xref: /linux/drivers/watchdog/aspeed_wdt.c (revision fbff94967958e46f7404b2dfbcf3b19e96aaaae2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2016 IBM Corporation
4  *
5  * Joel Stanley <joel@jms.id.au>
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/kstrtox.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_irq.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/watchdog.h>
21 
22 static bool nowayout = WATCHDOG_NOWAYOUT;
23 module_param(nowayout, bool, 0);
24 MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
25 				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
26 struct aspeed_wdt_scu {
27 	const char *compatible;
28 	u32 reset_status_reg;
29 	u32 wdt_reset_mask;
30 	u32 wdt_reset_mask_shift;
31 };
32 
33 struct aspeed_wdt_config {
34 	u32 ext_pulse_width_mask;
35 	u32 irq_shift;
36 	u32 irq_mask;
37 	struct aspeed_wdt_scu scu;
38 	u32 num_reset_masks;
39 };
40 
41 struct aspeed_wdt {
42 	struct watchdog_device	wdd;
43 	void __iomem		*base;
44 	u32			ctrl;
45 	const struct aspeed_wdt_config *cfg;
46 };
47 
48 static const struct aspeed_wdt_config ast2400_config = {
49 	.ext_pulse_width_mask = 0xff,
50 	.irq_shift = 0,
51 	.irq_mask = 0,
52 	.scu = {
53 		.compatible = "aspeed,ast2400-scu",
54 		.reset_status_reg = 0x3c,
55 		.wdt_reset_mask = 0x1,
56 		.wdt_reset_mask_shift = 1,
57 	},
58 };
59 
60 static const struct aspeed_wdt_config ast2500_config = {
61 	.ext_pulse_width_mask = 0xfffff,
62 	.irq_shift = 12,
63 	.irq_mask = GENMASK(31, 12),
64 	.scu = {
65 		.compatible = "aspeed,ast2500-scu",
66 		.reset_status_reg = 0x3c,
67 		.wdt_reset_mask = 0x1,
68 		.wdt_reset_mask_shift = 2,
69 	},
70 	.num_reset_masks = 1,
71 };
72 
73 static const struct aspeed_wdt_config ast2600_config = {
74 	.ext_pulse_width_mask = 0xfffff,
75 	.irq_shift = 0,
76 	.irq_mask = GENMASK(31, 10),
77 	.scu = {
78 		.compatible = "aspeed,ast2600-scu",
79 		.reset_status_reg = 0x74,
80 		.wdt_reset_mask = 0xf,
81 		.wdt_reset_mask_shift = 16,
82 	},
83 	.num_reset_masks = 2,
84 };
85 
86 static const struct aspeed_wdt_config ast2700_config = {
87 	.ext_pulse_width_mask = 0xfffff,
88 	.irq_shift = 0,
89 	.irq_mask = GENMASK(31, 10),
90 	.scu = {
91 		.compatible = "aspeed,ast2700-scu0",
92 		.reset_status_reg = 0x70,
93 		.wdt_reset_mask = 0xf,
94 		.wdt_reset_mask_shift = 0,
95 	},
96 	.num_reset_masks = 5,
97 };
98 
99 static const struct of_device_id aspeed_wdt_of_table[] = {
100 	{ .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
101 	{ .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
102 	{ .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
103 	{ .compatible = "aspeed,ast2700-wdt", .data = &ast2700_config },
104 	{ },
105 };
106 MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
107 
108 #define WDT_STATUS		0x00
109 #define WDT_RELOAD_VALUE	0x04
110 #define WDT_RESTART		0x08
111 #define WDT_CTRL		0x0C
112 #define   WDT_CTRL_BOOT_SECONDARY	BIT(7)
113 #define   WDT_CTRL_RESET_MODE_SOC	(0x00 << 5)
114 #define   WDT_CTRL_RESET_MODE_FULL_CHIP	(0x01 << 5)
115 #define   WDT_CTRL_RESET_MODE_ARM_CPU	(0x10 << 5)
116 #define   WDT_CTRL_1MHZ_CLK		BIT(4)
117 #define   WDT_CTRL_WDT_EXT		BIT(3)
118 #define   WDT_CTRL_WDT_INTR		BIT(2)
119 #define   WDT_CTRL_RESET_SYSTEM		BIT(1)
