1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2021 Intel Corporation. */
3
4 #include <generated/utsrelease.h>
5 #include <linux/crash_dump.h>
6 #include <linux/net/intel/libie/pctype.h>
7 #include <linux/if_bridge.h>
8 #include <linux/if_macvlan.h>
9 #include <linux/module.h>
10 #include <net/pkt_cls.h>
11 #include <net/xdp_sock_drv.h>
12
13 /* Local includes */
14 #include "i40e.h"
15 #include "i40e_devids.h"
16 #include "i40e_diag.h"
17 #include "i40e_lan_hmc.h"
18 #include "i40e_virtchnl_pf.h"
19 #include "i40e_xsk.h"
20
21 /* All i40e tracepoints are defined by the include below, which
22 * must be included exactly once across the whole kernel with
23 * CREATE_TRACE_POINTS defined
24 */
25 #define CREATE_TRACE_POINTS
26 #include "i40e_trace.h"
27
28 const char i40e_driver_name[] = "i40e";
29 static const char i40e_driver_string[] =
30 "Intel(R) Ethernet Connection XL710 Network Driver";
31
32 static const char i40e_copyright[] = "Copyright (c) 2013 - 2019 Intel Corporation.";
33
34 /* a bit of forward declarations */
35 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi);
36 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired);
37 static int i40e_add_vsi(struct i40e_vsi *vsi);
38 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi);
39 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired);
40 static int i40e_setup_misc_vector(struct i40e_pf *pf);
41 static void i40e_determine_queue_usage(struct i40e_pf *pf);
42 static int i40e_setup_pf_filter_control(struct i40e_pf *pf);
43 static void i40e_prep_for_reset(struct i40e_pf *pf);
44 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit,
45 bool lock_acquired);
46 static int i40e_reset(struct i40e_pf *pf);
47 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired);
48 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf);
49 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf);
50 static bool i40e_check_recovery_mode(struct i40e_pf *pf);
51 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw);
52 static void i40e_fdir_sb_setup(struct i40e_pf *pf);
53 static int i40e_veb_get_bw_info(struct i40e_veb *veb);
54 static int i40e_get_capabilities(struct i40e_pf *pf,
55 enum i40e_admin_queue_opc list_type);
56 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf);
57
58 /* i40e_pci_tbl - PCI Device ID Table
59 *
60 * Last entry must be all 0s
61 *
62 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
63 * Class, Class Mask, private data (not used) }
64 */
65 static const struct pci_device_id i40e_pci_tbl[] = {
66 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0},
67 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0},
68 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0},
69 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0},
70 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0},
71 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0},
72 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0},
73 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_BC), 0},
74 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0},
75 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0},
76 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_BC), 0},
77 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_SFP), 0},
78 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_B), 0},
79 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0},
80 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0},
81 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0},
82 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0},
83 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0},
84 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0},
85 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722_A), 0},
86 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0},
87 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0},
88 {PCI_VDEVICE(INTEL, I40E_DEV_ID_X710_N3000), 0},
89 {PCI_VDEVICE(INTEL, I40E_DEV_ID_XXV710_N3000), 0},
90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0},
91 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0},
92 /* required last entry */
93 {0, }
94 };
95 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl);
96
97 #define I40E_MAX_VF_COUNT 128
98 static int debug = -1;
99 module_param(debug, uint, 0);
100 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)");
101
102 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver");
103 MODULE_IMPORT_NS("LIBIE");
104 MODULE_IMPORT_NS("LIBIE_ADMINQ");
105 MODULE_LICENSE("GPL v2");
106
107 static struct workqueue_struct *i40e_wq;
108
netdev_hw_addr_refcnt(struct i40e_mac_filter * f,struct net_device * netdev,int delta)109 static void netdev_hw_addr_refcnt(struct i40e_mac_filter *f,
110 struct net_device *netdev, int delta)
111 {
112 struct netdev_hw_addr_list *ha_list;
113 struct netdev_hw_addr *ha;
114
115 if (!f || !netdev)
116 return;
117
118 if (is_unicast_ether_addr(f->macaddr) || is_link_local_ether_addr(f->macaddr))
119 ha_list = &netdev->uc;
120 else
121 ha_list = &netdev->mc;
122
123 netdev_hw_addr_list_for_each(ha, ha_list) {
124 if (ether_addr_equal(ha->addr, f->macaddr)) {
125 ha->refcount += delta;
126 if (ha->refcount <= 0)
127 ha->refcount = 1;
128 break;
129 }
130 }
131 }
132
133 /**
134 * i40e_hw_to_dev - get device pointer from the hardware structure
135 * @hw: pointer to the device HW structure
136 **/
i40e_hw_to_dev(struct i40e_hw * hw)137 struct device *i40e_hw_to_dev(struct i40e_hw *hw)
138 {
139 struct i40e_pf *pf = i40e_hw_to_pf(hw);
140
141 return &pf->pdev->dev;
142 }
143
144 /**
145 * i40e_allocate_dma_mem - OS specific memory alloc for shared code
146 * @hw: pointer to the HW structure
147 * @mem: ptr to mem struct to fill out
148 * @size: size of memory requested
149 * @alignment: what to align the allocation to
150 **/
i40e_allocate_dma_mem(struct i40e_hw * hw,struct i40e_dma_mem * mem,u64 size,u32 alignment)151 int i40e_allocate_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem,
152 u64 size, u32 alignment)
153 {
154 struct i40e_pf *pf = i40e_hw_to_pf(hw);
155
156 mem->size = ALIGN(size, alignment);
157 mem->va = dma_alloc_coherent(&pf->pdev->dev, mem->size, &mem->pa,
158 GFP_KERNEL);
159 if (!mem->va)
160 return -ENOMEM;
161
162 return 0;
163 }
164
165 /**
166 * i40e_free_dma_mem - OS specific memory free for shared code
167 * @hw: pointer to the HW structure
168 * @mem: ptr to mem struct to free
169 **/
i40e_free_dma_mem(struct i40e_hw * hw,struct i40e_dma_mem * mem)170 int i40e_free_dma_mem(struct i40e_hw *hw, struct i40e_dma_mem *mem)
171 {
172 struct i40e_pf *pf = i40e_hw_to_pf(hw);
173
174 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa);
175 mem->va = NULL;
176 mem->pa = 0;
177 mem->size = 0;
178
179 return 0;
180 }
181
182 /**
183 * i40e_allocate_virt_mem - OS specific memory alloc for shared code
184 * @hw: pointer to the HW structure
185 * @mem: ptr to mem struct to fill out
186 * @size: size of memory requested
187 **/
i40e_allocate_virt_mem(struct i40e_hw * hw,struct i40e_virt_mem * mem,u32 size)188 int i40e_allocate_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem,
189 u32 size)
190 {
191 mem->size = size;
192 mem->va = kzalloc(size, GFP_KERNEL);
193
194 if (!mem->va)
195 return -ENOMEM;
196
197 return 0;
198 }
199
200 /**
201 * i40e_free_virt_mem - OS specific memory free for shared code
202 * @hw: pointer to the HW structure
203 * @mem: ptr to mem struct to free
204 **/
i40e_free_virt_mem(struct i40e_hw * hw,struct i40e_virt_mem * mem)205 int i40e_free_virt_mem(struct i40e_hw *hw, struct i40e_virt_mem *mem)
206 {
207 /* it's ok to kfree a NULL pointer */
208 kfree(mem->va);
209 mem->va = NULL;
210 mem->size = 0;
211
212 return 0;
213 }
214
215 /**
216 * i40e_get_lump - find a lump of free generic resource
217 * @pf: board private structure
218 * @pile: the pile of resource to search
219 * @needed: the number of items needed
220 * @id: an owner id to stick on the items assigned
221 *
222 * Returns the base item index of the lump, or negative for error
223 **/
i40e_get_lump(struct i40e_pf * pf,struct i40e_lump_tracking * pile,u16 needed,u16 id)224 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile,
225 u16 needed, u16 id)
226 {
227 int ret = -ENOMEM;
228 int i, j;
229
230 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) {
231 dev_info(&pf->pdev->dev,
232 "param err: pile=%s needed=%d id=0x%04x\n",
233 pile ? "<valid>" : "<null>", needed, id);
234 return -EINVAL;
235 }
236
237 /* Allocate last queue in the pile for FDIR VSI queue
238 * so it doesn't fragment the qp_pile
239 */
240 if (pile == pf->qp_pile && pf->vsi[id]->type == I40E_VSI_FDIR) {
241 if (pile->list[pile->num_entries - 1] & I40E_PILE_VALID_BIT) {
242 dev_err(&pf->pdev->dev,
243 "Cannot allocate queue %d for I40E_VSI_FDIR\n",
244 pile->num_entries - 1);
245 return -ENOMEM;
246 }
247 pile->list[pile->num_entries - 1] = id | I40E_PILE_VALID_BIT;
248 return pile->num_entries - 1;
249 }
250
251 i = 0;
252 while (i < pile->num_entries) {
253 /* skip already allocated entries */
254 if (pile->list[i] & I40E_PILE_VALID_BIT) {
255 i++;
256 continue;
257 }
258
259 /* do we have enough in this lump? */
260 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) {
261 if (pile->list[i+j] & I40E_PILE_VALID_BIT)
262 break;
263 }
264
265 if (j == needed) {
266 /* there was enough, so assign it to the requestor */
267 for (j = 0; j < needed; j++)
268 pile->list[i+j] = id | I40E_PILE_VALID_BIT;
269 ret = i;
270 break;
271 }
272
273 /* not enough, so skip over it and continue looking */
274 i += j;
275 }
276
277 return ret;
278 }
279
280 /**
281 * i40e_put_lump - return a lump of generic resource
282 * @pile: the pile of resource to search
283 * @index: the base item index
284 * @id: the owner id of the items assigned
285 *
286 * Returns the count of items in the lump
287 **/
i40e_put_lump(struct i40e_lump_tracking * pile,u16 index,u16 id)288 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id)
289 {
290 int valid_id = (id | I40E_PILE_VALID_BIT);
291 int count = 0;
292 u16 i;
293
294 if (!pile || index >= pile->num_entries)
295 return -EINVAL;
296
297 for (i = index;
298 i < pile->num_entries && pile->list[i] == valid_id;
299 i++) {
300 pile->list[i] = 0;
301 count++;
302 }
303
304
305 return count;
306 }
307
308 /**
309 * i40e_find_vsi_from_id - searches for the vsi with the given id
310 * @pf: the pf structure to search for the vsi
311 * @id: id of the vsi it is searching for
312 **/
i40e_find_vsi_from_id(struct i40e_pf * pf,u16 id)313 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id)
314 {
315 struct i40e_vsi *vsi;
316 int i;
317
318 i40e_pf_for_each_vsi(pf, i, vsi)
319 if (vsi->id == id)
320 return vsi;
321
322 return NULL;
323 }
324
325 /**
326 * i40e_service_event_schedule - Schedule the service task to wake up
327 * @pf: board private structure
328 *
329 * If not already scheduled, this puts the task into the work queue
330 **/
i40e_service_event_schedule(struct i40e_pf * pf)331 void i40e_service_event_schedule(struct i40e_pf *pf)
332 {
333 if ((!test_bit(__I40E_DOWN, pf->state) &&
334 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) ||
335 test_bit(__I40E_RECOVERY_MODE, pf->state))
336 queue_work(i40e_wq, &pf->service_task);
337 }
338
339 /**
340 * i40e_tx_timeout - Respond to a Tx Hang
341 * @netdev: network interface device structure
342 * @txqueue: queue number timing out
343 *
344 * If any port has noticed a Tx timeout, it is likely that the whole
345 * device is munged, not just the one netdev port, so go for the full
346 * reset.
347 **/
i40e_tx_timeout(struct net_device * netdev,unsigned int txqueue)348 static void i40e_tx_timeout(struct net_device *netdev, unsigned int txqueue)
349 {
350 struct i40e_netdev_priv *np = netdev_priv(netdev);
351 struct i40e_vsi *vsi = np->vsi;
352 struct i40e_pf *pf = vsi->back;
353 struct i40e_ring *tx_ring = NULL;
354 unsigned int i;
355 u32 head, val;
356
357 pf->tx_timeout_count++;
358
359 /* with txqueue index, find the tx_ring struct */
360 for (i = 0; i < vsi->num_queue_pairs; i++) {
361 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
362 if (txqueue ==
363 vsi->tx_rings[i]->queue_index) {
364 tx_ring = vsi->tx_rings[i];
365 break;
366 }
367 }
368 }
369
370 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20)))
371 pf->tx_timeout_recovery_level = 1; /* reset after some time */
372 else if (time_before(jiffies,
373 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo)))
374 return; /* don't do any new action before the next timeout */
375
376 /* don't kick off another recovery if one is already pending */
377 if (test_and_set_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state))
378 return;
379
380 if (tx_ring) {
381 head = i40e_get_head(tx_ring);
382 /* Read interrupt register */
383 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
384 val = rd32(&pf->hw,
385 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx +
386 tx_ring->vsi->base_vector - 1));
387 else
388 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0);
389
390 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n",
391 vsi->seid, txqueue, tx_ring->next_to_clean,
392 head, tx_ring->next_to_use,
393 readl(tx_ring->tail), val);
394 }
395
396 pf->tx_timeout_last_recovery = jiffies;
397 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n",
398 pf->tx_timeout_recovery_level, txqueue);
399
400 switch (pf->tx_timeout_recovery_level) {
401 case 1:
402 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
403 break;
404 case 2:
405 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
406 break;
407 case 3:
408 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
409 break;
410 default:
411 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in non-recoverable state.\n");
412 set_bit(__I40E_DOWN_REQUESTED, pf->state);
413 set_bit(__I40E_VSI_DOWN_REQUESTED, vsi->state);
414 break;
415 }
416
417 i40e_service_event_schedule(pf);
418 pf->tx_timeout_recovery_level++;
419 }
420
421 /**
422 * i40e_get_vsi_stats_struct - Get System Network Statistics
423 * @vsi: the VSI we care about
424 *
425 * Returns the address of the device statistics structure.
426 * The statistics are actually updated from the service task.
427 **/
i40e_get_vsi_stats_struct(struct i40e_vsi * vsi)428 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi)
429 {
430 return &vsi->net_stats;
431 }
432
433 /**
434 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring
435 * @ring: Tx ring to get statistics from
436 * @stats: statistics entry to be updated
437 **/
i40e_get_netdev_stats_struct_tx(struct i40e_ring * ring,struct rtnl_link_stats64 * stats)438 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring,
439 struct rtnl_link_stats64 *stats)
440 {
441 u64 bytes, packets;
442 unsigned int start;
443
444 do {
445 start = u64_stats_fetch_begin(&ring->syncp);
446 packets = ring->stats.packets;
447 bytes = ring->stats.bytes;
448 } while (u64_stats_fetch_retry(&ring->syncp, start));
449
450 stats->tx_packets += packets;
451 stats->tx_bytes += bytes;
452 }
453
454 /**
455 * i40e_get_netdev_stats_struct - Get statistics for netdev interface
456 * @netdev: network interface device structure
457 * @stats: data structure to store statistics
458 *
459 * Returns the address of the device statistics structure.
460 * The statistics are actually updated from the service task.
461 **/
i40e_get_netdev_stats_struct(struct net_device * netdev,struct rtnl_link_stats64 * stats)462 static void i40e_get_netdev_stats_struct(struct net_device *netdev,
463 struct rtnl_link_stats64 *stats)
464 {
465 struct i40e_netdev_priv *np = netdev_priv(netdev);
466 struct i40e_vsi *vsi = np->vsi;
467 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi);
468 struct i40e_ring *ring;
469 int i;
470
471 if (test_bit(__I40E_VSI_DOWN, vsi->state))
472 return;
473
474 if (!vsi->tx_rings)
475 return;
476
477 rcu_read_lock();
478 for (i = 0; i < vsi->num_queue_pairs; i++) {
479 u64 bytes, packets;
480 unsigned int start;
481
482 ring = READ_ONCE(vsi->tx_rings[i]);
483 if (!ring)
484 continue;
485 i40e_get_netdev_stats_struct_tx(ring, stats);
486
487 if (i40e_enabled_xdp_vsi(vsi)) {
488 ring = READ_ONCE(vsi->xdp_rings[i]);
489 if (!ring)
490 continue;
491 i40e_get_netdev_stats_struct_tx(ring, stats);
492 }
493
494 ring = READ_ONCE(vsi->rx_rings[i]);
495 if (!ring)
496 continue;
497 do {
498 start = u64_stats_fetch_begin(&ring->syncp);
499 packets = ring->stats.packets;
500 bytes = ring->stats.bytes;
501 } while (u64_stats_fetch_retry(&ring->syncp, start));
502
503 stats->rx_packets += packets;
504 stats->rx_bytes += bytes;
505
506 }
507 rcu_read_unlock();
508
509 /* following stats updated by i40e_watchdog_subtask() */
510 stats->multicast = vsi_stats->multicast;
511 stats->tx_errors = vsi_stats->tx_errors;
512 stats->tx_dropped = vsi_stats->tx_dropped;
513 stats->rx_errors = vsi_stats->rx_errors;
514 stats->rx_dropped = vsi_stats->rx_dropped;
515 stats->rx_missed_errors = vsi_stats->rx_missed_errors;
516 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
517 stats->rx_length_errors = vsi_stats->rx_length_errors;
518 }
519
520 /**
521 * i40e_vsi_reset_stats - Resets all stats of the given vsi
522 * @vsi: the VSI to have its stats reset
523 **/
i40e_vsi_reset_stats(struct i40e_vsi * vsi)524 void i40e_vsi_reset_stats(struct i40e_vsi *vsi)
525 {
526 struct rtnl_link_stats64 *ns;
527 int i;
528
529 if (!vsi)
530 return;
531
532 ns = i40e_get_vsi_stats_struct(vsi);
533 memset(ns, 0, sizeof(*ns));
534 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets));
535 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats));
536 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets));
537 if (vsi->rx_rings && vsi->rx_rings[0]) {
538 for (i = 0; i < vsi->num_queue_pairs; i++) {
539 memset(&vsi->rx_rings[i]->stats, 0,
540 sizeof(vsi->rx_rings[i]->stats));
541 memset(&vsi->rx_rings[i]->rx_stats, 0,
542 sizeof(vsi->rx_rings[i]->rx_stats));
543 memset(&vsi->tx_rings[i]->stats, 0,
544 sizeof(vsi->tx_rings[i]->stats));
545 memset(&vsi->tx_rings[i]->tx_stats, 0,
546 sizeof(vsi->tx_rings[i]->tx_stats));
547 }
548 }
549 vsi->stat_offsets_loaded = false;
550 }
551
552 /**
553 * i40e_pf_reset_stats - Reset all of the stats for the given PF
554 * @pf: the PF to be reset
555 **/
i40e_pf_reset_stats(struct i40e_pf * pf)556 void i40e_pf_reset_stats(struct i40e_pf *pf)
557 {
558 struct i40e_veb *veb;
559 int i;
560
561 memset(&pf->stats, 0, sizeof(pf->stats));
562 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets));
563 pf->stat_offsets_loaded = false;
564
565 i40e_pf_for_each_veb(pf, i, veb) {
566 memset(&veb->stats, 0, sizeof(veb->stats));
567 memset(&veb->stats_offsets, 0, sizeof(veb->stats_offsets));
568 memset(&veb->tc_stats, 0, sizeof(veb->tc_stats));
569 memset(&veb->tc_stats_offsets, 0, sizeof(veb->tc_stats_offsets));
570 veb->stat_offsets_loaded = false;
571 }
572 pf->hw_csum_rx_error = 0;
573 }
574
575 /**
576 * i40e_compute_pci_to_hw_id - compute index form PCI function.
577 * @vsi: ptr to the VSI to read from.
578 * @hw: ptr to the hardware info.
579 **/
i40e_compute_pci_to_hw_id(struct i40e_vsi * vsi,struct i40e_hw * hw)580 static u32 i40e_compute_pci_to_hw_id(struct i40e_vsi *vsi, struct i40e_hw *hw)
581 {
582 int pf_count = i40e_get_pf_count(hw);
583
584 if (vsi->type == I40E_VSI_SRIOV)
585 return (hw->port * BIT(7)) / pf_count + vsi->vf_id;
586
587 return hw->port + BIT(7);
588 }
589
590 /**
591 * i40e_stat_update64 - read and update a 64 bit stat from the chip.
592 * @hw: ptr to the hardware info.
593 * @hireg: the high 32 bit reg to read.
594 * @loreg: the low 32 bit reg to read.
595 * @offset_loaded: has the initial offset been loaded yet.
596 * @offset: ptr to current offset value.
597 * @stat: ptr to the stat.
598 *
599 * Since the device stats are not reset at PFReset, they will not
600 * be zeroed when the driver starts. We'll save the first values read
601 * and use them as offsets to be subtracted from the raw values in order
602 * to report stats that count from zero.
603 **/
i40e_stat_update64(struct i40e_hw * hw,u32 hireg,u32 loreg,bool offset_loaded,u64 * offset,u64 * stat)604 static void i40e_stat_update64(struct i40e_hw *hw, u32 hireg, u32 loreg,
605 bool offset_loaded, u64 *offset, u64 *stat)
606 {
607 u64 new_data;
608
609 new_data = rd64(hw, loreg);
610
611 if (!offset_loaded || new_data < *offset)
612 *offset = new_data;
613 *stat = new_data - *offset;
614 }
615
616 /**
617 * i40e_stat_update48 - read and update a 48 bit stat from the chip
618 * @hw: ptr to the hardware info
619 * @hireg: the high 32 bit reg to read
620 * @loreg: the low 32 bit reg to read
621 * @offset_loaded: has the initial offset been loaded yet
622 * @offset: ptr to current offset value
623 * @stat: ptr to the stat
624 *
625 * Since the device stats are not reset at PFReset, they likely will not
626 * be zeroed when the driver starts. We'll save the first values read
627 * and use them as offsets to be subtracted from the raw values in order
628 * to report stats that count from zero. In the process, we also manage
629 * the potential roll-over.
630 **/
i40e_stat_update48(struct i40e_hw * hw,u32 hireg,u32 loreg,bool offset_loaded,u64 * offset,u64 * stat)631 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg,
632 bool offset_loaded, u64 *offset, u64 *stat)
633 {
634 u64 new_data;
635
636 if (hw->device_id == I40E_DEV_ID_QEMU) {
637 new_data = rd32(hw, loreg);
638 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
639 } else {
640 new_data = rd64(hw, loreg);
641 }
642 if (!offset_loaded)
643 *offset = new_data;
644 if (likely(new_data >= *offset))
645 *stat = new_data - *offset;
646 else
647 *stat = (new_data + BIT_ULL(48)) - *offset;
648 *stat &= 0xFFFFFFFFFFFFULL;
649 }
650
651 /**
652 * i40e_stat_update32 - read and update a 32 bit stat from the chip
653 * @hw: ptr to the hardware info
654 * @reg: the hw reg to read
655 * @offset_loaded: has the initial offset been loaded yet
656 * @offset: ptr to current offset value
657 * @stat: ptr to the stat
658 **/
i40e_stat_update32(struct i40e_hw * hw,u32 reg,bool offset_loaded,u64 * offset,u64 * stat)659 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg,
660 bool offset_loaded, u64 *offset, u64 *stat)
661 {
662 u32 new_data;
663
664 new_data = rd32(hw, reg);
665 if (!offset_loaded)
666 *offset = new_data;
667 if (likely(new_data >= *offset))
668 *stat = (u32)(new_data - *offset);
669 else
670 *stat = (u32)((new_data + BIT_ULL(32)) - *offset);
671 }
672
673 /**
674 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat
675 * @hw: ptr to the hardware info
676 * @reg: the hw reg to read and clear
677 * @stat: ptr to the stat
678 **/
i40e_stat_update_and_clear32(struct i40e_hw * hw,u32 reg,u64 * stat)679 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat)
680 {
681 u32 new_data = rd32(hw, reg);
682
683 wr32(hw, reg, 1); /* must write a nonzero value to clear register */
684 *stat += new_data;
685 }
686
687 /**
688 * i40e_stats_update_rx_discards - update rx_discards.
689 * @vsi: ptr to the VSI to be updated.
690 * @hw: ptr to the hardware info.
691 * @stat_idx: VSI's stat_counter_idx.
692 * @offset_loaded: ptr to the VSI's stat_offsets_loaded.
693 * @stat_offset: ptr to stat_offset to store first read of specific register.
694 * @stat: ptr to VSI's stat to be updated.
695 **/
696 static void
i40e_stats_update_rx_discards(struct i40e_vsi * vsi,struct i40e_hw * hw,int stat_idx,bool offset_loaded,struct i40e_eth_stats * stat_offset,struct i40e_eth_stats * stat)697 i40e_stats_update_rx_discards(struct i40e_vsi *vsi, struct i40e_hw *hw,
698 int stat_idx, bool offset_loaded,
699 struct i40e_eth_stats *stat_offset,
700 struct i40e_eth_stats *stat)
701 {
702 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), offset_loaded,
703 &stat_offset->rx_discards, &stat->rx_discards);
704 i40e_stat_update64(hw,
705 I40E_GL_RXERR1H(i40e_compute_pci_to_hw_id(vsi, hw)),
706 I40E_GL_RXERR1L(i40e_compute_pci_to_hw_id(vsi, hw)),
707 offset_loaded, &stat_offset->rx_discards_other,
708 &stat->rx_discards_other);
709 }
710
711 /**
712 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters.
713 * @vsi: the VSI to be updated
714 **/
i40e_update_eth_stats(struct i40e_vsi * vsi)715 void i40e_update_eth_stats(struct i40e_vsi *vsi)
716 {
717 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx);
718 struct i40e_pf *pf = vsi->back;
719 struct i40e_hw *hw = &pf->hw;
720 struct i40e_eth_stats *oes;
721 struct i40e_eth_stats *es; /* device's eth stats */
722
723 es = &vsi->eth_stats;
724 oes = &vsi->eth_stats_offsets;
725
726 /* Gather up the stats that the hw collects */
727 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
728 vsi->stat_offsets_loaded,
729 &oes->tx_errors, &es->tx_errors);
730 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx),
731 vsi->stat_offsets_loaded,
732 &oes->rx_unknown_protocol, &es->rx_unknown_protocol);
733
734 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx),
735 I40E_GLV_GORCL(stat_idx),
736 vsi->stat_offsets_loaded,
737 &oes->rx_bytes, &es->rx_bytes);
738 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx),
739 I40E_GLV_UPRCL(stat_idx),
740 vsi->stat_offsets_loaded,
741 &oes->rx_unicast, &es->rx_unicast);
742 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx),
743 I40E_GLV_MPRCL(stat_idx),
744 vsi->stat_offsets_loaded,
745 &oes->rx_multicast, &es->rx_multicast);
746 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx),
747 I40E_GLV_BPRCL(stat_idx),
748 vsi->stat_offsets_loaded,
749 &oes->rx_broadcast, &es->rx_broadcast);
750
751 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx),
752 I40E_GLV_GOTCL(stat_idx),
753 vsi->stat_offsets_loaded,
754 &oes->tx_bytes, &es->tx_bytes);
755 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx),
756 I40E_GLV_UPTCL(stat_idx),
757 vsi->stat_offsets_loaded,
758 &oes->tx_unicast, &es->tx_unicast);
759 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx),
760 I40E_GLV_MPTCL(stat_idx),
761 vsi->stat_offsets_loaded,
762 &oes->tx_multicast, &es->tx_multicast);
763 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx),
764 I40E_GLV_BPTCL(stat_idx),
765 vsi->stat_offsets_loaded,
766 &oes->tx_broadcast, &es->tx_broadcast);
767
768 i40e_stats_update_rx_discards(vsi, hw, stat_idx,
769 vsi->stat_offsets_loaded, oes, es);
770
771 vsi->stat_offsets_loaded = true;
772 }
773
774 /**
775 * i40e_update_veb_stats - Update Switch component statistics
776 * @veb: the VEB being updated
777 **/
i40e_update_veb_stats(struct i40e_veb * veb)778 void i40e_update_veb_stats(struct i40e_veb *veb)
779 {
780 struct i40e_pf *pf = veb->pf;
781 struct i40e_hw *hw = &pf->hw;
782 struct i40e_eth_stats *oes;
783 struct i40e_eth_stats *es; /* device's eth stats */
784 struct i40e_veb_tc_stats *veb_oes;
785 struct i40e_veb_tc_stats *veb_es;
786 int i, idx = 0;
787
788 idx = veb->stats_idx;
789 es = &veb->stats;
790 oes = &veb->stats_offsets;
791 veb_es = &veb->tc_stats;
792 veb_oes = &veb->tc_stats_offsets;
793
794 /* Gather up the stats that the hw collects */
795 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx),
796 veb->stat_offsets_loaded,
797 &oes->tx_discards, &es->tx_discards);
798 if (hw->revision_id > 0)
799 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx),
800 veb->stat_offsets_loaded,
801 &oes->rx_unknown_protocol,
802 &es->rx_unknown_protocol);
803 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx),
804 veb->stat_offsets_loaded,
805 &oes->rx_bytes, &es->rx_bytes);
806 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx),
807 veb->stat_offsets_loaded,
808 &oes->rx_unicast, &es->rx_unicast);
809 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx),
810 veb->stat_offsets_loaded,
811 &oes->rx_multicast, &es->rx_multicast);
812 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx),
813 veb->stat_offsets_loaded,
814 &oes->rx_broadcast, &es->rx_broadcast);
815
816 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx),
817 veb->stat_offsets_loaded,
818 &oes->tx_bytes, &es->tx_bytes);
819 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx),
820 veb->stat_offsets_loaded,
821 &oes->tx_unicast, &es->tx_unicast);
822 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx),
823 veb->stat_offsets_loaded,
824 &oes->tx_multicast, &es->tx_multicast);
825 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx),
826 veb->stat_offsets_loaded,
827 &oes->tx_broadcast, &es->tx_broadcast);
828 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
829 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx),
830 I40E_GLVEBTC_RPCL(i, idx),
831 veb->stat_offsets_loaded,
832 &veb_oes->tc_rx_packets[i],
833 &veb_es->tc_rx_packets[i]);
834 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx),
835 I40E_GLVEBTC_RBCL(i, idx),
836 veb->stat_offsets_loaded,
837 &veb_oes->tc_rx_bytes[i],
838 &veb_es->tc_rx_bytes[i]);
839 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx),
840 I40E_GLVEBTC_TPCL(i, idx),
841 veb->stat_offsets_loaded,
842 &veb_oes->tc_tx_packets[i],
843 &veb_es->tc_tx_packets[i]);
844 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx),
845 I40E_GLVEBTC_TBCL(i, idx),
846 veb->stat_offsets_loaded,
847 &veb_oes->tc_tx_bytes[i],
848 &veb_es->tc_tx_bytes[i]);
849 }
850 veb->stat_offsets_loaded = true;
851 }
852
853 /**
854 * i40e_update_vsi_stats - Update the vsi statistics counters.
855 * @vsi: the VSI to be updated
856 *
857 * There are a few instances where we store the same stat in a
858 * couple of different structs. This is partly because we have
859 * the netdev stats that need to be filled out, which is slightly
860 * different from the "eth_stats" defined by the chip and used in
861 * VF communications. We sort it out here.
862 **/
i40e_update_vsi_stats(struct i40e_vsi * vsi)863 static void i40e_update_vsi_stats(struct i40e_vsi *vsi)
864 {
865 u64 rx_page, rx_buf, rx_reuse, rx_alloc, rx_waive, rx_busy;
866 struct i40e_pf *pf = vsi->back;
867 struct rtnl_link_stats64 *ons;
868 struct rtnl_link_stats64 *ns; /* netdev stats */
869 struct i40e_eth_stats *oes;
870 struct i40e_eth_stats *es; /* device's eth stats */
871 u64 tx_restart, tx_busy;
872 struct i40e_ring *p;
873 u64 bytes, packets;
874 unsigned int start;
875 u64 tx_linearize;
876 u64 tx_force_wb;
877 u64 tx_stopped;
878 u64 rx_p, rx_b;
879 u64 tx_p, tx_b;
880 u16 q;
881
882 if (test_bit(__I40E_VSI_DOWN, vsi->state) ||
883 test_bit(__I40E_CONFIG_BUSY, pf->state))
884 return;
885
886 ns = i40e_get_vsi_stats_struct(vsi);
887 ons = &vsi->net_stats_offsets;
888 es = &vsi->eth_stats;
889 oes = &vsi->eth_stats_offsets;
890
891 /* Gather up the netdev and vsi stats that the driver collects
892 * on the fly during packet processing
893 */
894 rx_b = rx_p = 0;
895 tx_b = tx_p = 0;
896 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0;
897 tx_stopped = 0;
898 rx_page = 0;
899 rx_buf = 0;
900 rx_reuse = 0;
901 rx_alloc = 0;
902 rx_waive = 0;
903 rx_busy = 0;
904 rcu_read_lock();
905 for (q = 0; q < vsi->num_queue_pairs; q++) {
906 /* locate Tx ring */
907 p = READ_ONCE(vsi->tx_rings[q]);
908 if (!p)
909 continue;
910
911 do {
912 start = u64_stats_fetch_begin(&p->syncp);
913 packets = p->stats.packets;
914 bytes = p->stats.bytes;
915 } while (u64_stats_fetch_retry(&p->syncp, start));
916 tx_b += bytes;
917 tx_p += packets;
918 tx_restart += p->tx_stats.restart_queue;
919 tx_busy += p->tx_stats.tx_busy;
920 tx_linearize += p->tx_stats.tx_linearize;
921 tx_force_wb += p->tx_stats.tx_force_wb;
922 tx_stopped += p->tx_stats.tx_stopped;
923
924 /* locate Rx ring */
925 p = READ_ONCE(vsi->rx_rings[q]);
926 if (!p)
927 continue;
928
929 do {
930 start = u64_stats_fetch_begin(&p->syncp);
931 packets = p->stats.packets;
932 bytes = p->stats.bytes;
933 } while (u64_stats_fetch_retry(&p->syncp, start));
934 rx_b += bytes;
935 rx_p += packets;
936 rx_buf += p->rx_stats.alloc_buff_failed;
937 rx_page += p->rx_stats.alloc_page_failed;
938 rx_reuse += p->rx_stats.page_reuse_count;
939 rx_alloc += p->rx_stats.page_alloc_count;
940 rx_waive += p->rx_stats.page_waive_count;
941 rx_busy += p->rx_stats.page_busy_count;
942
943 if (i40e_enabled_xdp_vsi(vsi)) {
944 /* locate XDP ring */
945 p = READ_ONCE(vsi->xdp_rings[q]);
946 if (!p)
947 continue;
948
949 do {
950 start = u64_stats_fetch_begin(&p->syncp);
951 packets = p->stats.packets;
952 bytes = p->stats.bytes;
953 } while (u64_stats_fetch_retry(&p->syncp, start));
954 tx_b += bytes;
955 tx_p += packets;
956 tx_restart += p->tx_stats.restart_queue;
957 tx_busy += p->tx_stats.tx_busy;
958 tx_linearize += p->tx_stats.tx_linearize;
959 tx_force_wb += p->tx_stats.tx_force_wb;
960 }
961 }
962 rcu_read_unlock();
963 vsi->tx_restart = tx_restart;
964 vsi->tx_busy = tx_busy;
965 vsi->tx_linearize = tx_linearize;
966 vsi->tx_force_wb = tx_force_wb;
967 vsi->tx_stopped = tx_stopped;
968 vsi->rx_page_failed = rx_page;
969 vsi->rx_buf_failed = rx_buf;
970 vsi->rx_page_reuse = rx_reuse;
971 vsi->rx_page_alloc = rx_alloc;
972 vsi->rx_page_waive = rx_waive;
973 vsi->rx_page_busy = rx_busy;
974
975 ns->rx_packets = rx_p;
976 ns->rx_bytes = rx_b;
977 ns->tx_packets = tx_p;
978 ns->tx_bytes = tx_b;
979
980 /* update netdev stats from eth stats */
981 i40e_update_eth_stats(vsi);
982 ons->tx_errors = oes->tx_errors;
983 ns->tx_errors = es->tx_errors;
984 ons->multicast = oes->rx_multicast;
985 ns->multicast = es->rx_multicast;
986 ons->rx_dropped = oes->rx_discards_other;
987 ns->rx_dropped = es->rx_discards_other;
988 ons->rx_missed_errors = oes->rx_discards;
989 ns->rx_missed_errors = es->rx_discards;
990 ons->tx_dropped = oes->tx_discards;
991 ns->tx_dropped = es->tx_discards;
992
993 /* pull in a couple PF stats if this is the main vsi */
994 if (vsi->type == I40E_VSI_MAIN) {
995 ns->rx_crc_errors = pf->stats.crc_errors;
996 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes;
997 ns->rx_length_errors = pf->stats.rx_length_errors;
998 }
999 }
1000
1001 /**
1002 * i40e_update_pf_stats - Update the PF statistics counters.
1003 * @pf: the PF to be updated
1004 **/
i40e_update_pf_stats(struct i40e_pf * pf)1005 static void i40e_update_pf_stats(struct i40e_pf *pf)
1006 {
1007 struct i40e_hw_port_stats *osd = &pf->stats_offsets;
1008 struct i40e_hw_port_stats *nsd = &pf->stats;
1009 struct i40e_hw *hw = &pf->hw;
1010 u32 val;
1011 int i;
1012
1013 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port),
1014 I40E_GLPRT_GORCL(hw->port),
1015 pf->stat_offsets_loaded,
1016 &osd->eth.rx_bytes, &nsd->eth.rx_bytes);
1017 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port),
1018 I40E_GLPRT_GOTCL(hw->port),
1019 pf->stat_offsets_loaded,
1020 &osd->eth.tx_bytes, &nsd->eth.tx_bytes);
1021 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port),
1022 pf->stat_offsets_loaded,
1023 &osd->eth.rx_discards,
1024 &nsd->eth.rx_discards);
1025 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port),
1026 I40E_GLPRT_UPRCL(hw->port),
1027 pf->stat_offsets_loaded,
1028 &osd->eth.rx_unicast,
1029 &nsd->eth.rx_unicast);
1030 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port),
1031 I40E_GLPRT_MPRCL(hw->port),
1032 pf->stat_offsets_loaded,
1033 &osd->eth.rx_multicast,
1034 &nsd->eth.rx_multicast);
1035 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port),
1036 I40E_GLPRT_BPRCL(hw->port),
1037 pf->stat_offsets_loaded,
1038 &osd->eth.rx_broadcast,
1039 &nsd->eth.rx_broadcast);
1040 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port),
1041 I40E_GLPRT_UPTCL(hw->port),
1042 pf->stat_offsets_loaded,
1043 &osd->eth.tx_unicast,
1044 &nsd->eth.tx_unicast);
1045 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port),
1046 I40E_GLPRT_MPTCL(hw->port),
1047 pf->stat_offsets_loaded,
1048 &osd->eth.tx_multicast,
1049 &nsd->eth.tx_multicast);
1050 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port),
1051 I40E_GLPRT_BPTCL(hw->port),
1052 pf->stat_offsets_loaded,
1053 &osd->eth.tx_broadcast,
1054 &nsd->eth.tx_broadcast);
1055
1056 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port),
1057 pf->stat_offsets_loaded,
1058 &osd->tx_dropped_link_down,
1059 &nsd->tx_dropped_link_down);
1060
1061 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port),
1062 pf->stat_offsets_loaded,
1063 &osd->crc_errors, &nsd->crc_errors);
1064
1065 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port),
1066 pf->stat_offsets_loaded,
1067 &osd->illegal_bytes, &nsd->illegal_bytes);
1068
1069 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port),
1070 pf->stat_offsets_loaded,
1071 &osd->mac_local_faults,
1072 &nsd->mac_local_faults);
1073 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port),
1074 pf->stat_offsets_loaded,
1075 &osd->mac_remote_faults,
1076 &nsd->mac_remote_faults);
1077
1078 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port),
1079 pf->stat_offsets_loaded,
1080 &osd->rx_length_errors,
1081 &nsd->rx_length_errors);
1082
1083 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port),
1084 pf->stat_offsets_loaded,
1085 &osd->link_xon_rx, &nsd->link_xon_rx);
1086 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port),
1087 pf->stat_offsets_loaded,
1088 &osd->link_xon_tx, &nsd->link_xon_tx);
1089 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port),
1090 pf->stat_offsets_loaded,
1091 &osd->link_xoff_rx, &nsd->link_xoff_rx);
1092 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port),
1093 pf->stat_offsets_loaded,
1094 &osd->link_xoff_tx, &nsd->link_xoff_tx);
1095
1096 for (i = 0; i < 8; i++) {
1097 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i),
1098 pf->stat_offsets_loaded,
1099 &osd->priority_xoff_rx[i],
1100 &nsd->priority_xoff_rx[i]);
1101 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i),
1102 pf->stat_offsets_loaded,
1103 &osd->priority_xon_rx[i],
1104 &nsd->priority_xon_rx[i]);
1105 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i),
1106 pf->stat_offsets_loaded,
1107 &osd->priority_xon_tx[i],
1108 &nsd->priority_xon_tx[i]);
1109 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i),
1110 pf->stat_offsets_loaded,
1111 &osd->priority_xoff_tx[i],
1112 &nsd->priority_xoff_tx[i]);
1113 i40e_stat_update32(hw,
1114 I40E_GLPRT_RXON2OFFCNT(hw->port, i),
1115 pf->stat_offsets_loaded,
1116 &osd->priority_xon_2_xoff[i],
1117 &nsd->priority_xon_2_xoff[i]);
1118 }
1119
1120 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port),
1121 I40E_GLPRT_PRC64L(hw->port),
1122 pf->stat_offsets_loaded,
1123 &osd->rx_size_64, &nsd->rx_size_64);
1124 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port),
1125 I40E_GLPRT_PRC127L(hw->port),
1126 pf->stat_offsets_loaded,
1127 &osd->rx_size_127, &nsd->rx_size_127);
1128 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port),
1129 I40E_GLPRT_PRC255L(hw->port),
1130 pf->stat_offsets_loaded,
1131 &osd->rx_size_255, &nsd->rx_size_255);
1132 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port),
1133 I40E_GLPRT_PRC511L(hw->port),
1134 pf->stat_offsets_loaded,
1135 &osd->rx_size_511, &nsd->rx_size_511);
1136 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port),
1137 I40E_GLPRT_PRC1023L(hw->port),
1138 pf->stat_offsets_loaded,
1139 &osd->rx_size_1023, &nsd->rx_size_1023);
1140 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port),
1141 I40E_GLPRT_PRC1522L(hw->port),
1142 pf->stat_offsets_loaded,
1143 &osd->rx_size_1522, &nsd->rx_size_1522);
1144 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port),
1145 I40E_GLPRT_PRC9522L(hw->port),
1146 pf->stat_offsets_loaded,
1147 &osd->rx_size_big, &nsd->rx_size_big);
1148
1149 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port),
1150 I40E_GLPRT_PTC64L(hw->port),
1151 pf->stat_offsets_loaded,
1152 &osd->tx_size_64, &nsd->tx_size_64);
1153 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port),
1154 I40E_GLPRT_PTC127L(hw->port),
1155 pf->stat_offsets_loaded,
1156 &osd->tx_size_127, &nsd->tx_size_127);
1157 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port),
1158 I40E_GLPRT_PTC255L(hw->port),
1159 pf->stat_offsets_loaded,
1160 &osd->tx_size_255, &nsd->tx_size_255);
1161 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port),
1162 I40E_GLPRT_PTC511L(hw->port),
1163 pf->stat_offsets_loaded,
1164 &osd->tx_size_511, &nsd->tx_size_511);
1165 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port),
1166 I40E_GLPRT_PTC1023L(hw->port),
1167 pf->stat_offsets_loaded,
1168 &osd->tx_size_1023, &nsd->tx_size_1023);
1169 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port),
1170 I40E_GLPRT_PTC1522L(hw->port),
1171 pf->stat_offsets_loaded,
1172 &osd->tx_size_1522, &nsd->tx_size_1522);
1173 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port),
1174 I40E_GLPRT_PTC9522L(hw->port),
1175 pf->stat_offsets_loaded,
1176 &osd->tx_size_big, &nsd->tx_size_big);
1177
1178 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port),
1179 pf->stat_offsets_loaded,
1180 &osd->rx_undersize, &nsd->rx_undersize);
1181 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port),
1182 pf->stat_offsets_loaded,
1183 &osd->rx_fragments, &nsd->rx_fragments);
1184 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port),
1185 pf->stat_offsets_loaded,
1186 &osd->rx_oversize, &nsd->rx_oversize);
1187 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port),
1188 pf->stat_offsets_loaded,
1189 &osd->rx_jabber, &nsd->rx_jabber);
1190
1191 /* FDIR stats */
1192 i40e_stat_update_and_clear32(hw,
1193 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)),
1194 &nsd->fd_atr_match);
1195 i40e_stat_update_and_clear32(hw,
1196 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)),
1197 &nsd->fd_sb_match);
1198 i40e_stat_update_and_clear32(hw,
1199 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)),
1200 &nsd->fd_atr_tunnel_match);
1201
1202 val = rd32(hw, I40E_PRTPM_EEE_STAT);
1203 nsd->tx_lpi_status =
1204 FIELD_GET(I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK, val);
1205 nsd->rx_lpi_status =
1206 FIELD_GET(I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK, val);
1207 i40e_stat_update32(hw, I40E_PRTPM_TLPIC,
1208 pf->stat_offsets_loaded,
1209 &osd->tx_lpi_count, &nsd->tx_lpi_count);
1210 i40e_stat_update32(hw, I40E_PRTPM_RLPIC,
1211 pf->stat_offsets_loaded,
1212 &osd->rx_lpi_count, &nsd->rx_lpi_count);
1213
1214 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
1215 !test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state))
1216 nsd->fd_sb_status = true;
1217 else
1218 nsd->fd_sb_status = false;
1219
1220 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
1221 !test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
1222 nsd->fd_atr_status = true;
1223 else
1224 nsd->fd_atr_status = false;
1225
1226 pf->stat_offsets_loaded = true;
1227 }
1228
1229 /**
1230 * i40e_update_stats - Update the various statistics counters.
1231 * @vsi: the VSI to be updated
1232 *
1233 * Update the various stats for this VSI and its related entities.
1234 **/
i40e_update_stats(struct i40e_vsi * vsi)1235 void i40e_update_stats(struct i40e_vsi *vsi)
1236 {
1237 struct i40e_pf *pf = vsi->back;
1238
1239 if (vsi->type == I40E_VSI_MAIN)
1240 i40e_update_pf_stats(pf);
1241
1242 i40e_update_vsi_stats(vsi);
1243 }
1244
1245 /**
1246 * i40e_count_all_filters - counts VSI MAC filters
1247 * @vsi: the VSI to be searched
1248 *
1249 * Return: count of MAC filters in any state.
1250 */
i40e_count_all_filters(struct i40e_vsi * vsi)1251 int i40e_count_all_filters(struct i40e_vsi *vsi)
1252 {
1253 struct i40e_mac_filter *f;
1254 struct hlist_node *h;
1255 int bkt, cnt = 0;
1256
1257 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist)
1258 cnt++;
1259
1260 return cnt;
1261 }
1262
1263 /**
1264 * i40e_count_active_filters - counts VSI MAC filters
1265 * @vsi: the VSI to be searched
1266 *
1267 * Return: count of active MAC filters.
1268 */
i40e_count_active_filters(struct i40e_vsi * vsi)1269 int i40e_count_active_filters(struct i40e_vsi *vsi)
1270 {
1271 struct i40e_mac_filter *f;
1272 struct hlist_node *h;
1273 int bkt;
1274 int cnt = 0;
1275
1276 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1277 if (f->state == I40E_FILTER_NEW ||
1278 f->state == I40E_FILTER_NEW_SYNC ||
1279 f->state == I40E_FILTER_ACTIVE)
1280 ++cnt;
1281 }
1282
1283 return cnt;
1284 }
1285
1286 /**
1287 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter
1288 * @vsi: the VSI to be searched
1289 * @macaddr: the MAC address
1290 * @vlan: the vlan
1291 *
1292 * Returns ptr to the filter object or NULL
1293 **/
i40e_find_filter(struct i40e_vsi * vsi,const u8 * macaddr,s16 vlan)1294 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi,
1295 const u8 *macaddr, s16 vlan)
1296 {
1297 struct i40e_mac_filter *f;
1298 u64 key;
1299
1300 if (!vsi || !macaddr)
1301 return NULL;
1302
1303 key = i40e_addr_to_hkey(macaddr);
1304 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
1305 if ((ether_addr_equal(macaddr, f->macaddr)) &&
1306 (vlan == f->vlan))
1307 return f;
1308 }
1309 return NULL;
1310 }
1311
1312 /**
1313 * i40e_find_mac - Find a mac addr in the macvlan filters list
1314 * @vsi: the VSI to be searched
1315 * @macaddr: the MAC address we are searching for
1316 *
1317 * Returns the first filter with the provided MAC address or NULL if
1318 * MAC address was not found
1319 **/
i40e_find_mac(struct i40e_vsi * vsi,const u8 * macaddr)1320 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr)
1321 {
1322 struct i40e_mac_filter *f;
1323 u64 key;
1324
1325 if (!vsi || !macaddr)
1326 return NULL;
1327
1328 key = i40e_addr_to_hkey(macaddr);
1329 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
1330 if ((ether_addr_equal(macaddr, f->macaddr)))
1331 return f;
1332 }
1333 return NULL;
1334 }
1335
1336 /**
1337 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode
1338 * @vsi: the VSI to be searched
1339 *
1340 * Returns true if VSI is in vlan mode or false otherwise
1341 **/
i40e_is_vsi_in_vlan(struct i40e_vsi * vsi)1342 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi)
1343 {
1344 /* If we have a PVID, always operate in VLAN mode */
1345 if (vsi->info.pvid)
1346 return true;
1347
1348 /* We need to operate in VLAN mode whenever we have any filters with
1349 * a VLAN other than I40E_VLAN_ALL. We could check the table each
1350 * time, incurring search cost repeatedly. However, we can notice two
1351 * things:
1352 *
1353 * 1) the only place where we can gain a VLAN filter is in
1354 * i40e_add_filter.
1355 *
1356 * 2) the only place where filters are actually removed is in
1357 * i40e_sync_filters_subtask.
1358 *
1359 * Thus, we can simply use a boolean value, has_vlan_filters which we
1360 * will set to true when we add a VLAN filter in i40e_add_filter. Then
1361 * we have to perform the full search after deleting filters in
1362 * i40e_sync_filters_subtask, but we already have to search
1363 * filters here and can perform the check at the same time. This
1364 * results in avoiding embedding a loop for VLAN mode inside another
1365 * loop over all the filters, and should maintain correctness as noted
1366 * above.
