xref: /linux/kernel/irq/manage.c (revision 60c1d948f79dc6626bf2fe4f2d2fba51e18a1e04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
38 static int __irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state);
39 
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)40 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
41 {
42 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
43 	bool inprogress;
44 
45 	do {
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		guard(raw_spinlock_irqsave)(&desc->lock);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		/* Oops, that failed? */
71 	} while (inprogress);
72 }
73 
74 /**
75  * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
76  * @irq: interrupt number to wait for
77  *
78  * This function waits for any pending hard IRQ handlers for this interrupt
79  * to complete before returning. If you use this function while holding a
80  * resource the IRQ handler may need you will deadlock. It does not take
81  * associated threaded handlers into account.
82  *
83  * Do not use this for shutdown scenarios where you must be sure that all
84  * parts (hardirq and threaded handler) have completed.
85  *
86  * Returns: false if a threaded handler is active.
87  *
88  * This function may be called - with care - from IRQ context.
89  *
90  * It does not check whether there is an interrupt in flight at the
91  * hardware level, but not serviced yet, as this might deadlock when called
92  * with interrupts disabled and the target CPU of the interrupt is the
93  * current CPU.
94  */
synchronize_hardirq(unsigned int irq)95 bool synchronize_hardirq(unsigned int irq)
96 {
97 	struct irq_desc *desc = irq_to_desc(irq);
98 
99 	if (desc) {
100 		__synchronize_hardirq(desc, false);
101 		return !atomic_read(&desc->threads_active);
102 	}
103 
104 	return true;
105 }
106 EXPORT_SYMBOL(synchronize_hardirq);
107 
__synchronize_irq(struct irq_desc * desc)108 static void __synchronize_irq(struct irq_desc *desc)
109 {
110 	__synchronize_hardirq(desc, true);
111 	/*
112 	 * We made sure that no hardirq handler is running. Now verify that no
113 	 * threaded handlers are active.
114 	 */
115 	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
116 }
117 
118 /**
119  * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
120  * @irq: interrupt number to wait for
121  *
122  * This function waits for any pending IRQ handlers for this interrupt to
123  * complete before returning. If you use this function while holding a
124  * resource the IRQ handler may need you will deadlock.
125  *
126  * Can only be called from preemptible code as it might sleep when
127  * an interrupt thread is associated to @irq.
128  *
129  * It optionally makes sure (when the irq chip supports that method)
130  * that the interrupt is not pending in any CPU and waiting for
131  * service.
132  */
synchronize_irq(unsigned int irq)133 void synchronize_irq(unsigned int irq)
134 {
135 	struct irq_desc *desc = irq_to_desc(irq);
136 
137 	if (desc)
138 		__synchronize_irq(desc);
139 }
140 EXPORT_SYMBOL(synchronize_irq);
141 
142 #ifdef CONFIG_SMP
143 cpumask_var_t irq_default_affinity;
144 
__irq_can_set_affinity(struct irq_desc * desc)145 static bool __irq_can_set_affinity(struct irq_desc *desc)
146 {
147 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
148 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
149 		return false;
150 	return true;
151 }
152 
153 /**
154  * irq_can_set_affinity - Check if the affinity of a given irq can be set
155  * @irq:	Interrupt to check
156  *
157  */
irq_can_set_affinity(unsigned int irq)158 int irq_can_set_affinity(unsigned int irq)
159 {
160 	return __irq_can_set_affinity(irq_to_desc(irq));
161 }
162 
163 /**
164  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
165  * @irq:	Interrupt to check
166  *
167  * Like irq_can_set_affinity() above, but additionally checks for the
168  * AFFINITY_MANAGED flag.
169  */
irq_can_set_affinity_usr(unsigned int irq)170 bool irq_can_set_affinity_usr(unsigned int irq)
171 {
172 	struct irq_desc *desc = irq_to_desc(irq);
173 
174 	return __irq_can_set_affinity(desc) &&
175 		!irqd_affinity_is_managed(&desc->irq_data);
176 }
177 
178 /**
179  * irq_set_thread_affinity - Notify irq threads to adjust affinity
180  * @desc:	irq descriptor which has affinity changed
181  *
182  * Just set IRQTF_AFFINITY and delegate the affinity setting to the
183  * interrupt thread itself. We can not call set_cpus_allowed_ptr() here as
184  * we hold desc->lock and this code can be called from hard interrupt
185  * context.
186  */
irq_set_thread_affinity(struct irq_desc * desc)187 static void irq_set_thread_affinity(struct irq_desc *desc)
188 {
189 	struct irqaction *action;
190 
191 	for_each_action_of_desc(desc, action) {
192 		if (action->thread) {
193 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
194 			wake_up_process(action->thread);
195 		}
196 		if (action->secondary && action->secondary->thread) {
197 			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
198 			wake_up_process(action->secondary->thread);
199 		}
200 	}
201 }
202 
203 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)204 static void irq_validate_effective_affinity(struct irq_data *data)
205 {
206 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
207 	struct irq_chip *chip = irq_data_get_irq_chip(data);
208 
209 	if (!cpumask_empty(m))
210 		return;
211 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
212 		     chip->name, data->irq);
213 }
214 #else
irq_validate_effective_affinity(struct irq_data * data)215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
216 #endif
217 
218 static DEFINE_PER_CPU(struct cpumask, __tmp_mask);
219 
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221 			bool force)
222 {
223 	struct cpumask *tmp_mask = this_cpu_ptr(&__tmp_mask);
224 	struct irq_desc *desc = irq_data_to_desc(data);
225 	struct irq_chip *chip = irq_data_get_irq_chip(data);
226 	const struct cpumask  *prog_mask;
227 	int ret;
228 
229 	if (!chip || !chip->irq_set_affinity)
230 		return -EINVAL;
231 
232 	/*
233 	 * If this is a managed interrupt and housekeeping is enabled on
234 	 * it check whether the requested affinity mask intersects with
235 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
236 	 * the mask and just keep the housekeeping CPU(s). This prevents
237 	 * the affinity setter from routing the interrupt to an isolated
238 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
239 	 * interrupts on an isolated one.
240 	 *
241 	 * If the masks do not intersect or include online CPU(s) then
242 	 * keep the requested mask. The isolated target CPUs are only
243 	 * receiving interrupts when the I/O operation was submitted
244 	 * directly from them.
245 	 *
246 	 * If all housekeeping CPUs in the affinity mask are offline, the
247 	 * interrupt will be migrated by the CPU hotplug code once a
248 	 * housekeeping CPU which belongs to the affinity mask comes
249 	 * online.
250 	 */
251 	if (irqd_affinity_is_managed(data) &&
252 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
253 		const struct cpumask *hk_mask;
254 
255 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
256 
257 		cpumask_and(tmp_mask, mask, hk_mask);
258 		if (!cpumask_intersects(tmp_mask, cpu_online_mask))
259 			prog_mask = mask;
260 		else
261 			prog_mask = tmp_mask;
262 	} else {
263 		prog_mask = mask;
264 	}
265 
266 	/*
267 	 * Make sure we only provide online CPUs to the irqchip,
268 	 * unless we are being asked to force the affinity (in which
269 	 * case we do as we are told).
270 	 */
271 	cpumask_and(tmp_mask, prog_mask, cpu_online_mask);
272 	if (!force && !cpumask_empty(tmp_mask))
273 		ret = chip->irq_set_affinity(data, tmp_mask, force);
274 	else if (force)
275 		ret = chip->irq_set_affinity(data, mask, force);
276 	else
277 		ret = -EINVAL;
278 
279 	switch (ret) {
280 	case IRQ_SET_MASK_OK:
281 	case IRQ_SET_MASK_OK_DONE:
282 		cpumask_copy(desc->irq_common_data.affinity, mask);
283 		fallthrough;
284 	case IRQ_SET_MASK_OK_NOCOPY:
285 		irq_validate_effective_affinity(data);
286 		irq_set_thread_affinity(desc);
287 		ret = 0;
288 	}
289 
290 	return ret;
291 }
292 
293 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)294 static inline int irq_set_affinity_pending(struct irq_data *data,
295 					   const struct cpumask *dest)
296 {
297 	struct irq_desc *desc = irq_data_to_desc(data);
298 
299 	irqd_set_move_pending(data);
300 	irq_copy_pending(desc, dest);
301 	return 0;
302 }
303 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)304 static inline int irq_set_affinity_pending(struct irq_data *data,
305 					   const struct cpumask *dest)
306 {
307 	return -EBUSY;
308 }
309 #endif
310 
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)311 static int irq_try_set_affinity(struct irq_data *data,
312 				const struct cpumask *dest, bool force)
313 {
314 	int ret = irq_do_set_affinity(data, dest, force);
315 
316 	/*
317 	 * In case that the underlying vector management is busy and the
318 	 * architecture supports the generic pending mechanism then utilize
319 	 * this to avoid returning an error to user space.
320 	 */
321 	if (ret == -EBUSY && !force)
322 		ret = irq_set_affinity_pending(data, dest);
323 	return ret;
324 }
325 
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask)326 static bool irq_set_affinity_deactivated(struct irq_data *data,
327 					 const struct cpumask *mask)
328 {
329 	struct irq_desc *desc = irq_data_to_desc(data);
330 
331 	/*
332 	 * Handle irq chips which can handle affinity only in activated
333 	 * state correctly
334 	 *
335 	 * If the interrupt is not yet activated, just store the affinity
336 	 * mask and do not call the chip driver at all. On activation the
337 	 * driver has to make sure anyway that the interrupt is in a
338 	 * usable state so startup works.
339 	 */
340 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
341 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
342 		return false;
343 
344 	cpumask_copy(desc->irq_common_data.affinity, mask);
345 	irq_data_update_effective_affinity(data, mask);
346 	irqd_set(data, IRQD_AFFINITY_SET);
347 	return true;
348 }
349 
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)350 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
351 			    bool force)
352 {
353 	struct irq_chip *chip = irq_data_get_irq_chip(data);
354 	struct irq_desc *desc = irq_data_to_desc(data);
355 	int ret = 0;
356 
357 	if (!chip || !chip->irq_set_affinity)
358 		return -EINVAL;
359 
360 	if (irq_set_affinity_deactivated(data, mask))
361 		return 0;
362 
363 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
364 		ret = irq_try_set_affinity(data, mask, force);
365 	} else {
366 		irqd_set_move_pending(data);
367 		irq_copy_pending(desc, mask);
368 	}
369 
370 	if (desc->affinity_notify) {
371 		kref_get(&desc->affinity_notify->kref);
372 		if (!schedule_work(&desc->affinity_notify->work)) {
373 			/* Work was already scheduled, drop our extra ref */
374 			kref_put(&desc->affinity_notify->kref,
375 				 desc->affinity_notify->release);
376 		}
377 	}
378 	irqd_set(data, IRQD_AFFINITY_SET);
379 
380 	return ret;
381 }
382 
383 /**
384  * irq_update_affinity_desc - Update affinity management for an interrupt
385  * @irq:	The interrupt number to update
386  * @affinity:	Pointer to the affinity descriptor
387  *
388  * This interface can be used to configure the affinity management of
389  * interrupts which have been allocated already.