120 #define   WDT_CTRL_ENABLE		BIT(0)
121 #define WDT_TIMEOUT_STATUS	0x10
122 #define   WDT_TIMEOUT_STATUS_IRQ		BIT(2)
123 #define   WDT_TIMEOUT_STATUS_BOOT_SECONDARY	BIT(1)
124 #define WDT_CLEAR_TIMEOUT_STATUS	0x14
125 #define   WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION	BIT(0)
126 #define WDT_RESET_MASK1		0x1c
127 #define WDT_RESET_MASK2		0x20
128 
129 /*
130  * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
131  * enabled), specifically:
132  *
133  * * Pulse duration
134  * * Drive mode: push-pull vs open-drain
135  * * Polarity: Active high or active low
136  *
137  * Pulse duration configuration is available on both the AST2400 and AST2500,
138  * though the field changes between SoCs:
139  *
140  * AST2400: Bits 7:0
141  * AST2500: Bits 19:0
142  *
143  * This difference is captured in struct aspeed_wdt_config.
144  *
145  * The AST2500 exposes the drive mode and polarity options, but not in a
146  * regular fashion. For read purposes, bit 31 represents active high or low,
147  * and bit 30 represents push-pull or open-drain. With respect to write, magic
148  * values need to be written to the top byte to change the state of the drive
149  * mode and polarity bits. Any other value written to the top byte has no
150  * effect on the state of the drive mode or polarity bits. However, the pulse
151  * width value must be preserved (as desired) if written.
152  */
153 #define WDT_RESET_WIDTH		0x18
154 #define   WDT_RESET_WIDTH_ACTIVE_HIGH	BIT(31)
155 #define     WDT_ACTIVE_HIGH_MAGIC	(0xA5 << 24)
156 #define     WDT_ACTIVE_LOW_MAGIC	(0x5A << 24)
157 #define   WDT_RESET_WIDTH_PUSH_PULL	BIT(30)
158 #define     WDT_PUSH_PULL_MAGIC		(0xA8 << 24)
159 #define     WDT_OPEN_DRAIN_MAGIC	(0x8A << 24)
160 
161 #define WDT_RESTART_MAGIC	0x4755
162 
163 /* 32 bits at 1MHz, in milliseconds */
164 #define WDT_MAX_TIMEOUT_MS	4294967
165 #define WDT_DEFAULT_TIMEOUT	30
166 #define WDT_RATE_1MHZ		1000000
167 
to_aspeed_wdt(struct watchdog_device * wdd)168 static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
169 {
170 	return container_of(wdd, struct aspeed_wdt, wdd);
171 }
172 
aspeed_wdt_enable(struct aspeed_wdt * wdt,int count)173 static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
174 {
175 	wdt->ctrl |= WDT_CTRL_ENABLE;
176 
177 	writel(0, wdt->base + WDT_CTRL);
178 	writel(count, wdt->base + WDT_RELOAD_VALUE);
179 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
180 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
181 }
182 
aspeed_wdt_start(struct watchdog_device * wdd)183 static int aspeed_wdt_start(struct watchdog_device *wdd)
184 {
185 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
186 
187 	aspeed_wdt_enable(wdt, wdd->timeout * WDT_RATE_1MHZ);
188 
189 	return 0;
190 }
191 
aspeed_wdt_stop(struct watchdog_device * wdd)192 static int aspeed_wdt_stop(struct watchdog_device *wdd)
193 {
194 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
195 
196 	wdt->ctrl &= ~WDT_CTRL_ENABLE;
197 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
198 
199 	return 0;
200 }
201 
aspeed_wdt_ping(struct watchdog_device * wdd)202 static int aspeed_wdt_ping(struct watchdog_device *wdd)
203 {
204 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
205 
206 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
