reset flags and devclass before the next probe. */
1736 child->devflags = 0;
1737 if (!hasclass)
1738 (void)device_set_devclass(child, NULL);
1739
1740 /*
1741 * Reset DF_QUIET in case this driver doesn't
1742 * end up as the best driver.
1743 */
1744 device_verbose(child);
1745
1746 /*
1747 * Probes that return BUS_PROBE_NOWILDCARD or lower
1748 * only match on devices whose driver was explicitly
1749 * specified.
1750 */
1751 if (result <= BUS_PROBE_NOWILDCARD &&
1752 !(child->flags & DF_FIXEDCLASS)) {
1753 result = ENXIO;
1754 }
1755
1756 /*
1757 * The driver returned an error so it
1758 * certainly doesn't match.
1759 */
1760 if (result > 0) {
1761 (void)device_set_driver(child, NULL);
1762 continue;
1763 }
1764
1765 /*
1766 * A priority lower than SUCCESS, remember the
1767 * best matching driver. Initialise the value
1768 * of pri for the first match.
1769 */
1770 if (best == NULL || result > pri) {
1771 best = dl;
1772 pri = result;
1773 continue;
1774 }
1775 }
1776 }
1777
1778 if (best == NULL)
1779 return (ENXIO);
1780
1781 /*
1782 * If we found a driver, change state and initialise the devclass.
1783 * Set the winning driver, devclass, and flags.
1784 */
1785 result = device_set_driver(child, best->driver);
1786 if (result != 0)
1787 return (result);
1788 if (!child->devclass) {
1789 result = device_set_devclass(child, best->driver->name);
1790 if (result != 0) {
1791 (void)device_set_driver(child, NULL);
1792 return (result);
1793 }
1794 }
1795 resource_int_value(best->driver->name, child->unit,
1796 "flags", &child->devflags);
1797
1798 /*
1799 * A bit bogus. Call the probe method again to make sure that we have
1800 * the right description for the device.
1801 */
1802 result = DEVICE_PROBE(child);
1803 if (result > 0) {
1804 if (!hasclass)
1805 (void)device_set_devclass(child, NULL);
1806 (void)device_set_driver(child, NULL);
1807 return (result);
1808 }
1809
1810 exact_match:
1811 child->state = DS_ALIVE;
1812 bus_data_generation_update();
1813 return (0);
1814 }
1815
1816 /**
1817 * @brief Return the parent of a device
1818 */
1819 device_t
device_get_parent(device_t dev)1820 device_get_parent(device_t dev)
1821 {
1822 return (dev->parent);
1823 }
1824
1825 /**
1826 * @brief Get a list of children of a device
1827 *
1828 * An array containing a list of all the children of the given device
1829 * is allocated and returned in @p *devlistp. The number of devices
1830 * in the array is returned in @p *devcountp. The caller should free
1831 * the array using @c free(p, M_TEMP).
1832 *
1833 * @param dev the device to examine
1834 * @param devlistp points at location for array pointer return
1835 * value
1836 * @param devcountp points at location for array size return value
1837 *
1838 * @retval 0 success
1839 * @retval ENOMEM the array allocation failed
1840 */
1841 int
device_get_children(device_t dev,device_t ** devlistp,int * devcountp)1842 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
1843 {
1844 int count;
1845 device_t child;
1846 device_t *list;
1847
1848 count = 0;
1849 TAILQ_FOREACH(child, &dev->children, link) {
1850 count++;
1851 }
1852 if (count == 0) {
1853 *devlistp = NULL;
1854 *devcountp = 0;
1855 return (0);
1856 }
1857
1858 list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
1859 if (!list)
1860 return (ENOMEM);
1861
1862 count = 0;
1863 TAILQ_FOREACH(child, &dev->children, link) {
1864 list[count] = child;
1865 count++;
1866 }
1867
1868 *devlistp = list;
1869 *devcountp = count;
1870
1871 return (0);
1872 }
1873
1874 /**
1875 * @brief Return the current driver for the device or @c NULL if there
1876 * is no driver currently attached
1877 */
1878 driver_t *
device_get_driver(device_t dev)1879 device_get_driver(device_t dev)
1880 {
1881 return (dev->driver);
1882 }
1883
1884 /**
1885 * @brief Return the current devclass for the device or @c NULL if
1886 * there is none.
1887 */
1888 devclass_t
device_get_devclass(device_t dev)1889 device_get_devclass(device_t dev)
1890 {
1891 return (dev->devclass);
1892 }
1893
1894 /**
1895 * @brief Return the name of the device's devclass or @c NULL if there
1896 * is none.
1897 */
1898 const char *
device_get_name(device_t dev)1899 device_get_name(device_t dev)
1900 {
1901 if (dev != NULL && dev->devclass)
1902 return (devclass_get_name(dev->devclass));
1903 return (NULL);
1904 }
1905
1906 /**
1907 * @brief Return a string containing the device's devclass name
1908 * followed by an ascii representation of the device's unit number
1909 * (e.g. @c "foo2").
1910 */
1911 const char *
device_get_nameunit(device_t dev)1912 device_get_nameunit(device_t dev)
1913 {
1914 return (dev->nameunit);
1915 }
1916
1917 /**
1918 * @brief Return the device's unit number.
1919 */
1920 int
device_get_unit(device_t dev)1921 device_get_unit(device_t dev)
1922 {
1923 return (dev->unit);
1924 }
1925
1926 /**
1927 * @brief Return the device's description string
1928 */
1929 const char *
device_get_desc(device_t dev)1930 device_get_desc(device_t dev)
1931 {
1932 return (dev->desc);
1933 }
1934
1935 /**
1936 * @brief Return the device's flags
1937 */
1938 uint32_t
device_get_flags(device_t dev)1939 device_get_flags(device_t dev)
1940 {
1941 return (dev->devflags);
1942 }
1943
1944 struct sysctl_ctx_list *
device_get_sysctl_ctx(device_t dev)1945 device_get_sysctl_ctx(device_t dev)
1946 {
1947 return (&dev->sysctl_ctx);
1948 }
1949
1950 struct sysctl_oid *
device_get_sysctl_tree(device_t dev)1951 device_get_sysctl_tree(device_t dev)
1952 {
1953 return (dev->sysctl_tree);
1954 }
1955
1956 /**
1957 * @brief Print the name of the device followed by a colon and a space
1958 *
1959 * @returns the number of characters printed
1960 */
1961 int
device_print_prettyname(device_t dev)1962 device_print_prettyname(device_t dev)
1963 {
1964 const char *name = device_get_name(dev);
1965
1966 if (name == NULL)
1967 return (printf("unknown: "));
1968 return (printf("%s%d: ", name, device_get_unit(dev)));
1969 }
1970
1971 /**
1972 * @brief Print the name of the device followed by a colon, a space
1973 * and the result of calling vprintf() with the value of @p fmt and
1974 * the following arguments.
1975 *
1976 * @returns the number of characters printed
1977 */
1978 int
device_printf(device_t dev,const char * fmt,...)1979 device_printf(device_t dev, const char * fmt, ...)
1980 {
1981 char buf[128];
1982 struct sbuf sb;
1983 const char *name;
1984 va_list ap;
1985 size_t retval;
1986
1987 retval = 0;
1988
1989 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1990 sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
1991
1992 name = device_get_name(dev);
1993
1994 if (name == NULL)
1995 sbuf_cat(&sb, "unknown: ");
1996 else
1997 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
1998
1999 va_start(ap, fmt);
2000 sbuf_vprintf(&sb, fmt, ap);
2001 va_end(ap);
2002
2003 sbuf_finish(&sb);
2004 sbuf_delete(&sb);
2005
2006 return (retval);
2007 }
2008
2009 /**
2010 * @brief Print the name of the device followed by a colon, a space
2011 * and the result of calling log() with the value of @p fmt and
2012 * the following arguments.
2013 *
2014 * @returns the number of characters printed
2015 */
2016 int
device_log(device_t dev,int pri,const char * fmt,...)2017 device_log(device_t dev, int pri, const char * fmt, ...)
2018 {
2019 char buf[128];
2020 struct sbuf sb;
2021 const char *name;
2022 va_list ap;
2023 size_t retval;
2024
2025 retval = 0;
2026
2027 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
2028
2029 name = device_get_name(dev);
2030
2031 if (name == NULL)
2032 sbuf_cat(&sb, "unknown: ");
2033 else
2034 sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
2035
2036 va_start(ap, fmt);
2037 sbuf_vprintf(&sb, fmt, ap);
2038 va_end(ap);
2039
2040 sbuf_finish(&sb);
2041
2042 log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb));
2043 retval = sbuf_len(&sb);
2044
2045 sbuf_delete(&sb);
2046
2047 return (retval);
2048 }
2049
2050 /**
2051 * @internal
2052 */
2053 static void
device_set_desc_internal(device_t dev,const char * desc,bool allocated)2054 device_set_desc_internal(device_t dev, const char *desc, bool allocated)
2055 {
2056 if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
2057 free(dev->desc, M_BUS);
2058 dev->flags &= ~DF_DESCMALLOCED;
2059 dev->desc = NULL;
2060 }
2061
2062 if (allocated && desc)
2063 dev->flags |= DF_DESCMALLOCED;
2064 dev->desc = __DECONST(char *, desc);
2065
2066 bus_data_generation_update();
2067 }
2068
2069 /**
2070 * @brief Set the device's description
2071 *
2072 * The value of @c desc should be a string constant that will not
2073 * change (at least until the description is changed in a subsequent
2074 * call to device_set_desc() or device_set_desc_copy()).
2075 */
2076 void
device_set_desc(device_t dev,const char * desc)2077 device_set_desc(device_t dev, const char *desc)
2078 {
2079 device_set_desc_internal(dev, desc, false);
2080 }
2081
2082 /**
2083 * @brief Set the device's description
2084 *
2085 * A printf-like version of device_set_desc().
2086 */
2087 void
device_set_descf(device_t dev,const char * fmt,...)2088 device_set_descf(device_t dev, const char *fmt, ...)
2089 {
2090 va_list ap;
2091 char *buf = NULL;
2092
2093 va_start(ap, fmt);
2094 vasprintf(&buf, M_BUS, fmt, ap);
2095 va_end(ap);
2096 device_set_desc_internal(dev, buf, true);
2097 }
2098
2099 /**
2100 * @brief Set the device's description
2101 *
2102 * The string pointed to by @c desc is copied. Use this function if
2103 * the device description is generated, (e.g. with sprintf()).
2104 */
2105 void
device_set_desc_copy(device_t dev,const char * desc)2106 device_set_desc_copy(device_t dev, const char *desc)
2107 {
2108 char *buf;
2109
2110 buf = strdup_flags(desc, M_BUS, M_WAITOK);
2111 device_set_desc_internal(dev, buf, true);
2112 }
2113
2114 /**
2115 * @brief Set the device's flags
2116 */
2117 void
device_set_flags(device_t dev,uint32_t flags)2118 device_set_flags(device_t dev, uint32_t flags)
2119 {
2120 dev->devflags = flags;
2121 }
2122
2123 /**
2124 * @brief Return the device's softc field
2125 *
2126 * The softc is allocated and zeroed when a driver is attached, based
2127 * on the size field of the driver.
2128 */
2129 void *
device_get_softc(device_t dev)2130 device_get_softc(device_t dev)
2131 {
2132 return (dev->softc);
2133 }
2134
2135 /**
2136 * @brief Set the device's softc field
2137 *
2138 * Most drivers do not need to use this since the softc is allocated
2139 * automatically when the driver is attached.
2140 */
2141 void
device_set_softc(device_t dev,void * softc)2142 device_set_softc(device_t dev, void *softc)
2143 {
2144 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
2145 free(dev->softc, M_BUS_SC);
2146 dev->softc = softc;
2147 if (dev->softc)
2148 dev->flags |= DF_EXTERNALSOFTC;
2149 else
2150 dev->flags &= ~DF_EXTERNALSOFTC;
2151 }
2152
2153 /**
2154 * @brief Free claimed softc
2155 *
2156 * Most drivers do not need to use this since the softc is freed
2157 * automatically when the driver is detached.
2158 */
2159 void
device_free_softc(void * softc)2160 device_free_softc(void *softc)
2161 {
2162 free(softc, M_BUS_SC);
2163 }
2164
2165 /**
2166 * @brief Claim softc
2167 *
2168 * This function can be used to let the driver free the automatically
2169 * allocated softc using "device_free_softc()". This function is
2170 * useful when the driver is refcounting the softc and the softc
2171 * cannot be freed when the "device_detach" method is called.
2172 */
2173 void
device_claim_softc(device_t dev)2174 device_claim_softc(device_t dev)
2175 {
2176 if (dev->softc)
2177 dev->flags |= DF_EXTERNALSOFTC;
2178 else
2179 dev->flags &= ~DF_EXTERNALSOFTC;
2180 }
2181
2182 /**
2183 * @brief Get the device's ivars field
2184 *
2185 * The ivars field is used by the parent device to store per-device
2186 * state (e.g. the physical location of the device or a list of
2187 * resources).
2188 */
2189 void *
device_get_ivars(device_t dev)2190 device_get_ivars(device_t dev)
2191 {
2192 KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
2193 return (dev->ivars);
2194 }
2195
2196 /**
2197 * @brief Set the device's ivars field
2198 */
2199 void
device_set_ivars(device_t dev,void * ivars)2200 device_set_ivars(device_t dev, void * ivars)
2201 {
2202 KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
2203 dev->ivars = ivars;
2204 }
2205
2206 /**
2207 * @brief Return the device's state
2208 */
2209 device_state_t
device_get_state(device_t dev)2210 device_get_state(device_t dev)
2211 {
2212 return (dev->state);
2213 }
2214
2215 /**
2216 * @brief Set the DF_ENABLED flag for the device
2217 */
2218 void
device_enable(device_t dev)2219 device_enable(device_t dev)
2220 {
2221 dev->flags |= DF_ENABLED;
2222 }
2223
2224 /**
2225 * @brief Clear the DF_ENABLED flag for the device
2226 */
2227 void
device_disable(device_t dev)2228 device_disable(device_t dev)
2229 {
2230 dev->flags &= ~DF_ENABLED;
2231 }
2232
2233 /**
2234 * @brief Increment the busy counter for the device
2235 */
2236 void
device_busy(device_t dev)2237 device_busy(device_t dev)
2238 {
2239
2240 /*
2241 * Mark the device as busy, recursively up the tree if this busy count
2242 * goes 0->1.
2243 */
2244 if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL)
2245 device_busy(dev->parent);
2246 }
2247
2248 /**
2249 * @brief Decrement the busy counter for the device
2250 */
2251 void
device_unbusy(device_t dev)2252 device_unbusy(device_t dev)
2253 {
2254
2255 /*
2256 * Mark the device as unbsy, recursively if this is the last busy count.
2257 */
2258 if (refcount_release(&dev->busy) && dev->parent != NULL)
2259 device_unbusy(dev->parent);
2260 }
2261
2262 /**
2263 * @brief Set the DF_QUIET flag for the device
2264 */
2265 void
device_quiet(device_t dev)2266 device_quiet(device_t dev)
2267 {
2268 dev->flags |= DF_QUIET;
2269 }
2270
2271 /**
2272 * @brief Set the DF_QUIET_CHILDREN flag for the device
2273 */
2274 void
device_quiet_children(device_t dev)2275 device_quiet_children(device_t dev)
2276 {
2277 dev->flags |= DF_QUIET_CHILDREN;
2278 }
2279
2280 /**
2281 * @brief Clear the DF_QUIET flag for the device
2282 */
2283 void
device_verbose(device_t dev)2284 device_verbose(device_t dev)
2285 {
2286 dev->flags &= ~DF_QUIET;
2287 }
2288
2289 ssize_t
device_get_property(device_t dev,const char * prop,void * val,size_t sz,device_property_type_t type)2290 device_get_property(device_t dev, const char *prop, void *val, size_t sz,
2291 device_property_type_t type)
2292 {
2293 device_t bus = device_get_parent(dev);
2294
2295 switch (type) {
2296 case DEVICE_PROP_ANY:
2297 case DEVICE_PROP_BUFFER:
2298 case DEVICE_PROP_HANDLE: /* Size checks done in implementation. */
2299 break;
2300 case DEVICE_PROP_UINT32:
2301 if (sz % 4 != 0)
2302 return (-1);
2303 break;
2304 case DEVICE_PROP_UINT64:
2305 if (sz % 8 != 0)
2306 return (-1);
2307 break;
2308 default:
2309 return (-1);
2310 }
2311
2312 return (BUS_GET_PROPERTY(bus, dev, prop, val, sz, type));
2313 }
2314
2315 bool
device_has_property(device_t dev,const char * prop)2316 device_has_property(device_t dev, const char *prop)
2317 {
2318 return (device_get_property(dev, prop, NULL, 0, DEVICE_PROP_ANY) >= 0);
2319 }
2320
2321 /**
2322 * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
2323 */
2324 int
device_has_quiet_children(device_t dev)2325 device_has_quiet_children(device_t dev)
2326 {
2327 return ((dev->flags & DF_QUIET_CHILDREN) != 0);
2328 }
2329
2330 /**
2331 * @brief Return non-zero if the DF_QUIET flag is set on the device
2332 */
2333 int
device_is_quiet(device_t dev)2334 device_is_quiet(device_t dev)
2335 {
2336 return ((dev->flags & DF_QUIET) != 0);
2337 }
2338
2339 /**
2340 * @brief Return non-zero if the DF_ENABLED flag is set on the device
2341 */
2342 int
device_is_enabled(device_t dev)2343 device_is_enabled(device_t dev)
2344 {
2345 return ((dev->flags & DF_ENABLED) != 0);
2346 }
2347
2348 /**
2349 * @brief Return non-zero if the device was successfully probed
2350 */
2351 int
device_is_alive(device_t dev)2352 device_is_alive(device_t dev)
2353 {
2354 return (dev->state >= DS_ALIVE);
2355 }
2356
2357 /**
2358 * @brief Return non-zero if the device currently has a driver
2359 * attached to it
2360 */
2361 int
device_is_attached(device_t dev)2362 device_is_attached(device_t dev)
2363 {
2364 return (dev->state >= DS_ATTACHED);
2365 }
2366
2367 /**
2368 * @brief Return non-zero if the device is currently suspended.
2369 */
2370 int
device_is_suspended(device_t dev)2371 device_is_suspended(device_t dev)
2372 {
2373 return ((dev->flags & DF_SUSPENDED) != 0);
2374 }
2375
2376 /**
2377 * @brief Set the devclass of a device
2378 * @see devclass_add_device().
