1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/limits.h>
35
36 #ifndef _KERNEL
37 #include <stdbool.h>
38 #include <stdio.h>
39 #include <string.h>
40 #include <stdlib.h>
41 #include <time.h>
42 #include <sys/errno.h>
43 #include <ufs/ufs/dinode.h>
44 #include <ufs/ffs/fs.h>
45
46 uint32_t calculate_crc32c(uint32_t, const void *, size_t);
47 uint32_t ffs_calc_sbhash(struct fs *);
48 struct malloc_type;
49 #define UFS_MALLOC(size, type, flags) malloc(size)
50 #define UFS_FREE(ptr, type) free(ptr)
51 #define maxphys MAXPHYS
52
53 #else /* _KERNEL */
54 #include <sys/systm.h>
55 #include <sys/gsb_crc32.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/vnode.h>
60 #include <sys/bio.h>
61 #include <sys/buf.h>
62 #include <sys/ucred.h>
63 #include <sys/sysctl.h>
64
65 #include <ufs/ufs/quota.h>
66 #include <ufs/ufs/inode.h>
67 #include <ufs/ufs/extattr.h>
68 #include <ufs/ufs/ufsmount.h>
69 #include <ufs/ufs/ufs_extern.h>
70 #include <ufs/ffs/ffs_extern.h>
71 #include <ufs/ffs/fs.h>
72
73 #define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
74 #define UFS_FREE(ptr, type) free(ptr, type)
75
76 #endif /* _KERNEL */
77
78 /*
79 * Verify an inode check-hash.
80 */
81 int
ffs_verify_dinode_ckhash(struct fs * fs,struct ufs2_dinode * dip)82 ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
83 {
84 uint32_t ckhash, save_ckhash;
85
86 /*
87 * Return success if unallocated or we are not doing inode check-hash.
88 */
89 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
90 return (0);
91 /*
92 * Exclude di_ckhash from the crc32 calculation, e.g., always use
93 * a check-hash value of zero when calculating the check-hash.
94 */
95 save_ckhash = dip->di_ckhash;
96 dip->di_ckhash = 0;
97 ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
98 dip->di_ckhash = save_ckhash;
99 if (save_ckhash == ckhash)
100 return (0);
101 return (EINVAL);
102 }
103
104 /*
105 * Update an inode check-hash.
106 */
107 void
ffs_update_dinode_ckhash(struct fs * fs,struct ufs2_dinode * dip)108 ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
109 {
110
111 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
112 return;
113 /*
114 * Exclude old di_ckhash from the crc32 calculation, e.g., always use
115 * a check-hash value of zero when calculating the new check-hash.
116 */
117 dip->di_ckhash = 0;
118 dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
119 }
120
121 /*
122 * These are the low-level functions that actually read and write
123 * the superblock and its associated data.
124 */
125 static off_t sblock_try[] = SBLOCKSEARCH;
126 static int readsuper(void *, struct fs **, off_t, int,
127 int (*)(void *, off_t, void **, int));
128 static void ffs_oldfscompat_read(struct fs *, ufs2_daddr_t);
129 static int validate_sblock(struct fs *, int);
130
131 /*
132 * Read a superblock from the devfd device.
133 *
134 * If an alternate superblock is specified, it is read. Otherwise the
135 * set of locations given in the SBLOCKSEARCH list is searched for a
136 * superblock. Memory is allocated for the superblock by the readfunc and
137 * is returned. If filltype is non-NULL, additional memory is allocated
138 * of type filltype and filled in with the superblock summary information.
139 * All memory is freed when any error is returned.
140 *
141 * If a superblock is found, zero is returned. Otherwise one of the
142 * following error values is returned:
143 * EIO: non-existent or truncated superblock.
144 * EIO: error reading summary information.
145 * ENOENT: no usable known superblock found.
146 * EILSEQ: filesystem with wrong byte order found.
147 * ENOMEM: failed to allocate space for the superblock.
148 * EINVAL: The previous newfs operation on this volume did not complete.
149 * The administrator must complete newfs before using this volume.
150 */
151 int
ffs_sbget(void * devfd,struct fs ** fsp,off_t sblock,int flags,struct malloc_type * filltype,int (* readfunc)(void * devfd,off_t loc,void ** bufp,int size))152 ffs_sbget(void *devfd, struct fs **fsp, off_t sblock, int flags,
153 struct malloc_type *filltype,
154 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
155 {
156 struct fs *fs;
157 struct fs_summary_info *fs_si;
158 int i, error;
159 uint64_t size, blks;
160 uint8_t *space;
161 int32_t *lp;
162 char *buf;
163
164 fs = NULL;
165 *fsp = NULL;
166 if (sblock != UFS_STDSB) {
167 if ((error = readsuper(devfd, &fs, sblock,
168 flags | UFS_ALTSBLK, readfunc)) != 0) {
169 if (fs != NULL)
170 UFS_FREE(fs, filltype);
171 return (error);
172 }
173 } else {
174 for (i = 0; sblock_try[i] != -1; i++) {
175 if ((error = readsuper(devfd, &fs, sblock_try[i],
176 flags, readfunc)) == 0) {
177 if ((flags & UFS_NOCSUM) != 0) {
178 *fsp = fs;
179 return (0);
180 }
181 break;
182 }
183 if (fs != NULL) {
184 UFS_FREE(fs, filltype);
185 fs = NULL;
186 }
187 if (error == ENOENT)
188 continue;
189 return (error);
190 }
191 if (sblock_try[i] == -1)
192 return (ENOENT);
193 }
194 /*
195 * Read in the superblock summary information.