1367 */
1368 return vsi->has_vlan_filter;
1369 }
1370
1371 /**
1372 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary
1373 * @vsi: the VSI to configure
1374 * @tmp_add_list: list of filters ready to be added
1375 * @tmp_del_list: list of filters ready to be deleted
1376 * @vlan_filters: the number of active VLAN filters
1377 *
1378 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they
1379 * behave as expected. If we have any active VLAN filters remaining or about
1380 * to be added then we need to update non-VLAN filters to be marked as VLAN=0
1381 * so that they only match against untagged traffic. If we no longer have any
1382 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1
1383 * so that they match against both tagged and untagged traffic. In this way,
1384 * we ensure that we correctly receive the desired traffic. This ensures that
1385 * when we have an active VLAN we will receive only untagged traffic and
1386 * traffic matching active VLANs. If we have no active VLANs then we will
1387 * operate in non-VLAN mode and receive all traffic, tagged or untagged.
1388 *
1389 * Finally, in a similar fashion, this function also corrects filters when
1390 * there is an active PVID assigned to this VSI.
1391 *
1392 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0.
1393 *
1394 * This function is only expected to be called from within
1395 * i40e_sync_vsi_filters.
1396 *
1397 * NOTE: This function expects to be called while under the
1398 * mac_filter_hash_lock
1399 */
i40e_correct_mac_vlan_filters(struct i40e_vsi * vsi,struct hlist_head * tmp_add_list,struct hlist_head * tmp_del_list,int vlan_filters)1400 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi,
1401 struct hlist_head *tmp_add_list,
1402 struct hlist_head *tmp_del_list,
1403 int vlan_filters)
1404 {
1405 s16 pvid = le16_to_cpu(vsi->info.pvid);
1406 struct i40e_mac_filter *f, *add_head;
1407 struct i40e_new_mac_filter *new;
1408 struct hlist_node *h;
1409 int bkt, new_vlan;
1410
1411 /* To determine if a particular filter needs to be replaced we
1412 * have the three following conditions:
1413 *
1414 * a) if we have a PVID assigned, then all filters which are
1415 * not marked as VLAN=PVID must be replaced with filters that
1416 * are.
1417 * b) otherwise, if we have any active VLANS, all filters
1418 * which are marked as VLAN=-1 must be replaced with
1419 * filters marked as VLAN=0
1420 * c) finally, if we do not have any active VLANS, all filters
1421 * which are marked as VLAN=0 must be replaced with filters
1422 * marked as VLAN=-1
1423 */
1424
1425 /* Update the filters about to be added in place */
1426 hlist_for_each_entry(new, tmp_add_list, hlist) {
1427 if (pvid && new->f->vlan != pvid)
1428 new->f->vlan = pvid;
1429 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY)
1430 new->f->vlan = 0;
1431 else if (!vlan_filters && new->f->vlan == 0)
1432 new->f->vlan = I40E_VLAN_ANY;
1433 }
1434
1435 /* Update the remaining active filters */
1436 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1437 /* Combine the checks for whether a filter needs to be changed
1438 * and then determine the new VLAN inside the if block, in
1439 * order to avoid duplicating code for adding the new filter
1440 * then deleting the old filter.
1441 */
1442 if ((pvid && f->vlan != pvid) ||
1443 (vlan_filters && f->vlan == I40E_VLAN_ANY) ||
1444 (!vlan_filters && f->vlan == 0)) {
1445 /* Determine the new vlan we will be adding */
1446 if (pvid)
1447 new_vlan = pvid;
1448 else if (vlan_filters)
1449 new_vlan = 0;
1450 else
1451 new_vlan = I40E_VLAN_ANY;
1452
1453 /* Create the new filter */
1454 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan);
1455 if (!add_head)
1456 return -ENOMEM;
1457
1458 /* Create a temporary i40e_new_mac_filter */
1459 new = kzalloc(sizeof(*new), GFP_ATOMIC);
1460 if (!new)
1461 return -ENOMEM;
1462
1463 new->f = add_head;
1464 new->state = add_head->state;
1465 if (add_head->state == I40E_FILTER_NEW)
1466 add_head->state = I40E_FILTER_NEW_SYNC;
1467
1468 /* Add the new filter to the tmp list */
1469 hlist_add_head(&new->hlist, tmp_add_list);
1470
1471 /* Put the original filter into the delete list */
1472 f->state = I40E_FILTER_REMOVE;
1473 hash_del(&f->hlist);
1474 hlist_add_head(&f->hlist, tmp_del_list);
1475 }
1476 }
1477
1478 vsi->has_vlan_filter = !!vlan_filters;
1479
1480 return 0;
1481 }
1482
1483 /**
1484 * i40e_get_vf_new_vlan - Get new vlan id on a vf
1485 * @vsi: the vsi to configure
1486 * @new_mac: new mac filter to be added
1487 * @f: existing mac filter, replaced with new_mac->f if new_mac is not NULL
1488 * @vlan_filters: the number of active VLAN filters
1489 * @trusted: flag if the VF is trusted
1490 *
1491 * Get new VLAN id based on current VLAN filters, trust, PVID
1492 * and vf-vlan-prune-disable flag.
1493 *
1494 * Returns the value of the new vlan filter or
1495 * the old value if no new filter is needed.
1496 */
i40e_get_vf_new_vlan(struct i40e_vsi * vsi,struct i40e_new_mac_filter * new_mac,struct i40e_mac_filter * f,int vlan_filters,bool trusted)1497 static s16 i40e_get_vf_new_vlan(struct i40e_vsi *vsi,
1498 struct i40e_new_mac_filter *new_mac,
1499 struct i40e_mac_filter *f,
1500 int vlan_filters,
1501 bool trusted)
1502 {
1503 s16 pvid = le16_to_cpu(vsi->info.pvid);
1504 struct i40e_pf *pf = vsi->back;
1505 bool is_any;
1506
1507 if (new_mac)
1508 f = new_mac->f;
1509
1510 if (pvid && f->vlan != pvid)
1511 return pvid;
1512
1513 is_any = (trusted ||
1514 !test_bit(I40E_FLAG_VF_VLAN_PRUNING_ENA, pf->flags));
1515
1516 if ((vlan_filters && f->vlan == I40E_VLAN_ANY) ||
1517 (!is_any && !vlan_filters && f->vlan == I40E_VLAN_ANY) ||
1518 (is_any && !vlan_filters && f->vlan == 0)) {
1519 if (is_any)
1520 return I40E_VLAN_ANY;
1521 else
1522 return 0;
1523 }
1524
1525 return f->vlan;
1526 }
1527
1528 /**
1529 * i40e_correct_vf_mac_vlan_filters - Correct non-VLAN VF filters if necessary
1530 * @vsi: the vsi to configure
1531 * @tmp_add_list: list of filters ready to be added
1532 * @tmp_del_list: list of filters ready to be deleted
1533 * @vlan_filters: the number of active VLAN filters
1534 * @trusted: flag if the VF is trusted
1535 *
1536 * Correct VF VLAN filters based on current VLAN filters, trust, PVID
1537 * and vf-vlan-prune-disable flag.
1538 *
1539 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0.
1540 *
1541 * This function is only expected to be called from within
1542 * i40e_sync_vsi_filters.
1543 *
1544 * NOTE: This function expects to be called while under the
1545 * mac_filter_hash_lock
1546 */
i40e_correct_vf_mac_vlan_filters(struct i40e_vsi * vsi,struct hlist_head * tmp_add_list,struct hlist_head * tmp_del_list,int vlan_filters,bool trusted)1547 static int i40e_correct_vf_mac_vlan_filters(struct i40e_vsi *vsi,
1548 struct hlist_head *tmp_add_list,
1549 struct hlist_head *tmp_del_list,
1550 int vlan_filters,
1551 bool trusted)
1552 {
1553 struct i40e_mac_filter *f, *add_head;
1554 struct i40e_new_mac_filter *new_mac;
1555 struct hlist_node *h;
1556 int bkt, new_vlan;
1557
1558 hlist_for_each_entry(new_mac, tmp_add_list, hlist) {
1559 new_mac->f->vlan = i40e_get_vf_new_vlan(vsi, new_mac, NULL,
1560 vlan_filters, trusted);
1561 }
1562
1563 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1564 new_vlan = i40e_get_vf_new_vlan(vsi, NULL, f, vlan_filters,
1565 trusted);
1566 if (new_vlan != f->vlan) {
1567 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan);
1568 if (!add_head)
1569 return -ENOMEM;
1570 /* Create a temporary i40e_new_mac_filter */
1571 new_mac = kzalloc(sizeof(*new_mac), GFP_ATOMIC);
1572 if (!new_mac)
1573 return -ENOMEM;
1574 new_mac->f = add_head;
1575 new_mac->state = add_head->state;
1576 if (add_head->state == I40E_FILTER_NEW)
1577 add_head->state = I40E_FILTER_NEW_SYNC;
1578
1579 /* Add the new filter to the tmp list */
1580 hlist_add_head(&new_mac->hlist, tmp_add_list);
1581
1582 /* Put the original filter into the delete list */
1583 f->state = I40E_FILTER_REMOVE;
1584 hash_del(&f->hlist);
1585 hlist_add_head(&f->hlist, tmp_del_list);
1586 }
1587 }
1588
1589 vsi->has_vlan_filter = !!vlan_filters;
1590 return 0;
1591 }
1592
1593 /**
1594 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM
1595 * @vsi: the PF Main VSI - inappropriate for any other VSI
1596 * @macaddr: the MAC address
1597 *
1598 * Remove whatever filter the firmware set up so the driver can manage
1599 * its own filtering intelligently.
1600 **/
i40e_rm_default_mac_filter(struct i40e_vsi * vsi,u8 * macaddr)1601 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr)
1602 {
1603 struct i40e_aqc_remove_macvlan_element_data element;
1604 struct i40e_pf *pf = vsi->back;
1605
1606 /* Only appropriate for the PF main VSI */
1607 if (vsi->type != I40E_VSI_MAIN)
1608 return;
1609
1610 memset(&element, 0, sizeof(element));
1611 ether_addr_copy(element.mac_addr, macaddr);
1612 element.vlan_tag = 0;
1613 /* Ignore error returns, some firmware does it this way... */
1614 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
1615 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
1616
1617 memset(&element, 0, sizeof(element));
1618 ether_addr_copy(element.mac_addr, macaddr);
1619 element.vlan_tag = 0;
1620 /* ...and some firmware does it this way. */
1621 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
1622 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
1623 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
1624 }
1625
1626 /**
1627 * i40e_add_filter - Add a mac/vlan filter to the VSI
1628 * @vsi: the VSI to be searched
1629 * @macaddr: the MAC address
1630 * @vlan: the vlan
1631 *
1632 * Returns ptr to the filter object or NULL when no memory available.
1633 *
1634 * NOTE: This function is expected to be called with mac_filter_hash_lock
1635 * being held.
1636 **/
i40e_add_filter(struct i40e_vsi * vsi,const u8 * macaddr,s16 vlan)1637 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi,
1638 const u8 *macaddr, s16 vlan)
1639 {
1640 struct i40e_mac_filter *f;
1641 u64 key;
1642
1643 if (!vsi || !macaddr)
1644 return NULL;
1645
1646 f = i40e_find_filter(vsi, macaddr, vlan);
1647 if (!f) {
1648 f = kzalloc(sizeof(*f), GFP_ATOMIC);
1649 if (!f)
1650 return NULL;
1651
1652 /* Update the boolean indicating if we need to function in
1653 * VLAN mode.
1654 */
1655 if (vlan >= 0)
1656 vsi->has_vlan_filter = true;
1657
1658 ether_addr_copy(f->macaddr, macaddr);
1659 f->vlan = vlan;
1660 f->state = I40E_FILTER_NEW;
1661 INIT_HLIST_NODE(&f->hlist);
1662
1663 key = i40e_addr_to_hkey(macaddr);
1664 hash_add(vsi->mac_filter_hash, &f->hlist, key);
1665
1666 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1667 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state);
1668 }
1669
1670 /* If we're asked to add a filter that has been marked for removal, it
1671 * is safe to simply restore it to active state. __i40e_del_filter
1672 * will have simply deleted any filters which were previously marked
1673 * NEW or FAILED, so if it is currently marked REMOVE it must have
1674 * previously been ACTIVE. Since we haven't yet run the sync filters
1675 * task, just restore this filter to the ACTIVE state so that the
1676 * sync task leaves it in place
1677 */
1678 if (f->state == I40E_FILTER_REMOVE)
1679 f->state = I40E_FILTER_ACTIVE;
1680
1681 return f;
1682 }
1683
1684 /**
1685 * __i40e_del_filter - Remove a specific filter from the VSI
1686 * @vsi: VSI to remove from
1687 * @f: the filter to remove from the list
1688 *
1689 * This function requires you've found * the exact filter you will remove
1690 * already, such as via i40e_find_filter or i40e_find_mac.
1691 *
1692 * NOTE: This function is expected to be called with mac_filter_hash_lock
1693 * being held.
1694 * ANOTHER NOTE: This function MUST be called from within the context of
1695 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe()
1696 * instead of list_for_each_entry().
1697 **/
__i40e_del_filter(struct i40e_vsi * vsi,struct i40e_mac_filter * f)1698 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f)
1699 {
1700 if (!f)
1701 return;
1702
1703 /* If the filter was never added to firmware then we can just delete it
1704 * directly and we don't want to set the status to remove or else an
1705 * admin queue command will unnecessarily fire.
1706 */
1707 if ((f->state == I40E_FILTER_FAILED) ||
1708 (f->state == I40E_FILTER_NEW)) {
1709 hash_del(&f->hlist);
1710 kfree(f);
1711 } else {
1712 f->state = I40E_FILTER_REMOVE;
1713 }
1714
1715 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1716 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state);
1717 }
1718
1719 /**
1720 * i40e_add_mac_filter - Add a MAC filter for all active VLANs
1721 * @vsi: the VSI to be searched
1722 * @macaddr: the mac address to be filtered
1723 *
1724 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise,
1725 * go through all the macvlan filters and add a macvlan filter for each
1726 * unique vlan that already exists. If a PVID has been assigned, instead only
1727 * add the macaddr to that VLAN.
1728 *
1729 * Returns last filter added on success, else NULL
1730 **/
i40e_add_mac_filter(struct i40e_vsi * vsi,const u8 * macaddr)1731 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi,
1732 const u8 *macaddr)
1733 {
1734 struct i40e_mac_filter *f, *add = NULL;
1735 struct hlist_node *h;
1736 int bkt;
1737
1738 lockdep_assert_held(&vsi->mac_filter_hash_lock);
1739 if (vsi->info.pvid)
1740 return i40e_add_filter(vsi, macaddr,
1741 le16_to_cpu(vsi->info.pvid));
1742
1743 if (!i40e_is_vsi_in_vlan(vsi))
1744 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY);
1745
1746 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1747 if (f->state == I40E_FILTER_REMOVE)
1748 continue;
1749 add = i40e_add_filter(vsi, macaddr, f->vlan);
1750 if (!add)
1751 return NULL;
1752 }
1753
1754 return add;
1755 }
1756
1757 /**
1758 * i40e_del_mac_filter - Remove a MAC filter from all VLANs
1759 * @vsi: the VSI to be searched
1760 * @macaddr: the mac address to be removed
1761 *
1762 * Removes a given MAC address from a VSI regardless of what VLAN it has been
1763 * associated with.
1764 *
1765 * Returns 0 for success, or error
1766 **/
i40e_del_mac_filter(struct i40e_vsi * vsi,const u8 * macaddr)1767 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr)
1768 {
1769 struct i40e_mac_filter *f;
1770 struct hlist_node *h;
1771 bool found = false;
1772 int bkt;
1773
1774 lockdep_assert_held(&vsi->mac_filter_hash_lock);
1775 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1776 if (ether_addr_equal(macaddr, f->macaddr)) {
1777 __i40e_del_filter(vsi, f);
1778 found = true;
1779 }
1780 }
1781
1782 if (found)
1783 return 0;
1784 else
1785 return -ENOENT;
1786 }
1787
1788 /**
1789 * i40e_set_mac - NDO callback to set mac address
1790 * @netdev: network interface device structure
1791 * @p: pointer to an address structure
1792 *
1793 * Returns 0 on success, negative on failure
1794 **/
i40e_set_mac(struct net_device * netdev,void * p)1795 static int i40e_set_mac(struct net_device *netdev, void *p)
1796 {
1797 struct i40e_netdev_priv *np = netdev_priv(netdev);
1798 struct i40e_vsi *vsi = np->vsi;
1799 struct i40e_pf *pf = vsi->back;
1800 struct i40e_hw *hw = &pf->hw;
1801 struct sockaddr *addr = p;
1802
1803 if (!is_valid_ether_addr(addr->sa_data))
1804 return -EADDRNOTAVAIL;
1805
1806 if (test_bit(__I40E_DOWN, pf->state) ||
1807 test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
1808 return -EADDRNOTAVAIL;
1809
1810 if (ether_addr_equal(hw->mac.addr, addr->sa_data))
1811 netdev_info(netdev, "returning to hw mac address %pM\n",
1812 hw->mac.addr);
1813 else
1814 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data);
1815
1816 /* Copy the address first, so that we avoid a possible race with
1817 * .set_rx_mode().
1818 * - Remove old address from MAC filter
1819 * - Copy new address
1820 * - Add new address to MAC filter
1821 */
1822 spin_lock_bh(&vsi->mac_filter_hash_lock);
1823 i40e_del_mac_filter(vsi, netdev->dev_addr);
1824 eth_hw_addr_set(netdev, addr->sa_data);
1825 i40e_add_mac_filter(vsi, netdev->dev_addr);
1826 spin_unlock_bh(&vsi->mac_filter_hash_lock);
1827
1828 if (vsi->type == I40E_VSI_MAIN) {
1829 int ret;
1830
1831 ret = i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL,
1832 addr->sa_data, NULL);
1833 if (ret)
1834 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %pe, AQ ret %s\n",
1835 ERR_PTR(ret),
1836 libie_aq_str(hw->aq.asq_last_status));
1837 }
1838
1839 /* schedule our worker thread which will take care of
1840 * applying the new filter changes
1841 */
1842 i40e_service_event_schedule(pf);
1843 return 0;
1844 }
1845
1846 /**
1847 * i40e_config_rss_aq - Prepare for RSS using AQ commands
1848 * @vsi: vsi structure
1849 * @seed: RSS hash seed
1850 * @lut: pointer to lookup table of lut_size
1851 * @lut_size: size of the lookup table
1852 **/
i40e_config_rss_aq(struct i40e_vsi * vsi,const u8 * seed,u8 * lut,u16 lut_size)1853 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
1854 u8 *lut, u16 lut_size)
1855 {
1856 struct i40e_pf *pf = vsi->back;
1857 struct i40e_hw *hw = &pf->hw;
1858 int ret = 0;
1859
1860 if (seed) {
1861 struct i40e_aqc_get_set_rss_key_data *seed_dw =
1862 (struct i40e_aqc_get_set_rss_key_data *)seed;
1863 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw);
1864 if (ret) {
1865 dev_info(&pf->pdev->dev,
1866 "Cannot set RSS key, err %pe aq_err %s\n",
1867 ERR_PTR(ret),
1868 libie_aq_str(hw->aq.asq_last_status));
1869 return ret;
1870 }
1871 }
1872 if (lut) {
1873 bool pf_lut = vsi->type == I40E_VSI_MAIN;
1874
1875 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
1876 if (ret) {
1877 dev_info(&pf->pdev->dev,
1878 "Cannot set RSS lut, err %pe aq_err %s\n",
1879 ERR_PTR(ret),
1880 libie_aq_str(hw->aq.asq_last_status));
1881 return ret;
1882 }
1883 }
1884 return ret;
1885 }
1886
1887 /**
1888 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used
1889 * @vsi: VSI structure
1890 **/
i40e_vsi_config_rss(struct i40e_vsi * vsi)1891 static int i40e_vsi_config_rss(struct i40e_vsi *vsi)
1892 {
1893 struct i40e_pf *pf = vsi->back;
1894 u8 seed[I40E_HKEY_ARRAY_SIZE];
1895 u8 *lut;
1896 int ret;
1897
1898 if (!test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps))
1899 return 0;
1900 if (!vsi->rss_size)
1901 vsi->rss_size = min_t(int, pf->alloc_rss_size,
1902 vsi->num_queue_pairs);
1903 if (!vsi->rss_size)
1904 return -EINVAL;
1905 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1906 if (!lut)
1907 return -ENOMEM;
1908
1909 /* Use the user configured hash keys and lookup table if there is one,
1910 * otherwise use default
1911 */
1912 if (vsi->rss_lut_user)
1913 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1914 else
1915 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
1916 if (vsi->rss_hkey_user)
1917 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
1918 else
1919 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
1920 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size);
1921 kfree(lut);
1922 return ret;
1923 }
1924
1925 /**
1926 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config
1927 * @vsi: the VSI being configured,
1928 * @ctxt: VSI context structure
1929 * @enabled_tc: number of traffic classes to enable
1930 *
1931 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
1932 **/
i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi * vsi,struct i40e_vsi_context * ctxt,u8 enabled_tc)1933 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi,
1934 struct i40e_vsi_context *ctxt,
1935 u8 enabled_tc)
1936 {
1937 u16 qcount = 0, max_qcount, qmap, sections = 0;
1938 int i, override_q, pow, num_qps, ret;
1939 u8 netdev_tc = 0, offset = 0;
1940
1941 if (vsi->type != I40E_VSI_MAIN)
1942 return -EINVAL;
1943 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1944 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
1945 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc;
1946 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
1947 num_qps = vsi->mqprio_qopt.qopt.count[0];
1948
1949 /* find the next higher power-of-2 of num queue pairs */
1950 pow = ilog2(num_qps);
1951 if (!is_power_of_2(num_qps))
1952 pow++;
1953 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
1954 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
1955
1956 /* Setup queue offset/count for all TCs for given VSI */
1957 max_qcount = vsi->mqprio_qopt.qopt.count[0];
1958 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1959 /* See if the given TC is enabled for the given VSI */
1960 if (vsi->tc_config.enabled_tc & BIT(i)) {
1961 offset = vsi->mqprio_qopt.qopt.offset[i];
1962 qcount = vsi->mqprio_qopt.qopt.count[i];
1963 if (qcount > max_qcount)
1964 max_qcount = qcount;
1965 vsi->tc_config.tc_info[i].qoffset = offset;
1966 vsi->tc_config.tc_info[i].qcount = qcount;
1967 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
1968 } else {
1969 /* TC is not enabled so set the offset to
1970 * default queue and allocate one queue
1971 * for the given TC.
1972 */
1973 vsi->tc_config.tc_info[i].qoffset = 0;
1974 vsi->tc_config.tc_info[i].qcount = 1;
1975 vsi->tc_config.tc_info[i].netdev_tc = 0;
1976 }
1977 }
1978
1979 /* Set actual Tx/Rx queue pairs */
1980 vsi->num_queue_pairs = offset + qcount;
1981
1982 /* Setup queue TC[0].qmap for given VSI context */
1983 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1984 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
1985 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
1986 ctxt->info.valid_sections |= cpu_to_le16(sections);
1987
1988 /* Reconfigure RSS for main VSI with max queue count */
1989 vsi->rss_size = max_qcount;
1990 ret = i40e_vsi_config_rss(vsi);
1991 if (ret) {
1992 dev_info(&vsi->back->pdev->dev,
1993 "Failed to reconfig rss for num_queues (%u)\n",
1994 max_qcount);
1995 return ret;
1996 }
1997 vsi->reconfig_rss = true;
1998 dev_dbg(&vsi->back->pdev->dev,
1999 "Reconfigured rss with num_queues (%u)\n", max_qcount);
2000
2001 /* Find queue count available for channel VSIs and starting offset
2002 * for channel VSIs
2003 */
2004 override_q = vsi->mqprio_qopt.qopt.count[0];
2005 if (override_q && override_q < vsi->num_queue_pairs) {
2006 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q;
2007 vsi->next_base_queue = override_q;
2008 }
2009 return 0;
2010 }
2011
2012 /**
2013 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc
2014 * @vsi: the VSI being setup
2015 * @ctxt: VSI context structure
2016 * @enabled_tc: Enabled TCs bitmap
2017 * @is_add: True if called before Add VSI
2018 *
2019 * Setup VSI queue mapping for enabled traffic classes.
2020 **/
i40e_vsi_setup_queue_map(struct i40e_vsi * vsi,struct i40e_vsi_context * ctxt,u8 enabled_tc,bool is_add)2021 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi,
2022 struct i40e_vsi_context *ctxt,
2023 u8 enabled_tc,
2024 bool is_add)
2025 {
2026 struct i40e_pf *pf = vsi->back;
2027 u16 num_tc_qps = 0;
2028 u16 sections = 0;
2029 u8 netdev_tc = 0;
2030 u16 numtc = 1;
2031 u16 qcount;
2032 u8 offset;
2033 u16 qmap;
2034 int i;
2035
2036 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
2037 offset = 0;
2038 /* zero out queue mapping, it will get updated on the end of the function */
2039 memset(ctxt->info.queue_mapping, 0, sizeof(ctxt->info.queue_mapping));
2040
2041 if (vsi->type == I40E_VSI_MAIN) {
2042 /* This code helps add more queue to the VSI if we have
2043 * more cores than RSS can support, the higher cores will
2044 * be served by ATR or other filters. Furthermore, the
2045 * non-zero req_queue_pairs says that user requested a new
2046 * queue count via ethtool's set_channels, so use this
2047 * value for queues distribution across traffic classes
2048 * We need at least one queue pair for the interface
2049 * to be usable as we see in else statement.
2050 */
2051 if (vsi->req_queue_pairs > 0)
2052 vsi->num_queue_pairs = vsi->req_queue_pairs;
2053 else if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
2054 vsi->num_queue_pairs = pf->num_lan_msix;
2055 else
2056 vsi->num_queue_pairs = 1;
2057 }
2058
2059 /* Number of queues per enabled TC */
2060 if (vsi->type == I40E_VSI_MAIN ||
2061 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs != 0))
2062 num_tc_qps = vsi->num_queue_pairs;
2063 else
2064 num_tc_qps = vsi->alloc_queue_pairs;
2065
2066 if (enabled_tc && test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) {
2067 /* Find numtc from enabled TC bitmap */
2068 for (i = 0, numtc = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2069 if (enabled_tc & BIT(i)) /* TC is enabled */
2070 numtc++;
2071 }
2072 if (!numtc) {
2073 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n");
2074 numtc = 1;
2075 }
2076 num_tc_qps = num_tc_qps / numtc;
2077 num_tc_qps = min_t(int, num_tc_qps,
2078 i40e_pf_get_max_q_per_tc(pf));
2079 }
2080
2081 vsi->tc_config.numtc = numtc;
2082 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
2083
2084 /* Do not allow use more TC queue pairs than MSI-X vectors exist */
2085 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
2086 num_tc_qps = min_t(int, num_tc_qps, pf->num_lan_msix);
2087
2088 /* Setup queue offset/count for all TCs for given VSI */
2089 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2090 /* See if the given TC is enabled for the given VSI */
2091 if (vsi->tc_config.enabled_tc & BIT(i)) {
2092 /* TC is enabled */
2093 int pow, num_qps;
2094
2095 switch (vsi->type) {
2096 case I40E_VSI_MAIN:
2097 if ((!test_bit(I40E_FLAG_FD_SB_ENA,
2098 pf->flags) &&
2099 !test_bit(I40E_FLAG_FD_ATR_ENA,
2100 pf->flags)) ||
2101 vsi->tc_config.enabled_tc != 1) {
2102 qcount = min_t(int, pf->alloc_rss_size,
2103 num_tc_qps);
2104 break;
2105 }
2106 fallthrough;
2107 case I40E_VSI_FDIR:
2108 case I40E_VSI_SRIOV:
2109 case I40E_VSI_VMDQ2:
2110 default:
2111 qcount = num_tc_qps;
2112 WARN_ON(i != 0);
2113 break;
2114 }
2115 vsi->tc_config.tc_info[i].qoffset = offset;
2116 vsi->tc_config.tc_info[i].qcount = qcount;
2117
2118 /* find the next higher power-of-2 of num queue pairs */
2119 num_qps = qcount;
2120 pow = 0;
2121 while (num_qps && (BIT_ULL(pow) < qcount)) {
2122 pow++;
2123 num_qps >>= 1;
2124 }
2125
2126 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
2127 qmap =
2128 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
2129 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
2130
2131 offset += qcount;
2132 } else {
2133 /* TC is not enabled so set the offset to
2134 * default queue and allocate one queue
2135 * for the given TC.
2136 */
2137 vsi->tc_config.tc_info[i].qoffset = 0;
2138 vsi->tc_config.tc_info[i].qcount = 1;
2139 vsi->tc_config.tc_info[i].netdev_tc = 0;
2140
2141 qmap = 0;
2142 }
2143 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
2144 }
2145 /* Do not change previously set num_queue_pairs for PFs and VFs*/
2146 if ((vsi->type == I40E_VSI_MAIN && numtc != 1) ||
2147 (vsi->type == I40E_VSI_SRIOV && vsi->num_queue_pairs == 0) ||
2148 (vsi->type != I40E_VSI_MAIN && vsi->type != I40E_VSI_SRIOV))
2149 vsi->num_queue_pairs = offset;
2150
2151 /* Scheduler section valid can only be set for ADD VSI */
2152 if (is_add) {
2153 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
2154
2155 ctxt->info.up_enable_bits = enabled_tc;
2156 }
2157 if (vsi->type == I40E_VSI_SRIOV) {
2158 ctxt->info.mapping_flags |=
2159 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
2160 for (i = 0; i < vsi->num_queue_pairs; i++)
2161 ctxt->info.queue_mapping[i] =
2162 cpu_to_le16(vsi->base_queue + i);
2163 } else {
2164 ctxt->info.mapping_flags |=
2165 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
2166 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
2167 }
2168 ctxt->info.valid_sections |= cpu_to_le16(sections);
2169 }
2170
2171 /**
2172 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address
2173 * @netdev: the netdevice
2174 * @addr: address to add
2175 *
2176 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
2177 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
2178 */
i40e_addr_sync(struct net_device * netdev,const u8 * addr)2179 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr)
2180 {
2181 struct i40e_netdev_priv *np = netdev_priv(netdev);
2182 struct i40e_vsi *vsi = np->vsi;
2183
2184 if (i40e_add_mac_filter(vsi, addr))
2185 return 0;
2186 else
2187 return -ENOMEM;
2188 }
2189
2190 /**
2191 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
2192 * @netdev: the netdevice
2193 * @addr: address to add
2194 *
2195 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
2196 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
2197 */
i40e_addr_unsync(struct net_device * netdev,const u8 * addr)2198 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr)
2199 {
2200 struct i40e_netdev_priv *np = netdev_priv(netdev);
2201 struct i40e_vsi *vsi = np->vsi;
2202
2203 /* Under some circumstances, we might receive a request to delete
2204 * our own device address from our uc list. Because we store the
2205 * device address in the VSI's MAC/VLAN filter list, we need to ignore
2206 * such requests and not delete our device address from this list.
2207 */
2208 if (ether_addr_equal(addr, netdev->dev_addr))
2209 return 0;
2210
2211 i40e_del_mac_filter(vsi, addr);
2212
2213 return 0;
2214 }
2215
2216 /**
2217 * i40e_set_rx_mode - NDO callback to set the netdev filters
2218 * @netdev: network interface device structure
2219 **/
i40e_set_rx_mode(struct net_device * netdev)2220 static void i40e_set_rx_mode(struct net_device *netdev)
2221 {
2222 struct i40e_netdev_priv *np = netdev_priv(netdev);
2223 struct i40e_vsi *vsi = np->vsi;
2224
2225 spin_lock_bh(&vsi->mac_filter_hash_lock);
2226
2227 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
2228 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
2229
2230 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2231
2232 /* check for other flag changes */
2233 if (vsi->current_netdev_flags != vsi->netdev->flags) {
2234 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2235 set_bit(__I40E_MACVLAN_SYNC_PENDING, vsi->back->state);
2236 }
2237 i40e_service_event_schedule(vsi->back);
2238 }
2239
2240 /**
2241 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries
2242 * @vsi: Pointer to VSI struct
2243 * @from: Pointer to list which contains MAC filter entries - changes to
2244 * those entries needs to be undone.
2245 *
2246 * MAC filter entries from this list were slated for deletion.
2247 **/
i40e_undo_del_filter_entries(struct i40e_vsi * vsi,struct hlist_head * from)2248 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi,
2249 struct hlist_head *from)
2250 {
2251 struct i40e_mac_filter *f;
2252 struct hlist_node *h;
2253
2254 hlist_for_each_entry_safe(f, h, from, hlist) {
2255 u64 key = i40e_addr_to_hkey(f->macaddr);
2256
2257 /* Move the element back into MAC filter list*/
2258 hlist_del(&f->hlist);
2259 hash_add(vsi->mac_filter_hash, &f->hlist, key);
2260 }
2261 }
2262
2263 /**
2264 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries
2265 * @vsi: Pointer to vsi struct
2266 * @from: Pointer to list which contains MAC filter entries - changes to
2267 * those entries needs to be undone.
2268 *
2269 * MAC filter entries from this list were slated for addition.
2270 **/
i40e_undo_add_filter_entries(struct i40e_vsi * vsi,struct hlist_head * from)2271 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi,
2272 struct hlist_head *from)
2273 {
2274 struct i40e_new_mac_filter *new;
2275 struct hlist_node *h;
2276
2277 hlist_for_each_entry_safe(new, h, from, hlist) {
2278 /* We can simply free the wrapper structure */
2279 hlist_del(&new->hlist);
2280 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1);
2281 kfree(new);
2282 }
2283 }
2284
2285 /**
2286 * i40e_next_filter - Get the next non-broadcast filter from a list
2287 * @next: pointer to filter in list
2288 *
2289 * Returns the next non-broadcast filter in the list. Required so that we
2290 * ignore broadcast filters within the list, since these are not handled via
2291 * the normal firmware update path.
2292 */
2293 static
i40e_next_filter(struct i40e_new_mac_filter * next)2294 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next)
2295 {
2296 hlist_for_each_entry_continue(next, hlist) {
2297 if (!is_broadcast_ether_addr(next->f->macaddr))
2298 return next;
2299 }
2300
2301 return NULL;
2302 }
2303
2304 /**
2305 * i40e_update_filter_state - Update filter state based on return data
2306 * from firmware
2307 * @count: Number of filters added
2308 * @add_list: return data from fw
2309 * @add_head: pointer to first filter in current batch
2310 *
2311 * MAC filter entries from list were slated to be added to device. Returns
2312 * number of successful filters. Note that 0 does NOT mean success!
2313 **/
2314 static int
i40e_update_filter_state(int count,struct i40e_aqc_add_macvlan_element_data * add_list,struct i40e_new_mac_filter * add_head)2315 i40e_update_filter_state(int count,
2316 struct i40e_aqc_add_macvlan_element_data *add_list,
2317 struct i40e_new_mac_filter *add_head)
2318 {
2319 int retval = 0;
2320 int i;
2321
2322 for (i = 0; i < count; i++) {
2323 /* Always check status of each filter. We don't need to check
2324 * the firmware return status because we pre-set the filter
2325 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter
2326 * request to the adminq. Thus, if it no longer matches then
2327 * we know the filter is active.
2328 */
2329 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) {
2330 add_head->state = I40E_FILTER_FAILED;
2331 } else {
2332 add_head->state = I40E_FILTER_ACTIVE;
2333 retval++;
2334 }
2335
2336 add_head = i40e_next_filter(add_head);
2337 if (!add_head)
2338 break;
2339 }
2340
2341 return retval;
2342 }
2343
2344 /**
2345 * i40e_aqc_del_filters - Request firmware to delete a set of filters
2346 * @vsi: ptr to the VSI
2347 * @vsi_name: name to display in messages
2348 * @list: the list of filters to send to firmware
2349 * @num_del: the number of filters to delete
2350 * @retval: Set to -EIO on failure to delete
2351 *
2352 * Send a request to firmware via AdminQ to delete a set of filters. Uses
2353 * *retval instead of a return value so that success does not force ret_val to
2354 * be set to 0. This ensures that a sequence of calls to this function
2355 * preserve the previous value of *retval on successful delete.
2356 */
2357 static
i40e_aqc_del_filters(struct i40e_vsi * vsi,const char * vsi_name,struct i40e_aqc_remove_macvlan_element_data * list,int num_del,int * retval)2358 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name,
2359 struct i40e_aqc_remove_macvlan_element_data *list,
2360 int num_del, int *retval)
2361 {
2362 struct i40e_hw *hw = &vsi->back->hw;
2363 enum libie_aq_err aq_status;
2364 int aq_ret;
2365
2366 aq_ret = i40e_aq_remove_macvlan_v2(hw, vsi->seid, list, num_del, NULL,
2367 &aq_status);
2368
2369 /* Explicitly ignore and do not report when firmware returns ENOENT */
2370 if (aq_ret && !(aq_status == LIBIE_AQ_RC_ENOENT)) {
2371 *retval = -EIO;
2372 dev_info(&vsi->back->pdev->dev,
2373 "ignoring delete macvlan error on %s, err %pe, aq_err %s\n",
2374 vsi_name, ERR_PTR(aq_ret), libie_aq_str(aq_status));
2375 }
2376 }
2377
2378 /**
2379 * i40e_aqc_add_filters - Request firmware to add a set of filters
2380 * @vsi: ptr to the VSI
2381 * @vsi_name: name to display in messages
2382 * @list: the list of filters to send to firmware
2383 * @add_head: Position in the add hlist
2384 * @num_add: the number of filters to add
2385 *
2386 * Send a request to firmware via AdminQ to add a chunk of filters. Will set
2387 * __I40E_VSI_OVERFLOW_PROMISC bit in vsi->state if the firmware has run out of
2388 * space for more filters.
2389 */
2390 static
i40e_aqc_add_filters(struct i40e_vsi * vsi,const char * vsi_name,struct i40e_aqc_add_macvlan_element_data * list,struct i40e_new_mac_filter * add_head,int num_add)2391 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name,
2392 struct i40e_aqc_add_macvlan_element_data *list,
2393 struct i40e_new_mac_filter *add_head,
2394 int num_add)
2395 {
2396 struct i40e_hw *hw = &vsi->back->hw;
2397 enum libie_aq_err aq_status;
2398 int fcnt;
2399
2400 i40e_aq_add_macvlan_v2(hw, vsi->seid, list, num_add, NULL, &aq_status);
2401 fcnt = i40e_update_filter_state(num_add, list, add_head);
2402
2403 if (fcnt != num_add) {
2404 if (vsi->type == I40E_VSI_MAIN) {
2405 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2406 dev_warn(&vsi->back->pdev->dev,
2407 "Error %s adding RX filters on %s, promiscuous mode forced on\n",
2408 libie_aq_str(aq_status), vsi_name);
2409 } else if (vsi->type == I40E_VSI_SRIOV ||
2410 vsi->type == I40E_VSI_VMDQ1 ||
2411 vsi->type == I40E_VSI_VMDQ2) {
2412 dev_warn(&vsi->back->pdev->dev,
2413 "Error %s adding RX filters on %s, please set promiscuous on manually for %s\n",
2414 libie_aq_str(aq_status), vsi_name, vsi_name);
2415 } else {
2416 dev_warn(&vsi->back->pdev->dev,
2417 "Error %s adding RX filters on %s, incorrect VSI type: %i.\n",
2418 libie_aq_str(aq_status), vsi_name, vsi->type);
2419 }
2420 }
2421 }
2422
2423 /**
2424 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags
2425 * @vsi: pointer to the VSI
2426 * @vsi_name: the VSI name
2427 * @f: filter data
2428 *
2429 * This function sets or clears the promiscuous broadcast flags for VLAN
2430 * filters in order to properly receive broadcast frames. Assumes that only
2431 * broadcast filters are passed.
2432 *
2433 * Returns status indicating success or failure;
2434 **/
2435 static int
i40e_aqc_broadcast_filter(struct i40e_vsi * vsi,const char * vsi_name,struct i40e_mac_filter * f)2436 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name,
2437 struct i40e_mac_filter *f)
2438 {
2439 bool enable = f->state == I40E_FILTER_NEW ||
2440 f->state == I40E_FILTER_NEW_SYNC;
2441 struct i40e_hw *hw = &vsi->back->hw;
2442 int aq_ret;
2443
2444 if (f->vlan == I40E_VLAN_ANY) {
2445 aq_ret = i40e_aq_set_vsi_broadcast(hw,
2446 vsi->seid,
2447 enable,
2448 NULL);
2449 } else {
2450 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw,
2451 vsi->seid,
2452 enable,
2453 f->vlan,
2454 NULL);
2455 }
2456
2457 if (aq_ret) {
2458 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2459 dev_warn(&vsi->back->pdev->dev,
2460 "Error %s, forcing overflow promiscuous on %s\n",
2461 libie_aq_str(hw->aq.asq_last_status), vsi_name);
2462 }
2463
2464 return aq_ret;
2465 }
2466
2467 /**
2468 * i40e_set_promiscuous - set promiscuous mode
2469 * @pf: board private structure
2470 * @promisc: promisc on or off
2471 *
2472 * There are different ways of setting promiscuous mode on a PF depending on
2473 * what state/environment we're in. This identifies and sets it appropriately.
2474 * Returns 0 on success.
2475 **/
i40e_set_promiscuous(struct i40e_pf * pf,bool promisc)2476 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc)
2477 {
2478 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
2479 struct i40e_hw *hw = &pf->hw;
2480 int aq_ret;
2481
2482 if (vsi->type == I40E_VSI_MAIN &&
2483 i40e_pf_get_main_veb(pf) &&
2484 !test_bit(I40E_FLAG_MFP_ENA, pf->flags)) {
2485 /* set defport ON for Main VSI instead of true promisc
2486 * this way we will get all unicast/multicast and VLAN
2487 * promisc behavior but will not get VF or VMDq traffic
2488 * replicated on the Main VSI.
2489 */
2490 if (promisc)
2491 aq_ret = i40e_aq_set_default_vsi(hw,
2492 vsi->seid,
2493 NULL);
2494 else
2495 aq_ret = i40e_aq_clear_default_vsi(hw,
2496 vsi->seid,
2497 NULL);
2498 if (aq_ret) {
2499 dev_info(&pf->pdev->dev,
2500 "Set default VSI failed, err %pe, aq_err %s\n",
2501 ERR_PTR(aq_ret),
2502 libie_aq_str(hw->aq.asq_last_status));
2503 }
2504 } else {
2505 aq_ret = i40e_aq_set_vsi_unicast_promiscuous(
2506 hw,
2507 vsi->seid,
2508 promisc, NULL,
2509 true);
2510 if (aq_ret) {
2511 dev_info(&pf->pdev->dev,
2512 "set unicast promisc failed, err %pe, aq_err %s\n",
2513 ERR_PTR(aq_ret),
2514 libie_aq_str(hw->aq.asq_last_status));
2515 }
2516 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(
2517 hw,
2518 vsi->seid,
2519 promisc, NULL);
2520 if (aq_ret) {
2521 dev_info(&pf->pdev->dev,
2522 "set multicast promisc failed, err %pe, aq_err %s\n",
2523 ERR_PTR(aq_ret),
2524 libie_aq_str(hw->aq.asq_last_status));
2525 }
2526 }
2527
2528 if (!aq_ret)
2529 pf->cur_promisc = promisc;
2530
2531 return aq_ret;
2532 }
2533
2534 /**
2535 * i40e_sync_vsi_filters - Update the VSI filter list to the HW
2536 * @vsi: ptr to the VSI
2537 *
2538 * Push any outstanding VSI filter changes through the AdminQ.
2539 *
2540 * Returns 0 or error value
2541 **/
i40e_sync_vsi_filters(struct i40e_vsi * vsi)2542 int i40e_sync_vsi_filters(struct i40e_vsi *vsi)
2543 {
2544 struct hlist_head tmp_add_list, tmp_del_list;
2545 struct i40e_mac_filter *f;
2546 struct i40e_new_mac_filter *new, *add_head = NULL;
2547 struct i40e_hw *hw = &vsi->back->hw;
2548 bool old_overflow, new_overflow;
2549 unsigned int failed_filters = 0;
2550 unsigned int vlan_filters = 0;
2551 char vsi_name[16] = "PF";
2552 int filter_list_len = 0;
2553 u32 changed_flags = 0;
2554 struct hlist_node *h;
2555 struct i40e_pf *pf;
2556 int num_add = 0;
2557 int num_del = 0;
2558 int aq_ret = 0;
2559 int retval = 0;
2560 u16 cmd_flags;
2561 int list_size;
2562 int bkt;
2563
2564 /* empty array typed pointers, kcalloc later */
2565 struct i40e_aqc_add_macvlan_element_data *add_list;
2566 struct i40e_aqc_remove_macvlan_element_data *del_list;
2567
2568 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state))
2569 usleep_range(1000, 2000);
2570 pf = vsi->back;
2571
2572 old_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2573
2574 if (vsi->netdev) {
2575 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
2576 vsi->current_netdev_flags = vsi->netdev->flags;
2577 }
2578
2579 INIT_HLIST_HEAD(&tmp_add_list);
2580 INIT_HLIST_HEAD(&tmp_del_list);
2581
2582 if (vsi->type == I40E_VSI_SRIOV)
2583 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id);
2584 else if (vsi->type != I40E_VSI_MAIN)
2585 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid);
2586
2587 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) {
2588 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED;
2589
2590 spin_lock_bh(&vsi->mac_filter_hash_lock);
2591 /* Create a list of filters to delete. */
2592 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2593 if (f->state == I40E_FILTER_REMOVE) {
2594 /* Move the element into temporary del_list */
2595 hash_del(&f->hlist);
2596 hlist_add_head(&f->hlist, &tmp_del_list);
2597
2598 /* Avoid counting removed filters */
2599 continue;
2600 }
2601 if (f->state == I40E_FILTER_NEW) {
2602 /* Create a temporary i40e_new_mac_filter */
2603 new = kzalloc(sizeof(*new), GFP_ATOMIC);
2604 if (!new)
2605 goto err_no_memory_locked;
2606
2607 /* Store pointer to the real filter */
2608 new->f = f;
2609 new->state = f->state;
2610
2611 /* Add it to the hash list */
2612 hlist_add_head(&new->hlist, &tmp_add_list);
2613 f->state = I40E_FILTER_NEW_SYNC;
2614 }
2615
2616 /* Count the number of active (current and new) VLAN
2617 * filters we have now. Does not count filters which
2618 * are marked for deletion.
2619 */
2620 if (f->vlan > 0)
2621 vlan_filters++;
2622 }
2623
2624 if (vsi->type != I40E_VSI_SRIOV)
2625 retval = i40e_correct_mac_vlan_filters
2626 (vsi, &tmp_add_list, &tmp_del_list,
2627 vlan_filters);
2628 else if (pf->vf)
2629 retval = i40e_correct_vf_mac_vlan_filters
2630 (vsi, &tmp_add_list, &tmp_del_list,
2631 vlan_filters, pf->vf[vsi->vf_id].trusted);
2632
2633 hlist_for_each_entry(new, &tmp_add_list, hlist)
2634 netdev_hw_addr_refcnt(new->f, vsi->netdev, 1);
2635
2636 if (retval)
2637 goto err_no_memory_locked;
2638
2639 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2640 }
2641
2642 /* Now process 'del_list' outside the lock */
2643 if (!hlist_empty(&tmp_del_list)) {
2644 filter_list_len = hw->aq.asq_buf_size /
2645 sizeof(struct i40e_aqc_remove_macvlan_element_data);
2646 list_size = filter_list_len *
2647 sizeof(struct i40e_aqc_remove_macvlan_element_data);
2648 del_list = kzalloc(list_size, GFP_ATOMIC);
2649 if (!del_list)
2650 goto err_no_memory;
2651
2652 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) {
2653 cmd_flags = 0;
2654
2655 /* handle broadcast filters by updating the broadcast
2656 * promiscuous flag and release filter list.
2657 */
2658 if (is_broadcast_ether_addr(f->macaddr)) {
2659 i40e_aqc_broadcast_filter(vsi, vsi_name, f);
2660
2661 hlist_del(&f->hlist);
2662 kfree(f);
2663 continue;
2664 }
2665
2666 /* add to delete list */
2667 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr);
2668 if (f->vlan == I40E_VLAN_ANY) {
2669 del_list[num_del].vlan_tag = 0;
2670 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
2671 } else {
2672 del_list[num_del].vlan_tag =
2673 cpu_to_le16((u16)(f->vlan));
2674 }
2675
2676 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
2677 del_list[num_del].flags = cmd_flags;
2678 num_del++;
2679
2680 /* flush a full buffer */
2681 if (num_del == filter_list_len) {
2682 i40e_aqc_del_filters(vsi, vsi_name, del_list,
2683 num_del, &retval);
2684 memset(del_list, 0, list_size);
2685 num_del = 0;
2686 }
2687 /* Release memory for MAC filter entries which were
2688 * synced up with HW.
2689 */
2690 hlist_del(&f->hlist);
2691 kfree(f);
2692 }
2693
2694 if (num_del) {
2695 i40e_aqc_del_filters(vsi, vsi_name, del_list,
2696 num_del, &retval);
2697 }
2698
2699 kfree(del_list);
2700 del_list = NULL;
2701 }
2702
2703 if (!hlist_empty(&tmp_add_list)) {
2704 /* Do all the adds now. */
2705 filter_list_len = hw->aq.asq_buf_size /
2706 sizeof(struct i40e_aqc_add_macvlan_element_data);
2707 list_size = filter_list_len *
2708 sizeof(struct i40e_aqc_add_macvlan_element_data);
2709 add_list = kzalloc(list_size, GFP_ATOMIC);
2710 if (!add_list)
2711 goto err_no_memory;
2712
2713 num_add = 0;
2714 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
2715 /* handle broadcast filters by updating the broadcast
2716 * promiscuous flag instead of adding a MAC filter.
2717 */
2718 if (is_broadcast_ether_addr(new->f->macaddr)) {
2719 if (i40e_aqc_broadcast_filter(vsi, vsi_name,
2720 new->f))
2721 new->state = I40E_FILTER_FAILED;
2722 else
2723 new->state = I40E_FILTER_ACTIVE;
2724 continue;
2725 }
2726
2727 /* add to add array */
2728 if (num_add == 0)
2729 add_head = new;
2730 cmd_flags = 0;
2731 ether_addr_copy(add_list[num_add].mac_addr,
2732 new->f->macaddr);
2733 if (new->f->vlan == I40E_VLAN_ANY) {
2734 add_list[num_add].vlan_tag = 0;
2735 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
2736 } else {
2737 add_list[num_add].vlan_tag =
2738 cpu_to_le16((u16)(new->f->vlan));
2739 }
2740 add_list[num_add].queue_number = 0;
2741 /* set invalid match method for later detection */
2742 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES;
2743 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
2744 add_list[num_add].flags = cpu_to_le16(cmd_flags);
2745 num_add++;
2746
2747 /* flush a full buffer */
2748 if (num_add == filter_list_len) {
2749 i40e_aqc_add_filters(vsi, vsi_name, add_list,
2750 add_head, num_add);
2751 memset(add_list, 0, list_size);
2752 num_add = 0;
2753 }
2754 }
2755 if (num_add) {
2756 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head,
2757 num_add);
2758 }
2759 /* Now move all of the filters from the temp add list back to
2760 * the VSI's list.