207 
208 	return 0;
209 }
210 
aspeed_wdt_set_timeout(struct watchdog_device * wdd,unsigned int timeout)211 static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
212 				  unsigned int timeout)
213 {
214 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
215 	u32 actual;
216 
217 	wdd->timeout = timeout;
218 
219 	actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
220 
221 	writel(actual * WDT_RATE_1MHZ, wdt->base + WDT_RELOAD_VALUE);
222 	writel(WDT_RESTART_MAGIC, wdt->base + WDT_RESTART);
223 
224 	return 0;
225 }
226 
aspeed_wdt_set_pretimeout(struct watchdog_device * wdd,unsigned int pretimeout)227 static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
228 				     unsigned int pretimeout)
229 {
230 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
231 	u32 actual = pretimeout * WDT_RATE_1MHZ;
232 	u32 s = wdt->cfg->irq_shift;
233 	u32 m = wdt->cfg->irq_mask;
234 
235 	wdd->pretimeout = pretimeout;
236 	wdt->ctrl &= ~m;
237 	if (pretimeout)
238 		wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
239 	else
240 		wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
241 
242 	writel(wdt->ctrl, wdt->base + WDT_CTRL);
243 
244 	return 0;
245 }
246 
aspeed_wdt_restart(struct watchdog_device * wdd,unsigned long action,void * data)247 static int aspeed_wdt_restart(struct watchdog_device *wdd,
248 			      unsigned long action, void *data)
249 {
250 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
251 
252 	wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
253 	aspeed_wdt_enable(wdt, 128 * WDT_RATE_1MHZ / 1000);
254 
255 	mdelay(1000);
256 
257 	return 0;
258 }
259 
aspeed_wdt_update_bootstatus(struct platform_device * pdev,struct aspeed_wdt * wdt)260 static void aspeed_wdt_update_bootstatus(struct platform_device *pdev,
261 					 struct aspeed_wdt *wdt)
262 {
263 	const struct resource *res;
264 	struct aspeed_wdt_scu scu = wdt->cfg->scu;
265 	struct regmap *scu_base;
266 	u32 reset_mask_width;
267 	u32 reset_mask_shift;
268 	u32 idx = 0;
269 	u32 status;
270 	int ret;
271 
272 	if (!of_device_is_compatible(pdev->dev.of_node, "aspeed,ast2400-wdt")) {
273 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
274 		idx = ((intptr_t)wdt->base & 0x00000fff) / (uintptr_t)resource_size(res);
275 	}
276 
277 	scu_base = syscon_regmap_lookup_by_compatible(scu.compatible);
278 	if (IS_ERR(scu_base)) {
279 		wdt->wdd.bootstatus = WDIOS_UNKNOWN;
280 		return;
281 	}
282 
283 	ret = regmap_read(scu_base, scu.reset_status_reg, &status);
284 	if (ret) {
285 		wdt->wdd.bootstatus = WDIOS_UNKNOWN;
286 		return;
287 	}
288 
289 	reset_mask_width = hweight32(scu.wdt_reset_mask);
290 	reset_mask_shift = scu.wdt_reset_mask_shift +
291 			   reset_mask_width * idx;
292 
293 	if (status & (scu.wdt_reset_mask << reset_mask_shift))
294 		wdt->wdd.bootstatus = WDIOF_CARDRESET;
295 
296 	/* clear wdt reset event flag */
297 	if (of_device_is_compatible(pdev->dev.of_node, "aspeed,ast2400-wdt") ||
298 	    of_device_is_compatible(pdev->dev.of_node, "aspeed,ast2500-wdt")) {
299 		ret = regmap_read(scu_base, scu.reset_status_reg, &status);
300 		if (!ret) {
301 			status &= ~(scu.wdt_reset_mask << reset_mask_shift);
302 			regmap_write(scu_base, scu.reset_status_reg, status);