196 */
197 size = fs->fs_cssize;
198 blks = howmany(size, fs->fs_fsize);
199 if (fs->fs_contigsumsize > 0)
200 size += fs->fs_ncg * sizeof(int32_t);
201 size += fs->fs_ncg * sizeof(uint8_t);
202 if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_NOWAIT)) == NULL) {
203 UFS_FREE(fs, filltype);
204 return (ENOMEM);
205 }
206 bzero(fs_si, sizeof(*fs_si));
207 fs->fs_si = fs_si;
208 if ((space = UFS_MALLOC(size, filltype, M_NOWAIT)) == NULL) {
209 UFS_FREE(fs->fs_si, filltype);
210 UFS_FREE(fs, filltype);
211 return (ENOMEM);
212 }
213 fs->fs_csp = (struct csum *)space;
214 for (i = 0; i < blks; i += fs->fs_frag) {
215 size = fs->fs_bsize;
216 if (i + fs->fs_frag > blks)
217 size = (blks - i) * fs->fs_fsize;
218 buf = NULL;
219 error = (*readfunc)(devfd,
220 dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
221 if (error) {
222 if (buf != NULL)
223 UFS_FREE(buf, filltype);
224 UFS_FREE(fs->fs_csp, filltype);
225 UFS_FREE(fs->fs_si, filltype);
226 UFS_FREE(fs, filltype);
227 return (error);
228 }
229 memcpy(space, buf, size);
230 UFS_FREE(buf, filltype);
231 space += size;
232 }
233 if (fs->fs_contigsumsize > 0) {
234 fs->fs_maxcluster = lp = (int32_t *)space;
235 for (i = 0; i < fs->fs_ncg; i++)
236 *lp++ = fs->fs_contigsumsize;
237 space = (uint8_t *)lp;
238 }
239 size = fs->fs_ncg * sizeof(uint8_t);
240 fs->fs_contigdirs = (uint8_t *)space;
241 bzero(fs->fs_contigdirs, size);
242 *fsp = fs;
243 return (0);
244 }
245
246 /*
247 * Try to read a superblock from the location specified by sblockloc.
248 * Return zero on success or an errno on failure.
249 */
250 static int
readsuper(void * devfd,struct fs ** fsp,off_t sblockloc,int flags,int (* readfunc)(void * devfd,off_t loc,void ** bufp,int size))251 readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int flags,
252 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
253 {
254 struct fs *fs;
255 int error, res;
256 uint32_t ckhash;
257
258 error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
259 if (error != 0)
260 return (error);
261 fs = *fsp;
262 if (fs->fs_magic == FS_BAD_MAGIC)
263 return (EINVAL);
264 /*
265 * For UFS1 with a 65536 block size, the first backup superblock
266 * is at the same location as the UFS2 superblock. Since SBLOCK_UFS2
267 * is the first location checked, the first backup is the superblock
268 * that will be accessed. Here we fail the lookup so that we can
269 * retry with the correct location for the UFS1 superblock.
270 */
271 if (fs->fs_magic == FS_UFS1_MAGIC && (flags & UFS_ALTSBLK) == 0 &&
272 fs->fs_bsize == SBLOCK_UFS2 && sblockloc == SBLOCK_UFS2)
273 return (ENOENT);
274 ffs_oldfscompat_read(fs, sblockloc);
275 if ((error = validate_sblock(fs, flags)) > 0)
276 return (error);
277 /*
278 * If the filesystem has been run on a kernel without
279 * metadata check hashes, disable them.
280 */
281 if ((fs->fs_flags & FS_METACKHASH) == 0)
282 fs->fs_metackhash = 0;
283 /*
284 * Clear any check-hashes that are not maintained
285 * by this kernel. Also clear any unsupported flags.
286 */
287 fs->fs_metackhash &= CK_SUPPORTED;
288 fs->fs_flags &= FS_SUPPORTED;
289 if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) {
290 if ((flags & (UFS_NOMSG | UFS_NOHASHFAIL)) ==
291 (UFS_NOMSG | UFS_NOHASHFAIL))
292 return (0);
293 if ((flags & UFS_NOMSG) != 0)
294 return (EINTEGRITY);
295 #ifdef _KERNEL
296 res = uprintf("Superblock check-hash failed: recorded "
297 "check-hash 0x%x != computed check-hash 0x%x%s\n",
298 fs->fs_ckhash, ckhash,
299 (flags & UFS_NOHASHFAIL) != 0 ? " (Ignored)" : "");
300 #else
301 res = 0;
302 #endif
303 /*
304 * Print check-hash failure if no controlling terminal
305 * in kernel or always if in user-mode (libufs).
306 */
307 if (res == 0)
308 printf("Superblock check-hash failed: recorded "
309 "check-hash 0x%x != computed check-hash "
310 "0x%x%s\n", fs->fs_ckhash, ckhash,
311 (flags & UFS_NOHASHFAIL) ? " (Ignored)" : "");
312 if ((flags & UFS_NOHASHFAIL) != 0)
313 return (0);
314 return (EINTEGRITY);
315 }
316 /* Have to set for old filesystems that predate this field */
317 fs->fs_sblockactualloc = sblockloc;
318 /* Not yet any summary information */
319 fs->fs_si = NULL;
320 return (0);
321 }
322
323 /*
324 * Sanity checks for loading old filesystem superblocks.
325 * See ffs_oldfscompat_write below for unwound actions.
326 *
327 * XXX - Parts get retired eventually.
328 * Unfortunately new bits get added.
329 */
330 static void
ffs_oldfscompat_read(struct fs * fs,ufs2_daddr_t sblockloc)331 ffs_oldfscompat_read(struct fs *fs, ufs2_daddr_t sblockloc)
332 {
333 uint64_t maxfilesize;
334
335 /*
336 * If not yet done, update fs_flags location and value of fs_sblockloc.
337 */
338 if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
339 fs->fs_flags = fs->fs_old_flags;
340 fs->fs_old_flags |= FS_FLAGS_UPDATED;
341 fs->fs_sblockloc = sblockloc;
342 }
343 /*
344 * If not yet done, update UFS1 superblock with new wider fields.