2379 */
2380 int
device_set_devclass(device_t dev,const char * classname)2381 device_set_devclass(device_t dev, const char *classname)
2382 {
2383 devclass_t dc;
2384 int error;
2385
2386 if (!classname) {
2387 if (dev->devclass)
2388 devclass_delete_device(dev->devclass, dev);
2389 return (0);
2390 }
2391
2392 if (dev->devclass) {
2393 printf("device_set_devclass: device class already set\n");
2394 return (EINVAL);
2395 }
2396
2397 dc = devclass_find_internal(classname, NULL, TRUE);
2398 if (!dc)
2399 return (ENOMEM);
2400
2401 error = devclass_add_device(dc, dev);
2402
2403 bus_data_generation_update();
2404 return (error);
2405 }
2406
2407 /**
2408 * @brief Set the devclass of a device and mark the devclass fixed.
2409 * @see device_set_devclass()
2410 */
2411 int
device_set_devclass_fixed(device_t dev,const char * classname)2412 device_set_devclass_fixed(device_t dev, const char *classname)
2413 {
2414 int error;
2415
2416 if (classname == NULL)
2417 return (EINVAL);
2418
2419 error = device_set_devclass(dev, classname);
2420 if (error)
2421 return (error);
2422 dev->flags |= DF_FIXEDCLASS;
2423 return (0);
2424 }
2425
2426 /**
2427 * @brief Query the device to determine if it's of a fixed devclass
2428 * @see device_set_devclass_fixed()
2429 */
2430 bool
device_is_devclass_fixed(device_t dev)2431 device_is_devclass_fixed(device_t dev)
2432 {
2433 return ((dev->flags & DF_FIXEDCLASS) != 0);
2434 }
2435
2436 /**
2437 * @brief Set the driver of a device
2438 *
2439 * @retval 0 success
2440 * @retval EBUSY the device already has a driver attached
2441 * @retval ENOMEM a memory allocation failure occurred
2442 */
2443 int
device_set_driver(device_t dev,driver_t * driver)2444 device_set_driver(device_t dev, driver_t *driver)
2445 {
2446 int domain;
2447 struct domainset *policy;
2448
2449 if (dev->state >= DS_ATTACHED)
2450 return (EBUSY);
2451
2452 if (dev->driver == driver)
2453 return (0);
2454
2455 if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
2456 free(dev->softc, M_BUS_SC);
2457 dev->softc = NULL;
2458 }
2459 device_set_desc(dev, NULL);
2460 kobj_delete((kobj_t) dev, NULL);
2461 dev->driver = driver;
2462 if (driver) {
2463 kobj_init((kobj_t) dev, (kobj_class_t) driver);
2464 if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
2465 if (bus_get_domain(dev, &domain) == 0)
2466 policy = DOMAINSET_PREF(domain);
2467 else
2468 policy = DOMAINSET_RR();
2469 dev->softc = malloc_domainset(driver->size, M_BUS_SC,
2470 policy, M_WAITOK | M_ZERO);
2471 }
2472 } else {
2473 kobj_init((kobj_t) dev, &null_class);
2474 }
2475
2476 bus_data_generation_update();
2477 return (0);
2478 }
2479
2480 /**
2481 * @brief Probe a device, and return this status.
2482 *
2483 * This function is the core of the device autoconfiguration
2484 * system. Its purpose is to select a suitable driver for a device and
2485 * then call that driver to initialise the hardware appropriately. The
2486 * driver is selected by calling the DEVICE_PROBE() method of a set of
2487 * candidate drivers and then choosing the driver which returned the
2488 * best value. This driver is then attached to the device using
2489 * device_attach().
2490 *
2491 * The set of suitable drivers is taken from the list of drivers in
2492 * the parent device's devclass. If the device was originally created
2493 * with a specific class name (see device_add_child()), only drivers
2494 * with that name are probed, otherwise all drivers in the devclass
2495 * are probed. If no drivers return successful probe values in the
2496 * parent devclass, the search continues in the parent of that
2497 * devclass (see devclass_get_parent()) if any.
2498 *
2499 * @param dev the device to initialise
2500 *
2501 * @retval 0 success
2502 * @retval ENXIO no driver was found
2503 * @retval ENOMEM memory allocation failure
2504 * @retval non-zero some other unix error code
2505 * @retval -1 Device already attached
2506 */
2507 int
device_probe(device_t dev)2508 device_probe(device_t dev)
2509 {
2510 int error;
2511
2512 bus_topo_assert();
2513
2514 if (dev->state >= DS_ALIVE)
2515 return (-1);
2516
2517 if (!(dev->flags & DF_ENABLED)) {
2518 if (bootverbose && device_get_name(dev) != NULL) {
2519 device_print_prettyname(dev);
2520 printf("not probed (disabled)\n");
2521 }
2522 return (-1);
2523 }
2524 if ((error = device_probe_child(dev->parent, dev)) != 0) {
2525 if (bus_current_pass == BUS_PASS_DEFAULT &&
2526 !(dev->flags & DF_DONENOMATCH)) {
2527 device_handle_nomatch(dev);
2528 }
2529 return (error);
2530 }
2531 return (0);
2532 }
2533
2534 /**
2535 * @brief Probe a device and attach a driver if possible
2536 *
2537 * calls device_probe() and attaches if that was successful.
2538 */
2539 int
device_probe_and_attach(device_t dev)2540 device_probe_and_attach(device_t dev)
2541 {
2542 int error;
2543
2544 bus_topo_assert();
2545
2546 error = device_probe(dev);
2547 if (error == -1)
2548 return (0);
2549 else if (error != 0)
2550 return (error);
2551
2552 return (device_attach(dev));
2553 }
2554
2555 /**
2556 * @brief Attach a device driver to a device
2557 *
2558 * This function is a wrapper around the DEVICE_ATTACH() driver
2559 * method. In addition to calling DEVICE_ATTACH(), it initialises the
2560 * device's sysctl tree, optionally prints a description of the device
2561 * and queues a notification event for user-based device management
2562 * services.
2563 *
2564 * Normally this function is only called internally from
2565 * device_probe_and_attach().
2566 *
2567 * @param dev the device to initialise
2568 *
2569 * @retval 0 success
2570 * @retval ENXIO no driver was found
2571 * @retval ENOMEM memory allocation failure
2572 * @retval non-zero some other unix error code
2573 */
2574 int
device_attach(device_t dev)2575 device_attach(device_t dev)
2576 {
2577 uint64_t attachtime;
2578 uint16_t attachentropy;
2579 int error;
2580
2581 if (resource_disabled(dev->driver->name, dev->unit)) {
2582 /*
2583 * Mostly detach the device, but leave it attached to
2584 * the devclass to reserve the name and unit.
2585 */
2586 device_disable(dev);
2587 (void)device_set_driver(dev, NULL);
2588 dev->state = DS_NOTPRESENT;
2589 if (bootverbose)
2590 device_printf(dev, "disabled via hints entry\n");
2591 return (ENXIO);
2592 }
2593
2594 KASSERT(IS_DEFAULT_VNET(TD_TO_VNET(curthread)),
2595 ("device_attach: curthread is not in default vnet"));
2596 CURVNET_SET_QUIET(TD_TO_VNET(curthread));
2597
2598 device_sysctl_init(dev);
2599 if (!device_is_quiet(dev))
2600 device_print_child(dev->parent, dev);
2601 attachtime = get_cyclecount();
2602 dev->state = DS_ATTACHING;
2603 if ((error = DEVICE_ATTACH(dev)) != 0) {
2604 printf("device_attach: %s%d attach returned %d\n",
2605 dev->driver->name, dev->unit, error);
2606 BUS_CHILD_DETACHED(dev->parent, dev);
2607 if (disable_failed_devs) {
2608 /*
2609 * When the user has asked to disable failed devices, we
2610 * directly disable the device, but leave it in the
2611 * attaching state. It will not try to probe/attach the
2612 * device further. This leaves the device numbering
2613 * intact for other similar devices in the system. It
2614 * can be removed from this state with devctl.
2615 */
2616 device_disable(dev);
2617 } else {
2618 /*
2619 * Otherwise, when attach fails, tear down the state
2620 * around that so we can retry when, for example, new
2621 * drivers are loaded.
2622 */
2623 if (!(dev->flags & DF_FIXEDCLASS))
2624 devclass_delete_device(dev->devclass, dev);
2625 (void)device_set_driver(dev, NULL);
2626 device_sysctl_fini(dev);
2627 KASSERT(dev->busy == 0, ("attach failed but busy"));
2628 dev->state = DS_NOTPRESENT;
2629 }
2630 CURVNET_RESTORE();
2631 return (error);
2632 }
2633 CURVNET_RESTORE();
2634 dev->flags |= DF_ATTACHED_ONCE;
2635 /*
2636 * We only need the low bits of this time, but ranges from tens to thousands
2637 * have been seen, so keep 2 bytes' worth.
2638 */
2639 attachentropy = (uint16_t)(get_cyclecount() - attachtime);
2640 random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
2641 device_sysctl_update(dev);
2642 dev->state = DS_ATTACHED;
2643 dev->flags &= ~DF_DONENOMATCH;
2644 EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
2645 return (0);
2646 }
2647
2648 /**
2649 * @brief Detach a driver from a device
2650 *
2651 * This function is a wrapper around the DEVICE_DETACH() driver
2652 * method. If the call to DEVICE_DETACH() succeeds, it calls
2653 * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
2654 * notification event for user-based device management services and
2655 * cleans up the device's sysctl tree.
2656 *
2657 * @param dev the device to un-initialise
2658 *
2659 * @retval 0 success
2660 * @retval ENXIO no driver was found
2661 * @retval ENOMEM memory allocation failure
2662 * @retval non-zero some other unix error code
2663 */
2664 int
device_detach(device_t dev)2665 device_detach(device_t dev)
2666 {
2667 int error;
2668
2669 bus_topo_assert();
2670
2671 PDEBUG(("%s", DEVICENAME(dev)));
2672 if (dev->busy > 0)
2673 return (EBUSY);
2674 if (dev->state == DS_ATTACHING) {
2675 device_printf(dev, "device in attaching state! Deferring detach.\n");
2676 return (EBUSY);
2677 }
2678 if (dev->state != DS_ATTACHED)
2679 return (0);
2680
2681 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
2682 if ((error = DEVICE_DETACH(dev)) != 0) {
2683 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2684 EVHDEV_DETACH_FAILED);
2685 return (error);
2686 } else {
2687 EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
2688 EVHDEV_DETACH_COMPLETE);
2689 }
2690 if (!device_is_quiet(dev))
2691 device_printf(dev, "detached\n");
2692 if (dev->parent)
2693 BUS_CHILD_DETACHED(dev->parent, dev);
2694
2695 if (!(dev->flags & DF_FIXEDCLASS))
2696 devclass_delete_device(dev->devclass, dev);
2697
2698 device_verbose(dev);
2699 dev->state = DS_NOTPRESENT;
2700 (void)device_set_driver(dev, NULL);
2701 device_sysctl_fini(dev);
2702
2703 return (0);
2704 }
2705
2706 /**
2707 * @brief Tells a driver to quiesce itself.
2708 *
2709 * This function is a wrapper around the DEVICE_QUIESCE() driver
2710 * method. If the call to DEVICE_QUIESCE() succeeds.
2711 *
2712 * @param dev the device to quiesce
2713 *
2714 * @retval 0 success
2715 * @retval ENXIO no driver was found
2716 * @retval ENOMEM memory allocation failure
2717 * @retval non-zero some other unix error code
2718 */
2719 int
device_quiesce(device_t dev)2720 device_quiesce(device_t dev)
2721 {
2722 PDEBUG(("%s", DEVICENAME(dev)));
2723 if (dev->busy > 0)
2724 return (EBUSY);
2725 if (dev->state != DS_ATTACHED)
2726 return (0);
2727
2728 return (DEVICE_QUIESCE(dev));
2729 }
2730
2731 /**
2732 * @brief Notify a device of system shutdown
2733 *
2734 * This function calls the DEVICE_SHUTDOWN() driver method if the
2735 * device currently has an attached driver.
2736 *
2737 * @returns the value returned by DEVICE_SHUTDOWN()
2738 */
2739 int
device_shutdown(device_t dev)2740 device_shutdown(device_t dev)
2741 {
2742 if (dev->state < DS_ATTACHED)
2743 return (0);
2744 return (DEVICE_SHUTDOWN(dev));
2745 }
2746
2747 /**
2748 * @brief Set the unit number of a device
2749 *
2750 * This function can be used to override the unit number used for a
2751 * device (e.g. to wire a device to a pre-configured unit number).
2752 */
2753 int
device_set_unit(device_t dev,int unit)2754 device_set_unit(device_t dev, int unit)
2755 {
2756 devclass_t dc;
2757 int err;
2758
2759 if (unit == dev->unit)
2760 return (0);
2761 dc = device_get_devclass(dev);
2762 if (unit < dc->maxunit && dc->devices[unit])
2763 return (EBUSY);
2764 err = devclass_delete_device(dc, dev);
2765 if (err)
2766 return (err);
2767 dev->unit = unit;
2768 err = devclass_add_device(dc, dev);
2769 if (err)
2770 return (err);
2771
2772 bus_data_generation_update();
2773 return (0);
2774 }
2775
2776 /*======================================*/
2777 /*
2778 * Some useful method implementations to make life easier for bus drivers.
2779 */
2780
2781 /**
2782 * @brief Initialize a resource mapping request
2783 *
2784 * This is the internal implementation of the public API
2785 * resource_init_map_request. Callers may be using a different layout
2786 * of struct resource_map_request than the kernel, so callers pass in
2787 * the size of the structure they are using to identify the structure
2788 * layout.
2789 */
2790 void
resource_init_map_request_impl(struct resource_map_request * args,size_t sz)2791 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
2792 {
2793 bzero(args, sz);
2794 args->size = sz;
2795 args->memattr = VM_MEMATTR_DEVICE;
2796 }
2797
2798 /**
2799 * @brief Validate a resource mapping request
2800 *
2801 * Translate a device driver's mapping request (@p in) to a struct
2802 * resource_map_request using the current structure layout (@p out).
2803 * In addition, validate the offset and length from the mapping
2804 * request against the bounds of the resource @p r. If the offset or
2805 * length are invalid, fail with EINVAL. If the offset and length are
2806 * valid, the absolute starting address of the requested mapping is
2807 * returned in @p startp and the length of the requested mapping is
2808 * returned in @p lengthp.
2809 */
2810 int
resource_validate_map_request(struct resource * r,struct resource_map_request * in,struct resource_map_request * out,rman_res_t * startp,rman_res_t * lengthp)2811 resource_validate_map_request(struct resource *r,
2812 struct resource_map_request *in, struct resource_map_request *out,
2813 rman_res_t *startp, rman_res_t *lengthp)
2814 {
2815 rman_res_t end, length, start;
2816
2817 /*
2818 * This assumes that any callers of this function are compiled
2819 * into the kernel and use the same version of the structure
2820 * as this file.
2821 */
2822 MPASS(out->size == sizeof(struct resource_map_request));
2823
2824 if (in != NULL)
2825 bcopy(in, out, imin(in->size, out->size));
2826 start = rman_get_start(r) + out->offset;
2827 if (out->length == 0)
2828 length = rman_get_size(r);
2829 else
2830 length = out->length;
2831 end = start + length - 1;
2832 if (start > rman_get_end(r) || start < rman_get_start(r))
2833 return (EINVAL);
2834 if (end > rman_get_end(r) || end < start)
2835 return (EINVAL);
2836 *lengthp = length;
2837 *startp = start;
2838 return (0);
2839 }
2840
2841 /**
2842 * @brief Initialise a resource list.
2843 *
2844 * @param rl the resource list to initialise
2845 */
2846 void
resource_list_init(struct resource_list * rl)2847 resource_list_init(struct resource_list *rl)
2848 {
2849 STAILQ_INIT(rl);
2850 }
2851
2852 /**
2853 * @brief Reclaim memory used by a resource list.
2854 *
2855 * This function frees the memory for all resource entries on the list
2856 * (if any).
2857 *
2858 * @param rl the resource list to free
2859 */
2860 void
resource_list_free(struct resource_list * rl)2861 resource_list_free(struct resource_list *rl)
2862 {
2863 struct resource_list_entry *rle;
2864
2865 while ((rle = STAILQ_FIRST(rl)) != NULL) {
2866 if (rle->res)
2867 panic("resource_list_free: resource entry is busy");
2868 STAILQ_REMOVE_HEAD(rl, link);
2869 free(rle, M_BUS);
2870 }
2871 }
2872
2873 /**
2874 * @brief Add a resource entry.
2875 *
2876 * This function adds a resource entry using the given @p type, @p
2877 * start, @p end and @p count values. A rid value is chosen by
2878 * searching sequentially for the first unused rid starting at zero.
2879 *
2880 * @param rl the resource list to edit
2881 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2882 * @param start the start address of the resource
2883 * @param end the end address of the resource
2884 * @param count XXX end-start+1
2885 */
2886 int
resource_list_add_next(struct resource_list * rl,int type,rman_res_t start,rman_res_t end,rman_res_t count)2887 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
2888 rman_res_t end, rman_res_t count)
2889 {
2890 int rid;
2891
2892 rid = 0;
2893 while (resource_list_find(rl, type, rid) != NULL)
2894 rid++;
2895 resource_list_add(rl, type, rid, start, end, count);
2896 return (rid);
2897 }
2898
2899 /**
2900 * @brief Add or modify a resource entry.
2901 *
2902 * If an existing entry exists with the same type and rid, it will be
2903 * modified using the given values of @p start, @p end and @p
2904 * count. If no entry exists, a new one will be created using the
2905 * given values. The resource list entry that matches is then returned.
2906 *
2907 * @param rl the resource list to edit
2908 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2909 * @param rid the resource identifier
2910 * @param start the start address of the resource
2911 * @param end the end address of the resource
2912 * @param count XXX end-start+1
2913 */
2914 struct resource_list_entry *
resource_list_add(struct resource_list * rl,int type,int rid,rman_res_t start,rman_res_t end,rman_res_t count)2915 resource_list_add(struct resource_list *rl, int type, int rid,
2916 rman_res_t start, rman_res_t end, rman_res_t count)
2917 {
2918 struct resource_list_entry *rle;
2919
2920 rle = resource_list_find(rl, type, rid);
2921 if (!rle) {
2922 rle = malloc(sizeof(struct resource_list_entry), M_BUS,
2923 M_WAITOK);
2924 STAILQ_INSERT_TAIL(rl, rle, link);
2925 rle->type = type;
2926 rle->rid = rid;
2927 rle->res = NULL;
2928 rle->flags = 0;
2929 }
2930
2931 if (rle->res)
2932 panic("resource_list_add: resource entry is busy");
2933
2934 rle->start = start;
2935 rle->end = end;
2936 rle->count = count;
2937 return (rle);
2938 }
2939
2940 /**
2941 * @brief Determine if a resource entry is busy.