390  *
391  * There are certain limitations on when it may be used - attempts to use it
392  * for when the kernel is configured for generic IRQ reservation mode (in
393  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
394  * managed/non-managed interrupt accounting. In addition, attempts to use it on
395  * an interrupt which is already started or which has already been configured
396  * as managed will also fail, as these mean invalid init state or double init.
397  */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)398 int irq_update_affinity_desc(unsigned int irq, struct irq_affinity_desc *affinity)
399 {
400 	/*
401 	 * Supporting this with the reservation scheme used by x86 needs
402 	 * some more thought. Fail it for now.
403 	 */
404 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
405 		return -EOPNOTSUPP;
406 
407 	scoped_irqdesc_get_and_buslock(irq, 0) {
408 		struct irq_desc *desc = scoped_irqdesc;
409 		bool activated;
410 
411 		/* Requires the interrupt to be shut down */
412 		if (irqd_is_started(&desc->irq_data))
413 			return -EBUSY;
414 
415 		/* Interrupts which are already managed cannot be modified */
416 		if (irqd_affinity_is_managed(&desc->irq_data))
417 			return -EBUSY;
418 		/*
419 		 * Deactivate the interrupt. That's required to undo
420 		 * anything an earlier activation has established.
421 		 */
422 		activated = irqd_is_activated(&desc->irq_data);
423 		if (activated)
424 			irq_domain_deactivate_irq(&desc->irq_data);
425 
426 		if (affinity->is_managed) {
427 			irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
428 			irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
429 		}
430 
431 		cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
432 
433 		/* Restore the activation state */
434 		if (activated)
435 			irq_domain_activate_irq(&desc->irq_data, false);
436 		return 0;
437 	}
438 	return -EINVAL;
439 }
440 
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)441 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
442 			      bool force)
443 {
444 	struct irq_desc *desc = irq_to_desc(irq);
445 
446 	if (!desc)
447 		return -EINVAL;
448 
449 	guard(raw_spinlock_irqsave)(&desc->lock);
450 	return irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
451 }
452 
453 /**
454  * irq_set_affinity - Set the irq affinity of a given irq
455  * @irq:	Interrupt to set affinity
456  * @cpumask:	cpumask
457  *
458  * Fails if cpumask does not contain an online CPU
459  */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)460 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
461 {
462 	return __irq_set_affinity(irq, cpumask, false);
463 }
464 EXPORT_SYMBOL_GPL(irq_set_affinity);
465 
466 /**
467  * irq_force_affinity - Force the irq affinity of a given irq
468  * @irq:	Interrupt to set affinity
469  * @cpumask:	cpumask
470  *
471  * Same as irq_set_affinity, but without checking the mask against
472  * online cpus.
473  *
474  * Solely for low level cpu hotplug code, where we need to make per
475  * cpu interrupts affine before the cpu becomes online.
476  */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)477 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
478 {
479 	return __irq_set_affinity(irq, cpumask, true);
480 }
481 EXPORT_SYMBOL_GPL(irq_force_affinity);
482 
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)483 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m, bool setaffinity)
484 {
485 	int ret = -EINVAL;
486 
487 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
488 		scoped_irqdesc->affinity_hint = m;
489 		ret = 0;
490 	}
491 
492 	if (!ret && m && setaffinity)
493 		__irq_set_affinity(irq, m, false);
494 	return ret;
495 }
496 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
497 
irq_affinity_notify(struct work_struct * work)498 static void irq_affinity_notify(struct work_struct *work)
499 {
500 	struct irq_affinity_notify *notify = container_of(work, struct irq_affinity_notify, work);
501 	struct irq_desc *desc = irq_to_desc(notify->irq);
502 	cpumask_var_t cpumask;
503 
504 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
505 		goto out;
506 
507 	scoped_guard(raw_spinlock_irqsave, &desc->lock) {
508 		if (irq_move_pending(&desc->irq_data))
509 			irq_get_pending(cpumask, desc);
510 		else
511 			cpumask_copy(cpumask, desc->irq_common_data.affinity);
512 	}
513 
514 	notify->notify(notify, cpumask);
515 
516 	free_cpumask_var(cpumask);
517 out:
518 	kref_put(&notify->kref, notify->release);
519 }
520 
521 /**
522  * irq_set_affinity_notifier - control notification of IRQ affinity changes
523  * @irq:	Interrupt for which to enable/disable notification
524  * @notify:	Context for notification, or %NULL to disable
525  *		notification.  Function pointers must be initialised;
526  *		the other fields will be initialised by this function.
527  *
528  * Must be called in process context.  Notification may only be enabled
529  * after the IRQ is allocated and must be disabled before the IRQ is freed
530  * using free_irq().
531  */
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)532 int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
533 {
534 	struct irq_desc *desc = irq_to_desc(irq);
535 	struct irq_affinity_notify *old_notify;
536 
537 	/* The release function is promised process context */
538 	might_sleep();
539 
540 	if (!desc || irq_is_nmi(desc))
541 		return -EINVAL;
542 
543 	/* Complete initialisation of *notify */
544 	if (notify) {
545 		notify->irq = irq;
546 		kref_init(&notify->kref);
547 		INIT_WORK(&notify->work, irq_affinity_notify);
548 	}
549 
550 	scoped_guard(raw_spinlock_irqsave, &desc->lock) {
551 		old_notify = desc->affinity_notify;
552 		desc->affinity_notify = notify;
553 	}
554 
555 	if (old_notify) {
556 		if (cancel_work_sync(&old_notify->work)) {
557 			/* Pending work had a ref, put that one too */
558 			kref_put(&old_notify->kref, old_notify->release);
559 		}
560 		kref_put(&old_notify->kref, old_notify->release);
561 	}
562 
563 	return 0;
564 }
565 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
566 
567 #ifndef CONFIG_AUTO_IRQ_AFFINITY
568 /*
569  * Generic version of the affinity autoselector.
570  */
irq_setup_affinity(struct irq_desc * desc)571 int irq_setup_affinity(struct irq_desc *desc)
572 {
573 	struct cpumask *set = irq_default_affinity;
574 	int node = irq_desc_get_node(desc);
575 
576 	static DEFINE_RAW_SPINLOCK(mask_lock);
577 	static struct cpumask mask;
578 
579 	/* Excludes PER_CPU and NO_BALANCE interrupts */
580 	if (!__irq_can_set_affinity(desc))
581 		return 0;
582 
583 	guard(raw_spinlock)(&mask_lock);
584 	/*
585 	 * Preserve the managed affinity setting and a userspace affinity
586 	 * setup, but make sure that one of the targets is online.
587 	 */
588 	if (irqd_affinity_is_managed(&desc->irq_data) ||
589 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
590 		if (cpumask_intersects(desc->irq_common_data.affinity,
591 				       cpu_online_mask))
592 			set = desc->irq_common_data.affinity;
593 		else
594 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
595 	}
596 
597 	cpumask_and(&mask, cpu_online_mask, set);
598 	if (cpumask_empty(&mask))
599 		cpumask_copy(&mask, cpu_online_mask);
600 
601 	if (node != NUMA_NO_NODE) {
602 		const struct cpumask *nodemask = cpumask_of_node(node);
603 
604 		/* make sure at least one of the cpus in nodemask is online */
605 		if (cpumask_intersects(&mask, nodemask))
606 			cpumask_and(&mask, &mask, nodemask);
607 	}
608 	return irq_do_set_affinity(&desc->irq_data, &mask, false);
609 }
610 #else
611 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)612 int irq_setup_affinity(struct irq_desc *desc)
613 {
614 	return irq_select_affinity(irq_desc_get_irq(desc));
615 }
616 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
617 #endif /* CONFIG_SMP */
618 
619 
620 /**
621  * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
622  * @irq:	interrupt number to set affinity
623  * @vcpu_info:	vCPU specific data or pointer to a percpu array of vCPU
624  *		specific data for percpu_devid interrupts
625  *
626  * This function uses the vCPU specific data to set the vCPU affinity for
627  * an irq. The vCPU specific data is passed from outside, such as KVM. One
628  * example code path is as below: KVM -> IOMMU -> irq_set_vcpu_affinity().
629  */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)630 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
631 {
632 	scoped_irqdesc_get_and_lock(irq, 0) {
633 		struct irq_desc *desc = scoped_irqdesc;
634 		struct irq_data *data;
635 		struct irq_chip *chip;
636 
637 		data = irq_desc_get_irq_data(desc);
638 		do {
639 			chip = irq_data_get_irq_chip(data);
640 			if (chip && chip->irq_set_vcpu_affinity)
641 				break;
642 
643 			data = irqd_get_parent_data(data);
644 		} while (data);
645 
646 		if (!data)
647 			return -ENOSYS;
648 		return chip->irq_set_vcpu_affinity(data, vcpu_info);
649 	}
650 	return -EINVAL;
651 }
652 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
653 
__disable_irq(struct irq_desc * desc)654 void __disable_irq(struct irq_desc *desc)
655 {
656 	if (!desc->depth++)
657 		irq_disable(desc);
658 }
659 
__disable_irq_nosync(unsigned int irq)660 static int __disable_irq_nosync(unsigned int irq)
661 {
662 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
663 		__disable_irq(scoped_irqdesc);
664 		return 0;
665 	}
666 	return -EINVAL;
667 }
668 
669 /**
670  * disable_irq_nosync - disable an irq without waiting
671  * @irq: Interrupt to disable
672  *
673  * Disable the selected interrupt line.  Disables and Enables are
674  * nested.
675  * Unlike disable_irq(), this function does not ensure existing
676  * instances of the IRQ handler have completed before returning.
677  *
678  * This function may be called from IRQ context.
679  */
disable_irq_nosync(unsigned int irq)680 void disable_irq_nosync(unsigned int irq)
681 {
682 	__disable_irq_nosync(irq);
683 }
684 EXPORT_SYMBOL(disable_irq_nosync);
685 
686 /**
687  * disable_irq - disable an irq and wait for completion
688  * @irq: Interrupt to disable
689  *
690  * Disable the selected interrupt line.  Enables and Disables are nested.
691  *
692  * This function waits for any pending IRQ handlers for this interrupt to
693  * complete before returning. If you use this function while holding a
694  * resource the IRQ handler may need you will deadlock.
695  *
696  * Can only be called from preemptible code as it might sleep when an
697  * interrupt thread is associated to @irq.
698  *
699  */
disable_irq(unsigned int irq)700 void disable_irq(unsigned int irq)
701 {
702 	might_sleep();
703 	if (!__disable_irq_nosync(irq))
704 		synchronize_irq(irq);
705 }
706 EXPORT_SYMBOL(disable_irq);
707 
708 /**
709  * disable_hardirq - disables an irq and waits for hardirq completion
710  * @irq: Interrupt to disable
711  *
712  * Disable the selected interrupt line.  Enables and Disables are nested.
713  *
714  * This function waits for any pending hard IRQ handlers for this interrupt
715  * to complete before returning. If you use this function while holding a
716  * resource the hard IRQ handler may need you will deadlock.
717  *
718  * When used to optimistically disable an interrupt from atomic context the
719  * return value must be checked.
720  *
721  * Returns: false if a threaded handler is active.
722  *
723  * This function may be called - with care - from IRQ context.