2761 */
2762 spin_lock_bh(&vsi->mac_filter_hash_lock);
2763 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
2764 /* Only update the state if we're still NEW */
2765 if (new->f->state == I40E_FILTER_NEW ||
2766 new->f->state == I40E_FILTER_NEW_SYNC)
2767 new->f->state = new->state;
2768 hlist_del(&new->hlist);
2769 netdev_hw_addr_refcnt(new->f, vsi->netdev, -1);
2770 kfree(new);
2771 }
2772 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2773 kfree(add_list);
2774 add_list = NULL;
2775 }
2776
2777 /* Determine the number of active and failed filters. */
2778 spin_lock_bh(&vsi->mac_filter_hash_lock);
2779 vsi->active_filters = 0;
2780 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) {
2781 if (f->state == I40E_FILTER_ACTIVE)
2782 vsi->active_filters++;
2783 else if (f->state == I40E_FILTER_FAILED)
2784 failed_filters++;
2785 }
2786 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2787
2788 /* Check if we are able to exit overflow promiscuous mode. We can
2789 * safely exit if we didn't just enter, we no longer have any failed
2790 * filters, and we have reduced filters below the threshold value.
2791 */
2792 if (old_overflow && !failed_filters &&
2793 vsi->active_filters < vsi->promisc_threshold) {
2794 dev_info(&pf->pdev->dev,
2795 "filter logjam cleared on %s, leaving overflow promiscuous mode\n",
2796 vsi_name);
2797 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2798 vsi->promisc_threshold = 0;
2799 }
2800
2801 /* if the VF is not trusted do not do promisc */
2802 if (vsi->type == I40E_VSI_SRIOV && pf->vf &&
2803 !pf->vf[vsi->vf_id].trusted) {
2804 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2805 goto out;
2806 }
2807
2808 new_overflow = test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2809
2810 /* If we are entering overflow promiscuous, we need to calculate a new
2811 * threshold for when we are safe to exit
2812 */
2813 if (!old_overflow && new_overflow)
2814 vsi->promisc_threshold = (vsi->active_filters * 3) / 4;
2815
2816 /* check for changes in promiscuous modes */
2817 if (changed_flags & IFF_ALLMULTI) {
2818 bool cur_multipromisc;
2819
2820 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI);
2821 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw,
2822 vsi->seid,
2823 cur_multipromisc,
2824 NULL);
2825 if (aq_ret) {
2826 retval = i40e_aq_rc_to_posix(aq_ret,
2827 hw->aq.asq_last_status);
2828 dev_info(&pf->pdev->dev,
2829 "set multi promisc failed on %s, err %pe aq_err %s\n",
2830 vsi_name,
2831 ERR_PTR(aq_ret),
2832 libie_aq_str(hw->aq.asq_last_status));
2833 } else {
2834 dev_info(&pf->pdev->dev, "%s allmulti mode.\n",
2835 cur_multipromisc ? "entering" : "leaving");
2836 }
2837 }
2838
2839 if ((changed_flags & IFF_PROMISC) || old_overflow != new_overflow) {
2840 bool cur_promisc;
2841
2842 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) ||
2843 new_overflow);
2844 aq_ret = i40e_set_promiscuous(pf, cur_promisc);
2845 if (aq_ret) {
2846 retval = i40e_aq_rc_to_posix(aq_ret,
2847 hw->aq.asq_last_status);
2848 dev_info(&pf->pdev->dev,
2849 "Setting promiscuous %s failed on %s, err %pe aq_err %s\n",
2850 cur_promisc ? "on" : "off",
2851 vsi_name,
2852 ERR_PTR(aq_ret),
2853 libie_aq_str(hw->aq.asq_last_status));
2854 }
2855 }
2856 out:
2857 /* if something went wrong then set the changed flag so we try again */
2858 if (retval)
2859 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2860
2861 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
2862 return retval;
2863
2864 err_no_memory:
2865 /* Restore elements on the temporary add and delete lists */
2866 spin_lock_bh(&vsi->mac_filter_hash_lock);
2867 err_no_memory_locked:
2868 i40e_undo_del_filter_entries(vsi, &tmp_del_list);
2869 i40e_undo_add_filter_entries(vsi, &tmp_add_list);
2870 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2871
2872 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2873 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
2874 return -ENOMEM;
2875 }
2876
2877 /**
2878 * i40e_sync_filters_subtask - Sync the VSI filter list with HW
2879 * @pf: board private structure
2880 **/
i40e_sync_filters_subtask(struct i40e_pf * pf)2881 static void i40e_sync_filters_subtask(struct i40e_pf *pf)
2882 {
2883 struct i40e_vsi *vsi;
2884 int v;
2885
2886 if (!pf)
2887 return;
2888 if (!test_and_clear_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state))
2889 return;
2890 if (test_bit(__I40E_VF_DISABLE, pf->state)) {
2891 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state);
2892 return;
2893 }
2894
2895 i40e_pf_for_each_vsi(pf, v, vsi) {
2896 if ((vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) &&
2897 !test_bit(__I40E_VSI_RELEASING, vsi->state)) {
2898 int ret = i40e_sync_vsi_filters(vsi);
2899
2900 if (ret) {
2901 /* come back and try again later */
2902 set_bit(__I40E_MACVLAN_SYNC_PENDING,
2903 pf->state);
2904 break;
2905 }
2906 }
2907 }
2908 }
2909
2910 /**
2911 * i40e_calculate_vsi_rx_buf_len - Calculates buffer length
2912 *
2913 * @vsi: VSI to calculate rx_buf_len from
2914 */
i40e_calculate_vsi_rx_buf_len(struct i40e_vsi * vsi)2915 static u16 i40e_calculate_vsi_rx_buf_len(struct i40e_vsi *vsi)
2916 {
2917 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags))
2918 return SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048);
2919
2920 return PAGE_SIZE < 8192 ? I40E_RXBUFFER_3072 : I40E_RXBUFFER_2048;
2921 }
2922
2923 /**
2924 * i40e_max_vsi_frame_size - returns the maximum allowed frame size for VSI
2925 * @vsi: the vsi
2926 * @xdp_prog: XDP program
2927 **/
i40e_max_vsi_frame_size(struct i40e_vsi * vsi,struct bpf_prog * xdp_prog)2928 static int i40e_max_vsi_frame_size(struct i40e_vsi *vsi,
2929 struct bpf_prog *xdp_prog)
2930 {
2931 u16 rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi);
2932 u16 chain_len;
2933
2934 if (xdp_prog && !xdp_prog->aux->xdp_has_frags)
2935 chain_len = 1;
2936 else
2937 chain_len = I40E_MAX_CHAINED_RX_BUFFERS;
2938
2939 return min_t(u16, rx_buf_len * chain_len, I40E_MAX_RXBUFFER);
2940 }
2941
2942 /**
2943 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit
2944 * @netdev: network interface device structure
2945 * @new_mtu: new value for maximum frame size
2946 *
2947 * Returns 0 on success, negative on failure
2948 **/
i40e_change_mtu(struct net_device * netdev,int new_mtu)2949 static int i40e_change_mtu(struct net_device *netdev, int new_mtu)
2950 {
2951 struct i40e_netdev_priv *np = netdev_priv(netdev);
2952 struct i40e_vsi *vsi = np->vsi;
2953 struct i40e_pf *pf = vsi->back;
2954 int frame_size;
2955
2956 frame_size = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog);
2957 if (new_mtu > frame_size - I40E_PACKET_HDR_PAD) {
2958 netdev_err(netdev, "Error changing mtu to %d, Max is %d\n",
2959 new_mtu, frame_size - I40E_PACKET_HDR_PAD);
2960 return -EINVAL;
2961 }
2962
2963 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2964 netdev->mtu, new_mtu);
2965 WRITE_ONCE(netdev->mtu, new_mtu);
2966 if (netif_running(netdev))
2967 i40e_vsi_reinit_locked(vsi);
2968 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
2969 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state);
2970 return 0;
2971 }
2972
2973 /**
2974 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI
2975 * @vsi: the vsi being adjusted
2976 **/
i40e_vlan_stripping_enable(struct i40e_vsi * vsi)2977 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi)
2978 {
2979 struct i40e_vsi_context ctxt;
2980 int ret;
2981
2982 /* Don't modify stripping options if a port VLAN is active */
2983 if (vsi->info.pvid)
2984 return;
2985
2986 if ((vsi->info.valid_sections &
2987 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
2988 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0))
2989 return; /* already enabled */
2990
2991 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2992 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2993 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
2994
2995 ctxt.seid = vsi->seid;
2996 ctxt.info = vsi->info;
2997 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
2998 if (ret) {
2999 dev_info(&vsi->back->pdev->dev,
3000 "update vlan stripping failed, err %pe aq_err %s\n",
3001 ERR_PTR(ret),
3002 libie_aq_str(vsi->back->hw.aq.asq_last_status));
3003 }
3004 }
3005
3006 /**
3007 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI
3008 * @vsi: the vsi being adjusted
3009 **/
i40e_vlan_stripping_disable(struct i40e_vsi * vsi)3010 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi)
3011 {
3012 struct i40e_vsi_context ctxt;
3013 int ret;
3014
3015 /* Don't modify stripping options if a port VLAN is active */
3016 if (vsi->info.pvid)
3017 return;
3018
3019 if ((vsi->info.valid_sections &
3020 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
3021 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) ==
3022 I40E_AQ_VSI_PVLAN_EMOD_MASK))
3023 return; /* already disabled */
3024
3025 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
3026 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
3027 I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
3028
3029 ctxt.seid = vsi->seid;
3030 ctxt.info = vsi->info;
3031 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
3032 if (ret) {
3033 dev_info(&vsi->back->pdev->dev,
3034 "update vlan stripping failed, err %pe aq_err %s\n",
3035 ERR_PTR(ret),
3036 libie_aq_str(vsi->back->hw.aq.asq_last_status));
3037 }
3038 }
3039
3040 /**
3041 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address
3042 * @vsi: the vsi being configured
3043 * @vid: vlan id to be added (0 = untagged only , -1 = any)
3044 *
3045 * This is a helper function for adding a new MAC/VLAN filter with the
3046 * specified VLAN for each existing MAC address already in the hash table.
3047 * This function does *not* perform any accounting to update filters based on
3048 * VLAN mode.
3049 *
3050 * NOTE: this function expects to be called while under the
3051 * mac_filter_hash_lock
3052 **/
i40e_add_vlan_all_mac(struct i40e_vsi * vsi,s16 vid)3053 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
3054 {
3055 struct i40e_mac_filter *f, *add_f;
3056 struct hlist_node *h;
3057 int bkt;
3058
3059 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
3060 /* If we're asked to add a filter that has been marked for
3061 * removal, it is safe to simply restore it to active state.
3062 * __i40e_del_filter will have simply deleted any filters which
3063 * were previously marked NEW or FAILED, so if it is currently
3064 * marked REMOVE it must have previously been ACTIVE. Since we
3065 * haven't yet run the sync filters task, just restore this
3066 * filter to the ACTIVE state so that the sync task leaves it
3067 * in place.
3068 */
3069 if (f->state == I40E_FILTER_REMOVE && f->vlan == vid) {
3070 f->state = I40E_FILTER_ACTIVE;
3071 continue;
3072 } else if (f->state == I40E_FILTER_REMOVE) {
3073 continue;
3074 }
3075 add_f = i40e_add_filter(vsi, f->macaddr, vid);
3076 if (!add_f) {
3077 dev_info(&vsi->back->pdev->dev,
3078 "Could not add vlan filter %d for %pM\n",
3079 vid, f->macaddr);
3080 return -ENOMEM;
3081 }
3082 }
3083
3084 return 0;
3085 }
3086
3087 /**
3088 * i40e_vsi_add_vlan - Add VSI membership for given VLAN
3089 * @vsi: the VSI being configured
3090 * @vid: VLAN id to be added
3091 **/
i40e_vsi_add_vlan(struct i40e_vsi * vsi,u16 vid)3092 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid)
3093 {
3094 int err;
3095
3096 if (vsi->info.pvid)
3097 return -EINVAL;
3098
3099 /* The network stack will attempt to add VID=0, with the intention to
3100 * receive priority tagged packets with a VLAN of 0. Our HW receives
3101 * these packets by default when configured to receive untagged
3102 * packets, so we don't need to add a filter for this case.
3103 * Additionally, HW interprets adding a VID=0 filter as meaning to
3104 * receive *only* tagged traffic and stops receiving untagged traffic.
3105 * Thus, we do not want to actually add a filter for VID=0
3106 */
3107 if (!vid)
3108 return 0;
3109
3110 /* Locked once because all functions invoked below iterates list*/
3111 spin_lock_bh(&vsi->mac_filter_hash_lock);
3112 err = i40e_add_vlan_all_mac(vsi, vid);
3113 spin_unlock_bh(&vsi->mac_filter_hash_lock);
3114 if (err)
3115 return err;
3116
3117 /* schedule our worker thread which will take care of
3118 * applying the new filter changes
3119 */
3120 i40e_service_event_schedule(vsi->back);
3121 return 0;
3122 }
3123
3124 /**
3125 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN
3126 * @vsi: the vsi being configured
3127 * @vid: vlan id to be removed (0 = untagged only , -1 = any)
3128 *
3129 * This function should be used to remove all VLAN filters which match the
3130 * given VID. It does not schedule the service event and does not take the
3131 * mac_filter_hash_lock so it may be combined with other operations under
3132 * a single invocation of the mac_filter_hash_lock.
3133 *
3134 * NOTE: this function expects to be called while under the
3135 * mac_filter_hash_lock
3136 */
i40e_rm_vlan_all_mac(struct i40e_vsi * vsi,s16 vid)3137 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
3138 {
3139 struct i40e_mac_filter *f;
3140 struct hlist_node *h;
3141 int bkt;
3142
3143 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
3144 if (f->vlan == vid)
3145 __i40e_del_filter(vsi, f);
3146 }
3147 }
3148
3149 /**
3150 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN
3151 * @vsi: the VSI being configured
3152 * @vid: VLAN id to be removed
3153 **/
i40e_vsi_kill_vlan(struct i40e_vsi * vsi,u16 vid)3154 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid)
3155 {
3156 if (!vid || vsi->info.pvid)
3157 return;
3158
3159 spin_lock_bh(&vsi->mac_filter_hash_lock);
3160 i40e_rm_vlan_all_mac(vsi, vid);
3161 spin_unlock_bh(&vsi->mac_filter_hash_lock);
3162
3163 /* schedule our worker thread which will take care of
3164 * applying the new filter changes
3165 */
3166 i40e_service_event_schedule(vsi->back);
3167 }
3168
3169 /**
3170 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload
3171 * @netdev: network interface to be adjusted
3172 * @proto: unused protocol value
3173 * @vid: vlan id to be added
3174 *
3175 * net_device_ops implementation for adding vlan ids
3176 **/
i40e_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3177 static int i40e_vlan_rx_add_vid(struct net_device *netdev,
3178 __always_unused __be16 proto, u16 vid)
3179 {
3180 struct i40e_netdev_priv *np = netdev_priv(netdev);
3181 struct i40e_vsi *vsi = np->vsi;
3182 int ret = 0;
3183
3184 if (vid >= VLAN_N_VID)
3185 return -EINVAL;
3186
3187 ret = i40e_vsi_add_vlan(vsi, vid);
3188 if (!ret)
3189 set_bit(vid, vsi->active_vlans);
3190
3191 return ret;
3192 }
3193
3194 /**
3195 * i40e_vlan_rx_add_vid_up - Add a vlan id filter to HW offload in UP path
3196 * @netdev: network interface to be adjusted
3197 * @proto: unused protocol value
3198 * @vid: vlan id to be added
3199 **/
i40e_vlan_rx_add_vid_up(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3200 static void i40e_vlan_rx_add_vid_up(struct net_device *netdev,
3201 __always_unused __be16 proto, u16 vid)
3202 {
3203 struct i40e_netdev_priv *np = netdev_priv(netdev);
3204 struct i40e_vsi *vsi = np->vsi;
3205
3206 if (vid >= VLAN_N_VID)
3207 return;
3208 set_bit(vid, vsi->active_vlans);
3209 }
3210
3211 /**
3212 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
3213 * @netdev: network interface to be adjusted
3214 * @proto: unused protocol value
3215 * @vid: vlan id to be removed
3216 *
3217 * net_device_ops implementation for removing vlan ids
3218 **/
i40e_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3219 static int i40e_vlan_rx_kill_vid(struct net_device *netdev,
3220 __always_unused __be16 proto, u16 vid)
3221 {
3222 struct i40e_netdev_priv *np = netdev_priv(netdev);
3223 struct i40e_vsi *vsi = np->vsi;
3224
3225 /* return code is ignored as there is nothing a user
3226 * can do about failure to remove and a log message was
3227 * already printed from the other function
3228 */
3229 i40e_vsi_kill_vlan(vsi, vid);
3230
3231 clear_bit(vid, vsi->active_vlans);
3232
3233 return 0;
3234 }
3235
3236 /**
3237 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up
3238 * @vsi: the vsi being brought back up
3239 **/
i40e_restore_vlan(struct i40e_vsi * vsi)3240 static void i40e_restore_vlan(struct i40e_vsi *vsi)
3241 {
3242 u16 vid;
3243
3244 if (!vsi->netdev)
3245 return;
3246
3247 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3248 i40e_vlan_stripping_enable(vsi);
3249 else
3250 i40e_vlan_stripping_disable(vsi);
3251
3252 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID)
3253 i40e_vlan_rx_add_vid_up(vsi->netdev, htons(ETH_P_8021Q),
3254 vid);
3255 }
3256
3257 /**
3258 * i40e_vsi_add_pvid - Add pvid for the VSI
3259 * @vsi: the vsi being adjusted
3260 * @vid: the vlan id to set as a PVID
3261 **/
i40e_vsi_add_pvid(struct i40e_vsi * vsi,u16 vid)3262 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid)
3263 {
3264 struct i40e_vsi_context ctxt;
3265 int ret;
3266
3267 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
3268 vsi->info.pvid = cpu_to_le16(vid);
3269 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED |
3270 I40E_AQ_VSI_PVLAN_INSERT_PVID |
3271 I40E_AQ_VSI_PVLAN_EMOD_STR;
3272
3273 ctxt.seid = vsi->seid;
3274 ctxt.info = vsi->info;
3275 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
3276 if (ret) {
3277 dev_info(&vsi->back->pdev->dev,
3278 "add pvid failed, err %pe aq_err %s\n",
3279 ERR_PTR(ret),
3280 libie_aq_str(vsi->back->hw.aq.asq_last_status));
3281 return -ENOENT;
3282 }
3283
3284 return 0;
3285 }
3286
3287 /**
3288 * i40e_vsi_remove_pvid - Remove the pvid from the VSI
3289 * @vsi: the vsi being adjusted
3290 *
3291 * Just use the vlan_rx_register() service to put it back to normal
3292 **/
i40e_vsi_remove_pvid(struct i40e_vsi * vsi)3293 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi)
3294 {
3295 vsi->info.pvid = 0;
3296
3297 i40e_vlan_stripping_disable(vsi);
3298 }
3299
3300 /**
3301 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources
3302 * @vsi: ptr to the VSI
3303 *
3304 * If this function returns with an error, then it's possible one or
3305 * more of the rings is populated (while the rest are not). It is the
3306 * callers duty to clean those orphaned rings.
3307 *
3308 * Return 0 on success, negative on failure
3309 **/
i40e_vsi_setup_tx_resources(struct i40e_vsi * vsi)3310 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi)
3311 {
3312 int i, err = 0;
3313
3314 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3315 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]);
3316
3317 if (!i40e_enabled_xdp_vsi(vsi))
3318 return err;
3319
3320 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3321 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]);
3322
3323 return err;
3324 }
3325
3326 /**
3327 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues
3328 * @vsi: ptr to the VSI
3329 *
3330 * Free VSI's transmit software resources
3331 **/
i40e_vsi_free_tx_resources(struct i40e_vsi * vsi)3332 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi)
3333 {
3334 int i;
3335
3336 if (vsi->tx_rings) {
3337 for (i = 0; i < vsi->num_queue_pairs; i++)
3338 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
3339 i40e_free_tx_resources(vsi->tx_rings[i]);
3340 }
3341
3342 if (vsi->xdp_rings) {
3343 for (i = 0; i < vsi->num_queue_pairs; i++)
3344 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
3345 i40e_free_tx_resources(vsi->xdp_rings[i]);
3346 }
3347 }
3348
3349 /**
3350 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources
3351 * @vsi: ptr to the VSI
3352 *
3353 * If this function returns with an error, then it's possible one or
3354 * more of the rings is populated (while the rest are not). It is the
3355 * callers duty to clean those orphaned rings.
3356 *
3357 * Return 0 on success, negative on failure
3358 **/
i40e_vsi_setup_rx_resources(struct i40e_vsi * vsi)3359 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi)
3360 {
3361 int i, err = 0;
3362
3363 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3364 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]);
3365 return err;
3366 }
3367
3368 /**
3369 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues
3370 * @vsi: ptr to the VSI
3371 *
3372 * Free all receive software resources
3373 **/
i40e_vsi_free_rx_resources(struct i40e_vsi * vsi)3374 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi)
3375 {
3376 int i;
3377
3378 if (!vsi->rx_rings)
3379 return;
3380
3381 for (i = 0; i < vsi->num_queue_pairs; i++)
3382 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
3383 i40e_free_rx_resources(vsi->rx_rings[i]);
3384 }
3385
3386 /**
3387 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring
3388 * @ring: The Tx ring to configure
3389 *
3390 * This enables/disables XPS for a given Tx descriptor ring
3391 * based on the TCs enabled for the VSI that ring belongs to.
3392 **/
i40e_config_xps_tx_ring(struct i40e_ring * ring)3393 static void i40e_config_xps_tx_ring(struct i40e_ring *ring)
3394 {
3395 int cpu;
3396
3397 if (!ring->q_vector || !ring->netdev || ring->ch)
3398 return;
3399
3400 /* We only initialize XPS once, so as not to overwrite user settings */
3401 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state))
3402 return;
3403
3404 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1);
3405 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu),
3406 ring->queue_index);
3407 }
3408
3409 /**
3410 * i40e_xsk_pool - Retrieve the AF_XDP buffer pool if XDP and ZC is enabled
3411 * @ring: The Tx or Rx ring
3412 *
3413 * Returns the AF_XDP buffer pool or NULL.
3414 **/
i40e_xsk_pool(struct i40e_ring * ring)3415 static struct xsk_buff_pool *i40e_xsk_pool(struct i40e_ring *ring)
3416 {
3417 bool xdp_on = i40e_enabled_xdp_vsi(ring->vsi);
3418 int qid = ring->queue_index;
3419
3420 if (ring_is_xdp(ring))
3421 qid -= ring->vsi->alloc_queue_pairs;
3422
3423 if (!xdp_on || !test_bit(qid, ring->vsi->af_xdp_zc_qps))
3424 return NULL;
3425
3426 return xsk_get_pool_from_qid(ring->vsi->netdev, qid);
3427 }
3428
3429 /**
3430 * i40e_configure_tx_ring - Configure a transmit ring context and rest
3431 * @ring: The Tx ring to configure
3432 *
3433 * Configure the Tx descriptor ring in the HMC context.
3434 **/
i40e_configure_tx_ring(struct i40e_ring * ring)3435 static int i40e_configure_tx_ring(struct i40e_ring *ring)
3436 {
3437 struct i40e_vsi *vsi = ring->vsi;
3438 u16 pf_q = vsi->base_queue + ring->queue_index;
3439 struct i40e_hw *hw = &vsi->back->hw;
3440 struct i40e_hmc_obj_txq tx_ctx;
3441 u32 qtx_ctl = 0;
3442 int err = 0;
3443
3444 if (ring_is_xdp(ring))
3445 ring->xsk_pool = i40e_xsk_pool(ring);
3446
3447 /* some ATR related tx ring init */
3448 if (test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags)) {
3449 ring->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE;
3450 ring->atr_count = 0;
3451 } else {
3452 ring->atr_sample_rate = 0;
3453 }
3454
3455 /* configure XPS */
3456 i40e_config_xps_tx_ring(ring);
3457
3458 /* clear the context structure first */
3459 memset(&tx_ctx, 0, sizeof(tx_ctx));
3460
3461 tx_ctx.new_context = 1;
3462 tx_ctx.base = (ring->dma / 128);
3463 tx_ctx.qlen = ring->count;
3464 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags) ||
3465 test_bit(I40E_FLAG_FD_ATR_ENA, vsi->back->flags))
3466 tx_ctx.fd_ena = 1;
3467 if (test_bit(I40E_FLAG_PTP_ENA, vsi->back->flags))
3468 tx_ctx.timesync_ena = 1;
3469 /* FDIR VSI tx ring can still use RS bit and writebacks */
3470 if (vsi->type != I40E_VSI_FDIR)
3471 tx_ctx.head_wb_ena = 1;
3472 tx_ctx.head_wb_addr = ring->dma +
3473 (ring->count * sizeof(struct i40e_tx_desc));
3474
3475 /* As part of VSI creation/update, FW allocates certain
3476 * Tx arbitration queue sets for each TC enabled for
3477 * the VSI. The FW returns the handles to these queue
3478 * sets as part of the response buffer to Add VSI,
3479 * Update VSI, etc. AQ commands. It is expected that
3480 * these queue set handles be associated with the Tx
3481 * queues by the driver as part of the TX queue context
3482 * initialization. This has to be done regardless of
3483 * DCB as by default everything is mapped to TC0.
3484 */
3485
3486 if (ring->ch)
3487 tx_ctx.rdylist =
3488 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]);
3489
3490 else
3491 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]);
3492
3493 tx_ctx.rdylist_act = 0;
3494
3495 /* clear the context in the HMC */
3496 err = i40e_clear_lan_tx_queue_context(hw, pf_q);
3497 if (err) {
3498 dev_info(&vsi->back->pdev->dev,
3499 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n",
3500 ring->queue_index, pf_q, err);
3501 return -ENOMEM;
3502 }
3503
3504 /* set the context in the HMC */
3505 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
3506 if (err) {
3507 dev_info(&vsi->back->pdev->dev,
3508 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n",
3509 ring->queue_index, pf_q, err);
3510 return -ENOMEM;
3511 }
3512
3513 /* Now associate this queue with this PCI function */
3514 if (ring->ch) {
3515 if (ring->ch->type == I40E_VSI_VMDQ2)
3516 qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
3517 else
3518 return -EINVAL;
3519
3520 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK,
3521 ring->ch->vsi_number);
3522 } else {
3523 if (vsi->type == I40E_VSI_VMDQ2) {
3524 qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
3525 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_VFVM_INDX_MASK,
3526 vsi->id);
3527 } else {
3528 qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
3529 }
3530 }
3531
3532 qtx_ctl |= FIELD_PREP(I40E_QTX_CTL_PF_INDX_MASK, hw->pf_id);
3533 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
3534 i40e_flush(hw);
3535
3536 /* cache tail off for easier writes later */
3537 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
3538
3539 return 0;
3540 }
3541
3542 /**
3543 * i40e_rx_offset - Return expected offset into page to access data
3544 * @rx_ring: Ring we are requesting offset of
3545 *
3546 * Returns the offset value for ring into the data buffer.
3547 */
i40e_rx_offset(struct i40e_ring * rx_ring)3548 static unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
3549 {
3550 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
3551 }
3552
3553 /**
3554 * i40e_configure_rx_ring - Configure a receive ring context
3555 * @ring: The Rx ring to configure
3556 *
3557 * Configure the Rx descriptor ring in the HMC context.
3558 **/
i40e_configure_rx_ring(struct i40e_ring * ring)3559 static int i40e_configure_rx_ring(struct i40e_ring *ring)
3560 {
3561 struct i40e_vsi *vsi = ring->vsi;
3562 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len;
3563 u16 pf_q = vsi->base_queue + ring->queue_index;
3564 struct i40e_hw *hw = &vsi->back->hw;
3565 struct i40e_hmc_obj_rxq rx_ctx;
3566 int err = 0;
3567 bool ok;
3568
3569 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS);
3570
3571 /* clear the context structure first */
3572 memset(&rx_ctx, 0, sizeof(rx_ctx));
3573
3574 ring->rx_buf_len = vsi->rx_buf_len;
3575
3576 /* XDP RX-queue info only needed for RX rings exposed to XDP */
3577 if (ring->vsi->type != I40E_VSI_MAIN)
3578 goto skip;
3579
3580 if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
3581 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
3582 ring->queue_index,
3583 ring->q_vector->napi.napi_id,
3584 ring->rx_buf_len);
3585 if (err)
3586 return err;
3587 }
3588
3589 ring->xsk_pool = i40e_xsk_pool(ring);
3590 if (ring->xsk_pool) {
3591 xdp_rxq_info_unreg(&ring->xdp_rxq);
3592 ring->rx_buf_len = xsk_pool_get_rx_frame_size(ring->xsk_pool);
3593 err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
3594 ring->queue_index,
3595 ring->q_vector->napi.napi_id,
3596 ring->rx_buf_len);
3597 if (err)
3598 return err;
3599 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
3600 MEM_TYPE_XSK_BUFF_POOL,
3601 NULL);
3602 if (err)
3603 return err;
3604 dev_info(&vsi->back->pdev->dev,
3605 "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
3606 ring->queue_index);
3607
3608 } else {
3609 err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
3610 MEM_TYPE_PAGE_SHARED,
3611 NULL);
3612 if (err)
3613 return err;
3614 }
3615
3616 skip:
3617 xdp_init_buff(&ring->xdp, i40e_rx_pg_size(ring) / 2, &ring->xdp_rxq);
3618
3619 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len,
3620 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT));
3621
3622 rx_ctx.base = (ring->dma / 128);
3623 rx_ctx.qlen = ring->count;
3624
3625 /* use 16 byte descriptors */
3626 rx_ctx.dsize = 0;
3627
3628 /* descriptor type is always zero
3629 * rx_ctx.dtype = 0;
3630 */
3631 rx_ctx.hsplit_0 = 0;
3632
3633 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len);
3634 if (hw->revision_id == 0)
3635 rx_ctx.lrxqthresh = 0;
3636 else
3637 rx_ctx.lrxqthresh = 1;
3638 rx_ctx.crcstrip = 1;
3639 rx_ctx.l2tsel = 1;
3640 /* this controls whether VLAN is stripped from inner headers */
3641 rx_ctx.showiv = 0;
3642 /* set the prefena field to 1 because the manual says to */
3643 rx_ctx.prefena = 1;
3644
3645 /* clear the context in the HMC */
3646 err = i40e_clear_lan_rx_queue_context(hw, pf_q);
3647 if (err) {
3648 dev_info(&vsi->back->pdev->dev,
3649 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
3650 ring->queue_index, pf_q, err);
3651 return -ENOMEM;
3652 }
3653
3654 /* set the context in the HMC */
3655 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
3656 if (err) {
3657 dev_info(&vsi->back->pdev->dev,
3658 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
3659 ring->queue_index, pf_q, err);
3660 return -ENOMEM;
3661 }
3662
3663 /* configure Rx buffer alignment */
3664 if (!vsi->netdev || test_bit(I40E_FLAG_LEGACY_RX_ENA, vsi->back->flags)) {
3665 if (I40E_2K_TOO_SMALL_WITH_PADDING) {
3666 dev_info(&vsi->back->pdev->dev,
3667 "2k Rx buffer is too small to fit standard MTU and skb_shared_info\n");
3668 return -EOPNOTSUPP;
3669 }
3670 clear_ring_build_skb_enabled(ring);
3671 } else {
3672 set_ring_build_skb_enabled(ring);
3673 }
3674
3675 ring->rx_offset = i40e_rx_offset(ring);
3676
3677 /* cache tail for quicker writes, and clear the reg before use */
3678 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
3679 writel(0, ring->tail);
3680
3681 if (ring->xsk_pool) {
3682 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
3683 ok = i40e_alloc_rx_buffers_zc(ring, I40E_DESC_UNUSED(ring));
3684 } else {
3685 ok = !i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring));
3686 }
3687 if (!ok) {
3688 /* Log this in case the user has forgotten to give the kernel
3689 * any buffers, even later in the application.
3690 */
3691 dev_info(&vsi->back->pdev->dev,
3692 "Failed to allocate some buffers on %sRx ring %d (pf_q %d)\n",
3693 ring->xsk_pool ? "AF_XDP ZC enabled " : "",
3694 ring->queue_index, pf_q);
3695 }
3696
3697 return 0;
3698 }
3699
3700 /**
3701 * i40e_vsi_configure_tx - Configure the VSI for Tx
3702 * @vsi: VSI structure describing this set of rings and resources
3703 *
3704 * Configure the Tx VSI for operation.
3705 **/
i40e_vsi_configure_tx(struct i40e_vsi * vsi)3706 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi)
3707 {
3708 int err = 0;
3709 u16 i;
3710
3711 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
3712 err = i40e_configure_tx_ring(vsi->tx_rings[i]);
3713
3714 if (err || !i40e_enabled_xdp_vsi(vsi))
3715 return err;
3716
3717 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
3718 err = i40e_configure_tx_ring(vsi->xdp_rings[i]);
3719
3720 return err;
3721 }
3722
3723 /**
3724 * i40e_vsi_configure_rx - Configure the VSI for Rx
3725 * @vsi: the VSI being configured
3726 *
3727 * Configure the Rx VSI for operation.
3728 **/
i40e_vsi_configure_rx(struct i40e_vsi * vsi)3729 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi)
3730 {
3731 int err = 0;
3732 u16 i;
3733
3734 vsi->max_frame = i40e_max_vsi_frame_size(vsi, vsi->xdp_prog);
3735 vsi->rx_buf_len = i40e_calculate_vsi_rx_buf_len(vsi);
3736
3737 #if (PAGE_SIZE < 8192)
3738 if (vsi->netdev && !I40E_2K_TOO_SMALL_WITH_PADDING &&
3739 vsi->netdev->mtu <= ETH_DATA_LEN) {
3740 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN;
3741 vsi->max_frame = vsi->rx_buf_len;
3742 }
3743 #endif
3744
3745 /* set up individual rings */
3746 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3747 err = i40e_configure_rx_ring(vsi->rx_rings[i]);
3748
3749 return err;
3750 }
3751
3752 /**
3753 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC
3754 * @vsi: ptr to the VSI
3755 **/
i40e_vsi_config_dcb_rings(struct i40e_vsi * vsi)3756 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi)
3757 {
3758 struct i40e_ring *tx_ring, *rx_ring;
3759 u16 qoffset, qcount;
3760 int i, n;
3761
3762 if (!test_bit(I40E_FLAG_DCB_ENA, vsi->back->flags)) {
3763 /* Reset the TC information */
3764 for (i = 0; i < vsi->num_queue_pairs; i++) {
3765 rx_ring = vsi->rx_rings[i];
3766 tx_ring = vsi->tx_rings[i];
3767 rx_ring->dcb_tc = 0;
3768 tx_ring->dcb_tc = 0;
3769 }
3770 return;
3771 }
3772
3773 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) {
3774 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n)))
3775 continue;
3776
3777 qoffset = vsi->tc_config.tc_info[n].qoffset;
3778 qcount = vsi->tc_config.tc_info[n].qcount;
3779 for (i = qoffset; i < (qoffset + qcount); i++) {
3780 rx_ring = vsi->rx_rings[i];
3781 tx_ring = vsi->tx_rings[i];
3782 rx_ring->dcb_tc = n;
3783 tx_ring->dcb_tc = n;
3784 }
3785 }
3786 }
3787
3788 /**
3789 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI
3790 * @vsi: ptr to the VSI
3791 **/
i40e_set_vsi_rx_mode(struct i40e_vsi * vsi)3792 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi)
3793 {
3794 if (vsi->netdev)
3795 i40e_set_rx_mode(vsi->netdev);
3796 }
3797
3798 /**
3799 * i40e_reset_fdir_filter_cnt - Reset flow director filter counters
3800 * @pf: Pointer to the targeted PF
3801 *
3802 * Set all flow director counters to 0.
3803 */
i40e_reset_fdir_filter_cnt(struct i40e_pf * pf)3804 static void i40e_reset_fdir_filter_cnt(struct i40e_pf *pf)
3805 {
3806 pf->fd_tcp4_filter_cnt = 0;
3807 pf->fd_udp4_filter_cnt = 0;
3808 pf->fd_sctp4_filter_cnt = 0;
3809 pf->fd_ip4_filter_cnt = 0;
3810 pf->fd_tcp6_filter_cnt = 0;
3811 pf->fd_udp6_filter_cnt = 0;
3812 pf->fd_sctp6_filter_cnt = 0;
3813 pf->fd_ip6_filter_cnt = 0;
3814 }
3815
3816 /**
3817 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters
3818 * @vsi: Pointer to the targeted VSI
3819 *
3820 * This function replays the hlist on the hw where all the SB Flow Director
3821 * filters were saved.
3822 **/
i40e_fdir_filter_restore(struct i40e_vsi * vsi)3823 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi)
3824 {
3825 struct i40e_fdir_filter *filter;
3826 struct i40e_pf *pf = vsi->back;
3827 struct hlist_node *node;
3828
3829 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags))
3830 return;
3831
3832 /* Reset FDir counters as we're replaying all existing filters */
3833 i40e_reset_fdir_filter_cnt(pf);
3834
3835 hlist_for_each_entry_safe(filter, node,
3836 &pf->fdir_filter_list, fdir_node) {
3837 i40e_add_del_fdir(vsi, filter, true);
3838 }
3839 }
3840
3841 /**
3842 * i40e_vsi_configure - Set up the VSI for action
3843 * @vsi: the VSI being configured
3844 **/
i40e_vsi_configure(struct i40e_vsi * vsi)3845 static int i40e_vsi_configure(struct i40e_vsi *vsi)
3846 {
3847 int err;
3848
3849 i40e_set_vsi_rx_mode(vsi);
3850 i40e_restore_vlan(vsi);
3851 i40e_vsi_config_dcb_rings(vsi);
3852 err = i40e_vsi_configure_tx(vsi);
3853 if (!err)
3854 err = i40e_vsi_configure_rx(vsi);
3855
3856 return err;
3857 }
3858
3859 /**
3860 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW
3861 * @vsi: the VSI being configured
3862 **/
i40e_vsi_configure_msix(struct i40e_vsi * vsi)3863 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi)
3864 {
3865 bool has_xdp = i40e_enabled_xdp_vsi(vsi);
3866 struct i40e_pf *pf = vsi->back;
3867 struct i40e_hw *hw = &pf->hw;
3868 u16 vector;
3869 int i, q;
3870 u32 qp;
3871
3872 /* The interrupt indexing is offset by 1 in the PFINT_ITRn
3873 * and PFINT_LNKLSTn registers, e.g.:
3874 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts)
3875 */
3876 qp = vsi->base_queue;
3877 vector = vsi->base_vector;
3878 for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
3879 struct i40e_q_vector *q_vector = vsi->q_vectors[i];
3880
3881 q_vector->rx.next_update = jiffies + 1;
3882 q_vector->rx.target_itr =
3883 ITR_TO_REG(vsi->rx_rings[i]->itr_setting);
3884 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1),
3885 q_vector->rx.target_itr >> 1);
3886 q_vector->rx.current_itr = q_vector->rx.target_itr;
3887
3888 q_vector->tx.next_update = jiffies + 1;
3889 q_vector->tx.target_itr =
3890 ITR_TO_REG(vsi->tx_rings[i]->itr_setting);
3891 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1),
3892 q_vector->tx.target_itr >> 1);
3893 q_vector->tx.current_itr = q_vector->tx.target_itr;
3894
3895 /* Set ITR for software interrupts triggered after exiting
3896 * busy-loop polling.
3897 */
3898 wr32(hw, I40E_PFINT_ITRN(I40E_SW_ITR, vector - 1),
3899 I40E_ITR_20K);
3900
3901 wr32(hw, I40E_PFINT_RATEN(vector - 1),
3902 i40e_intrl_usec_to_reg(vsi->int_rate_limit));
3903
3904 /* begin of linked list for RX queue assigned to this vector */
3905 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp);
3906 for (q = 0; q < q_vector->num_ringpairs; q++) {
3907 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp;
3908 u32 val;
3909
3910 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
3911 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
3912 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
3913 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
3914 (I40E_QUEUE_TYPE_TX <<
3915 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT);
3916
3917 wr32(hw, I40E_QINT_RQCTL(qp), val);
3918
3919 if (has_xdp) {
3920 /* TX queue with next queue set to TX */
3921 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3922 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3923 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
3924 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
3925 (I40E_QUEUE_TYPE_TX <<
3926 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3927
3928 wr32(hw, I40E_QINT_TQCTL(nextqp), val);
3929 }
3930 /* TX queue with next RX or end of linked list */
3931 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3932 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3933 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
3934 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
3935 (I40E_QUEUE_TYPE_RX <<
3936 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3937
3938 /* Terminate the linked list */
3939 if (q == (q_vector->num_ringpairs - 1))
3940 val |= (I40E_QUEUE_END_OF_LIST <<
3941 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
3942
3943 wr32(hw, I40E_QINT_TQCTL(qp), val);
3944 qp++;
3945 }
3946 }
3947
3948 i40e_flush(hw);
3949 }
3950
3951 /**
3952 * i40e_enable_misc_int_causes - enable the non-queue interrupts
3953 * @pf: pointer to private device data structure
3954 **/
i40e_enable_misc_int_causes(struct i40e_pf * pf)3955 static void i40e_enable_misc_int_causes(struct i40e_pf *pf)
3956 {
3957 struct i40e_hw *hw = &pf->hw;
3958 u32 val;
3959
3960 /* clear things first */
3961 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */
3962 rd32(hw, I40E_PFINT_ICR0); /* read to clear */
3963
3964 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK |
3965 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK |
3966 I40E_PFINT_ICR0_ENA_GRST_MASK |
3967 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK |
3968 I40E_PFINT_ICR0_ENA_GPIO_MASK |
3969 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK |
3970 I40E_PFINT_ICR0_ENA_VFLR_MASK |
3971 I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
3972
3973 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags))
3974 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
3975
3976 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3977 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
3978
3979 wr32(hw, I40E_PFINT_ICR0_ENA, val);
3980
3981 /* SW_ITR_IDX = 0, but don't change INTENA */
3982 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK |
3983 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK);
3984
3985 /* OTHER_ITR_IDX = 0 */
3986 wr32(hw, I40E_PFINT_STAT_CTL0, 0);
3987 }
3988
3989 /**
3990 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW
3991 * @vsi: the VSI being configured
3992 **/
i40e_configure_msi_and_legacy(struct i40e_vsi * vsi)3993 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi)
3994 {
3995 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0;
3996 struct i40e_q_vector *q_vector = vsi->q_vectors[0];
3997 struct i40e_pf *pf = vsi->back;
3998 struct i40e_hw *hw = &pf->hw;
3999
4000 /* set the ITR configuration */
4001 q_vector->rx.next_update = jiffies + 1;
4002 q_vector->rx.target_itr = ITR_TO_REG(vsi->rx_rings[0]->itr_setting);
4003 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.target_itr >> 1);
4004 q_vector->rx.current_itr = q_vector->rx.target_itr;
4005 q_vector->tx.next_update = jiffies + 1;
4006 q_vector->tx.target_itr = ITR_TO_REG(vsi->tx_rings[0]->itr_setting);
4007 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.target_itr >> 1);
4008 q_vector->tx.current_itr = q_vector->tx.target_itr;
4009
4010 i40e_enable_misc_int_causes(pf);
4011
4012 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */
4013 wr32(hw, I40E_PFINT_LNKLST0, 0);
4014
4015 /* Associate the queue pair to the vector and enable the queue
4016 * interrupt RX queue in linked list with next queue set to TX
4017 */
4018 wr32(hw, I40E_QINT_RQCTL(0), I40E_QINT_RQCTL_VAL(nextqp, 0, TX));
4019
4020 if (i40e_enabled_xdp_vsi(vsi)) {
4021 /* TX queue in linked list with next queue set to TX */
4022 wr32(hw, I40E_QINT_TQCTL(nextqp),
4023 I40E_QINT_TQCTL_VAL(nextqp, 0, TX));
4024 }
4025
4026 /* last TX queue so the next RX queue doesn't matter */
4027 wr32(hw, I40E_QINT_TQCTL(0),
4028 I40E_QINT_TQCTL_VAL(I40E_QUEUE_END_OF_LIST, 0, RX));
4029 i40e_flush(hw);
4030 }
4031
4032 /**
4033 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0
4034 * @pf: board private structure
4035 **/
i40e_irq_dynamic_disable_icr0(struct i40e_pf * pf)4036 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf)
4037 {
4038 struct i40e_hw *hw = &pf->hw;
4039
4040 wr32(hw, I40E_PFINT_DYN_CTL0,
4041 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
4042 i40e_flush(hw);
4043 }
4044
4045 /**
4046 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0
4047 * @pf: board private structure
4048 **/
i40e_irq_dynamic_enable_icr0(struct i40e_pf * pf)4049 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf)
4050 {
4051 struct i40e_hw *hw = &pf->hw;
4052 u32 val;
4053
4054 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
4055 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
4056 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
4057
4058 wr32(hw, I40E_PFINT_DYN_CTL0, val);
4059 i40e_flush(hw);
4060 }
4061
4062 /**
4063 * i40e_msix_clean_rings - MSIX mode Interrupt Handler
4064 * @irq: interrupt number
4065 * @data: pointer to a q_vector
4066 **/
i40e_msix_clean_rings(int irq,void * data)4067 static irqreturn_t i40e_msix_clean_rings(int irq, void *data)
4068 {
4069 struct i40e_q_vector *q_vector = data;
4070
4071 if (!q_vector->tx.ring && !q_vector->rx.ring)
4072 return IRQ_HANDLED;
4073
4074 napi_schedule_irqoff(&q_vector->napi);
4075
4076 return IRQ_HANDLED;
4077 }
4078
4079 /**
4080 * i40e_irq_affinity_notify - Callback for affinity changes
4081 * @notify: context as to what irq was changed
4082 * @mask: the new affinity mask
4083 *
4084 * This is a callback function used by the irq_set_affinity_notifier function
4085 * so that we may register to receive changes to the irq affinity masks.
4086 **/
i40e_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)4087 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify,
4088 const cpumask_t *mask)
4089 {
4090 struct i40e_q_vector *q_vector =
4091 container_of(notify, struct i40e_q_vector, affinity_notify);
4092
4093 cpumask_copy(&q_vector->affinity_mask, mask);
4094 }
4095
4096 /**
4097 * i40e_irq_affinity_release - Callback for affinity notifier release
4098 * @ref: internal core kernel usage
4099 *
4100 * This is a callback function used by the irq_set_affinity_notifier function
4101 * to inform the current notification subscriber that they will no longer
4102 * receive notifications.
4103 **/
i40e_irq_affinity_release(struct kref * ref)4104 static void i40e_irq_affinity_release(struct kref *ref) {}
4105
4106 /**
4107 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts
4108 * @vsi: the VSI being configured
4109 * @basename: name for the vector
4110 *
4111 * Allocates MSI-X vectors and requests interrupts from the kernel.
4112 **/
i40e_vsi_request_irq_msix(struct i40e_vsi * vsi,char * basename)4113 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename)
4114 {
4115 int q_vectors = vsi->num_q_vectors;
4116 struct i40e_pf *pf = vsi->back;
4117 int base = vsi->base_vector;
4118 int rx_int_idx = 0;
4119 int tx_int_idx = 0;
4120 int vector, err;
4121 int irq_num;
4122 int cpu;
4123
4124 for (vector = 0; vector < q_vectors; vector++) {
4125 struct i40e_q_vector *q_vector = vsi->q_vectors[vector];
4126
4127 irq_num = pf->msix_entries[base + vector].vector;
4128
4129 if (q_vector->tx.ring && q_vector->rx.ring) {
4130 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
4131 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
4132 tx_int_idx++;
4133 } else if (q_vector->rx.ring) {
4134 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
4135 "%s-%s-%d", basename, "rx", rx_int_idx++);
4136 } else if (q_vector->tx.ring) {
4137 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
4138 "%s-%s-%d", basename, "tx", tx_int_idx++);
4139 } else {
4140 /* skip this unused q_vector */
4141 continue;
4142 }
4143 err = request_irq(irq_num,
4144 vsi->irq_handler,
4145 0,
4146 q_vector->name,
4147 q_vector);
4148 if (err) {
4149 dev_info(&pf->pdev->dev,
4150 "MSIX request_irq failed, error: %d\n", err);
4151 goto free_queue_irqs;
4152 }
4153
4154 /* register for affinity change notifications */
4155 q_vector->irq_num = irq_num;
4156 q_vector->affinity_notify.notify = i40e_irq_affinity_notify;
4157 q_vector->affinity_notify.release = i40e_irq_affinity_release;
4158 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
4159 /* Spread affinity hints out across online CPUs.
4160 *
4161 * get_cpu_mask returns a static constant mask with
4162 * a permanent lifetime so it's ok to pass to
4163 * irq_update_affinity_hint without making a copy.