345 */
346 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) {
347 fs->fs_maxbsize = fs->fs_bsize;
348 fs->fs_time = fs->fs_old_time;
349 fs->fs_size = fs->fs_old_size;
350 fs->fs_dsize = fs->fs_old_dsize;
351 fs->fs_csaddr = fs->fs_old_csaddr;
352 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
353 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
354 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
355 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
356 }
357 if (fs->fs_magic == FS_UFS1_MAGIC &&
358 fs->fs_old_inodefmt < FS_44INODEFMT) {
359 fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1;
360 fs->fs_qbmask = ~fs->fs_bmask;
361 fs->fs_qfmask = ~fs->fs_fmask;
362 }
363 if (fs->fs_magic == FS_UFS1_MAGIC) {
364 fs->fs_save_maxfilesize = fs->fs_maxfilesize;
365 maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1;
366 if (fs->fs_maxfilesize > maxfilesize)
367 fs->fs_maxfilesize = maxfilesize;
368 }
369 /* Compatibility for old filesystems */
370 if (fs->fs_avgfilesize <= 0)
371 fs->fs_avgfilesize = AVFILESIZ;
372 if (fs->fs_avgfpdir <= 0)
373 fs->fs_avgfpdir = AFPDIR;
374 }
375
376 /*
377 * Unwinding superblock updates for old filesystems.
378 * See ffs_oldfscompat_read above for details.
379 *
380 * XXX - Parts get retired eventually.
381 * Unfortunately new bits get added.
382 */
383 void
ffs_oldfscompat_write(struct fs * fs)384 ffs_oldfscompat_write(struct fs *fs)
385 {
386
387 /*
388 * Copy back UFS2 updated fields that UFS1 inspects.
389 */
390 if (fs->fs_magic == FS_UFS1_MAGIC) {
391 fs->fs_old_time = fs->fs_time;
392 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
393 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
394 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
395 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
396 fs->fs_maxfilesize = fs->fs_save_maxfilesize;
397 }
398 }
399
400 /*
401 * Sanity checks for loading old filesystem inodes.
402 *
403 * XXX - Parts get retired eventually.
404 * Unfortunately new bits get added.
405 */
406 static int prttimechgs = 0;
407 #ifdef _KERNEL
408 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
409 "FFS filesystem");
410
411 SYSCTL_INT(_vfs_ffs, OID_AUTO, prttimechgs, CTLFLAG_RWTUN, &prttimechgs, 0,
412 "print UFS1 time changes made to inodes");
413 #endif /* _KERNEL */
414 bool
ffs_oldfscompat_inode_read(struct fs * fs,union dinodep dp,time_t now)415 ffs_oldfscompat_inode_read(struct fs *fs, union dinodep dp, time_t now)
416 {
417 bool change;
418
419 change = false;
420 switch (fs->fs_magic) {
421 case FS_UFS2_MAGIC:
422 /* No changes for now */
423 break;
424
425 case FS_UFS1_MAGIC:
426 /*
427 * With the change to unsigned time values in UFS1, times set
428 * before Jan 1, 1970 will appear to be in the future. Check
429 * for future times and set them to be the current time.
430 */
431 if (dp.dp1->di_ctime > now) {
432 if (prttimechgs)
433 printf("ctime %ud changed to %ld\n",
434 dp.dp1->di_ctime, (long)now);
435 dp.dp1->di_ctime = now;
436 change = true;
437 }
438 if (dp.dp1->di_mtime > now) {
439 if (prttimechgs)
440 printf("mtime %ud changed to %ld\n",
441 dp.dp1->di_mtime, (long)now);
442 dp.dp1->di_mtime = now;
443 dp.dp1->di_ctime = now;
444 change = true;
445 }
446 if (dp.dp1->di_atime > now) {
447 if (prttimechgs)
448 printf("atime %ud changed to %ld\n",
449 dp.dp1->di_atime, (long)now);
450 dp.dp1->di_atime = now;
451 dp.dp1->di_ctime = now;
452 change = true;
453 }
454 break;
455 }
456 return (change);
457 }
458
459 /*
460 * Verify the filesystem values.
461 */
462 #define ILOG2(num) (fls(num) - 1)
463 #ifdef STANDALONE_SMALL
464 #define MPRINT(...) do { } while (0)
465 #else
466 #define MPRINT(...) if (prtmsg) printf(__VA_ARGS__)
467 #endif
468 #define FCHK(lhs, op, rhs, fmt) \
469 if (lhs op rhs) { \
470 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \
471 #fmt ")\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, \
472 #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs); \
473 if (error < 0) \
474 return (ENOENT); \
475 if (error == 0) \
476 error = ENOENT; \
477 }
478 #define WCHK(lhs, op, rhs, fmt) \
479 if (lhs op rhs) { \
480 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \
481 #fmt ")%s\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,\
482 #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs, wmsg);\
483 if (error == 0) \
484 error = warnerr; \
485 if (warnerr == 0) \
486 lhs = rhs; \
487 }
488 #define FCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt) \
489 if (lhs1 op1 rhs1 && lhs2 op2 rhs2) { \
490 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \
491 #fmt ") && %s (" #fmt ") %s %s (" #fmt ")\n", \
492 fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1, \
493 (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2, \
494 (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2); \
495 if (error < 0) \
496 return (ENOENT); \
497 if (error == 0) \
498 error = ENOENT; \
499 }
500
501 static int
validate_sblock(struct fs * fs,int flags)502 validate_sblock(struct fs *fs, int flags)
503 {
504 uint64_t i, sectorsize;
505 uint64_t maxfilesize, sizepb;
506 int error, prtmsg, warnerr;
507 char *wmsg;
508
509 error = 0;
510 sectorsize = dbtob(1);
511 prtmsg = ((flags & UFS_NOMSG) == 0);
512 warnerr = (flags & UFS_NOWARNFAIL) == UFS_NOWARNFAIL ? 0 : ENOENT;
513 wmsg = warnerr ? "" : " (Ignored)";
514 /*
515 * Check for endian mismatch between machine and filesystem.