724  */
disable_hardirq(unsigned int irq)725 bool disable_hardirq(unsigned int irq)
726 {
727 	if (!__disable_irq_nosync(irq))
728 		return synchronize_hardirq(irq);
729 	return false;
730 }
731 EXPORT_SYMBOL_GPL(disable_hardirq);
732 
733 /**
734  * disable_nmi_nosync - disable an nmi without waiting
735  * @irq: Interrupt to disable
736  *
737  * Disable the selected interrupt line. Disables and enables are nested.
738  *
739  * The interrupt to disable must have been requested through request_nmi.
740  * Unlike disable_nmi(), this function does not ensure existing
741  * instances of the IRQ handler have completed before returning.
742  */
disable_nmi_nosync(unsigned int irq)743 void disable_nmi_nosync(unsigned int irq)
744 {
745 	disable_irq_nosync(irq);
746 }
747 
__enable_irq(struct irq_desc * desc)748 void __enable_irq(struct irq_desc *desc)
749 {
750 	switch (desc->depth) {
751 	case 0:
752  err_out:
753 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
754 		     irq_desc_get_irq(desc));
755 		break;
756 	case 1: {
757 		if (desc->istate & IRQS_SUSPENDED)
758 			goto err_out;
759 		/* Prevent probing on this irq: */
760 		irq_settings_set_noprobe(desc);
761 		/*
762 		 * Call irq_startup() not irq_enable() here because the
763 		 * interrupt might be marked NOAUTOEN so irq_startup()
764 		 * needs to be invoked when it gets enabled the first time.
765 		 * This is also required when __enable_irq() is invoked for
766 		 * a managed and shutdown interrupt from the S3 resume
767 		 * path.
768 		 *
769 		 * If it was already started up, then irq_startup() will
770 		 * invoke irq_enable() under the hood.
771 		 */
772 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
773 		break;
774 	}
775 	default:
776 		desc->depth--;
777 	}
778 }
779 
780 /**
781  * enable_irq - enable handling of an irq
782  * @irq: Interrupt to enable
783  *
784  * Undoes the effect of one call to disable_irq().  If this matches the
785  * last disable, processing of interrupts on this IRQ line is re-enabled.
786  *
787  * This function may be called from IRQ context only when
788  * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
789  */
enable_irq(unsigned int irq)790 void enable_irq(unsigned int irq)
791 {
792 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
793 		struct irq_desc *desc = scoped_irqdesc;
794 
795 		if (WARN(!desc->irq_data.chip, "enable_irq before setup/request_irq: irq %u\n", irq))
796 			return;
797 		__enable_irq(desc);
798 	}
799 }
800 EXPORT_SYMBOL(enable_irq);
801 
802 /**
803  * enable_nmi - enable handling of an nmi
804  * @irq: Interrupt to enable
805  *
806  * The interrupt to enable must have been requested through request_nmi.
807  * Undoes the effect of one call to disable_nmi(). If this matches the last
808  * disable, processing of interrupts on this IRQ line is re-enabled.
809  */
enable_nmi(unsigned int irq)810 void enable_nmi(unsigned int irq)
811 {
812 	enable_irq(irq);
813 }
814 
set_irq_wake_real(unsigned int irq,unsigned int on)815 static int set_irq_wake_real(unsigned int irq, unsigned int on)
816 {
817 	struct irq_desc *desc = irq_to_desc(irq);
818 	int ret = -ENXIO;
819 
820 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
821 		return 0;
822 
823 	if (desc->irq_data.chip->irq_set_wake)
824 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
825 
826 	return ret;
827 }
828 
829 /**
830  * irq_set_irq_wake - control irq power management wakeup
831  * @irq:	interrupt to control
832  * @on:	enable/disable power management wakeup
833  *
834  * Enable/disable power management wakeup mode, which is disabled by
835  * default.  Enables and disables must match, just as they match for
836  * non-wakeup mode support.
837  *
838  * Wakeup mode lets this IRQ wake the system from sleep states like
839  * "suspend to RAM".
840  *
841  * Note: irq enable/disable state is completely orthogonal to the
842  * enable/disable state of irq wake. An irq can be disabled with
843  * disable_irq() and still wake the system as long as the irq has wake
844  * enabled. If this does not hold, then the underlying irq chip and the
845  * related driver need to be investigated.
846  */
irq_set_irq_wake(unsigned int irq,unsigned int on)847 int irq_set_irq_wake(unsigned int irq, unsigned int on)
848 {
849 	scoped_irqdesc_get_and_buslock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
850 		struct irq_desc *desc = scoped_irqdesc;
851 		int ret = 0;
852 
853 		/* Don't use NMIs as wake up interrupts please */
854 		if (irq_is_nmi(desc))
855 			return -EINVAL;
856 
857 		/*
858 		 * wakeup-capable irqs can be shared between drivers that
859 		 * don't need to have the same sleep mode behaviors.
860 		 */
861 		if (on) {
862 			if (desc->wake_depth++ == 0) {
863 				ret = set_irq_wake_real(irq, on);
864 				if (ret)
865 					desc->wake_depth = 0;
866 				else
867 					irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
868 			}
869 		} else {
870 			if (desc->wake_depth == 0) {
871 				WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
872 			} else if (--desc->wake_depth == 0) {
873 				ret = set_irq_wake_real(irq, on);
874 				if (ret)
875 					desc->wake_depth = 1;
876 				else
877 					irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
878 			}
879 		}
880 		return ret;
881 	}
882 	return -EINVAL;
883 }
884 EXPORT_SYMBOL(irq_set_irq_wake);
885 
886 /*
887  * Internal function that tells the architecture code whether a
888  * particular irq has been exclusively allocated or is available
889  * for driver use.
890  */
can_request_irq(unsigned int irq,unsigned long irqflags)891 bool can_request_irq(unsigned int irq, unsigned long irqflags)
892 {
893 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_GLOBAL) {
894 		struct irq_desc *desc = scoped_irqdesc;
895 
896 		if (irq_settings_can_request(desc)) {
897 			if (!desc->action || irqflags & desc->action->flags & IRQF_SHARED)
898 				return true;
899 		}
900 	}
901 	return false;
902 }
903 
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)904 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
905 {
906 	struct irq_chip *chip = desc->irq_data.chip;
907 	int ret, unmask = 0;
908 
909 	if (!chip || !chip->irq_set_type) {
910 		/*
911 		 * IRQF_TRIGGER_* but the PIC does not support multiple
912 		 * flow-types?
913 		 */
914 		pr_debug("No set_type function for IRQ %d (%s)\n",
915 			 irq_desc_get_irq(desc),
916 			 chip ? (chip->name ? : "unknown") : "unknown");
917 		return 0;
918 	}
919 
920 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
921 		if (!irqd_irq_masked(&desc->irq_data))
922 			mask_irq(desc);
923 		if (!irqd_irq_disabled(&desc->irq_data))
924 			unmask = 1;
925 	}
926 
927 	/* Mask all flags except trigger mode */
928 	flags &= IRQ_TYPE_SENSE_MASK;
929 	ret = chip->irq_set_type(&desc->irq_data, flags);
930 
931 	switch (ret) {
932 	case IRQ_SET_MASK_OK:
933 	case IRQ_SET_MASK_OK_DONE:
934 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
935 		irqd_set(&desc->irq_data, flags);
936 		fallthrough;
937 
938 	case IRQ_SET_MASK_OK_NOCOPY:
939 		flags = irqd_get_trigger_type(&desc->irq_data);
940 		irq_settings_set_trigger_mask(desc, flags);
941 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
942 		irq_settings_clr_level(desc);
943 		if (flags & IRQ_TYPE_LEVEL_MASK) {
944 			irq_settings_set_level(desc);
945 			irqd_set(&desc->irq_data, IRQD_LEVEL);
946 		}
947 
948 		ret = 0;
949 		break;
950 	default:
951 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
952 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
953 	}
954 	if (unmask)
955 		unmask_irq(desc);
956 	return ret;
957 }
958 
959 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)960 int irq_set_parent(int irq, int parent_irq)
961 {
962 	scoped_irqdesc_get_and_lock(irq, 0) {
963 		scoped_irqdesc->parent_irq = parent_irq;
964 		return 0;
965 	}
966 	return -EINVAL;
967 }
968 EXPORT_SYMBOL_GPL(irq_set_parent);
969 #endif
970 
971 /*
972  * Default primary interrupt handler for threaded interrupts. Is
973  * assigned as primary handler when request_threaded_irq is called
974  * with handler == NULL. Useful for oneshot interrupts.
975  */
irq_default_primary_handler(int irq,void * dev_id)976 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
977 {
978 	return IRQ_WAKE_THREAD;
979 }
980 
981 /*
982  * Primary handler for nested threaded interrupts. Should never be
983  * called.
984  */
irq_nested_primary_handler(int irq,void * dev_id)985 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
986 {
987 	WARN(1, "Primary handler called for nested irq %d\n", irq);
988 	return IRQ_NONE;
989 }
990 
irq_forced_secondary_handler(int irq,void * dev_id)991 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
992 {
993 	WARN(1, "Secondary action handler called for irq %d\n", irq);
994 	return IRQ_NONE;
995 }
996 
997 #ifdef CONFIG_SMP
998 /*
999  * Check whether we need to change the affinity of the interrupt thread.
1000  */
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1001 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1002 {
1003 	cpumask_var_t mask;
1004 	bool valid = false;
1005 
1006 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1007 		return;
1008 
1009 	__set_current_state(TASK_RUNNING);
1010 
1011 	/*
1012 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1013 	 * try again next time
1014 	 */
1015 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1016 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1017 		return;
1018 	}
1019 
1020 	scoped_guard(raw_spinlock_irq, &desc->lock) {
1021 		/*
1022 		 * This code is triggered unconditionally. Check the affinity
1023 		 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1024 		 */
1025 		if (cpumask_available(desc->irq_common_data.affinity)) {
1026 			const struct cpumask *m;
1027 
1028 			m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1029 			cpumask_copy(mask, m);
1030 			valid = true;
1031 		}
1032 	}
1033 
1034 	if (valid)
1035 		set_cpus_allowed_ptr(current, mask);
1036 	free_cpumask_var(mask);
1037 }
1038 #else
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1039 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1040 #endif
1041 
irq_wait_for_interrupt(struct irq_desc * desc,struct irqaction * action)1042 static int irq_wait_for_interrupt(struct irq_desc *desc,
1043 				  struct irqaction *action)
1044 {
1045 	for (;;) {
1046 		set_current_state(TASK_INTERRUPTIBLE);
1047 		irq_thread_check_affinity(desc, action);
1048 
1049 		if (kthread_should_stop()) {
1050 			/* may need to run one last time */
1051 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1052 					       &action->thread_flags)) {
1053 				__set_current_state(TASK_RUNNING);
1054 				return 0;
1055 			}
1056 			__set_current_state(TASK_RUNNING);
1057 			return -1;
1058 		}
1059 
1060 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1061 				       &action->thread_flags)) {
1062 			__set_current_state(TASK_RUNNING);
1063 			return 0;
1064 		}
1065 		schedule();
1066 	}
1067 }
1068 
1069 /*
1070  * Oneshot interrupts keep the irq line masked until the threaded
1071  * handler finished. unmask if the interrupt has not been disabled and
1072  * is marked MASKED.
