xref: /linux/io_uring/io_uring.h (revision 255da9b8d761c20dbdca3ff2c96635d50a9f1fb8)
1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/poll.h>
9 #include <linux/io_uring_types.h>
10 #include <uapi/linux/eventpoll.h>
11 #include "alloc_cache.h"
12 #include "io-wq.h"
13 #include "slist.h"
14 #include "filetable.h"
15 #include "opdef.h"
16 
17 #ifndef CREATE_TRACE_POINTS
18 #include <trace/events/io_uring.h>
19 #endif
20 
21 enum {
22 	IOU_COMPLETE		= 0,
23 
24 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
25 
26 	/*
27 	 * The request has more work to do and should be retried. io_uring will
28 	 * attempt to wait on the file for eligible opcodes, but otherwise
29 	 * it'll be handed to iowq for blocking execution. It works for normal
30 	 * requests as well as for the multi shot mode.
31 	 */
32 	IOU_RETRY		= -EAGAIN,
33 
34 	/*
35 	 * Requeue the task_work to restart operations on this request. The
36 	 * actual value isn't important, should just be not an otherwise
37 	 * valid error code, yet less than -MAX_ERRNO and valid internally.
38 	 */
39 	IOU_REQUEUE		= -3072,
40 };
41 
42 struct io_wait_queue {
43 	struct wait_queue_entry wq;
44 	struct io_ring_ctx *ctx;
45 	unsigned cq_tail;
46 	unsigned cq_min_tail;
47 	unsigned nr_timeouts;
48 	int hit_timeout;
49 	ktime_t min_timeout;
50 	ktime_t timeout;
51 	struct hrtimer t;
52 
53 #ifdef CONFIG_NET_RX_BUSY_POLL
54 	ktime_t napi_busy_poll_dt;
55 	bool napi_prefer_busy_poll;
56 #endif
57 };
58 
io_should_wake(struct io_wait_queue * iowq)59 static inline bool io_should_wake(struct io_wait_queue *iowq)
60 {
61 	struct io_ring_ctx *ctx = iowq->ctx;
62 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
63 
64 	/*
65 	 * Wake up if we have enough events, or if a timeout occurred since we
66 	 * started waiting. For timeouts, we always want to return to userspace,
67 	 * regardless of event count.
68 	 */
69 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
70 }
71 
72 #define IORING_MAX_ENTRIES	32768
73 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
74 
75 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
76 			 unsigned int cq_entries, size_t *sq_offset);
77 int io_uring_fill_params(unsigned entries, struct io_uring_params *p);
78 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
79 int io_run_task_work_sig(struct io_ring_ctx *ctx);
80 void io_req_defer_failed(struct io_kiocb *req, s32 res);
81 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
82 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
83 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
84 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
85 
86 void io_req_track_inflight(struct io_kiocb *req);
87 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
88 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
89 			       unsigned issue_flags);
90 
91 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
92 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags);
93 void io_req_task_queue(struct io_kiocb *req);
94 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw);
95 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
96 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw);
97 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
98 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
99 void tctx_task_work(struct callback_head *cb);
100 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
101 
102 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
103 				     int start, int end);
104 void io_req_queue_iowq(struct io_kiocb *req);
105 
106 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw);
107 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
108 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
109 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
110 
111 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
112 void io_wq_submit_work(struct io_wq_work *work);
113 
114 void io_free_req(struct io_kiocb *req);
115 void io_queue_next(struct io_kiocb *req);
116 void io_task_refs_refill(struct io_uring_task *tctx);
117 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
118 
119 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
120 			bool cancel_all);
121 
122 void io_activate_pollwq(struct io_ring_ctx *ctx);
123 
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)124 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
125 {
126 #if defined(CONFIG_PROVE_LOCKING)
127 	lockdep_assert(in_task());
128 
129 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
130 		lockdep_assert_held(&ctx->uring_lock);
131 
132 	if (ctx->flags & IORING_SETUP_IOPOLL) {
133 		lockdep_assert_held(&ctx->uring_lock);
134 	} else if (!ctx->task_complete) {
135 		lockdep_assert_held(&ctx->completion_lock);
136 	} else if (ctx->submitter_task) {
137 		/*
138 		 * ->submitter_task may be NULL and we can still post a CQE,
139 		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
140 		 * Not from an SQE, as those cannot be submitted, but via
141 		 * updating tagged resources.