516 */
517 if (((fs->fs_magic != FS_UFS2_MAGIC) &&
518 (bswap32(fs->fs_magic) == FS_UFS2_MAGIC)) ||
519 ((fs->fs_magic != FS_UFS1_MAGIC) &&
520 (bswap32(fs->fs_magic) == FS_UFS1_MAGIC))) {
521 MPRINT("UFS superblock failed due to endian mismatch "
522 "between machine and filesystem\n");
523 return(EILSEQ);
524 }
525 /*
526 * If just validating for recovery, then do just the minimal
527 * checks needed for the superblock fields needed to find
528 * alternate superblocks.
529 */
530 if ((flags & UFS_FSRONLY) == UFS_FSRONLY &&
531 (fs->fs_magic == FS_UFS1_MAGIC || fs->fs_magic == FS_UFS2_MAGIC)) {
532 error = -1; /* fail on first error */
533 if (fs->fs_magic == FS_UFS2_MAGIC) {
534 FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
535 } else if (fs->fs_magic == FS_UFS1_MAGIC) {
536 FCHK(fs->fs_sblockloc, <, 0, %jd);
537 FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
538 }
539 FCHK(fs->fs_frag, <, 1, %jd);
540 FCHK(fs->fs_frag, >, MAXFRAG, %jd);
541 FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
542 FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
543 FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE),
544 %jd);
545 FCHK(fs->fs_fsize, <, sectorsize, %jd);
546 FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
547 FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
548 FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
549 FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
550 FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
551 FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
552 FCHK(fs->fs_ncg, <, 1, %jd);
553 FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
554 FCHK(fs->fs_old_cgoffset, <, 0, %jd);
555 FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
556 FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg,
557 %jd);
558 FCHK(fs->fs_sblkno, !=, roundup(
559 howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
560 fs->fs_frag), %jd);
561 FCHK(CGSIZE(fs), >, fs->fs_bsize, %jd);
562 /* Only need to validate these if reading in csum data */
563 if ((flags & UFS_NOCSUM) != 0)
564 return (error);
565 FCHK((uint64_t)fs->fs_ipg * fs->fs_ncg, >,
566 (((int64_t)(1)) << 32) - INOPB(fs), %jd);
567 FCHK(fs->fs_cstotal.cs_nifree, <, 0, %jd);
568 FCHK(fs->fs_cstotal.cs_nifree, >,
569 (uint64_t)fs->fs_ipg * fs->fs_ncg, %jd);
570 FCHK(fs->fs_cstotal.cs_ndir, >,
571 ((uint64_t)fs->fs_ipg * fs->fs_ncg) -
572 fs->fs_cstotal.cs_nifree, %jd);
573 FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd);
574 FCHK(fs->fs_size, <=, ((int64_t)fs->fs_ncg - 1) * fs->fs_fpg,
575 %jd);
576 FCHK(fs->fs_size, >, (int64_t)fs->fs_ncg * fs->fs_fpg, %jd);
577 FCHK(fs->fs_csaddr, <, 0, %jd);
578 FCHK(fs->fs_cssize, !=,
579 fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd);
580 FCHK(fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize), >,
581 fs->fs_size, %jd);
582 FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)),
583 %jd);
584 FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize,
585 fs->fs_fsize)), >, dtog(fs, fs->fs_csaddr), %jd);
586 return (error);
587 }
588 if (fs->fs_magic == FS_UFS2_MAGIC) {
589 if ((flags & UFS_ALTSBLK) == 0)
590 FCHK2(fs->fs_sblockactualloc, !=, SBLOCK_UFS2,
591 fs->fs_sblockactualloc, !=, 0, %jd);
592 FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
593 FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
594 sizeof(ufs2_daddr_t)), %jd);
595 FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs2_daddr_t),
596 %jd);
597 FCHK(fs->fs_inopb, !=,
598 fs->fs_bsize / sizeof(struct ufs2_dinode), %jd);
599 } else if (fs->fs_magic == FS_UFS1_MAGIC) {
600 if ((flags & UFS_ALTSBLK) == 0)
601 FCHK(fs->fs_sblockactualloc, >, SBLOCK_UFS1, %jd);
602 FCHK(fs->fs_sblockloc, <, 0, %jd);
603 FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
604 FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs1_daddr_t),
605 %jd);
606 FCHK(fs->fs_inopb, !=,
607 fs->fs_bsize / sizeof(struct ufs1_dinode), %jd);
608 FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
609 sizeof(ufs1_daddr_t)), %jd);
610 WCHK(fs->fs_old_inodefmt, !=, FS_44INODEFMT, %jd);
611 WCHK(fs->fs_old_rotdelay, !=, 0, %jd);
612 WCHK(fs->fs_old_rps, !=, 60, %jd);
613 WCHK(fs->fs_old_nspf, !=, fs->fs_fsize / sectorsize, %jd);
614 WCHK(fs->fs_old_interleave, !=, 1, %jd);
615 WCHK(fs->fs_old_trackskew, !=, 0, %jd);
616 WCHK(fs->fs_old_cpc, !=, 0, %jd);
617 WCHK(fs->fs_old_postblformat, !=, 1, %jd);
618 FCHK(fs->fs_old_nrpos, !=, 1, %jd);
619 WCHK(fs->fs_old_nsect, !=, fs->fs_old_spc, %jd);
620 WCHK(fs->fs_old_npsect, !=, fs->fs_old_spc, %jd);
621 } else {
622 /* Bad magic number, so assume not a superblock */