1073  */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1074 static void irq_finalize_oneshot(struct irq_desc *desc,
1075 				 struct irqaction *action)
1076 {
1077 	if (!(desc->istate & IRQS_ONESHOT) ||
1078 	    action->handler == irq_forced_secondary_handler)
1079 		return;
1080 again:
1081 	chip_bus_lock(desc);
1082 	raw_spin_lock_irq(&desc->lock);
1083 
1084 	/*
1085 	 * Implausible though it may be we need to protect us against
1086 	 * the following scenario:
1087 	 *
1088 	 * The thread is faster done than the hard interrupt handler
1089 	 * on the other CPU. If we unmask the irq line then the
1090 	 * interrupt can come in again and masks the line, leaves due
1091 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1092 	 *
1093 	 * This also serializes the state of shared oneshot handlers
1094 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1095 	 * irq_wake_thread(). See the comment there which explains the
1096 	 * serialization.
1097 	 */
1098 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1099 		raw_spin_unlock_irq(&desc->lock);
1100 		chip_bus_sync_unlock(desc);
1101 		cpu_relax();
1102 		goto again;
1103 	}
1104 
1105 	/*
1106 	 * Now check again, whether the thread should run. Otherwise
1107 	 * we would clear the threads_oneshot bit of this thread which
1108 	 * was just set.
1109 	 */
1110 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1111 		goto out_unlock;
1112 
1113 	desc->threads_oneshot &= ~action->thread_mask;
1114 
1115 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1116 	    irqd_irq_masked(&desc->irq_data))
1117 		unmask_threaded_irq(desc);
1118 
1119 out_unlock:
1120 	raw_spin_unlock_irq(&desc->lock);
1121 	chip_bus_sync_unlock(desc);
1122 }
1123 
1124 /*
1125  * Interrupts explicitly requested as threaded interrupts want to be
1126  * preemptible - many of them need to sleep and wait for slow busses to
1127  * complete.
1128  */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1129 static irqreturn_t irq_thread_fn(struct irq_desc *desc,	struct irqaction *action)
1130 {
1131 	irqreturn_t ret = action->thread_fn(action->irq, action->dev_id);
1132 
1133 	if (ret == IRQ_HANDLED)
1134 		atomic_inc(&desc->threads_handled);
1135 
1136 	irq_finalize_oneshot(desc, action);
1137 	return ret;
1138 }
1139 
1140 /*
1141  * Interrupts which are not explicitly requested as threaded
1142  * interrupts rely on the implicit bh/preempt disable of the hard irq
1143  * context. So we need to disable bh here to avoid deadlocks and other
1144  * side effects.
1145  */
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1146 static irqreturn_t irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1147 {
1148 	irqreturn_t ret;
1149 
1150 	local_bh_disable();
1151 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1152 		local_irq_disable();
1153 	ret = irq_thread_fn(desc, action);
1154 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1155 		local_irq_enable();
1156 	local_bh_enable();
1157 	return ret;
1158 }
1159 
wake_threads_waitq(struct irq_desc * desc)1160 void wake_threads_waitq(struct irq_desc *desc)
1161 {
1162 	if (atomic_dec_and_test(&desc->threads_active))
1163 		wake_up(&desc->wait_for_threads);
1164 }
1165 
irq_thread_dtor(struct callback_head * unused)1166 static void irq_thread_dtor(struct callback_head *unused)
1167 {
1168 	struct task_struct *tsk = current;
1169 	struct irq_desc *desc;
1170 	struct irqaction *action;
1171 
1172 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1173 		return;
1174 
1175 	action = kthread_data(tsk);
1176 
1177 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1178 	       tsk->comm, tsk->pid, action->irq);
1179 
1180 
1181 	desc = irq_to_desc(action->irq);
1182 	/*
1183 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1184 	 * desc->threads_active and wake possible waiters.
1185 	 */
1186 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1187 		wake_threads_waitq(desc);
1188 
1189 	/* Prevent a stale desc->threads_oneshot */
1190 	irq_finalize_oneshot(desc, action);
1191 }
1192 
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1193 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1194 {
1195 	struct irqaction *secondary = action->secondary;
1196 
1197 	if (WARN_ON_ONCE(!secondary))
1198 		return;
1199 
1200 	guard(raw_spinlock_irq)(&desc->lock);
1201 	__irq_wake_thread(desc, secondary);
1202 }
1203 
1204 /*
1205  * Internal function to notify that a interrupt thread is ready.
1206  */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1207 static void irq_thread_set_ready(struct irq_desc *desc,
1208 				 struct irqaction *action)
1209 {
1210 	set_bit(IRQTF_READY, &action->thread_flags);
1211 	wake_up(&desc->wait_for_threads);
1212 }
1213 
1214 /*
1215  * Internal function to wake up a interrupt thread and wait until it is
1216  * ready.
1217  */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1218 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1219 						  struct irqaction *action)
1220 {
1221 	if (!action || !action->thread)
1222 		return;
1223 
1224 	wake_up_process(action->thread);
1225 	wait_event(desc->wait_for_threads,
1226 		   test_bit(IRQTF_READY, &action->thread_flags));
1227 }
1228 
1229 /*
1230  * Interrupt handler thread
1231  */
irq_thread(void * data)1232 static int irq_thread(void *data)
1233 {
1234 	struct callback_head on_exit_work;
1235 	struct irqaction *action = data;
1236 	struct irq_desc *desc = irq_to_desc(action->irq);
1237 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1238 			struct irqaction *action);
1239 
1240 	irq_thread_set_ready(desc, action);
1241 
1242 	sched_set_fifo(current);
1243 
1244 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1245 					   &action->thread_flags))
1246 		handler_fn = irq_forced_thread_fn;
1247 	else
1248 		handler_fn = irq_thread_fn;
1249 
1250 	init_task_work(&on_exit_work, irq_thread_dtor);
1251 	task_work_add(current, &on_exit_work, TWA_NONE);
1252 
1253 	while (!irq_wait_for_interrupt(desc, action)) {
1254 		irqreturn_t action_ret;
1255 
1256 		action_ret = handler_fn(desc, action);
1257 		if (action_ret == IRQ_WAKE_THREAD)
1258 			irq_wake_secondary(desc, action);
1259 
1260 		wake_threads_waitq(desc);
1261 	}
1262 
1263 	/*
1264 	 * This is the regular exit path. __free_irq() is stopping the
1265 	 * thread via kthread_stop() after calling
1266 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1267 	 * oneshot mask bit can be set.
1268 	 */
1269 	task_work_cancel_func(current, irq_thread_dtor);
1270 	return 0;
1271 }
1272 
1273 /**
1274  * irq_wake_thread - wake the irq thread for the action identified by dev_id
1275  * @irq:	Interrupt line
1276  * @dev_id:	Device identity for which the thread should be woken
1277  */
irq_wake_thread(unsigned int irq,void * dev_id)1278 void irq_wake_thread(unsigned int irq, void *dev_id)
1279 {
1280 	struct irq_desc *desc = irq_to_desc(irq);
1281 	struct irqaction *action;
1282 
1283 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1284 		return;
1285 
1286 	guard(raw_spinlock_irqsave)(&desc->lock);
1287 	for_each_action_of_desc(desc, action) {
1288 		if (action->dev_id == dev_id) {
1289 			if (action->thread)
1290 				__irq_wake_thread(desc, action);
1291 			break;
1292 		}
1293 	}
1294 }
1295 EXPORT_SYMBOL_GPL(irq_wake_thread);
1296 
irq_setup_forced_threading(struct irqaction * new)1297 static int irq_setup_forced_threading(struct irqaction *new)
1298 {
1299 	if (!force_irqthreads())
1300 		return 0;
1301 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1302 		return 0;
1303 
1304 	/*
1305 	 * No further action required for interrupts which are requested as
1306 	 * threaded interrupts already
1307 	 */
1308 	if (new->handler == irq_default_primary_handler)
1309 		return 0;
1310 
1311 	new->flags |= IRQF_ONESHOT;
1312 
1313 	/*
1314 	 * Handle the case where we have a real primary handler and a
1315 	 * thread handler. We force thread them as well by creating a
1316 	 * secondary action.
1317 	 */
1318 	if (new->handler && new->thread_fn) {
1319 		/* Allocate the secondary action */
1320 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1321 		if (!new->secondary)
1322 			return -ENOMEM;
1323 		new->secondary->handler = irq_forced_secondary_handler;
1324 		new->secondary->thread_fn = new->thread_fn;
1325 		new->secondary->dev_id = new->dev_id;
1326 		new->secondary->irq = new->irq;
1327 		new->secondary->name = new->name;
1328 	}
1329 	/* Deal with the primary handler */
1330 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1331 	new->thread_fn = new->handler;
1332 	new->handler = irq_default_primary_handler;
1333 	return 0;
1334 }
1335 
irq_request_resources(struct irq_desc * desc)1336 static int irq_request_resources(struct irq_desc *desc)
1337 {
1338 	struct irq_data *d = &desc->irq_data;
1339 	struct irq_chip *c = d->chip;
1340 
1341 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1342 }
1343 
irq_release_resources(struct irq_desc * desc)1344 static void irq_release_resources(struct irq_desc *desc)
1345 {
1346 	struct irq_data *d = &desc->irq_data;
1347 	struct irq_chip *c = d->chip;
1348 
1349 	if (c->irq_release_resources)
1350 		c->irq_release_resources(d);
1351 }
1352 
irq_supports_nmi(struct irq_desc * desc)1353 static bool irq_supports_nmi(struct irq_desc *desc)
1354 {
1355 	struct irq_data *d = irq_desc_get_irq_data(desc);
1356 
1357 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1358 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1359 	if (d->parent_data)
1360 		return false;
1361 #endif
1362 	/* Don't support NMIs for chips behind a slow bus */
1363 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1364 		return false;
1365 
1366 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1367 }
1368 
irq_nmi_setup(struct irq_desc * desc)1369 static int irq_nmi_setup(struct irq_desc *desc)
1370 {
1371 	struct irq_data *d = irq_desc_get_irq_data(desc);
1372 	struct irq_chip *c = d->chip;
1373 
1374 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1375 }
1376 
irq_nmi_teardown(struct irq_desc * desc)1377 static void irq_nmi_teardown(struct irq_desc *desc)
1378 {
1379 	struct irq_data *d = irq_desc_get_irq_data(desc);
1380 	struct irq_chip *c = d->chip;
1381 
1382 	if (c->irq_nmi_teardown)
1383 		c->irq_nmi_teardown(d);
1384 }
1385 
1386 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1387 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1388 {
1389 	struct task_struct *t;
1390 
1391 	if (!secondary) {
1392 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1393 				   new->name);
1394 	} else {
1395 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1396 				   new->name);
1397 	}
1398 
1399 	if (IS_ERR(t))
1400 		return PTR_ERR(t);
1401 
1402 	/*
1403 	 * We keep the reference to the task struct even if
1404 	 * the thread dies to avoid that the interrupt code
1405 	 * references an already freed task_struct.
1406 	 */
1407 	new->thread = get_task_struct(t);
1408 	/*
1409 	 * Tell the thread to set its affinity. This is
1410 	 * important for shared interrupt handlers as we do
1411 	 * not invoke setup_affinity() for the secondary
1412 	 * handlers as everything is already set up. Even for
1413 	 * interrupts marked with IRQF_NO_BALANCE this is
1414 	 * correct as we want the thread to move to the cpu(s)
1415 	 * on which the requesting code placed the interrupt.