4164 */
4165 cpu = cpumask_local_spread(q_vector->v_idx, -1);
4166 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
4167 }
4168
4169 vsi->irqs_ready = true;
4170 return 0;
4171
4172 free_queue_irqs:
4173 while (vector) {
4174 vector--;
4175 irq_num = pf->msix_entries[base + vector].vector;
4176 irq_set_affinity_notifier(irq_num, NULL);
4177 irq_update_affinity_hint(irq_num, NULL);
4178 free_irq(irq_num, vsi->q_vectors[vector]);
4179 }
4180 return err;
4181 }
4182
4183 /**
4184 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI
4185 * @vsi: the VSI being un-configured
4186 **/
i40e_vsi_disable_irq(struct i40e_vsi * vsi)4187 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi)
4188 {
4189 struct i40e_pf *pf = vsi->back;
4190 struct i40e_hw *hw = &pf->hw;
4191 int base = vsi->base_vector;
4192 int i;
4193
4194 /* disable interrupt causation from each queue */
4195 for (i = 0; i < vsi->num_queue_pairs; i++) {
4196 u32 val;
4197
4198 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
4199 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK;
4200 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
4201
4202 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx));
4203 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
4204 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val);
4205
4206 if (!i40e_enabled_xdp_vsi(vsi))
4207 continue;
4208 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0);
4209 }
4210
4211 /* disable each interrupt */
4212 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
4213 for (i = vsi->base_vector;
4214 i < (vsi->num_q_vectors + vsi->base_vector); i++)
4215 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0);
4216
4217 i40e_flush(hw);
4218 for (i = 0; i < vsi->num_q_vectors; i++)
4219 synchronize_irq(pf->msix_entries[i + base].vector);
4220 } else {
4221 /* Legacy and MSI mode - this stops all interrupt handling */
4222 wr32(hw, I40E_PFINT_ICR0_ENA, 0);
4223 wr32(hw, I40E_PFINT_DYN_CTL0, 0);
4224 i40e_flush(hw);
4225 synchronize_irq(pf->pdev->irq);
4226 }
4227 }
4228
4229 /**
4230 * i40e_vsi_enable_irq - Enable IRQ for the given VSI
4231 * @vsi: the VSI being configured
4232 **/
i40e_vsi_enable_irq(struct i40e_vsi * vsi)4233 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi)
4234 {
4235 struct i40e_pf *pf = vsi->back;
4236 int i;
4237
4238 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
4239 for (i = 0; i < vsi->num_q_vectors; i++)
4240 i40e_irq_dynamic_enable(vsi, i);
4241 } else {
4242 i40e_irq_dynamic_enable_icr0(pf);
4243 }
4244
4245 i40e_flush(&pf->hw);
4246 return 0;
4247 }
4248
4249 /**
4250 * i40e_free_misc_vector - Free the vector that handles non-queue events
4251 * @pf: board private structure
4252 **/
i40e_free_misc_vector(struct i40e_pf * pf)4253 static void i40e_free_misc_vector(struct i40e_pf *pf)
4254 {
4255 /* Disable ICR 0 */
4256 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0);
4257 i40e_flush(&pf->hw);
4258
4259 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
4260 free_irq(pf->msix_entries[0].vector, pf);
4261 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state);
4262 }
4263 }
4264
4265 /**
4266 * i40e_intr - MSI/Legacy and non-queue interrupt handler
4267 * @irq: interrupt number
4268 * @data: pointer to a q_vector
4269 *
4270 * This is the handler used for all MSI/Legacy interrupts, and deals
4271 * with both queue and non-queue interrupts. This is also used in
4272 * MSIX mode to handle the non-queue interrupts.
4273 **/
i40e_intr(int irq,void * data)4274 static irqreturn_t i40e_intr(int irq, void *data)
4275 {
4276 struct i40e_pf *pf = (struct i40e_pf *)data;
4277 struct i40e_hw *hw = &pf->hw;
4278 irqreturn_t ret = IRQ_NONE;
4279 u32 icr0, icr0_remaining;
4280 u32 val, ena_mask;
4281
4282 icr0 = rd32(hw, I40E_PFINT_ICR0);
4283 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA);
4284
4285 /* if sharing a legacy IRQ, we might get called w/o an intr pending */
4286 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0)
4287 goto enable_intr;
4288
4289 /* if interrupt but no bits showing, must be SWINT */
4290 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) ||
4291 (icr0 & I40E_PFINT_ICR0_SWINT_MASK))
4292 pf->sw_int_count++;
4293
4294 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) &&
4295 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) {
4296 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
4297 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n");
4298 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
4299 }
4300
4301 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */
4302 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) {
4303 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
4304 struct i40e_q_vector *q_vector = vsi->q_vectors[0];
4305
4306 /* We do not have a way to disarm Queue causes while leaving
4307 * interrupt enabled for all other causes, ideally
4308 * interrupt should be disabled while we are in NAPI but
4309 * this is not a performance path and napi_schedule()
4310 * can deal with rescheduling.
4311 */
4312 if (!test_bit(__I40E_DOWN, pf->state))
4313 napi_schedule_irqoff(&q_vector->napi);
4314 }
4315
4316 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
4317 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
4318 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
4319 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n");
4320 }
4321
4322 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) {
4323 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
4324 set_bit(__I40E_MDD_EVENT_PENDING, pf->state);
4325 }
4326
4327 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) {
4328 /* disable any further VFLR event notifications */
4329 if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) {
4330 u32 reg = rd32(hw, I40E_PFINT_ICR0_ENA);
4331
4332 reg &= ~I40E_PFINT_ICR0_VFLR_MASK;
4333 wr32(hw, I40E_PFINT_ICR0_ENA, reg);
4334 } else {
4335 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK;
4336 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state);
4337 }
4338 }
4339
4340 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) {
4341 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
4342 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
4343 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK;
4344 val = rd32(hw, I40E_GLGEN_RSTAT);
4345 val = FIELD_GET(I40E_GLGEN_RSTAT_RESET_TYPE_MASK, val);
4346 if (val == I40E_RESET_CORER) {
4347 pf->corer_count++;
4348 } else if (val == I40E_RESET_GLOBR) {
4349 pf->globr_count++;
4350 } else if (val == I40E_RESET_EMPR) {
4351 pf->empr_count++;
4352 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state);
4353 }
4354 }
4355
4356 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) {
4357 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK;
4358 dev_info(&pf->pdev->dev, "HMC error interrupt\n");
4359 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n",
4360 rd32(hw, I40E_PFHMC_ERRORINFO),
4361 rd32(hw, I40E_PFHMC_ERRORDATA));
4362 }
4363
4364 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) {
4365 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0);
4366
4367 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_EVENT0_MASK)
4368 schedule_work(&pf->ptp_extts0_work);
4369
4370 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK)
4371 i40e_ptp_tx_hwtstamp(pf);
4372
4373 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
4374 }
4375
4376 /* If a critical error is pending we have no choice but to reset the
4377 * device.
4378 * Report and mask out any remaining unexpected interrupts.
4379 */
4380 icr0_remaining = icr0 & ena_mask;
4381 if (icr0_remaining) {
4382 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n",
4383 icr0_remaining);
4384 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) ||
4385 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) ||
4386 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) {
4387 dev_info(&pf->pdev->dev, "device will be reset\n");
4388 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
4389 i40e_service_event_schedule(pf);
4390 }
4391 ena_mask &= ~icr0_remaining;
4392 }
4393 ret = IRQ_HANDLED;
4394
4395 enable_intr:
4396 /* re-enable interrupt causes */
4397 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask);
4398 if (!test_bit(__I40E_DOWN, pf->state) ||
4399 test_bit(__I40E_RECOVERY_MODE, pf->state)) {
4400 i40e_service_event_schedule(pf);
4401 i40e_irq_dynamic_enable_icr0(pf);
4402 }
4403
4404 return ret;
4405 }
4406
4407 /**
4408 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes
4409 * @tx_ring: tx ring to clean
4410 * @budget: how many cleans we're allowed
4411 *
4412 * Returns true if there's any budget left (e.g. the clean is finished)
4413 **/
i40e_clean_fdir_tx_irq(struct i40e_ring * tx_ring,int budget)4414 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget)
4415 {
4416 struct i40e_vsi *vsi = tx_ring->vsi;
4417 u16 i = tx_ring->next_to_clean;
4418 struct i40e_tx_buffer *tx_buf;
4419 struct i40e_tx_desc *tx_desc;
4420
4421 tx_buf = &tx_ring->tx_bi[i];
4422 tx_desc = I40E_TX_DESC(tx_ring, i);
4423 i -= tx_ring->count;
4424
4425 do {
4426 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
4427
4428 /* if next_to_watch is not set then there is no work pending */
4429 if (!eop_desc)
4430 break;
4431
4432 /* prevent any other reads prior to eop_desc */
4433 smp_rmb();
4434
4435 /* if the descriptor isn't done, no work yet to do */
4436 if (!(eop_desc->cmd_type_offset_bsz &
4437 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
4438 break;
4439
4440 /* clear next_to_watch to prevent false hangs */
4441 tx_buf->next_to_watch = NULL;
4442
4443 tx_desc->buffer_addr = 0;
4444 tx_desc->cmd_type_offset_bsz = 0;
4445 /* move past filter desc */
4446 tx_buf++;
4447 tx_desc++;
4448 i++;
4449 if (unlikely(!i)) {
4450 i -= tx_ring->count;
4451 tx_buf = tx_ring->tx_bi;
4452 tx_desc = I40E_TX_DESC(tx_ring, 0);
4453 }
4454 /* unmap skb header data */
4455 dma_unmap_single(tx_ring->dev,
4456 dma_unmap_addr(tx_buf, dma),
4457 dma_unmap_len(tx_buf, len),
4458 DMA_TO_DEVICE);
4459 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB)
4460 kfree(tx_buf->raw_buf);
4461
4462 tx_buf->raw_buf = NULL;
4463 tx_buf->tx_flags = 0;
4464 tx_buf->next_to_watch = NULL;
4465 dma_unmap_len_set(tx_buf, len, 0);
4466 tx_desc->buffer_addr = 0;
4467 tx_desc->cmd_type_offset_bsz = 0;
4468
4469 /* move us past the eop_desc for start of next FD desc */
4470 tx_buf++;
4471 tx_desc++;
4472 i++;
4473 if (unlikely(!i)) {
4474 i -= tx_ring->count;
4475 tx_buf = tx_ring->tx_bi;
4476 tx_desc = I40E_TX_DESC(tx_ring, 0);
4477 }
4478
4479 /* update budget accounting */
4480 budget--;
4481 } while (likely(budget));
4482
4483 i += tx_ring->count;
4484 tx_ring->next_to_clean = i;
4485
4486 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags))
4487 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx);
4488
4489 return budget > 0;
4490 }
4491
4492 /**
4493 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring
4494 * @irq: interrupt number
4495 * @data: pointer to a q_vector
4496 **/
i40e_fdir_clean_ring(int irq,void * data)4497 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data)
4498 {
4499 struct i40e_q_vector *q_vector = data;
4500 struct i40e_vsi *vsi;
4501
4502 if (!q_vector->tx.ring)
4503 return IRQ_HANDLED;
4504
4505 vsi = q_vector->tx.ring->vsi;
4506 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit);
4507
4508 return IRQ_HANDLED;
4509 }
4510
4511 /**
4512 * i40e_map_vector_to_qp - Assigns the queue pair to the vector
4513 * @vsi: the VSI being configured
4514 * @v_idx: vector index
4515 * @qp_idx: queue pair index
4516 **/
i40e_map_vector_to_qp(struct i40e_vsi * vsi,int v_idx,int qp_idx)4517 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx)
4518 {
4519 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
4520 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx];
4521 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx];
4522
4523 tx_ring->q_vector = q_vector;
4524 tx_ring->next = q_vector->tx.ring;
4525 q_vector->tx.ring = tx_ring;
4526 q_vector->tx.count++;
4527
4528 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */
4529 if (i40e_enabled_xdp_vsi(vsi)) {
4530 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx];
4531
4532 xdp_ring->q_vector = q_vector;
4533 xdp_ring->next = q_vector->tx.ring;
4534 q_vector->tx.ring = xdp_ring;
4535 q_vector->tx.count++;
4536 }
4537
4538 rx_ring->q_vector = q_vector;
4539 rx_ring->next = q_vector->rx.ring;
4540 q_vector->rx.ring = rx_ring;
4541 q_vector->rx.count++;
4542 }
4543
4544 /**
4545 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors
4546 * @vsi: the VSI being configured
4547 *
4548 * This function maps descriptor rings to the queue-specific vectors
4549 * we were allotted through the MSI-X enabling code. Ideally, we'd have
4550 * one vector per queue pair, but on a constrained vector budget, we
4551 * group the queue pairs as "efficiently" as possible.
4552 **/
i40e_vsi_map_rings_to_vectors(struct i40e_vsi * vsi)4553 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi)
4554 {
4555 int qp_remaining = vsi->num_queue_pairs;
4556 int q_vectors = vsi->num_q_vectors;
4557 int num_ringpairs;
4558 int v_start = 0;
4559 int qp_idx = 0;
4560
4561 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to
4562 * group them so there are multiple queues per vector.
4563 * It is also important to go through all the vectors available to be
4564 * sure that if we don't use all the vectors, that the remaining vectors
4565 * are cleared. This is especially important when decreasing the
4566 * number of queues in use.
4567 */
4568 for (; v_start < q_vectors; v_start++) {
4569 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start];
4570
4571 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start);
4572
4573 q_vector->num_ringpairs = num_ringpairs;
4574 q_vector->reg_idx = q_vector->v_idx + vsi->base_vector - 1;
4575
4576 q_vector->rx.count = 0;
4577 q_vector->tx.count = 0;
4578 q_vector->rx.ring = NULL;
4579 q_vector->tx.ring = NULL;
4580
4581 while (num_ringpairs--) {
4582 i40e_map_vector_to_qp(vsi, v_start, qp_idx);
4583 qp_idx++;
4584 qp_remaining--;
4585 }
4586 }
4587 }
4588
4589 /**
4590 * i40e_vsi_request_irq - Request IRQ from the OS
4591 * @vsi: the VSI being configured
4592 * @basename: name for the vector
4593 **/
i40e_vsi_request_irq(struct i40e_vsi * vsi,char * basename)4594 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename)
4595 {
4596 struct i40e_pf *pf = vsi->back;
4597 int err;
4598
4599 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
4600 err = i40e_vsi_request_irq_msix(vsi, basename);
4601 else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags))
4602 err = request_irq(pf->pdev->irq, i40e_intr, 0,
4603 pf->int_name, pf);
4604 else
4605 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED,
4606 pf->int_name, pf);
4607
4608 if (err)
4609 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err);
4610
4611 return err;
4612 }
4613
4614 #ifdef CONFIG_NET_POLL_CONTROLLER
4615 /**
4616 * i40e_netpoll - A Polling 'interrupt' handler
4617 * @netdev: network interface device structure
4618 *
4619 * This is used by netconsole to send skbs without having to re-enable
4620 * interrupts. It's not called while the normal interrupt routine is executing.
4621 **/
i40e_netpoll(struct net_device * netdev)4622 static void i40e_netpoll(struct net_device *netdev)
4623 {
4624 struct i40e_netdev_priv *np = netdev_priv(netdev);
4625 struct i40e_vsi *vsi = np->vsi;
4626 struct i40e_pf *pf = vsi->back;
4627 int i;
4628
4629 /* if interface is down do nothing */
4630 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4631 return;
4632
4633 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
4634 for (i = 0; i < vsi->num_q_vectors; i++)
4635 i40e_msix_clean_rings(0, vsi->q_vectors[i]);
4636 } else {
4637 i40e_intr(pf->pdev->irq, netdev);
4638 }
4639 }
4640 #endif
4641
4642 #define I40E_QTX_ENA_WAIT_COUNT 50
4643
4644 /**
4645 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled
4646 * @pf: the PF being configured
4647 * @pf_q: the PF queue
4648 * @enable: enable or disable state of the queue
4649 *
4650 * This routine will wait for the given Tx queue of the PF to reach the
4651 * enabled or disabled state.
4652 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4653 * multiple retries; else will return 0 in case of success.
4654 **/
i40e_pf_txq_wait(struct i40e_pf * pf,int pf_q,bool enable)4655 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable)
4656 {
4657 int i;
4658 u32 tx_reg;
4659
4660 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
4661 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q));
4662 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
4663 break;
4664
4665 usleep_range(10, 20);
4666 }
4667 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
4668 return -ETIMEDOUT;
4669
4670 return 0;
4671 }
4672
4673 /**
4674 * i40e_control_tx_q - Start or stop a particular Tx queue
4675 * @pf: the PF structure
4676 * @pf_q: the PF queue to configure
4677 * @enable: start or stop the queue
4678 *
4679 * This function enables or disables a single queue. Note that any delay
4680 * required after the operation is expected to be handled by the caller of
4681 * this function.
4682 **/
i40e_control_tx_q(struct i40e_pf * pf,int pf_q,bool enable)4683 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable)
4684 {
4685 struct i40e_hw *hw = &pf->hw;
4686 u32 tx_reg;
4687 int i;
4688
4689 /* warn the TX unit of coming changes */
4690 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable);
4691 if (!enable)
4692 usleep_range(10, 20);
4693
4694 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
4695 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q));
4696 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) ==
4697 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1))
4698 break;
4699 usleep_range(1000, 2000);
4700 }
4701
4702 /* Skip if the queue is already in the requested state */
4703 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
4704 return;
4705
4706 /* turn on/off the queue */
4707 if (enable) {
4708 wr32(hw, I40E_QTX_HEAD(pf_q), 0);
4709 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK;
4710 } else {
4711 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
4712 }
4713
4714 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg);
4715 }
4716
4717 /**
4718 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion
4719 * @seid: VSI SEID
4720 * @pf: the PF structure
4721 * @pf_q: the PF queue to configure
4722 * @is_xdp: true if the queue is used for XDP
4723 * @enable: start or stop the queue
4724 **/
i40e_control_wait_tx_q(int seid,struct i40e_pf * pf,int pf_q,bool is_xdp,bool enable)4725 int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q,
4726 bool is_xdp, bool enable)
4727 {
4728 int ret;
4729
4730 i40e_control_tx_q(pf, pf_q, enable);
4731
4732 /* wait for the change to finish */
4733 ret = i40e_pf_txq_wait(pf, pf_q, enable);
4734 if (ret) {
4735 dev_info(&pf->pdev->dev,
4736 "VSI seid %d %sTx ring %d %sable timeout\n",
4737 seid, (is_xdp ? "XDP " : ""), pf_q,
4738 (enable ? "en" : "dis"));
4739 }
4740
4741 return ret;
4742 }
4743
4744 /**
4745 * i40e_vsi_enable_tx - Start a VSI's rings
4746 * @vsi: the VSI being configured
4747 **/
i40e_vsi_enable_tx(struct i40e_vsi * vsi)4748 static int i40e_vsi_enable_tx(struct i40e_vsi *vsi)
4749 {
4750 struct i40e_pf *pf = vsi->back;
4751 int i, pf_q, ret = 0;
4752
4753 pf_q = vsi->base_queue;
4754 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4755 ret = i40e_control_wait_tx_q(vsi->seid, pf,
4756 pf_q,
4757 false /*is xdp*/, true);
4758 if (ret)
4759 break;
4760
4761 if (!i40e_enabled_xdp_vsi(vsi))
4762 continue;
4763
4764 ret = i40e_control_wait_tx_q(vsi->seid, pf,
4765 pf_q + vsi->alloc_queue_pairs,
4766 true /*is xdp*/, true);
4767 if (ret)
4768 break;
4769 }
4770 return ret;
4771 }
4772
4773 /**
4774 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
4775 * @pf: the PF being configured
4776 * @pf_q: the PF queue
4777 * @enable: enable or disable state of the queue
4778 *
4779 * This routine will wait for the given Rx queue of the PF to reach the
4780 * enabled or disabled state.
4781 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4782 * multiple retries; else will return 0 in case of success.
4783 **/
i40e_pf_rxq_wait(struct i40e_pf * pf,int pf_q,bool enable)4784 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable)
4785 {
4786 int i;
4787 u32 rx_reg;
4788
4789 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
4790 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q));
4791 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
4792 break;
4793
4794 usleep_range(10, 20);
4795 }
4796 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
4797 return -ETIMEDOUT;
4798
4799 return 0;
4800 }
4801
4802 /**
4803 * i40e_control_rx_q - Start or stop a particular Rx queue
4804 * @pf: the PF structure
4805 * @pf_q: the PF queue to configure
4806 * @enable: start or stop the queue
4807 *
4808 * This function enables or disables a single queue. Note that
4809 * any delay required after the operation is expected to be
4810 * handled by the caller of this function.
4811 **/
i40e_control_rx_q(struct i40e_pf * pf,int pf_q,bool enable)4812 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable)
4813 {
4814 struct i40e_hw *hw = &pf->hw;
4815 u32 rx_reg;
4816 int i;
4817
4818 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
4819 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q));
4820 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) ==
4821 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1))
4822 break;
4823 usleep_range(1000, 2000);
4824 }
4825
4826 /* Skip if the queue is already in the requested state */
4827 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
4828 return;
4829
4830 /* turn on/off the queue */
4831 if (enable)
4832 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK;
4833 else
4834 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
4835
4836 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg);
4837 }
4838
4839 /**
4840 * i40e_control_wait_rx_q
4841 * @pf: the PF structure
4842 * @pf_q: queue being configured
4843 * @enable: start or stop the rings
4844 *
4845 * This function enables or disables a single queue along with waiting
4846 * for the change to finish. The caller of this function should handle
4847 * the delays needed in the case of disabling queues.
4848 **/
i40e_control_wait_rx_q(struct i40e_pf * pf,int pf_q,bool enable)4849 int i40e_control_wait_rx_q(struct i40e_pf *pf, int pf_q, bool enable)
4850 {
4851 int ret = 0;
4852
4853 i40e_control_rx_q(pf, pf_q, enable);
4854
4855 /* wait for the change to finish */
4856 ret = i40e_pf_rxq_wait(pf, pf_q, enable);
4857 if (ret)
4858 return ret;
4859
4860 return ret;
4861 }
4862
4863 /**
4864 * i40e_vsi_enable_rx - Start a VSI's rings
4865 * @vsi: the VSI being configured
4866 **/
i40e_vsi_enable_rx(struct i40e_vsi * vsi)4867 static int i40e_vsi_enable_rx(struct i40e_vsi *vsi)
4868 {
4869 struct i40e_pf *pf = vsi->back;
4870 int i, pf_q, ret = 0;
4871
4872 pf_q = vsi->base_queue;
4873 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4874 ret = i40e_control_wait_rx_q(pf, pf_q, true);
4875 if (ret) {
4876 dev_info(&pf->pdev->dev,
4877 "VSI seid %d Rx ring %d enable timeout\n",
4878 vsi->seid, pf_q);
4879 break;
4880 }
4881 }
4882
4883 return ret;
4884 }
4885
4886 /**
4887 * i40e_vsi_start_rings - Start a VSI's rings
4888 * @vsi: the VSI being configured
4889 **/
i40e_vsi_start_rings(struct i40e_vsi * vsi)4890 int i40e_vsi_start_rings(struct i40e_vsi *vsi)
4891 {
4892 int ret = 0;
4893
4894 /* do rx first for enable and last for disable */
4895 ret = i40e_vsi_enable_rx(vsi);
4896 if (ret)
4897 return ret;
4898 ret = i40e_vsi_enable_tx(vsi);
4899
4900 return ret;
4901 }
4902
4903 #define I40E_DISABLE_TX_GAP_MSEC 50
4904
4905 /**
4906 * i40e_vsi_stop_rings - Stop a VSI's rings
4907 * @vsi: the VSI being configured
4908 **/
i40e_vsi_stop_rings(struct i40e_vsi * vsi)4909 void i40e_vsi_stop_rings(struct i40e_vsi *vsi)
4910 {
4911 struct i40e_pf *pf = vsi->back;
4912 u32 pf_q, tx_q_end, rx_q_end;
4913
4914 /* When port TX is suspended, don't wait */
4915 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state))
4916 return i40e_vsi_stop_rings_no_wait(vsi);
4917
4918 tx_q_end = vsi->base_queue +
4919 vsi->alloc_queue_pairs * (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
4920 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++)
4921 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, false);
4922
4923 rx_q_end = vsi->base_queue + vsi->num_queue_pairs;
4924 for (pf_q = vsi->base_queue; pf_q < rx_q_end; pf_q++)
4925 i40e_control_rx_q(pf, pf_q, false);
4926
4927 msleep(I40E_DISABLE_TX_GAP_MSEC);
4928 for (pf_q = vsi->base_queue; pf_q < tx_q_end; pf_q++)
4929 wr32(&pf->hw, I40E_QTX_ENA(pf_q), 0);
4930
4931 i40e_vsi_wait_queues_disabled(vsi);
4932 }
4933
4934 /**
4935 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay
4936 * @vsi: the VSI being shutdown
4937 *
4938 * This function stops all the rings for a VSI but does not delay to verify
4939 * that rings have been disabled. It is expected that the caller is shutting
4940 * down multiple VSIs at once and will delay together for all the VSIs after
4941 * initiating the shutdown. This is particularly useful for shutting down lots
4942 * of VFs together. Otherwise, a large delay can be incurred while configuring
4943 * each VSI in serial.
4944 **/
i40e_vsi_stop_rings_no_wait(struct i40e_vsi * vsi)4945 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi)
4946 {
4947 struct i40e_pf *pf = vsi->back;
4948 int i, pf_q;
4949
4950 pf_q = vsi->base_queue;
4951 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4952 i40e_control_tx_q(pf, pf_q, false);
4953 i40e_control_rx_q(pf, pf_q, false);
4954 }
4955 }
4956
4957 /**
4958 * i40e_vsi_free_irq - Free the irq association with the OS
4959 * @vsi: the VSI being configured
4960 **/
i40e_vsi_free_irq(struct i40e_vsi * vsi)4961 static void i40e_vsi_free_irq(struct i40e_vsi *vsi)
4962 {
4963 struct i40e_pf *pf = vsi->back;
4964 struct i40e_hw *hw = &pf->hw;
4965 int base = vsi->base_vector;
4966 u32 val, qp;
4967 int i;
4968
4969 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
4970 if (!vsi->q_vectors)
4971 return;
4972
4973 if (!vsi->irqs_ready)
4974 return;
4975
4976 vsi->irqs_ready = false;
4977 for (i = 0; i < vsi->num_q_vectors; i++) {
4978 int irq_num;
4979 u16 vector;
4980
4981 vector = i + base;
4982 irq_num = pf->msix_entries[vector].vector;
4983
4984 /* free only the irqs that were actually requested */
4985 if (!vsi->q_vectors[i] ||
4986 !vsi->q_vectors[i]->num_ringpairs)
4987 continue;
4988
4989 /* clear the affinity notifier in the IRQ descriptor */
4990 irq_set_affinity_notifier(irq_num, NULL);
4991 /* remove our suggested affinity mask for this IRQ */
4992 irq_update_affinity_hint(irq_num, NULL);
4993 free_irq(irq_num, vsi->q_vectors[i]);
4994
4995 /* Tear down the interrupt queue link list
4996 *
4997 * We know that they come in pairs and always
4998 * the Rx first, then the Tx. To clear the
4999 * link list, stick the EOL value into the
5000 * next_q field of the registers.
5001 */
5002 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1));
5003 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK,
5004 val);
5005 val |= I40E_QUEUE_END_OF_LIST
5006 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
5007 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val);
5008
5009 while (qp != I40E_QUEUE_END_OF_LIST) {
5010 u32 next;
5011
5012 val = rd32(hw, I40E_QINT_RQCTL(qp));
5013
5014 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
5015 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
5016 I40E_QINT_RQCTL_CAUSE_ENA_MASK |
5017 I40E_QINT_RQCTL_INTEVENT_MASK);
5018
5019 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
5020 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
5021
5022 wr32(hw, I40E_QINT_RQCTL(qp), val);
5023
5024 val = rd32(hw, I40E_QINT_TQCTL(qp));
5025
5026 next = FIELD_GET(I40E_QINT_TQCTL_NEXTQ_INDX_MASK,
5027 val);
5028
5029 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
5030 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
5031 I40E_QINT_TQCTL_CAUSE_ENA_MASK |
5032 I40E_QINT_TQCTL_INTEVENT_MASK);
5033
5034 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
5035 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
5036
5037 wr32(hw, I40E_QINT_TQCTL(qp), val);
5038 qp = next;
5039 }
5040 }
5041 } else {
5042 free_irq(pf->pdev->irq, pf);
5043
5044 val = rd32(hw, I40E_PFINT_LNKLST0);
5045 qp = FIELD_GET(I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK, val);
5046 val |= I40E_QUEUE_END_OF_LIST
5047 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
5048 wr32(hw, I40E_PFINT_LNKLST0, val);
5049
5050 val = rd32(hw, I40E_QINT_RQCTL(qp));
5051 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
5052 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
5053 I40E_QINT_RQCTL_CAUSE_ENA_MASK |
5054 I40E_QINT_RQCTL_INTEVENT_MASK);
5055
5056 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
5057 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
5058
5059 wr32(hw, I40E_QINT_RQCTL(qp), val);
5060
5061 val = rd32(hw, I40E_QINT_TQCTL(qp));
5062
5063 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
5064 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
5065 I40E_QINT_TQCTL_CAUSE_ENA_MASK |
5066 I40E_QINT_TQCTL_INTEVENT_MASK);
5067
5068 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
5069 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
5070
5071 wr32(hw, I40E_QINT_TQCTL(qp), val);
5072 }
5073 }
5074
5075 /**
5076 * i40e_free_q_vector - Free memory allocated for specific interrupt vector
5077 * @vsi: the VSI being configured
5078 * @v_idx: Index of vector to be freed
5079 *
5080 * This function frees the memory allocated to the q_vector. In addition if
5081 * NAPI is enabled it will delete any references to the NAPI struct prior
5082 * to freeing the q_vector.
5083 **/
i40e_free_q_vector(struct i40e_vsi * vsi,int v_idx)5084 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx)
5085 {
5086 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
5087 struct i40e_ring *ring;
5088
5089 if (!q_vector)
5090 return;
5091
5092 /* disassociate q_vector from rings */
5093 i40e_for_each_ring(ring, q_vector->tx)
5094 ring->q_vector = NULL;
5095
5096 i40e_for_each_ring(ring, q_vector->rx)
5097 ring->q_vector = NULL;
5098
5099 /* only VSI w/ an associated netdev is set up w/ NAPI */
5100 if (vsi->netdev)
5101 netif_napi_del(&q_vector->napi);
5102
5103 vsi->q_vectors[v_idx] = NULL;
5104
5105 kfree_rcu(q_vector, rcu);
5106 }
5107
5108 /**
5109 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors
5110 * @vsi: the VSI being un-configured
5111 *
5112 * This frees the memory allocated to the q_vectors and
5113 * deletes references to the NAPI struct.
5114 **/
i40e_vsi_free_q_vectors(struct i40e_vsi * vsi)5115 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi)
5116 {
5117 int v_idx;
5118
5119 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
5120 i40e_free_q_vector(vsi, v_idx);
5121 }
5122
5123 /**
5124 * i40e_reset_interrupt_capability - Disable interrupt setup in OS
5125 * @pf: board private structure
5126 **/
i40e_reset_interrupt_capability(struct i40e_pf * pf)5127 static void i40e_reset_interrupt_capability(struct i40e_pf *pf)
5128 {
5129 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */
5130 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
5131 pci_disable_msix(pf->pdev);
5132 kfree(pf->msix_entries);
5133 pf->msix_entries = NULL;
5134 kfree(pf->irq_pile);
5135 pf->irq_pile = NULL;
5136 } else if (test_bit(I40E_FLAG_MSI_ENA, pf->flags)) {
5137 pci_disable_msi(pf->pdev);
5138 }
5139 clear_bit(I40E_FLAG_MSI_ENA, pf->flags);
5140 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags);
5141 }
5142
5143 /**
5144 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings
5145 * @pf: board private structure
5146 *
5147 * We go through and clear interrupt specific resources and reset the structure
5148 * to pre-load conditions
5149 **/
i40e_clear_interrupt_scheme(struct i40e_pf * pf)5150 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf)
5151 {
5152 struct i40e_vsi *vsi;
5153 int i;
5154
5155 if (test_bit(__I40E_MISC_IRQ_REQUESTED, pf->state))
5156 i40e_free_misc_vector(pf);
5157
5158 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector,
5159 I40E_IWARP_IRQ_PILE_ID);
5160
5161 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1);
5162
5163 i40e_pf_for_each_vsi(pf, i, vsi)
5164 i40e_vsi_free_q_vectors(vsi);
5165
5166 i40e_reset_interrupt_capability(pf);
5167 }
5168
5169 /**
5170 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5171 * @vsi: the VSI being configured
5172 **/
i40e_napi_enable_all(struct i40e_vsi * vsi)5173 static void i40e_napi_enable_all(struct i40e_vsi *vsi)
5174 {
5175 int q_idx;
5176
5177 if (!vsi->netdev)
5178 return;
5179
5180 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
5181 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
5182
5183 if (q_vector->rx.ring || q_vector->tx.ring)
5184 napi_enable(&q_vector->napi);
5185 }
5186 }
5187
5188 /**
5189 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5190 * @vsi: the VSI being configured
5191 **/
i40e_napi_disable_all(struct i40e_vsi * vsi)5192 static void i40e_napi_disable_all(struct i40e_vsi *vsi)
5193 {
5194 int q_idx;
5195
5196 if (!vsi->netdev)
5197 return;
5198
5199 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
5200 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
5201
5202 if (q_vector->rx.ring || q_vector->tx.ring)
5203 napi_disable(&q_vector->napi);
5204 }
5205 }
5206
5207 /**
5208 * i40e_vsi_close - Shut down a VSI
5209 * @vsi: the vsi to be quelled
5210 **/
i40e_vsi_close(struct i40e_vsi * vsi)5211 static void i40e_vsi_close(struct i40e_vsi *vsi)
5212 {
5213 struct i40e_pf *pf = vsi->back;
5214 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state))
5215 i40e_down(vsi);
5216 i40e_vsi_free_irq(vsi);
5217 i40e_vsi_free_tx_resources(vsi);
5218 i40e_vsi_free_rx_resources(vsi);
5219 vsi->current_netdev_flags = 0;
5220 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
5221 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
5222 set_bit(__I40E_CLIENT_RESET, pf->state);
5223 }
5224
5225 /**
5226 * i40e_quiesce_vsi - Pause a given VSI
5227 * @vsi: the VSI being paused
5228 **/
i40e_quiesce_vsi(struct i40e_vsi * vsi)5229 static void i40e_quiesce_vsi(struct i40e_vsi *vsi)
5230 {
5231 if (test_bit(__I40E_VSI_DOWN, vsi->state))
5232 return;
5233
5234 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state);
5235 if (vsi->netdev && netif_running(vsi->netdev))
5236 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
5237 else
5238 i40e_vsi_close(vsi);
5239 }
5240
5241 /**
5242 * i40e_unquiesce_vsi - Resume a given VSI
5243 * @vsi: the VSI being resumed
5244 **/
i40e_unquiesce_vsi(struct i40e_vsi * vsi)5245 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi)
5246 {
5247 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state))
5248 return;
5249
5250 if (vsi->netdev && netif_running(vsi->netdev))
5251 vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
5252 else
5253 i40e_vsi_open(vsi); /* this clears the DOWN bit */
5254 }
5255
5256 /**
5257 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF
5258 * @pf: the PF
5259 **/
i40e_pf_quiesce_all_vsi(struct i40e_pf * pf)5260 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf)
5261 {
5262 struct i40e_vsi *vsi;
5263 int v;
5264
5265 i40e_pf_for_each_vsi(pf, v, vsi)
5266 i40e_quiesce_vsi(vsi);
5267 }
5268
5269 /**
5270 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF
5271 * @pf: the PF
5272 **/
i40e_pf_unquiesce_all_vsi(struct i40e_pf * pf)5273 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf)
5274 {
5275 struct i40e_vsi *vsi;
5276 int v;
5277
5278 i40e_pf_for_each_vsi(pf, v, vsi)
5279 i40e_unquiesce_vsi(vsi);
5280 }
5281
5282 /**
5283 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled
5284 * @vsi: the VSI being configured
5285 *
5286 * Wait until all queues on a given VSI have been disabled.
5287 **/
i40e_vsi_wait_queues_disabled(struct i40e_vsi * vsi)5288 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi)
5289 {
5290 struct i40e_pf *pf = vsi->back;
5291 int i, pf_q, ret;
5292
5293 pf_q = vsi->base_queue;
5294 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
5295 /* Check and wait for the Tx queue */
5296 ret = i40e_pf_txq_wait(pf, pf_q, false);
5297 if (ret) {
5298 dev_info(&pf->pdev->dev,
5299 "VSI seid %d Tx ring %d disable timeout\n",
5300 vsi->seid, pf_q);
5301 return ret;
5302 }
5303
5304 if (!i40e_enabled_xdp_vsi(vsi))
5305 goto wait_rx;
5306
5307 /* Check and wait for the XDP Tx queue */
5308 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs,
5309 false);
5310 if (ret) {
5311 dev_info(&pf->pdev->dev,
5312 "VSI seid %d XDP Tx ring %d disable timeout\n",
5313 vsi->seid, pf_q);
5314 return ret;
5315 }
5316 wait_rx:
5317 /* Check and wait for the Rx queue */
5318 ret = i40e_pf_rxq_wait(pf, pf_q, false);
5319 if (ret) {
5320 dev_info(&pf->pdev->dev,
5321 "VSI seid %d Rx ring %d disable timeout\n",
5322 vsi->seid, pf_q);
5323 return ret;
5324 }
5325 }
5326
5327 return 0;
5328 }
5329
5330 #ifdef CONFIG_I40E_DCB
5331 /**
5332 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled
5333 * @pf: the PF
5334 *
5335 * This function waits for the queues to be in disabled state for all the
5336 * VSIs that are managed by this PF.
5337 **/
i40e_pf_wait_queues_disabled(struct i40e_pf * pf)5338 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf)
5339 {
5340 struct i40e_vsi *vsi;
5341 int v, ret = 0;
5342
5343 i40e_pf_for_each_vsi(pf, v, vsi) {
5344 ret = i40e_vsi_wait_queues_disabled(vsi);
5345 if (ret)
5346 break;
5347 }
5348
5349 return ret;
5350 }
5351
5352 #endif
5353
5354 /**
5355 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP
5356 * @pf: pointer to PF
5357 *
5358 * Get TC map for ISCSI PF type that will include iSCSI TC
5359 * and LAN TC.
5360 **/
i40e_get_iscsi_tc_map(struct i40e_pf * pf)5361 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf)
5362 {
5363 struct i40e_dcb_app_priority_table app;
5364 struct i40e_hw *hw = &pf->hw;
5365 u8 enabled_tc = 1; /* TC0 is always enabled */
5366 u8 tc, i;
5367 /* Get the iSCSI APP TLV */
5368 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
5369
5370 for (i = 0; i < dcbcfg->numapps; i++) {
5371 app = dcbcfg->app[i];
5372 if (app.selector == I40E_APP_SEL_TCPIP &&
5373 app.protocolid == I40E_APP_PROTOID_ISCSI) {
5374 tc = dcbcfg->etscfg.prioritytable[app.priority];
5375 enabled_tc |= BIT(tc);
5376 break;
5377 }
5378 }
5379
5380 return enabled_tc;
5381 }
5382
5383 /**
5384 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config
5385 * @dcbcfg: the corresponding DCBx configuration structure
5386 *
5387 * Return the number of TCs from given DCBx configuration
5388 **/
i40e_dcb_get_num_tc(struct i40e_dcbx_config * dcbcfg)5389 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg)
5390 {
5391 int i, tc_unused = 0;
5392 u8 num_tc = 0;
5393 u8 ret = 0;
5394
5395 /* Scan the ETS Config Priority Table to find
5396 * traffic class enabled for a given priority
5397 * and create a bitmask of enabled TCs
5398 */
5399 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++)
5400 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]);
5401
5402 /* Now scan the bitmask to check for
5403 * contiguous TCs starting with TC0
5404 */
5405 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5406 if (num_tc & BIT(i)) {
5407 if (!tc_unused) {
5408 ret++;
5409 } else {
5410 pr_err("Non-contiguous TC - Disabling DCB\n");
5411 return 1;
5412 }
5413 } else {
5414 tc_unused = 1;
5415 }
5416 }
5417
5418 /* There is always at least TC0 */
5419 if (!ret)
5420 ret = 1;
5421
5422 return ret;
5423 }
5424
5425 /**
5426 * i40e_dcb_get_enabled_tc - Get enabled traffic classes
5427 * @dcbcfg: the corresponding DCBx configuration structure
5428 *
5429 * Query the current DCB configuration and return the number of
5430 * traffic classes enabled from the given DCBX config
5431 **/
i40e_dcb_get_enabled_tc(struct i40e_dcbx_config * dcbcfg)5432 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg)
5433 {
5434 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg);
5435 u8 enabled_tc = 1;
5436 u8 i;
5437
5438 for (i = 0; i < num_tc; i++)
5439 enabled_tc |= BIT(i);
5440
5441 return enabled_tc;
5442 }
5443
5444 /**
5445 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes
5446 * @pf: PF being queried
5447 *
5448 * Query the current MQPRIO configuration and return the number of
5449 * traffic classes enabled.
5450 **/
i40e_mqprio_get_enabled_tc(struct i40e_pf * pf)5451 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf)
5452 {
5453 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
5454 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc;
5455 u8 enabled_tc = 1, i;
5456
5457 for (i = 1; i < num_tc; i++)
5458 enabled_tc |= BIT(i);
5459 return enabled_tc;
5460 }
5461
5462 /**
5463 * i40e_pf_get_num_tc - Get enabled traffic classes for PF
5464 * @pf: PF being queried
5465 *
5466 * Return number of traffic classes enabled for the given PF
5467 **/
i40e_pf_get_num_tc(struct i40e_pf * pf)5468 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf)
5469 {
5470 u8 i, enabled_tc = 1;
5471 u8 num_tc = 0;
5472
5473 if (i40e_is_tc_mqprio_enabled(pf)) {
5474 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
5475
5476 return vsi->mqprio_qopt.qopt.num_tc;
5477 }
5478
5479 /* If neither MQPRIO nor DCB is enabled, then always use single TC */
5480 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags))
5481 return 1;
5482
5483 /* SFP mode will be enabled for all TCs on port */
5484 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags))
5485 return i40e_dcb_get_num_tc(&pf->hw.local_dcbx_config);
5486
5487 /* MFP mode return count of enabled TCs for this PF */
5488 if (pf->hw.func_caps.iscsi)
5489 enabled_tc = i40e_get_iscsi_tc_map(pf);
5490 else
5491 return 1; /* Only TC0 */
5492
5493 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5494 if (enabled_tc & BIT(i))
5495 num_tc++;
5496 }
5497 return num_tc;
5498 }
5499
5500 /**
5501 * i40e_pf_get_tc_map - Get bitmap for enabled traffic classes
5502 * @pf: PF being queried
5503 *
5504 * Return a bitmap for enabled traffic classes for this PF.
5505 **/
i40e_pf_get_tc_map(struct i40e_pf * pf)5506 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf)
5507 {
5508 if (i40e_is_tc_mqprio_enabled(pf))
5509 return i40e_mqprio_get_enabled_tc(pf);
5510
5511 /* If neither MQPRIO nor DCB is enabled for this PF then just return
5512 * default TC
5513 */
5514 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags))
5515 return I40E_DEFAULT_TRAFFIC_CLASS;
5516
5517 /* SFP mode we want PF to be enabled for all TCs */
5518 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags))
5519 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config);
5520
5521 /* MFP enabled and iSCSI PF type */
5522 if (pf->hw.func_caps.iscsi)
5523 return i40e_get_iscsi_tc_map(pf);
5524 else
5525 return I40E_DEFAULT_TRAFFIC_CLASS;
5526 }
5527
5528 /**
5529 * i40e_vsi_get_bw_info - Query VSI BW Information
5530 * @vsi: the VSI being queried
5531 *
5532 * Returns 0 on success, negative value on failure
5533 **/
i40e_vsi_get_bw_info(struct i40e_vsi * vsi)5534 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi)
5535 {
5536 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0};
5537 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
5538 struct i40e_pf *pf = vsi->back;
5539 struct i40e_hw *hw = &pf->hw;
5540 u32 tc_bw_max;
5541 int ret;
5542 int i;
5543
5544 /* Get the VSI level BW configuration */
5545 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL);
5546 if (ret) {
5547 dev_info(&pf->pdev->dev,
5548 "couldn't get PF vsi bw config, err %pe aq_err %s\n",
5549 ERR_PTR(ret),
5550 libie_aq_str(pf->hw.aq.asq_last_status));
5551 return -EINVAL;
5552 }
5553
5554 /* Get the VSI level BW configuration per TC */
5555 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config,
5556 NULL);
5557 if (ret) {
5558 dev_info(&pf->pdev->dev,
5559 "couldn't get PF vsi ets bw config, err %pe aq_err %s\n",
5560 ERR_PTR(ret),
5561 libie_aq_str(pf->hw.aq.asq_last_status));
5562 return -EINVAL;
5563 }
5564
5565 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) {
5566 dev_info(&pf->pdev->dev,
5567 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n",
5568 bw_config.tc_valid_bits,
5569 bw_ets_config.tc_valid_bits);
5570 /* Still continuing */
5571 }
5572
5573 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit);
5574 vsi->bw_max_quanta = bw_config.max_bw;
5575 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) |
5576 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16);
5577 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5578 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i];
5579 vsi->bw_ets_limit_credits[i] =
5580 le16_to_cpu(bw_ets_config.credits[i]);
5581 /* 3 bits out of 4 for each TC */
5582 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7);
5583 }
5584
5585 return 0;
5586 }
5587
5588 /**
5589 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC
5590 * @vsi: the VSI being configured
5591 * @enabled_tc: TC bitmap
5592 * @bw_share: BW shared credits per TC
5593 *
5594 * Returns 0 on success, negative value on failure
5595 **/
i40e_vsi_configure_bw_alloc(struct i40e_vsi * vsi,u8 enabled_tc,u8 * bw_share)5596 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc,
5597 u8 *bw_share)
5598 {
5599 struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
5600 struct i40e_pf *pf = vsi->back;
5601 int ret;
5602 int i;
5603
5604 /* There is no need to reset BW when mqprio mode is on. */
5605 if (i40e_is_tc_mqprio_enabled(pf))
5606 return 0;
5607 if (!vsi->mqprio_qopt.qopt.hw && !test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
5608 ret = i40e_set_bw_limit(vsi, vsi->seid, 0);
5609 if (ret)
5610 dev_info(&pf->pdev->dev,
5611 "Failed to reset tx rate for vsi->seid %u\n",
5612 vsi->seid);
5613 return ret;
5614 }
5615 memset(&bw_data, 0, sizeof(bw_data));
5616 bw_data.tc_valid_bits = enabled_tc;
5617 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5618 bw_data.tc_bw_credits[i] = bw_share[i];
5619
5620 ret = i40e_aq_config_vsi_tc_bw(&pf->hw, vsi->seid, &bw_data, NULL);
5621 if (ret) {
5622 dev_info(&pf->pdev->dev,
5623 "AQ command Config VSI BW allocation per TC failed = %d\n",
5624 pf->hw.aq.asq_last_status);
5625 return -EINVAL;
5626 }
5627
5628 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5629 vsi->info.qs_handle[i] = bw_data.qs_handles[i];
5630
5631 return 0;
5632 }
5633
5634 /**
5635 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration
5636 * @vsi: the VSI being configured
5637 * @enabled_tc: TC map to be enabled
5638 *
5639 **/
i40e_vsi_config_netdev_tc(struct i40e_vsi * vsi,u8 enabled_tc)5640 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc)
5641 {
5642 struct net_device *netdev = vsi->netdev;
5643 struct i40e_pf *pf = vsi->back;
5644 struct i40e_hw *hw = &pf->hw;
5645 u8 netdev_tc = 0;
5646 int i;
5647 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
5648
5649 if (!netdev)
5650 return;
5651
5652 if (!enabled_tc) {
5653 netdev_reset_tc(netdev);
5654 return;
5655 }
5656
5657 /* Set up actual enabled TCs on the VSI */
5658 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc))
5659 return;
5660
5661 /* set per TC queues for the VSI */
5662 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5663 /* Only set TC queues for enabled tcs
5664 *
5665 * e.g. For a VSI that has TC0 and TC3 enabled the
5666 * enabled_tc bitmap would be 0x00001001; the driver
5667 * will set the numtc for netdev as 2 that will be
5668 * referenced by the netdev layer as TC 0 and 1.
5669 */
5670 if (vsi->tc_config.enabled_tc & BIT(i))
5671 netdev_set_tc_queue(netdev,
5672 vsi->tc_config.tc_info[i].netdev_tc,
5673 vsi->tc_config.tc_info[i].qcount,
5674 vsi->tc_config.tc_info[i].qoffset);
5675 }
5676
5677 if (i40e_is_tc_mqprio_enabled(pf))
5678 return;
5679
5680 /* Assign UP2TC map for the VSI */
5681 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) {
5682 /* Get the actual TC# for the UP */
5683 u8 ets_tc = dcbcfg->etscfg.prioritytable[i];
5684 /* Get the mapped netdev TC# for the UP */
5685 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc;
5686 netdev_set_prio_tc_map(netdev, i, netdev_tc);
5687 }
5688 }
5689
5690 /**
5691 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map
5692 * @vsi: the VSI being configured
5693 * @ctxt: the ctxt buffer returned from AQ VSI update param command
5694 **/
i40e_vsi_update_queue_map(struct i40e_vsi * vsi,struct i40e_vsi_context * ctxt)5695 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi,
5696 struct i40e_vsi_context *ctxt)
5697 {
5698 /* copy just the sections touched not the entire info
5699 * since not all sections are valid as returned by
5700 * update vsi params
5701 */
5702 vsi->info.mapping_flags = ctxt->info.mapping_flags;
5703 memcpy(&vsi->info.queue_mapping,
5704 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping));
5705 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping,
5706 sizeof(vsi->info.tc_mapping));
5707 }
5708
5709 /**
5710 * i40e_update_adq_vsi_queues - update queue mapping for ADq VSI
5711 * @vsi: the VSI being reconfigured
5712 * @vsi_offset: offset from main VF VSI
5713 */
i40e_update_adq_vsi_queues(struct i40e_vsi * vsi,int vsi_offset)5714 int i40e_update_adq_vsi_queues(struct i40e_vsi *vsi, int vsi_offset)
5715 {
5716 struct i40e_vsi_context ctxt = {};
5717 struct i40e_pf *pf;
5718 struct i40e_hw *hw;
5719 int ret;
5720
5721 if (!vsi)
5722 return -EINVAL;
5723 pf = vsi->back;
5724 hw = &pf->hw;
5725
5726 ctxt.seid = vsi->seid;
5727 ctxt.pf_num = hw->pf_id;
5728 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id + vsi_offset;
5729 ctxt.uplink_seid = vsi->uplink_seid;
5730 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
5731 ctxt.flags = I40E_AQ_VSI_TYPE_VF;
5732 ctxt.info = vsi->info;
5733
5734 i40e_vsi_setup_queue_map(vsi, &ctxt, vsi->tc_config.enabled_tc,
5735 false);
5736 if (vsi->reconfig_rss) {
5737 vsi->rss_size = min_t(int, pf->alloc_rss_size,
5738 vsi->num_queue_pairs);
5739 ret = i40e_vsi_config_rss(vsi);
5740 if (ret) {
5741 dev_info(&pf->pdev->dev, "Failed to reconfig rss for num_queues\n");
5742 return ret;
5743 }
5744 vsi->reconfig_rss = false;
5745 }
5746
5747 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
5748 if (ret) {
5749 dev_info(&pf->pdev->dev, "Update vsi config failed, err %pe aq_err %s\n",
5750 ERR_PTR(ret),
5751 libie_aq_str(hw->aq.asq_last_status));
5752 return ret;
5753 }
5754 /* update the local VSI info with updated queue map */
5755 i40e_vsi_update_queue_map(vsi, &ctxt);
5756 vsi->info.valid_sections = 0;
5757
5758 return ret;
5759 }
5760
5761 /**
5762 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map
5763 * @vsi: VSI to be configured
5764 * @enabled_tc: TC bitmap
5765 *
5766 * This configures a particular VSI for TCs that are mapped to the
5767 * given TC bitmap. It uses default bandwidth share for TCs across
5768 * VSIs to configure TC for a particular VSI.