623 return (ENOENT);
624 }
625 FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
626 FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
627 FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE), %jd);
628 FCHK(powerof2(fs->fs_bsize), ==, 0, %jd);
629 FCHK(fs->fs_frag, <, 1, %jd);
630 FCHK(fs->fs_frag, >, MAXFRAG, %jd);
631 FCHK(fs->fs_frag, !=, numfrags(fs, fs->fs_bsize), %jd);
632 FCHK(fs->fs_fsize, <, sectorsize, %jd);
633 FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
634 FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
635 FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
636 FCHK(fs->fs_ncg, <, 1, %jd);
637 FCHK(fs->fs_ipg, <, fs->fs_inopb, %jd);
638 FCHK((uint64_t)fs->fs_ipg * fs->fs_ncg, >,
639 (((int64_t)(1)) << 32) - INOPB(fs), %jd);
640 FCHK(fs->fs_cstotal.cs_nifree, <, 0, %jd);
641 FCHK(fs->fs_cstotal.cs_nifree, >, (uint64_t)fs->fs_ipg * fs->fs_ncg,
642 %jd);
643 FCHK(fs->fs_cstotal.cs_ndir, <, 0, %jd);
644 FCHK(fs->fs_cstotal.cs_ndir, >,
645 ((uint64_t)fs->fs_ipg * fs->fs_ncg) - fs->fs_cstotal.cs_nifree,
646 %jd);
647 FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
648 FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
649 /* fix for misconfigured filesystems */
650 if (fs->fs_maxbsize == 0)
651 fs->fs_maxbsize = fs->fs_bsize;
652 FCHK(fs->fs_maxbsize, <, fs->fs_bsize, %jd);
653 FCHK(powerof2(fs->fs_maxbsize), ==, 0, %jd);
654 FCHK(fs->fs_maxbsize, >, FS_MAXCONTIG * fs->fs_bsize, %jd);
655 FCHK(fs->fs_bmask, !=, ~(fs->fs_bsize - 1), %#jx);
656 FCHK(fs->fs_fmask, !=, ~(fs->fs_fsize - 1), %#jx);
657 FCHK(fs->fs_qbmask, !=, ~fs->fs_bmask, %#jx);
658 FCHK(fs->fs_qfmask, !=, ~fs->fs_fmask, %#jx);
659 FCHK(fs->fs_bshift, !=, ILOG2(fs->fs_bsize), %jd);
660 FCHK(fs->fs_fshift, !=, ILOG2(fs->fs_fsize), %jd);
661 FCHK(fs->fs_fragshift, !=, ILOG2(fs->fs_frag), %jd);
662 FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
663 FCHK(fs->fs_old_cgoffset, <, 0, %jd);
664 FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
665 FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg, %jd);
666 FCHK(CGSIZE(fs), >, fs->fs_bsize, %jd);
667 /*
668 * If anything has failed up to this point, it is usafe to proceed
669 * as checks below may divide by zero or make other fatal calculations.
670 * So if we have any errors at this point, give up.
671 */
672 if (error)
673 return (error);
674 FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
675 FCHK(fs->fs_ipg % fs->fs_inopb, !=, 0, %jd);
676 FCHK(fs->fs_sblkno, !=, roundup(
677 howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
678 fs->fs_frag), %jd);
679 FCHK(fs->fs_cblkno, !=, fs->fs_sblkno +
680 roundup(howmany(SBLOCKSIZE, fs->fs_fsize), fs->fs_frag), %jd);
681 FCHK(fs->fs_iblkno, !=, fs->fs_cblkno + fs->fs_frag, %jd);
682 FCHK(fs->fs_dblkno, !=, fs->fs_iblkno + fs->fs_ipg / INOPF(fs), %jd);
683 FCHK(fs->fs_cgsize, >, fs->fs_bsize, %jd);
684 FCHK(fs->fs_cgsize, <, fs->fs_fsize, %jd);
685 FCHK(fs->fs_cgsize % fs->fs_fsize, !=, 0, %jd);
686 /*
687 * This test is valid, however older versions of growfs failed
688 * to correctly update fs_dsize so will fail this test. Thus we
689 * exclude it from the requirements.
690 */
691 #ifdef notdef
692 WCHK(fs->fs_dsize, !=, fs->fs_size - fs->fs_sblkno -
693 fs->fs_ncg * (fs->fs_dblkno - fs->fs_sblkno) -
694 howmany(fs->fs_cssize, fs->fs_fsize), %jd);
695 #endif
696 WCHK(fs->fs_metaspace, <, 0, %jd);
697 WCHK(fs->fs_metaspace, >, fs->fs_fpg / 2, %jd);
698 WCHK(fs->fs_minfree, >, 99, %jd%%);
699 maxfilesize = fs->fs_bsize * UFS_NDADDR - 1;
700 for (sizepb = fs->fs_bsize, i = 0; i < UFS_NIADDR; i++) {
701 sizepb *= NINDIR(fs);
702 maxfilesize += sizepb;
703 }
704 WCHK(fs->fs_maxfilesize, >, maxfilesize, %jd);
705 /*
706 * These values have a tight interaction with each other that
707 * makes it hard to tightly bound them. So we can only check
708 * that they are within a broader possible range.
709 *
710 * The size cannot always be accurately determined, but ensure
711 * that it is consistent with the number of cylinder groups (fs_ncg)
712 * and the number of fragments per cylinder group (fs_fpg). Ensure
713 * that the summary information size is correct and that it starts
714 * and ends in the data area of the same cylinder group.
715 */
716 FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd);
717 FCHK(fs->fs_size, <=, ((int64_t)fs->fs_ncg - 1) * fs->fs_fpg, %jd);
718 FCHK(fs->fs_size, >, (int64_t)fs->fs_ncg * fs->fs_fpg, %jd);
719 /*
720 * If we are not requested to read in the csum data stop here
721 * as the correctness of the remaining values is only important
722 * to bound the space needed to be allocated to hold the csum data.