303 		}
304 	} else {
305 		regmap_write(scu_base, scu.reset_status_reg,
306 			     scu.wdt_reset_mask << reset_mask_shift);
307 	}
308 }
309 
310 /* access_cs0 shows if cs0 is accessible, hence the reverted bit */
access_cs0_show(struct device * dev,struct device_attribute * attr,char * buf)311 static ssize_t access_cs0_show(struct device *dev,
312 			       struct device_attribute *attr, char *buf)
313 {
314 	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
315 	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
316 
317 	return sysfs_emit(buf, "%u\n",
318 			  !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
319 }
320 
access_cs0_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)321 static ssize_t access_cs0_store(struct device *dev,
322 				struct device_attribute *attr, const char *buf,
323 				size_t size)
324 {
325 	struct aspeed_wdt *wdt = dev_get_drvdata(dev);
326 	unsigned long val;
327 
328 	if (kstrtoul(buf, 10, &val))
329 		return -EINVAL;
330 
331 	if (val)
332 		writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
333 		       wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
334 
335 	return size;
336 }
337 
338 /*
339  * This attribute exists only if the system has booted from the alternate
340  * flash with 'alt-boot' option.
341  *
342  * At alternate flash the 'access_cs0' sysfs node provides:
343  *   ast2400: a way to get access to the primary SPI flash chip at CS0
344  *            after booting from the alternate chip at CS1.
345  *   ast2500: a way to restore the normal address mapping from
346  *            (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
347  *
348  * Clearing the boot code selection and timeout counter also resets to the
349  * initial state the chip select line mapping. When the SoC is in normal
350  * mapping state (i.e. booted from CS0), clearing those bits does nothing for
351  * both versions of the SoC. For alternate boot mode (booted from CS1 due to
352  * wdt2 expiration) the behavior differs as described above.
353  *
354  * This option can be used with wdt2 (watchdog1) only.
355  */
356 static DEVICE_ATTR_RW(access_cs0);
357 
358 static struct attribute *bswitch_attrs[] = {
359 	&dev_attr_access_cs0.attr,
360 	NULL
361 };
362 ATTRIBUTE_GROUPS(bswitch);
363 
364 static const struct watchdog_ops aspeed_wdt_ops = {
365 	.start		= aspeed_wdt_start,
366 	.stop		= aspeed_wdt_stop,
367 	.ping		= aspeed_wdt_ping,
368 	.set_timeout	= aspeed_wdt_set_timeout,
369 	.set_pretimeout = aspeed_wdt_set_pretimeout,
370 	.restart	= aspeed_wdt_restart,
371 	.owner		= THIS_MODULE,
372 };
373 
374 static const struct watchdog_info aspeed_wdt_info = {
375 	.options	= WDIOF_KEEPALIVEPING
376 			| WDIOF_MAGICCLOSE
377 			| WDIOF_SETTIMEOUT,
378 	.identity	= KBUILD_MODNAME,
379 };
380 
381 static const struct watchdog_info aspeed_wdt_pretimeout_info = {
382 	.options	= WDIOF_KEEPALIVEPING
383 			| WDIOF_PRETIMEOUT
384 			| WDIOF_MAGICCLOSE
385 			| WDIOF_SETTIMEOUT,
386 	.identity	= KBUILD_MODNAME,
387 };
388 
aspeed_wdt_irq(int irq,void * arg)389 static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
390 {
391 	struct watchdog_device *wdd = arg;
392 	struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