5769 *
5770 * NOTE:
5771 * It is expected that the VSI queues have been quisced before calling
5772 * this function.
5773 **/
i40e_vsi_config_tc(struct i40e_vsi * vsi,u8 enabled_tc)5774 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc)
5775 {
5776 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
5777 struct i40e_pf *pf = vsi->back;
5778 struct i40e_hw *hw = &pf->hw;
5779 struct i40e_vsi_context ctxt;
5780 int ret = 0;
5781 int i;
5782
5783 /* Check if enabled_tc is same as existing or new TCs */
5784 if (vsi->tc_config.enabled_tc == enabled_tc &&
5785 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
5786 return ret;
5787
5788 /* Enable ETS TCs with equal BW Share for now across all VSIs */
5789 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5790 if (enabled_tc & BIT(i))
5791 bw_share[i] = 1;
5792 }
5793
5794 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share);
5795 if (ret) {
5796 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
5797
5798 dev_info(&pf->pdev->dev,
5799 "Failed configuring TC map %d for VSI %d\n",
5800 enabled_tc, vsi->seid);
5801 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid,
5802 &bw_config, NULL);
5803 if (ret) {
5804 dev_info(&pf->pdev->dev,
5805 "Failed querying vsi bw info, err %pe aq_err %s\n",
5806 ERR_PTR(ret),
5807 libie_aq_str(hw->aq.asq_last_status));
5808 goto out;
5809 }
5810 if ((bw_config.tc_valid_bits & enabled_tc) != enabled_tc) {
5811 u8 valid_tc = bw_config.tc_valid_bits & enabled_tc;
5812
5813 if (!valid_tc)
5814 valid_tc = bw_config.tc_valid_bits;
5815 /* Always enable TC0, no matter what */
5816 valid_tc |= 1;
5817 dev_info(&pf->pdev->dev,
5818 "Requested tc 0x%x, but FW reports 0x%x as valid. Attempting to use 0x%x.\n",
5819 enabled_tc, bw_config.tc_valid_bits, valid_tc);
5820 enabled_tc = valid_tc;
5821 }
5822
5823 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share);
5824 if (ret) {
5825 dev_err(&pf->pdev->dev,
5826 "Unable to configure TC map %d for VSI %d\n",
5827 enabled_tc, vsi->seid);
5828 goto out;
5829 }
5830 }
5831
5832 /* Update Queue Pairs Mapping for currently enabled UPs */
5833 ctxt.seid = vsi->seid;
5834 ctxt.pf_num = vsi->back->hw.pf_id;
5835 ctxt.vf_num = 0;
5836 ctxt.uplink_seid = vsi->uplink_seid;
5837 ctxt.info = vsi->info;
5838 if (i40e_is_tc_mqprio_enabled(pf)) {
5839 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc);
5840 if (ret)
5841 goto out;
5842 } else {
5843 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
5844 }
5845
5846 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled
5847 * queues changed.
5848 */
5849 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) {
5850 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size,
5851 vsi->num_queue_pairs);
5852 ret = i40e_vsi_config_rss(vsi);
5853 if (ret) {
5854 dev_info(&vsi->back->pdev->dev,
5855 "Failed to reconfig rss for num_queues\n");
5856 return ret;
5857 }
5858 vsi->reconfig_rss = false;
5859 }
5860 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) {
5861 ctxt.info.valid_sections |=
5862 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
5863 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA;
5864 }
5865
5866 /* Update the VSI after updating the VSI queue-mapping
5867 * information
5868 */
5869 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
5870 if (ret) {
5871 dev_info(&pf->pdev->dev,
5872 "Update vsi tc config failed, err %pe aq_err %s\n",
5873 ERR_PTR(ret),
5874 libie_aq_str(hw->aq.asq_last_status));
5875 goto out;
5876 }
5877 /* update the local VSI info with updated queue map */
5878 i40e_vsi_update_queue_map(vsi, &ctxt);
5879 vsi->info.valid_sections = 0;
5880
5881 /* Update current VSI BW information */
5882 ret = i40e_vsi_get_bw_info(vsi);
5883 if (ret) {
5884 dev_info(&pf->pdev->dev,
5885 "Failed updating vsi bw info, err %pe aq_err %s\n",
5886 ERR_PTR(ret),
5887 libie_aq_str(hw->aq.asq_last_status));
5888 goto out;
5889 }
5890
5891 /* Update the netdev TC setup */
5892 i40e_vsi_config_netdev_tc(vsi, enabled_tc);
5893 out:
5894 return ret;
5895 }
5896
5897 /**
5898 * i40e_vsi_reconfig_tc - Reconfigure VSI Tx Scheduler for stored TC map
5899 * @vsi: VSI to be reconfigured
5900 *
5901 * This reconfigures a particular VSI for TCs that are mapped to the
5902 * TC bitmap stored previously for the VSI.
5903 *
5904 * Context: It is expected that the VSI queues have been quisced before
5905 * calling this function.
5906 *
5907 * Return: 0 on success, negative value on failure
5908 **/
i40e_vsi_reconfig_tc(struct i40e_vsi * vsi)5909 static int i40e_vsi_reconfig_tc(struct i40e_vsi *vsi)
5910 {
5911 u8 enabled_tc;
5912
5913 enabled_tc = vsi->tc_config.enabled_tc;
5914 vsi->tc_config.enabled_tc = 0;
5915
5916 return i40e_vsi_config_tc(vsi, enabled_tc);
5917 }
5918
5919 /**
5920 * i40e_get_link_speed - Returns link speed for the interface
5921 * @vsi: VSI to be configured
5922 *
5923 **/
i40e_get_link_speed(struct i40e_vsi * vsi)5924 static int i40e_get_link_speed(struct i40e_vsi *vsi)
5925 {
5926 struct i40e_pf *pf = vsi->back;
5927
5928 switch (pf->hw.phy.link_info.link_speed) {
5929 case I40E_LINK_SPEED_40GB:
5930 return 40000;
5931 case I40E_LINK_SPEED_25GB:
5932 return 25000;
5933 case I40E_LINK_SPEED_20GB:
5934 return 20000;
5935 case I40E_LINK_SPEED_10GB:
5936 return 10000;
5937 case I40E_LINK_SPEED_1GB:
5938 return 1000;
5939 default:
5940 return -EINVAL;
5941 }
5942 }
5943
5944 /**
5945 * i40e_bw_bytes_to_mbits - Convert max_tx_rate from bytes to mbits
5946 * @vsi: Pointer to vsi structure
5947 * @max_tx_rate: max TX rate in bytes to be converted into Mbits
5948 *
5949 * Helper function to convert units before send to set BW limit
5950 **/
i40e_bw_bytes_to_mbits(struct i40e_vsi * vsi,u64 max_tx_rate)5951 static u64 i40e_bw_bytes_to_mbits(struct i40e_vsi *vsi, u64 max_tx_rate)
5952 {
5953 if (max_tx_rate < I40E_BW_MBPS_DIVISOR) {
5954 dev_warn(&vsi->back->pdev->dev,
5955 "Setting max tx rate to minimum usable value of 50Mbps.\n");
5956 max_tx_rate = I40E_BW_CREDIT_DIVISOR;
5957 } else {
5958 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR);
5959 }
5960
5961 return max_tx_rate;
5962 }
5963
5964 /**
5965 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
5966 * @vsi: VSI to be configured
5967 * @seid: seid of the channel/VSI
5968 * @max_tx_rate: max TX rate to be configured as BW limit
5969 *
5970 * Helper function to set BW limit for a given VSI
5971 **/
i40e_set_bw_limit(struct i40e_vsi * vsi,u16 seid,u64 max_tx_rate)5972 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate)
5973 {
5974 struct i40e_pf *pf = vsi->back;
5975 u64 credits = 0;
5976 int speed = 0;
5977 int ret = 0;
5978
5979 speed = i40e_get_link_speed(vsi);
5980 if (max_tx_rate > speed) {
5981 dev_err(&pf->pdev->dev,
5982 "Invalid max tx rate %llu specified for VSI seid %d.",
5983 max_tx_rate, seid);
5984 return -EINVAL;
5985 }
5986 if (max_tx_rate && max_tx_rate < I40E_BW_CREDIT_DIVISOR) {
5987 dev_warn(&pf->pdev->dev,
5988 "Setting max tx rate to minimum usable value of 50Mbps.\n");
5989 max_tx_rate = I40E_BW_CREDIT_DIVISOR;
5990 }
5991
5992 /* Tx rate credits are in values of 50Mbps, 0 is disabled */
5993 credits = max_tx_rate;
5994 do_div(credits, I40E_BW_CREDIT_DIVISOR);
5995 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits,
5996 I40E_MAX_BW_INACTIVE_ACCUM, NULL);
5997 if (ret)
5998 dev_err(&pf->pdev->dev,
5999 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %pe aq_err %s\n",
6000 max_tx_rate, seid, ERR_PTR(ret),
6001 libie_aq_str(pf->hw.aq.asq_last_status));
6002 return ret;
6003 }
6004
6005 /**
6006 * i40e_remove_queue_channels - Remove queue channels for the TCs
6007 * @vsi: VSI to be configured
6008 *
6009 * Remove queue channels for the TCs
6010 **/
i40e_remove_queue_channels(struct i40e_vsi * vsi)6011 static void i40e_remove_queue_channels(struct i40e_vsi *vsi)
6012 {
6013 struct i40e_cloud_filter *cfilter;
6014 enum libie_aq_err last_aq_status;
6015 struct i40e_channel *ch, *ch_tmp;
6016 struct i40e_pf *pf = vsi->back;
6017 struct hlist_node *node;
6018 int ret, i;
6019
6020 /* Reset rss size that was stored when reconfiguring rss for
6021 * channel VSIs with non-power-of-2 queue count.
6022 */
6023 vsi->current_rss_size = 0;
6024
6025 /* perform cleanup for channels if they exist */
6026 if (list_empty(&vsi->ch_list))
6027 return;
6028
6029 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
6030 struct i40e_vsi *p_vsi;
6031
6032 list_del(&ch->list);
6033 p_vsi = ch->parent_vsi;
6034 if (!p_vsi || !ch->initialized) {
6035 kfree(ch);
6036 continue;
6037 }
6038 /* Reset queue contexts */
6039 for (i = 0; i < ch->num_queue_pairs; i++) {
6040 struct i40e_ring *tx_ring, *rx_ring;
6041 u16 pf_q;
6042
6043 pf_q = ch->base_queue + i;
6044 tx_ring = vsi->tx_rings[pf_q];
6045 tx_ring->ch = NULL;
6046
6047 rx_ring = vsi->rx_rings[pf_q];
6048 rx_ring->ch = NULL;
6049 }
6050
6051 /* Reset BW configured for this VSI via mqprio */
6052 ret = i40e_set_bw_limit(vsi, ch->seid, 0);
6053 if (ret)
6054 dev_info(&vsi->back->pdev->dev,
6055 "Failed to reset tx rate for ch->seid %u\n",
6056 ch->seid);
6057
6058 /* delete cloud filters associated with this channel */
6059 hlist_for_each_entry_safe(cfilter, node,
6060 &pf->cloud_filter_list, cloud_node) {
6061 if (cfilter->seid != ch->seid)
6062 continue;
6063
6064 hash_del(&cfilter->cloud_node);
6065 if (cfilter->dst_port)
6066 ret = i40e_add_del_cloud_filter_big_buf(vsi,
6067 cfilter,
6068 false);
6069 else
6070 ret = i40e_add_del_cloud_filter(vsi, cfilter,
6071 false);
6072 last_aq_status = pf->hw.aq.asq_last_status;
6073 if (ret)
6074 dev_info(&pf->pdev->dev,
6075 "Failed to delete cloud filter, err %pe aq_err %s\n",
6076 ERR_PTR(ret),
6077 libie_aq_str(last_aq_status));
6078 kfree(cfilter);
6079 }
6080
6081 /* delete VSI from FW */
6082 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid,
6083 NULL);
6084 if (ret)
6085 dev_err(&vsi->back->pdev->dev,
6086 "unable to remove channel (%d) for parent VSI(%d)\n",
6087 ch->seid, p_vsi->seid);
6088 kfree(ch);
6089 }
6090 INIT_LIST_HEAD(&vsi->ch_list);
6091 }
6092
6093 /**
6094 * i40e_get_max_queues_for_channel
6095 * @vsi: ptr to VSI to which channels are associated with
6096 *
6097 * Helper function which returns max value among the queue counts set on the
6098 * channels/TCs created.
6099 **/
i40e_get_max_queues_for_channel(struct i40e_vsi * vsi)6100 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi)
6101 {
6102 struct i40e_channel *ch, *ch_tmp;
6103 int max = 0;
6104
6105 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
6106 if (!ch->initialized)
6107 continue;
6108 if (ch->num_queue_pairs > max)
6109 max = ch->num_queue_pairs;
6110 }
6111
6112 return max;
6113 }
6114
6115 /**
6116 * i40e_validate_num_queues - validate num_queues w.r.t channel
6117 * @pf: ptr to PF device
6118 * @num_queues: number of queues
6119 * @vsi: the parent VSI
6120 * @reconfig_rss: indicates should the RSS be reconfigured or not
6121 *
6122 * This function validates number of queues in the context of new channel
6123 * which is being established and determines if RSS should be reconfigured
6124 * or not for parent VSI.
6125 **/
i40e_validate_num_queues(struct i40e_pf * pf,int num_queues,struct i40e_vsi * vsi,bool * reconfig_rss)6126 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues,
6127 struct i40e_vsi *vsi, bool *reconfig_rss)
6128 {
6129 int max_ch_queues;
6130
6131 if (!reconfig_rss)
6132 return -EINVAL;
6133
6134 *reconfig_rss = false;
6135 if (vsi->current_rss_size) {
6136 if (num_queues > vsi->current_rss_size) {
6137 dev_dbg(&pf->pdev->dev,
6138 "Error: num_queues (%d) > vsi's current_size(%d)\n",
6139 num_queues, vsi->current_rss_size);
6140 return -EINVAL;
6141 } else if ((num_queues < vsi->current_rss_size) &&
6142 (!is_power_of_2(num_queues))) {
6143 dev_dbg(&pf->pdev->dev,
6144 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n",
6145 num_queues, vsi->current_rss_size);
6146 return -EINVAL;
6147 }
6148 }
6149
6150 if (!is_power_of_2(num_queues)) {
6151 /* Find the max num_queues configured for channel if channel
6152 * exist.
6153 * if channel exist, then enforce 'num_queues' to be more than
6154 * max ever queues configured for channel.
6155 */
6156 max_ch_queues = i40e_get_max_queues_for_channel(vsi);
6157 if (num_queues < max_ch_queues) {
6158 dev_dbg(&pf->pdev->dev,
6159 "Error: num_queues (%d) < max queues configured for channel(%d)\n",
6160 num_queues, max_ch_queues);
6161 return -EINVAL;
6162 }
6163 *reconfig_rss = true;
6164 }
6165
6166 return 0;
6167 }
6168
6169 /**
6170 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size
6171 * @vsi: the VSI being setup
6172 * @rss_size: size of RSS, accordingly LUT gets reprogrammed
6173 *
6174 * This function reconfigures RSS by reprogramming LUTs using 'rss_size'
6175 **/
i40e_vsi_reconfig_rss(struct i40e_vsi * vsi,u16 rss_size)6176 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size)
6177 {
6178 struct i40e_pf *pf = vsi->back;
6179 u8 seed[I40E_HKEY_ARRAY_SIZE];
6180 struct i40e_hw *hw = &pf->hw;
6181 int local_rss_size;
6182 u8 *lut;
6183 int ret;
6184
6185 if (!vsi->rss_size)
6186 return -EINVAL;
6187
6188 if (rss_size > vsi->rss_size)
6189 return -EINVAL;
6190
6191 local_rss_size = min_t(int, vsi->rss_size, rss_size);
6192 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
6193 if (!lut)
6194 return -ENOMEM;
6195
6196 /* Ignoring user configured lut if there is one */
6197 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size);
6198
6199 /* Use user configured hash key if there is one, otherwise
6200 * use default.
6201 */
6202 if (vsi->rss_hkey_user)
6203 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
6204 else
6205 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
6206
6207 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
6208 if (ret) {
6209 dev_info(&pf->pdev->dev,
6210 "Cannot set RSS lut, err %pe aq_err %s\n",
6211 ERR_PTR(ret),
6212 libie_aq_str(hw->aq.asq_last_status));
6213 kfree(lut);
6214 return ret;
6215 }
6216 kfree(lut);
6217
6218 /* Do the update w.r.t. storing rss_size */
6219 if (!vsi->orig_rss_size)
6220 vsi->orig_rss_size = vsi->rss_size;
6221 vsi->current_rss_size = local_rss_size;
6222
6223 return ret;
6224 }
6225
6226 /**
6227 * i40e_channel_setup_queue_map - Setup a channel queue map
6228 * @pf: ptr to PF device
6229 * @ctxt: VSI context structure
6230 * @ch: ptr to channel structure
6231 *
6232 * Setup queue map for a specific channel
6233 **/
i40e_channel_setup_queue_map(struct i40e_pf * pf,struct i40e_vsi_context * ctxt,struct i40e_channel * ch)6234 static void i40e_channel_setup_queue_map(struct i40e_pf *pf,
6235 struct i40e_vsi_context *ctxt,
6236 struct i40e_channel *ch)
6237 {
6238 u16 qcount, qmap, sections = 0;
6239 u8 offset = 0;
6240 int pow;
6241
6242 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
6243 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
6244
6245 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix);
6246 ch->num_queue_pairs = qcount;
6247
6248 /* find the next higher power-of-2 of num queue pairs */
6249 pow = ilog2(qcount);
6250 if (!is_power_of_2(qcount))
6251 pow++;
6252
6253 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
6254 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
6255
6256 /* Setup queue TC[0].qmap for given VSI context */
6257 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
6258
6259 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */
6260 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
6261 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue);
6262 ctxt->info.valid_sections |= cpu_to_le16(sections);
6263 }
6264
6265 /**
6266 * i40e_add_channel - add a channel by adding VSI
6267 * @pf: ptr to PF device
6268 * @uplink_seid: underlying HW switching element (VEB) ID
6269 * @ch: ptr to channel structure
6270 *
6271 * Add a channel (VSI) using add_vsi and queue_map
6272 **/
i40e_add_channel(struct i40e_pf * pf,u16 uplink_seid,struct i40e_channel * ch)6273 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid,
6274 struct i40e_channel *ch)
6275 {
6276 struct i40e_hw *hw = &pf->hw;
6277 struct i40e_vsi_context ctxt;
6278 u8 enabled_tc = 0x1; /* TC0 enabled */
6279 int ret;
6280
6281 if (ch->type != I40E_VSI_VMDQ2) {
6282 dev_info(&pf->pdev->dev,
6283 "add new vsi failed, ch->type %d\n", ch->type);
6284 return -EINVAL;
6285 }
6286
6287 memset(&ctxt, 0, sizeof(ctxt));
6288 ctxt.pf_num = hw->pf_id;
6289 ctxt.vf_num = 0;
6290 ctxt.uplink_seid = uplink_seid;
6291 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
6292 if (ch->type == I40E_VSI_VMDQ2)
6293 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
6294
6295 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) {
6296 ctxt.info.valid_sections |=
6297 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
6298 ctxt.info.switch_id =
6299 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
6300 }
6301
6302 /* Set queue map for a given VSI context */
6303 i40e_channel_setup_queue_map(pf, &ctxt, ch);
6304
6305 /* Now time to create VSI */
6306 ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
6307 if (ret) {
6308 dev_info(&pf->pdev->dev,
6309 "add new vsi failed, err %pe aq_err %s\n",
6310 ERR_PTR(ret),
6311 libie_aq_str(pf->hw.aq.asq_last_status));
6312 return -ENOENT;
6313 }
6314
6315 /* Success, update channel, set enabled_tc only if the channel
6316 * is not a macvlan
6317 */
6318 ch->enabled_tc = !i40e_is_channel_macvlan(ch) && enabled_tc;
6319 ch->seid = ctxt.seid;
6320 ch->vsi_number = ctxt.vsi_number;
6321 ch->stat_counter_idx = le16_to_cpu(ctxt.info.stat_counter_idx);
6322
6323 /* copy just the sections touched not the entire info
6324 * since not all sections are valid as returned by
6325 * update vsi params
6326 */
6327 ch->info.mapping_flags = ctxt.info.mapping_flags;
6328 memcpy(&ch->info.queue_mapping,
6329 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping));
6330 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping,
6331 sizeof(ctxt.info.tc_mapping));
6332
6333 return 0;
6334 }
6335
i40e_channel_config_bw(struct i40e_vsi * vsi,struct i40e_channel * ch,u8 * bw_share)6336 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch,
6337 u8 *bw_share)
6338 {
6339 struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
6340 int ret;
6341 int i;
6342
6343 memset(&bw_data, 0, sizeof(bw_data));
6344 bw_data.tc_valid_bits = ch->enabled_tc;
6345 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
6346 bw_data.tc_bw_credits[i] = bw_share[i];
6347
6348 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid,
6349 &bw_data, NULL);
6350 if (ret) {
6351 dev_info(&vsi->back->pdev->dev,
6352 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n",
6353 vsi->back->hw.aq.asq_last_status, ch->seid);
6354 return -EINVAL;
6355 }
6356
6357 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
6358 ch->info.qs_handle[i] = bw_data.qs_handles[i];
6359
6360 return 0;
6361 }
6362
6363 /**
6364 * i40e_channel_config_tx_ring - config TX ring associated with new channel
6365 * @pf: ptr to PF device
6366 * @vsi: the VSI being setup
6367 * @ch: ptr to channel structure
6368 *
6369 * Configure TX rings associated with channel (VSI) since queues are being
6370 * from parent VSI.
6371 **/
i40e_channel_config_tx_ring(struct i40e_pf * pf,struct i40e_vsi * vsi,struct i40e_channel * ch)6372 static int i40e_channel_config_tx_ring(struct i40e_pf *pf,
6373 struct i40e_vsi *vsi,
6374 struct i40e_channel *ch)
6375 {
6376 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
6377 int ret;
6378 int i;
6379
6380 /* Enable ETS TCs with equal BW Share for now across all VSIs */
6381 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6382 if (ch->enabled_tc & BIT(i))
6383 bw_share[i] = 1;
6384 }
6385
6386 /* configure BW for new VSI */
6387 ret = i40e_channel_config_bw(vsi, ch, bw_share);
6388 if (ret) {
6389 dev_info(&vsi->back->pdev->dev,
6390 "Failed configuring TC map %d for channel (seid %u)\n",
6391 ch->enabled_tc, ch->seid);
6392 return ret;
6393 }
6394
6395 for (i = 0; i < ch->num_queue_pairs; i++) {
6396 struct i40e_ring *tx_ring, *rx_ring;
6397 u16 pf_q;
6398
6399 pf_q = ch->base_queue + i;
6400
6401 /* Get to TX ring ptr of main VSI, for re-setup TX queue
6402 * context
6403 */
6404 tx_ring = vsi->tx_rings[pf_q];
6405 tx_ring->ch = ch;
6406
6407 /* Get the RX ring ptr */
6408 rx_ring = vsi->rx_rings[pf_q];
6409 rx_ring->ch = ch;
6410 }
6411
6412 return 0;
6413 }
6414
6415 /**
6416 * i40e_setup_hw_channel - setup new channel
6417 * @pf: ptr to PF device
6418 * @vsi: the VSI being setup
6419 * @ch: ptr to channel structure
6420 * @uplink_seid: underlying HW switching element (VEB) ID
6421 * @type: type of channel to be created (VMDq2/VF)
6422 *
6423 * Setup new channel (VSI) based on specified type (VMDq2/VF)
6424 * and configures TX rings accordingly
6425 **/
i40e_setup_hw_channel(struct i40e_pf * pf,struct i40e_vsi * vsi,struct i40e_channel * ch,u16 uplink_seid,u8 type)6426 static inline int i40e_setup_hw_channel(struct i40e_pf *pf,
6427 struct i40e_vsi *vsi,
6428 struct i40e_channel *ch,
6429 u16 uplink_seid, u8 type)
6430 {
6431 int ret;
6432
6433 ch->initialized = false;
6434 ch->base_queue = vsi->next_base_queue;
6435 ch->type = type;
6436
6437 /* Proceed with creation of channel (VMDq2) VSI */
6438 ret = i40e_add_channel(pf, uplink_seid, ch);
6439 if (ret) {
6440 dev_info(&pf->pdev->dev,
6441 "failed to add_channel using uplink_seid %u\n",
6442 uplink_seid);
6443 return ret;
6444 }
6445
6446 /* Mark the successful creation of channel */
6447 ch->initialized = true;
6448
6449 /* Reconfigure TX queues using QTX_CTL register */
6450 ret = i40e_channel_config_tx_ring(pf, vsi, ch);
6451 if (ret) {
6452 dev_info(&pf->pdev->dev,
6453 "failed to configure TX rings for channel %u\n",
6454 ch->seid);
6455 return ret;
6456 }
6457
6458 /* update 'next_base_queue' */
6459 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs;
6460 dev_dbg(&pf->pdev->dev,
6461 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n",
6462 ch->seid, ch->vsi_number, ch->stat_counter_idx,
6463 ch->num_queue_pairs,
6464 vsi->next_base_queue);
6465 return ret;
6466 }
6467
6468 /**
6469 * i40e_setup_channel - setup new channel using uplink element
6470 * @pf: ptr to PF device
6471 * @vsi: pointer to the VSI to set up the channel within
6472 * @ch: ptr to channel structure
6473 *
6474 * Setup new channel (VSI) based on specified type (VMDq2/VF)
6475 * and uplink switching element (uplink_seid)
6476 **/
i40e_setup_channel(struct i40e_pf * pf,struct i40e_vsi * vsi,struct i40e_channel * ch)6477 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi,
6478 struct i40e_channel *ch)
6479 {
6480 struct i40e_vsi *main_vsi;
6481 u8 vsi_type;
6482 u16 seid;
6483 int ret;
6484
6485 if (vsi->type == I40E_VSI_MAIN) {
6486 vsi_type = I40E_VSI_VMDQ2;
6487 } else {
6488 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n",
6489 vsi->type);
6490 return false;
6491 }
6492
6493 /* underlying switching element */
6494 main_vsi = i40e_pf_get_main_vsi(pf);
6495 seid = main_vsi->uplink_seid;
6496
6497 /* create channel (VSI), configure TX rings */
6498 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type);
6499 if (ret) {
6500 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n");
6501 return false;
6502 }
6503
6504 return ch->initialized ? true : false;
6505 }
6506
6507 /**
6508 * i40e_validate_and_set_switch_mode - sets up switch mode correctly
6509 * @vsi: ptr to VSI which has PF backing
6510 *
6511 * Sets up switch mode correctly if it needs to be changed and perform
6512 * what are allowed modes.
6513 **/
i40e_validate_and_set_switch_mode(struct i40e_vsi * vsi)6514 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi)
6515 {
6516 u8 mode;
6517 struct i40e_pf *pf = vsi->back;
6518 struct i40e_hw *hw = &pf->hw;
6519 int ret;
6520
6521 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities);
6522 if (ret)
6523 return -EINVAL;
6524
6525 if (hw->dev_caps.switch_mode) {
6526 /* if switch mode is set, support mode2 (non-tunneled for
6527 * cloud filter) for now
6528 */
6529 u32 switch_mode = hw->dev_caps.switch_mode &
6530 I40E_SWITCH_MODE_MASK;
6531 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) {
6532 if (switch_mode == I40E_CLOUD_FILTER_MODE2)
6533 return 0;
6534 dev_err(&pf->pdev->dev,
6535 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n",
6536 hw->dev_caps.switch_mode);
6537 return -EINVAL;
6538 }
6539 }
6540
6541 /* Set Bit 7 to be valid */
6542 mode = I40E_AQ_SET_SWITCH_BIT7_VALID;
6543
6544 /* Set L4type for TCP support */
6545 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP;
6546
6547 /* Set cloud filter mode */
6548 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL;
6549
6550 /* Prep mode field for set_switch_config */
6551 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags,
6552 pf->last_sw_conf_valid_flags,
6553 mode, NULL);
6554 if (ret && hw->aq.asq_last_status != LIBIE_AQ_RC_ESRCH)
6555 dev_err(&pf->pdev->dev,
6556 "couldn't set switch config bits, err %pe aq_err %s\n",
6557 ERR_PTR(ret), libie_aq_str(hw->aq.asq_last_status));
6558
6559 return ret;
6560 }
6561
6562 /**
6563 * i40e_create_queue_channel - function to create channel
6564 * @vsi: VSI to be configured
6565 * @ch: ptr to channel (it contains channel specific params)
6566 *
6567 * This function creates channel (VSI) using num_queues specified by user,
6568 * reconfigs RSS if needed.
6569 **/
i40e_create_queue_channel(struct i40e_vsi * vsi,struct i40e_channel * ch)6570 int i40e_create_queue_channel(struct i40e_vsi *vsi,
6571 struct i40e_channel *ch)
6572 {
6573 struct i40e_pf *pf = vsi->back;
6574 bool reconfig_rss;
6575 int err;
6576
6577 if (!ch)
6578 return -EINVAL;
6579
6580 if (!ch->num_queue_pairs) {
6581 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n",
6582 ch->num_queue_pairs);
6583 return -EINVAL;
6584 }
6585
6586 /* validate user requested num_queues for channel */
6587 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi,
6588 &reconfig_rss);
6589 if (err) {
6590 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n",
6591 ch->num_queue_pairs);
6592 return -EINVAL;
6593 }
6594
6595 /* By default we are in VEPA mode, if this is the first VF/VMDq
6596 * VSI to be added switch to VEB mode.
6597 */
6598
6599 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) {
6600 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
6601
6602 if (vsi->type == I40E_VSI_MAIN) {
6603 if (i40e_is_tc_mqprio_enabled(pf))
6604 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
6605 else
6606 i40e_do_reset_safe(pf, I40E_PF_RESET_FLAG);
6607 }
6608 /* now onwards for main VSI, number of queues will be value
6609 * of TC0's queue count
6610 */
6611 }
6612
6613 /* By this time, vsi->cnt_q_avail shall be set to non-zero and
6614 * it should be more than num_queues
6615 */
6616 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) {
6617 dev_dbg(&pf->pdev->dev,
6618 "Error: cnt_q_avail (%u) less than num_queues %d\n",
6619 vsi->cnt_q_avail, ch->num_queue_pairs);
6620 return -EINVAL;
6621 }
6622
6623 /* reconfig_rss only if vsi type is MAIN_VSI */
6624 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) {
6625 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs);
6626 if (err) {
6627 dev_info(&pf->pdev->dev,
6628 "Error: unable to reconfig rss for num_queues (%u)\n",
6629 ch->num_queue_pairs);
6630 return -EINVAL;
6631 }
6632 }
6633
6634 if (!i40e_setup_channel(pf, vsi, ch)) {
6635 dev_info(&pf->pdev->dev, "Failed to setup channel\n");
6636 return -EINVAL;
6637 }
6638
6639 dev_info(&pf->pdev->dev,
6640 "Setup channel (id:%u) utilizing num_queues %d\n",
6641 ch->seid, ch->num_queue_pairs);
6642
6643 /* configure VSI for BW limit */
6644 if (ch->max_tx_rate) {
6645 u64 credits = ch->max_tx_rate;
6646
6647 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate))
6648 return -EINVAL;
6649
6650 do_div(credits, I40E_BW_CREDIT_DIVISOR);
6651 dev_dbg(&pf->pdev->dev,
6652 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
6653 ch->max_tx_rate,
6654 credits,
6655 ch->seid);
6656 }
6657
6658 /* in case of VF, this will be main SRIOV VSI */
6659 ch->parent_vsi = vsi;
6660
6661 /* and update main_vsi's count for queue_available to use */
6662 vsi->cnt_q_avail -= ch->num_queue_pairs;
6663
6664 return 0;
6665 }
6666
6667 /**
6668 * i40e_configure_queue_channels - Add queue channel for the given TCs
6669 * @vsi: VSI to be configured
6670 *
6671 * Configures queue channel mapping to the given TCs
6672 **/
i40e_configure_queue_channels(struct i40e_vsi * vsi)6673 static int i40e_configure_queue_channels(struct i40e_vsi *vsi)
6674 {
6675 struct i40e_channel *ch;
6676 u64 max_rate = 0;
6677 int ret = 0, i;
6678
6679 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */
6680 vsi->tc_seid_map[0] = vsi->seid;
6681 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6682 if (vsi->tc_config.enabled_tc & BIT(i)) {
6683 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
6684 if (!ch) {
6685 ret = -ENOMEM;
6686 goto err_free;
6687 }
6688
6689 INIT_LIST_HEAD(&ch->list);
6690 ch->num_queue_pairs =
6691 vsi->tc_config.tc_info[i].qcount;
6692 ch->base_queue =
6693 vsi->tc_config.tc_info[i].qoffset;
6694
6695 /* Bandwidth limit through tc interface is in bytes/s,
6696 * change to Mbit/s
6697 */
6698 max_rate = vsi->mqprio_qopt.max_rate[i];
6699 do_div(max_rate, I40E_BW_MBPS_DIVISOR);
6700 ch->max_tx_rate = max_rate;
6701
6702 list_add_tail(&ch->list, &vsi->ch_list);
6703
6704 ret = i40e_create_queue_channel(vsi, ch);
6705 if (ret) {
6706 dev_err(&vsi->back->pdev->dev,
6707 "Failed creating queue channel with TC%d: queues %d\n",
6708 i, ch->num_queue_pairs);
6709 goto err_free;
6710 }
6711 vsi->tc_seid_map[i] = ch->seid;
6712 }
6713 }
6714
6715 /* reset to reconfigure TX queue contexts */
6716 i40e_do_reset(vsi->back, I40E_PF_RESET_FLAG, true);
6717 return ret;
6718
6719 err_free:
6720 i40e_remove_queue_channels(vsi);
6721 return ret;
6722 }
6723
6724 /**
6725 * i40e_veb_config_tc - Configure TCs for given VEB
6726 * @veb: given VEB
6727 * @enabled_tc: TC bitmap
6728 *
6729 * Configures given TC bitmap for VEB (switching) element
6730 **/
i40e_veb_config_tc(struct i40e_veb * veb,u8 enabled_tc)6731 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc)
6732 {
6733 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0};
6734 struct i40e_pf *pf = veb->pf;
6735 int ret = 0;
6736 int i;
6737
6738 /* No TCs or already enabled TCs just return */
6739 if (!enabled_tc || veb->enabled_tc == enabled_tc)
6740 return ret;
6741
6742 bw_data.tc_valid_bits = enabled_tc;
6743 /* bw_data.absolute_credits is not set (relative) */
6744
6745 /* Enable ETS TCs with equal BW Share for now */
6746 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6747 if (enabled_tc & BIT(i))
6748 bw_data.tc_bw_share_credits[i] = 1;
6749 }
6750
6751 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid,
6752 &bw_data, NULL);
6753 if (ret) {
6754 dev_info(&pf->pdev->dev,
6755 "VEB bw config failed, err %pe aq_err %s\n",
6756 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
6757 goto out;
6758 }
6759
6760 /* Update the BW information */
6761 ret = i40e_veb_get_bw_info(veb);
6762 if (ret) {
6763 dev_info(&pf->pdev->dev,
6764 "Failed getting veb bw config, err %pe aq_err %s\n",
6765 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
6766 }
6767
6768 out:
6769 return ret;
6770 }
6771
6772 #ifdef CONFIG_I40E_DCB
6773 /**
6774 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs
6775 * @pf: PF struct
6776 *
6777 * Reconfigure VEB/VSIs on a given PF; it is assumed that
6778 * the caller would've quiesce all the VSIs before calling
6779 * this function
6780 **/
i40e_dcb_reconfigure(struct i40e_pf * pf)6781 static void i40e_dcb_reconfigure(struct i40e_pf *pf)
6782 {
6783 struct i40e_vsi *vsi;
6784 struct i40e_veb *veb;
6785 u8 tc_map = 0;
6786 int ret;
6787 int v;
6788
6789 /* Enable the TCs available on PF to all VEBs */
6790 tc_map = i40e_pf_get_tc_map(pf);
6791 if (tc_map == I40E_DEFAULT_TRAFFIC_CLASS)
6792 return;
6793
6794 i40e_pf_for_each_veb(pf, v, veb) {
6795 ret = i40e_veb_config_tc(veb, tc_map);
6796 if (ret) {
6797 dev_info(&pf->pdev->dev,
6798 "Failed configuring TC for VEB seid=%d\n",
6799 veb->seid);
6800 /* Will try to configure as many components */
6801 }
6802 }
6803
6804 /* Update each VSI */
6805 i40e_pf_for_each_vsi(pf, v, vsi) {
6806 /* - Enable all TCs for the LAN VSI
6807 * - For all others keep them at TC0 for now
6808 */
6809 if (vsi->type == I40E_VSI_MAIN)
6810 tc_map = i40e_pf_get_tc_map(pf);
6811 else
6812 tc_map = I40E_DEFAULT_TRAFFIC_CLASS;
6813
6814 ret = i40e_vsi_config_tc(vsi, tc_map);
6815 if (ret) {
6816 dev_info(&pf->pdev->dev,
6817 "Failed configuring TC for VSI seid=%d\n",
6818 vsi->seid);
6819 /* Will try to configure as many components */
6820 } else {
6821 /* Re-configure VSI vectors based on updated TC map */
6822 i40e_vsi_map_rings_to_vectors(vsi);
6823 if (vsi->netdev)
6824 i40e_dcbnl_set_all(vsi);
6825 }
6826 }
6827 }
6828
6829 /**
6830 * i40e_resume_port_tx - Resume port Tx
6831 * @pf: PF struct
6832 *
6833 * Resume a port's Tx and issue a PF reset in case of failure to
6834 * resume.
6835 **/
i40e_resume_port_tx(struct i40e_pf * pf)6836 static int i40e_resume_port_tx(struct i40e_pf *pf)
6837 {
6838 struct i40e_hw *hw = &pf->hw;
6839 int ret;
6840
6841 ret = i40e_aq_resume_port_tx(hw, NULL);
6842 if (ret) {
6843 dev_info(&pf->pdev->dev,
6844 "Resume Port Tx failed, err %pe aq_err %s\n",
6845 ERR_PTR(ret),
6846 libie_aq_str(pf->hw.aq.asq_last_status));
6847 /* Schedule PF reset to recover */
6848 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
6849 i40e_service_event_schedule(pf);
6850 }
6851
6852 return ret;
6853 }
6854
6855 /**
6856 * i40e_suspend_port_tx - Suspend port Tx
6857 * @pf: PF struct
6858 *
6859 * Suspend a port's Tx and issue a PF reset in case of failure.
6860 **/
i40e_suspend_port_tx(struct i40e_pf * pf)6861 static int i40e_suspend_port_tx(struct i40e_pf *pf)
6862 {
6863 struct i40e_hw *hw = &pf->hw;
6864 int ret;
6865
6866 ret = i40e_aq_suspend_port_tx(hw, pf->mac_seid, NULL);
6867 if (ret) {
6868 dev_info(&pf->pdev->dev,
6869 "Suspend Port Tx failed, err %pe aq_err %s\n",
6870 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
6871 /* Schedule PF reset to recover */
6872 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
6873 i40e_service_event_schedule(pf);
6874 }
6875
6876 return ret;
6877 }
6878
6879 /**
6880 * i40e_hw_set_dcb_config - Program new DCBX settings into HW
6881 * @pf: PF being configured
6882 * @new_cfg: New DCBX configuration
6883 *
6884 * Program DCB settings into HW and reconfigure VEB/VSIs on
6885 * given PF. Uses "Set LLDP MIB" AQC to program the hardware.
6886 **/
i40e_hw_set_dcb_config(struct i40e_pf * pf,struct i40e_dcbx_config * new_cfg)6887 static int i40e_hw_set_dcb_config(struct i40e_pf *pf,
6888 struct i40e_dcbx_config *new_cfg)
6889 {
6890 struct i40e_dcbx_config *old_cfg = &pf->hw.local_dcbx_config;
6891 int ret;
6892
6893 /* Check if need reconfiguration */
6894 if (!memcmp(&new_cfg, &old_cfg, sizeof(new_cfg))) {
6895 dev_dbg(&pf->pdev->dev, "No Change in DCB Config required.\n");
6896 return 0;
6897 }
6898
6899 /* Config change disable all VSIs */
6900 i40e_pf_quiesce_all_vsi(pf);
6901
6902 /* Copy the new config to the current config */
6903 *old_cfg = *new_cfg;
6904 old_cfg->etsrec = old_cfg->etscfg;
6905 ret = i40e_set_dcb_config(&pf->hw);
6906 if (ret) {
6907 dev_info(&pf->pdev->dev,
6908 "Set DCB Config failed, err %pe aq_err %s\n",
6909 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
6910 goto out;
6911 }
6912
6913 /* Changes in configuration update VEB/VSI */
6914 i40e_dcb_reconfigure(pf);
6915 out:
6916 /* In case of reset do not try to resume anything */
6917 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state)) {
6918 /* Re-start the VSIs if disabled */
6919 ret = i40e_resume_port_tx(pf);
6920 /* In case of error no point in resuming VSIs */
6921 if (ret)
6922 goto err;
6923 i40e_pf_unquiesce_all_vsi(pf);
6924 }
6925 err:
6926 return ret;
6927 }
6928
6929 /**
6930 * i40e_hw_dcb_config - Program new DCBX settings into HW
6931 * @pf: PF being configured
6932 * @new_cfg: New DCBX configuration
6933 *
6934 * Program DCB settings into HW and reconfigure VEB/VSIs on
6935 * given PF
6936 **/
i40e_hw_dcb_config(struct i40e_pf * pf,struct i40e_dcbx_config * new_cfg)6937 int i40e_hw_dcb_config(struct i40e_pf *pf, struct i40e_dcbx_config *new_cfg)
6938 {
6939 struct i40e_aqc_configure_switching_comp_ets_data ets_data;
6940 u8 prio_type[I40E_MAX_TRAFFIC_CLASS] = {0};
6941 u32 mfs_tc[I40E_MAX_TRAFFIC_CLASS];
6942 struct i40e_dcbx_config *old_cfg;
6943 u8 mode[I40E_MAX_TRAFFIC_CLASS];
6944 struct i40e_rx_pb_config pb_cfg;
6945 struct i40e_hw *hw = &pf->hw;
6946 u8 num_ports = hw->num_ports;
6947 bool need_reconfig;
6948 int ret = -EINVAL;
6949 u8 lltc_map = 0;
6950 u8 tc_map = 0;
6951 u8 new_numtc;
6952 u8 i;
6953
6954 dev_dbg(&pf->pdev->dev, "Configuring DCB registers directly\n");
6955 /* Un-pack information to Program ETS HW via shared API
6956 * numtc, tcmap
6957 * LLTC map
6958 * ETS/NON-ETS arbiter mode
6959 * max exponent (credit refills)
6960 * Total number of ports
6961 * PFC priority bit-map
6962 * Priority Table
6963 * BW % per TC
6964 * Arbiter mode between UPs sharing same TC
6965 * TSA table (ETS or non-ETS)
6966 * EEE enabled or not
6967 * MFS TC table
6968 */
6969
6970 new_numtc = i40e_dcb_get_num_tc(new_cfg);
6971
6972 memset(&ets_data, 0, sizeof(ets_data));
6973 for (i = 0; i < new_numtc; i++) {
6974 tc_map |= BIT(i);
6975 switch (new_cfg->etscfg.tsatable[i]) {
6976 case I40E_IEEE_TSA_ETS:
6977 prio_type[i] = I40E_DCB_PRIO_TYPE_ETS;
6978 ets_data.tc_bw_share_credits[i] =
6979 new_cfg->etscfg.tcbwtable[i];
6980 break;
6981 case I40E_IEEE_TSA_STRICT:
6982 prio_type[i] = I40E_DCB_PRIO_TYPE_STRICT;
6983 lltc_map |= BIT(i);
6984 ets_data.tc_bw_share_credits[i] =
6985 I40E_DCB_STRICT_PRIO_CREDITS;
6986 break;
6987 default:
6988 /* Invalid TSA type */
6989 need_reconfig = false;
6990 goto out;
6991 }
6992 }
6993
6994 old_cfg = &hw->local_dcbx_config;
6995 /* Check if need reconfiguration */
6996 need_reconfig = i40e_dcb_need_reconfig(pf, old_cfg, new_cfg);
6997
6998 /* If needed, enable/disable frame tagging, disable all VSIs
6999 * and suspend port tx
7000 */
7001 if (need_reconfig) {
7002 /* Enable DCB tagging only when more than one TC */
7003 if (new_numtc > 1)
7004 set_bit(I40E_FLAG_DCB_ENA, pf->flags);
7005 else
7006 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
7007
7008 set_bit(__I40E_PORT_SUSPENDED, pf->state);
7009 /* Reconfiguration needed quiesce all VSIs */
7010 i40e_pf_quiesce_all_vsi(pf);
7011 ret = i40e_suspend_port_tx(pf);
7012 if (ret)
7013 goto err;
7014 }
7015
7016 /* Configure Port ETS Tx Scheduler */
7017 ets_data.tc_valid_bits = tc_map;
7018 ets_data.tc_strict_priority_flags = lltc_map;
7019 ret = i40e_aq_config_switch_comp_ets
7020 (hw, pf->mac_seid, &ets_data,
7021 i40e_aqc_opc_modify_switching_comp_ets, NULL);
7022 if (ret) {
7023 dev_info(&pf->pdev->dev,
7024 "Modify Port ETS failed, err %pe aq_err %s\n",
7025 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
7026 goto out;
7027 }
7028
7029 /* Configure Rx ETS HW */
7030 memset(&mode, I40E_DCB_ARB_MODE_ROUND_ROBIN, sizeof(mode));
7031 i40e_dcb_hw_set_num_tc(hw, new_numtc);
7032 i40e_dcb_hw_rx_fifo_config(hw, I40E_DCB_ARB_MODE_ROUND_ROBIN,
7033 I40E_DCB_ARB_MODE_STRICT_PRIORITY,
7034 I40E_DCB_DEFAULT_MAX_EXPONENT,
7035 lltc_map);
7036 i40e_dcb_hw_rx_cmd_monitor_config(hw, new_numtc, num_ports);
7037 i40e_dcb_hw_rx_ets_bw_config(hw, new_cfg->etscfg.tcbwtable, mode,
7038 prio_type);
7039 i40e_dcb_hw_pfc_config(hw, new_cfg->pfc.pfcenable,
7040 new_cfg->etscfg.prioritytable);
7041 i40e_dcb_hw_rx_up2tc_config(hw, new_cfg->etscfg.prioritytable);
7042
7043 /* Configure Rx Packet Buffers in HW */
7044 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
7045 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
7046
7047 mfs_tc[i] = main_vsi->netdev->mtu;
7048 mfs_tc[i] += I40E_PACKET_HDR_PAD;
7049 }
7050
7051 i40e_dcb_hw_calculate_pool_sizes(hw, num_ports,
7052 false, new_cfg->pfc.pfcenable,
7053 mfs_tc, &pb_cfg);
7054 i40e_dcb_hw_rx_pb_config(hw, &pf->pb_cfg, &pb_cfg);
7055
7056 /* Update the local Rx Packet buffer config */
7057 pf->pb_cfg = pb_cfg;
7058
7059 /* Inform the FW about changes to DCB configuration */
7060 ret = i40e_aq_dcb_updated(&pf->hw, NULL);
7061 if (ret) {
7062 dev_info(&pf->pdev->dev,
7063 "DCB Updated failed, err %pe aq_err %s\n",
7064 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
7065 goto out;
7066 }
7067
7068 /* Update the port DCBx configuration */
7069 *old_cfg = *new_cfg;
7070
7071 /* Changes in configuration update VEB/VSI */
7072 i40e_dcb_reconfigure(pf);
7073 out:
7074 /* Re-start the VSIs if disabled */
7075 if (need_reconfig) {
7076 ret = i40e_resume_port_tx(pf);
7077
7078 clear_bit(__I40E_PORT_SUSPENDED, pf->state);
7079 /* In case of error no point in resuming VSIs */
7080 if (ret)
7081 goto err;
7082
7083 /* Wait for the PF's queues to be disabled */
7084 ret = i40e_pf_wait_queues_disabled(pf);
7085 if (ret) {
7086 /* Schedule PF reset to recover */
7087 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
7088 i40e_service_event_schedule(pf);
7089 goto err;
7090 } else {
7091 i40e_pf_unquiesce_all_vsi(pf);
7092 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
7093 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state);
7094 }
7095 /* registers are set, lets apply */
7096 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps))
7097 ret = i40e_hw_set_dcb_config(pf, new_cfg);
7098 }
7099
7100 err:
7101 return ret;
7102 }
7103
7104 /**
7105 * i40e_dcb_sw_default_config - Set default DCB configuration when DCB in SW
7106 * @pf: PF being queried
7107 *
7108 * Set default DCB configuration in case DCB is to be done in SW.