1416 	 */
1417 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1418 	return 0;
1419 }
1420 
1421 /*
1422  * Internal function to register an irqaction - typically used to
1423  * allocate special interrupts that are part of the architecture.
1424  *
1425  * Locking rules:
1426  *
1427  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1428  *   chip_bus_lock	Provides serialization for slow bus operations
1429  *     desc->lock	Provides serialization against hard interrupts
1430  *
1431  * chip_bus_lock and desc->lock are sufficient for all other management and
1432  * interrupt related functions. desc->request_mutex solely serializes
1433  * request/free_irq().
1434  */
1435 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1436 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1437 {
1438 	struct irqaction *old, **old_ptr;
1439 	unsigned long flags, thread_mask = 0;
1440 	int ret, nested, shared = 0;
1441 
1442 	if (!desc)
1443 		return -EINVAL;
1444 
1445 	if (desc->irq_data.chip == &no_irq_chip)
1446 		return -ENOSYS;
1447 	if (!try_module_get(desc->owner))
1448 		return -ENODEV;
1449 
1450 	new->irq = irq;
1451 
1452 	/*
1453 	 * If the trigger type is not specified by the caller,
1454 	 * then use the default for this interrupt.
1455 	 */
1456 	if (!(new->flags & IRQF_TRIGGER_MASK))
1457 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1458 
1459 	/*
1460 	 * Check whether the interrupt nests into another interrupt
1461 	 * thread.
1462 	 */
1463 	nested = irq_settings_is_nested_thread(desc);
1464 	if (nested) {
1465 		if (!new->thread_fn) {
1466 			ret = -EINVAL;
1467 			goto out_mput;
1468 		}
1469 		/*
1470 		 * Replace the primary handler which was provided from
1471 		 * the driver for non nested interrupt handling by the
1472 		 * dummy function which warns when called.
1473 		 */
1474 		new->handler = irq_nested_primary_handler;
1475 	} else {
1476 		if (irq_settings_can_thread(desc)) {
1477 			ret = irq_setup_forced_threading(new);
1478 			if (ret)
1479 				goto out_mput;
1480 		}
1481 	}
1482 
1483 	/*
1484 	 * Create a handler thread when a thread function is supplied
1485 	 * and the interrupt does not nest into another interrupt
1486 	 * thread.
1487 	 */
1488 	if (new->thread_fn && !nested) {
1489 		ret = setup_irq_thread(new, irq, false);
1490 		if (ret)
1491 			goto out_mput;
1492 		if (new->secondary) {
1493 			ret = setup_irq_thread(new->secondary, irq, true);
1494 			if (ret)
1495 				goto out_thread;
1496 		}
1497 	}
1498 
1499 	/*
1500 	 * Drivers are often written to work w/o knowledge about the
1501 	 * underlying irq chip implementation, so a request for a
1502 	 * threaded irq without a primary hard irq context handler
1503 	 * requires the ONESHOT flag to be set. Some irq chips like
1504 	 * MSI based interrupts are per se one shot safe. Check the
1505 	 * chip flags, so we can avoid the unmask dance at the end of
1506 	 * the threaded handler for those.
1507 	 */
1508 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1509 		new->flags &= ~IRQF_ONESHOT;
1510 
1511 	/*
1512 	 * Protects against a concurrent __free_irq() call which might wait
1513 	 * for synchronize_hardirq() to complete without holding the optional
1514 	 * chip bus lock and desc->lock. Also protects against handing out
1515 	 * a recycled oneshot thread_mask bit while it's still in use by
1516 	 * its previous owner.
1517 	 */
1518 	mutex_lock(&desc->request_mutex);
1519 
1520 	/*
1521 	 * Acquire bus lock as the irq_request_resources() callback below
1522 	 * might rely on the serialization or the magic power management
1523 	 * functions which are abusing the irq_bus_lock() callback,
1524 	 */
1525 	chip_bus_lock(desc);
1526 
1527 	/* First installed action requests resources. */
1528 	if (!desc->action) {
1529 		ret = irq_request_resources(desc);
1530 		if (ret) {
1531 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1532 			       new->name, irq, desc->irq_data.chip->name);
1533 			goto out_bus_unlock;
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * The following block of code has to be executed atomically
1539 	 * protected against a concurrent interrupt and any of the other
1540 	 * management calls which are not serialized via
1541 	 * desc->request_mutex or the optional bus lock.
1542 	 */
1543 	raw_spin_lock_irqsave(&desc->lock, flags);
1544 	old_ptr = &desc->action;
1545 	old = *old_ptr;
1546 	if (old) {
1547 		/*
1548 		 * Can't share interrupts unless both agree to and are
1549 		 * the same type (level, edge, polarity). So both flag
1550 		 * fields must have IRQF_SHARED set and the bits which
1551 		 * set the trigger type must match. Also all must
1552 		 * agree on ONESHOT.
1553 		 * Interrupt lines used for NMIs cannot be shared.
1554 		 */
1555 		unsigned int oldtype;
1556 
1557 		if (irq_is_nmi(desc)) {
1558 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1559 				new->name, irq, desc->irq_data.chip->name);
1560 			ret = -EINVAL;
1561 			goto out_unlock;
1562 		}
1563 
1564 		/*
1565 		 * If nobody did set the configuration before, inherit
1566 		 * the one provided by the requester.
1567 		 */
1568 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1569 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1570 		} else {
1571 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1572 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1573 		}
1574 
1575 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1576 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1577 			goto mismatch;
1578 
1579 		if ((old->flags & IRQF_ONESHOT) &&
1580 		    (new->flags & IRQF_COND_ONESHOT))
1581 			new->flags |= IRQF_ONESHOT;
1582 		else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1583 			goto mismatch;
1584 
1585 		/* All handlers must agree on per-cpuness */
1586 		if ((old->flags & IRQF_PERCPU) !=
1587 		    (new->flags & IRQF_PERCPU))
1588 			goto mismatch;
1589 
1590 		/* add new interrupt at end of irq queue */
1591 		do {
1592 			/*
1593 			 * Or all existing action->thread_mask bits,
1594 			 * so we can find the next zero bit for this
1595 			 * new action.
1596 			 */
1597 			thread_mask |= old->thread_mask;
1598 			old_ptr = &old->next;
1599 			old = *old_ptr;
1600 		} while (old);
1601 		shared = 1;
1602 	}
1603 
1604 	/*
1605 	 * Setup the thread mask for this irqaction for ONESHOT. For
1606 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1607 	 * conditional in irq_wake_thread().
1608 	 */
1609 	if (new->flags & IRQF_ONESHOT) {
1610 		/*
1611 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1612 		 * but who knows.
1613 		 */
1614 		if (thread_mask == ~0UL) {
1615 			ret = -EBUSY;
1616 			goto out_unlock;
1617 		}
1618 		/*
1619 		 * The thread_mask for the action is or'ed to
1620 		 * desc->thread_active to indicate that the
1621 		 * IRQF_ONESHOT thread handler has been woken, but not
1622 		 * yet finished. The bit is cleared when a thread
1623 		 * completes. When all threads of a shared interrupt
1624 		 * line have completed desc->threads_active becomes
1625 		 * zero and the interrupt line is unmasked. See
1626 		 * handle.c:irq_wake_thread() for further information.
1627 		 *
1628 		 * If no thread is woken by primary (hard irq context)
1629 		 * interrupt handlers, then desc->threads_active is
1630 		 * also checked for zero to unmask the irq line in the
1631 		 * affected hard irq flow handlers
1632 		 * (handle_[fasteoi|level]_irq).
1633 		 *
1634 		 * The new action gets the first zero bit of
1635 		 * thread_mask assigned. See the loop above which or's
1636 		 * all existing action->thread_mask bits.
1637 		 */
1638 		new->thread_mask = 1UL << ffz(thread_mask);
1639 
1640 	} else if (new->handler == irq_default_primary_handler &&
1641 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1642 		/*
1643 		 * The interrupt was requested with handler = NULL, so
1644 		 * we use the default primary handler for it. But it
1645 		 * does not have the oneshot flag set. In combination
1646 		 * with level interrupts this is deadly, because the
1647 		 * default primary handler just wakes the thread, then
1648 		 * the irq lines is reenabled, but the device still
1649 		 * has the level irq asserted. Rinse and repeat....
1650 		 *
1651 		 * While this works for edge type interrupts, we play
1652 		 * it safe and reject unconditionally because we can't
1653 		 * say for sure which type this interrupt really
1654 		 * has. The type flags are unreliable as the
1655 		 * underlying chip implementation can override them.
1656 		 */
1657 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1658 		       new->name, irq);
1659 		ret = -EINVAL;
1660 		goto out_unlock;
1661 	}
1662 
1663 	if (!shared) {
1664 		/* Setup the type (level, edge polarity) if configured: */
1665 		if (new->flags & IRQF_TRIGGER_MASK) {
1666 			ret = __irq_set_trigger(desc,
1667 						new->flags & IRQF_TRIGGER_MASK);
1668 
1669 			if (ret)
1670 				goto out_unlock;
1671 		}
1672 
1673 		/*
1674 		 * Activate the interrupt. That activation must happen
1675 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1676 		 * and the callers are supposed to handle
1677 		 * that. enable_irq() of an interrupt requested with
1678 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1679 		 * keeps it in shutdown mode, it merily associates
1680 		 * resources if necessary and if that's not possible it
1681 		 * fails. Interrupts which are in managed shutdown mode
1682 		 * will simply ignore that activation request.
1683 		 */
1684 		ret = irq_activate(desc);
1685 		if (ret)
1686 			goto out_unlock;
1687 
1688 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1689 				  IRQS_ONESHOT | IRQS_WAITING);
1690 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1691 
1692 		if (new->flags & IRQF_PERCPU) {
1693 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1694 			irq_settings_set_per_cpu(desc);
1695 			if (new->flags & IRQF_NO_DEBUG)
1696 				irq_settings_set_no_debug(desc);
1697 		}
1698 
1699 		if (noirqdebug)
1700 			irq_settings_set_no_debug(desc);
1701 
1702 		if (new->flags & IRQF_ONESHOT)
1703 			desc->istate |= IRQS_ONESHOT;
1704 
1705 		/* Exclude IRQ from balancing if requested */
1706 		if (new->flags & IRQF_NOBALANCING) {
1707 			irq_settings_set_no_balancing(desc);
1708 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1709 		}
1710 
1711 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1712 		    irq_settings_can_autoenable(desc)) {
1713 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1714 		} else {
1715 			/*
1716 			 * Shared interrupts do not go well with disabling
1717 			 * auto enable. The sharing interrupt might request
1718 			 * it while it's still disabled and then wait for
1719 			 * interrupts forever.
1720 			 */
1721 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1722 			/* Undo nested disables: */
1723 			desc->depth = 1;
1724 		}
1725 
1726 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1727 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1728 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1729 
1730 		if (nmsk != omsk)
1731 			/* hope the handler works with current  trigger mode */
1732 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1733 				irq, omsk, nmsk);
1734 	}
1735 
1736 	*old_ptr = new;
1737 
1738 	irq_pm_install_action(desc, new);
1739 
1740 	/* Reset broken irq detection when installing new handler */
1741 	desc->irq_count = 0;
1742 	desc->irqs_unhandled = 0;
1743 
1744 	/*
1745 	 * Check whether we disabled the irq via the spurious handler
1746 	 * before. Reenable it and give it another chance.