393 	u32 status = readl(wdt->base + WDT_TIMEOUT_STATUS);
394 
395 	if (status & WDT_TIMEOUT_STATUS_IRQ)
396 		watchdog_notify_pretimeout(wdd);
397 
398 	return IRQ_HANDLED;
399 }
400 
aspeed_wdt_probe(struct platform_device * pdev)401 static int aspeed_wdt_probe(struct platform_device *pdev)
402 {
403 	struct device *dev = &pdev->dev;
404 	const struct of_device_id *ofdid;
405 	struct aspeed_wdt *wdt;
406 	struct device_node *np;
407 	const char *reset_type;
408 	u32 duration;
409 	u32 status;
410 	int ret;
411 
412 	wdt = devm_kzalloc(dev, sizeof(*wdt), GFP_KERNEL);
413 	if (!wdt)
414 		return -ENOMEM;
415 
416 	np = dev->of_node;
417 
418 	ofdid = of_match_node(aspeed_wdt_of_table, np);
419 	if (!ofdid)
420 		return -EINVAL;
421 	wdt->cfg = ofdid->data;
422 
423 	wdt->base = devm_platform_ioremap_resource(pdev, 0);
424 	if (IS_ERR(wdt->base))
425 		return PTR_ERR(wdt->base);
426 
427 	wdt->wdd.info = &aspeed_wdt_info;
428 
429 	if (wdt->cfg->irq_mask) {
430 		int irq = platform_get_irq_optional(pdev, 0);
431 
432 		if (irq > 0) {
433 			ret = devm_request_irq(dev, irq, aspeed_wdt_irq,
434 					       IRQF_SHARED, dev_name(dev),
435 					       wdt);
436 			if (ret)
437 				return ret;
438 
439 			wdt->wdd.info = &aspeed_wdt_pretimeout_info;
440 		}
441 	}
442 
443 	wdt->wdd.ops = &aspeed_wdt_ops;
444 	wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
445 	wdt->wdd.parent = dev;
446 
447 	wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
448 	watchdog_init_timeout(&wdt->wdd, 0, dev);
449 
450 	watchdog_set_nowayout(&wdt->wdd, nowayout);
451 
452 	/*
453 	 * On clock rates:
454 	 *  - ast2400 wdt can run at PCLK, or 1MHz
455 	 *  - ast2500 only runs at 1MHz, hard coding bit 4 to 1
456 	 *  - ast2600 always runs at 1MHz
457 	 *
458 	 * Set the ast2400 to run at 1MHz as it simplifies the driver.
459 	 */
460 	if (of_device_is_compatible(np, "aspeed,ast2400-wdt"))
461 		wdt->ctrl = WDT_CTRL_1MHZ_CLK;
462 
463 	/*
464 	 * Control reset on a per-device basis to ensure the
465 	 * host is not affected by a BMC reboot
466 	 */
467 	ret = of_property_read_string(np, "aspeed,reset-type", &reset_type);
468 	if (ret) {
469 		wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
470 	} else {
471 		if (!strcmp(reset_type, "cpu"))
472 			wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
473 				     WDT_CTRL_RESET_SYSTEM;
474 		else if (!strcmp(reset_type, "soc"))
475 			wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
476 				     WDT_CTRL_RESET_SYSTEM;
477 		else if (!strcmp(reset_type, "system"))
478 			wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
479 				     WDT_CTRL_RESET_SYSTEM;
480 		else if (strcmp(reset_type, "none"))
481 			return -EINVAL;
482 	}
483 	if (of_property_read_bool(np, "aspeed,external-signal"))
484 		wdt->ctrl |= WDT_CTRL_WDT_EXT;
485 	if (of_property_read_bool(np, "aspeed,alt-boot"))
486 		wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
487 
488 	if (readl(wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE)  {
489 		/*
490 		 * The watchdog is running, but invoke aspeed_wdt_start() to
491 		 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
492 		 * configuration conforms to the driver's expectations.
493 		 * Primarily, ensure we're using the 1MHz clock source.