7109 **/
i40e_dcb_sw_default_config(struct i40e_pf * pf)7110 int i40e_dcb_sw_default_config(struct i40e_pf *pf)
7111 {
7112 struct i40e_dcbx_config *dcb_cfg = &pf->hw.local_dcbx_config;
7113 struct i40e_aqc_configure_switching_comp_ets_data ets_data;
7114 struct i40e_hw *hw = &pf->hw;
7115 int err;
7116
7117 if (test_bit(I40E_HW_CAP_USE_SET_LLDP_MIB, pf->hw.caps)) {
7118 /* Update the local cached instance with TC0 ETS */
7119 memset(&pf->tmp_cfg, 0, sizeof(struct i40e_dcbx_config));
7120 pf->tmp_cfg.etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING;
7121 pf->tmp_cfg.etscfg.maxtcs = 0;
7122 pf->tmp_cfg.etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW;
7123 pf->tmp_cfg.etscfg.tsatable[0] = I40E_IEEE_TSA_ETS;
7124 pf->tmp_cfg.pfc.willing = I40E_IEEE_DEFAULT_PFC_WILLING;
7125 pf->tmp_cfg.pfc.pfccap = I40E_MAX_TRAFFIC_CLASS;
7126 /* FW needs one App to configure HW */
7127 pf->tmp_cfg.numapps = I40E_IEEE_DEFAULT_NUM_APPS;
7128 pf->tmp_cfg.app[0].selector = I40E_APP_SEL_ETHTYPE;
7129 pf->tmp_cfg.app[0].priority = I40E_IEEE_DEFAULT_APP_PRIO;
7130 pf->tmp_cfg.app[0].protocolid = I40E_APP_PROTOID_FCOE;
7131
7132 return i40e_hw_set_dcb_config(pf, &pf->tmp_cfg);
7133 }
7134
7135 memset(&ets_data, 0, sizeof(ets_data));
7136 ets_data.tc_valid_bits = I40E_DEFAULT_TRAFFIC_CLASS; /* TC0 only */
7137 ets_data.tc_strict_priority_flags = 0; /* ETS */
7138 ets_data.tc_bw_share_credits[0] = I40E_IEEE_DEFAULT_ETS_TCBW; /* 100% to TC0 */
7139
7140 /* Enable ETS on the Physical port */
7141 err = i40e_aq_config_switch_comp_ets
7142 (hw, pf->mac_seid, &ets_data,
7143 i40e_aqc_opc_enable_switching_comp_ets, NULL);
7144 if (err) {
7145 dev_info(&pf->pdev->dev,
7146 "Enable Port ETS failed, err %pe aq_err %s\n",
7147 ERR_PTR(err), libie_aq_str(pf->hw.aq.asq_last_status));
7148 err = -ENOENT;
7149 goto out;
7150 }
7151
7152 /* Update the local cached instance with TC0 ETS */
7153 dcb_cfg->etscfg.willing = I40E_IEEE_DEFAULT_ETS_WILLING;
7154 dcb_cfg->etscfg.cbs = 0;
7155 dcb_cfg->etscfg.maxtcs = I40E_MAX_TRAFFIC_CLASS;
7156 dcb_cfg->etscfg.tcbwtable[0] = I40E_IEEE_DEFAULT_ETS_TCBW;
7157
7158 out:
7159 return err;
7160 }
7161
7162 /**
7163 * i40e_init_pf_dcb - Initialize DCB configuration
7164 * @pf: PF being configured
7165 *
7166 * Query the current DCB configuration and cache it
7167 * in the hardware structure
7168 **/
i40e_init_pf_dcb(struct i40e_pf * pf)7169 static int i40e_init_pf_dcb(struct i40e_pf *pf)
7170 {
7171 struct i40e_hw *hw = &pf->hw;
7172 int err;
7173
7174 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable
7175 * Also do not enable DCBx if FW LLDP agent is disabled
7176 */
7177 if (test_bit(I40E_HW_CAP_NO_DCB_SUPPORT, pf->hw.caps)) {
7178 dev_info(&pf->pdev->dev, "DCB is not supported.\n");
7179 err = -EOPNOTSUPP;
7180 goto out;
7181 }
7182 if (test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) {
7183 dev_info(&pf->pdev->dev, "FW LLDP is disabled, attempting SW DCB\n");
7184 err = i40e_dcb_sw_default_config(pf);
7185 if (err) {
7186 dev_info(&pf->pdev->dev, "Could not initialize SW DCB\n");
7187 goto out;
7188 }
7189 dev_info(&pf->pdev->dev, "SW DCB initialization succeeded.\n");
7190 pf->dcbx_cap = DCB_CAP_DCBX_HOST |
7191 DCB_CAP_DCBX_VER_IEEE;
7192 /* at init capable but disabled */
7193 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
7194 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
7195 goto out;
7196 }
7197 err = i40e_init_dcb(hw, true);
7198 if (!err) {
7199 /* Device/Function is not DCBX capable */
7200 if ((!hw->func_caps.dcb) ||
7201 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) {
7202 dev_info(&pf->pdev->dev,
7203 "DCBX offload is not supported or is disabled for this PF.\n");
7204 } else {
7205 /* When status is not DISABLED then DCBX in FW */
7206 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED |
7207 DCB_CAP_DCBX_VER_IEEE;
7208
7209 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
7210 /* Enable DCB tagging only when more than one TC
7211 * or explicitly disable if only one TC
7212 */
7213 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
7214 set_bit(I40E_FLAG_DCB_ENA, pf->flags);
7215 else
7216 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
7217 dev_dbg(&pf->pdev->dev,
7218 "DCBX offload is supported for this PF.\n");
7219 }
7220 } else if (pf->hw.aq.asq_last_status == LIBIE_AQ_RC_EPERM) {
7221 dev_info(&pf->pdev->dev, "FW LLDP disabled for this PF.\n");
7222 set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags);
7223 } else {
7224 dev_info(&pf->pdev->dev,
7225 "Query for DCB configuration failed, err %pe aq_err %s\n",
7226 ERR_PTR(err), libie_aq_str(pf->hw.aq.asq_last_status));
7227 }
7228
7229 out:
7230 return err;
7231 }
7232 #endif /* CONFIG_I40E_DCB */
7233
i40e_print_link_message_eee(struct i40e_vsi * vsi,const char * speed,const char * fc)7234 static void i40e_print_link_message_eee(struct i40e_vsi *vsi,
7235 const char *speed, const char *fc)
7236 {
7237 struct ethtool_keee kedata;
7238
7239 memzero_explicit(&kedata, sizeof(kedata));
7240 if (vsi->netdev->ethtool_ops->get_eee)
7241 vsi->netdev->ethtool_ops->get_eee(vsi->netdev, &kedata);
7242
7243 if (!linkmode_empty(kedata.supported))
7244 netdev_info(vsi->netdev,
7245 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s, EEE: %s\n",
7246 speed, fc,
7247 kedata.eee_enabled ? "Enabled" : "Disabled");
7248 else
7249 netdev_info(vsi->netdev,
7250 "NIC Link is Up, %sbps Full Duplex, Flow Control: %s\n",
7251 speed, fc);
7252 }
7253
7254 /**
7255 * i40e_print_link_message - print link up or down
7256 * @vsi: the VSI for which link needs a message
7257 * @isup: true of link is up, false otherwise
7258 */
i40e_print_link_message(struct i40e_vsi * vsi,bool isup)7259 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup)
7260 {
7261 enum i40e_aq_link_speed new_speed;
7262 struct i40e_pf *pf = vsi->back;
7263 char *speed = "Unknown";
7264 char *fc = "Unknown";
7265 char *fec = "";
7266 char *req_fec = "";
7267 char *an = "";
7268
7269 if (isup)
7270 new_speed = pf->hw.phy.link_info.link_speed;
7271 else
7272 new_speed = I40E_LINK_SPEED_UNKNOWN;
7273
7274 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed))
7275 return;
7276 vsi->current_isup = isup;
7277 vsi->current_speed = new_speed;
7278 if (!isup) {
7279 netdev_info(vsi->netdev, "NIC Link is Down\n");
7280 return;
7281 }
7282
7283 /* Warn user if link speed on NPAR enabled partition is not at
7284 * least 10GB
7285 */
7286 if (pf->hw.func_caps.npar_enable &&
7287 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB ||
7288 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB))
7289 netdev_warn(vsi->netdev,
7290 "The partition detected link speed that is less than 10Gbps\n");
7291
7292 switch (pf->hw.phy.link_info.link_speed) {
7293 case I40E_LINK_SPEED_40GB:
7294 speed = "40 G";
7295 break;
7296 case I40E_LINK_SPEED_20GB:
7297 speed = "20 G";
7298 break;
7299 case I40E_LINK_SPEED_25GB:
7300 speed = "25 G";
7301 break;
7302 case I40E_LINK_SPEED_10GB:
7303 speed = "10 G";
7304 break;
7305 case I40E_LINK_SPEED_5GB:
7306 speed = "5 G";
7307 break;
7308 case I40E_LINK_SPEED_2_5GB:
7309 speed = "2.5 G";
7310 break;
7311 case I40E_LINK_SPEED_1GB:
7312 speed = "1000 M";
7313 break;
7314 case I40E_LINK_SPEED_100MB:
7315 speed = "100 M";
7316 break;
7317 default:
7318 break;
7319 }
7320
7321 switch (pf->hw.fc.current_mode) {
7322 case I40E_FC_FULL:
7323 fc = "RX/TX";
7324 break;
7325 case I40E_FC_TX_PAUSE:
7326 fc = "TX";
7327 break;
7328 case I40E_FC_RX_PAUSE:
7329 fc = "RX";
7330 break;
7331 default:
7332 fc = "None";
7333 break;
7334 }
7335
7336 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) {
7337 req_fec = "None";
7338 fec = "None";
7339 an = "False";
7340
7341 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED)
7342 an = "True";
7343
7344 if (pf->hw.phy.link_info.fec_info &
7345 I40E_AQ_CONFIG_FEC_KR_ENA)
7346 fec = "CL74 FC-FEC/BASE-R";
7347 else if (pf->hw.phy.link_info.fec_info &
7348 I40E_AQ_CONFIG_FEC_RS_ENA)
7349 fec = "CL108 RS-FEC";
7350
7351 /* 'CL108 RS-FEC' should be displayed when RS is requested, or
7352 * both RS and FC are requested
7353 */
7354 if (vsi->back->hw.phy.link_info.req_fec_info &
7355 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) {
7356 if (vsi->back->hw.phy.link_info.req_fec_info &
7357 I40E_AQ_REQUEST_FEC_RS)
7358 req_fec = "CL108 RS-FEC";
7359 else
7360 req_fec = "CL74 FC-FEC/BASE-R";
7361 }
7362 netdev_info(vsi->netdev,
7363 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
7364 speed, req_fec, fec, an, fc);
7365 } else if (pf->hw.device_id == I40E_DEV_ID_KX_X722) {
7366 req_fec = "None";
7367 fec = "None";
7368 an = "False";
7369
7370 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED)
7371 an = "True";
7372
7373 if (pf->hw.phy.link_info.fec_info &
7374 I40E_AQ_CONFIG_FEC_KR_ENA)
7375 fec = "CL74 FC-FEC/BASE-R";
7376
7377 if (pf->hw.phy.link_info.req_fec_info &
7378 I40E_AQ_REQUEST_FEC_KR)
7379 req_fec = "CL74 FC-FEC/BASE-R";
7380
7381 netdev_info(vsi->netdev,
7382 "NIC Link is Up, %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
7383 speed, req_fec, fec, an, fc);
7384 } else {
7385 i40e_print_link_message_eee(vsi, speed, fc);
7386 }
7387
7388 }
7389
7390 /**
7391 * i40e_up_complete - Finish the last steps of bringing up a connection
7392 * @vsi: the VSI being configured
7393 **/
i40e_up_complete(struct i40e_vsi * vsi)7394 static int i40e_up_complete(struct i40e_vsi *vsi)
7395 {
7396 struct i40e_pf *pf = vsi->back;
7397 int err;
7398
7399 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
7400 i40e_vsi_configure_msix(vsi);
7401 else
7402 i40e_configure_msi_and_legacy(vsi);
7403
7404 /* start rings */
7405 err = i40e_vsi_start_rings(vsi);
7406 if (err)
7407 return err;
7408
7409 clear_bit(__I40E_VSI_DOWN, vsi->state);
7410 i40e_napi_enable_all(vsi);
7411 i40e_vsi_enable_irq(vsi);
7412
7413 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) &&
7414 (vsi->netdev)) {
7415 i40e_print_link_message(vsi, true);
7416 netif_tx_start_all_queues(vsi->netdev);
7417 netif_carrier_on(vsi->netdev);
7418 }
7419
7420 /* replay FDIR SB filters */
7421 if (vsi->type == I40E_VSI_FDIR) {
7422 /* reset fd counters */
7423 pf->fd_add_err = 0;
7424 pf->fd_atr_cnt = 0;
7425 i40e_fdir_filter_restore(vsi);
7426 }
7427
7428 /* On the next run of the service_task, notify any clients of the new
7429 * opened netdev
7430 */
7431 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
7432 i40e_service_event_schedule(pf);
7433
7434 return 0;
7435 }
7436
7437 /**
7438 * i40e_vsi_reinit_locked - Reset the VSI
7439 * @vsi: the VSI being configured
7440 *
7441 * Rebuild the ring structs after some configuration
7442 * has changed, e.g. MTU size.
7443 **/
i40e_vsi_reinit_locked(struct i40e_vsi * vsi)7444 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi)
7445 {
7446 struct i40e_pf *pf = vsi->back;
7447
7448 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state))
7449 usleep_range(1000, 2000);
7450 i40e_down(vsi);
7451
7452 i40e_up(vsi);
7453 clear_bit(__I40E_CONFIG_BUSY, pf->state);
7454 }
7455
7456 /**
7457 * i40e_force_link_state - Force the link status
7458 * @pf: board private structure
7459 * @is_up: whether the link state should be forced up or down
7460 **/
i40e_force_link_state(struct i40e_pf * pf,bool is_up)7461 static int i40e_force_link_state(struct i40e_pf *pf, bool is_up)
7462 {
7463 struct i40e_aq_get_phy_abilities_resp abilities;
7464 struct i40e_aq_set_phy_config config = {0};
7465 bool non_zero_phy_type = is_up;
7466 struct i40e_hw *hw = &pf->hw;
7467 u64 mask;
7468 u8 speed;
7469 int err;
7470
7471 /* Card might've been put in an unstable state by other drivers
7472 * and applications, which causes incorrect speed values being
7473 * set on startup. In order to clear speed registers, we call
7474 * get_phy_capabilities twice, once to get initial state of
7475 * available speeds, and once to get current PHY config.
7476 */
7477 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities,
7478 NULL);
7479 if (err) {
7480 dev_err(&pf->pdev->dev,
7481 "failed to get phy cap., ret = %pe last_status = %s\n",
7482 ERR_PTR(err), libie_aq_str(hw->aq.asq_last_status));
7483 return err;
7484 }
7485 speed = abilities.link_speed;
7486
7487 /* Get the current phy config */
7488 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities,
7489 NULL);
7490 if (err) {
7491 dev_err(&pf->pdev->dev,
7492 "failed to get phy cap., ret = %pe last_status = %s\n",
7493 ERR_PTR(err), libie_aq_str(hw->aq.asq_last_status));
7494 return err;
7495 }
7496
7497 /* If link needs to go up, but was not forced to go down,
7498 * and its speed values are OK, no need for a flap
7499 * if non_zero_phy_type was set, still need to force up
7500 */
7501 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags))
7502 non_zero_phy_type = true;
7503 else if (is_up && abilities.phy_type != 0 && abilities.link_speed != 0)
7504 return 0;
7505
7506 /* To force link we need to set bits for all supported PHY types,
7507 * but there are now more than 32, so we need to split the bitmap
7508 * across two fields.
7509 */
7510 mask = I40E_PHY_TYPES_BITMASK;
7511 config.phy_type =
7512 non_zero_phy_type ? cpu_to_le32((u32)(mask & 0xffffffff)) : 0;
7513 config.phy_type_ext =
7514 non_zero_phy_type ? (u8)((mask >> 32) & 0xff) : 0;
7515 /* Copy the old settings, except of phy_type */
7516 config.abilities = abilities.abilities;
7517 if (test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags)) {
7518 if (is_up)
7519 config.abilities |= I40E_AQ_PHY_ENABLE_LINK;
7520 else
7521 config.abilities &= ~(I40E_AQ_PHY_ENABLE_LINK);
7522 }
7523 if (abilities.link_speed != 0)
7524 config.link_speed = abilities.link_speed;
7525 else
7526 config.link_speed = speed;
7527 config.eee_capability = abilities.eee_capability;
7528 config.eeer = abilities.eeer_val;
7529 config.low_power_ctrl = abilities.d3_lpan;
7530 config.fec_config = abilities.fec_cfg_curr_mod_ext_info &
7531 I40E_AQ_PHY_FEC_CONFIG_MASK;
7532 err = i40e_aq_set_phy_config(hw, &config, NULL);
7533
7534 if (err) {
7535 dev_err(&pf->pdev->dev,
7536 "set phy config ret = %pe last_status = %s\n",
7537 ERR_PTR(err), libie_aq_str(pf->hw.aq.asq_last_status));
7538 return err;
7539 }
7540
7541 /* Update the link info */
7542 err = i40e_update_link_info(hw);
7543 if (err) {
7544 /* Wait a little bit (on 40G cards it sometimes takes a really
7545 * long time for link to come back from the atomic reset)
7546 * and try once more
7547 */
7548 msleep(1000);
7549 i40e_update_link_info(hw);
7550 }
7551
7552 i40e_aq_set_link_restart_an(hw, is_up, NULL);
7553
7554 return 0;
7555 }
7556
7557 /**
7558 * i40e_up - Bring the connection back up after being down
7559 * @vsi: the VSI being configured
7560 **/
i40e_up(struct i40e_vsi * vsi)7561 int i40e_up(struct i40e_vsi *vsi)
7562 {
7563 int err;
7564
7565 if (vsi->type == I40E_VSI_MAIN &&
7566 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) ||
7567 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags)))
7568 i40e_force_link_state(vsi->back, true);
7569
7570 err = i40e_vsi_configure(vsi);
7571 if (!err)
7572 err = i40e_up_complete(vsi);
7573
7574 return err;
7575 }
7576
7577 /**
7578 * i40e_down - Shutdown the connection processing
7579 * @vsi: the VSI being stopped
7580 **/
i40e_down(struct i40e_vsi * vsi)7581 void i40e_down(struct i40e_vsi *vsi)
7582 {
7583 int i;
7584
7585 /* It is assumed that the caller of this function
7586 * sets the vsi->state __I40E_VSI_DOWN bit.
7587 */
7588 if (vsi->netdev) {
7589 netif_carrier_off(vsi->netdev);
7590 netif_tx_disable(vsi->netdev);
7591 }
7592 i40e_vsi_disable_irq(vsi);
7593 i40e_vsi_stop_rings(vsi);
7594 if (vsi->type == I40E_VSI_MAIN &&
7595 (test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags) ||
7596 test_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, vsi->back->flags)))
7597 i40e_force_link_state(vsi->back, false);
7598 i40e_napi_disable_all(vsi);
7599
7600 for (i = 0; i < vsi->num_queue_pairs; i++) {
7601 i40e_clean_tx_ring(vsi->tx_rings[i]);
7602 if (i40e_enabled_xdp_vsi(vsi)) {
7603 /* Make sure that in-progress ndo_xdp_xmit and
7604 * ndo_xsk_wakeup calls are completed.
7605 */
7606 synchronize_rcu();
7607 i40e_clean_tx_ring(vsi->xdp_rings[i]);
7608 }
7609 i40e_clean_rx_ring(vsi->rx_rings[i]);
7610 }
7611
7612 }
7613
7614 /**
7615 * i40e_validate_mqprio_qopt- validate queue mapping info
7616 * @vsi: the VSI being configured
7617 * @mqprio_qopt: queue parametrs
7618 **/
i40e_validate_mqprio_qopt(struct i40e_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)7619 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi,
7620 struct tc_mqprio_qopt_offload *mqprio_qopt)
7621 {
7622 u64 sum_max_rate = 0;
7623 u64 max_rate = 0;
7624 int i;
7625
7626 if (mqprio_qopt->qopt.offset[0] != 0 ||
7627 mqprio_qopt->qopt.num_tc < 1 ||
7628 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS)
7629 return -EINVAL;
7630 for (i = 0; ; i++) {
7631 if (!mqprio_qopt->qopt.count[i])
7632 return -EINVAL;
7633 if (mqprio_qopt->min_rate[i]) {
7634 dev_err(&vsi->back->pdev->dev,
7635 "Invalid min tx rate (greater than 0) specified\n");
7636 return -EINVAL;
7637 }
7638 max_rate = mqprio_qopt->max_rate[i];
7639 do_div(max_rate, I40E_BW_MBPS_DIVISOR);
7640 sum_max_rate += max_rate;
7641
7642 if (i >= mqprio_qopt->qopt.num_tc - 1)
7643 break;
7644 if (mqprio_qopt->qopt.offset[i + 1] !=
7645 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7646 return -EINVAL;
7647 }
7648 if (vsi->num_queue_pairs <
7649 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) {
7650 dev_err(&vsi->back->pdev->dev,
7651 "Failed to create traffic channel, insufficient number of queues.\n");
7652 return -EINVAL;
7653 }
7654 if (sum_max_rate > i40e_get_link_speed(vsi)) {
7655 dev_err(&vsi->back->pdev->dev,
7656 "Invalid max tx rate specified\n");
7657 return -EINVAL;
7658 }
7659 return 0;
7660 }
7661
7662 /**
7663 * i40e_vsi_set_default_tc_config - set default values for tc configuration
7664 * @vsi: the VSI being configured
7665 **/
i40e_vsi_set_default_tc_config(struct i40e_vsi * vsi)7666 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi)
7667 {
7668 u16 qcount;
7669 int i;
7670
7671 /* Only TC0 is enabled */
7672 vsi->tc_config.numtc = 1;
7673 vsi->tc_config.enabled_tc = 1;
7674 qcount = min_t(int, vsi->alloc_queue_pairs,
7675 i40e_pf_get_max_q_per_tc(vsi->back));
7676 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
7677 /* For the TC that is not enabled set the offset to default
7678 * queue and allocate one queue for the given TC.
7679 */
7680 vsi->tc_config.tc_info[i].qoffset = 0;
7681 if (i == 0)
7682 vsi->tc_config.tc_info[i].qcount = qcount;
7683 else
7684 vsi->tc_config.tc_info[i].qcount = 1;
7685 vsi->tc_config.tc_info[i].netdev_tc = 0;
7686 }
7687 }
7688
7689 /**
7690 * i40e_del_macvlan_filter
7691 * @hw: pointer to the HW structure
7692 * @seid: seid of the channel VSI
7693 * @macaddr: the mac address to apply as a filter
7694 * @aq_err: store the admin Q error
7695 *
7696 * This function deletes a mac filter on the channel VSI which serves as the
7697 * macvlan. Returns 0 on success.
7698 **/
i40e_del_macvlan_filter(struct i40e_hw * hw,u16 seid,const u8 * macaddr,int * aq_err)7699 static int i40e_del_macvlan_filter(struct i40e_hw *hw, u16 seid,
7700 const u8 *macaddr, int *aq_err)
7701 {
7702 struct i40e_aqc_remove_macvlan_element_data element;
7703 int status;
7704
7705 memset(&element, 0, sizeof(element));
7706 ether_addr_copy(element.mac_addr, macaddr);
7707 element.vlan_tag = 0;
7708 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
7709 status = i40e_aq_remove_macvlan(hw, seid, &element, 1, NULL);
7710 *aq_err = hw->aq.asq_last_status;
7711
7712 return status;
7713 }
7714
7715 /**
7716 * i40e_add_macvlan_filter
7717 * @hw: pointer to the HW structure
7718 * @seid: seid of the channel VSI
7719 * @macaddr: the mac address to apply as a filter
7720 * @aq_err: store the admin Q error
7721 *
7722 * This function adds a mac filter on the channel VSI which serves as the
7723 * macvlan. Returns 0 on success.
7724 **/
i40e_add_macvlan_filter(struct i40e_hw * hw,u16 seid,const u8 * macaddr,int * aq_err)7725 static int i40e_add_macvlan_filter(struct i40e_hw *hw, u16 seid,
7726 const u8 *macaddr, int *aq_err)
7727 {
7728 struct i40e_aqc_add_macvlan_element_data element;
7729 u16 cmd_flags = 0;
7730 int status;
7731
7732 ether_addr_copy(element.mac_addr, macaddr);
7733 element.vlan_tag = 0;
7734 element.queue_number = 0;
7735 element.match_method = I40E_AQC_MM_ERR_NO_RES;
7736 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
7737 element.flags = cpu_to_le16(cmd_flags);
7738 status = i40e_aq_add_macvlan(hw, seid, &element, 1, NULL);
7739 *aq_err = hw->aq.asq_last_status;
7740
7741 return status;
7742 }
7743
7744 /**
7745 * i40e_reset_ch_rings - Reset the queue contexts in a channel
7746 * @vsi: the VSI we want to access
7747 * @ch: the channel we want to access
7748 */
i40e_reset_ch_rings(struct i40e_vsi * vsi,struct i40e_channel * ch)7749 static void i40e_reset_ch_rings(struct i40e_vsi *vsi, struct i40e_channel *ch)
7750 {
7751 struct i40e_ring *tx_ring, *rx_ring;
7752 u16 pf_q;
7753 int i;
7754
7755 for (i = 0; i < ch->num_queue_pairs; i++) {
7756 pf_q = ch->base_queue + i;
7757 tx_ring = vsi->tx_rings[pf_q];
7758 tx_ring->ch = NULL;
7759 rx_ring = vsi->rx_rings[pf_q];
7760 rx_ring->ch = NULL;
7761 }
7762 }
7763
7764 /**
7765 * i40e_free_macvlan_channels
7766 * @vsi: the VSI we want to access
7767 *
7768 * This function frees the Qs of the channel VSI from
7769 * the stack and also deletes the channel VSIs which
7770 * serve as macvlans.
7771 */
i40e_free_macvlan_channels(struct i40e_vsi * vsi)7772 static void i40e_free_macvlan_channels(struct i40e_vsi *vsi)
7773 {
7774 struct i40e_channel *ch, *ch_tmp;
7775 int ret;
7776
7777 if (list_empty(&vsi->macvlan_list))
7778 return;
7779
7780 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) {
7781 struct i40e_vsi *parent_vsi;
7782
7783 if (i40e_is_channel_macvlan(ch)) {
7784 i40e_reset_ch_rings(vsi, ch);
7785 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask);
7786 netdev_unbind_sb_channel(vsi->netdev, ch->fwd->netdev);
7787 netdev_set_sb_channel(ch->fwd->netdev, 0);
7788 kfree(ch->fwd);
7789 ch->fwd = NULL;
7790 }
7791
7792 list_del(&ch->list);
7793 parent_vsi = ch->parent_vsi;
7794 if (!parent_vsi || !ch->initialized) {
7795 kfree(ch);
7796 continue;
7797 }
7798
7799 /* remove the VSI */
7800 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid,
7801 NULL);
7802 if (ret)
7803 dev_err(&vsi->back->pdev->dev,
7804 "unable to remove channel (%d) for parent VSI(%d)\n",
7805 ch->seid, parent_vsi->seid);
7806 kfree(ch);
7807 }
7808 vsi->macvlan_cnt = 0;
7809 }
7810
7811 /**
7812 * i40e_fwd_ring_up - bring the macvlan device up
7813 * @vsi: the VSI we want to access
7814 * @vdev: macvlan netdevice
7815 * @fwd: the private fwd structure
7816 */
i40e_fwd_ring_up(struct i40e_vsi * vsi,struct net_device * vdev,struct i40e_fwd_adapter * fwd)7817 static int i40e_fwd_ring_up(struct i40e_vsi *vsi, struct net_device *vdev,
7818 struct i40e_fwd_adapter *fwd)
7819 {
7820 struct i40e_channel *ch = NULL, *ch_tmp, *iter;
7821 int ret = 0, num_tc = 1, i, aq_err;
7822 struct i40e_pf *pf = vsi->back;
7823 struct i40e_hw *hw = &pf->hw;
7824
7825 /* Go through the list and find an available channel */
7826 list_for_each_entry_safe(iter, ch_tmp, &vsi->macvlan_list, list) {
7827 if (!i40e_is_channel_macvlan(iter)) {
7828 iter->fwd = fwd;
7829 /* record configuration for macvlan interface in vdev */
7830 for (i = 0; i < num_tc; i++)
7831 netdev_bind_sb_channel_queue(vsi->netdev, vdev,
7832 i,
7833 iter->num_queue_pairs,
7834 iter->base_queue);
7835 for (i = 0; i < iter->num_queue_pairs; i++) {
7836 struct i40e_ring *tx_ring, *rx_ring;
7837 u16 pf_q;
7838
7839 pf_q = iter->base_queue + i;
7840
7841 /* Get to TX ring ptr */
7842 tx_ring = vsi->tx_rings[pf_q];
7843 tx_ring->ch = iter;
7844
7845 /* Get the RX ring ptr */
7846 rx_ring = vsi->rx_rings[pf_q];
7847 rx_ring->ch = iter;
7848 }
7849 ch = iter;
7850 break;
7851 }
7852 }
7853
7854 if (!ch)
7855 return -EINVAL;
7856
7857 /* Guarantee all rings are updated before we update the
7858 * MAC address filter.
7859 */
7860 wmb();
7861
7862 /* Add a mac filter */
7863 ret = i40e_add_macvlan_filter(hw, ch->seid, vdev->dev_addr, &aq_err);
7864 if (ret) {
7865 /* if we cannot add the MAC rule then disable the offload */
7866 macvlan_release_l2fw_offload(vdev);
7867 for (i = 0; i < ch->num_queue_pairs; i++) {
7868 struct i40e_ring *rx_ring;
7869 u16 pf_q;
7870
7871 pf_q = ch->base_queue + i;
7872 rx_ring = vsi->rx_rings[pf_q];
7873 rx_ring->netdev = NULL;
7874 }
7875 dev_info(&pf->pdev->dev,
7876 "Error adding mac filter on macvlan err %pe, aq_err %s\n",
7877 ERR_PTR(ret), libie_aq_str(aq_err));
7878 netdev_err(vdev, "L2fwd offload disabled to L2 filter error\n");
7879 }
7880
7881 return ret;
7882 }
7883
7884 /**
7885 * i40e_setup_macvlans - create the channels which will be macvlans
7886 * @vsi: the VSI we want to access
7887 * @macvlan_cnt: no. of macvlans to be setup
7888 * @qcnt: no. of Qs per macvlan
7889 * @vdev: macvlan netdevice
7890 */
i40e_setup_macvlans(struct i40e_vsi * vsi,u16 macvlan_cnt,u16 qcnt,struct net_device * vdev)7891 static int i40e_setup_macvlans(struct i40e_vsi *vsi, u16 macvlan_cnt, u16 qcnt,
7892 struct net_device *vdev)
7893 {
7894 struct i40e_pf *pf = vsi->back;
7895 struct i40e_hw *hw = &pf->hw;
7896 struct i40e_vsi_context ctxt;
7897 u16 sections, qmap, num_qps;
7898 struct i40e_channel *ch;
7899 int i, pow, ret = 0;
7900 u8 offset = 0;
7901
7902 if (vsi->type != I40E_VSI_MAIN || !macvlan_cnt)
7903 return -EINVAL;
7904
7905 num_qps = vsi->num_queue_pairs - (macvlan_cnt * qcnt);
7906
7907 /* find the next higher power-of-2 of num queue pairs */
7908 pow = fls(roundup_pow_of_two(num_qps) - 1);
7909
7910 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
7911 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
7912
7913 /* Setup context bits for the main VSI */
7914 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
7915 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
7916 memset(&ctxt, 0, sizeof(ctxt));
7917 ctxt.seid = vsi->seid;
7918 ctxt.pf_num = vsi->back->hw.pf_id;
7919 ctxt.vf_num = 0;
7920 ctxt.uplink_seid = vsi->uplink_seid;
7921 ctxt.info = vsi->info;
7922 ctxt.info.tc_mapping[0] = cpu_to_le16(qmap);
7923 ctxt.info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
7924 ctxt.info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
7925 ctxt.info.valid_sections |= cpu_to_le16(sections);
7926
7927 /* Reconfigure RSS for main VSI with new max queue count */
7928 vsi->rss_size = max_t(u16, num_qps, qcnt);
7929 ret = i40e_vsi_config_rss(vsi);
7930 if (ret) {
7931 dev_info(&pf->pdev->dev,
7932 "Failed to reconfig RSS for num_queues (%u)\n",
7933 vsi->rss_size);
7934 return ret;
7935 }
7936 vsi->reconfig_rss = true;
7937 dev_dbg(&vsi->back->pdev->dev,
7938 "Reconfigured RSS with num_queues (%u)\n", vsi->rss_size);
7939 vsi->next_base_queue = num_qps;
7940 vsi->cnt_q_avail = vsi->num_queue_pairs - num_qps;
7941
7942 /* Update the VSI after updating the VSI queue-mapping
7943 * information
7944 */
7945 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
7946 if (ret) {
7947 dev_info(&pf->pdev->dev,
7948 "Update vsi tc config failed, err %pe aq_err %s\n",
7949 ERR_PTR(ret), libie_aq_str(hw->aq.asq_last_status));
7950 return ret;
7951 }
7952 /* update the local VSI info with updated queue map */
7953 i40e_vsi_update_queue_map(vsi, &ctxt);
7954 vsi->info.valid_sections = 0;
7955
7956 /* Create channels for macvlans */
7957 INIT_LIST_HEAD(&vsi->macvlan_list);
7958 for (i = 0; i < macvlan_cnt; i++) {
7959 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
7960 if (!ch) {
7961 ret = -ENOMEM;
7962 goto err_free;
7963 }
7964 INIT_LIST_HEAD(&ch->list);
7965 ch->num_queue_pairs = qcnt;
7966 if (!i40e_setup_channel(pf, vsi, ch)) {
7967 ret = -EINVAL;
7968 kfree(ch);
7969 goto err_free;
7970 }
7971 ch->parent_vsi = vsi;
7972 vsi->cnt_q_avail -= ch->num_queue_pairs;
7973 vsi->macvlan_cnt++;
7974 list_add_tail(&ch->list, &vsi->macvlan_list);
7975 }
7976
7977 return ret;
7978
7979 err_free:
7980 dev_info(&pf->pdev->dev, "Failed to setup macvlans\n");
7981 i40e_free_macvlan_channels(vsi);
7982
7983 return ret;
7984 }
7985
7986 /**
7987 * i40e_fwd_add - configure macvlans
7988 * @netdev: net device to configure
7989 * @vdev: macvlan netdevice
7990 **/
i40e_fwd_add(struct net_device * netdev,struct net_device * vdev)7991 static void *i40e_fwd_add(struct net_device *netdev, struct net_device *vdev)
7992 {
7993 struct i40e_netdev_priv *np = netdev_priv(netdev);
7994 u16 q_per_macvlan = 0, macvlan_cnt = 0, vectors;
7995 struct i40e_vsi *vsi = np->vsi;
7996 struct i40e_pf *pf = vsi->back;
7997 struct i40e_fwd_adapter *fwd;
7998 int avail_macvlan, ret;
7999
8000 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
8001 netdev_info(netdev, "Macvlans are not supported when DCB is enabled\n");
8002 return ERR_PTR(-EINVAL);
8003 }
8004 if (i40e_is_tc_mqprio_enabled(pf)) {
8005 netdev_info(netdev, "Macvlans are not supported when HW TC offload is on\n");
8006 return ERR_PTR(-EINVAL);
8007 }
8008 if (pf->num_lan_msix < I40E_MIN_MACVLAN_VECTORS) {
8009 netdev_info(netdev, "Not enough vectors available to support macvlans\n");
8010 return ERR_PTR(-EINVAL);
8011 }
8012
8013 /* The macvlan device has to be a single Q device so that the
8014 * tc_to_txq field can be reused to pick the tx queue.
8015 */
8016 if (netif_is_multiqueue(vdev))
8017 return ERR_PTR(-ERANGE);
8018
8019 if (!vsi->macvlan_cnt) {
8020 /* reserve bit 0 for the pf device */
8021 set_bit(0, vsi->fwd_bitmask);
8022
8023 /* Try to reserve as many queues as possible for macvlans. First
8024 * reserve 3/4th of max vectors, then half, then quarter and
8025 * calculate Qs per macvlan as you go
8026 */
8027 vectors = pf->num_lan_msix;
8028 if (vectors <= I40E_MAX_MACVLANS && vectors > 64) {
8029 /* allocate 4 Qs per macvlan and 32 Qs to the PF*/
8030 q_per_macvlan = 4;
8031 macvlan_cnt = (vectors - 32) / 4;
8032 } else if (vectors <= 64 && vectors > 32) {
8033 /* allocate 2 Qs per macvlan and 16 Qs to the PF*/
8034 q_per_macvlan = 2;
8035 macvlan_cnt = (vectors - 16) / 2;
8036 } else if (vectors <= 32 && vectors > 16) {
8037 /* allocate 1 Q per macvlan and 16 Qs to the PF*/
8038 q_per_macvlan = 1;
8039 macvlan_cnt = vectors - 16;
8040 } else if (vectors <= 16 && vectors > 8) {
8041 /* allocate 1 Q per macvlan and 8 Qs to the PF */
8042 q_per_macvlan = 1;
8043 macvlan_cnt = vectors - 8;
8044 } else {
8045 /* allocate 1 Q per macvlan and 1 Q to the PF */
8046 q_per_macvlan = 1;
8047 macvlan_cnt = vectors - 1;
8048 }
8049
8050 if (macvlan_cnt == 0)
8051 return ERR_PTR(-EBUSY);
8052
8053 /* Quiesce VSI queues */
8054 i40e_quiesce_vsi(vsi);
8055
8056 /* sets up the macvlans but does not "enable" them */
8057 ret = i40e_setup_macvlans(vsi, macvlan_cnt, q_per_macvlan,
8058 vdev);
8059 if (ret)
8060 return ERR_PTR(ret);
8061
8062 /* Unquiesce VSI */
8063 i40e_unquiesce_vsi(vsi);
8064 }
8065 avail_macvlan = find_first_zero_bit(vsi->fwd_bitmask,
8066 vsi->macvlan_cnt);
8067 if (avail_macvlan >= I40E_MAX_MACVLANS)
8068 return ERR_PTR(-EBUSY);
8069
8070 /* create the fwd struct */
8071 fwd = kzalloc(sizeof(*fwd), GFP_KERNEL);
8072 if (!fwd)
8073 return ERR_PTR(-ENOMEM);
8074
8075 set_bit(avail_macvlan, vsi->fwd_bitmask);
8076 fwd->bit_no = avail_macvlan;
8077 netdev_set_sb_channel(vdev, avail_macvlan);
8078 fwd->netdev = vdev;
8079
8080 if (!netif_running(netdev))
8081 return fwd;
8082
8083 /* Set fwd ring up */
8084 ret = i40e_fwd_ring_up(vsi, vdev, fwd);
8085 if (ret) {
8086 /* unbind the queues and drop the subordinate channel config */
8087 netdev_unbind_sb_channel(netdev, vdev);
8088 netdev_set_sb_channel(vdev, 0);
8089
8090 kfree(fwd);
8091 return ERR_PTR(-EINVAL);
8092 }
8093
8094 return fwd;
8095 }
8096
8097 /**
8098 * i40e_del_all_macvlans - Delete all the mac filters on the channels
8099 * @vsi: the VSI we want to access
8100 */
i40e_del_all_macvlans(struct i40e_vsi * vsi)8101 static void i40e_del_all_macvlans(struct i40e_vsi *vsi)
8102 {
8103 struct i40e_channel *ch, *ch_tmp;
8104 struct i40e_pf *pf = vsi->back;
8105 struct i40e_hw *hw = &pf->hw;
8106 int aq_err, ret = 0;
8107
8108 if (list_empty(&vsi->macvlan_list))
8109 return;
8110
8111 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) {
8112 if (i40e_is_channel_macvlan(ch)) {
8113 ret = i40e_del_macvlan_filter(hw, ch->seid,
8114 i40e_channel_mac(ch),
8115 &aq_err);
8116 if (!ret) {
8117 /* Reset queue contexts */
8118 i40e_reset_ch_rings(vsi, ch);
8119 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask);
8120 netdev_unbind_sb_channel(vsi->netdev,
8121 ch->fwd->netdev);
8122 netdev_set_sb_channel(ch->fwd->netdev, 0);
8123 kfree(ch->fwd);
8124 ch->fwd = NULL;
8125 }
8126 }
8127 }
8128 }
8129
8130 /**
8131 * i40e_fwd_del - delete macvlan interfaces
8132 * @netdev: net device to configure
8133 * @vdev: macvlan netdevice
8134 */
i40e_fwd_del(struct net_device * netdev,void * vdev)8135 static void i40e_fwd_del(struct net_device *netdev, void *vdev)
8136 {
8137 struct i40e_netdev_priv *np = netdev_priv(netdev);
8138 struct i40e_fwd_adapter *fwd = vdev;
8139 struct i40e_channel *ch, *ch_tmp;
8140 struct i40e_vsi *vsi = np->vsi;
8141 struct i40e_pf *pf = vsi->back;
8142 struct i40e_hw *hw = &pf->hw;
8143 int aq_err, ret = 0;
8144
8145 /* Find the channel associated with the macvlan and del mac filter */
8146 list_for_each_entry_safe(ch, ch_tmp, &vsi->macvlan_list, list) {
8147 if (i40e_is_channel_macvlan(ch) &&
8148 ether_addr_equal(i40e_channel_mac(ch),
8149 fwd->netdev->dev_addr)) {
8150 ret = i40e_del_macvlan_filter(hw, ch->seid,
8151 i40e_channel_mac(ch),
8152 &aq_err);
8153 if (!ret) {
8154 /* Reset queue contexts */
8155 i40e_reset_ch_rings(vsi, ch);
8156 clear_bit(ch->fwd->bit_no, vsi->fwd_bitmask);
8157 netdev_unbind_sb_channel(netdev, fwd->netdev);
8158 netdev_set_sb_channel(fwd->netdev, 0);
8159 kfree(ch->fwd);
8160 ch->fwd = NULL;
8161 } else {
8162 dev_info(&pf->pdev->dev,
8163 "Error deleting mac filter on macvlan err %pe, aq_err %s\n",
8164 ERR_PTR(ret), libie_aq_str(aq_err));
8165 }
8166 break;
8167 }
8168 }
8169 }
8170
8171 /**
8172 * i40e_setup_tc - configure multiple traffic classes
8173 * @netdev: net device to configure
8174 * @type_data: tc offload data
8175 **/
i40e_setup_tc(struct net_device * netdev,void * type_data)8176 static int i40e_setup_tc(struct net_device *netdev, void *type_data)
8177 {
8178 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8179 struct i40e_netdev_priv *np = netdev_priv(netdev);
8180 struct i40e_vsi *vsi = np->vsi;
8181 struct i40e_pf *pf = vsi->back;
8182 u8 enabled_tc = 0, num_tc, hw;
8183 bool need_reset = false;
8184 int old_queue_pairs;
8185 int ret = -EINVAL;
8186 u16 mode;
8187 int i;
8188
8189 old_queue_pairs = vsi->num_queue_pairs;
8190 num_tc = mqprio_qopt->qopt.num_tc;
8191 hw = mqprio_qopt->qopt.hw;
8192 mode = mqprio_qopt->mode;
8193 if (!hw) {
8194 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags);
8195 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8196 goto config_tc;
8197 }
8198
8199 /* Check if MFP enabled */
8200 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags)) {
8201 netdev_info(netdev,
8202 "Configuring TC not supported in MFP mode\n");
8203 return ret;
8204 }
8205 switch (mode) {
8206 case TC_MQPRIO_MODE_DCB:
8207 clear_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags);
8208
8209 /* Check if DCB enabled to continue */
8210 if (!test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
8211 netdev_info(netdev,
8212 "DCB is not enabled for adapter\n");
8213 return ret;
8214 }
8215
8216 /* Check whether tc count is within enabled limit */
8217 if (num_tc > i40e_pf_get_num_tc(pf)) {
8218 netdev_info(netdev,
8219 "TC count greater than enabled on link for adapter\n");
8220 return ret;
8221 }
8222 break;
8223 case TC_MQPRIO_MODE_CHANNEL:
8224 if (test_bit(I40E_FLAG_DCB_ENA, pf->flags)) {
8225 netdev_info(netdev,
8226 "Full offload of TC Mqprio options is not supported when DCB is enabled\n");
8227 return ret;
8228 }
8229 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
8230 return ret;
8231 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt);
8232 if (ret)
8233 return ret;
8234 memcpy(&vsi->mqprio_qopt, mqprio_qopt,
8235 sizeof(*mqprio_qopt));
8236 set_bit(I40E_FLAG_TC_MQPRIO_ENA, pf->flags);
8237 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
8238 break;
8239 default:
8240 return -EINVAL;
8241 }
8242
8243 config_tc:
8244 /* Generate TC map for number of tc requested */
8245 for (i = 0; i < num_tc; i++)
8246 enabled_tc |= BIT(i);
8247
8248 /* Requesting same TC configuration as already enabled */
8249 if (enabled_tc == vsi->tc_config.enabled_tc &&
8250 mode != TC_MQPRIO_MODE_CHANNEL)
8251 return 0;
8252
8253 /* Quiesce VSI queues */
8254 i40e_quiesce_vsi(vsi);
8255
8256 if (!hw && !i40e_is_tc_mqprio_enabled(pf))
8257 i40e_remove_queue_channels(vsi);
8258
8259 /* Configure VSI for enabled TCs */
8260 ret = i40e_vsi_config_tc(vsi, enabled_tc);
8261 if (ret) {
8262 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n",
8263 vsi->seid);
8264 need_reset = true;
8265 goto exit;
8266 } else if (enabled_tc &&
8267 (!is_power_of_2(vsi->tc_config.tc_info[0].qcount))) {
8268 netdev_info(netdev,
8269 "Failed to create channel. Override queues (%u) not power of 2\n",
8270 vsi->tc_config.tc_info[0].qcount);
8271 ret = -EINVAL;
8272 need_reset = true;
8273 goto exit;
8274 }
8275
8276 dev_info(&vsi->back->pdev->dev,
8277 "Setup channel (id:%u) utilizing num_queues %d\n",
8278 vsi->seid, vsi->tc_config.tc_info[0].qcount);
8279
8280 if (i40e_is_tc_mqprio_enabled(pf)) {
8281 if (vsi->mqprio_qopt.max_rate[0]) {
8282 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi,
8283 vsi->mqprio_qopt.max_rate[0]);
8284
8285 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate);
8286 if (!ret) {
8287 u64 credits = max_tx_rate;
8288
8289 do_div(credits, I40E_BW_CREDIT_DIVISOR);
8290 dev_dbg(&vsi->back->pdev->dev,
8291 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
8292 max_tx_rate,
8293 credits,
8294 vsi->seid);
8295 } else {
8296 need_reset = true;
8297 goto exit;
8298 }
8299 }
8300 ret = i40e_configure_queue_channels(vsi);
8301 if (ret) {
8302 vsi->num_queue_pairs = old_queue_pairs;
8303 netdev_info(netdev,
8304 "Failed configuring queue channels\n");
8305 need_reset = true;
8306 goto exit;
8307 }
8308 }
8309
8310 exit:
8311 /* Reset the configuration data to defaults, only TC0 is enabled */
8312 if (need_reset) {
8313 i40e_vsi_set_default_tc_config(vsi);
8314 need_reset = false;
8315 }
8316
8317 /* Unquiesce VSI */
8318 i40e_unquiesce_vsi(vsi);
8319 return ret;
8320 }
8321
8322 /**
8323 * i40e_set_cld_element - sets cloud filter element data
8324 * @filter: cloud filter rule
8325 * @cld: ptr to cloud filter element data
8326 *
8327 * This is helper function to copy data into cloud filter element
8328 **/
8329 static inline void
i40e_set_cld_element(struct i40e_cloud_filter * filter,struct i40e_aqc_cloud_filters_element_data * cld)8330 i40e_set_cld_element(struct i40e_cloud_filter *filter,
8331 struct i40e_aqc_cloud_filters_element_data *cld)
8332 {
8333 u32 ipa;
8334 int i;
8335
8336 memset(cld, 0, sizeof(*cld));
8337 ether_addr_copy(cld->outer_mac, filter->dst_mac);
8338 ether_addr_copy(cld->inner_mac, filter->src_mac);
8339
8340 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6)
8341 return;
8342
8343 if (filter->n_proto == ETH_P_IPV6) {
8344 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1)
8345 for (i = 0; i < ARRAY_SIZE(filter->dst_ipv6); i++) {
8346 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]);
8347
8348 *(__le32 *)&cld->ipaddr.raw_v6.data[i * 2] = cpu_to_le32(ipa);
8349 }
8350 } else {
8351 ipa = be32_to_cpu(filter->dst_ipv4);
8352
8353 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa));
8354 }
8355
8356 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id));
8357
8358 /* tenant_id is not supported by FW now, once the support is enabled
8359 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id)
8360 */
8361 if (filter->tenant_id)
8362 return;
8363 }
8364
8365 /**
8366 * i40e_add_del_cloud_filter - Add/del cloud filter
8367 * @vsi: pointer to VSI
8368 * @filter: cloud filter rule
8369 * @add: if true, add, if false, delete
8370 *
8371 * Add or delete a cloud filter for a specific flow spec.
8372 * Returns 0 if the filter were successfully added.
8373 **/
i40e_add_del_cloud_filter(struct i40e_vsi * vsi,struct i40e_cloud_filter * filter,bool add)8374 int i40e_add_del_cloud_filter(struct i40e_vsi *vsi,
8375 struct i40e_cloud_filter *filter, bool add)
8376 {
8377 struct i40e_aqc_cloud_filters_element_data cld_filter;
8378 struct i40e_pf *pf = vsi->back;
8379 int ret;
8380 static const u16 flag_table[128] = {
8381 [I40E_CLOUD_FILTER_FLAGS_OMAC] =
8382 I40E_AQC_ADD_CLOUD_FILTER_OMAC,
8383 [I40E_CLOUD_FILTER_FLAGS_IMAC] =
8384 I40E_AQC_ADD_CLOUD_FILTER_IMAC,
8385 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] =
8386 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN,
8387 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] =
8388 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID,
8389 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] =
8390 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC,
8391 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] =
8392 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID,
8393 [I40E_CLOUD_FILTER_FLAGS_IIP] =
8394 I40E_AQC_ADD_CLOUD_FILTER_IIP,
8395 };
8396
8397 if (filter->flags >= ARRAY_SIZE(flag_table))
8398 return -EIO;
8399
8400 memset(&cld_filter, 0, sizeof(cld_filter));
8401
8402 /* copy element needed to add cloud filter from filter */
8403 i40e_set_cld_element(filter, &cld_filter);
8404
8405 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE)
8406 cld_filter.flags = cpu_to_le16(filter->tunnel_type <<
8407 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT);
8408
8409 if (filter->n_proto == ETH_P_IPV6)
8410 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] |
8411 I40E_AQC_ADD_CLOUD_FLAGS_IPV6);
8412 else
8413 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] |
8414 I40E_AQC_ADD_CLOUD_FLAGS_IPV4);
8415
8416 if (add)
8417 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid,
8418 &cld_filter, 1);
8419 else
8420 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid,
8421 &cld_filter, 1);
8422 if (ret)
8423 dev_dbg(&pf->pdev->dev,
8424 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n",
8425 add ? "add" : "delete", filter->dst_port, ret,
8426 pf->hw.aq.asq_last_status);
8427 else
8428 dev_info(&pf->pdev->dev,
8429 "%s cloud filter for VSI: %d\n",
8430 add ? "Added" : "Deleted", filter->seid);
8431 return ret;
8432 }
8433
8434 /**
8435 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf
8436 * @vsi: pointer to VSI
8437 * @filter: cloud filter rule
8438 * @add: if true, add, if false, delete
8439 *
8440 * Add or delete a cloud filter for a specific flow spec using big buffer.
8441 * Returns 0 if the filter were successfully added.