2942 *
2943 * Returns true if a resource entry is busy meaning that it has an
2944 * associated resource that is not an unallocated "reserved" resource.
2945 *
2946 * @param rl the resource list to search
2947 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2948 * @param rid the resource identifier
2949 *
2950 * @returns Non-zero if the entry is busy, zero otherwise.
2951 */
2952 int
resource_list_busy(struct resource_list * rl,int type,int rid)2953 resource_list_busy(struct resource_list *rl, int type, int rid)
2954 {
2955 struct resource_list_entry *rle;
2956
2957 rle = resource_list_find(rl, type, rid);
2958 if (rle == NULL || rle->res == NULL)
2959 return (0);
2960 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
2961 KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
2962 ("reserved resource is active"));
2963 return (0);
2964 }
2965 return (1);
2966 }
2967
2968 /**
2969 * @brief Determine if a resource entry is reserved.
2970 *
2971 * Returns true if a resource entry is reserved meaning that it has an
2972 * associated "reserved" resource. The resource can either be
2973 * allocated or unallocated.
2974 *
2975 * @param rl the resource list to search
2976 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2977 * @param rid the resource identifier
2978 *
2979 * @returns Non-zero if the entry is reserved, zero otherwise.
2980 */
2981 int
resource_list_reserved(struct resource_list * rl,int type,int rid)2982 resource_list_reserved(struct resource_list *rl, int type, int rid)
2983 {
2984 struct resource_list_entry *rle;
2985
2986 rle = resource_list_find(rl, type, rid);
2987 if (rle != NULL && rle->flags & RLE_RESERVED)
2988 return (1);
2989 return (0);
2990 }
2991
2992 /**
2993 * @brief Find a resource entry by type and rid.
2994 *
2995 * @param rl the resource list to search
2996 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
2997 * @param rid the resource identifier
2998 *
2999 * @returns the resource entry pointer or NULL if there is no such
3000 * entry.
3001 */
3002 struct resource_list_entry *
resource_list_find(struct resource_list * rl,int type,int rid)3003 resource_list_find(struct resource_list *rl, int type, int rid)
3004 {
3005 struct resource_list_entry *rle;
3006
3007 STAILQ_FOREACH(rle, rl, link) {
3008 if (rle->type == type && rle->rid == rid)
3009 return (rle);
3010 }
3011 return (NULL);
3012 }
3013
3014 /**
3015 * @brief Delete a resource entry.
3016 *
3017 * @param rl the resource list to edit
3018 * @param type the resource entry type (e.g. SYS_RES_MEMORY)
3019 * @param rid the resource identifier
3020 */
3021 void
resource_list_delete(struct resource_list * rl,int type,int rid)3022 resource_list_delete(struct resource_list *rl, int type, int rid)
3023 {
3024 struct resource_list_entry *rle = resource_list_find(rl, type, rid);
3025
3026 if (rle) {
3027 if (rle->res != NULL)
3028 panic("resource_list_delete: resource has not been released");
3029 STAILQ_REMOVE(rl, rle, resource_list_entry, link);
3030 free(rle, M_BUS);
3031 }
3032 }
3033
3034 /**
3035 * @brief Allocate a reserved resource
3036 *
3037 * This can be used by buses to force the allocation of resources
3038 * that are always active in the system even if they are not allocated
3039 * by a driver (e.g. PCI BARs). This function is usually called when
3040 * adding a new child to the bus. The resource is allocated from the
3041 * parent bus when it is reserved. The resource list entry is marked
3042 * with RLE_RESERVED to note that it is a reserved resource.
3043 *
3044 * Subsequent attempts to allocate the resource with
3045 * resource_list_alloc() will succeed the first time and will set
3046 * RLE_ALLOCATED to note that it has been allocated. When a reserved
3047 * resource that has been allocated is released with
3048 * resource_list_release() the resource RLE_ALLOCATED is cleared, but
3049 * the actual resource remains allocated. The resource can be released to
3050 * the parent bus by calling resource_list_unreserve().
3051 *
3052 * @param rl the resource list to allocate from
3053 * @param bus the parent device of @p child
3054 * @param child the device for which the resource is being reserved
3055 * @param type the type of resource to allocate
3056 * @param rid a pointer to the resource identifier
3057 * @param start hint at the start of the resource range - pass
3058 * @c 0 for any start address
3059 * @param end hint at the end of the resource range - pass
3060 * @c ~0 for any end address
3061 * @param count hint at the size of range required - pass @c 1
3062 * for any size
3063 * @param flags any extra flags to control the resource
3064 * allocation - see @c RF_XXX flags in
3065 * <sys/rman.h> for details
3066 *
3067 * @returns the resource which was allocated or @c NULL if no
3068 * resource could be allocated
3069 */
3070 struct resource *
resource_list_reserve(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3071 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
3072 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3073 {
3074 struct resource_list_entry *rle = NULL;
3075 int passthrough = (device_get_parent(child) != bus);
3076 struct resource *r;
3077
3078 if (passthrough)
3079 panic(
3080 "resource_list_reserve() should only be called for direct children");
3081 if (flags & RF_ACTIVE)
3082 panic(
3083 "resource_list_reserve() should only reserve inactive resources");
3084
3085 r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
3086 flags);
3087 if (r != NULL) {
3088 rle = resource_list_find(rl, type, *rid);
3089 rle->flags |= RLE_RESERVED;
3090 }
3091 return (r);
3092 }
3093
3094 /**
3095 * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
3096 *
3097 * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
3098 * and passing the allocation up to the parent of @p bus. This assumes
3099 * that the first entry of @c device_get_ivars(child) is a struct
3100 * resource_list. This also handles 'passthrough' allocations where a
3101 * child is a remote descendant of bus by passing the allocation up to
3102 * the parent of bus.
3103 *
3104 * Typically, a bus driver would store a list of child resources
3105 * somewhere in the child device's ivars (see device_get_ivars()) and
3106 * its implementation of BUS_ALLOC_RESOURCE() would find that list and
3107 * then call resource_list_alloc() to perform the allocation.
3108 *
3109 * @param rl the resource list to allocate from
3110 * @param bus the parent device of @p child
3111 * @param child the device which is requesting an allocation
3112 * @param type the type of resource to allocate
3113 * @param rid a pointer to the resource identifier
3114 * @param start hint at the start of the resource range - pass
3115 * @c 0 for any start address
3116 * @param end hint at the end of the resource range - pass
3117 * @c ~0 for any end address
3118 * @param count hint at the size of range required - pass @c 1
3119 * for any size
3120 * @param flags any extra flags to control the resource
3121 * allocation - see @c RF_XXX flags in
3122 * <sys/rman.h> for details
3123 *
3124 * @returns the resource which was allocated or @c NULL if no
3125 * resource could be allocated
3126 */
3127 struct resource *
resource_list_alloc(struct resource_list * rl,device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)3128 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
3129 int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
3130 {
3131 struct resource_list_entry *rle = NULL;
3132 int passthrough = (device_get_parent(child) != bus);
3133 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
3134
3135 if (passthrough) {
3136 return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3137 type, rid, start, end, count, flags));
3138 }
3139
3140 rle = resource_list_find(rl, type, *rid);
3141
3142 if (!rle)
3143 return (NULL); /* no resource of that type/rid */
3144
3145 if (rle->res) {
3146 if (rle->flags & RLE_RESERVED) {
3147 if (rle->flags & RLE_ALLOCATED)
3148 return (NULL);
3149 if ((flags & RF_ACTIVE) &&
3150 bus_activate_resource(child, type, *rid,
3151 rle->res) != 0)
3152 return (NULL);
3153 rle->flags |= RLE_ALLOCATED;
3154 return (rle->res);
3155 }
3156 device_printf(bus,
3157 "resource entry %#x type %d for child %s is busy\n", *rid,
3158 type, device_get_nameunit(child));
3159 return (NULL);
3160 }
3161
3162 if (isdefault) {
3163 start = rle->start;
3164 count = ulmax(count, rle->count);
3165 end = ulmax(rle->end, start + count - 1);
3166 }
3167
3168 rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
3169 type, rid, start, end, count, flags);
3170
3171 /*
3172 * Record the new range.
3173 */
3174 if (rle->res) {
3175 rle->start = rman_get_start(rle->res);
3176 rle->end = rman_get_end(rle->res);
3177 rle->count = count;
3178 }
3179
3180 return (rle->res);
3181 }
3182
3183 /**
3184 * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
3185 *
3186 * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
3187 * used with resource_list_alloc().
3188 *
3189 * @param rl the resource list which was allocated from
3190 * @param bus the parent device of @p child
3191 * @param child the device which is requesting a release
3192 * @param res the resource to release
3193 *
3194 * @retval 0 success
3195 * @retval non-zero a standard unix error code indicating what
3196 * error condition prevented the operation
3197 */
3198 int
resource_list_release(struct resource_list * rl,device_t bus,device_t child,struct resource * res)3199 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
3200 struct resource *res)
3201 {
3202 struct resource_list_entry *rle = NULL;
3203 int passthrough = (device_get_parent(child) != bus);
3204 int error;
3205
3206 if (passthrough) {
3207 return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
3208 res));
3209 }
3210
3211 rle = resource_list_find(rl, rman_get_type(res), rman_get_rid(res));
3212
3213 if (!rle)
3214 panic("resource_list_release: can't find resource");
3215 if (!rle->res)
3216 panic("resource_list_release: resource entry is not busy");
3217 if (rle->flags & RLE_RESERVED) {
3218 if (rle->flags & RLE_ALLOCATED) {
3219 if (rman_get_flags(res) & RF_ACTIVE) {
3220 error = bus_deactivate_resource(child, res);
3221 if (error)
3222 return (error);
3223 }
3224 rle->flags &= ~RLE_ALLOCATED;
3225 return (0);
3226 }
3227 return (EINVAL);
3228 }
3229
3230 error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, res);
3231 if (error)
3232 return (error);
3233
3234 rle->res = NULL;
3235 return (0);
3236 }
3237
3238 /**
3239 * @brief Release all active resources of a given type
3240 *
3241 * Release all active resources of a specified type. This is intended
3242 * to be used to cleanup resources leaked by a driver after detach or
3243 * a failed attach.
3244 *
3245 * @param rl the resource list which was allocated from
3246 * @param bus the parent device of @p child
3247 * @param child the device whose active resources are being released
3248 * @param type the type of resources to release
3249 *
3250 * @retval 0 success
3251 * @retval EBUSY at least one resource was active
3252 */
3253 int
resource_list_release_active(struct resource_list * rl,device_t bus,device_t child,int type)3254 resource_list_release_active(struct resource_list *rl, device_t bus,
3255 device_t child, int type)
3256 {
3257 struct resource_list_entry *rle;
3258 int error, retval;
3259
3260 retval = 0;
3261 STAILQ_FOREACH(rle, rl, link) {
3262 if (rle->type != type)
3263 continue;
3264 if (rle->res == NULL)
3265 continue;
3266 if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
3267 RLE_RESERVED)
3268 continue;
3269 retval = EBUSY;
3270 error = resource_list_release(rl, bus, child, rle->res);
3271 if (error != 0)
3272 device_printf(bus,
3273 "Failed to release active resource: %d\n", error);
3274 }
3275 return (retval);
3276 }
3277
3278 /**
3279 * @brief Fully release a reserved resource
3280 *
3281 * Fully releases a resource reserved via resource_list_reserve().
3282 *
3283 * @param rl the resource list which was allocated from
3284 * @param bus the parent device of @p child
3285 * @param child the device whose reserved resource is being released
3286 * @param type the type of resource to release
3287 * @param rid the resource identifier
3288 * @param res the resource to release
3289 *
3290 * @retval 0 success
3291 * @retval non-zero a standard unix error code indicating what
3292 * error condition prevented the operation
3293 */
3294 int
resource_list_unreserve(struct resource_list * rl,device_t bus,device_t child,int type,int rid)3295 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
3296 int type, int rid)
3297 {
3298 struct resource_list_entry *rle = NULL;
3299 int passthrough = (device_get_parent(child) != bus);
3300
3301 if (passthrough)
3302 panic(
3303 "resource_list_unreserve() should only be called for direct children");
3304
3305 rle = resource_list_find(rl, type, rid);
3306
3307 if (!rle)
3308 panic("resource_list_unreserve: can't find resource");
3309 if (!(rle->flags & RLE_RESERVED))
3310 return (EINVAL);
3311 if (rle->flags & RLE_ALLOCATED)
3312 return (EBUSY);
3313 rle->flags &= ~RLE_RESERVED;
3314 return (resource_list_release(rl, bus, child, rle->res));
3315 }
3316
3317 /**
3318 * @brief Print a description of resources in a resource list
3319 *
3320 * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
3321 * The name is printed if at least one resource of the given type is available.
3322 * The format is used to print resource start and end.
3323 *
3324 * @param rl the resource list to print
3325 * @param name the name of @p type, e.g. @c "memory"
3326 * @param type type type of resource entry to print
3327 * @param format printf(9) format string to print resource
3328 * start and end values
3329 *
3330 * @returns the number of characters printed
3331 */
3332 int
resource_list_print_type(struct resource_list * rl,const char * name,int type,const char * format)3333 resource_list_print_type(struct resource_list *rl, const char *name, int type,
3334 const char *format)
3335 {
3336 struct resource_list_entry *rle;
3337 int printed, retval;
3338
3339 printed = 0;
3340 retval = 0;
3341 /* Yes, this is kinda cheating */
3342 STAILQ_FOREACH(rle, rl, link) {
3343 if (rle->type == type) {
3344 if (printed == 0)
3345 retval += printf(" %s ", name);
3346 else
3347 retval += printf(",");
3348 printed++;
3349 retval += printf(format, rle->start);
3350 if (rle->count > 1) {
3351 retval += printf("-");
3352 retval += printf(format, rle->start +
3353 rle->count - 1);
3354 }
3355 }
3356 }
3357 return (retval);
3358 }
3359
3360 /**
3361 * @brief Releases all the resources in a list.
3362 *
3363 * @param rl The resource list to purge.
3364 *
3365 * @returns nothing
3366 */
3367 void
resource_list_purge(struct resource_list * rl)3368 resource_list_purge(struct resource_list *rl)
3369 {
3370 struct resource_list_entry *rle;
3371
3372 while ((rle = STAILQ_FIRST(rl)) != NULL) {
3373 if (rle->res)
3374 bus_release_resource(rman_get_device(rle->res),
3375 rle->type, rle->rid, rle->res);
3376 STAILQ_REMOVE_HEAD(rl, link);
3377 free(rle, M_BUS);
3378 }
3379 }
3380
3381 device_t
bus_generic_add_child(device_t dev,u_int order,const char * name,int unit)3382 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
3383 {
3384 return (device_add_child_ordered(dev, order, name, unit));
3385 }
3386
3387 /**
3388 * @brief Helper function for implementing DEVICE_PROBE()
3389 *
3390 * This function can be used to help implement the DEVICE_PROBE() for
3391 * a bus (i.e. a device which has other devices attached to it). It
3392 * calls the DEVICE_IDENTIFY() method of each driver in the device's
3393 * devclass.
3394 */
3395 int
bus_generic_probe(device_t dev)3396 bus_generic_probe(device_t dev)
3397 {
3398 bus_identify_children(dev);
3399 return (0);
3400 }
3401
3402 /**
3403 * @brief Ask drivers to add child devices of the given device.
3404 *
3405 * This function allows drivers for child devices of a bus to identify
3406 * child devices and add them as children of the given device. NB:
3407 * The driver for @param dev must implement the BUS_ADD_CHILD method.
3408 *
3409 * @param dev the parent device
3410 */
3411 void
bus_identify_children(device_t dev)3412 bus_identify_children(device_t dev)
3413 {
3414 devclass_t dc = dev->devclass;
3415 driverlink_t dl;
3416
3417 TAILQ_FOREACH(dl, &dc->drivers, link) {
3418 /*
3419 * If this driver's pass is too high, then ignore it.
3420 * For most drivers in the default pass, this will
3421 * never be true. For early-pass drivers they will
3422 * only call the identify routines of eligible drivers
3423 * when this routine is called. Drivers for later
3424 * passes should have their identify routines called
3425 * on early-pass buses during BUS_NEW_PASS().
3426 */
3427 if (dl->pass > bus_current_pass)
3428 continue;
3429 DEVICE_IDENTIFY(dl->driver, dev);
3430 }
3431 }
3432
3433 /**
3434 * @brief Helper function for implementing DEVICE_ATTACH()
3435 *
3436 * This function can be used to help implement the DEVICE_ATTACH() for
3437 * a bus. It calls device_probe_and_attach() for each of the device's
3438 * children.
3439 */
3440 int
bus_generic_attach(device_t dev)3441 bus_generic_attach(device_t dev)
3442 {
3443 bus_attach_children(dev);
3444 return (0);
3445 }
3446
3447 /**
3448 * @brief Probe and attach all children of the given device
3449 *
3450 * This function attempts to attach a device driver to each unattached
3451 * child of the given device using device_probe_and_attach(). If an
3452 * individual child fails to attach this function continues attaching
3453 * other children.
3454 *
3455 * @param dev the parent device
3456 */
3457 void
bus_attach_children(device_t dev)3458 bus_attach_children(device_t dev)
3459 {
3460 device_t child;
3461
3462 TAILQ_FOREACH(child, &dev->children, link) {
3463 device_probe_and_attach(child);
3464 }
3465 }
3466
3467 /**
3468 * @brief Helper function for delaying attaching children
3469 *
3470 * Many buses can't run transactions on the bus which children need to probe and
3471 * attach until after interrupts and/or timers are running. This function
3472 * delays their attach until interrupts and timers are enabled.
3473 */
3474 void
bus_delayed_attach_children(device_t dev)3475 bus_delayed_attach_children(device_t dev)
3476 {
3477 /* Probe and attach the bus children when interrupts are available */
3478 config_intrhook_oneshot((ich_func_t)bus_attach_children, dev);
3479 }
3480
3481 /**
3482 * @brief Helper function for implementing DEVICE_DETACH()
3483 *
3484 * This function can be used to help implement the DEVICE_DETACH() for
3485 * a bus. It detaches and deletes all children. If an individual
3486 * child fails to detach, this function stops and returns an error.