723 */
724 if ((flags & UFS_NOCSUM) != 0)
725 return (error);
726 FCHK(fs->fs_csaddr, <, 0, %jd);
727 FCHK(fs->fs_cssize, !=,
728 fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd);
729 FCHK(fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize), >,
730 fs->fs_size, %jd);
731 FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)), %jd);
732 FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize)), >,
733 dtog(fs, fs->fs_csaddr), %jd);
734 /*
735 * With file system clustering it is possible to allocate
736 * many contiguous blocks. The kernel variable maxphys defines
737 * the maximum transfer size permitted by the controller and/or
738 * buffering. The fs_maxcontig parameter controls the maximum
739 * number of blocks that the filesystem will read or write
740 * in a single transfer. It is calculated when the filesystem
741 * is created as maxphys / fs_bsize. The loader uses a maxphys
742 * of 128K even when running on a system that supports larger
743 * values. If the filesystem was built on a system that supports
744 * a larger maxphys (1M is typical) it will have configured
745 * fs_maxcontig for that larger system. So we bound the upper
746 * allowable limit for fs_maxconfig to be able to at least
747 * work with a 1M maxphys on the smallest block size filesystem:
748 * 1M / 4096 == 256. There is no harm in allowing the mounting of
749 * filesystems that make larger than maxphys I/O requests because
750 * those (mostly 32-bit machines) can (very slowly) handle I/O
751 * requests that exceed maxphys.
752 */
753 WCHK(fs->fs_maxcontig, <, 0, %jd);
754 WCHK(fs->fs_maxcontig, >, MAX(256, maxphys / fs->fs_bsize), %jd);
755 FCHK2(fs->fs_maxcontig, ==, 0, fs->fs_contigsumsize, !=, 0, %jd);
756 FCHK2(fs->fs_maxcontig, >, 1, fs->fs_contigsumsize, !=,
757 MIN(fs->fs_maxcontig, FS_MAXCONTIG), %jd);
758 return (error);
759 }
760
761 /*
762 * Make an extensive search to find a superblock. If the superblock
763 * in the standard place cannot be used, try looking for one of the
764 * backup superblocks.
765 *
766 * Flags are made up of the following or'ed together options:
767 *
768 * UFS_NOMSG indicates that superblock inconsistency error messages
769 * should not be printed.
770 *
771 * UFS_NOCSUM causes only the superblock itself to be returned, but does
772 * not read in any auxillary data structures like the cylinder group
773 * summary information.
774 */
775 int
ffs_sbsearch(void * devfd,struct fs ** fsp,int reqflags,struct malloc_type * filltype,int (* readfunc)(void * devfd,off_t loc,void ** bufp,int size))776 ffs_sbsearch(void *devfd, struct fs **fsp, int reqflags,
777 struct malloc_type *filltype,
778 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
779 {
780 struct fsrecovery *fsr;
781 struct fs *protofs;
782 void *fsrbuf;
783 char *cp;
784 long nocsum, flags, msg, cg;
785 off_t sblk, secsize;
786 int error;
787
788 msg = (reqflags & UFS_NOMSG) == 0;
789 nocsum = reqflags & UFS_NOCSUM;
790 /*
791 * Try normal superblock read and return it if it works.
792 *
793 * Suppress messages if it fails until we find out if
794 * failure can be avoided.
795 */
796 flags = UFS_NOMSG | nocsum;
797 error = ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc);
798 /*
799 * If successful or endian error, no need to try further.
800 */
801 if (error == 0 || error == EILSEQ) {
802 if (msg && error == EILSEQ)
803 printf("UFS superblock failed due to endian mismatch "
804 "between machine and filesystem\n");
805 return (error);
806 }
807 /*
808 * First try: ignoring hash failures.
809 */
810 flags |= UFS_NOHASHFAIL;
811 if (msg)
812 flags &= ~UFS_NOMSG;
813 if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) == 0)
814 return (0);
815 /*
816 * Next up is to check if fields of the superblock that are
817 * needed to find backup superblocks are usable.
818 */
819 if (msg)
820 printf("Attempted recovery for standard superblock: failed\n");
821 flags = UFS_FSRONLY | UFS_NOHASHFAIL | UFS_NOCSUM | UFS_NOMSG;
822 if (ffs_sbget(devfd, &protofs, UFS_STDSB, flags, filltype,
823 readfunc) == 0) {
824 if (msg)
825 printf("Attempt extraction of recovery data from "
826 "standard superblock.\n");
827 } else {
828 /*
829 * Final desperation is to see if alternate superblock
830 * parameters have been saved in the boot area.
831 */
832 if (msg)
833 printf("Attempted extraction of recovery data from "
834 "standard superblock: failed\nAttempt to find "
835 "boot zone recovery data.\n");
836 /*
837 * Look to see if recovery information has been saved.
838 * If so we can generate a prototype superblock based
839 * on that information.
840 *
841 * We need fragments-per-group, number of cylinder groups,
842 * location of the superblock within the cylinder group, and
843 * the conversion from filesystem fragments to disk blocks.
844 *
845 * When building a UFS2 filesystem, newfs(8) stores these
846 * details at the end of the boot block area at the start
847 * of the filesystem partition. If they have been overwritten
848 * by a boot block, we fail. But usually they are there
849 * and we can use them.
850 *
851 * We could ask the underlying device for its sector size,
852 * but some devices lie. So we just try a plausible range.
853 */
854 error = ENOENT;
855 fsrbuf = NULL;
856 for (secsize = dbtob(1); secsize <= SBLOCKSIZE; secsize *= 2)
857 if ((error = (*readfunc)(devfd, (SBLOCK_UFS2 - secsize),
858 &fsrbuf, secsize)) == 0)
859 break;
860 if (error != 0)
861 goto trynowarn;
862 cp = fsrbuf; /* type change to keep compiler happy */
863 fsr = (struct fsrecovery *)&cp[secsize - sizeof *fsr];
864 if (fsr->fsr_magic != FS_UFS2_MAGIC ||
865 (protofs = UFS_MALLOC(SBLOCKSIZE, filltype, M_NOWAIT))
866 == NULL) {
867 UFS_FREE(fsrbuf, filltype);
868 goto trynowarn;
869 }
870 memset(protofs, 0, sizeof(struct fs));
871 protofs->fs_fpg = fsr->fsr_fpg;
872 protofs->fs_fsbtodb = fsr->fsr_fsbtodb;
873 protofs->fs_sblkno = fsr->fsr_sblkno;
874 protofs->fs_magic = fsr->fsr_magic;
875 protofs->fs_ncg = fsr->fsr_ncg;
876 UFS_FREE(fsrbuf, filltype);
877 }
878 /*
879 * Scan looking for alternative superblocks.