142 		 */
143 		if (!percpu_ref_is_dying(&ctx->refs))
144 			lockdep_assert(current == ctx->submitter_task);
145 	}
146 #endif
147 }
148 
io_is_compat(struct io_ring_ctx * ctx)149 static inline bool io_is_compat(struct io_ring_ctx *ctx)
150 {
151 	return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat);
152 }
153 
io_req_task_work_add(struct io_kiocb * req)154 static inline void io_req_task_work_add(struct io_kiocb *req)
155 {
156 	__io_req_task_work_add(req, 0);
157 }
158 
io_submit_flush_completions(struct io_ring_ctx * ctx)159 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
160 {
161 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
162 	    ctx->submit_state.cq_flush)
163 		__io_submit_flush_completions(ctx);
164 }
165 
166 #define io_for_each_link(pos, head) \
167 	for (pos = (head); pos; pos = pos->link)
168 
io_get_cqe_overflow(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret,bool overflow)169 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
170 					struct io_uring_cqe **ret,
171 					bool overflow)
172 {
173 	io_lockdep_assert_cq_locked(ctx);
174 
175 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
176 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
177 			return false;
178 	}
179 	*ret = ctx->cqe_cached;
180 	ctx->cached_cq_tail++;
181 	ctx->cqe_cached++;
182 	if (ctx->flags & IORING_SETUP_CQE32)
183 		ctx->cqe_cached++;
184 	return true;
185 }
186 
io_get_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret)187 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
188 {
189 	return io_get_cqe_overflow(ctx, ret, false);
190 }
191 
io_defer_get_uncommited_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** cqe_ret)192 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx,
193 					       struct io_uring_cqe **cqe_ret)
194 {
195 	io_lockdep_assert_cq_locked(ctx);
196 
197 	ctx->submit_state.cq_flush = true;
198 	return io_get_cqe(ctx, cqe_ret);
199 }
200 
io_fill_cqe_req(struct io_ring_ctx * ctx,struct io_kiocb * req)201 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
202 					    struct io_kiocb *req)
203 {
204 	struct io_uring_cqe *cqe;
205 
206 	/*
207 	 * If we can't get a cq entry, userspace overflowed the
208 	 * submission (by quite a lot). Increment the overflow count in
209 	 * the ring.
210 	 */
211 	if (unlikely(!io_get_cqe(ctx, &cqe)))
212 		return false;
213 
214 
215 	memcpy(cqe, &req->cqe, sizeof(*cqe));
216 	if (ctx->flags & IORING_SETUP_CQE32) {
217 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
218 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
219 	}
220 
221 	if (trace_io_uring_complete_enabled())
222 		trace_io_uring_complete(req->ctx, req, cqe);
223 	return true;
224 }
225 
req_set_fail(struct io_kiocb * req)226 static inline void req_set_fail(struct io_kiocb *req)
227 {
228 	req->flags |= REQ_F_FAIL;
229 	if (req->flags & REQ_F_CQE_SKIP) {
230 		req->flags &= ~REQ_F_CQE_SKIP;
231 		req->flags |= REQ_F_SKIP_LINK_CQES;
232 	}
233 }
234 
io_req_set_res(struct io_kiocb * req,s32 res,u32 cflags)235 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
236 {
237 	req->cqe.res = res;
238 	req->cqe.flags = cflags;
239 }
240 
io_uring_alloc_async_data(struct io_alloc_cache * cache,struct io_kiocb * req)241 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache,
242 					      struct io_kiocb *req)
243 {
244 	if (cache) {
245 		req->async_data = io_cache_alloc(cache, GFP_KERNEL);
246 	} else {
247 		const struct io_issue_def *def = &io_issue_defs[req->opcode];
248 
249 		WARN_ON_ONCE(!def->async_size);
250 		req->async_data = kmalloc(def->async_size, GFP_KERNEL);
251 	}
252 	if (req->async_data)
253 		req->flags |= REQ_F_ASYNC_DATA;
254 	return req->async_data;
255 }
256 
req_has_async_data(struct io_kiocb * req)257 static inline bool req_has_async_data(struct io_kiocb *req)
258 {
259 	return req->flags & REQ_F_ASYNC_DATA;
260 }
261 
io_put_file(struct io_kiocb * req)262 static inline void io_put_file(struct io_kiocb *req)
263 {
264 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
265 		fput(req->file);
266 }
267 
io_ring_submit_unlock(struct io_ring_ctx * ctx,unsigned issue_flags)268 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
269 					 unsigned issue_flags)
270 {
271 	lockdep_assert_held(&ctx->uring_lock);
272 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
273 		mutex_unlock(&ctx->uring_lock);
274 }
275 
io_ring_submit_lock(struct io_ring_ctx * ctx,unsigned issue_flags)276 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
277 				       unsigned issue_flags)
278 {
279 	/*
280 	 * "Normal" inline submissions always hold the uring_lock, since we
281 	 * grab it from the system call. Same is true for the SQPOLL offload.