3487 *
3488 * @param dev the parent device
3489 *
3490 * @retval 0 success
3491 * @retval non-zero a device would not detach
3492 */
3493 int
bus_generic_detach(device_t dev)3494 bus_generic_detach(device_t dev)
3495 {
3496 int error;
3497
3498 error = bus_detach_children(dev);
3499 if (error != 0)
3500 return (error);
3501
3502 return (device_delete_children(dev));
3503 }
3504
3505 /**
3506 * @brief Detach drivers from all children of a device
3507 *
3508 * This function attempts to detach a device driver from each attached
3509 * child of the given device using device_detach(). If an individual
3510 * child fails to detach this function stops and returns an error.
3511 * NB: Children that were successfully detached are not re-attached if
3512 * an error occurs.
3513 *
3514 * @param dev the parent device
3515 *
3516 * @retval 0 success
3517 * @retval non-zero a device would not detach
3518 */
3519 int
bus_detach_children(device_t dev)3520 bus_detach_children(device_t dev)
3521 {
3522 device_t child;
3523 int error;
3524
3525 /*
3526 * Detach children in the reverse order.
3527 * See bus_generic_suspend for details.
3528 */
3529 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3530 if ((error = device_detach(child)) != 0)
3531 return (error);
3532 }
3533
3534 return (0);
3535 }
3536
3537 /**
3538 * @brief Helper function for implementing DEVICE_SHUTDOWN()
3539 *
3540 * This function can be used to help implement the DEVICE_SHUTDOWN()
3541 * for a bus. It calls device_shutdown() for each of the device's
3542 * children.
3543 */
3544 int
bus_generic_shutdown(device_t dev)3545 bus_generic_shutdown(device_t dev)
3546 {
3547 device_t child;
3548
3549 /*
3550 * Shut down children in the reverse order.
3551 * See bus_generic_suspend for details.
3552 */
3553 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3554 device_shutdown(child);
3555 }
3556
3557 return (0);
3558 }
3559
3560 /**
3561 * @brief Default function for suspending a child device.
3562 *
3563 * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
3564 */
3565 int
bus_generic_suspend_child(device_t dev,device_t child)3566 bus_generic_suspend_child(device_t dev, device_t child)
3567 {
3568 int error;
3569
3570 error = DEVICE_SUSPEND(child);
3571
3572 if (error == 0) {
3573 child->flags |= DF_SUSPENDED;
3574 } else {
3575 printf("DEVICE_SUSPEND(%s) failed: %d\n",
3576 device_get_nameunit(child), error);
3577 }
3578
3579 return (error);
3580 }
3581
3582 /**
3583 * @brief Default function for resuming a child device.
3584 *
3585 * This function is to be used by a bus's DEVICE_RESUME_CHILD().
3586 */
3587 int
bus_generic_resume_child(device_t dev,device_t child)3588 bus_generic_resume_child(device_t dev, device_t child)
3589 {
3590 DEVICE_RESUME(child);
3591 child->flags &= ~DF_SUSPENDED;
3592
3593 return (0);
3594 }
3595
3596 /**
3597 * @brief Helper function for implementing DEVICE_SUSPEND()
3598 *
3599 * This function can be used to help implement the DEVICE_SUSPEND()
3600 * for a bus. It calls DEVICE_SUSPEND() for each of the device's
3601 * children. If any call to DEVICE_SUSPEND() fails, the suspend
3602 * operation is aborted and any devices which were suspended are
3603 * resumed immediately by calling their DEVICE_RESUME() methods.
3604 */
3605 int
bus_generic_suspend(device_t dev)3606 bus_generic_suspend(device_t dev)
3607 {
3608 int error;
3609 device_t child;
3610
3611 /*
3612 * Suspend children in the reverse order.
3613 * For most buses all children are equal, so the order does not matter.
3614 * Other buses, such as acpi, carefully order their child devices to
3615 * express implicit dependencies between them. For such buses it is
3616 * safer to bring down devices in the reverse order.
3617 */
3618 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3619 error = BUS_SUSPEND_CHILD(dev, child);
3620 if (error != 0) {
3621 child = TAILQ_NEXT(child, link);
3622 if (child != NULL) {
3623 TAILQ_FOREACH_FROM(child, &dev->children, link)
3624 BUS_RESUME_CHILD(dev, child);
3625 }
3626 return (error);
3627 }
3628 }
3629 return (0);
3630 }
3631
3632 /**
3633 * @brief Helper function for implementing DEVICE_RESUME()
3634 *
3635 * This function can be used to help implement the DEVICE_RESUME() for
3636 * a bus. It calls DEVICE_RESUME() on each of the device's children.
3637 */
3638 int
bus_generic_resume(device_t dev)3639 bus_generic_resume(device_t dev)
3640 {
3641 device_t child;
3642
3643 TAILQ_FOREACH(child, &dev->children, link) {
3644 BUS_RESUME_CHILD(dev, child);
3645 /* if resume fails, there's nothing we can usefully do... */
3646 }
3647 return (0);
3648 }
3649
3650 /**
3651 * @brief Helper function for implementing BUS_RESET_POST
3652 *
3653 * Bus can use this function to implement common operations of
3654 * re-attaching or resuming the children after the bus itself was
3655 * reset, and after restoring bus-unique state of children.
3656 *
3657 * @param dev The bus
3658 * #param flags DEVF_RESET_*
3659 */
3660 int
bus_helper_reset_post(device_t dev,int flags)3661 bus_helper_reset_post(device_t dev, int flags)
3662 {
3663 device_t child;
3664 int error, error1;
3665
3666 error = 0;
3667 TAILQ_FOREACH(child, &dev->children,link) {
3668 BUS_RESET_POST(dev, child);
3669 error1 = (flags & DEVF_RESET_DETACH) != 0 ?
3670 device_probe_and_attach(child) :
3671 BUS_RESUME_CHILD(dev, child);
3672 if (error == 0 && error1 != 0)
3673 error = error1;
3674 }
3675 return (error);
3676 }
3677
3678 static void
bus_helper_reset_prepare_rollback(device_t dev,device_t child,int flags)3679 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
3680 {
3681 child = TAILQ_NEXT(child, link);
3682 if (child == NULL)
3683 return;
3684 TAILQ_FOREACH_FROM(child, &dev->children,link) {
3685 BUS_RESET_POST(dev, child);
3686 if ((flags & DEVF_RESET_DETACH) != 0)
3687 device_probe_and_attach(child);
3688 else
3689 BUS_RESUME_CHILD(dev, child);
3690 }
3691 }
3692
3693 /**
3694 * @brief Helper function for implementing BUS_RESET_PREPARE
3695 *
3696 * Bus can use this function to implement common operations of
3697 * detaching or suspending the children before the bus itself is
3698 * reset, and then save bus-unique state of children that must
3699 * persists around reset.
3700 *
3701 * @param dev The bus
3702 * #param flags DEVF_RESET_*
3703 */
3704 int
bus_helper_reset_prepare(device_t dev,int flags)3705 bus_helper_reset_prepare(device_t dev, int flags)
3706 {
3707 device_t child;
3708 int error;
3709
3710 if (dev->state != DS_ATTACHED)
3711 return (EBUSY);
3712
3713 TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
3714 if ((flags & DEVF_RESET_DETACH) != 0) {
3715 error = device_get_state(child) == DS_ATTACHED ?
3716 device_detach(child) : 0;
3717 } else {
3718 error = BUS_SUSPEND_CHILD(dev, child);
3719 }
3720 if (error == 0) {
3721 error = BUS_RESET_PREPARE(dev, child);
3722 if (error != 0) {
3723 if ((flags & DEVF_RESET_DETACH) != 0)
3724 device_probe_and_attach(child);
3725 else
3726 BUS_RESUME_CHILD(dev, child);
3727 }
3728 }
3729 if (error != 0) {
3730 bus_helper_reset_prepare_rollback(dev, child, flags);
3731 return (error);
3732 }
3733 }
3734 return (0);
3735 }
3736
3737 /**
3738 * @brief Helper function for implementing BUS_PRINT_CHILD().
3739 *
3740 * This function prints the first part of the ascii representation of
3741 * @p child, including its name, unit and description (if any - see
3742 * device_set_desc()).
3743 *
3744 * @returns the number of characters printed
3745 */
3746 int
bus_print_child_header(device_t dev,device_t child)3747 bus_print_child_header(device_t dev, device_t child)
3748 {
3749 int retval = 0;
3750
3751 if (device_get_desc(child)) {
3752 retval += device_printf(child, "<%s>", device_get_desc(child));
3753 } else {
3754 retval += printf("%s", device_get_nameunit(child));
3755 }
3756
3757 return (retval);
3758 }
3759
3760 /**
3761 * @brief Helper function for implementing BUS_PRINT_CHILD().
3762 *
3763 * This function prints the last part of the ascii representation of
3764 * @p child, which consists of the string @c " on " followed by the
3765 * name and unit of the @p dev.
3766 *
3767 * @returns the number of characters printed
3768 */
3769 int
bus_print_child_footer(device_t dev,device_t child)3770 bus_print_child_footer(device_t dev, device_t child)
3771 {
3772 return (printf(" on %s\n", device_get_nameunit(dev)));
3773 }
3774
3775 /**
3776 * @brief Helper function for implementing BUS_PRINT_CHILD().
3777 *
3778 * This function prints out the VM domain for the given device.
3779 *
3780 * @returns the number of characters printed
3781 */
3782 int
bus_print_child_domain(device_t dev,device_t child)3783 bus_print_child_domain(device_t dev, device_t child)
3784 {
3785 int domain;
3786
3787 /* No domain? Don't print anything */
3788 if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
3789 return (0);
3790
3791 return (printf(" numa-domain %d", domain));
3792 }
3793
3794 /**
3795 * @brief Helper function for implementing BUS_PRINT_CHILD().
3796 *
3797 * This function simply calls bus_print_child_header() followed by
3798 * bus_print_child_footer().
3799 *
3800 * @returns the number of characters printed
3801 */
3802 int
bus_generic_print_child(device_t dev,device_t child)3803 bus_generic_print_child(device_t dev, device_t child)
3804 {
3805 int retval = 0;
3806
3807 retval += bus_print_child_header(dev, child);
3808 retval += bus_print_child_domain(dev, child);
3809 retval += bus_print_child_footer(dev, child);
3810
3811 return (retval);
3812 }
3813
3814 /**
3815 * @brief Stub function for implementing BUS_READ_IVAR().
3816 *
3817 * @returns ENOENT
3818 */
3819 int
bus_generic_read_ivar(device_t dev,device_t child,int index,uintptr_t * result)3820 bus_generic_read_ivar(device_t dev, device_t child, int index,
3821 uintptr_t * result)
3822 {
3823 return (ENOENT);
3824 }
3825
3826 /**
3827 * @brief Stub function for implementing BUS_WRITE_IVAR().
3828 *
3829 * @returns ENOENT
3830 */
3831 int
bus_generic_write_ivar(device_t dev,device_t child,int index,uintptr_t value)3832 bus_generic_write_ivar(device_t dev, device_t child, int index,
3833 uintptr_t value)
3834 {
3835 return (ENOENT);
3836 }
3837
3838 /**
3839 * @brief Helper function for implementing BUS_GET_PROPERTY().
3840 *
3841 * This simply calls the BUS_GET_PROPERTY of the parent of dev,
3842 * until a non-default implementation is found.
3843 */
3844 ssize_t
bus_generic_get_property(device_t dev,device_t child,const char * propname,void * propvalue,size_t size,device_property_type_t type)3845 bus_generic_get_property(device_t dev, device_t child, const char *propname,
3846 void *propvalue, size_t size, device_property_type_t type)
3847 {
3848 if (device_get_parent(dev) != NULL)
3849 return (BUS_GET_PROPERTY(device_get_parent(dev), child,
3850 propname, propvalue, size, type));
3851
3852 return (-1);
3853 }
3854
3855 /**
3856 * @brief Helper function for implementing BUS_DRIVER_ADDED().
3857 *
3858 * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
3859 * DEVICE_IDENTIFY() method to allow it to add new children to the bus
3860 * and then calls device_probe_and_attach() for each unattached child.
3861 */
3862 void
bus_generic_driver_added(device_t dev,driver_t * driver)3863 bus_generic_driver_added(device_t dev, driver_t *driver)
3864 {
3865 device_t child;
3866
3867 DEVICE_IDENTIFY(driver, dev);
3868 TAILQ_FOREACH(child, &dev->children, link) {
3869 if (child->state == DS_NOTPRESENT)
3870 device_probe_and_attach(child);
3871 }
3872 }
3873
3874 /**
3875 * @brief Helper function for implementing BUS_NEW_PASS().
3876 *
3877 * This implementing of BUS_NEW_PASS() first calls the identify
3878 * routines for any drivers that probe at the current pass. Then it
3879 * walks the list of devices for this bus. If a device is already
3880 * attached, then it calls BUS_NEW_PASS() on that device. If the
3881 * device is not already attached, it attempts to attach a driver to
3882 * it.
3883 */
3884 void
bus_generic_new_pass(device_t dev)3885 bus_generic_new_pass(device_t dev)
3886 {
3887 driverlink_t dl;
3888 devclass_t dc;
3889 device_t child;
3890
3891 dc = dev->devclass;
3892 TAILQ_FOREACH(dl, &dc->drivers, link) {
3893 if (dl->pass == bus_current_pass)
3894 DEVICE_IDENTIFY(dl->driver, dev);
3895 }
3896 TAILQ_FOREACH(child, &dev->children, link) {
3897 if (child->state >= DS_ATTACHED)
3898 BUS_NEW_PASS(child);
3899 else if (child->state == DS_NOTPRESENT)
3900 device_probe_and_attach(child);
3901 }
3902 }
3903
3904 /**
3905 * @brief Helper function for implementing BUS_SETUP_INTR().
3906 *
3907 * This simple implementation of BUS_SETUP_INTR() simply calls the
3908 * BUS_SETUP_INTR() method of the parent of @p dev.
3909 */
3910 int
bus_generic_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)3911 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
3912 int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
3913 void **cookiep)
3914 {
3915 /* Propagate up the bus hierarchy until someone handles it. */
3916 if (dev->parent)
3917 return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
3918 filter, intr, arg, cookiep));
3919 return (EINVAL);
3920 }
3921
3922 /**
3923 * @brief Helper function for implementing BUS_TEARDOWN_INTR().
3924 *
3925 * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
3926 * BUS_TEARDOWN_INTR() method of the parent of @p dev.
3927 */
3928 int
bus_generic_teardown_intr(device_t dev,device_t child,struct resource * irq,void * cookie)3929 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
3930 void *cookie)
3931 {
3932 /* Propagate up the bus hierarchy until someone handles it. */
3933 if (dev->parent)
3934 return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
3935 return (EINVAL);
3936 }
3937
3938 /**
3939 * @brief Helper function for implementing BUS_SUSPEND_INTR().
3940 *
3941 * This simple implementation of BUS_SUSPEND_INTR() simply calls the
3942 * BUS_SUSPEND_INTR() method of the parent of @p dev.
3943 */
3944 int
bus_generic_suspend_intr(device_t dev,device_t child,struct resource * irq)3945 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
3946 {
3947 /* Propagate up the bus hierarchy until someone handles it. */
3948 if (dev->parent)
3949 return (BUS_SUSPEND_INTR(dev->parent, child, irq));
3950 return (EINVAL);
3951 }
3952
3953 /**
3954 * @brief Helper function for implementing BUS_RESUME_INTR().
3955 *
3956 * This simple implementation of BUS_RESUME_INTR() simply calls the
3957 * BUS_RESUME_INTR() method of the parent of @p dev.
3958 */
3959 int
bus_generic_resume_intr(device_t dev,device_t child,struct resource * irq)3960 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
3961 {
3962 /* Propagate up the bus hierarchy until someone handles it. */
3963 if (dev->parent)
3964 return (BUS_RESUME_INTR(dev->parent, child, irq));
3965 return (EINVAL);
3966 }
3967
3968 /**
3969 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
3970 *
3971 * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
3972 * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
3973 */
3974 int
bus_generic_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)3975 bus_generic_adjust_resource(device_t dev, device_t child, struct resource *r,
3976 rman_res_t start, rman_res_t end)
3977 {
3978 /* Propagate up the bus hierarchy until someone handles it. */
3979 if (dev->parent)
3980 return (BUS_ADJUST_RESOURCE(dev->parent, child, r, start, end));
3981 return (EINVAL);
3982 }
3983
3984 /*
3985 * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE().
3986 *
3987 * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the
3988 * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no
3989 * parent, no translation happens.
3990 */
3991 int
bus_generic_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)3992 bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
3993 rman_res_t *newstart)
3994 {
3995 if (dev->parent)
3996 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start,
3997 newstart));
3998 *newstart = start;
3999 return (0);
4000 }
4001
4002 /**
4003 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4004 *
4005 * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
4006 * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
4007 */
4008 struct resource *
bus_generic_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4009 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
4010 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4011 {
4012 /* Propagate up the bus hierarchy until someone handles it. */
4013 if (dev->parent)
4014 return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
4015 start, end, count, flags));
4016 return (NULL);
4017 }
4018
4019 /**
4020 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4021 *
4022 * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
4023 * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
4024 */
4025 int
bus_generic_release_resource(device_t dev,device_t child,struct resource * r)4026 bus_generic_release_resource(device_t dev, device_t child, struct resource *r)
4027 {
4028 /* Propagate up the bus hierarchy until someone handles it. */
4029 if (dev->parent)
4030 return (BUS_RELEASE_RESOURCE(dev->parent, child, r));
4031 return (EINVAL);
4032 }
4033
4034 /**
4035 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4036 *
4037 * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
4038 * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
4039 */
4040 int
bus_generic_activate_resource(device_t dev,device_t child,struct resource * r)4041 bus_generic_activate_resource(device_t dev, device_t child, struct resource *r)
4042 {
4043 /* Propagate up the bus hierarchy until someone handles it. */
4044 if (dev->parent)
4045 return (BUS_ACTIVATE_RESOURCE(dev->parent, child, r));
4046 return (EINVAL);
4047 }
4048
4049 /**
4050 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4051 *
4052 * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
4053 * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
4054 */
4055 int
bus_generic_deactivate_resource(device_t dev,device_t child,struct resource * r)4056 bus_generic_deactivate_resource(device_t dev, device_t child,
4057 struct resource *r)
4058 {
4059 /* Propagate up the bus hierarchy until someone handles it. */
4060 if (dev->parent)
4061 return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, r));
4062 return (EINVAL);
4063 }
4064
4065 /**
4066 * @brief Helper function for implementing BUS_MAP_RESOURCE().