880 */
881 flags = nocsum;
882 if (!msg)
883 flags |= UFS_NOMSG;
884 for (cg = 0; cg < protofs->fs_ncg; cg++) {
885 sblk = fsbtodb(protofs, cgsblock(protofs, cg));
886 if (msg)
887 printf("Try cg %ld at sblock loc %jd\n", cg,
888 (intmax_t)sblk);
889 if (ffs_sbget(devfd, fsp, dbtob(sblk), flags, filltype,
890 readfunc) == 0) {
891 if (msg)
892 printf("Succeeded with alternate superblock "
893 "at %jd\n", (intmax_t)sblk);
894 UFS_FREE(protofs, filltype);
895 return (0);
896 }
897 }
898 UFS_FREE(protofs, filltype);
899 /*
900 * Our alternate superblock strategies failed. Our last ditch effort
901 * is to see if the standard superblock has only non-critical errors.
902 */
903 trynowarn:
904 flags = UFS_NOWARNFAIL | UFS_NOMSG | nocsum;
905 if (msg) {
906 printf("Finding an alternate superblock failed.\nCheck for "
907 "only non-critical errors in standard superblock\n");
908 flags &= ~UFS_NOMSG;
909 }
910 if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) != 0) {
911 if (msg)
912 printf("Failed, superblock has critical errors\n");
913 return (ENOENT);
914 }
915 if (msg)
916 printf("Success, using standard superblock with "
917 "non-critical errors.\n");
918 return (0);
919 }
920
921 /*
922 * Write a superblock to the devfd device from the memory pointed to by fs.
923 * Write out the superblock summary information if it is present.
924 *
925 * If the write is successful, zero is returned. Otherwise one of the
926 * following error values is returned:
927 * EIO: failed to write superblock.
928 * EIO: failed to write superblock summary information.
929 */
930 int
ffs_sbput(void * devfd,struct fs * fs,off_t loc,int (* writefunc)(void * devfd,off_t loc,void * buf,int size))931 ffs_sbput(void *devfd, struct fs *fs, off_t loc,
932 int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
933 {
934 int i, error, blks, size;
935 uint8_t *space;
936
937 /*
938 * If there is summary information, write it first, so if there
939 * is an error, the superblock will not be marked as clean.
940 */
941 if (fs->fs_si != NULL && fs->fs_csp != NULL) {
942 blks = howmany(fs->fs_cssize, fs->fs_fsize);
943 space = (uint8_t *)fs->fs_csp;
944 for (i = 0; i < blks; i += fs->fs_frag) {
945 size = fs->fs_bsize;
946 if (i + fs->fs_frag > blks)
947 size = (blks - i) * fs->fs_fsize;
948 if ((error = (*writefunc)(devfd,
949 dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
950 space, size)) != 0)
951 return (error);
952 space += size;
953 }
954 }
955 fs->fs_fmod = 0;
956 #ifndef _KERNEL
957 {
958 struct fs_summary_info *fs_si;
959
960 fs->fs_time = time(NULL);
961 /* Clear the pointers for the duration of writing. */
962 fs_si = fs->fs_si;
963 fs->fs_si = NULL;
964 fs->fs_ckhash = ffs_calc_sbhash(fs);
965 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
966 fs->fs_si = fs_si;
967 }
968 #else /* _KERNEL */
969 fs->fs_time = time_second;
970 fs->fs_ckhash = ffs_calc_sbhash(fs);
971 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
972 #endif /* _KERNEL */
973 return (error);
974 }
975
976 /*
977 * Calculate the check-hash for a superblock.
978 */
979 uint32_t
ffs_calc_sbhash(struct fs * fs)980 ffs_calc_sbhash(struct fs *fs)
981 {
982 uint32_t ckhash, save_ckhash;
983
984 /*
985 * A filesystem that was using a superblock ckhash may be moved
986 * to an older kernel that does not support ckhashes. The
987 * older kernel will clear the FS_METACKHASH flag indicating
988 * that it does not update hashes. When the disk is moved back
989 * to a kernel capable of ckhashes it disables them on mount:
990 *
991 * if ((fs->fs_flags & FS_METACKHASH) == 0)
992 * fs->fs_metackhash = 0;
993 *
994 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an
995 * old stale value in the fs->fs_ckhash field. Thus the need to
996 * just accept what is there.
997 */
998 if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0)
999 return (fs->fs_ckhash);
1000
1001 save_ckhash = fs->fs_ckhash;
1002 fs->fs_ckhash = 0;
1003 /*
1004 * If newly read from disk, the caller is responsible for
1005 * verifying that fs->fs_sbsize <= SBLOCKSIZE.
1006 */
1007 ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize);
1008 fs->fs_ckhash = save_ckhash;
1009 return (ckhash);
1010 }
1011
1012 /*
1013 * Update the frsum fields to reflect addition or deletion
1014 * of some frags.