282 	 * The only exception is when we've detached the request and issue it
283 	 * from an async worker thread, grab the lock for that case.
284 	 */
285 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
286 		mutex_lock(&ctx->uring_lock);
287 	lockdep_assert_held(&ctx->uring_lock);
288 }
289 
io_commit_cqring(struct io_ring_ctx * ctx)290 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
291 {
292 	/* order cqe stores with ring update */
293 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
294 }
295 
io_poll_wq_wake(struct io_ring_ctx * ctx)296 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
297 {
298 	if (wq_has_sleeper(&ctx->poll_wq))
299 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
300 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
301 }
302 
io_cqring_wake(struct io_ring_ctx * ctx)303 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
304 {
305 	/*
306 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
307 	 * won't necessarily wake up all the tasks, io_should_wake() will make
308 	 * that decision.
309 	 *
310 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
311 	 * set in the mask so that if we recurse back into our own poll
312 	 * waitqueue handlers, we know we have a dependency between eventfd or
313 	 * epoll and should terminate multishot poll at that point.
314 	 */
315 	if (wq_has_sleeper(&ctx->cq_wait))
316 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
317 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
318 }
319 
io_sqring_full(struct io_ring_ctx * ctx)320 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
321 {
322 	struct io_rings *r = ctx->rings;
323 
324 	/*
325 	 * SQPOLL must use the actual sqring head, as using the cached_sq_head
326 	 * is race prone if the SQPOLL thread has grabbed entries but not yet
327 	 * committed them to the ring. For !SQPOLL, this doesn't matter, but
328 	 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
329 	 * just read the actual sqring head unconditionally.
330 	 */
331 	return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
332 }
333 
io_sqring_entries(struct io_ring_ctx * ctx)334 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
335 {
336 	struct io_rings *rings = ctx->rings;
337 	unsigned int entries;
338 
339 	/* make sure SQ entry isn't read before tail */
340 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
341 	return min(entries, ctx->sq_entries);
342 }
343 
io_run_task_work(void)344 static inline int io_run_task_work(void)
345 {
346 	bool ret = false;
347 
348 	/*
349 	 * Always check-and-clear the task_work notification signal. With how
350 	 * signaling works for task_work, we can find it set with nothing to
351 	 * run. We need to clear it for that case, like get_signal() does.
352 	 */
353 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
354 		clear_notify_signal();
355 	/*
356 	 * PF_IO_WORKER never returns to userspace, so check here if we have
357 	 * notify work that needs processing.
358 	 */
359 	if (current->flags & PF_IO_WORKER) {
360 		if (test_thread_flag(TIF_NOTIFY_RESUME)) {
361 			__set_current_state(TASK_RUNNING);
362 			resume_user_mode_work(NULL);
363 		}
364 		if (current->io_uring) {
365 			unsigned int count = 0;
366 
367 			__set_current_state(TASK_RUNNING);
368 			tctx_task_work_run(current->io_uring, UINT_MAX, &count);
369 			if (count)
370 				ret = true;
371 		}
372 	}
373 	if (task_work_pending(current)) {
374 		__set_current_state(TASK_RUNNING);
375 		task_work_run();
376 		ret = true;
377 	}
378 
379 	return ret;
380 }
381 
io_local_work_pending(struct io_ring_ctx * ctx)382 static inline bool io_local_work_pending(struct io_ring_ctx *ctx)
383 {
384 	return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist);
385 }
386 
io_task_work_pending(struct io_ring_ctx * ctx)387 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
388 {
389 	return task_work_pending(current) || io_local_work_pending(ctx);
390 }
391 
io_tw_lock(struct io_ring_ctx * ctx,io_tw_token_t tw)392 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw)
393 {
394 	lockdep_assert_held(&ctx->uring_lock);
395 }
396 
397 /*
398  * Don't complete immediately but use deferred completion infrastructure.