4067 *
4068 * This simple implementation of BUS_MAP_RESOURCE() simply calls the
4069 * BUS_MAP_RESOURCE() method of the parent of @p dev.
4070 */
4071 int
bus_generic_map_resource(device_t dev,device_t child,struct resource * r,struct resource_map_request * args,struct resource_map * map)4072 bus_generic_map_resource(device_t dev, device_t child, struct resource *r,
4073 struct resource_map_request *args, struct resource_map *map)
4074 {
4075 /* Propagate up the bus hierarchy until someone handles it. */
4076 if (dev->parent)
4077 return (BUS_MAP_RESOURCE(dev->parent, child, r, args, map));
4078 return (EINVAL);
4079 }
4080
4081 /**
4082 * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
4083 *
4084 * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
4085 * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
4086 */
4087 int
bus_generic_unmap_resource(device_t dev,device_t child,struct resource * r,struct resource_map * map)4088 bus_generic_unmap_resource(device_t dev, device_t child, struct resource *r,
4089 struct resource_map *map)
4090 {
4091 /* Propagate up the bus hierarchy until someone handles it. */
4092 if (dev->parent)
4093 return (BUS_UNMAP_RESOURCE(dev->parent, child, r, map));
4094 return (EINVAL);
4095 }
4096
4097 /**
4098 * @brief Helper function for implementing BUS_BIND_INTR().
4099 *
4100 * This simple implementation of BUS_BIND_INTR() simply calls the
4101 * BUS_BIND_INTR() method of the parent of @p dev.
4102 */
4103 int
bus_generic_bind_intr(device_t dev,device_t child,struct resource * irq,int cpu)4104 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
4105 int cpu)
4106 {
4107 /* Propagate up the bus hierarchy until someone handles it. */
4108 if (dev->parent)
4109 return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
4110 return (EINVAL);
4111 }
4112
4113 /**
4114 * @brief Helper function for implementing BUS_CONFIG_INTR().
4115 *
4116 * This simple implementation of BUS_CONFIG_INTR() simply calls the
4117 * BUS_CONFIG_INTR() method of the parent of @p dev.
4118 */
4119 int
bus_generic_config_intr(device_t dev,int irq,enum intr_trigger trig,enum intr_polarity pol)4120 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
4121 enum intr_polarity pol)
4122 {
4123 /* Propagate up the bus hierarchy until someone handles it. */
4124 if (dev->parent)
4125 return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
4126 return (EINVAL);
4127 }
4128
4129 /**
4130 * @brief Helper function for implementing BUS_DESCRIBE_INTR().
4131 *
4132 * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
4133 * BUS_DESCRIBE_INTR() method of the parent of @p dev.
4134 */
4135 int
bus_generic_describe_intr(device_t dev,device_t child,struct resource * irq,void * cookie,const char * descr)4136 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
4137 void *cookie, const char *descr)
4138 {
4139 /* Propagate up the bus hierarchy until someone handles it. */
4140 if (dev->parent)
4141 return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
4142 descr));
4143 return (EINVAL);
4144 }
4145
4146 /**
4147 * @brief Helper function for implementing BUS_GET_CPUS().
4148 *
4149 * This simple implementation of BUS_GET_CPUS() simply calls the
4150 * BUS_GET_CPUS() method of the parent of @p dev.
4151 */
4152 int
bus_generic_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)4153 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
4154 size_t setsize, cpuset_t *cpuset)
4155 {
4156 /* Propagate up the bus hierarchy until someone handles it. */
4157 if (dev->parent != NULL)
4158 return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
4159 return (EINVAL);
4160 }
4161
4162 /**
4163 * @brief Helper function for implementing BUS_GET_DMA_TAG().
4164 *
4165 * This simple implementation of BUS_GET_DMA_TAG() simply calls the
4166 * BUS_GET_DMA_TAG() method of the parent of @p dev.
4167 */
4168 bus_dma_tag_t
bus_generic_get_dma_tag(device_t dev,device_t child)4169 bus_generic_get_dma_tag(device_t dev, device_t child)
4170 {
4171 /* Propagate up the bus hierarchy until someone handles it. */
4172 if (dev->parent != NULL)
4173 return (BUS_GET_DMA_TAG(dev->parent, child));
4174 return (NULL);
4175 }
4176
4177 /**
4178 * @brief Helper function for implementing BUS_GET_BUS_TAG().
4179 *
4180 * This simple implementation of BUS_GET_BUS_TAG() simply calls the
4181 * BUS_GET_BUS_TAG() method of the parent of @p dev.
4182 */
4183 bus_space_tag_t
bus_generic_get_bus_tag(device_t dev,device_t child)4184 bus_generic_get_bus_tag(device_t dev, device_t child)
4185 {
4186 /* Propagate up the bus hierarchy until someone handles it. */
4187 if (dev->parent != NULL)
4188 return (BUS_GET_BUS_TAG(dev->parent, child));
4189 return ((bus_space_tag_t)0);
4190 }
4191
4192 /**
4193 * @brief Helper function for implementing BUS_GET_RESOURCE().
4194 *
4195 * This implementation of BUS_GET_RESOURCE() uses the
4196 * resource_list_find() function to do most of the work. It calls
4197 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4198 * search.
4199 */
4200 int
bus_generic_rl_get_resource(device_t dev,device_t child,int type,int rid,rman_res_t * startp,rman_res_t * countp)4201 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
4202 rman_res_t *startp, rman_res_t *countp)
4203 {
4204 struct resource_list * rl = NULL;
4205 struct resource_list_entry * rle = NULL;
4206
4207 rl = BUS_GET_RESOURCE_LIST(dev, child);
4208 if (!rl)
4209 return (EINVAL);
4210
4211 rle = resource_list_find(rl, type, rid);
4212 if (!rle)
4213 return (ENOENT);
4214
4215 if (startp)
4216 *startp = rle->start;
4217 if (countp)
4218 *countp = rle->count;
4219
4220 return (0);
4221 }
4222
4223 /**
4224 * @brief Helper function for implementing BUS_SET_RESOURCE().
4225 *
4226 * This implementation of BUS_SET_RESOURCE() uses the
4227 * resource_list_add() function to do most of the work. It calls
4228 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4229 * edit.
4230 */
4231 int
bus_generic_rl_set_resource(device_t dev,device_t child,int type,int rid,rman_res_t start,rman_res_t count)4232 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
4233 rman_res_t start, rman_res_t count)
4234 {
4235 struct resource_list * rl = NULL;
4236
4237 rl = BUS_GET_RESOURCE_LIST(dev, child);
4238 if (!rl)
4239 return (EINVAL);
4240
4241 resource_list_add(rl, type, rid, start, (start + count - 1), count);
4242
4243 return (0);
4244 }
4245
4246 /**
4247 * @brief Helper function for implementing BUS_DELETE_RESOURCE().
4248 *
4249 * This implementation of BUS_DELETE_RESOURCE() uses the
4250 * resource_list_delete() function to do most of the work. It calls
4251 * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
4252 * edit.
4253 */
4254 void
bus_generic_rl_delete_resource(device_t dev,device_t child,int type,int rid)4255 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
4256 {
4257 struct resource_list * rl = NULL;
4258
4259 rl = BUS_GET_RESOURCE_LIST(dev, child);
4260 if (!rl)
4261 return;
4262
4263 resource_list_delete(rl, type, rid);
4264
4265 return;
4266 }
4267
4268 /**
4269 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4270 *
4271 * This implementation of BUS_RELEASE_RESOURCE() uses the
4272 * resource_list_release() function to do most of the work. It calls
4273 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4274 */
4275 int
bus_generic_rl_release_resource(device_t dev,device_t child,struct resource * r)4276 bus_generic_rl_release_resource(device_t dev, device_t child,
4277 struct resource *r)
4278 {
4279 struct resource_list * rl = NULL;
4280
4281 if (device_get_parent(child) != dev)
4282 return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, r));
4283
4284 rl = BUS_GET_RESOURCE_LIST(dev, child);
4285 if (!rl)
4286 return (EINVAL);
4287
4288 return (resource_list_release(rl, dev, child, r));
4289 }
4290
4291 /**
4292 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4293 *
4294 * This implementation of BUS_ALLOC_RESOURCE() uses the
4295 * resource_list_alloc() function to do most of the work. It calls
4296 * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
4297 */
4298 struct resource *
bus_generic_rl_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4299 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
4300 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4301 {
4302 struct resource_list * rl = NULL;
4303
4304 if (device_get_parent(child) != dev)
4305 return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
4306 type, rid, start, end, count, flags));
4307
4308 rl = BUS_GET_RESOURCE_LIST(dev, child);
4309 if (!rl)
4310 return (NULL);
4311
4312 return (resource_list_alloc(rl, dev, child, type, rid,
4313 start, end, count, flags));
4314 }
4315
4316 /**
4317 * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
4318 *
4319 * This implementation of BUS_ALLOC_RESOURCE() allocates a
4320 * resource from a resource manager. It uses BUS_GET_RMAN()
4321 * to obtain the resource manager.
4322 */
4323 struct resource *
bus_generic_rman_alloc_resource(device_t dev,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4324 bus_generic_rman_alloc_resource(device_t dev, device_t child, int type,
4325 int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
4326 {
4327 struct resource *r;
4328 struct rman *rm;
4329
4330 rm = BUS_GET_RMAN(dev, type, flags);
4331 if (rm == NULL)
4332 return (NULL);
4333
4334 r = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
4335 child);
4336 if (r == NULL)
4337 return (NULL);
4338 rman_set_rid(r, *rid);
4339 rman_set_type(r, type);
4340
4341 if (flags & RF_ACTIVE) {
4342 if (bus_activate_resource(child, type, *rid, r) != 0) {
4343 rman_release_resource(r);
4344 return (NULL);
4345 }
4346 }
4347
4348 return (r);
4349 }
4350
4351 /**
4352 * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
4353 *
4354 * This implementation of BUS_ADJUST_RESOURCE() adjusts resources only
4355 * if they were allocated from the resource manager returned by
4356 * BUS_GET_RMAN().
4357 */
4358 int
bus_generic_rman_adjust_resource(device_t dev,device_t child,struct resource * r,rman_res_t start,rman_res_t end)4359 bus_generic_rman_adjust_resource(device_t dev, device_t child,
4360 struct resource *r, rman_res_t start, rman_res_t end)
4361 {
4362 struct rman *rm;
4363
4364 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4365 if (rm == NULL)
4366 return (ENXIO);
4367 if (!rman_is_region_manager(r, rm))
4368 return (EINVAL);
4369 return (rman_adjust_resource(r, start, end));
4370 }
4371
4372 /**
4373 * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
4374 *
4375 * This implementation of BUS_RELEASE_RESOURCE() releases resources
4376 * allocated by bus_generic_rman_alloc_resource.
4377 */
4378 int
bus_generic_rman_release_resource(device_t dev,device_t child,struct resource * r)4379 bus_generic_rman_release_resource(device_t dev, device_t child,
4380 struct resource *r)
4381 {
4382 #ifdef INVARIANTS
4383 struct rman *rm;
4384 #endif
4385 int error;
4386
4387 #ifdef INVARIANTS
4388 rm = BUS_GET_RMAN(dev, rman_get_type(r), rman_get_flags(r));
4389 KASSERT(rman_is_region_manager(r, rm),
4390 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4391 #endif
4392
4393 if (rman_get_flags(r) & RF_ACTIVE) {
4394 error = bus_deactivate_resource(child, r);
4395 if (error != 0)
4396 return (error);
4397 }
4398 return (rman_release_resource(r));
4399 }
4400
4401 /**
4402 * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
4403 *
4404 * This implementation of BUS_ACTIVATE_RESOURCE() activates resources
4405 * allocated by bus_generic_rman_alloc_resource.
4406 */
4407 int
bus_generic_rman_activate_resource(device_t dev,device_t child,struct resource * r)4408 bus_generic_rman_activate_resource(device_t dev, device_t child,
4409 struct resource *r)
4410 {
4411 struct resource_map map;
4412 #ifdef INVARIANTS
4413 struct rman *rm;
4414 #endif
4415 int error, type;
4416
4417 type = rman_get_type(r);
4418 #ifdef INVARIANTS
4419 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4420 KASSERT(rman_is_region_manager(r, rm),
4421 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4422 #endif
4423
4424 error = rman_activate_resource(r);
4425 if (error != 0)
4426 return (error);
4427
4428 switch (type) {
4429 case SYS_RES_IOPORT:
4430 case SYS_RES_MEMORY:
4431 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4432 error = BUS_MAP_RESOURCE(dev, child, r, NULL, &map);
4433 if (error != 0)
4434 break;
4435
4436 rman_set_mapping(r, &map);
4437 }
4438 break;
4439 #ifdef INTRNG
4440 case SYS_RES_IRQ:
4441 error = intr_activate_irq(child, r);
4442 break;
4443 #endif
4444 }
4445 if (error != 0)
4446 rman_deactivate_resource(r);
4447 return (error);
4448 }
4449
4450 /**
4451 * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
4452 *
4453 * This implementation of BUS_DEACTIVATE_RESOURCE() deactivates
4454 * resources allocated by bus_generic_rman_alloc_resource.
4455 */
4456 int
bus_generic_rman_deactivate_resource(device_t dev,device_t child,struct resource * r)4457 bus_generic_rman_deactivate_resource(device_t dev, device_t child,
4458 struct resource *r)
4459 {
4460 struct resource_map map;
4461 #ifdef INVARIANTS
4462 struct rman *rm;
4463 #endif
4464 int error, type;
4465
4466 type = rman_get_type(r);
4467 #ifdef INVARIANTS
4468 rm = BUS_GET_RMAN(dev, type, rman_get_flags(r));
4469 KASSERT(rman_is_region_manager(r, rm),
4470 ("%s: rman %p doesn't match for resource %p", __func__, rm, r));
4471 #endif
4472
4473 error = rman_deactivate_resource(r);
4474 if (error != 0)
4475 return (error);
4476
4477 switch (type) {
4478 case SYS_RES_IOPORT:
4479 case SYS_RES_MEMORY:
4480 if ((rman_get_flags(r) & RF_UNMAPPED) == 0) {
4481 rman_get_mapping(r, &map);
4482 BUS_UNMAP_RESOURCE(dev, child, r, &map);
4483 }
4484 break;
4485 #ifdef INTRNG
4486 case SYS_RES_IRQ:
4487 intr_deactivate_irq(child, r);
4488 break;
4489 #endif
4490 }
4491 return (0);
4492 }
4493
4494 /**
4495 * @brief Helper function for implementing BUS_CHILD_PRESENT().
4496 *
4497 * This simple implementation of BUS_CHILD_PRESENT() simply calls the
4498 * BUS_CHILD_PRESENT() method of the parent of @p dev.
4499 */
4500 int
bus_generic_child_present(device_t dev,device_t child)4501 bus_generic_child_present(device_t dev, device_t child)
4502 {
4503 return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
4504 }
4505
4506 /**
4507 * @brief Helper function for implementing BUS_GET_DOMAIN().
4508 *
4509 * This simple implementation of BUS_GET_DOMAIN() calls the
4510 * BUS_GET_DOMAIN() method of the parent of @p dev. If @p dev
4511 * does not have a parent, the function fails with ENOENT.
4512 */
4513 int
bus_generic_get_domain(device_t dev,device_t child,int * domain)4514 bus_generic_get_domain(device_t dev, device_t child, int *domain)
4515 {
4516 if (dev->parent)
4517 return (BUS_GET_DOMAIN(dev->parent, dev, domain));
4518
4519 return (ENOENT);
4520 }
4521
4522 /**
4523 * @brief Helper function to implement normal BUS_GET_DEVICE_PATH()
4524 *
4525 * This function knows how to (a) pass the request up the tree if there's
4526 * a parent and (b) Knows how to supply a FreeBSD locator.
4527 *
4528 * @param bus bus in the walk up the tree
4529 * @param child leaf node to print information about
4530 * @param locator BUS_LOCATOR_xxx string for locator
4531 * @param sb Buffer to print information into
4532 */
4533 int
bus_generic_get_device_path(device_t bus,device_t child,const char * locator,struct sbuf * sb)4534 bus_generic_get_device_path(device_t bus, device_t child, const char *locator,
4535 struct sbuf *sb)
4536 {
4537 int rv = 0;
4538 device_t parent;
4539
4540 /*
4541 * We don't recurse on ACPI since either we know the handle for the
4542 * device or we don't. And if we're in the generic routine, we don't
4543 * have a ACPI override. All other locators build up a path by having
4544 * their parents create a path and then adding the path element for this
4545 * node. That's why we recurse with parent, bus rather than the typical
4546 * parent, child: each spot in the tree is independent of what our child
4547 * will do with this path.
4548 */
4549 parent = device_get_parent(bus);
4550 if (parent != NULL && strcmp(locator, BUS_LOCATOR_ACPI) != 0) {
4551 rv = BUS_GET_DEVICE_PATH(parent, bus, locator, sb);
4552 }
4553 if (strcmp(locator, BUS_LOCATOR_FREEBSD) == 0) {
4554 if (rv == 0) {
4555 sbuf_printf(sb, "/%s", device_get_nameunit(child));
4556 }
4557 return (rv);
4558 }
4559 /*
4560 * Don't know what to do. So assume we do nothing. Not sure that's
4561 * the right thing, but keeps us from having a big list here.
4562 */
4563 return (0);
4564 }
4565
4566
4567 /**
4568 * @brief Helper function for implementing BUS_RESCAN().
4569 *
4570 * This null implementation of BUS_RESCAN() always fails to indicate
4571 * the bus does not support rescanning.
4572 */
4573 int
bus_null_rescan(device_t dev)4574 bus_null_rescan(device_t dev)
4575 {
4576 return (ENODEV);
4577 }
4578
4579 /*
4580 * Some convenience functions to make it easier for drivers to use the
4581 * resource-management functions. All these really do is hide the
4582 * indirection through the parent's method table, making for slightly
4583 * less-wordy code. In the future, it might make sense for this code
4584 * to maintain some sort of a list of resources allocated by each device.