8442 **/
i40e_add_del_cloud_filter_big_buf(struct i40e_vsi * vsi,struct i40e_cloud_filter * filter,bool add)8443 int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi,
8444 struct i40e_cloud_filter *filter,
8445 bool add)
8446 {
8447 struct i40e_aqc_cloud_filters_element_bb cld_filter;
8448 struct i40e_pf *pf = vsi->back;
8449 int ret;
8450
8451 /* Both (src/dst) valid mac_addr are not supported */
8452 if ((is_valid_ether_addr(filter->dst_mac) &&
8453 is_valid_ether_addr(filter->src_mac)) ||
8454 (is_multicast_ether_addr(filter->dst_mac) &&
8455 is_multicast_ether_addr(filter->src_mac)))
8456 return -EOPNOTSUPP;
8457
8458 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP
8459 * ports are not supported via big buffer now.
8460 */
8461 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP)
8462 return -EOPNOTSUPP;
8463
8464 /* adding filter using src_port/src_ip is not supported at this stage */
8465 if (filter->src_port ||
8466 (filter->src_ipv4 && filter->n_proto != ETH_P_IPV6) ||
8467 !ipv6_addr_any(&filter->ip.v6.src_ip6))
8468 return -EOPNOTSUPP;
8469
8470 memset(&cld_filter, 0, sizeof(cld_filter));
8471
8472 /* copy element needed to add cloud filter from filter */
8473 i40e_set_cld_element(filter, &cld_filter.element);
8474
8475 if (is_valid_ether_addr(filter->dst_mac) ||
8476 is_valid_ether_addr(filter->src_mac) ||
8477 is_multicast_ether_addr(filter->dst_mac) ||
8478 is_multicast_ether_addr(filter->src_mac)) {
8479 /* MAC + IP : unsupported mode */
8480 if (filter->dst_ipv4)
8481 return -EOPNOTSUPP;
8482
8483 /* since we validated that L4 port must be valid before
8484 * we get here, start with respective "flags" value
8485 * and update if vlan is present or not
8486 */
8487 cld_filter.element.flags =
8488 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT);
8489
8490 if (filter->vlan_id) {
8491 cld_filter.element.flags =
8492 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT);
8493 }
8494
8495 } else if ((filter->dst_ipv4 && filter->n_proto != ETH_P_IPV6) ||
8496 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) {
8497 cld_filter.element.flags =
8498 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT);
8499 if (filter->n_proto == ETH_P_IPV6)
8500 cld_filter.element.flags |=
8501 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6);
8502 else
8503 cld_filter.element.flags |=
8504 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4);
8505 } else {
8506 dev_err(&pf->pdev->dev,
8507 "either mac or ip has to be valid for cloud filter\n");
8508 return -EINVAL;
8509 }
8510
8511 /* Now copy L4 port in Byte 6..7 in general fields */
8512 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] =
8513 be16_to_cpu(filter->dst_port);
8514
8515 if (add) {
8516 /* Validate current device switch mode, change if necessary */
8517 ret = i40e_validate_and_set_switch_mode(vsi);
8518 if (ret) {
8519 dev_err(&pf->pdev->dev,
8520 "failed to set switch mode, ret %d\n",
8521 ret);
8522 return ret;
8523 }
8524
8525 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid,
8526 &cld_filter, 1);
8527 } else {
8528 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid,
8529 &cld_filter, 1);
8530 }
8531
8532 if (ret)
8533 dev_dbg(&pf->pdev->dev,
8534 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n",
8535 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status);
8536 else
8537 dev_info(&pf->pdev->dev,
8538 "%s cloud filter for VSI: %d, L4 port: %d\n",
8539 add ? "add" : "delete", filter->seid,
8540 ntohs(filter->dst_port));
8541 return ret;
8542 }
8543
8544 /**
8545 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel
8546 * @vsi: Pointer to VSI
8547 * @f: Pointer to struct flow_cls_offload
8548 * @filter: Pointer to cloud filter structure
8549 *
8550 **/
i40e_parse_cls_flower(struct i40e_vsi * vsi,struct flow_cls_offload * f,struct i40e_cloud_filter * filter)8551 static int i40e_parse_cls_flower(struct i40e_vsi *vsi,
8552 struct flow_cls_offload *f,
8553 struct i40e_cloud_filter *filter)
8554 {
8555 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
8556 struct flow_dissector *dissector = rule->match.dissector;
8557 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0;
8558 struct i40e_pf *pf = vsi->back;
8559 u8 field_flags = 0;
8560
8561 if (dissector->used_keys &
8562 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
8563 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
8564 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
8565 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
8566 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
8567 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
8568 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
8569 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
8570 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%llx\n",
8571 dissector->used_keys);
8572 return -EOPNOTSUPP;
8573 }
8574
8575 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
8576 struct flow_match_enc_keyid match;
8577
8578 flow_rule_match_enc_keyid(rule, &match);
8579 if (match.mask->keyid != 0)
8580 field_flags |= I40E_CLOUD_FIELD_TEN_ID;
8581
8582 filter->tenant_id = be32_to_cpu(match.key->keyid);
8583 }
8584
8585 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
8586 struct flow_match_basic match;
8587
8588 flow_rule_match_basic(rule, &match);
8589 n_proto_key = ntohs(match.key->n_proto);
8590 n_proto_mask = ntohs(match.mask->n_proto);
8591
8592 if (n_proto_key == ETH_P_ALL) {
8593 n_proto_key = 0;
8594 n_proto_mask = 0;
8595 }
8596 filter->n_proto = n_proto_key & n_proto_mask;
8597 filter->ip_proto = match.key->ip_proto;
8598 }
8599
8600 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
8601 struct flow_match_eth_addrs match;
8602
8603 flow_rule_match_eth_addrs(rule, &match);
8604
8605 /* use is_broadcast and is_zero to check for all 0xf or 0 */
8606 if (!is_zero_ether_addr(match.mask->dst)) {
8607 if (is_broadcast_ether_addr(match.mask->dst)) {
8608 field_flags |= I40E_CLOUD_FIELD_OMAC;
8609 } else {
8610 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n",
8611 match.mask->dst);
8612 return -EIO;
8613 }
8614 }
8615
8616 if (!is_zero_ether_addr(match.mask->src)) {
8617 if (is_broadcast_ether_addr(match.mask->src)) {
8618 field_flags |= I40E_CLOUD_FIELD_IMAC;
8619 } else {
8620 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n",
8621 match.mask->src);
8622 return -EIO;
8623 }
8624 }
8625 ether_addr_copy(filter->dst_mac, match.key->dst);
8626 ether_addr_copy(filter->src_mac, match.key->src);
8627 }
8628
8629 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
8630 struct flow_match_vlan match;
8631
8632 flow_rule_match_vlan(rule, &match);
8633 if (match.mask->vlan_id) {
8634 if (match.mask->vlan_id == VLAN_VID_MASK) {
8635 field_flags |= I40E_CLOUD_FIELD_IVLAN;
8636
8637 } else {
8638 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n",
8639 match.mask->vlan_id);
8640 return -EIO;
8641 }
8642 }
8643
8644 filter->vlan_id = cpu_to_be16(match.key->vlan_id);
8645 }
8646
8647 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
8648 struct flow_match_control match;
8649
8650 flow_rule_match_control(rule, &match);
8651 addr_type = match.key->addr_type;
8652
8653 if (flow_rule_has_control_flags(match.mask->flags,
8654 f->common.extack))
8655 return -EOPNOTSUPP;
8656 }
8657
8658 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
8659 struct flow_match_ipv4_addrs match;
8660
8661 flow_rule_match_ipv4_addrs(rule, &match);
8662 if (match.mask->dst) {
8663 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
8664 field_flags |= I40E_CLOUD_FIELD_IIP;
8665 } else {
8666 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4b\n",
8667 &match.mask->dst);
8668 return -EIO;
8669 }
8670 }
8671
8672 if (match.mask->src) {
8673 if (match.mask->src == cpu_to_be32(0xffffffff)) {
8674 field_flags |= I40E_CLOUD_FIELD_IIP;
8675 } else {
8676 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4b\n",
8677 &match.mask->src);
8678 return -EIO;
8679 }
8680 }
8681
8682 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) {
8683 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n");
8684 return -EIO;
8685 }
8686 filter->dst_ipv4 = match.key->dst;
8687 filter->src_ipv4 = match.key->src;
8688 }
8689
8690 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
8691 struct flow_match_ipv6_addrs match;
8692
8693 flow_rule_match_ipv6_addrs(rule, &match);
8694
8695 /* src and dest IPV6 address should not be LOOPBACK
8696 * (0:0:0:0:0:0:0:1), which can be represented as ::1
8697 */
8698 if (ipv6_addr_loopback(&match.key->dst) ||
8699 ipv6_addr_loopback(&match.key->src)) {
8700 dev_err(&pf->pdev->dev,
8701 "Bad ipv6, addr is LOOPBACK\n");
8702 return -EIO;
8703 }
8704 if (!ipv6_addr_any(&match.mask->dst) ||
8705 !ipv6_addr_any(&match.mask->src))
8706 field_flags |= I40E_CLOUD_FIELD_IIP;
8707
8708 memcpy(&filter->src_ipv6, &match.key->src.s6_addr32,
8709 sizeof(filter->src_ipv6));
8710 memcpy(&filter->dst_ipv6, &match.key->dst.s6_addr32,
8711 sizeof(filter->dst_ipv6));
8712 }
8713
8714 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
8715 struct flow_match_ports match;
8716
8717 flow_rule_match_ports(rule, &match);
8718 if (match.mask->src) {
8719 if (match.mask->src == cpu_to_be16(0xffff)) {
8720 field_flags |= I40E_CLOUD_FIELD_IIP;
8721 } else {
8722 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n",
8723 be16_to_cpu(match.mask->src));
8724 return -EIO;
8725 }
8726 }
8727
8728 if (match.mask->dst) {
8729 if (match.mask->dst == cpu_to_be16(0xffff)) {
8730 field_flags |= I40E_CLOUD_FIELD_IIP;
8731 } else {
8732 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n",
8733 be16_to_cpu(match.mask->dst));
8734 return -EIO;
8735 }
8736 }
8737
8738 filter->dst_port = match.key->dst;
8739 filter->src_port = match.key->src;
8740
8741 switch (filter->ip_proto) {
8742 case IPPROTO_TCP:
8743 case IPPROTO_UDP:
8744 break;
8745 default:
8746 dev_err(&pf->pdev->dev,
8747 "Only UDP and TCP transport are supported\n");
8748 return -EINVAL;
8749 }
8750 }
8751 filter->flags = field_flags;
8752 return 0;
8753 }
8754
8755 /**
8756 * i40e_handle_tclass: Forward to a traffic class on the device
8757 * @vsi: Pointer to VSI
8758 * @tc: traffic class index on the device
8759 * @filter: Pointer to cloud filter structure
8760 *
8761 **/
i40e_handle_tclass(struct i40e_vsi * vsi,u32 tc,struct i40e_cloud_filter * filter)8762 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc,
8763 struct i40e_cloud_filter *filter)
8764 {
8765 struct i40e_channel *ch, *ch_tmp;
8766
8767 /* direct to a traffic class on the same device */
8768 if (tc == 0) {
8769 filter->seid = vsi->seid;
8770 return 0;
8771 } else if (vsi->tc_config.enabled_tc & BIT(tc)) {
8772 if (!filter->dst_port) {
8773 dev_err(&vsi->back->pdev->dev,
8774 "Specify destination port to direct to traffic class that is not default\n");
8775 return -EINVAL;
8776 }
8777 if (list_empty(&vsi->ch_list))
8778 return -EINVAL;
8779 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list,
8780 list) {
8781 if (ch->seid == vsi->tc_seid_map[tc])
8782 filter->seid = ch->seid;
8783 }
8784 return 0;
8785 }
8786 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n");
8787 return -EINVAL;
8788 }
8789
8790 /**
8791 * i40e_configure_clsflower - Configure tc flower filters
8792 * @vsi: Pointer to VSI
8793 * @cls_flower: Pointer to struct flow_cls_offload
8794 *
8795 **/
i40e_configure_clsflower(struct i40e_vsi * vsi,struct flow_cls_offload * cls_flower)8796 static int i40e_configure_clsflower(struct i40e_vsi *vsi,
8797 struct flow_cls_offload *cls_flower)
8798 {
8799 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid);
8800 struct i40e_cloud_filter *filter = NULL;
8801 struct i40e_pf *pf = vsi->back;
8802 int err = 0;
8803
8804 if (tc < 0) {
8805 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n");
8806 return -EOPNOTSUPP;
8807 }
8808
8809 if (!tc) {
8810 dev_err(&pf->pdev->dev, "Unable to add filter because of invalid destination");
8811 return -EINVAL;
8812 }
8813
8814 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) ||
8815 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state))
8816 return -EBUSY;
8817
8818 if (pf->fdir_pf_active_filters ||
8819 (!hlist_empty(&pf->fdir_filter_list))) {
8820 dev_err(&vsi->back->pdev->dev,
8821 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n");
8822 return -EINVAL;
8823 }
8824
8825 if (test_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags)) {
8826 dev_err(&vsi->back->pdev->dev,
8827 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n");
8828 clear_bit(I40E_FLAG_FD_SB_ENA, vsi->back->flags);
8829 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, vsi->back->flags);
8830 }
8831
8832 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
8833 if (!filter)
8834 return -ENOMEM;
8835
8836 filter->cookie = cls_flower->cookie;
8837
8838 err = i40e_parse_cls_flower(vsi, cls_flower, filter);
8839 if (err < 0)
8840 goto err;
8841
8842 err = i40e_handle_tclass(vsi, tc, filter);
8843 if (err < 0)
8844 goto err;
8845
8846 /* Add cloud filter */
8847 if (filter->dst_port)
8848 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true);
8849 else
8850 err = i40e_add_del_cloud_filter(vsi, filter, true);
8851
8852 if (err) {
8853 dev_err(&pf->pdev->dev, "Failed to add cloud filter, err %d\n",
8854 err);
8855 goto err;
8856 }
8857
8858 /* add filter to the ordered list */
8859 INIT_HLIST_NODE(&filter->cloud_node);
8860
8861 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list);
8862
8863 pf->num_cloud_filters++;
8864
8865 return err;
8866 err:
8867 kfree(filter);
8868 return err;
8869 }
8870
8871 /**
8872 * i40e_find_cloud_filter - Find the could filter in the list
8873 * @vsi: Pointer to VSI
8874 * @cookie: filter specific cookie
8875 *
8876 **/
i40e_find_cloud_filter(struct i40e_vsi * vsi,unsigned long * cookie)8877 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi,
8878 unsigned long *cookie)
8879 {
8880 struct i40e_cloud_filter *filter = NULL;
8881 struct hlist_node *node2;
8882
8883 hlist_for_each_entry_safe(filter, node2,
8884 &vsi->back->cloud_filter_list, cloud_node)
8885 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
8886 return filter;
8887 return NULL;
8888 }
8889
8890 /**
8891 * i40e_delete_clsflower - Remove tc flower filters
8892 * @vsi: Pointer to VSI
8893 * @cls_flower: Pointer to struct flow_cls_offload
8894 *
8895 **/
i40e_delete_clsflower(struct i40e_vsi * vsi,struct flow_cls_offload * cls_flower)8896 static int i40e_delete_clsflower(struct i40e_vsi *vsi,
8897 struct flow_cls_offload *cls_flower)
8898 {
8899 struct i40e_cloud_filter *filter = NULL;
8900 struct i40e_pf *pf = vsi->back;
8901 int err = 0;
8902
8903 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie);
8904
8905 if (!filter)
8906 return -EINVAL;
8907
8908 hash_del(&filter->cloud_node);
8909
8910 if (filter->dst_port)
8911 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false);
8912 else
8913 err = i40e_add_del_cloud_filter(vsi, filter, false);
8914
8915 kfree(filter);
8916 if (err) {
8917 dev_err(&pf->pdev->dev,
8918 "Failed to delete cloud filter, err %pe\n",
8919 ERR_PTR(err));
8920 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status);
8921 }
8922
8923 pf->num_cloud_filters--;
8924 if (!pf->num_cloud_filters)
8925 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) &&
8926 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) {
8927 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
8928 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags);
8929 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
8930 }
8931 return 0;
8932 }
8933
8934 /**
8935 * i40e_setup_tc_cls_flower - flower classifier offloads
8936 * @np: net device to configure
8937 * @cls_flower: offload data
8938 **/
i40e_setup_tc_cls_flower(struct i40e_netdev_priv * np,struct flow_cls_offload * cls_flower)8939 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np,
8940 struct flow_cls_offload *cls_flower)
8941 {
8942 struct i40e_vsi *vsi = np->vsi;
8943
8944 switch (cls_flower->command) {
8945 case FLOW_CLS_REPLACE:
8946 return i40e_configure_clsflower(vsi, cls_flower);
8947 case FLOW_CLS_DESTROY:
8948 return i40e_delete_clsflower(vsi, cls_flower);
8949 case FLOW_CLS_STATS:
8950 return -EOPNOTSUPP;
8951 default:
8952 return -EOPNOTSUPP;
8953 }
8954 }
8955
i40e_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)8956 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
8957 void *cb_priv)
8958 {
8959 struct i40e_netdev_priv *np = cb_priv;
8960
8961 if (!tc_cls_can_offload_and_chain0(np->vsi->netdev, type_data))
8962 return -EOPNOTSUPP;
8963
8964 switch (type) {
8965 case TC_SETUP_CLSFLOWER:
8966 return i40e_setup_tc_cls_flower(np, type_data);
8967
8968 default:
8969 return -EOPNOTSUPP;
8970 }
8971 }
8972
8973 static LIST_HEAD(i40e_block_cb_list);
8974
__i40e_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)8975 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8976 void *type_data)
8977 {
8978 struct i40e_netdev_priv *np = netdev_priv(netdev);
8979
8980 switch (type) {
8981 case TC_SETUP_QDISC_MQPRIO:
8982 return i40e_setup_tc(netdev, type_data);
8983 case TC_SETUP_BLOCK:
8984 return flow_block_cb_setup_simple(type_data,
8985 &i40e_block_cb_list,
8986 i40e_setup_tc_block_cb,
8987 np, np, true);
8988 default:
8989 return -EOPNOTSUPP;
8990 }
8991 }
8992
8993 /**
8994 * i40e_open - Called when a network interface is made active
8995 * @netdev: network interface device structure
8996 *
8997 * The open entry point is called when a network interface is made
8998 * active by the system (IFF_UP). At this point all resources needed
8999 * for transmit and receive operations are allocated, the interrupt
9000 * handler is registered with the OS, the netdev watchdog subtask is
9001 * enabled, and the stack is notified that the interface is ready.
9002 *
9003 * Returns 0 on success, negative value on failure
9004 **/
i40e_open(struct net_device * netdev)9005 int i40e_open(struct net_device *netdev)
9006 {
9007 struct i40e_netdev_priv *np = netdev_priv(netdev);
9008 struct i40e_vsi *vsi = np->vsi;
9009 struct i40e_pf *pf = vsi->back;
9010 int err;
9011
9012 /* disallow open during test or if eeprom is broken */
9013 if (test_bit(__I40E_TESTING, pf->state) ||
9014 test_bit(__I40E_BAD_EEPROM, pf->state))
9015 return -EBUSY;
9016
9017 netif_carrier_off(netdev);
9018
9019 if (i40e_force_link_state(pf, true))
9020 return -EAGAIN;
9021
9022 err = i40e_vsi_open(vsi);
9023 if (err)
9024 return err;
9025
9026 /* configure global TSO hardware offload settings */
9027 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH |
9028 TCP_FLAG_FIN) >> 16);
9029 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH |
9030 TCP_FLAG_FIN |
9031 TCP_FLAG_CWR) >> 16);
9032 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16);
9033 udp_tunnel_get_rx_info(netdev);
9034
9035 return 0;
9036 }
9037
9038 /**
9039 * i40e_netif_set_realnum_tx_rx_queues - Update number of tx/rx queues
9040 * @vsi: vsi structure
9041 *
9042 * This updates netdev's number of tx/rx queues
9043 *
9044 * Returns status of setting tx/rx queues
9045 **/
i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi * vsi)9046 static int i40e_netif_set_realnum_tx_rx_queues(struct i40e_vsi *vsi)
9047 {
9048 int ret;
9049
9050 ret = netif_set_real_num_rx_queues(vsi->netdev,
9051 vsi->num_queue_pairs);
9052 if (ret)
9053 return ret;
9054
9055 return netif_set_real_num_tx_queues(vsi->netdev,
9056 vsi->num_queue_pairs);
9057 }
9058
9059 /**
9060 * i40e_vsi_open -
9061 * @vsi: the VSI to open
9062 *
9063 * Finish initialization of the VSI.
9064 *
9065 * Returns 0 on success, negative value on failure
9066 *
9067 * Note: expects to be called while under rtnl_lock()
9068 **/
i40e_vsi_open(struct i40e_vsi * vsi)9069 int i40e_vsi_open(struct i40e_vsi *vsi)
9070 {
9071 struct i40e_pf *pf = vsi->back;
9072 char int_name[I40E_INT_NAME_STR_LEN];
9073 int err;
9074
9075 /* allocate descriptors */
9076 err = i40e_vsi_setup_tx_resources(vsi);
9077 if (err)
9078 goto err_setup_tx;
9079 err = i40e_vsi_setup_rx_resources(vsi);
9080 if (err)
9081 goto err_setup_rx;
9082
9083 err = i40e_vsi_configure(vsi);
9084 if (err)
9085 goto err_setup_rx;
9086
9087 if (vsi->netdev) {
9088 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
9089 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
9090 err = i40e_vsi_request_irq(vsi, int_name);
9091 if (err)
9092 goto err_setup_rx;
9093
9094 /* Notify the stack of the actual queue counts. */
9095 err = i40e_netif_set_realnum_tx_rx_queues(vsi);
9096 if (err)
9097 goto err_set_queues;
9098
9099 } else if (vsi->type == I40E_VSI_FDIR) {
9100 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir",
9101 dev_driver_string(&pf->pdev->dev),
9102 dev_name(&pf->pdev->dev));
9103 err = i40e_vsi_request_irq(vsi, int_name);
9104 if (err)
9105 goto err_setup_rx;
9106
9107 } else {
9108 err = -EINVAL;
9109 goto err_setup_rx;
9110 }
9111
9112 err = i40e_up_complete(vsi);
9113 if (err)
9114 goto err_up_complete;
9115
9116 return 0;
9117
9118 err_up_complete:
9119 i40e_down(vsi);
9120 err_set_queues:
9121 i40e_vsi_free_irq(vsi);
9122 err_setup_rx:
9123 i40e_vsi_free_rx_resources(vsi);
9124 err_setup_tx:
9125 i40e_vsi_free_tx_resources(vsi);
9126 if (vsi->type == I40E_VSI_MAIN)
9127 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
9128
9129 return err;
9130 }
9131
9132 /**
9133 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting
9134 * @pf: Pointer to PF
9135 *
9136 * This function destroys the hlist where all the Flow Director
9137 * filters were saved.
9138 **/
i40e_fdir_filter_exit(struct i40e_pf * pf)9139 static void i40e_fdir_filter_exit(struct i40e_pf *pf)
9140 {
9141 struct i40e_fdir_filter *filter;
9142 struct i40e_flex_pit *pit_entry, *tmp;
9143 struct hlist_node *node2;
9144
9145 hlist_for_each_entry_safe(filter, node2,
9146 &pf->fdir_filter_list, fdir_node) {
9147 hlist_del(&filter->fdir_node);
9148 kfree(filter);
9149 }
9150
9151 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) {
9152 list_del(&pit_entry->list);
9153 kfree(pit_entry);
9154 }
9155 INIT_LIST_HEAD(&pf->l3_flex_pit_list);
9156
9157 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) {
9158 list_del(&pit_entry->list);
9159 kfree(pit_entry);
9160 }
9161 INIT_LIST_HEAD(&pf->l4_flex_pit_list);
9162
9163 pf->fdir_pf_active_filters = 0;
9164 i40e_reset_fdir_filter_cnt(pf);
9165
9166 /* Reprogram the default input set for TCP/IPv4 */
9167 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP,
9168 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
9169 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9170
9171 /* Reprogram the default input set for TCP/IPv6 */
9172 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_TCP,
9173 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK |
9174 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9175
9176 /* Reprogram the default input set for UDP/IPv4 */
9177 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_UDP,
9178 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
9179 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9180
9181 /* Reprogram the default input set for UDP/IPv6 */
9182 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_UDP,
9183 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK |
9184 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9185
9186 /* Reprogram the default input set for SCTP/IPv4 */
9187 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_SCTP,
9188 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
9189 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9190
9191 /* Reprogram the default input set for SCTP/IPv6 */
9192 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_SCTP,
9193 I40E_L3_V6_SRC_MASK | I40E_L3_V6_DST_MASK |
9194 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9195
9196 /* Reprogram the default input set for Other/IPv4 */
9197 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_OTHER,
9198 I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
9199
9200 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_FRAG_IPV4,
9201 I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
9202
9203 /* Reprogram the default input set for Other/IPv6 */
9204 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV6_OTHER,
9205 I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
9206
9207 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_FRAG_IPV6,
9208 I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
9209 }
9210
9211 /**
9212 * i40e_cloud_filter_exit - Cleans up the cloud filters
9213 * @pf: Pointer to PF
9214 *
9215 * This function destroys the hlist where all the cloud filters
9216 * were saved.
9217 **/
i40e_cloud_filter_exit(struct i40e_pf * pf)9218 static void i40e_cloud_filter_exit(struct i40e_pf *pf)
9219 {
9220 struct i40e_cloud_filter *cfilter;
9221 struct hlist_node *node;
9222
9223 hlist_for_each_entry_safe(cfilter, node,
9224 &pf->cloud_filter_list, cloud_node) {
9225 hlist_del(&cfilter->cloud_node);
9226 kfree(cfilter);
9227 }
9228 pf->num_cloud_filters = 0;
9229
9230 if (test_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags) &&
9231 !test_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags)) {
9232 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
9233 clear_bit(I40E_FLAG_FD_SB_TO_CLOUD_FILTER, pf->flags);
9234 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
9235 }
9236 }
9237
9238 /**
9239 * i40e_close - Disables a network interface
9240 * @netdev: network interface device structure
9241 *
9242 * The close entry point is called when an interface is de-activated
9243 * by the OS. The hardware is still under the driver's control, but
9244 * this netdev interface is disabled.
9245 *
9246 * Returns 0, this is not allowed to fail
9247 **/
i40e_close(struct net_device * netdev)9248 int i40e_close(struct net_device *netdev)
9249 {
9250 struct i40e_netdev_priv *np = netdev_priv(netdev);
9251 struct i40e_vsi *vsi = np->vsi;
9252
9253 i40e_vsi_close(vsi);
9254
9255 return 0;
9256 }
9257
9258 /**
9259 * i40e_do_reset - Start a PF or Core Reset sequence
9260 * @pf: board private structure
9261 * @reset_flags: which reset is requested
9262 * @lock_acquired: indicates whether or not the lock has been acquired
9263 * before this function was called.
9264 *
9265 * The essential difference in resets is that the PF Reset
9266 * doesn't clear the packet buffers, doesn't reset the PE
9267 * firmware, and doesn't bother the other PFs on the chip.
9268 **/
i40e_do_reset(struct i40e_pf * pf,u32 reset_flags,bool lock_acquired)9269 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired)
9270 {
9271 struct i40e_vsi *vsi;
9272 u32 val;
9273 int i;
9274
9275 /* do the biggest reset indicated */
9276 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) {
9277
9278 /* Request a Global Reset
9279 *
9280 * This will start the chip's countdown to the actual full
9281 * chip reset event, and a warning interrupt to be sent
9282 * to all PFs, including the requestor. Our handler
9283 * for the warning interrupt will deal with the shutdown
9284 * and recovery of the switch setup.
9285 */
9286 dev_dbg(&pf->pdev->dev, "GlobalR requested\n");
9287 val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
9288 val |= I40E_GLGEN_RTRIG_GLOBR_MASK;
9289 wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
9290
9291 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) {
9292
9293 /* Request a Core Reset
9294 *
9295 * Same as Global Reset, except does *not* include the MAC/PHY
9296 */
9297 dev_dbg(&pf->pdev->dev, "CoreR requested\n");
9298 val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
9299 val |= I40E_GLGEN_RTRIG_CORER_MASK;
9300 wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
9301 i40e_flush(&pf->hw);
9302
9303 } else if (reset_flags & I40E_PF_RESET_FLAG) {
9304
9305 /* Request a PF Reset
9306 *
9307 * Resets only the PF-specific registers
9308 *
9309 * This goes directly to the tear-down and rebuild of
9310 * the switch, since we need to do all the recovery as
9311 * for the Core Reset.
9312 */
9313 dev_dbg(&pf->pdev->dev, "PFR requested\n");
9314 i40e_handle_reset_warning(pf, lock_acquired);
9315
9316 } else if (reset_flags & I40E_PF_RESET_AND_REBUILD_FLAG) {
9317 /* Request a PF Reset
9318 *
9319 * Resets PF and reinitializes PFs VSI.
9320 */
9321 i40e_prep_for_reset(pf);
9322 i40e_reset_and_rebuild(pf, true, lock_acquired);
9323 dev_info(&pf->pdev->dev,
9324 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ?
9325 "FW LLDP is disabled\n" :
9326 "FW LLDP is enabled\n");
9327
9328 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) {
9329 /* Find the VSI(s) that requested a re-init */
9330 dev_info(&pf->pdev->dev, "VSI reinit requested\n");
9331
9332 i40e_pf_for_each_vsi(pf, i, vsi) {
9333 if (test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED,
9334 vsi->state))
9335 i40e_vsi_reinit_locked(vsi);
9336 }
9337 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) {
9338 /* Find the VSI(s) that needs to be brought down */
9339 dev_info(&pf->pdev->dev, "VSI down requested\n");
9340
9341 i40e_pf_for_each_vsi(pf, i, vsi) {
9342 if (test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED,
9343 vsi->state)) {
9344 set_bit(__I40E_VSI_DOWN, vsi->state);
9345 i40e_down(vsi);
9346 }
9347 }
9348 } else {
9349 dev_info(&pf->pdev->dev,
9350 "bad reset request 0x%08x\n", reset_flags);
9351 }
9352 }
9353
9354 #ifdef CONFIG_I40E_DCB
9355 /**
9356 * i40e_dcb_need_reconfig - Check if DCB needs reconfig
9357 * @pf: board private structure
9358 * @old_cfg: current DCB config
9359 * @new_cfg: new DCB config
9360 **/
i40e_dcb_need_reconfig(struct i40e_pf * pf,struct i40e_dcbx_config * old_cfg,struct i40e_dcbx_config * new_cfg)9361 bool i40e_dcb_need_reconfig(struct i40e_pf *pf,
9362 struct i40e_dcbx_config *old_cfg,
9363 struct i40e_dcbx_config *new_cfg)
9364 {
9365 bool need_reconfig = false;
9366
9367 /* Check if ETS configuration has changed */
9368 if (memcmp(&new_cfg->etscfg,
9369 &old_cfg->etscfg,
9370 sizeof(new_cfg->etscfg))) {
9371 /* If Priority Table has changed reconfig is needed */
9372 if (memcmp(&new_cfg->etscfg.prioritytable,
9373 &old_cfg->etscfg.prioritytable,
9374 sizeof(new_cfg->etscfg.prioritytable))) {
9375 need_reconfig = true;
9376 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n");
9377 }
9378
9379 if (memcmp(&new_cfg->etscfg.tcbwtable,
9380 &old_cfg->etscfg.tcbwtable,
9381 sizeof(new_cfg->etscfg.tcbwtable)))
9382 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n");
9383
9384 if (memcmp(&new_cfg->etscfg.tsatable,
9385 &old_cfg->etscfg.tsatable,
9386 sizeof(new_cfg->etscfg.tsatable)))
9387 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n");
9388 }
9389
9390 /* Check if PFC configuration has changed */
9391 if (memcmp(&new_cfg->pfc,
9392 &old_cfg->pfc,
9393 sizeof(new_cfg->pfc))) {
9394 need_reconfig = true;
9395 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n");
9396 }
9397
9398 /* Check if APP Table has changed */
9399 if (memcmp(&new_cfg->app,
9400 &old_cfg->app,
9401 sizeof(new_cfg->app))) {
9402 need_reconfig = true;
9403 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n");
9404 }
9405
9406 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig);
9407 return need_reconfig;
9408 }
9409
9410 /**
9411 * i40e_handle_lldp_event - Handle LLDP Change MIB event
9412 * @pf: board private structure
9413 * @e: event info posted on ARQ
9414 **/
i40e_handle_lldp_event(struct i40e_pf * pf,struct i40e_arq_event_info * e)9415 static int i40e_handle_lldp_event(struct i40e_pf *pf,
9416 struct i40e_arq_event_info *e)
9417 {
9418 struct i40e_aqc_lldp_get_mib *mib = libie_aq_raw(&e->desc);
9419 struct i40e_hw *hw = &pf->hw;
9420 struct i40e_dcbx_config tmp_dcbx_cfg;
9421 bool need_reconfig = false;
9422 int ret = 0;
9423 u8 type;
9424
9425 /* X710-T*L 2.5G and 5G speeds don't support DCB */
9426 if (I40E_IS_X710TL_DEVICE(hw->device_id) &&
9427 (hw->phy.link_info.link_speed &
9428 ~(I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB)) &&
9429 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags))
9430 /* let firmware decide if the DCB should be disabled */
9431 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
9432
9433 /* Not DCB capable or capability disabled */
9434 if (!test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags))
9435 return ret;
9436
9437 /* Ignore if event is not for Nearest Bridge */
9438 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT)
9439 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
9440 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type);
9441 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE)
9442 return ret;
9443
9444 /* Check MIB Type and return if event for Remote MIB update */
9445 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK;
9446 dev_dbg(&pf->pdev->dev,
9447 "LLDP event mib type %s\n", type ? "remote" : "local");
9448 if (type == I40E_AQ_LLDP_MIB_REMOTE) {
9449 /* Update the remote cached instance and return */
9450 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE,
9451 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE,
9452 &hw->remote_dcbx_config);
9453 goto exit;
9454 }
9455
9456 /* Store the old configuration */
9457 tmp_dcbx_cfg = hw->local_dcbx_config;
9458
9459 /* Reset the old DCBx configuration data */
9460 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config));
9461 /* Get updated DCBX data from firmware */
9462 ret = i40e_get_dcb_config(&pf->hw);
9463 if (ret) {
9464 /* X710-T*L 2.5G and 5G speeds don't support DCB */
9465 if (I40E_IS_X710TL_DEVICE(hw->device_id) &&
9466 (hw->phy.link_info.link_speed &
9467 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) {
9468 dev_warn(&pf->pdev->dev,
9469 "DCB is not supported for X710-T*L 2.5/5G speeds\n");
9470 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
9471 } else {
9472 dev_info(&pf->pdev->dev,
9473 "Failed querying DCB configuration data from firmware, err %pe aq_err %s\n",
9474 ERR_PTR(ret),
9475 libie_aq_str(pf->hw.aq.asq_last_status));
9476 }
9477 goto exit;
9478 }
9479
9480 /* No change detected in DCBX configs */
9481 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config,
9482 sizeof(tmp_dcbx_cfg))) {
9483 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n");
9484 goto exit;
9485 }
9486
9487 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg,
9488 &hw->local_dcbx_config);
9489
9490 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config);
9491
9492 if (!need_reconfig)
9493 goto exit;
9494
9495 /* Enable DCB tagging only when more than one TC */
9496 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
9497 set_bit(I40E_FLAG_DCB_ENA, pf->flags);
9498 else
9499 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
9500
9501 set_bit(__I40E_PORT_SUSPENDED, pf->state);
9502 /* Reconfiguration needed quiesce all VSIs */
9503 i40e_pf_quiesce_all_vsi(pf);
9504
9505 /* Changes in configuration update VEB/VSI */
9506 i40e_dcb_reconfigure(pf);
9507
9508 ret = i40e_resume_port_tx(pf);
9509
9510 clear_bit(__I40E_PORT_SUSPENDED, pf->state);
9511 /* In case of error no point in resuming VSIs */
9512 if (ret)
9513 goto exit;
9514
9515 /* Wait for the PF's queues to be disabled */
9516 ret = i40e_pf_wait_queues_disabled(pf);
9517 if (ret) {
9518 /* Schedule PF reset to recover */
9519 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
9520 i40e_service_event_schedule(pf);
9521 } else {
9522 i40e_pf_unquiesce_all_vsi(pf);
9523 set_bit(__I40E_CLIENT_SERVICE_REQUESTED, pf->state);
9524 set_bit(__I40E_CLIENT_L2_CHANGE, pf->state);
9525 }
9526
9527 exit:
9528 return ret;
9529 }
9530 #endif /* CONFIG_I40E_DCB */
9531
9532 /**
9533 * i40e_do_reset_safe - Protected reset path for userland calls.
9534 * @pf: board private structure
9535 * @reset_flags: which reset is requested
9536 *
9537 **/
i40e_do_reset_safe(struct i40e_pf * pf,u32 reset_flags)9538 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags)
9539 {
9540 rtnl_lock();
9541 i40e_do_reset(pf, reset_flags, true);
9542 rtnl_unlock();
9543 }
9544
9545 /**
9546 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event
9547 * @pf: board private structure
9548 * @e: event info posted on ARQ
9549 *
9550 * Handler for LAN Queue Overflow Event generated by the firmware for PF
9551 * and VF queues
9552 **/
i40e_handle_lan_overflow_event(struct i40e_pf * pf,struct i40e_arq_event_info * e)9553 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf,
9554 struct i40e_arq_event_info *e)
9555 {
9556 struct i40e_aqc_lan_overflow *data = libie_aq_raw(&e->desc);
9557 u32 queue = le32_to_cpu(data->prtdcb_rupto);
9558 u32 qtx_ctl = le32_to_cpu(data->otx_ctl);
9559 struct i40e_hw *hw = &pf->hw;
9560 struct i40e_vf *vf;
9561 u16 vf_id;
9562
9563 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n",
9564 queue, qtx_ctl);
9565
9566 if (FIELD_GET(I40E_QTX_CTL_PFVF_Q_MASK, qtx_ctl) !=
9567 I40E_QTX_CTL_VF_QUEUE)
9568 return;
9569
9570 /* Queue belongs to VF, find the VF and issue VF reset */
9571 vf_id = FIELD_GET(I40E_QTX_CTL_VFVM_INDX_MASK, qtx_ctl);
9572 vf_id -= hw->func_caps.vf_base_id;
9573 vf = &pf->vf[vf_id];
9574 i40e_vc_notify_vf_reset(vf);
9575 /* Allow VF to process pending reset notification */
9576 msleep(20);
9577 i40e_reset_vf(vf, false);
9578 }
9579
9580 /**
9581 * i40e_get_current_fd_count - Get total FD filters programmed for this PF
9582 * @pf: board private structure
9583 **/
i40e_get_current_fd_count(struct i40e_pf * pf)9584 u32 i40e_get_current_fd_count(struct i40e_pf *pf)
9585 {
9586 u32 val, fcnt_prog;
9587
9588 val = rd32(&pf->hw, I40E_PFQF_FDSTAT);
9589 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) +
9590 FIELD_GET(I40E_PFQF_FDSTAT_BEST_CNT_MASK, val);
9591 return fcnt_prog;
9592 }
9593
9594 /**
9595 * i40e_get_global_fd_count - Get total FD filters programmed on device
9596 * @pf: board private structure
9597 **/
i40e_get_global_fd_count(struct i40e_pf * pf)9598 u32 i40e_get_global_fd_count(struct i40e_pf *pf)
9599 {
9600 u32 val, fcnt_prog;
9601
9602 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0);
9603 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) +
9604 FIELD_GET(I40E_GLQF_FDCNT_0_BESTCNT_MASK, val);
9605 return fcnt_prog;
9606 }
9607
9608 /**
9609 * i40e_reenable_fdir_sb - Restore FDir SB capability
9610 * @pf: board private structure
9611 **/
i40e_reenable_fdir_sb(struct i40e_pf * pf)9612 static void i40e_reenable_fdir_sb(struct i40e_pf *pf)
9613 {
9614 if (test_and_clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state))
9615 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
9616 (I40E_DEBUG_FD & pf->hw.debug_mask))
9617 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n");
9618 }
9619
9620 /**
9621 * i40e_reenable_fdir_atr - Restore FDir ATR capability
9622 * @pf: board private structure
9623 **/
i40e_reenable_fdir_atr(struct i40e_pf * pf)9624 static void i40e_reenable_fdir_atr(struct i40e_pf *pf)
9625 {
9626 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) {
9627 /* ATR uses the same filtering logic as SB rules. It only
9628 * functions properly if the input set mask is at the default
9629 * settings. It is safe to restore the default input set
9630 * because there are no active TCPv4 filter rules.
9631 */
9632 i40e_write_fd_input_set(pf, LIBIE_FILTER_PCTYPE_NONF_IPV4_TCP,
9633 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
9634 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
9635
9636 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
9637 (I40E_DEBUG_FD & pf->hw.debug_mask))
9638 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n");
9639 }
9640 }
9641
9642 /**
9643 * i40e_delete_invalid_filter - Delete an invalid FDIR filter
9644 * @pf: board private structure
9645 * @filter: FDir filter to remove
9646 */
i40e_delete_invalid_filter(struct i40e_pf * pf,struct i40e_fdir_filter * filter)9647 static void i40e_delete_invalid_filter(struct i40e_pf *pf,
9648 struct i40e_fdir_filter *filter)
9649 {
9650 /* Update counters */
9651 pf->fdir_pf_active_filters--;
9652 pf->fd_inv = 0;
9653
9654 switch (filter->flow_type) {
9655 case TCP_V4_FLOW:
9656 pf->fd_tcp4_filter_cnt--;
9657 break;
9658 case UDP_V4_FLOW:
9659 pf->fd_udp4_filter_cnt--;
9660 break;
9661 case SCTP_V4_FLOW:
9662 pf->fd_sctp4_filter_cnt--;
9663 break;
9664 case TCP_V6_FLOW:
9665 pf->fd_tcp6_filter_cnt--;
9666 break;
9667 case UDP_V6_FLOW:
9668 pf->fd_udp6_filter_cnt--;
9669 break;
9670 case SCTP_V6_FLOW:
9671 pf->fd_udp6_filter_cnt--;
9672 break;
9673 case IP_USER_FLOW:
9674 switch (filter->ipl4_proto) {
9675 case IPPROTO_TCP:
9676 pf->fd_tcp4_filter_cnt--;
9677 break;
9678 case IPPROTO_UDP:
9679 pf->fd_udp4_filter_cnt--;
9680 break;
9681 case IPPROTO_SCTP:
9682 pf->fd_sctp4_filter_cnt--;
9683 break;
9684 case IPPROTO_IP:
9685 pf->fd_ip4_filter_cnt--;
9686 break;
9687 }
9688 break;
9689 case IPV6_USER_FLOW:
9690 switch (filter->ipl4_proto) {
9691 case IPPROTO_TCP:
9692 pf->fd_tcp6_filter_cnt--;
9693 break;
9694 case IPPROTO_UDP:
9695 pf->fd_udp6_filter_cnt--;
9696 break;
9697 case IPPROTO_SCTP:
9698 pf->fd_sctp6_filter_cnt--;
9699 break;
9700 case IPPROTO_IP:
9701 pf->fd_ip6_filter_cnt--;
9702 break;
9703 }
9704 break;
9705 }
9706
9707 /* Remove the filter from the list and free memory */
9708 hlist_del(&filter->fdir_node);
9709 kfree(filter);
9710 }
9711
9712 /**
9713 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled
9714 * @pf: board private structure
9715 **/
i40e_fdir_check_and_reenable(struct i40e_pf * pf)9716 void i40e_fdir_check_and_reenable(struct i40e_pf *pf)
9717 {
9718 struct i40e_fdir_filter *filter;
9719 u32 fcnt_prog, fcnt_avail;
9720 struct hlist_node *node;
9721
9722 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
9723 return;
9724
9725 /* Check if we have enough room to re-enable FDir SB capability. */
9726 fcnt_prog = i40e_get_global_fd_count(pf);
9727 fcnt_avail = pf->fdir_pf_filter_count;
9728 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) ||
9729 (pf->fd_add_err == 0) ||
9730 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt))
9731 i40e_reenable_fdir_sb(pf);
9732
9733 /* We should wait for even more space before re-enabling ATR.
9734 * Additionally, we cannot enable ATR as long as we still have TCP SB
9735 * rules active.
9736 */
9737 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) &&
9738 pf->fd_tcp4_filter_cnt == 0 && pf->fd_tcp6_filter_cnt == 0)
9739 i40e_reenable_fdir_atr(pf);
9740
9741 /* if hw had a problem adding a filter, delete it */
9742 if (pf->fd_inv > 0) {
9743 hlist_for_each_entry_safe(filter, node,
9744 &pf->fdir_filter_list, fdir_node)
9745 if (filter->fd_id == pf->fd_inv)
9746 i40e_delete_invalid_filter(pf, filter);
9747 }
9748 }
9749
9750 #define I40E_MIN_FD_FLUSH_INTERVAL 10
9751 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30
9752 /**
9753 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB
9754 * @pf: board private structure
9755 **/
i40e_fdir_flush_and_replay(struct i40e_pf * pf)9756 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf)
9757 {
9758 unsigned long min_flush_time;
9759 int flush_wait_retry = 50;
9760 bool disable_atr = false;
9761 int fd_room;
9762 int reg;
9763
9764 if (!time_after(jiffies, pf->fd_flush_timestamp +
9765 (I40E_MIN_FD_FLUSH_INTERVAL * HZ)))
9766 return;
9767
9768 /* If the flush is happening too quick and we have mostly SB rules we
9769 * should not re-enable ATR for some time.
9770 */
9771 min_flush_time = pf->fd_flush_timestamp +
9772 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ);
9773 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters;
9774
9775 if (!(time_after(jiffies, min_flush_time)) &&
9776 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) {
9777 if (I40E_DEBUG_FD & pf->hw.debug_mask)
9778 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n");
9779 disable_atr = true;
9780 }
9781
9782 pf->fd_flush_timestamp = jiffies;
9783 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
9784 /* flush all filters */
9785 wr32(&pf->hw, I40E_PFQF_CTL_1,
9786 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK);
9787 i40e_flush(&pf->hw);
9788 pf->fd_flush_cnt++;
9789 pf->fd_add_err = 0;
9790 do {
9791 /* Check FD flush status every 5-6msec */
9792 usleep_range(5000, 6000);
9793 reg = rd32(&pf->hw, I40E_PFQF_CTL_1);
9794 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK))
9795 break;
9796 } while (flush_wait_retry--);
9797 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) {
9798 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n");
9799 } else {
9800 /* replay sideband filters */
9801 i40e_fdir_filter_restore(i40e_pf_get_main_vsi(pf));
9802 if (!disable_atr && !pf->fd_tcp4_filter_cnt)
9803 clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
9804 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
9805 if (I40E_DEBUG_FD & pf->hw.debug_mask)
9806 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n");
9807 }
9808 }
9809
9810 /**
9811 * i40e_get_current_atr_cnt - Get the count of total FD ATR filters programmed
9812 * @pf: board private structure
9813 **/
i40e_get_current_atr_cnt(struct i40e_pf * pf)9814 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf)
9815 {
9816 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters;
9817 }
9818
9819 /**
9820 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table
9821 * @pf: board private structure
9822 **/
i40e_fdir_reinit_subtask(struct i40e_pf * pf)9823 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf)
9824 {
9825
9826 /* if interface is down do nothing */
9827 if (test_bit(__I40E_DOWN, pf->state))
9828 return;
9829
9830 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
9831 i40e_fdir_flush_and_replay(pf);
9832
9833 i40e_fdir_check_and_reenable(pf);
9834
9835 }
9836
9837 /**
9838 * i40e_vsi_link_event - notify VSI of a link event
9839 * @vsi: vsi to be notified
9840 * @link_up: link up or down
9841 **/
i40e_vsi_link_event(struct i40e_vsi * vsi,bool link_up)9842 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up)
9843 {
9844 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state))
9845 return;
9846
9847 switch (vsi->type) {
9848 case I40E_VSI_MAIN:
9849 if (!vsi->netdev || !vsi->netdev_registered)
9850 break;
9851
9852 if (link_up) {
9853 netif_carrier_on(vsi->netdev);
9854 netif_tx_wake_all_queues(vsi->netdev);
9855 } else {
9856 netif_carrier_off(vsi->netdev);
9857 netif_tx_stop_all_queues(vsi->netdev);
9858 }
9859 break;
9860
9861 case I40E_VSI_SRIOV:
9862 case I40E_VSI_VMDQ2:
9863 case I40E_VSI_CTRL:
9864 case I40E_VSI_IWARP:
9865 case I40E_VSI_MIRROR:
9866 default:
9867 /* there is no notification for other VSIs */
9868 break;
9869 }
9870 }
9871
9872 /**
9873 * i40e_veb_link_event - notify elements on the veb of a link event
9874 * @veb: veb to be notified
9875 * @link_up: link up or down
9876 **/
i40e_veb_link_event(struct i40e_veb * veb,bool link_up)9877 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up)
9878 {
9879 struct i40e_vsi *vsi;
9880 struct i40e_pf *pf;
9881 int i;
9882
9883 if (!veb || !veb->pf)
9884 return;
9885 pf = veb->pf;
9886
9887 /* Send link event to contained VSIs */
9888 i40e_pf_for_each_vsi(pf, i, vsi)
9889 if (vsi->uplink_seid == veb->seid)
9890 i40e_vsi_link_event(vsi, link_up);
9891 }
9892
9893 /**
9894 * i40e_link_event - Update netif_carrier status
9895 * @pf: board private structure
9896 **/
i40e_link_event(struct i40e_pf * pf)9897 static void i40e_link_event(struct i40e_pf *pf)
9898 {
9899 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
9900 struct i40e_veb *veb = i40e_pf_get_main_veb(pf);
9901 u8 new_link_speed, old_link_speed;
9902 bool new_link, old_link;
9903 int status;
9904 #ifdef CONFIG_I40E_DCB
9905 int err;
9906 #endif /* CONFIG_I40E_DCB */
9907
9908 /* set this to force the get_link_status call to refresh state */
9909 pf->hw.phy.get_link_info = true;
9910 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP);
9911 status = i40e_get_link_status(&pf->hw, &new_link);
9912
9913 /* On success, disable temp link polling */
9914 if (status == 0) {
9915 clear_bit(__I40E_TEMP_LINK_POLLING, pf->state);
9916 } else {
9917 /* Enable link polling temporarily until i40e_get_link_status
9918 * returns 0
9919 */
9920 set_bit(__I40E_TEMP_LINK_POLLING, pf->state);
9921 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n",
9922 status);
9923 return;
9924 }
9925
9926 old_link_speed = pf->hw.phy.link_info_old.link_speed;
9927 new_link_speed = pf->hw.phy.link_info.link_speed;
9928
9929 if (new_link == old_link &&
9930 new_link_speed == old_link_speed &&
9931 (test_bit(__I40E_VSI_DOWN, vsi->state) ||
9932 new_link == netif_carrier_ok(vsi->netdev)))
9933 return;
9934
9935 if (!new_link && old_link)
9936 pf->link_down_events++;
9937
9938 i40e_print_link_message(vsi, new_link);
9939
9940 /* Notify the base of the switch tree connected to
9941 * the link. Floating VEBs are not notified.