494 		 */
495 		aspeed_wdt_start(&wdt->wdd);
496 		set_bit(WDOG_HW_RUNNING, &wdt->wdd.status);
497 	}
498 
499 	if (!of_device_is_compatible(np, "aspeed,ast2400-wdt")) {
500 		u32 reset_mask[5];
501 		size_t nrstmask = wdt->cfg->num_reset_masks;
502 		u32 reg = readl(wdt->base + WDT_RESET_WIDTH);
503 		int i;
504 
505 		reg &= wdt->cfg->ext_pulse_width_mask;
506 		if (of_property_read_bool(np, "aspeed,ext-active-high"))
507 			reg |= WDT_ACTIVE_HIGH_MAGIC;
508 		else
509 			reg |= WDT_ACTIVE_LOW_MAGIC;
510 
511 		writel(reg, wdt->base + WDT_RESET_WIDTH);
512 
513 		reg &= wdt->cfg->ext_pulse_width_mask;
514 		if (of_property_read_bool(np, "aspeed,ext-push-pull"))
515 			reg |= WDT_PUSH_PULL_MAGIC;
516 		else
517 			reg |= WDT_OPEN_DRAIN_MAGIC;
518 
519 		writel(reg, wdt->base + WDT_RESET_WIDTH);
520 
521 		ret = of_property_read_u32_array(np, "aspeed,reset-mask", reset_mask, nrstmask);
522 		if (!ret) {
523 			for (i = 0; i < nrstmask; i++)
524 				writel(reset_mask[i], wdt->base + WDT_RESET_MASK1 + i * 4);
525 		}
526 	}
527 
528 	if (!of_property_read_u32(np, "aspeed,ext-pulse-duration", &duration)) {
529 		u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
530 
531 		if (duration == 0 || duration > max_duration) {
532 			dev_err(dev, "Invalid pulse duration: %uus\n",
533 				duration);
534 			duration = max(1U, min(max_duration, duration));
535 			dev_info(dev, "Pulse duration set to %uus\n",
536 				 duration);
537 		}
538 
539 		/*
540 		 * The watchdog is always configured with a 1MHz source, so
541 		 * there is no need to scale the microsecond value. However we
542 		 * need to offset it - from the datasheet:
543 		 *
544 		 * "This register decides the asserting duration of wdt_ext and
545 		 * wdt_rstarm signal. The default value is 0xFF. It means the
546 		 * default asserting duration of wdt_ext and wdt_rstarm is
547 		 * 256us."
548 		 *
549 		 * This implies a value of 0 gives a 1us pulse.
550 		 */
551 		writel(duration - 1, wdt->base + WDT_RESET_WIDTH);
552 	}
553 
554 	aspeed_wdt_update_bootstatus(pdev, wdt);
555 
556 	status = readl(wdt->base + WDT_TIMEOUT_STATUS);
557 	if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
558 		if (of_device_is_compatible(np, "aspeed,ast2400-wdt") ||
559 		    of_device_is_compatible(np, "aspeed,ast2500-wdt"))
560 			wdt->wdd.groups = bswitch_groups;
561 	}
562 
563 	dev_set_drvdata(dev, wdt);
564 
565 	return devm_watchdog_register_device(dev, &wdt->wdd);
566 }
567 
568 static struct platform_driver aspeed_watchdog_driver = {
569 	.probe = aspeed_wdt_probe,
570 	.driver = {
571 		.name = KBUILD_MODNAME,
572 		.of_match_table = aspeed_wdt_of_table,
573 	},
574 };
575 
aspeed_wdt_init(void)576 static int __init aspeed_wdt_init(void)
577 {
578 	return platform_driver_register(&aspeed_watchdog_driver);
579 }
580 arch_initcall(aspeed_wdt_init);
581 
aspeed_wdt_exit(void)582 static void __exit aspeed_wdt_exit(void)
583 {
584 	platform_driver_unregister(&aspeed_watchdog_driver);
585 }
586 module_exit(aspeed_wdt_exit);
587 
588 MODULE_DESCRIPTION("Aspeed Watchdog Driver");
589 MODULE_LICENSE("GPL");
590