4585 */
4586
4587 int
bus_alloc_resources(device_t dev,struct resource_spec * rs,struct resource ** res)4588 bus_alloc_resources(device_t dev, struct resource_spec *rs,
4589 struct resource **res)
4590 {
4591 int i;
4592
4593 for (i = 0; rs[i].type != -1; i++)
4594 res[i] = NULL;
4595 for (i = 0; rs[i].type != -1; i++) {
4596 res[i] = bus_alloc_resource_any(dev,
4597 rs[i].type, &rs[i].rid, rs[i].flags);
4598 if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
4599 bus_release_resources(dev, rs, res);
4600 return (ENXIO);
4601 }
4602 }
4603 return (0);
4604 }
4605
4606 void
bus_release_resources(device_t dev,const struct resource_spec * rs,struct resource ** res)4607 bus_release_resources(device_t dev, const struct resource_spec *rs,
4608 struct resource **res)
4609 {
4610 int i;
4611
4612 for (i = 0; rs[i].type != -1; i++)
4613 if (res[i] != NULL) {
4614 bus_release_resource(
4615 dev, rs[i].type, rs[i].rid, res[i]);
4616 res[i] = NULL;
4617 }
4618 }
4619
4620 /**
4621 * @brief Wrapper function for BUS_ALLOC_RESOURCE().
4622 *
4623 * This function simply calls the BUS_ALLOC_RESOURCE() method of the
4624 * parent of @p dev.
4625 */
4626 struct resource *
bus_alloc_resource(device_t dev,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)4627 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
4628 rman_res_t end, rman_res_t count, u_int flags)
4629 {
4630 struct resource *res;
4631
4632 if (dev->parent == NULL)
4633 return (NULL);
4634 res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
4635 count, flags);
4636 return (res);
4637 }
4638
4639 /**
4640 * @brief Wrapper function for BUS_ADJUST_RESOURCE().
4641 *
4642 * This function simply calls the BUS_ADJUST_RESOURCE() method of the
4643 * parent of @p dev.
4644 */
4645 int
bus_adjust_resource(device_t dev,struct resource * r,rman_res_t start,rman_res_t end)4646 bus_adjust_resource(device_t dev, struct resource *r, rman_res_t start,
4647 rman_res_t end)
4648 {
4649 if (dev->parent == NULL)
4650 return (EINVAL);
4651 return (BUS_ADJUST_RESOURCE(dev->parent, dev, r, start, end));
4652 }
4653
4654 int
bus_adjust_resource_old(device_t dev,int type __unused,struct resource * r,rman_res_t start,rman_res_t end)4655 bus_adjust_resource_old(device_t dev, int type __unused, struct resource *r,
4656 rman_res_t start, rman_res_t end)
4657 {
4658 return (bus_adjust_resource(dev, r, start, end));
4659 }
4660
4661 /**
4662 * @brief Wrapper function for BUS_TRANSLATE_RESOURCE().
4663 *
4664 * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the
4665 * parent of @p dev.
4666 */
4667 int
bus_translate_resource(device_t dev,int type,rman_res_t start,rman_res_t * newstart)4668 bus_translate_resource(device_t dev, int type, rman_res_t start,
4669 rman_res_t *newstart)
4670 {
4671 if (dev->parent == NULL)
4672 return (EINVAL);
4673 return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart));
4674 }
4675
4676 /**
4677 * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
4678 *
4679 * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
4680 * parent of @p dev.
4681 */
4682 int
bus_activate_resource(device_t dev,struct resource * r)4683 bus_activate_resource(device_t dev, struct resource *r)
4684 {
4685 if (dev->parent == NULL)
4686 return (EINVAL);
4687 return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, r));
4688 }
4689
4690 int
bus_activate_resource_old(device_t dev,int type,int rid,struct resource * r)4691 bus_activate_resource_old(device_t dev, int type, int rid, struct resource *r)
4692 {
4693 return (bus_activate_resource(dev, r));
4694 }
4695
4696 /**
4697 * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
4698 *
4699 * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
4700 * parent of @p dev.
4701 */
4702 int
bus_deactivate_resource(device_t dev,struct resource * r)4703 bus_deactivate_resource(device_t dev, struct resource *r)
4704 {
4705 if (dev->parent == NULL)
4706 return (EINVAL);
4707 return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, r));
4708 }
4709
4710 int
bus_deactivate_resource_old(device_t dev,int type,int rid,struct resource * r)4711 bus_deactivate_resource_old(device_t dev, int type, int rid, struct resource *r)
4712 {
4713 return (bus_deactivate_resource(dev, r));
4714 }
4715
4716 /**
4717 * @brief Wrapper function for BUS_MAP_RESOURCE().
4718 *
4719 * This function simply calls the BUS_MAP_RESOURCE() method of the
4720 * parent of @p dev.
4721 */
4722 int
bus_map_resource(device_t dev,struct resource * r,struct resource_map_request * args,struct resource_map * map)4723 bus_map_resource(device_t dev, struct resource *r,
4724 struct resource_map_request *args, struct resource_map *map)
4725 {
4726 if (dev->parent == NULL)
4727 return (EINVAL);
4728 return (BUS_MAP_RESOURCE(dev->parent, dev, r, args, map));
4729 }
4730
4731 int
bus_map_resource_old(device_t dev,int type,struct resource * r,struct resource_map_request * args,struct resource_map * map)4732 bus_map_resource_old(device_t dev, int type, struct resource *r,
4733 struct resource_map_request *args, struct resource_map *map)
4734 {
4735 return (bus_map_resource(dev, r, args, map));
4736 }
4737
4738 /**
4739 * @brief Wrapper function for BUS_UNMAP_RESOURCE().
4740 *
4741 * This function simply calls the BUS_UNMAP_RESOURCE() method of the
4742 * parent of @p dev.
4743 */
4744 int
bus_unmap_resource(device_t dev,struct resource * r,struct resource_map * map)4745 bus_unmap_resource(device_t dev, struct resource *r, struct resource_map *map)
4746 {
4747 if (dev->parent == NULL)
4748 return (EINVAL);
4749 return (BUS_UNMAP_RESOURCE(dev->parent, dev, r, map));
4750 }
4751
4752 int
bus_unmap_resource_old(device_t dev,int type,struct resource * r,struct resource_map * map)4753 bus_unmap_resource_old(device_t dev, int type, struct resource *r,
4754 struct resource_map *map)
4755 {
4756 return (bus_unmap_resource(dev, r, map));
4757 }
4758
4759 /**
4760 * @brief Wrapper function for BUS_RELEASE_RESOURCE().
4761 *
4762 * This function simply calls the BUS_RELEASE_RESOURCE() method of the
4763 * parent of @p dev.
4764 */
4765 int
bus_release_resource(device_t dev,struct resource * r)4766 bus_release_resource(device_t dev, struct resource *r)
4767 {
4768 int rv;
4769
4770 if (dev->parent == NULL)
4771 return (EINVAL);
4772 rv = BUS_RELEASE_RESOURCE(dev->parent, dev, r);
4773 return (rv);
4774 }
4775
4776 int
bus_release_resource_old(device_t dev,int type,int rid,struct resource * r)4777 bus_release_resource_old(device_t dev, int type, int rid, struct resource *r)
4778 {
4779 return (bus_release_resource(dev, r));
4780 }
4781
4782 /**
4783 * @brief Wrapper function for BUS_SETUP_INTR().
4784 *
4785 * This function simply calls the BUS_SETUP_INTR() method of the
4786 * parent of @p dev.
4787 */
4788 int
bus_setup_intr(device_t dev,struct resource * r,int flags,driver_filter_t filter,driver_intr_t handler,void * arg,void ** cookiep)4789 bus_setup_intr(device_t dev, struct resource *r, int flags,
4790 driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
4791 {
4792 int error;
4793
4794 if (dev->parent == NULL)
4795 return (EINVAL);
4796 error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
4797 arg, cookiep);
4798 if (error != 0)
4799 return (error);
4800 if (handler != NULL && !(flags & INTR_MPSAFE))
4801 device_printf(dev, "[GIANT-LOCKED]\n");
4802 return (0);
4803 }
4804
4805 /**
4806 * @brief Wrapper function for BUS_TEARDOWN_INTR().
4807 *
4808 * This function simply calls the BUS_TEARDOWN_INTR() method of the
4809 * parent of @p dev.
4810 */
4811 int
bus_teardown_intr(device_t dev,struct resource * r,void * cookie)4812 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
4813 {
4814 if (dev->parent == NULL)
4815 return (EINVAL);
4816 return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
4817 }
4818
4819 /**
4820 * @brief Wrapper function for BUS_SUSPEND_INTR().
4821 *
4822 * This function simply calls the BUS_SUSPEND_INTR() method of the
4823 * parent of @p dev.
4824 */
4825 int
bus_suspend_intr(device_t dev,struct resource * r)4826 bus_suspend_intr(device_t dev, struct resource *r)
4827 {
4828 if (dev->parent == NULL)
4829 return (EINVAL);
4830 return (BUS_SUSPEND_INTR(dev->parent, dev, r));
4831 }
4832
4833 /**
4834 * @brief Wrapper function for BUS_RESUME_INTR().
4835 *
4836 * This function simply calls the BUS_RESUME_INTR() method of the
4837 * parent of @p dev.
4838 */
4839 int
bus_resume_intr(device_t dev,struct resource * r)4840 bus_resume_intr(device_t dev, struct resource *r)
4841 {
4842 if (dev->parent == NULL)
4843 return (EINVAL);
4844 return (BUS_RESUME_INTR(dev->parent, dev, r));
4845 }
4846
4847 /**
4848 * @brief Wrapper function for BUS_BIND_INTR().
4849 *
4850 * This function simply calls the BUS_BIND_INTR() method of the
4851 * parent of @p dev.
4852 */
4853 int
bus_bind_intr(device_t dev,struct resource * r,int cpu)4854 bus_bind_intr(device_t dev, struct resource *r, int cpu)
4855 {
4856 if (dev->parent == NULL)
4857 return (EINVAL);
4858 return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
4859 }
4860
4861 /**
4862 * @brief Wrapper function for BUS_DESCRIBE_INTR().
4863 *
4864 * This function first formats the requested description into a
4865 * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
4866 * the parent of @p dev.
4867 */
4868 int
bus_describe_intr(device_t dev,struct resource * irq,void * cookie,const char * fmt,...)4869 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
4870 const char *fmt, ...)
4871 {
4872 va_list ap;
4873 char descr[MAXCOMLEN + 1];
4874
4875 if (dev->parent == NULL)
4876 return (EINVAL);
4877 va_start(ap, fmt);
4878 vsnprintf(descr, sizeof(descr), fmt, ap);
4879 va_end(ap);
4880 return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
4881 }
4882
4883 /**
4884 * @brief Wrapper function for BUS_SET_RESOURCE().
4885 *
4886 * This function simply calls the BUS_SET_RESOURCE() method of the
4887 * parent of @p dev.
4888 */
4889 int
bus_set_resource(device_t dev,int type,int rid,rman_res_t start,rman_res_t count)4890 bus_set_resource(device_t dev, int type, int rid,
4891 rman_res_t start, rman_res_t count)
4892 {
4893 return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
4894 start, count));
4895 }
4896
4897 /**
4898 * @brief Wrapper function for BUS_GET_RESOURCE().
4899 *
4900 * This function simply calls the BUS_GET_RESOURCE() method of the
4901 * parent of @p dev.
4902 */
4903 int
bus_get_resource(device_t dev,int type,int rid,rman_res_t * startp,rman_res_t * countp)4904 bus_get_resource(device_t dev, int type, int rid,
4905 rman_res_t *startp, rman_res_t *countp)
4906 {
4907 return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4908 startp, countp));
4909 }
4910
4911 /**
4912 * @brief Wrapper function for BUS_GET_RESOURCE().
4913 *
4914 * This function simply calls the BUS_GET_RESOURCE() method of the
4915 * parent of @p dev and returns the start value.
4916 */
4917 rman_res_t
bus_get_resource_start(device_t dev,int type,int rid)4918 bus_get_resource_start(device_t dev, int type, int rid)
4919 {
4920 rman_res_t start;
4921 rman_res_t count;
4922 int error;
4923
4924 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4925 &start, &count);
4926 if (error)
4927 return (0);
4928 return (start);
4929 }
4930
4931 /**
4932 * @brief Wrapper function for BUS_GET_RESOURCE().
4933 *
4934 * This function simply calls the BUS_GET_RESOURCE() method of the
4935 * parent of @p dev and returns the count value.
4936 */
4937 rman_res_t
bus_get_resource_count(device_t dev,int type,int rid)4938 bus_get_resource_count(device_t dev, int type, int rid)
4939 {
4940 rman_res_t start;
4941 rman_res_t count;
4942 int error;
4943
4944 error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
4945 &start, &count);
4946 if (error)
4947 return (0);
4948 return (count);
4949 }
4950
4951 /**
4952 * @brief Wrapper function for BUS_DELETE_RESOURCE().
4953 *
4954 * This function simply calls the BUS_DELETE_RESOURCE() method of the
4955 * parent of @p dev.
4956 */
4957 void
bus_delete_resource(device_t dev,int type,int rid)4958 bus_delete_resource(device_t dev, int type, int rid)
4959 {
4960 BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
4961 }
4962
4963 /**
4964 * @brief Wrapper function for BUS_CHILD_PRESENT().
4965 *
4966 * This function simply calls the BUS_CHILD_PRESENT() method of the
4967 * parent of @p dev.
4968 */
4969 int
bus_child_present(device_t child)4970 bus_child_present(device_t child)
4971 {
4972 return (BUS_CHILD_PRESENT(device_get_parent(child), child));
4973 }
4974
4975 /**
4976 * @brief Wrapper function for BUS_CHILD_PNPINFO().
4977 *
4978 * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p
4979 * dev.
4980 */
4981 int
bus_child_pnpinfo(device_t child,struct sbuf * sb)4982 bus_child_pnpinfo(device_t child, struct sbuf *sb)
4983 {
4984 device_t parent;
4985
4986 parent = device_get_parent(child);
4987 if (parent == NULL)
4988 return (0);
4989 return (BUS_CHILD_PNPINFO(parent, child, sb));
4990 }
4991
4992 /**
4993 * @brief Generic implementation that does nothing for bus_child_pnpinfo
4994 *
4995 * This function has the right signature and returns 0 since the sbuf is passed
4996 * to us to append to.
4997 */
4998 int
bus_generic_child_pnpinfo(device_t dev,device_t child,struct sbuf * sb)4999 bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb)
5000 {
5001 return (0);
5002 }
5003
5004 /**
5005 * @brief Wrapper function for BUS_CHILD_LOCATION().
5006 *
5007 * This function simply calls the BUS_CHILD_LOCATION() method of the parent of
5008 * @p dev.
5009 */
5010 int
bus_child_location(device_t child,struct sbuf * sb)5011 bus_child_location(device_t child, struct sbuf *sb)
5012 {
5013 device_t parent;
5014
5015 parent = device_get_parent(child);
5016 if (parent == NULL)
5017 return (0);
5018 return (BUS_CHILD_LOCATION(parent, child, sb));
5019 }
5020
5021 /**
5022 * @brief Generic implementation that does nothing for bus_child_location
5023 *
5024 * This function has the right signature and returns 0 since the sbuf is passed
5025 * to us to append to.
5026 */
5027 int
bus_generic_child_location(device_t dev,device_t child,struct sbuf * sb)5028 bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb)
5029 {
5030 return (0);
5031 }
5032
5033 /**
5034 * @brief Wrapper function for BUS_GET_CPUS().
5035 *
5036 * This function simply calls the BUS_GET_CPUS() method of the
5037 * parent of @p dev.
5038 */
5039 int
bus_get_cpus(device_t dev,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5040 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
5041 {
5042 device_t parent;
5043
5044 parent = device_get_parent(dev);
5045 if (parent == NULL)
5046 return (EINVAL);
5047 return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
5048 }
5049
5050 /**
5051 * @brief Wrapper function for BUS_GET_DMA_TAG().
5052 *
5053 * This function simply calls the BUS_GET_DMA_TAG() method of the
5054 * parent of @p dev.
5055 */
5056 bus_dma_tag_t
bus_get_dma_tag(device_t dev)5057 bus_get_dma_tag(device_t dev)
5058 {
5059 device_t parent;
5060
5061 parent = device_get_parent(dev);
5062 if (parent == NULL)
5063 return (NULL);
5064 return (BUS_GET_DMA_TAG(parent, dev));
5065 }
5066
5067 /**
5068 * @brief Wrapper function for BUS_GET_BUS_TAG().
5069 *
5070 * This function simply calls the BUS_GET_BUS_TAG() method of the
5071 * parent of @p dev.
5072 */
5073 bus_space_tag_t
bus_get_bus_tag(device_t dev)5074 bus_get_bus_tag(device_t dev)
5075 {
5076 device_t parent;
5077
5078 parent = device_get_parent(dev);
5079 if (parent == NULL)
5080 return ((bus_space_tag_t)0);
5081 return (BUS_GET_BUS_TAG(parent, dev));
5082 }
5083
5084 /**
5085 * @brief Wrapper function for BUS_GET_DOMAIN().
5086 *
5087 * This function simply calls the BUS_GET_DOMAIN() method of the
5088 * parent of @p dev.
5089 */
5090 int
bus_get_domain(device_t dev,int * domain)5091 bus_get_domain(device_t dev, int *domain)
5092 {
5093 return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
5094 }
5095
5096 /* Resume all devices and then notify userland that we're up again. */
5097 static int
root_resume(device_t dev)5098 root_resume(device_t dev)
5099 {
5100 int error;
5101
5102 error = bus_generic_resume(dev);
5103 if (error == 0) {
5104 devctl_notify("kernel", "power", "resume", NULL);
5105 }
5106 return (error);
5107 }
5108
5109 static int
root_print_child(device_t dev,device_t child)5110 root_print_child(device_t dev, device_t child)
5111 {
5112 int retval = 0;
5113
5114 retval += bus_print_child_header(dev, child);
5115 retval += printf("\n");
5116
5117 return (retval);
5118 }
5119
5120 static int
root_setup_intr(device_t dev,device_t child,struct resource * irq,int flags,driver_filter_t * filter,driver_intr_t * intr,void * arg,void ** cookiep)5121 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
5122 driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
5123 {
5124 /*
5125 * If an interrupt mapping gets to here something bad has happened.
5126 */
5127 panic("root_setup_intr");
5128 }
5129
5130 /*
5131 * If we get here, assume that the device is permanent and really is
5132 * present in the system. Removable bus drivers are expected to intercept
5133 * this call long before it gets here. We return -1 so that drivers that
5134 * really care can check vs -1 or some ERRNO returned higher in the food
5135 * chain.