1747 	 */
1748 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1749 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1750 		__enable_irq(desc);
1751 	}
1752 
1753 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1754 	chip_bus_sync_unlock(desc);
1755 	mutex_unlock(&desc->request_mutex);
1756 
1757 	irq_setup_timings(desc, new);
1758 
1759 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1760 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1761 
1762 	register_irq_proc(irq, desc);
1763 	new->dir = NULL;
1764 	register_handler_proc(irq, new);
1765 	return 0;
1766 
1767 mismatch:
1768 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1769 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1770 		       irq, new->flags, new->name, old->flags, old->name);
1771 #ifdef CONFIG_DEBUG_SHIRQ
1772 		dump_stack();
1773 #endif
1774 	}
1775 	ret = -EBUSY;
1776 
1777 out_unlock:
1778 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1779 
1780 	if (!desc->action)
1781 		irq_release_resources(desc);
1782 out_bus_unlock:
1783 	chip_bus_sync_unlock(desc);
1784 	mutex_unlock(&desc->request_mutex);
1785 
1786 out_thread:
1787 	if (new->thread) {
1788 		struct task_struct *t = new->thread;
1789 
1790 		new->thread = NULL;
1791 		kthread_stop_put(t);
1792 	}
1793 	if (new->secondary && new->secondary->thread) {
1794 		struct task_struct *t = new->secondary->thread;
1795 
1796 		new->secondary->thread = NULL;
1797 		kthread_stop_put(t);
1798 	}
1799 out_mput:
1800 	module_put(desc->owner);
1801 	return ret;
1802 }
1803 
1804 /*
1805  * Internal function to unregister an irqaction - used to free
1806  * regular and special interrupts that are part of the architecture.
1807  */
__free_irq(struct irq_desc * desc,void * dev_id)1808 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1809 {
1810 	unsigned irq = desc->irq_data.irq;
1811 	struct irqaction *action, **action_ptr;
1812 	unsigned long flags;
1813 
1814 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1815 
1816 	mutex_lock(&desc->request_mutex);
1817 	chip_bus_lock(desc);
1818 	raw_spin_lock_irqsave(&desc->lock, flags);
1819 
1820 	/*
1821 	 * There can be multiple actions per IRQ descriptor, find the right
1822 	 * one based on the dev_id:
1823 	 */
1824 	action_ptr = &desc->action;
1825 	for (;;) {
1826 		action = *action_ptr;
1827 
1828 		if (!action) {
1829 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1830 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1831 			chip_bus_sync_unlock(desc);
1832 			mutex_unlock(&desc->request_mutex);
1833 			return NULL;
1834 		}
1835 
1836 		if (action->dev_id == dev_id)
1837 			break;
1838 		action_ptr = &action->next;
1839 	}
1840 
1841 	/* Found it - now remove it from the list of entries: */
1842 	*action_ptr = action->next;
1843 
1844 	irq_pm_remove_action(desc, action);
1845 
1846 	/* If this was the last handler, shut down the IRQ line: */
1847 	if (!desc->action) {
1848 		irq_settings_clr_disable_unlazy(desc);
1849 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1850 		irq_shutdown(desc);
1851 	}
1852 
1853 #ifdef CONFIG_SMP
1854 	/* make sure affinity_hint is cleaned up */
1855 	if (WARN_ON_ONCE(desc->affinity_hint))
1856 		desc->affinity_hint = NULL;
1857 #endif
1858 
1859 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1860 	/*
1861 	 * Drop bus_lock here so the changes which were done in the chip
1862 	 * callbacks above are synced out to the irq chips which hang
1863 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1864 	 *
1865 	 * Aside of that the bus_lock can also be taken from the threaded
1866 	 * handler in irq_finalize_oneshot() which results in a deadlock
1867 	 * because kthread_stop() would wait forever for the thread to
1868 	 * complete, which is blocked on the bus lock.
1869 	 *
1870 	 * The still held desc->request_mutex() protects against a
1871 	 * concurrent request_irq() of this irq so the release of resources
1872 	 * and timing data is properly serialized.
1873 	 */
1874 	chip_bus_sync_unlock(desc);
1875 
1876 	unregister_handler_proc(irq, action);
1877 
1878 	/*
1879 	 * Make sure it's not being used on another CPU and if the chip
1880 	 * supports it also make sure that there is no (not yet serviced)
1881 	 * interrupt in flight at the hardware level.
1882 	 */
1883 	__synchronize_irq(desc);
1884 
1885 #ifdef CONFIG_DEBUG_SHIRQ
1886 	/*
1887 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1888 	 * event to happen even now it's being freed, so let's make sure that
1889 	 * is so by doing an extra call to the handler ....
1890 	 *
1891 	 * ( We do this after actually deregistering it, to make sure that a
1892 	 *   'real' IRQ doesn't run in parallel with our fake. )
1893 	 */
1894 	if (action->flags & IRQF_SHARED) {
1895 		local_irq_save(flags);
1896 		action->handler(irq, dev_id);
1897 		local_irq_restore(flags);
1898 	}
1899 #endif
1900 
1901 	/*
1902 	 * The action has already been removed above, but the thread writes
1903 	 * its oneshot mask bit when it completes. Though request_mutex is
1904 	 * held across this which prevents __setup_irq() from handing out
1905 	 * the same bit to a newly requested action.
1906 	 */
1907 	if (action->thread) {
1908 		kthread_stop_put(action->thread);
1909 		if (action->secondary && action->secondary->thread)
1910 			kthread_stop_put(action->secondary->thread);
1911 	}
1912 
1913 	/* Last action releases resources */
1914 	if (!desc->action) {
1915 		/*
1916 		 * Reacquire bus lock as irq_release_resources() might
1917 		 * require it to deallocate resources over the slow bus.
1918 		 */
1919 		chip_bus_lock(desc);
1920 		/*
1921 		 * There is no interrupt on the fly anymore. Deactivate it
1922 		 * completely.
1923 		 */
1924 		scoped_guard(raw_spinlock_irqsave, &desc->lock)
1925 			irq_domain_deactivate_irq(&desc->irq_data);
1926 
1927 		irq_release_resources(desc);
1928 		chip_bus_sync_unlock(desc);
1929 		irq_remove_timings(desc);
1930 	}
1931 
1932 	mutex_unlock(&desc->request_mutex);
1933 
1934 	irq_chip_pm_put(&desc->irq_data);
1935 	module_put(desc->owner);
1936 	kfree(action->secondary);
1937 	return action;
1938 }
1939 
1940 /**
1941  * free_irq - free an interrupt allocated with request_irq
1942  * @irq:	Interrupt line to free
1943  * @dev_id:	Device identity to free
1944  *
1945  * Remove an interrupt handler. The handler is removed and if the interrupt
1946  * line is no longer in use by any driver it is disabled.  On a shared IRQ
1947  * the caller must ensure the interrupt is disabled on the card it drives
1948  * before calling this function. The function does not return until any
1949  * executing interrupts for this IRQ have completed.
1950  *
1951  * This function must not be called from interrupt context.
1952  *
1953  * Returns the devname argument passed to request_irq.
1954  */
free_irq(unsigned int irq,void * dev_id)1955 const void *free_irq(unsigned int irq, void *dev_id)
1956 {
1957 	struct irq_desc *desc = irq_to_desc(irq);
1958 	struct irqaction *action;
1959 	const char *devname;
1960 
1961 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1962 		return NULL;
1963 
1964 #ifdef CONFIG_SMP
1965 	if (WARN_ON(desc->affinity_notify))
1966 		desc->affinity_notify = NULL;
1967 #endif
1968 
1969 	action = __free_irq(desc, dev_id);
1970 
1971 	if (!action)
1972 		return NULL;
1973 
1974 	devname = action->name;
1975 	kfree(action);
1976 	return devname;
1977 }
1978 EXPORT_SYMBOL(free_irq);
1979 
1980 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)1981 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1982 {
1983 	const char *devname = NULL;
1984 
1985 	desc->istate &= ~IRQS_NMI;
1986 
1987 	if (!WARN_ON(desc->action == NULL)) {
1988 		irq_pm_remove_action(desc, desc->action);
1989 		devname = desc->action->name;
1990 		unregister_handler_proc(irq, desc->action);
1991 
1992 		kfree(desc->action);
1993 		desc->action = NULL;
1994 	}
1995 
1996 	irq_settings_clr_disable_unlazy(desc);
1997 	irq_shutdown_and_deactivate(desc);
1998 
1999 	irq_release_resources(desc);
2000 
2001 	irq_chip_pm_put(&desc->irq_data);
2002 	module_put(desc->owner);
2003 
2004 	return devname;
2005 }
2006 
free_nmi(unsigned int irq,void * dev_id)2007 const void *free_nmi(unsigned int irq, void *dev_id)
2008 {
2009 	struct irq_desc *desc = irq_to_desc(irq);
2010 
2011 	if (!desc || WARN_ON(!irq_is_nmi(desc)))
2012 		return NULL;
2013 
2014 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2015 		return NULL;
2016 
2017 	/* NMI still enabled */
2018 	if (WARN_ON(desc->depth == 0))
2019 		disable_nmi_nosync(irq);
2020 
2021 	guard(raw_spinlock_irqsave)(&desc->lock);
2022 	irq_nmi_teardown(desc);
2023 	return __cleanup_nmi(irq, desc);
2024 }
2025 
2026 /**
2027  * request_threaded_irq - allocate an interrupt line
2028  * @irq:	Interrupt line to allocate
2029  * @handler:	Function to be called when the IRQ occurs.
2030  *		Primary handler for threaded interrupts.
2031  *		If handler is NULL and thread_fn != NULL
2032  *		the default primary handler is installed.
2033  * @thread_fn:	Function called from the irq handler thread
2034  *		If NULL, no irq thread is created
2035  * @irqflags:	Interrupt type flags
2036  * @devname:	An ascii name for the claiming device
2037  * @dev_id:	A cookie passed back to the handler function
2038  *
2039  * This call allocates interrupt resources and enables the interrupt line
2040  * and IRQ handling. From the point this call is made your handler function
2041  * may be invoked. Since your handler function must clear any interrupt the
2042  * board raises, you must take care both to initialise your hardware and to
2043  * set up the interrupt handler in the right order.
2044  *
2045  * If you want to set up a threaded irq handler for your device then you
2046  * need to supply @handler and @thread_fn. @handler is still called in hard
2047  * interrupt context and has to check whether the interrupt originates from
2048  * the device. If yes it needs to disable the interrupt on the device and
2049  * return IRQ_WAKE_THREAD which will wake up the handler thread and run
2050  * @thread_fn. This split handler design is necessary to support shared
2051  * interrupts.
2052  *
2053  * @dev_id must be globally unique. Normally the address of the device data
2054  * structure is used as the cookie. Since the handler receives this value
2055  * it makes sense to use it.
2056  *
2057  * If your interrupt is shared you must pass a non NULL dev_id as this is
2058  * required when freeing the interrupt.