1015 */
1016 void
ffs_fragacct(struct fs * fs,int fragmap,int32_t fraglist[],int cnt)1017 ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
1018 {
1019 int inblk;
1020 int field, subfield;
1021 int siz, pos;
1022
1023 inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
1024 fragmap <<= 1;
1025 for (siz = 1; siz < fs->fs_frag; siz++) {
1026 if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
1027 continue;
1028 field = around[siz];
1029 subfield = inside[siz];
1030 for (pos = siz; pos <= fs->fs_frag; pos++) {
1031 if ((fragmap & field) == subfield) {
1032 fraglist[siz] += cnt;
1033 pos += siz;
1034 field <<= siz;
1035 subfield <<= siz;
1036 }
1037 field <<= 1;
1038 subfield <<= 1;
1039 }
1040 }
1041 }
1042
1043 /*
1044 * block operations
1045 *
1046 * check if a block is available
1047 */
1048 int
ffs_isblock(struct fs * fs,unsigned char * cp,ufs1_daddr_t h)1049 ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1050 {
1051 unsigned char mask;
1052
1053 switch ((int)fs->fs_frag) {
1054 case 8:
1055 return (cp[h] == 0xff);
1056 case 4:
1057 mask = 0x0f << ((h & 0x1) << 2);
1058 return ((cp[h >> 1] & mask) == mask);
1059 case 2:
1060 mask = 0x03 << ((h & 0x3) << 1);
1061 return ((cp[h >> 2] & mask) == mask);
1062 case 1:
1063 mask = 0x01 << (h & 0x7);
1064 return ((cp[h >> 3] & mask) == mask);
1065 default:
1066 #ifdef _KERNEL
1067 panic("ffs_isblock");
1068 #endif
1069 break;
1070 }
1071 return (0);
1072 }
1073
1074 /*
1075 * check if a block is free
1076 */
1077 int
ffs_isfreeblock(struct fs * fs,uint8_t * cp,ufs1_daddr_t h)1078 ffs_isfreeblock(struct fs *fs, uint8_t *cp, ufs1_daddr_t h)
1079 {
1080
1081 switch ((int)fs->fs_frag) {
1082 case 8:
1083 return (cp[h] == 0);
1084 case 4:
1085 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
1086 case 2:
1087 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
1088 case 1:
1089 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
1090 default:
1091 #ifdef _KERNEL
1092 panic("ffs_isfreeblock");
1093 #endif
1094 break;
1095 }
1096 return (0);
1097 }
1098
1099 /*
1100 * take a block out of the map
1101 */
1102 void
ffs_clrblock(struct fs * fs,uint8_t * cp,ufs1_daddr_t h)1103 ffs_clrblock(struct fs *fs, uint8_t *cp, ufs1_daddr_t h)
1104 {
1105
1106 switch ((int)fs->fs_frag) {
1107 case 8:
1108 cp[h] = 0;
1109 return;
1110 case 4:
1111 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1112 return;
1113 case 2:
1114 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1115 return;
1116 case 1:
1117 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1118 return;
1119 default:
1120 #ifdef _KERNEL
1121 panic("ffs_clrblock");
1122 #endif
1123 break;
1124 }
1125 }
1126
1127 /*
1128 * put a block into the map
1129 */
1130 void
ffs_setblock(struct fs * fs,unsigned char * cp,ufs1_daddr_t h)1131 ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1132 {
1133
1134 switch ((int)fs->fs_frag) {
1135 case 8:
1136 cp[h] = 0xff;
1137 return;
1138 case 4:
1139 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1140 return;
1141 case 2:
1142 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1143 return;
1144 case 1:
1145 cp[h >> 3] |= (0x01 << (h & 0x7));
1146 return;
1147 default:
1148 #ifdef _KERNEL
1149 panic("ffs_setblock");
1150 #endif
1151 break;
1152 }
1153 }
1154
1155 /*
1156 * Update the cluster map because of an allocation or free.
1157 *
1158 * Cnt == 1 means free; cnt == -1 means allocating.
1159 */
1160 void
ffs_clusteracct(struct fs * fs,struct cg * cgp,ufs1_daddr_t blkno,int cnt)1161 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
1162 {
1163 int32_t *sump;
1164 int32_t *lp;
1165 uint8_t *freemapp, *mapp;
1166 int i, start, end, forw, back, map;
1167 uint64_t bit;
1168
1169 if (fs->fs_contigsumsize <= 0)
1170 return;
1171 freemapp = cg_clustersfree(cgp);
1172 sump = cg_clustersum(cgp);
1173 /*
1174 * Allocate or clear the actual block.
1175 */
1176 if (cnt > 0)
1177 setbit(freemapp, blkno);
1178 else
1179 clrbit(freemapp, blkno);
1180 /*
1181 * Find the size of the cluster going forward.
1182 */
1183 start = blkno + 1;
1184 end = start + fs->fs_contigsumsize;
1185 if (end >= cgp->cg_nclusterblks)
1186 end = cgp->cg_nclusterblks;
1187 mapp = &freemapp[start / NBBY];
1188 map = *mapp++;
1189 bit = 1U << (start % NBBY);
1190 for (i = start; i < end; i++) {
1191 if ((map & bit) == 0)
1192 break;
1193 if ((i & (NBBY - 1)) != (NBBY - 1)) {
1194 bit <<= 1;
1195 } else {
1196 map = *mapp++;
1197 bit = 1;
1198 }
1199 }
1200 forw = i - start;
1201 /*
1202 * Find the size of the cluster going backward.
1203 */
1204 start = blkno - 1;
1205 end = start - fs->fs_contigsumsize;
1206 if (end < 0)
1207 end = -1;
1208 mapp = &freemapp[start / NBBY];
1209 map = *mapp--;
1210 bit = 1U << (start % NBBY);
1211 for (i = start; i > end; i--) {
1212 if ((map & bit) == 0)
1213 break;
1214 if ((i & (NBBY - 1)) != 0) {
1215 bit >>= 1;
1216 } else {
1217 map = *mapp--;
1218 bit = 1U << (NBBY - 1);
1219 }
1220 }
1221 back = start - i;
1222 /*
1223 * Account for old cluster and the possibly new forward and
1224 * back clusters.
1225 */
1226 i = back + forw + 1;
1227 if (i > fs->fs_contigsumsize)
1228 i = fs->fs_contigsumsize;
1229 sump[i] += cnt;
1230 if (back > 0)
1231 sump[back] -= cnt;
1232 if (forw > 0)
1233 sump[forw] -= cnt;
1234 /*
1235 * Update cluster summary information.
1236 */
1237 lp = &sump[fs->fs_contigsumsize];
1238 for (i = fs->fs_contigsumsize; i > 0; i--)
1239 if (*lp-- > 0)
1240 break;
1241 fs->fs_maxcluster[cgp->cg_cgx] = i;
1242 }
1243