5136 */
5137 static int
root_child_present(device_t dev,device_t child)5138 root_child_present(device_t dev, device_t child)
5139 {
5140 return (-1);
5141 }
5142
5143 static int
root_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)5144 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
5145 cpuset_t *cpuset)
5146 {
5147 switch (op) {
5148 case INTR_CPUS:
5149 /* Default to returning the set of all CPUs. */
5150 if (setsize != sizeof(cpuset_t))
5151 return (EINVAL);
5152 *cpuset = all_cpus;
5153 return (0);
5154 default:
5155 return (EINVAL);
5156 }
5157 }
5158
5159 static kobj_method_t root_methods[] = {
5160 /* Device interface */
5161 KOBJMETHOD(device_shutdown, bus_generic_shutdown),
5162 KOBJMETHOD(device_suspend, bus_generic_suspend),
5163 KOBJMETHOD(device_resume, root_resume),
5164
5165 /* Bus interface */
5166 KOBJMETHOD(bus_print_child, root_print_child),
5167 KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar),
5168 KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar),
5169 KOBJMETHOD(bus_setup_intr, root_setup_intr),
5170 KOBJMETHOD(bus_child_present, root_child_present),
5171 KOBJMETHOD(bus_get_cpus, root_get_cpus),
5172
5173 KOBJMETHOD_END
5174 };
5175
5176 static driver_t root_driver = {
5177 "root",
5178 root_methods,
5179 1, /* no softc */
5180 };
5181
5182 device_t root_bus;
5183 devclass_t root_devclass;
5184
5185 static int
root_bus_module_handler(module_t mod,int what,void * arg)5186 root_bus_module_handler(module_t mod, int what, void* arg)
5187 {
5188 switch (what) {
5189 case MOD_LOAD:
5190 TAILQ_INIT(&bus_data_devices);
5191 kobj_class_compile((kobj_class_t) &root_driver);
5192 root_bus = make_device(NULL, "root", 0);
5193 root_bus->desc = "System root bus";
5194 kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
5195 root_bus->driver = &root_driver;
5196 root_bus->state = DS_ATTACHED;
5197 root_devclass = devclass_find_internal("root", NULL, FALSE);
5198 devctl2_init();
5199 return (0);
5200
5201 case MOD_SHUTDOWN:
5202 device_shutdown(root_bus);
5203 return (0);
5204 default:
5205 return (EOPNOTSUPP);
5206 }
5207
5208 return (0);
5209 }
5210
5211 static moduledata_t root_bus_mod = {
5212 "rootbus",
5213 root_bus_module_handler,
5214 NULL
5215 };
5216 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
5217
5218 /**
5219 * @brief Automatically configure devices
5220 *
5221 * This function begins the autoconfiguration process by calling
5222 * device_probe_and_attach() for each child of the @c root0 device.
5223 */
5224 void
root_bus_configure(void)5225 root_bus_configure(void)
5226 {
5227 PDEBUG(("."));
5228
5229 /* Eventually this will be split up, but this is sufficient for now. */
5230 bus_set_pass(BUS_PASS_DEFAULT);
5231 }
5232
5233 /**
5234 * @brief Module handler for registering device drivers
5235 *
5236 * This module handler is used to automatically register device
5237 * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
5238 * devclass_add_driver() for the driver described by the
5239 * driver_module_data structure pointed to by @p arg
5240 */
5241 int
driver_module_handler(module_t mod,int what,void * arg)5242 driver_module_handler(module_t mod, int what, void *arg)
5243 {
5244 struct driver_module_data *dmd;
5245 devclass_t bus_devclass;
5246 kobj_class_t driver;
5247 int error, pass;
5248
5249 dmd = (struct driver_module_data *)arg;
5250 bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
5251 error = 0;
5252
5253 switch (what) {
5254 case MOD_LOAD:
5255 if (dmd->dmd_chainevh)
5256 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5257
5258 pass = dmd->dmd_pass;
5259 driver = dmd->dmd_driver;
5260 PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
5261 DRIVERNAME(driver), dmd->dmd_busname, pass));
5262 error = devclass_add_driver(bus_devclass, driver, pass,
5263 dmd->dmd_devclass);
5264 break;
5265
5266 case MOD_UNLOAD:
5267 PDEBUG(("Unloading module: driver %s from bus %s",
5268 DRIVERNAME(dmd->dmd_driver),
5269 dmd->dmd_busname));
5270 error = devclass_delete_driver(bus_devclass,
5271 dmd->dmd_driver);
5272
5273 if (!error && dmd->dmd_chainevh)
5274 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5275 break;
5276 case MOD_QUIESCE:
5277 PDEBUG(("Quiesce module: driver %s from bus %s",
5278 DRIVERNAME(dmd->dmd_driver),
5279 dmd->dmd_busname));
5280 error = devclass_quiesce_driver(bus_devclass,
5281 dmd->dmd_driver);
5282
5283 if (!error && dmd->dmd_chainevh)
5284 error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
5285 break;
5286 default:
5287 error = EOPNOTSUPP;
5288 break;
5289 }
5290
5291 return (error);
5292 }
5293
5294 /**
5295 * @brief Enumerate all hinted devices for this bus.
5296 *
5297 * Walks through the hints for this bus and calls the bus_hinted_child
5298 * routine for each one it fines. It searches first for the specific
5299 * bus that's being probed for hinted children (eg isa0), and then for
5300 * generic children (eg isa).
5301 *
5302 * @param dev bus device to enumerate
5303 */
5304 void
bus_enumerate_hinted_children(device_t bus)5305 bus_enumerate_hinted_children(device_t bus)
5306 {
5307 int i;
5308 const char *dname, *busname;
5309 int dunit;
5310
5311 /*
5312 * enumerate all devices on the specific bus
5313 */
5314 busname = device_get_nameunit(bus);
5315 i = 0;
5316 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5317 BUS_HINTED_CHILD(bus, dname, dunit);
5318
5319 /*
5320 * and all the generic ones.
5321 */
5322 busname = device_get_name(bus);
5323 i = 0;
5324 while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
5325 BUS_HINTED_CHILD(bus, dname, dunit);
5326 }
5327
5328 #ifdef BUS_DEBUG
5329
5330 /* the _short versions avoid iteration by not calling anything that prints
5331 * more than oneliners. I love oneliners.
5332 */
5333
5334 static void
print_device_short(device_t dev,int indent)5335 print_device_short(device_t dev, int indent)
5336 {
5337 if (!dev)
5338 return;
5339
5340 indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
5341 dev->unit, dev->desc,
5342 (dev->parent? "":"no "),
5343 (TAILQ_EMPTY(&dev->children)? "no ":""),
5344 (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
5345 (dev->flags&DF_FIXEDCLASS? "fixed,":""),
5346 (dev->flags&DF_WILDCARD? "wildcard,":""),
5347 (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
5348 (dev->flags&DF_SUSPENDED? "suspended,":""),
5349 (dev->ivars? "":"no "),
5350 (dev->softc? "":"no "),
5351 dev->busy));
5352 }
5353
5354 static void
print_device(device_t dev,int indent)5355 print_device(device_t dev, int indent)
5356 {
5357 if (!dev)
5358 return;
5359
5360 print_device_short(dev, indent);
5361
5362 indentprintf(("Parent:\n"));
5363 print_device_short(dev->parent, indent+1);
5364 indentprintf(("Driver:\n"));
5365 print_driver_short(dev->driver, indent+1);
5366 indentprintf(("Devclass:\n"));
5367 print_devclass_short(dev->devclass, indent+1);
5368 }
5369
5370 void
print_device_tree_short(device_t dev,int indent)5371 print_device_tree_short(device_t dev, int indent)
5372 /* print the device and all its children (indented) */
5373 {
5374 device_t child;
5375
5376 if (!dev)
5377 return;
5378
5379 print_device_short(dev, indent);
5380
5381 TAILQ_FOREACH(child, &dev->children, link) {
5382 print_device_tree_short(child, indent+1);
5383 }
5384 }
5385
5386 void
print_device_tree(device_t dev,int indent)5387 print_device_tree(device_t dev, int indent)
5388 /* print the device and all its children (indented) */
5389 {
5390 device_t child;
5391
5392 if (!dev)
5393 return;
5394
5395 print_device(dev, indent);
5396
5397 TAILQ_FOREACH(child, &dev->children, link) {
5398 print_device_tree(child, indent+1);
5399 }
5400 }
5401
5402 static void
print_driver_short(driver_t * driver,int indent)5403 print_driver_short(driver_t *driver, int indent)
5404 {
5405 if (!driver)
5406 return;
5407
5408 indentprintf(("driver %s: softc size = %zd\n",
5409 driver->name, driver->size));
5410 }
5411
5412 static void
print_driver(driver_t * driver,int indent)5413 print_driver(driver_t *driver, int indent)
5414 {
5415 if (!driver)
5416 return;
5417
5418 print_driver_short(driver, indent);
5419 }
5420
5421 static void
print_driver_list(driver_list_t drivers,int indent)5422 print_driver_list(driver_list_t drivers, int indent)
5423 {
5424 driverlink_t driver;
5425
5426 TAILQ_FOREACH(driver, &drivers, link) {
5427 print_driver(driver->driver, indent);
5428 }
5429 }
5430
5431 static void
print_devclass_short(devclass_t dc,int indent)5432 print_devclass_short(devclass_t dc, int indent)
5433 {
5434 if ( !dc )
5435 return;
5436
5437 indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
5438 }
5439
5440 static void
print_devclass(devclass_t dc,int indent)5441 print_devclass(devclass_t dc, int indent)
5442 {
5443 int i;
5444
5445 if ( !dc )
5446 return;
5447
5448 print_devclass_short(dc, indent);
5449 indentprintf(("Drivers:\n"));
5450 print_driver_list(dc->drivers, indent+1);
5451
5452 indentprintf(("Devices:\n"));
5453 for (i = 0; i < dc->maxunit; i++)
5454 if (dc->devices[i])
5455 print_device(dc->devices[i], indent+1);
5456 }
5457
5458 void
print_devclass_list_short(void)5459 print_devclass_list_short(void)
5460 {
5461 devclass_t dc;
5462
5463 printf("Short listing of devclasses, drivers & devices:\n");
5464 TAILQ_FOREACH(dc, &devclasses, link) {
5465 print_devclass_short(dc, 0);
5466 }
5467 }
5468
5469 void
print_devclass_list(void)5470 print_devclass_list(void)
5471 {
5472 devclass_t dc;
5473
5474 printf("Full listing of devclasses, drivers & devices:\n");
5475 TAILQ_FOREACH(dc, &devclasses, link) {
5476 print_devclass(dc, 0);
5477 }
5478 }
5479
5480 #endif
5481
5482 /*
5483 * User-space access to the device tree.
5484 *
5485 * We implement a small set of nodes:
5486 *
5487 * hw.bus Single integer read method to obtain the
5488 * current generation count.
5489 * hw.bus.devices Reads the entire device tree in flat space.
5490 * hw.bus.rman Resource manager interface
5491 *
5492 * We might like to add the ability to scan devclasses and/or drivers to
5493 * determine what else is currently loaded/available.
5494 */
5495
5496 static int
sysctl_bus_info(SYSCTL_HANDLER_ARGS)5497 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
5498 {
5499 struct u_businfo ubus;
5500
5501 ubus.ub_version = BUS_USER_VERSION;
5502 ubus.ub_generation = bus_data_generation;
5503
5504 return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
5505 }
5506 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
5507 CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
5508 "bus-related data");
5509
5510 static int
sysctl_devices(SYSCTL_HANDLER_ARGS)5511 sysctl_devices(SYSCTL_HANDLER_ARGS)
5512 {
5513 struct sbuf sb;
5514 int *name = (int *)arg1;
5515 u_int namelen = arg2;
5516 int index;
5517 device_t dev;
5518 struct u_device *udev;
5519 int error;
5520
5521 if (namelen != 2)
5522 return (EINVAL);
5523
5524 if (bus_data_generation_check(name[0]))
5525 return (EINVAL);
5526
5527 index = name[1];
5528
5529 /*
5530 * Scan the list of devices, looking for the requested index.
5531 */
5532 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5533 if (index-- == 0)
5534 break;
5535 }
5536 if (dev == NULL)
5537 return (ENOENT);
5538
5539 /*
5540 * Populate the return item, careful not to overflow the buffer.
5541 */
5542 udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
5543 udev->dv_handle = (uintptr_t)dev;
5544 udev->dv_parent = (uintptr_t)dev->parent;
5545 udev->dv_devflags = dev->devflags;
5546 udev->dv_flags = dev->flags;
5547 udev->dv_state = dev->state;
5548 sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN);
5549 if (dev->nameunit != NULL)
5550 sbuf_cat(&sb, dev->nameunit);
5551 sbuf_putc(&sb, '\0');
5552 if (dev->desc != NULL)
5553 sbuf_cat(&sb, dev->desc);
5554 sbuf_putc(&sb, '\0');
5555 if (dev->driver != NULL)
5556 sbuf_cat(&sb, dev->driver->name);
5557 sbuf_putc(&sb, '\0');
5558 bus_child_pnpinfo(dev, &sb);
5559 sbuf_putc(&sb, '\0');
5560 bus_child_location(dev, &sb);
5561 sbuf_putc(&sb, '\0');
5562 error = sbuf_finish(&sb);
5563 if (error == 0)
5564 error = SYSCTL_OUT(req, udev, sizeof(*udev));
5565 sbuf_delete(&sb);
5566 free(udev, M_BUS);
5567 return (error);
5568 }
5569
5570 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
5571 CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
5572 "system device tree");
5573
5574 int
bus_data_generation_check(int generation)5575 bus_data_generation_check(int generation)
5576 {
5577 if (generation != bus_data_generation)
5578 return (1);
5579
5580 /* XXX generate optimised lists here? */
5581 return (0);
5582 }
5583
5584 void
bus_data_generation_update(void)5585 bus_data_generation_update(void)
5586 {
5587 atomic_add_int(&bus_data_generation, 1);
5588 }
5589
5590 int
bus_free_resource(device_t dev,int type,struct resource * r)5591 bus_free_resource(device_t dev, int type, struct resource *r)
5592 {
5593 if (r == NULL)
5594 return (0);
5595 return (bus_release_resource(dev, type, rman_get_rid(r), r));
5596 }
5597
5598 device_t
device_lookup_by_name(const char * name)5599 device_lookup_by_name(const char *name)
5600 {
5601 device_t dev;
5602
5603 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
5604 if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
5605 return (dev);
5606 }
5607 return (NULL);
5608 }
5609
5610 /*
5611 * /dev/devctl2 implementation. The existing /dev/devctl device has
5612 * implicit semantics on open, so it could not be reused for this.
5613 * Another option would be to call this /dev/bus?
5614 */
5615 static int
find_device(struct devreq * req,device_t * devp)5616 find_device(struct devreq *req, device_t *devp)
5617 {
5618 device_t dev;
5619
5620 /*
5621 * First, ensure that the name is nul terminated.
5622 */
5623 if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
5624 return (EINVAL);
5625
5626 /*
5627 * Second, try to find an attached device whose name matches
5628 * 'name'.
5629 */
5630 dev = device_lookup_by_name(req->dr_name);
5631 if (dev != NULL) {
5632 *devp = dev;
5633 return (0);
5634 }
5635
5636 /* Finally, give device enumerators a chance. */
5637 dev = NULL;
5638 EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
5639 if (dev == NULL)
5640 return (ENOENT);
5641 *devp = dev;
5642 return (0);
5643 }
5644
5645 static bool
driver_exists(device_t bus,const char * driver)5646 driver_exists(device_t bus, const char *driver)
5647 {
5648 devclass_t dc;
5649
5650 for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
5651 if (devclass_find_driver_internal(dc, driver) != NULL)
5652 return (true);
5653 }
5654 return (false);
5655 }
5656
5657 static void
device_gen_nomatch(device_t dev)5658 device_gen_nomatch(device_t dev)
5659 {
5660 device_t child;
5661
5662 if (dev->flags & DF_NEEDNOMATCH &&
5663 dev->state == DS_NOTPRESENT) {
5664 device_handle_nomatch(dev);
5665 }
5666 dev->flags &= ~DF_NEEDNOMATCH;
5667 TAILQ_FOREACH(child, &dev->children, link) {
5668 device_gen_nomatch(child);
5669 }
5670 }
5671
5672 static void
device_do_deferred_actions(void)5673 device_do_deferred_actions(void)
5674 {
5675 devclass_t dc;
5676 driverlink_t dl;
5677
5678 /*
5679 * Walk through the devclasses to find all the drivers we've tagged as
5680 * deferred during the freeze and call the driver added routines. They
5681 * have already been added to the lists in the background, so the driver
5682 * added routines that trigger a probe will have all the right bidders
5683 * for the probe auction.
5684 */
5685 TAILQ_FOREACH(dc, &devclasses, link) {
5686 TAILQ_FOREACH(dl, &dc->drivers, link) {
5687 if (dl->flags & DL_DEFERRED_PROBE) {
5688 devclass_driver_added(dc, dl->driver);
5689 dl->flags &= ~DL_DEFERRED_PROBE;
5690 }
5691 }
5692 }
5693
5694 /*
5695 * We also defer no-match events during a freeze. Walk the tree and
5696 * generate all the pent-up events that are still relevant.