2059  *
2060  * Flags:
2061  *
2062  *	IRQF_SHARED		Interrupt is shared
2063  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2064  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2065  */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2066 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2067 			 irq_handler_t thread_fn, unsigned long irqflags,
2068 			 const char *devname, void *dev_id)
2069 {
2070 	struct irqaction *action;
2071 	struct irq_desc *desc;
2072 	int retval;
2073 
2074 	if (irq == IRQ_NOTCONNECTED)
2075 		return -ENOTCONN;
2076 
2077 	/*
2078 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2079 	 * otherwise we'll have trouble later trying to figure out
2080 	 * which interrupt is which (messes up the interrupt freeing
2081 	 * logic etc).
2082 	 *
2083 	 * Also shared interrupts do not go well with disabling auto enable.
2084 	 * The sharing interrupt might request it while it's still disabled
2085 	 * and then wait for interrupts forever.
2086 	 *
2087 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2088 	 * it cannot be set along with IRQF_NO_SUSPEND.
2089 	 */
2090 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2091 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2092 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2093 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2094 		return -EINVAL;
2095 
2096 	desc = irq_to_desc(irq);
2097 	if (!desc)
2098 		return -EINVAL;
2099 
2100 	if (!irq_settings_can_request(desc) ||
2101 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2102 		return -EINVAL;
2103 
2104 	if (!handler) {
2105 		if (!thread_fn)
2106 			return -EINVAL;
2107 		handler = irq_default_primary_handler;
2108 	}
2109 
2110 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2111 	if (!action)
2112 		return -ENOMEM;
2113 
2114 	action->handler = handler;
2115 	action->thread_fn = thread_fn;
2116 	action->flags = irqflags;
2117 	action->name = devname;
2118 	action->dev_id = dev_id;
2119 
2120 	retval = irq_chip_pm_get(&desc->irq_data);
2121 	if (retval < 0) {
2122 		kfree(action);
2123 		return retval;
2124 	}
2125 
2126 	retval = __setup_irq(irq, desc, action);
2127 
2128 	if (retval) {
2129 		irq_chip_pm_put(&desc->irq_data);
2130 		kfree(action->secondary);
2131 		kfree(action);
2132 	}
2133 
2134 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2135 	if (!retval && (irqflags & IRQF_SHARED)) {
2136 		/*
2137 		 * It's a shared IRQ -- the driver ought to be prepared for it
2138 		 * to happen immediately, so let's make sure....
2139 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2140 		 * run in parallel with our fake.
2141 		 */
2142 		unsigned long flags;
2143 
2144 		disable_irq(irq);
2145 		local_irq_save(flags);
2146 
2147 		handler(irq, dev_id);
2148 
2149 		local_irq_restore(flags);
2150 		enable_irq(irq);
2151 	}
2152 #endif
2153 	return retval;
2154 }
2155 EXPORT_SYMBOL(request_threaded_irq);
2156 
2157 /**
2158  * request_any_context_irq - allocate an interrupt line
2159  * @irq:	Interrupt line to allocate
2160  * @handler:	Function to be called when the IRQ occurs.
2161  *		Threaded handler for threaded interrupts.
2162  * @flags:	Interrupt type flags
2163  * @name:	An ascii name for the claiming device
2164  * @dev_id:	A cookie passed back to the handler function
2165  *
2166  * This call allocates interrupt resources and enables the interrupt line
2167  * and IRQ handling. It selects either a hardirq or threaded handling
2168  * method depending on the context.
2169  *
2170  * Returns: On failure, it returns a negative value. On success, it returns either
2171  * IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2172  */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2173 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2174 			    unsigned long flags, const char *name, void *dev_id)
2175 {
2176 	struct irq_desc *desc;
2177 	int ret;
2178 
2179 	if (irq == IRQ_NOTCONNECTED)
2180 		return -ENOTCONN;
2181 
2182 	desc = irq_to_desc(irq);
2183 	if (!desc)
2184 		return -EINVAL;
2185 
2186 	if (irq_settings_is_nested_thread(desc)) {
2187 		ret = request_threaded_irq(irq, NULL, handler,
2188 					   flags, name, dev_id);
2189 		return !ret ? IRQC_IS_NESTED : ret;
2190 	}
2191 
2192 	ret = request_irq(irq, handler, flags, name, dev_id);
2193 	return !ret ? IRQC_IS_HARDIRQ : ret;
2194 }
2195 EXPORT_SYMBOL_GPL(request_any_context_irq);
2196 
2197 /**
2198  * request_nmi - allocate an interrupt line for NMI delivery
2199  * @irq:	Interrupt line to allocate
2200  * @handler:	Function to be called when the IRQ occurs.
2201  *		Threaded handler for threaded interrupts.
2202  * @irqflags:	Interrupt type flags
2203  * @name:	An ascii name for the claiming device
2204  * @dev_id:	A cookie passed back to the handler function
2205  *
2206  * This call allocates interrupt resources and enables the interrupt line
2207  * and IRQ handling. It sets up the IRQ line to be handled as an NMI.
2208  *
2209  * An interrupt line delivering NMIs cannot be shared and IRQ handling
2210  * cannot be threaded.
2211  *
2212  * Interrupt lines requested for NMI delivering must produce per cpu
2213  * interrupts and have auto enabling setting disabled.
2214  *
2215  * @dev_id must be globally unique. Normally the address of the device data
2216  * structure is used as the cookie. Since the handler receives this value
2217  * it makes sense to use it.
2218  *
2219  * If the interrupt line cannot be used to deliver NMIs, function will fail
2220  * and return a negative value.
2221  */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2222 int request_nmi(unsigned int irq, irq_handler_t handler,
2223 		unsigned long irqflags, const char *name, void *dev_id)
2224 {
2225 	struct irqaction *action;
2226 	struct irq_desc *desc;
2227 	int retval;
2228 
2229 	if (irq == IRQ_NOTCONNECTED)
2230 		return -ENOTCONN;
2231 
2232 	/* NMI cannot be shared, used for Polling */
2233 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2234 		return -EINVAL;
2235 
2236 	if (!(irqflags & IRQF_PERCPU))
2237 		return -EINVAL;
2238 
2239 	if (!handler)
2240 		return -EINVAL;
2241 
2242 	desc = irq_to_desc(irq);
2243 
2244 	if (!desc || (irq_settings_can_autoenable(desc) &&
2245 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2246 	    !irq_settings_can_request(desc) ||
2247 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2248 	    !irq_supports_nmi(desc))
2249 		return -EINVAL;
2250 
2251 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2252 	if (!action)
2253 		return -ENOMEM;
2254 
2255 	action->handler = handler;
2256 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2257 	action->name = name;
2258 	action->dev_id = dev_id;
2259 
2260 	retval = irq_chip_pm_get(&desc->irq_data);
2261 	if (retval < 0)
2262 		goto err_out;
2263 
2264 	retval = __setup_irq(irq, desc, action);
2265 	if (retval)
2266 		goto err_irq_setup;
2267 
2268 	scoped_guard(raw_spinlock_irqsave, &desc->lock) {
2269 		/* Setup NMI state */
2270 		desc->istate |= IRQS_NMI;
2271 		retval = irq_nmi_setup(desc);
2272 		if (retval) {
2273 			__cleanup_nmi(irq, desc);
2274 			return -EINVAL;
2275 		}
2276 		return 0;
2277 	}
2278 
2279 err_irq_setup:
2280 	irq_chip_pm_put(&desc->irq_data);
2281 err_out:
2282 	kfree(action);
2283 
2284 	return retval;
2285 }
2286 
enable_percpu_irq(unsigned int irq,unsigned int type)2287 void enable_percpu_irq(unsigned int irq, unsigned int type)
2288 {
2289 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2290 		struct irq_desc *desc = scoped_irqdesc;
2291 
2292 		/*
2293 		 * If the trigger type is not specified by the caller, then
2294 		 * use the default for this interrupt.
2295 		 */
2296 		type &= IRQ_TYPE_SENSE_MASK;
2297 		if (type == IRQ_TYPE_NONE)
2298 			type = irqd_get_trigger_type(&desc->irq_data);
2299 
2300 		if (type != IRQ_TYPE_NONE) {
2301 			if (__irq_set_trigger(desc, type)) {
2302 				WARN(1, "failed to set type for IRQ%d\n", irq);
2303 				return;
2304 			}
2305 		}
2306 		irq_percpu_enable(desc, smp_processor_id());
2307 	}
2308 }
2309 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2310 
enable_percpu_nmi(unsigned int irq,unsigned int type)2311 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2312 {
2313 	enable_percpu_irq(irq, type);
2314 }
2315 
2316 /**
2317  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2318  * @irq:	Linux irq number to check for
2319  *
2320  * Must be called from a non migratable context. Returns the enable
2321  * state of a per cpu interrupt on the current cpu.
2322  */
irq_percpu_is_enabled(unsigned int irq)2323 bool irq_percpu_is_enabled(unsigned int irq)
2324 {
2325 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU)
2326 		return cpumask_test_cpu(smp_processor_id(), scoped_irqdesc->percpu_enabled);
2327 	return false;
2328 }
2329 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2330 
disable_percpu_irq(unsigned int irq)2331 void disable_percpu_irq(unsigned int irq)
2332 {
2333 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU)
2334 		irq_percpu_disable(scoped_irqdesc, smp_processor_id());
2335 }
2336 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2337 
disable_percpu_nmi(unsigned int irq)2338 void disable_percpu_nmi(unsigned int irq)
2339 {
2340 	disable_percpu_irq(irq);
2341 }
2342 
2343 /*
2344  * Internal function to unregister a percpu irqaction.
2345  */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2346 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2347 {
2348 	struct irq_desc *desc = irq_to_desc(irq);
2349 	struct irqaction *action;
2350 
2351 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2352 
2353 	if (!desc)
2354 		return NULL;
2355 
2356 	scoped_guard(raw_spinlock_irqsave, &desc->lock) {
2357 		action = desc->action;
2358 		if (!action || action->percpu_dev_id != dev_id) {
2359 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
2360 			return NULL;
2361 		}
2362 
2363 		if (!cpumask_empty(desc->percpu_enabled)) {
2364 			WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2365 			     irq, cpumask_first(desc->percpu_enabled));
2366 			return NULL;
2367 		}
2368 
2369 		/* Found it - now remove it from the list of entries: */
2370 		desc->action = NULL;
2371 		desc->istate &= ~IRQS_NMI;
2372 	}
2373 
2374 	unregister_handler_proc(irq, action);
2375 	irq_chip_pm_put(&desc->irq_data);
2376 	module_put(desc->owner);
2377 	return action;
2378 }
2379 
2380 /**
2381  * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2382  * @irq:	Interrupt line to free
2383  * @dev_id:	Device identity to free
2384  *
2385  * Remove a percpu interrupt handler. The handler is removed, but the
2386  * interrupt line is not disabled. This must be done on each CPU before
2387  * calling this function. The function does not return until any executing
2388  * interrupts for this IRQ have completed.
2389  *
2390  * This function must not be called from interrupt context.