399  * Protected by ->uring_lock and can only be used either with
400  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
401  */
io_req_complete_defer(struct io_kiocb * req)402 static inline void io_req_complete_defer(struct io_kiocb *req)
403 	__must_hold(&req->ctx->uring_lock)
404 {
405 	struct io_submit_state *state = &req->ctx->submit_state;
406 
407 	lockdep_assert_held(&req->ctx->uring_lock);
408 
409 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
410 }
411 
io_commit_cqring_flush(struct io_ring_ctx * ctx)412 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
413 {
414 	if (unlikely(ctx->off_timeout_used ||
415 		     ctx->has_evfd || ctx->poll_activated))
416 		__io_commit_cqring_flush(ctx);
417 }
418 
io_get_task_refs(int nr)419 static inline void io_get_task_refs(int nr)
420 {
421 	struct io_uring_task *tctx = current->io_uring;
422 
423 	tctx->cached_refs -= nr;
424 	if (unlikely(tctx->cached_refs < 0))
425 		io_task_refs_refill(tctx);
426 }
427 
io_req_cache_empty(struct io_ring_ctx * ctx)428 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
429 {
430 	return !ctx->submit_state.free_list.next;
431 }
432 
433 extern struct kmem_cache *req_cachep;
434 
io_extract_req(struct io_ring_ctx * ctx)435 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
436 {
437 	struct io_kiocb *req;
438 
439 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
440 	wq_stack_extract(&ctx->submit_state.free_list);
441 	return req;
442 }
443 
io_alloc_req(struct io_ring_ctx * ctx,struct io_kiocb ** req)444 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
445 {
446 	if (unlikely(io_req_cache_empty(ctx))) {
447 		if (!__io_alloc_req_refill(ctx))
448 			return false;
449 	}
450 	*req = io_extract_req(ctx);
451 	return true;
452 }
453 
io_allowed_defer_tw_run(struct io_ring_ctx * ctx)454 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
455 {
456 	return likely(ctx->submitter_task == current);
457 }
458 
io_allowed_run_tw(struct io_ring_ctx * ctx)459 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
460 {
461 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
462 		      ctx->submitter_task == current);
463 }
464 
465 /*
466  * Terminate the request if either of these conditions are true:
467  *
468  * 1) It's being executed by the original task, but that task is marked
469  *    with PF_EXITING as it's exiting.
470  * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
471  *    our fallback task_work.
472  */
io_should_terminate_tw(void)473 static inline bool io_should_terminate_tw(void)
474 {
475 	return current->flags & (PF_KTHREAD | PF_EXITING);
476 }
477 
io_req_queue_tw_complete(struct io_kiocb * req,s32 res)478 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
479 {
480 	io_req_set_res(req, res, 0);
481 	req->io_task_work.func = io_req_task_complete;
482 	io_req_task_work_add(req);
483 }
484 
485 /*
486  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
487  * slot.
488  */
uring_sqe_size(struct io_ring_ctx * ctx)489 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
490 {
491 	if (ctx->flags & IORING_SETUP_SQE128)
492 		return 2 * sizeof(struct io_uring_sqe);
493 	return sizeof(struct io_uring_sqe);
494 }
495 
io_file_can_poll(struct io_kiocb * req)496 static inline bool io_file_can_poll(struct io_kiocb *req)
497 {
498 	if (req->flags & REQ_F_CAN_POLL)
499 		return true;
500 	if (req->file && file_can_poll(req->file)) {
501 		req->flags |= REQ_F_CAN_POLL;
502 		return true;
503 	}
504 	return false;
505 }
506 
io_get_time(struct io_ring_ctx * ctx)507 static inline ktime_t io_get_time(struct io_ring_ctx *ctx)
508 {
509 	if (ctx->clockid == CLOCK_MONOTONIC)
510 		return ktime_get();
511 
512 	return ktime_get_with_offset(ctx->clock_offset);
513 }
514 
515 enum {
516 	IO_CHECK_CQ_OVERFLOW_BIT,
517 	IO_CHECK_CQ_DROPPED_BIT,
518 };
519 
io_has_work(struct io_ring_ctx * ctx)520 static inline bool io_has_work(struct io_ring_ctx *ctx)
521 {
522 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
523 	       io_local_work_pending(ctx);
524 }
525 #endif
526