5697 */
5698 device_gen_nomatch(root_bus);
5699 bus_data_generation_update();
5700 }
5701
5702 static int
device_get_path(device_t dev,const char * locator,struct sbuf * sb)5703 device_get_path(device_t dev, const char *locator, struct sbuf *sb)
5704 {
5705 device_t parent;
5706 int error;
5707
5708 KASSERT(sb != NULL, ("sb is NULL"));
5709 parent = device_get_parent(dev);
5710 if (parent == NULL) {
5711 error = sbuf_putc(sb, '/');
5712 } else {
5713 error = BUS_GET_DEVICE_PATH(parent, dev, locator, sb);
5714 if (error == 0) {
5715 error = sbuf_error(sb);
5716 if (error == 0 && sbuf_len(sb) <= 1)
5717 error = EIO;
5718 }
5719 }
5720 sbuf_finish(sb);
5721 return (error);
5722 }
5723
5724 static int
devctl2_ioctl(struct cdev * cdev,u_long cmd,caddr_t data,int fflag,struct thread * td)5725 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
5726 struct thread *td)
5727 {
5728 struct devreq *req;
5729 device_t dev;
5730 int error, old;
5731
5732 /* Locate the device to control. */
5733 bus_topo_lock();
5734 req = (struct devreq *)data;
5735 switch (cmd) {
5736 case DEV_ATTACH:
5737 case DEV_DETACH:
5738 case DEV_ENABLE:
5739 case DEV_DISABLE:
5740 case DEV_SUSPEND:
5741 case DEV_RESUME:
5742 case DEV_SET_DRIVER:
5743 case DEV_CLEAR_DRIVER:
5744 case DEV_RESCAN:
5745 case DEV_DELETE:
5746 case DEV_RESET:
5747 error = priv_check(td, PRIV_DRIVER);
5748 if (error == 0)
5749 error = find_device(req, &dev);
5750 break;
5751 case DEV_FREEZE:
5752 case DEV_THAW:
5753 error = priv_check(td, PRIV_DRIVER);
5754 break;
5755 case DEV_GET_PATH:
5756 error = find_device(req, &dev);
5757 break;
5758 default:
5759 error = ENOTTY;
5760 break;
5761 }
5762 if (error) {
5763 bus_topo_unlock();
5764 return (error);
5765 }
5766
5767 /* Perform the requested operation. */
5768 switch (cmd) {
5769 case DEV_ATTACH:
5770 if (device_is_attached(dev))
5771 error = EBUSY;
5772 else if (!device_is_enabled(dev))
5773 error = ENXIO;
5774 else
5775 error = device_probe_and_attach(dev);
5776 break;
5777 case DEV_DETACH:
5778 if (!device_is_attached(dev)) {
5779 error = ENXIO;
5780 break;
5781 }
5782 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5783 error = device_quiesce(dev);
5784 if (error)
5785 break;
5786 }
5787 error = device_detach(dev);
5788 break;
5789 case DEV_ENABLE:
5790 if (device_is_enabled(dev)) {
5791 error = EBUSY;
5792 break;
5793 }
5794
5795 /*
5796 * If the device has been probed but not attached (e.g.
5797 * when it has been disabled by a loader hint), just
5798 * attach the device rather than doing a full probe.
5799 */
5800 device_enable(dev);
5801 if (dev->devclass != NULL) {
5802 /*
5803 * If the device was disabled via a hint, clear
5804 * the hint.
5805 */
5806 if (resource_disabled(dev->devclass->name, dev->unit))
5807 resource_unset_value(dev->devclass->name,
5808 dev->unit, "disabled");
5809
5810 /* Allow any drivers to rebid. */
5811 if (!(dev->flags & DF_FIXEDCLASS))
5812 devclass_delete_device(dev->devclass, dev);
5813 }
5814 error = device_probe_and_attach(dev);
5815 break;
5816 case DEV_DISABLE:
5817 if (!device_is_enabled(dev)) {
5818 error = ENXIO;
5819 break;
5820 }
5821
5822 if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
5823 error = device_quiesce(dev);
5824 if (error)
5825 break;
5826 }
5827
5828 /*
5829 * Force DF_FIXEDCLASS on around detach to preserve
5830 * the existing name.
5831 */
5832 old = dev->flags;
5833 dev->flags |= DF_FIXEDCLASS;
5834 error = device_detach(dev);
5835 if (!(old & DF_FIXEDCLASS))
5836 dev->flags &= ~DF_FIXEDCLASS;
5837 if (error == 0)
5838 device_disable(dev);
5839 break;
5840 case DEV_SUSPEND:
5841 if (device_is_suspended(dev)) {
5842 error = EBUSY;
5843 break;
5844 }
5845 if (device_get_parent(dev) == NULL) {
5846 error = EINVAL;
5847 break;
5848 }
5849 error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
5850 break;
5851 case DEV_RESUME:
5852 if (!device_is_suspended(dev)) {
5853 error = EINVAL;
5854 break;
5855 }
5856 if (device_get_parent(dev) == NULL) {
5857 error = EINVAL;
5858 break;
5859 }
5860 error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
5861 break;
5862 case DEV_SET_DRIVER: {
5863 devclass_t dc;
5864 char driver[128];
5865
5866 error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
5867 if (error)
5868 break;
5869 if (driver[0] == '\0') {
5870 error = EINVAL;
5871 break;
5872 }
5873 if (dev->devclass != NULL &&
5874 strcmp(driver, dev->devclass->name) == 0)
5875 /* XXX: Could possibly force DF_FIXEDCLASS on? */
5876 break;
5877
5878 /*
5879 * Scan drivers for this device's bus looking for at
5880 * least one matching driver.
5881 */
5882 if (dev->parent == NULL) {
5883 error = EINVAL;
5884 break;
5885 }
5886 if (!driver_exists(dev->parent, driver)) {
5887 error = ENOENT;
5888 break;
5889 }
5890 dc = devclass_create(driver);
5891 if (dc == NULL) {
5892 error = ENOMEM;
5893 break;
5894 }
5895
5896 /* Detach device if necessary. */
5897 if (device_is_attached(dev)) {
5898 if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
5899 error = device_detach(dev);
5900 else
5901 error = EBUSY;
5902 if (error)
5903 break;
5904 }
5905
5906 /* Clear any previously-fixed device class and unit. */
5907 if (dev->flags & DF_FIXEDCLASS)
5908 devclass_delete_device(dev->devclass, dev);
5909 dev->flags |= DF_WILDCARD;
5910 dev->unit = DEVICE_UNIT_ANY;
5911
5912 /* Force the new device class. */
5913 error = devclass_add_device(dc, dev);
5914 if (error)
5915 break;
5916 dev->flags |= DF_FIXEDCLASS;
5917 error = device_probe_and_attach(dev);
5918 break;
5919 }
5920 case DEV_CLEAR_DRIVER:
5921 if (!(dev->flags & DF_FIXEDCLASS)) {
5922 error = 0;
5923 break;
5924 }
5925 if (device_is_attached(dev)) {
5926 if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
5927 error = device_detach(dev);
5928 else
5929 error = EBUSY;
5930 if (error)
5931 break;
5932 }
5933
5934 dev->flags &= ~DF_FIXEDCLASS;
5935 dev->flags |= DF_WILDCARD;
5936 devclass_delete_device(dev->devclass, dev);
5937 error = device_probe_and_attach(dev);
5938 break;
5939 case DEV_RESCAN:
5940 if (!device_is_attached(dev)) {
5941 error = ENXIO;
5942 break;
5943 }
5944 error = BUS_RESCAN(dev);
5945 break;
5946 case DEV_DELETE: {
5947 device_t parent;
5948
5949 parent = device_get_parent(dev);
5950 if (parent == NULL) {
5951 error = EINVAL;
5952 break;
5953 }
5954 if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
5955 if (bus_child_present(dev) != 0) {
5956 error = EBUSY;
5957 break;
5958 }
5959 }
5960
5961 error = device_delete_child(parent, dev);
5962 break;
5963 }
5964 case DEV_FREEZE:
5965 if (device_frozen)
5966 error = EBUSY;
5967 else
5968 device_frozen = true;
5969 break;
5970 case DEV_THAW:
5971 if (!device_frozen)
5972 error = EBUSY;
5973 else {
5974 device_do_deferred_actions();
5975 device_frozen = false;
5976 }
5977 break;
5978 case DEV_RESET:
5979 if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
5980 error = EINVAL;
5981 break;
5982 }
5983 if (device_get_parent(dev) == NULL) {
5984 error = EINVAL;
5985 break;
5986 }
5987 error = BUS_RESET_CHILD(device_get_parent(dev), dev,
5988 req->dr_flags);
5989 break;
5990 case DEV_GET_PATH: {
5991 struct sbuf *sb;
5992 char locator[64];
5993 ssize_t len;
5994
5995 error = copyinstr(req->dr_buffer.buffer, locator,
5996 sizeof(locator), NULL);
5997 if (error != 0)
5998 break;
5999 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6000 SBUF_INCLUDENUL /* | SBUF_WAITOK */);
6001 error = device_get_path(dev, locator, sb);
6002 if (error == 0) {
6003 len = sbuf_len(sb);
6004 if (req->dr_buffer.length < len) {
6005 error = ENAMETOOLONG;
6006 } else {
6007 error = copyout(sbuf_data(sb),
6008 req->dr_buffer.buffer, len);
6009 }
6010 req->dr_buffer.length = len;
6011 }
6012 sbuf_delete(sb);
6013 break;
6014 }
6015 }
6016 bus_topo_unlock();
6017 return (error);
6018 }
6019
6020 static struct cdevsw devctl2_cdevsw = {
6021 .d_version = D_VERSION,
6022 .d_ioctl = devctl2_ioctl,
6023 .d_name = "devctl2",
6024 };
6025
6026 static void
devctl2_init(void)6027 devctl2_init(void)
6028 {
6029 make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
6030 UID_ROOT, GID_WHEEL, 0644, "devctl2");
6031 }
6032
6033 /*
6034 * For maintaining device 'at' location info to avoid recomputing it
6035 */
6036 struct device_location_node {
6037 const char *dln_locator;
6038 const char *dln_path;
6039 TAILQ_ENTRY(device_location_node) dln_link;
6040 };
6041 typedef TAILQ_HEAD(device_location_list, device_location_node) device_location_list_t;
6042
6043 struct device_location_cache {
6044 device_location_list_t dlc_list;
6045 };
6046
6047
6048 /*
6049 * Location cache for wired devices.
6050 */
6051 device_location_cache_t *
dev_wired_cache_init(void)6052 dev_wired_cache_init(void)
6053 {
6054 device_location_cache_t *dcp;
6055
6056 dcp = malloc(sizeof(*dcp), M_BUS, M_WAITOK | M_ZERO);
6057 TAILQ_INIT(&dcp->dlc_list);
6058
6059 return (dcp);
6060 }
6061
6062 void
dev_wired_cache_fini(device_location_cache_t * dcp)6063 dev_wired_cache_fini(device_location_cache_t *dcp)
6064 {
6065 struct device_location_node *dln, *tdln;
6066
6067 TAILQ_FOREACH_SAFE(dln, &dcp->dlc_list, dln_link, tdln) {
6068 free(dln, M_BUS);
6069 }
6070 free(dcp, M_BUS);
6071 }
6072
6073 static struct device_location_node *
dev_wired_cache_lookup(device_location_cache_t * dcp,const char * locator)6074 dev_wired_cache_lookup(device_location_cache_t *dcp, const char *locator)
6075 {
6076 struct device_location_node *dln;
6077
6078 TAILQ_FOREACH(dln, &dcp->dlc_list, dln_link) {
6079 if (strcmp(locator, dln->dln_locator) == 0)
6080 return (dln);
6081 }
6082
6083 return (NULL);
6084 }
6085
6086 static struct device_location_node *
dev_wired_cache_add(device_location_cache_t * dcp,const char * locator,const char * path)6087 dev_wired_cache_add(device_location_cache_t *dcp, const char *locator, const char *path)
6088 {
6089 struct device_location_node *dln;
6090 size_t loclen, pathlen;
6091
6092 loclen = strlen(locator) + 1;
6093 pathlen = strlen(path) + 1;
6094 dln = malloc(sizeof(*dln) + loclen + pathlen, M_BUS, M_WAITOK | M_ZERO);
6095 dln->dln_locator = (char *)(dln + 1);
6096 memcpy(__DECONST(char *, dln->dln_locator), locator, loclen);
6097 dln->dln_path = dln->dln_locator + loclen;
6098 memcpy(__DECONST(char *, dln->dln_path), path, pathlen);
6099 TAILQ_INSERT_HEAD(&dcp->dlc_list, dln, dln_link);
6100
6101 return (dln);
6102 }
6103
6104 bool
dev_wired_cache_match(device_location_cache_t * dcp,device_t dev,const char * at)6105 dev_wired_cache_match(device_location_cache_t *dcp, device_t dev,
6106 const char *at)
6107 {
6108 struct sbuf *sb;
6109 const char *cp;
6110 char locator[32];
6111 int error, len;
6112 struct device_location_node *res;
6113
6114 cp = strchr(at, ':');
6115 if (cp == NULL)
6116 return (false);
6117 len = cp - at;
6118 if (len > sizeof(locator) - 1) /* Skip too long locator */
6119 return (false);
6120 memcpy(locator, at, len);
6121 locator[len] = '\0';
6122 cp++;
6123
6124 error = 0;
6125 /* maybe cache this inside device_t and look that up, but not yet */
6126 res = dev_wired_cache_lookup(dcp, locator);
6127 if (res == NULL) {
6128 sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND |
6129 SBUF_INCLUDENUL | SBUF_NOWAIT);
6130 if (sb != NULL) {
6131 error = device_get_path(dev, locator, sb);
6132 if (error == 0) {
6133 res = dev_wired_cache_add(dcp, locator,
6134 sbuf_data(sb));
6135 }
6136 sbuf_delete(sb);
6137 }
6138 }
6139 if (error != 0 || res == NULL || res->dln_path == NULL)
6140 return (false);
6141
6142 return (strcmp(res->dln_path, cp) == 0);
6143 }
6144
6145 static struct device_prop_elm *
device_prop_find(device_t dev,const char * name)6146 device_prop_find(device_t dev, const char *name)
6147 {
6148 struct device_prop_elm *e;
6149
6150 bus_topo_assert();
6151
6152 LIST_FOREACH(e, &dev->props, link) {
6153 if (strcmp(name, e->name) == 0)
6154 return (e);
6155 }
6156 return (NULL);
6157 }
6158
6159 int
device_set_prop(device_t dev,const char * name,void * val,device_prop_dtr_t dtr,void * dtr_ctx)6160 device_set_prop(device_t dev, const char *name, void *val,
6161 device_prop_dtr_t dtr, void *dtr_ctx)
6162 {
6163 struct device_prop_elm *e, *e1;
6164
6165 bus_topo_assert();
6166
6167 e = device_prop_find(dev, name);
6168 if (e != NULL)
6169 goto found;
6170
6171 e1 = malloc(sizeof(*e), M_BUS, M_WAITOK);
6172 e = device_prop_find(dev, name);
6173 if (e != NULL) {
6174 free(e1, M_BUS);
6175 goto found;
6176 }
6177
6178 e1->name = name;
6179 e1->val = val;
6180 e1->dtr = dtr;
6181 e1->dtr_ctx = dtr_ctx;
6182 LIST_INSERT_HEAD(&dev->props, e1, link);
6183 return (0);
6184
6185 found:
6186 LIST_REMOVE(e, link);
6187 if (e->dtr != NULL)
6188 e->dtr(dev, name, e->val, e->dtr_ctx);
6189 e->val = val;
6190 e->dtr = dtr;
6191 e->dtr_ctx = dtr_ctx;
6192 LIST_INSERT_HEAD(&dev->props, e, link);
6193 return (EEXIST);
6194 }
6195
6196 int
device_get_prop(device_t dev,const char * name,void ** valp)6197 device_get_prop(device_t dev, const char *name, void **valp)
6198 {
6199 struct device_prop_elm *e;
6200
6201 bus_topo_assert();
6202
6203 e = device_prop_find(dev, name);
6204 if (e == NULL)
6205 return (ENOENT);
6206 *valp = e->val;
6207 return (0);
6208 }
6209
6210 int
device_clear_prop(device_t dev,const char * name)6211 device_clear_prop(device_t dev, const char *name)
6212 {
6213 struct device_prop_elm *e;
6214
6215 bus_topo_assert();
6216
6217 e = device_prop_find(dev, name);
6218 if (e == NULL)
6219 return (ENOENT);
6220 LIST_REMOVE(e, link);
6221 if (e->dtr != NULL)
6222 e->dtr(dev, e->name, e->val, e->dtr_ctx);
6223 free(e, M_BUS);
6224 return (0);
6225 }
6226
6227 static void
device_destroy_props(device_t dev)6228 device_destroy_props(device_t dev)
6229 {
6230 struct device_prop_elm *e;
6231
6232 bus_topo_assert();
6233
6234 while ((e = LIST_FIRST(&dev->props)) != NULL) {
6235 LIST_REMOVE_HEAD(&dev->props, link);
6236 if (e->dtr != NULL)
6237 e->dtr(dev, e->name, e->val, e->dtr_ctx);
6238 free(e, M_BUS);
6239 }
6240 }
6241
6242 void
device_clear_prop_alldev(const char * name)6243 device_clear_prop_alldev(const char *name)
6244 {
6245 device_t dev;
6246
6247 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6248 device_clear_prop(dev, name);
6249 }
6250 }
6251
6252 /*
6253 * APIs to manage deprecation and obsolescence.
6254 */
6255 static int obsolete_panic = 0;
6256 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
6257 "Panic when obsolete features are used (0 = never, 1 = if obsolete, "
6258 "2 = if deprecated)");
6259
6260 static void
gone_panic(int major,int running,const char * msg)6261 gone_panic(int major, int running, const char *msg)
6262 {
6263 switch (obsolete_panic)
6264 {
6265 case 0:
6266 return;
6267 case 1:
6268 if (running < major)
6269 return;
6270 /* FALLTHROUGH */
6271 default:
6272 panic("%s", msg);
6273 }
6274 }
6275
6276 void
_gone_in(int major,const char * msg)6277 _gone_in(int major, const char *msg)
6278 {
6279 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6280 if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6281 printf("Obsolete code will be removed soon: %s\n", msg);
6282 else
6283 printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
6284 major, msg);
6285 }
6286
6287 void
_gone_in_dev(device_t dev,int major,const char * msg)6288 _gone_in_dev(device_t dev, int major, const char *msg)
6289 {
6290 gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
6291 if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
6292 device_printf(dev,
6293 "Obsolete code will be removed soon: %s\n", msg);
6294 else
6295 device_printf(dev,
6296 "Deprecated code (to be removed in FreeBSD %d): %s\n",
6297 major, msg);
6298 }
6299
6300 #ifdef DDB
DB_SHOW_COMMAND(device,db_show_device)6301 DB_SHOW_COMMAND(device, db_show_device)
6302 {
6303 device_t dev;
6304
6305 if (!have_addr)
6306 return;
6307
6308 dev = (device_t)addr;
6309
6310 db_printf("name: %s\n", device_get_nameunit(dev));
6311 db_printf(" driver: %s\n", DRIVERNAME(dev->driver));
6312 db_printf(" class: %s\n", DEVCLANAME(dev->devclass));
6313 db_printf(" addr: %p\n", dev);
6314 db_printf(" parent: %p\n", dev->parent);
6315 db_printf(" softc: %p\n", dev->softc);
6316 db_printf(" ivars: %p\n", dev->ivars);
6317 }
6318
DB_SHOW_ALL_COMMAND(devices,db_show_all_devices)6319 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
6320 {
6321 device_t dev;
6322
6323 TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
6324 db_show_device((db_expr_t)dev, true, count, modif);
6325 }
6326 }
6327 #endif
6328