2391  */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2392 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2393 {
2394 	struct irq_desc *desc = irq_to_desc(irq);
2395 
2396 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2397 		return;
2398 
2399 	chip_bus_lock(desc);
2400 	kfree(__free_percpu_irq(irq, dev_id));
2401 	chip_bus_sync_unlock(desc);
2402 }
2403 EXPORT_SYMBOL_GPL(free_percpu_irq);
2404 
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2405 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2406 {
2407 	struct irq_desc *desc = irq_to_desc(irq);
2408 
2409 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2410 		return;
2411 
2412 	if (WARN_ON(!irq_is_nmi(desc)))
2413 		return;
2414 
2415 	kfree(__free_percpu_irq(irq, dev_id));
2416 }
2417 
2418 /**
2419  * setup_percpu_irq - setup a per-cpu interrupt
2420  * @irq:	Interrupt line to setup
2421  * @act:	irqaction for the interrupt
2422  *
2423  * Used to statically setup per-cpu interrupts in the early boot process.
2424  */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2425 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2426 {
2427 	struct irq_desc *desc = irq_to_desc(irq);
2428 	int retval;
2429 
2430 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2431 		return -EINVAL;
2432 
2433 	retval = irq_chip_pm_get(&desc->irq_data);
2434 	if (retval < 0)
2435 		return retval;
2436 
2437 	retval = __setup_irq(irq, desc, act);
2438 
2439 	if (retval)
2440 		irq_chip_pm_put(&desc->irq_data);
2441 
2442 	return retval;
2443 }
2444 
2445 /**
2446  * __request_percpu_irq - allocate a percpu interrupt line
2447  * @irq:	Interrupt line to allocate
2448  * @handler:	Function to be called when the IRQ occurs.
2449  * @flags:	Interrupt type flags (IRQF_TIMER only)
2450  * @devname:	An ascii name for the claiming device
2451  * @dev_id:	A percpu cookie passed back to the handler function
2452  *
2453  * This call allocates interrupt resources and enables the interrupt on the
2454  * local CPU. If the interrupt is supposed to be enabled on other CPUs, it
2455  * has to be done on each CPU using enable_percpu_irq().
2456  *
2457  * @dev_id must be globally unique. It is a per-cpu variable, and
2458  * the handler gets called with the interrupted CPU's instance of
2459  * that variable.
2460  */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2461 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2462 			 unsigned long flags, const char *devname,
2463 			 void __percpu *dev_id)
2464 {
2465 	struct irqaction *action;
2466 	struct irq_desc *desc;
2467 	int retval;
2468 
2469 	if (!dev_id)
2470 		return -EINVAL;
2471 
2472 	desc = irq_to_desc(irq);
2473 	if (!desc || !irq_settings_can_request(desc) ||
2474 	    !irq_settings_is_per_cpu_devid(desc))
2475 		return -EINVAL;
2476 
2477 	if (flags && flags != IRQF_TIMER)
2478 		return -EINVAL;
2479 
2480 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2481 	if (!action)
2482 		return -ENOMEM;
2483 
2484 	action->handler = handler;
2485 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2486 	action->name = devname;
2487 	action->percpu_dev_id = dev_id;
2488 
2489 	retval = irq_chip_pm_get(&desc->irq_data);
2490 	if (retval < 0) {
2491 		kfree(action);
2492 		return retval;
2493 	}
2494 
2495 	retval = __setup_irq(irq, desc, action);
2496 
2497 	if (retval) {
2498 		irq_chip_pm_put(&desc->irq_data);
2499 		kfree(action);
2500 	}
2501 
2502 	return retval;
2503 }
2504 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2505 
2506 /**
2507  * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2508  * @irq:	Interrupt line to allocate
2509  * @handler:	Function to be called when the IRQ occurs.
2510  * @name:	An ascii name for the claiming device
2511  * @dev_id:	A percpu cookie passed back to the handler function
2512  *
2513  * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2514  * have to be setup on each CPU by calling prepare_percpu_nmi() before
2515  * being enabled on the same CPU by using enable_percpu_nmi().
2516  *
2517  * @dev_id must be globally unique. It is a per-cpu variable, and the
2518  * handler gets called with the interrupted CPU's instance of that
2519  * variable.
2520  *
2521  * Interrupt lines requested for NMI delivering should have auto enabling
2522  * setting disabled.
2523  *
2524  * If the interrupt line cannot be used to deliver NMIs, function
2525  * will fail returning a negative value.
2526  */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2527 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2528 		       const char *name, void __percpu *dev_id)
2529 {
2530 	struct irqaction *action;
2531 	struct irq_desc *desc;
2532 	int retval;
2533 
2534 	if (!handler)
2535 		return -EINVAL;
2536 
2537 	desc = irq_to_desc(irq);
2538 
2539 	if (!desc || !irq_settings_can_request(desc) ||
2540 	    !irq_settings_is_per_cpu_devid(desc) ||
2541 	    irq_settings_can_autoenable(desc) ||
2542 	    !irq_supports_nmi(desc))
2543 		return -EINVAL;
2544 
2545 	/* The line cannot already be NMI */
2546 	if (irq_is_nmi(desc))
2547 		return -EINVAL;
2548 
2549 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2550 	if (!action)
2551 		return -ENOMEM;
2552 
2553 	action->handler = handler;
2554 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2555 		| IRQF_NOBALANCING;
2556 	action->name = name;
2557 	action->percpu_dev_id = dev_id;
2558 
2559 	retval = irq_chip_pm_get(&desc->irq_data);
2560 	if (retval < 0)
2561 		goto err_out;
2562 
2563 	retval = __setup_irq(irq, desc, action);
2564 	if (retval)
2565 		goto err_irq_setup;
2566 
2567 	scoped_guard(raw_spinlock_irqsave, &desc->lock)
2568 		desc->istate |= IRQS_NMI;
2569 	return 0;
2570 
2571 err_irq_setup:
2572 	irq_chip_pm_put(&desc->irq_data);
2573 err_out:
2574 	kfree(action);
2575 
2576 	return retval;
2577 }
2578 
2579 /**
2580  * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2581  * @irq: Interrupt line to prepare for NMI delivery
2582  *
2583  * This call prepares an interrupt line to deliver NMI on the current CPU,
2584  * before that interrupt line gets enabled with enable_percpu_nmi().
2585  *
2586  * As a CPU local operation, this should be called from non-preemptible
2587  * context.
2588  *
2589  * If the interrupt line cannot be used to deliver NMIs, function will fail
2590  * returning a negative value.
2591  */
prepare_percpu_nmi(unsigned int irq)2592 int prepare_percpu_nmi(unsigned int irq)
2593 {
2594 	int ret = -EINVAL;
2595 
2596 	WARN_ON(preemptible());
2597 
2598 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2599 		if (WARN(!irq_is_nmi(scoped_irqdesc),
2600 			 "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n", irq))
2601 			return -EINVAL;
2602 
2603 		ret = irq_nmi_setup(scoped_irqdesc);
2604 		if (ret)
2605 			pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2606 	}
2607 	return ret;
2608 }
2609 
2610 /**
2611  * teardown_percpu_nmi - undoes NMI setup of IRQ line
2612  * @irq: Interrupt line from which CPU local NMI configuration should be removed
2613  *
2614  * This call undoes the setup done by prepare_percpu_nmi().
2615  *
2616  * IRQ line should not be enabled for the current CPU.
2617  * As a CPU local operation, this should be called from non-preemptible
2618  * context.
2619  */
teardown_percpu_nmi(unsigned int irq)2620 void teardown_percpu_nmi(unsigned int irq)
2621 {
2622 	WARN_ON(preemptible());
2623 
2624 	scoped_irqdesc_get_and_lock(irq, IRQ_GET_DESC_CHECK_PERCPU) {
2625 		if (WARN_ON(!irq_is_nmi(scoped_irqdesc)))
2626 			return;
2627 		irq_nmi_teardown(scoped_irqdesc);
2628 	}
2629 }
2630 
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2631 static int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool *state)
2632 {
2633 	struct irq_chip *chip;
2634 	int err = -EINVAL;
2635 
2636 	do {
2637 		chip = irq_data_get_irq_chip(data);
2638 		if (WARN_ON_ONCE(!chip))
2639 			return -ENODEV;
2640 		if (chip->irq_get_irqchip_state)
2641 			break;
2642 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2643 		data = data->parent_data;
2644 #else
2645 		data = NULL;
2646 #endif
2647 	} while (data);
2648 
2649 	if (data)
2650 		err = chip->irq_get_irqchip_state(data, which, state);
2651 	return err;
2652 }
2653 
2654 /**
2655  * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2656  * @irq:	Interrupt line that is forwarded to a VM
2657  * @which:	One of IRQCHIP_STATE_* the caller wants to know about
2658  * @state:	a pointer to a boolean where the state is to be stored
2659  *
2660  * This call snapshots the internal irqchip state of an interrupt,
2661  * returning into @state the bit corresponding to stage @which
2662  *
2663  * This function should be called with preemption disabled if the interrupt
2664  * controller has per-cpu registers.
2665  */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2666 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool *state)
2667 {
2668 	scoped_irqdesc_get_and_buslock(irq, 0) {
2669 		struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc);
2670 
2671 		return __irq_get_irqchip_state(data, which, state);
2672 	}
2673 	return -EINVAL;
2674 }
2675 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2676 
2677 /**
2678  * irq_set_irqchip_state - set the state of a forwarded interrupt.
2679  * @irq:	Interrupt line that is forwarded to a VM
2680  * @which:	State to be restored (one of IRQCHIP_STATE_*)
2681  * @val:	Value corresponding to @which
2682  *
2683  * This call sets the internal irqchip state of an interrupt, depending on
2684  * the value of @which.
2685  *
2686  * This function should be called with migration disabled if the interrupt
2687  * controller has per-cpu registers.
2688  */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2689 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool val)
2690 {
2691 	scoped_irqdesc_get_and_buslock(irq, 0) {
2692 		struct irq_data *data = irq_desc_get_irq_data(scoped_irqdesc);
2693 		struct irq_chip *chip;
2694 
2695 		do {
2696 			chip = irq_data_get_irq_chip(data);
2697 
2698 			if (WARN_ON_ONCE(!chip))
2699 				return -ENODEV;
2700 
2701 			if (chip->irq_set_irqchip_state)
2702 				break;
2703 
2704 			data = irqd_get_parent_data(data);
2705 		} while (data);
2706 
2707 		if (data)
2708 			return chip->irq_set_irqchip_state(data, which, val);
2709 	}
2710 	return -EINVAL;
2711 }
2712 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2713 
2714 /**
2715  * irq_has_action - Check whether an interrupt is requested
2716  * @irq:	The linux irq number
2717  *
2718  * Returns: A snapshot of the current state
2719  */
irq_has_action(unsigned int irq)2720 bool irq_has_action(unsigned int irq)
2721 {
2722 	bool res;
2723 
2724 	rcu_read_lock();
2725 	res = irq_desc_has_action(irq_to_desc(irq));
2726 	rcu_read_unlock();
2727 	return res;
2728 }
2729 EXPORT_SYMBOL_GPL(irq_has_action);
2730 
2731 /**
2732  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2733  * @irq:	The linux irq number
2734  * @bitmask:	The bitmask to evaluate
2735  *
2736  * Returns: True if one of the bits in @bitmask is set
2737  */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2738 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2739 {
2740 	struct irq_desc *desc;
2741 	bool res = false;
2742 
2743 	rcu_read_lock();
2744 	desc = irq_to_desc(irq);
2745 	if (desc)
2746 		res = !!(desc->status_use_accessors & bitmask);
2747 	rcu_read_unlock();
2748 	return res;
2749 }
2750 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2751