9942 */
9943 if (veb)
9944 i40e_veb_link_event(veb, new_link);
9945 else
9946 i40e_vsi_link_event(vsi, new_link);
9947
9948 if (pf->vf)
9949 i40e_vc_notify_link_state(pf);
9950
9951 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags))
9952 i40e_ptp_set_increment(pf);
9953 #ifdef CONFIG_I40E_DCB
9954 if (new_link == old_link)
9955 return;
9956 /* Not SW DCB so firmware will take care of default settings */
9957 if (pf->dcbx_cap & DCB_CAP_DCBX_LLD_MANAGED)
9958 return;
9959
9960 /* We cover here only link down, as after link up in case of SW DCB
9961 * SW LLDP agent will take care of setting it up
9962 */
9963 if (!new_link) {
9964 dev_dbg(&pf->pdev->dev, "Reconfig DCB to single TC as result of Link Down\n");
9965 memset(&pf->tmp_cfg, 0, sizeof(pf->tmp_cfg));
9966 err = i40e_dcb_sw_default_config(pf);
9967 if (err) {
9968 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
9969 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
9970 } else {
9971 pf->dcbx_cap = DCB_CAP_DCBX_HOST |
9972 DCB_CAP_DCBX_VER_IEEE;
9973 set_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
9974 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
9975 }
9976 }
9977 #endif /* CONFIG_I40E_DCB */
9978 }
9979
9980 /**
9981 * i40e_watchdog_subtask - periodic checks not using event driven response
9982 * @pf: board private structure
9983 **/
i40e_watchdog_subtask(struct i40e_pf * pf)9984 static void i40e_watchdog_subtask(struct i40e_pf *pf)
9985 {
9986 struct i40e_vsi *vsi;
9987 struct i40e_veb *veb;
9988 int i;
9989
9990 /* if interface is down do nothing */
9991 if (test_bit(__I40E_DOWN, pf->state) ||
9992 test_bit(__I40E_CONFIG_BUSY, pf->state))
9993 return;
9994
9995 /* make sure we don't do these things too often */
9996 if (time_before(jiffies, (pf->service_timer_previous +
9997 pf->service_timer_period)))
9998 return;
9999 pf->service_timer_previous = jiffies;
10000
10001 if (test_bit(I40E_FLAG_LINK_POLLING_ENA, pf->flags) ||
10002 test_bit(__I40E_TEMP_LINK_POLLING, pf->state))
10003 i40e_link_event(pf);
10004
10005 /* Update the stats for active netdevs so the network stack
10006 * can look at updated numbers whenever it cares to
10007 */
10008 i40e_pf_for_each_vsi(pf, i, vsi)
10009 if (vsi->netdev)
10010 i40e_update_stats(vsi);
10011
10012 if (test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags)) {
10013 /* Update the stats for the active switching components */
10014 i40e_pf_for_each_veb(pf, i, veb)
10015 i40e_update_veb_stats(veb);
10016 }
10017
10018 i40e_ptp_rx_hang(pf);
10019 i40e_ptp_tx_hang(pf);
10020 }
10021
10022 /**
10023 * i40e_reset_subtask - Set up for resetting the device and driver
10024 * @pf: board private structure
10025 **/
i40e_reset_subtask(struct i40e_pf * pf)10026 static void i40e_reset_subtask(struct i40e_pf *pf)
10027 {
10028 u32 reset_flags = 0;
10029
10030 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) {
10031 reset_flags |= BIT(__I40E_REINIT_REQUESTED);
10032 clear_bit(__I40E_REINIT_REQUESTED, pf->state);
10033 }
10034 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) {
10035 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED);
10036 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state);
10037 }
10038 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) {
10039 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED);
10040 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
10041 }
10042 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) {
10043 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED);
10044 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
10045 }
10046 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) {
10047 reset_flags |= BIT(__I40E_DOWN_REQUESTED);
10048 clear_bit(__I40E_DOWN_REQUESTED, pf->state);
10049 }
10050
10051 /* If there's a recovery already waiting, it takes
10052 * precedence before starting a new reset sequence.
10053 */
10054 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) {
10055 i40e_prep_for_reset(pf);
10056 i40e_reset(pf);
10057 i40e_rebuild(pf, false, false);
10058 }
10059
10060 /* If we're already down or resetting, just bail */
10061 if (reset_flags &&
10062 !test_bit(__I40E_DOWN, pf->state) &&
10063 !test_bit(__I40E_CONFIG_BUSY, pf->state)) {
10064 i40e_do_reset(pf, reset_flags, false);
10065 }
10066 }
10067
10068 /**
10069 * i40e_handle_link_event - Handle link event
10070 * @pf: board private structure
10071 * @e: event info posted on ARQ
10072 **/
i40e_handle_link_event(struct i40e_pf * pf,struct i40e_arq_event_info * e)10073 static void i40e_handle_link_event(struct i40e_pf *pf,
10074 struct i40e_arq_event_info *e)
10075 {
10076 struct i40e_aqc_get_link_status *status = libie_aq_raw(&e->desc);
10077
10078 /* Do a new status request to re-enable LSE reporting
10079 * and load new status information into the hw struct
10080 * This completely ignores any state information
10081 * in the ARQ event info, instead choosing to always
10082 * issue the AQ update link status command.
10083 */
10084 i40e_link_event(pf);
10085
10086 /* Check if module meets thermal requirements */
10087 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) {
10088 dev_err(&pf->pdev->dev,
10089 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n");
10090 dev_err(&pf->pdev->dev,
10091 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
10092 } else {
10093 /* check for unqualified module, if link is down, suppress
10094 * the message if link was forced to be down.
10095 */
10096 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) &&
10097 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) &&
10098 (!(status->link_info & I40E_AQ_LINK_UP)) &&
10099 (!test_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))) {
10100 dev_err(&pf->pdev->dev,
10101 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n");
10102 dev_err(&pf->pdev->dev,
10103 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
10104 }
10105 }
10106 }
10107
10108 /**
10109 * i40e_clean_adminq_subtask - Clean the AdminQ rings
10110 * @pf: board private structure
10111 **/
i40e_clean_adminq_subtask(struct i40e_pf * pf)10112 static void i40e_clean_adminq_subtask(struct i40e_pf *pf)
10113 {
10114 struct i40e_arq_event_info event;
10115 struct i40e_hw *hw = &pf->hw;
10116 u16 pending, i = 0;
10117 u16 opcode;
10118 u32 oldval;
10119 int ret;
10120 u32 val;
10121
10122 /* Do not run clean AQ when PF reset fails */
10123 if (test_bit(__I40E_RESET_FAILED, pf->state))
10124 return;
10125
10126 /* check for error indications */
10127 val = rd32(&pf->hw, I40E_PF_ARQLEN);
10128 oldval = val;
10129 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) {
10130 if (hw->debug_mask & I40E_DEBUG_AQ)
10131 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n");
10132 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK;
10133 }
10134 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) {
10135 if (hw->debug_mask & I40E_DEBUG_AQ)
10136 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n");
10137 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK;
10138 pf->arq_overflows++;
10139 }
10140 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) {
10141 if (hw->debug_mask & I40E_DEBUG_AQ)
10142 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n");
10143 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK;
10144 }
10145 if (oldval != val)
10146 wr32(&pf->hw, I40E_PF_ARQLEN, val);
10147
10148 val = rd32(&pf->hw, I40E_PF_ATQLEN);
10149 oldval = val;
10150 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) {
10151 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
10152 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n");
10153 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK;
10154 }
10155 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) {
10156 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
10157 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n");
10158 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK;
10159 }
10160 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) {
10161 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
10162 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n");
10163 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK;
10164 }
10165 if (oldval != val)
10166 wr32(&pf->hw, I40E_PF_ATQLEN, val);
10167
10168 event.buf_len = I40E_MAX_AQ_BUF_SIZE;
10169 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
10170 if (!event.msg_buf)
10171 return;
10172
10173 do {
10174 ret = i40e_clean_arq_element(hw, &event, &pending);
10175 if (ret == -EALREADY)
10176 break;
10177 else if (ret) {
10178 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret);
10179 break;
10180 }
10181
10182 opcode = le16_to_cpu(event.desc.opcode);
10183 switch (opcode) {
10184
10185 case i40e_aqc_opc_get_link_status:
10186 rtnl_lock();
10187 i40e_handle_link_event(pf, &event);
10188 rtnl_unlock();
10189 break;
10190 case i40e_aqc_opc_send_msg_to_pf:
10191 ret = i40e_vc_process_vf_msg(pf,
10192 le16_to_cpu(event.desc.retval),
10193 le32_to_cpu(event.desc.cookie_high),
10194 le32_to_cpu(event.desc.cookie_low),
10195 event.msg_buf,
10196 event.msg_len);
10197 break;
10198 case i40e_aqc_opc_lldp_update_mib:
10199 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n");
10200 #ifdef CONFIG_I40E_DCB
10201 rtnl_lock();
10202 i40e_handle_lldp_event(pf, &event);
10203 rtnl_unlock();
10204 #endif /* CONFIG_I40E_DCB */
10205 break;
10206 case i40e_aqc_opc_event_lan_overflow:
10207 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n");
10208 i40e_handle_lan_overflow_event(pf, &event);
10209 break;
10210 case i40e_aqc_opc_send_msg_to_peer:
10211 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n");
10212 break;
10213 case i40e_aqc_opc_nvm_erase:
10214 case i40e_aqc_opc_nvm_update:
10215 case i40e_aqc_opc_oem_post_update:
10216 i40e_debug(&pf->hw, I40E_DEBUG_NVM,
10217 "ARQ NVM operation 0x%04x completed\n",
10218 opcode);
10219 break;
10220 default:
10221 dev_info(&pf->pdev->dev,
10222 "ARQ: Unknown event 0x%04x ignored\n",
10223 opcode);
10224 break;
10225 }
10226 } while (i++ < I40E_AQ_WORK_LIMIT);
10227
10228 if (i < I40E_AQ_WORK_LIMIT)
10229 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
10230
10231 /* re-enable Admin queue interrupt cause */
10232 val = rd32(hw, I40E_PFINT_ICR0_ENA);
10233 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
10234 wr32(hw, I40E_PFINT_ICR0_ENA, val);
10235 i40e_flush(hw);
10236
10237 kfree(event.msg_buf);
10238 }
10239
10240 /**
10241 * i40e_verify_eeprom - make sure eeprom is good to use
10242 * @pf: board private structure
10243 **/
i40e_verify_eeprom(struct i40e_pf * pf)10244 static void i40e_verify_eeprom(struct i40e_pf *pf)
10245 {
10246 int err;
10247
10248 err = i40e_diag_eeprom_test(&pf->hw);
10249 if (err) {
10250 /* retry in case of garbage read */
10251 err = i40e_diag_eeprom_test(&pf->hw);
10252 if (err) {
10253 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n",
10254 err);
10255 set_bit(__I40E_BAD_EEPROM, pf->state);
10256 }
10257 }
10258
10259 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) {
10260 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n");
10261 clear_bit(__I40E_BAD_EEPROM, pf->state);
10262 }
10263 }
10264
10265 /**
10266 * i40e_enable_pf_switch_lb
10267 * @pf: pointer to the PF structure
10268 *
10269 * enable switch loop back or die - no point in a return value
10270 **/
i40e_enable_pf_switch_lb(struct i40e_pf * pf)10271 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf)
10272 {
10273 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
10274 struct i40e_vsi_context ctxt;
10275 int ret;
10276
10277 ctxt.seid = pf->main_vsi_seid;
10278 ctxt.pf_num = pf->hw.pf_id;
10279 ctxt.vf_num = 0;
10280 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
10281 if (ret) {
10282 dev_info(&pf->pdev->dev,
10283 "couldn't get PF vsi config, err %pe aq_err %s\n",
10284 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
10285 return;
10286 }
10287 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
10288 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
10289 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
10290
10291 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
10292 if (ret) {
10293 dev_info(&pf->pdev->dev,
10294 "update vsi switch failed, err %pe aq_err %s\n",
10295 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
10296 }
10297 }
10298
10299 /**
10300 * i40e_disable_pf_switch_lb
10301 * @pf: pointer to the PF structure
10302 *
10303 * disable switch loop back or die - no point in a return value
10304 **/
i40e_disable_pf_switch_lb(struct i40e_pf * pf)10305 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf)
10306 {
10307 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
10308 struct i40e_vsi_context ctxt;
10309 int ret;
10310
10311 ctxt.seid = pf->main_vsi_seid;
10312 ctxt.pf_num = pf->hw.pf_id;
10313 ctxt.vf_num = 0;
10314 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
10315 if (ret) {
10316 dev_info(&pf->pdev->dev,
10317 "couldn't get PF vsi config, err %pe aq_err %s\n",
10318 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
10319 return;
10320 }
10321 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
10322 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
10323 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
10324
10325 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
10326 if (ret) {
10327 dev_info(&pf->pdev->dev,
10328 "update vsi switch failed, err %pe aq_err %s\n",
10329 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
10330 }
10331 }
10332
10333 /**
10334 * i40e_config_bridge_mode - Configure the HW bridge mode
10335 * @veb: pointer to the bridge instance
10336 *
10337 * Configure the loop back mode for the LAN VSI that is downlink to the
10338 * specified HW bridge instance. It is expected this function is called
10339 * when a new HW bridge is instantiated.
10340 **/
i40e_config_bridge_mode(struct i40e_veb * veb)10341 static void i40e_config_bridge_mode(struct i40e_veb *veb)
10342 {
10343 struct i40e_pf *pf = veb->pf;
10344
10345 if (pf->hw.debug_mask & I40E_DEBUG_LAN)
10346 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n",
10347 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB");
10348 if (veb->bridge_mode & BRIDGE_MODE_VEPA)
10349 i40e_disable_pf_switch_lb(pf);
10350 else
10351 i40e_enable_pf_switch_lb(pf);
10352 }
10353
10354 /**
10355 * i40e_reconstitute_veb - rebuild the VEB and VSIs connected to it
10356 * @veb: pointer to the VEB instance
10357 *
10358 * This is a function that builds the attached VSIs. We track the connections
10359 * through our own index numbers because the seid's from the HW could change
10360 * across the reset.
10361 **/
i40e_reconstitute_veb(struct i40e_veb * veb)10362 static int i40e_reconstitute_veb(struct i40e_veb *veb)
10363 {
10364 struct i40e_vsi *ctl_vsi = NULL;
10365 struct i40e_pf *pf = veb->pf;
10366 struct i40e_vsi *vsi;
10367 int v, ret;
10368
10369 /* As we do not maintain PV (port virtualizer) switch element then
10370 * there can be only one non-floating VEB that have uplink to MAC SEID
10371 * and its control VSI is the main one.
10372 */
10373 if (WARN_ON(veb->uplink_seid && veb->uplink_seid != pf->mac_seid)) {
10374 dev_err(&pf->pdev->dev,
10375 "Invalid uplink SEID for VEB %d\n", veb->idx);
10376 return -ENOENT;
10377 }
10378
10379 if (veb->uplink_seid == pf->mac_seid) {
10380 /* Check that the LAN VSI has VEB owning flag set */
10381 ctl_vsi = i40e_pf_get_main_vsi(pf);
10382
10383 if (WARN_ON(ctl_vsi->veb_idx != veb->idx ||
10384 !(ctl_vsi->flags & I40E_VSI_FLAG_VEB_OWNER))) {
10385 dev_err(&pf->pdev->dev,
10386 "Invalid control VSI for VEB %d\n", veb->idx);
10387 return -ENOENT;
10388 }
10389
10390 /* Add the control VSI to switch */
10391 ret = i40e_add_vsi(ctl_vsi);
10392 if (ret) {
10393 dev_err(&pf->pdev->dev,
10394 "Rebuild of owner VSI for VEB %d failed: %d\n",
10395 veb->idx, ret);
10396 return ret;
10397 }
10398
10399 i40e_vsi_reset_stats(ctl_vsi);
10400 }
10401
10402 /* create the VEB in the switch and move the VSI onto the VEB */
10403 ret = i40e_add_veb(veb, ctl_vsi);
10404 if (ret)
10405 return ret;
10406
10407 if (veb->uplink_seid) {
10408 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags))
10409 veb->bridge_mode = BRIDGE_MODE_VEB;
10410 else
10411 veb->bridge_mode = BRIDGE_MODE_VEPA;
10412 i40e_config_bridge_mode(veb);
10413 }
10414
10415 /* create the remaining VSIs attached to this VEB */
10416 i40e_pf_for_each_vsi(pf, v, vsi) {
10417 if (vsi == ctl_vsi)
10418 continue;
10419
10420 if (vsi->veb_idx == veb->idx) {
10421 vsi->uplink_seid = veb->seid;
10422 ret = i40e_add_vsi(vsi);
10423 if (ret) {
10424 dev_info(&pf->pdev->dev,
10425 "rebuild of vsi_idx %d failed: %d\n",
10426 v, ret);
10427 return ret;
10428 }
10429 i40e_vsi_reset_stats(vsi);
10430 }
10431 }
10432
10433 return ret;
10434 }
10435
10436 /**
10437 * i40e_get_capabilities - get info about the HW
10438 * @pf: the PF struct
10439 * @list_type: AQ capability to be queried
10440 **/
i40e_get_capabilities(struct i40e_pf * pf,enum i40e_admin_queue_opc list_type)10441 static int i40e_get_capabilities(struct i40e_pf *pf,
10442 enum i40e_admin_queue_opc list_type)
10443 {
10444 struct libie_aqc_list_caps_elem *cap_buf;
10445 u16 data_size;
10446 int buf_len;
10447 int err;
10448
10449 buf_len = 40 * sizeof(struct libie_aqc_list_caps_elem);
10450 do {
10451 cap_buf = kzalloc(buf_len, GFP_KERNEL);
10452 if (!cap_buf)
10453 return -ENOMEM;
10454
10455 /* this loads the data into the hw struct for us */
10456 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len,
10457 &data_size, list_type,
10458 NULL);
10459 /* data loaded, buffer no longer needed */
10460 kfree(cap_buf);
10461
10462 if (pf->hw.aq.asq_last_status == LIBIE_AQ_RC_ENOMEM) {
10463 /* retry with a larger buffer */
10464 buf_len = data_size;
10465 } else if (pf->hw.aq.asq_last_status != LIBIE_AQ_RC_OK || err) {
10466 dev_info(&pf->pdev->dev,
10467 "capability discovery failed, err %pe aq_err %s\n",
10468 ERR_PTR(err),
10469 libie_aq_str(pf->hw.aq.asq_last_status));
10470 return -ENODEV;
10471 }
10472 } while (err);
10473
10474 if (pf->hw.debug_mask & I40E_DEBUG_USER) {
10475 if (list_type == i40e_aqc_opc_list_func_capabilities) {
10476 dev_info(&pf->pdev->dev,
10477 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n",
10478 pf->hw.pf_id, pf->hw.func_caps.num_vfs,
10479 pf->hw.func_caps.num_msix_vectors,
10480 pf->hw.func_caps.num_msix_vectors_vf,
10481 pf->hw.func_caps.fd_filters_guaranteed,
10482 pf->hw.func_caps.fd_filters_best_effort,
10483 pf->hw.func_caps.num_tx_qp,
10484 pf->hw.func_caps.num_vsis);
10485 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) {
10486 dev_info(&pf->pdev->dev,
10487 "switch_mode=0x%04x, function_valid=0x%08x\n",
10488 pf->hw.dev_caps.switch_mode,
10489 pf->hw.dev_caps.valid_functions);
10490 dev_info(&pf->pdev->dev,
10491 "SR-IOV=%d, num_vfs for all function=%u\n",
10492 pf->hw.dev_caps.sr_iov_1_1,
10493 pf->hw.dev_caps.num_vfs);
10494 dev_info(&pf->pdev->dev,
10495 "num_vsis=%u, num_rx:%u, num_tx=%u\n",
10496 pf->hw.dev_caps.num_vsis,
10497 pf->hw.dev_caps.num_rx_qp,
10498 pf->hw.dev_caps.num_tx_qp);
10499 }
10500 }
10501 if (list_type == i40e_aqc_opc_list_func_capabilities) {
10502 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \
10503 + pf->hw.func_caps.num_vfs)
10504 if (pf->hw.revision_id == 0 &&
10505 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) {
10506 dev_info(&pf->pdev->dev,
10507 "got num_vsis %d, setting num_vsis to %d\n",
10508 pf->hw.func_caps.num_vsis, DEF_NUM_VSI);
10509 pf->hw.func_caps.num_vsis = DEF_NUM_VSI;
10510 }
10511 }
10512 return 0;
10513 }
10514
10515 static int i40e_vsi_clear(struct i40e_vsi *vsi);
10516
10517 /**
10518 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband
10519 * @pf: board private structure
10520 **/
i40e_fdir_sb_setup(struct i40e_pf * pf)10521 static void i40e_fdir_sb_setup(struct i40e_pf *pf)
10522 {
10523 struct i40e_vsi *main_vsi, *vsi;
10524
10525 /* quick workaround for an NVM issue that leaves a critical register
10526 * uninitialized
10527 */
10528 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) {
10529 static const u32 hkey[] = {
10530 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36,
10531 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb,
10532 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21,
10533 0x95b3a76d};
10534 int i;
10535
10536 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++)
10537 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]);
10538 }
10539
10540 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags))
10541 return;
10542
10543 /* find existing VSI and see if it needs configuring */
10544 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
10545
10546 /* create a new VSI if none exists */
10547 if (!vsi) {
10548 main_vsi = i40e_pf_get_main_vsi(pf);
10549 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, main_vsi->seid, 0);
10550 if (!vsi) {
10551 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n");
10552 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
10553 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
10554 return;
10555 }
10556 }
10557
10558 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring);
10559 }
10560
10561 /**
10562 * i40e_fdir_teardown - release the Flow Director resources
10563 * @pf: board private structure
10564 **/
i40e_fdir_teardown(struct i40e_pf * pf)10565 static void i40e_fdir_teardown(struct i40e_pf *pf)
10566 {
10567 struct i40e_vsi *vsi;
10568
10569 i40e_fdir_filter_exit(pf);
10570 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
10571 if (vsi)
10572 i40e_vsi_release(vsi);
10573 }
10574
10575 /**
10576 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs
10577 * @vsi: PF main vsi
10578 * @seid: seid of main or channel VSIs
10579 *
10580 * Rebuilds cloud filters associated with main VSI and channel VSIs if they
10581 * existed before reset
10582 **/
i40e_rebuild_cloud_filters(struct i40e_vsi * vsi,u16 seid)10583 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid)
10584 {
10585 struct i40e_cloud_filter *cfilter;
10586 struct i40e_pf *pf = vsi->back;
10587 struct hlist_node *node;
10588 int ret;
10589
10590 /* Add cloud filters back if they exist */
10591 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list,
10592 cloud_node) {
10593 if (cfilter->seid != seid)
10594 continue;
10595
10596 if (cfilter->dst_port)
10597 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter,
10598 true);
10599 else
10600 ret = i40e_add_del_cloud_filter(vsi, cfilter, true);
10601
10602 if (ret) {
10603 dev_dbg(&pf->pdev->dev,
10604 "Failed to rebuild cloud filter, err %pe aq_err %s\n",
10605 ERR_PTR(ret),
10606 libie_aq_str(pf->hw.aq.asq_last_status));
10607 return ret;
10608 }
10609 }
10610 return 0;
10611 }
10612
10613 /**
10614 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset
10615 * @vsi: PF main vsi
10616 *
10617 * Rebuilds channel VSIs if they existed before reset
10618 **/
i40e_rebuild_channels(struct i40e_vsi * vsi)10619 static int i40e_rebuild_channels(struct i40e_vsi *vsi)
10620 {
10621 struct i40e_channel *ch, *ch_tmp;
10622 int ret;
10623
10624 if (list_empty(&vsi->ch_list))
10625 return 0;
10626
10627 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
10628 if (!ch->initialized)
10629 break;
10630 /* Proceed with creation of channel (VMDq2) VSI */
10631 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch);
10632 if (ret) {
10633 dev_info(&vsi->back->pdev->dev,
10634 "failed to rebuild channels using uplink_seid %u\n",
10635 vsi->uplink_seid);
10636 return ret;
10637 }
10638 /* Reconfigure TX queues using QTX_CTL register */
10639 ret = i40e_channel_config_tx_ring(vsi->back, vsi, ch);
10640 if (ret) {
10641 dev_info(&vsi->back->pdev->dev,
10642 "failed to configure TX rings for channel %u\n",
10643 ch->seid);
10644 return ret;
10645 }
10646 /* update 'next_base_queue' */
10647 vsi->next_base_queue = vsi->next_base_queue +
10648 ch->num_queue_pairs;
10649 if (ch->max_tx_rate) {
10650 u64 credits = ch->max_tx_rate;
10651
10652 if (i40e_set_bw_limit(vsi, ch->seid,
10653 ch->max_tx_rate))
10654 return -EINVAL;
10655
10656 do_div(credits, I40E_BW_CREDIT_DIVISOR);
10657 dev_dbg(&vsi->back->pdev->dev,
10658 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
10659 ch->max_tx_rate,
10660 credits,
10661 ch->seid);
10662 }
10663 ret = i40e_rebuild_cloud_filters(vsi, ch->seid);
10664 if (ret) {
10665 dev_dbg(&vsi->back->pdev->dev,
10666 "Failed to rebuild cloud filters for channel VSI %u\n",
10667 ch->seid);
10668 return ret;
10669 }
10670 }
10671 return 0;
10672 }
10673
10674 /**
10675 * i40e_clean_xps_state - clean xps state for every tx_ring
10676 * @vsi: ptr to the VSI
10677 **/
i40e_clean_xps_state(struct i40e_vsi * vsi)10678 static void i40e_clean_xps_state(struct i40e_vsi *vsi)
10679 {
10680 int i;
10681
10682 if (vsi->tx_rings)
10683 for (i = 0; i < vsi->num_queue_pairs; i++)
10684 if (vsi->tx_rings[i])
10685 clear_bit(__I40E_TX_XPS_INIT_DONE,
10686 vsi->tx_rings[i]->state);
10687 }
10688
10689 /**
10690 * i40e_prep_for_reset - prep for the core to reset
10691 * @pf: board private structure
10692 *
10693 * Close up the VFs and other things in prep for PF Reset.
10694 **/
i40e_prep_for_reset(struct i40e_pf * pf)10695 static void i40e_prep_for_reset(struct i40e_pf *pf)
10696 {
10697 struct i40e_hw *hw = &pf->hw;
10698 struct i40e_vsi *vsi;
10699 int ret = 0;
10700 u32 v;
10701
10702 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
10703 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
10704 return;
10705 if (i40e_check_asq_alive(&pf->hw))
10706 i40e_vc_notify_reset(pf);
10707
10708 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
10709
10710 /* quiesce the VSIs and their queues that are not already DOWN */
10711 i40e_pf_quiesce_all_vsi(pf);
10712
10713 i40e_pf_for_each_vsi(pf, v, vsi) {
10714 i40e_clean_xps_state(vsi);
10715 vsi->seid = 0;
10716 }
10717
10718 i40e_shutdown_adminq(&pf->hw);
10719
10720 /* call shutdown HMC */
10721 if (hw->hmc.hmc_obj) {
10722 ret = i40e_shutdown_lan_hmc(hw);
10723 if (ret)
10724 dev_warn(&pf->pdev->dev,
10725 "shutdown_lan_hmc failed: %d\n", ret);
10726 }
10727
10728 /* Save the current PTP time so that we can restore the time after the
10729 * reset completes.
10730 */
10731 i40e_ptp_save_hw_time(pf);
10732 }
10733
10734 /**
10735 * i40e_send_version - update firmware with driver version
10736 * @pf: PF struct
10737 */
i40e_send_version(struct i40e_pf * pf)10738 static void i40e_send_version(struct i40e_pf *pf)
10739 {
10740 struct i40e_driver_version dv;
10741
10742 dv.major_version = 0xff;
10743 dv.minor_version = 0xff;
10744 dv.build_version = 0xff;
10745 dv.subbuild_version = 0;
10746 strscpy(dv.driver_string, UTS_RELEASE, sizeof(dv.driver_string));
10747 i40e_aq_send_driver_version(&pf->hw, &dv, NULL);
10748 }
10749
10750 /**
10751 * i40e_get_oem_version - get OEM specific version information
10752 * @hw: pointer to the hardware structure
10753 **/
i40e_get_oem_version(struct i40e_hw * hw)10754 static void i40e_get_oem_version(struct i40e_hw *hw)
10755 {
10756 u16 block_offset = 0xffff;
10757 u16 block_length = 0;
10758 u16 capabilities = 0;
10759 u16 gen_snap = 0;
10760 u16 release = 0;
10761
10762 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B
10763 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00
10764 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01
10765 #define I40E_NVM_OEM_GEN_OFFSET 0x02
10766 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03
10767 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F
10768 #define I40E_NVM_OEM_LENGTH 3
10769
10770 /* Check if pointer to OEM version block is valid. */
10771 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset);
10772 if (block_offset == 0xffff)
10773 return;
10774
10775 /* Check if OEM version block has correct length. */
10776 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET,
10777 &block_length);
10778 if (block_length < I40E_NVM_OEM_LENGTH)
10779 return;
10780
10781 /* Check if OEM version format is as expected. */
10782 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET,
10783 &capabilities);
10784 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0)
10785 return;
10786
10787 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET,
10788 &gen_snap);
10789 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET,
10790 &release);
10791 hw->nvm.oem_ver =
10792 FIELD_PREP(I40E_OEM_GEN_MASK | I40E_OEM_SNAP_MASK, gen_snap) |
10793 FIELD_PREP(I40E_OEM_RELEASE_MASK, release);
10794 hw->nvm.eetrack = I40E_OEM_EETRACK_ID;
10795 }
10796
10797 /**
10798 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen
10799 * @pf: board private structure
10800 **/
i40e_reset(struct i40e_pf * pf)10801 static int i40e_reset(struct i40e_pf *pf)
10802 {
10803 struct i40e_hw *hw = &pf->hw;
10804 int ret;
10805
10806 ret = i40e_pf_reset(hw);
10807 if (ret) {
10808 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret);
10809 set_bit(__I40E_RESET_FAILED, pf->state);
10810 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
10811 } else {
10812 pf->pfr_count++;
10813 }
10814 return ret;
10815 }
10816
10817 /**
10818 * i40e_rebuild - rebuild using a saved config
10819 * @pf: board private structure
10820 * @reinit: if the Main VSI needs to re-initialized.
10821 * @lock_acquired: indicates whether or not the lock has been acquired
10822 * before this function was called.
10823 **/
i40e_rebuild(struct i40e_pf * pf,bool reinit,bool lock_acquired)10824 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired)
10825 {
10826 const bool is_recovery_mode_reported = i40e_check_recovery_mode(pf);
10827 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
10828 struct i40e_hw *hw = &pf->hw;
10829 struct i40e_veb *veb;
10830 int ret;
10831 u32 val;
10832 int v;
10833
10834 if (test_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state) &&
10835 is_recovery_mode_reported)
10836 i40e_set_ethtool_ops(vsi->netdev);
10837
10838 if (test_bit(__I40E_DOWN, pf->state) &&
10839 !test_bit(__I40E_RECOVERY_MODE, pf->state))
10840 goto clear_recovery;
10841 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n");
10842
10843 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */
10844 ret = i40e_init_adminq(&pf->hw);
10845 if (ret) {
10846 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %pe aq_err %s\n",
10847 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
10848 goto clear_recovery;
10849 }
10850 i40e_get_oem_version(&pf->hw);
10851
10852 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state)) {
10853 /* The following delay is necessary for firmware update. */
10854 mdelay(1000);
10855 }
10856
10857 /* re-verify the eeprom if we just had an EMP reset */
10858 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state))
10859 i40e_verify_eeprom(pf);
10860
10861 /* if we are going out of or into recovery mode we have to act
10862 * accordingly with regard to resources initialization
10863 * and deinitialization
10864 */
10865 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) {
10866 if (i40e_get_capabilities(pf,
10867 i40e_aqc_opc_list_func_capabilities))
10868 goto end_unlock;
10869
10870 if (is_recovery_mode_reported) {
10871 /* we're staying in recovery mode so we'll reinitialize
10872 * misc vector here
10873 */
10874 if (i40e_setup_misc_vector_for_recovery_mode(pf))
10875 goto end_unlock;
10876 } else {
10877 if (!lock_acquired)
10878 rtnl_lock();
10879 /* we're going out of recovery mode so we'll free
10880 * the IRQ allocated specifically for recovery mode
10881 * and restore the interrupt scheme
10882 */
10883 free_irq(pf->pdev->irq, pf);
10884 i40e_clear_interrupt_scheme(pf);
10885 if (i40e_restore_interrupt_scheme(pf))
10886 goto end_unlock;
10887 }
10888
10889 /* tell the firmware that we're starting */
10890 i40e_send_version(pf);
10891
10892 /* bail out in case recovery mode was detected, as there is
10893 * no need for further configuration.
10894 */
10895 goto end_unlock;
10896 }
10897
10898 i40e_clear_pxe_mode(hw);
10899 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities);
10900 if (ret)
10901 goto end_core_reset;
10902
10903 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
10904 hw->func_caps.num_rx_qp, 0, 0);
10905 if (ret) {
10906 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret);
10907 goto end_core_reset;
10908 }
10909 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
10910 if (ret) {
10911 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret);
10912 goto end_core_reset;
10913 }
10914
10915 #ifdef CONFIG_I40E_DCB
10916 /* Enable FW to write a default DCB config on link-up
10917 * unless I40E_FLAG_TC_MQPRIO was enabled or DCB
10918 * is not supported with new link speed
10919 */
10920 if (i40e_is_tc_mqprio_enabled(pf)) {
10921 i40e_aq_set_dcb_parameters(hw, false, NULL);
10922 } else {
10923 if (I40E_IS_X710TL_DEVICE(hw->device_id) &&
10924 (hw->phy.link_info.link_speed &
10925 (I40E_LINK_SPEED_2_5GB | I40E_LINK_SPEED_5GB))) {
10926 i40e_aq_set_dcb_parameters(hw, false, NULL);
10927 dev_warn(&pf->pdev->dev,
10928 "DCB is not supported for X710-T*L 2.5/5G speeds\n");
10929 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
10930 } else {
10931 i40e_aq_set_dcb_parameters(hw, true, NULL);
10932 ret = i40e_init_pf_dcb(pf);
10933 if (ret) {
10934 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n",
10935 ret);
10936 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
10937 /* Continue without DCB enabled */
10938 }
10939 }
10940 }
10941
10942 #endif /* CONFIG_I40E_DCB */
10943 if (!lock_acquired)
10944 rtnl_lock();
10945 ret = i40e_setup_pf_switch(pf, reinit, true);
10946 if (ret)
10947 goto end_unlock;
10948
10949 /* The driver only wants link up/down and module qualification
10950 * reports from firmware. Note the negative logic.
10951 */
10952 ret = i40e_aq_set_phy_int_mask(&pf->hw,
10953 ~(I40E_AQ_EVENT_LINK_UPDOWN |
10954 I40E_AQ_EVENT_MEDIA_NA |
10955 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
10956 if (ret)
10957 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n",
10958 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
10959
10960 /* Rebuild the VSIs and VEBs that existed before reset.
10961 * They are still in our local switch element arrays, so only
10962 * need to rebuild the switch model in the HW.
10963 *
10964 * If there were VEBs but the reconstitution failed, we'll try
10965 * to recover minimal use by getting the basic PF VSI working.
10966 */
10967 if (vsi->uplink_seid != pf->mac_seid) {
10968 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n");
10969
10970 /* Rebuild VEBs */
10971 i40e_pf_for_each_veb(pf, v, veb) {
10972 ret = i40e_reconstitute_veb(veb);
10973 if (!ret)
10974 continue;
10975
10976 /* If Main VEB failed, we're in deep doodoo,
10977 * so give up rebuilding the switch and set up
10978 * for minimal rebuild of PF VSI.
10979 * If orphan failed, we'll report the error
10980 * but try to keep going.
10981 */
10982 if (veb->uplink_seid == pf->mac_seid) {
10983 dev_info(&pf->pdev->dev,
10984 "rebuild of switch failed: %d, will try to set up simple PF connection\n",
10985 ret);
10986 vsi->uplink_seid = pf->mac_seid;
10987 break;
10988 } else if (veb->uplink_seid == 0) {
10989 dev_info(&pf->pdev->dev,
10990 "rebuild of orphan VEB failed: %d\n",
10991 ret);
10992 }
10993 }
10994 }
10995
10996 if (vsi->uplink_seid == pf->mac_seid) {
10997 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n");
10998 /* no VEB, so rebuild only the Main VSI */
10999 ret = i40e_add_vsi(vsi);
11000 if (ret) {
11001 dev_info(&pf->pdev->dev,
11002 "rebuild of Main VSI failed: %d\n", ret);
11003 goto end_unlock;
11004 }
11005 }
11006
11007 if (vsi->mqprio_qopt.max_rate[0]) {
11008 u64 max_tx_rate = i40e_bw_bytes_to_mbits(vsi,
11009 vsi->mqprio_qopt.max_rate[0]);
11010 u64 credits = 0;
11011
11012 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate);
11013 if (ret)
11014 goto end_unlock;
11015
11016 credits = max_tx_rate;
11017 do_div(credits, I40E_BW_CREDIT_DIVISOR);
11018 dev_dbg(&vsi->back->pdev->dev,
11019 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
11020 max_tx_rate,
11021 credits,
11022 vsi->seid);
11023 }
11024
11025 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid);
11026 if (ret)
11027 goto end_unlock;
11028
11029 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs
11030 * for this main VSI if they exist
11031 */
11032 ret = i40e_rebuild_channels(vsi);
11033 if (ret)
11034 goto end_unlock;
11035
11036 /* Reconfigure hardware for allowing smaller MSS in the case
11037 * of TSO, so that we avoid the MDD being fired and causing
11038 * a reset in the case of small MSS+TSO.
11039 */
11040 #define I40E_REG_MSS 0x000E64DC
11041 #define I40E_REG_MSS_MIN_MASK 0x3FF0000
11042 #define I40E_64BYTE_MSS 0x400000
11043 val = rd32(hw, I40E_REG_MSS);
11044 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
11045 val &= ~I40E_REG_MSS_MIN_MASK;
11046 val |= I40E_64BYTE_MSS;
11047 wr32(hw, I40E_REG_MSS, val);
11048 }
11049
11050 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) {
11051 msleep(75);
11052 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
11053 if (ret)
11054 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n",
11055 ERR_PTR(ret),
11056 libie_aq_str(pf->hw.aq.asq_last_status));
11057 }
11058 /* reinit the misc interrupt */
11059 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
11060 ret = i40e_setup_misc_vector(pf);
11061 if (ret)
11062 goto end_unlock;
11063 }
11064
11065 /* Add a filter to drop all Flow control frames from any VSI from being
11066 * transmitted. By doing so we stop a malicious VF from sending out
11067 * PAUSE or PFC frames and potentially controlling traffic for other
11068 * PF/VF VSIs.
11069 * The FW can still send Flow control frames if enabled.
11070 */
11071 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
11072 pf->main_vsi_seid);
11073
11074 /* restart the VSIs that were rebuilt and running before the reset */
11075 i40e_pf_unquiesce_all_vsi(pf);
11076
11077 /* Release the RTNL lock before we start resetting VFs */
11078 if (!lock_acquired)
11079 rtnl_unlock();
11080
11081 /* Restore promiscuous settings */
11082 ret = i40e_set_promiscuous(pf, pf->cur_promisc);
11083 if (ret)
11084 dev_warn(&pf->pdev->dev,
11085 "Failed to restore promiscuous setting: %s, err %pe aq_err %s\n",
11086 pf->cur_promisc ? "on" : "off",
11087 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
11088
11089 i40e_reset_all_vfs(pf, true);
11090
11091 /* tell the firmware that we're starting */
11092 i40e_send_version(pf);
11093
11094 /* We've already released the lock, so don't do it again */
11095 goto end_core_reset;
11096
11097 end_unlock:
11098 if (!lock_acquired)
11099 rtnl_unlock();
11100 end_core_reset:
11101 clear_bit(__I40E_RESET_FAILED, pf->state);
11102 clear_recovery:
11103 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
11104 clear_bit(__I40E_TIMEOUT_RECOVERY_PENDING, pf->state);
11105 }
11106
11107 /**
11108 * i40e_reset_and_rebuild - reset and rebuild using a saved config
11109 * @pf: board private structure
11110 * @reinit: if the Main VSI needs to re-initialized.
11111 * @lock_acquired: indicates whether or not the lock has been acquired
11112 * before this function was called.
11113 **/
i40e_reset_and_rebuild(struct i40e_pf * pf,bool reinit,bool lock_acquired)11114 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit,
11115 bool lock_acquired)
11116 {
11117 int ret;
11118
11119 if (test_bit(__I40E_IN_REMOVE, pf->state))
11120 return;
11121 /* Now we wait for GRST to settle out.
11122 * We don't have to delete the VEBs or VSIs from the hw switch
11123 * because the reset will make them disappear.
11124 */
11125 ret = i40e_reset(pf);
11126 if (!ret)
11127 i40e_rebuild(pf, reinit, lock_acquired);
11128 else
11129 dev_err(&pf->pdev->dev, "%s: i40e_reset() FAILED", __func__);
11130 }
11131
11132 /**
11133 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild
11134 * @pf: board private structure
11135 *
11136 * Close up the VFs and other things in prep for a Core Reset,
11137 * then get ready to rebuild the world.
11138 * @lock_acquired: indicates whether or not the lock has been acquired
11139 * before this function was called.
11140 **/
i40e_handle_reset_warning(struct i40e_pf * pf,bool lock_acquired)11141 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired)
11142 {
11143 i40e_prep_for_reset(pf);
11144 i40e_reset_and_rebuild(pf, false, lock_acquired);
11145 }
11146
11147 /**
11148 * i40e_print_vf_mdd_event - print VF Tx/Rx malicious driver detect event
11149 * @pf: board private structure
11150 * @vf: pointer to the VF structure
11151 * @is_tx: true - for Tx event, false - for Rx
11152 */
i40e_print_vf_mdd_event(struct i40e_pf * pf,struct i40e_vf * vf,bool is_tx)11153 static void i40e_print_vf_mdd_event(struct i40e_pf *pf, struct i40e_vf *vf,
11154 bool is_tx)
11155 {
11156 dev_err(&pf->pdev->dev, is_tx ?
11157 "%lld Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pm. mdd-auto-reset-vfs=%s\n" :
11158 "%lld Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pm. mdd-auto-reset-vfs=%s\n",
11159 is_tx ? vf->mdd_tx_events.count : vf->mdd_rx_events.count,
11160 pf->hw.pf_id,
11161 vf->vf_id,
11162 vf->default_lan_addr.addr,
11163 str_on_off(test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags)));
11164 }
11165
11166 /**
11167 * i40e_print_vfs_mdd_events - print VFs malicious driver detect event
11168 * @pf: pointer to the PF structure
11169 *
11170 * Called from i40e_handle_mdd_event to rate limit and print VFs MDD events.
11171 */
i40e_print_vfs_mdd_events(struct i40e_pf * pf)11172 static void i40e_print_vfs_mdd_events(struct i40e_pf *pf)
11173 {
11174 unsigned int i;
11175
11176 /* check that there are pending MDD events to print */
11177 if (!test_and_clear_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state))
11178 return;
11179
11180 if (!__ratelimit(&pf->mdd_message_rate_limit))
11181 return;
11182
11183 for (i = 0; i < pf->num_alloc_vfs; i++) {
11184 struct i40e_vf *vf = &pf->vf[i];
11185 bool is_printed = false;
11186
11187 /* only print Rx MDD event message if there are new events */
11188 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
11189 vf->mdd_rx_events.last_printed = vf->mdd_rx_events.count;
11190 i40e_print_vf_mdd_event(pf, vf, false);
11191 is_printed = true;
11192 }
11193
11194 /* only print Tx MDD event message if there are new events */
11195 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
11196 vf->mdd_tx_events.last_printed = vf->mdd_tx_events.count;
11197 i40e_print_vf_mdd_event(pf, vf, true);
11198 is_printed = true;
11199 }
11200
11201 if (is_printed && !test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags))
11202 dev_info(&pf->pdev->dev,
11203 "Use PF Control I/F to re-enable the VF #%d\n",
11204 i);
11205 }
11206 }
11207
11208 /**
11209 * i40e_handle_mdd_event
11210 * @pf: pointer to the PF structure
11211 *
11212 * Called from the MDD irq handler to identify possibly malicious vfs
11213 **/
i40e_handle_mdd_event(struct i40e_pf * pf)11214 static void i40e_handle_mdd_event(struct i40e_pf *pf)
11215 {
11216 struct i40e_hw *hw = &pf->hw;
11217 bool mdd_detected = false;
11218 struct i40e_vf *vf;
11219 u32 reg;
11220 int i;
11221
11222 if (!test_and_clear_bit(__I40E_MDD_EVENT_PENDING, pf->state)) {
11223 /* Since the VF MDD event logging is rate limited, check if
11224 * there are pending MDD events.
11225 */
11226 i40e_print_vfs_mdd_events(pf);
11227 return;
11228 }
11229
11230 /* find what triggered the MDD event */
11231 reg = rd32(hw, I40E_GL_MDET_TX);
11232 if (reg & I40E_GL_MDET_TX_VALID_MASK) {
11233 u8 pf_num = FIELD_GET(I40E_GL_MDET_TX_PF_NUM_MASK, reg);
11234 u16 vf_num = FIELD_GET(I40E_GL_MDET_TX_VF_NUM_MASK, reg);
11235 u8 event = FIELD_GET(I40E_GL_MDET_TX_EVENT_MASK, reg);
11236 u16 queue = FIELD_GET(I40E_GL_MDET_TX_QUEUE_MASK, reg) -
11237 pf->hw.func_caps.base_queue;
11238 if (netif_msg_tx_err(pf))
11239 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n",
11240 event, queue, pf_num, vf_num);
11241 wr32(hw, I40E_GL_MDET_TX, 0xffffffff);
11242 mdd_detected = true;
11243 }
11244 reg = rd32(hw, I40E_GL_MDET_RX);
11245 if (reg & I40E_GL_MDET_RX_VALID_MASK) {
11246 u8 func = FIELD_GET(I40E_GL_MDET_RX_FUNCTION_MASK, reg);
11247 u8 event = FIELD_GET(I40E_GL_MDET_RX_EVENT_MASK, reg);
11248 u16 queue = FIELD_GET(I40E_GL_MDET_RX_QUEUE_MASK, reg) -
11249 pf->hw.func_caps.base_queue;
11250 if (netif_msg_rx_err(pf))
11251 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n",
11252 event, queue, func);
11253 wr32(hw, I40E_GL_MDET_RX, 0xffffffff);
11254 mdd_detected = true;
11255 }
11256
11257 if (mdd_detected) {
11258 reg = rd32(hw, I40E_PF_MDET_TX);
11259 if (reg & I40E_PF_MDET_TX_VALID_MASK) {
11260 wr32(hw, I40E_PF_MDET_TX, 0xFFFF);
11261 dev_dbg(&pf->pdev->dev, "TX driver issue detected on PF\n");
11262 }
11263 reg = rd32(hw, I40E_PF_MDET_RX);
11264 if (reg & I40E_PF_MDET_RX_VALID_MASK) {
11265 wr32(hw, I40E_PF_MDET_RX, 0xFFFF);
11266 dev_dbg(&pf->pdev->dev, "RX driver issue detected on PF\n");
11267 }
11268 }
11269
11270 /* see if one of the VFs needs its hand slapped */
11271 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) {
11272 bool is_mdd_on_tx = false;
11273 bool is_mdd_on_rx = false;
11274
11275 vf = &(pf->vf[i]);
11276 reg = rd32(hw, I40E_VP_MDET_TX(i));
11277 if (reg & I40E_VP_MDET_TX_VALID_MASK) {
11278 set_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state);
11279 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF);
11280 vf->mdd_tx_events.count++;
11281 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states);
11282 is_mdd_on_tx = true;
11283 }
11284
11285 reg = rd32(hw, I40E_VP_MDET_RX(i));
11286 if (reg & I40E_VP_MDET_RX_VALID_MASK) {
11287 set_bit(__I40E_MDD_VF_PRINT_PENDING, pf->state);
11288 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF);
11289 vf->mdd_rx_events.count++;
11290 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states);
11291 is_mdd_on_rx = true;
11292 }
11293
11294 if ((is_mdd_on_tx || is_mdd_on_rx) &&
11295 test_bit(I40E_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
11296 /* VF MDD event counters will be cleared by
11297 * reset, so print the event prior to reset.
11298 */
11299 if (is_mdd_on_rx)
11300 i40e_print_vf_mdd_event(pf, vf, false);
11301 if (is_mdd_on_tx)
11302 i40e_print_vf_mdd_event(pf, vf, true);
11303
11304 i40e_vc_reset_vf(vf, true);
11305 }
11306 }
11307
11308 reg = rd32(hw, I40E_PFINT_ICR0_ENA);
11309 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
11310 wr32(hw, I40E_PFINT_ICR0_ENA, reg);
11311 i40e_flush(hw);
11312
11313 i40e_print_vfs_mdd_events(pf);
11314 }
11315
11316 /**
11317 * i40e_service_task - Run the driver's async subtasks
11318 * @work: pointer to work_struct containing our data
11319 **/
i40e_service_task(struct work_struct * work)11320 static void i40e_service_task(struct work_struct *work)
11321 {
11322 struct i40e_pf *pf = container_of(work,
11323 struct i40e_pf,
11324 service_task);
11325 unsigned long start_time = jiffies;
11326
11327 /* don't bother with service tasks if a reset is in progress */
11328 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) ||
11329 test_bit(__I40E_SUSPENDED, pf->state))
11330 return;
11331
11332 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state))
11333 return;
11334
11335 if (!test_bit(__I40E_RECOVERY_MODE, pf->state)) {
11336 i40e_detect_recover_hung(pf);
11337 i40e_sync_filters_subtask(pf);
11338 i40e_reset_subtask(pf);
11339 i40e_handle_mdd_event(pf);
11340 i40e_vc_process_vflr_event(pf);
11341 i40e_watchdog_subtask(pf);
11342 i40e_fdir_reinit_subtask(pf);
11343 if (test_and_clear_bit(__I40E_CLIENT_RESET, pf->state)) {
11344 /* Client subtask will reopen next time through. */
11345 i40e_notify_client_of_netdev_close(pf, true);
11346 } else {
11347 i40e_client_subtask(pf);
11348 if (test_and_clear_bit(__I40E_CLIENT_L2_CHANGE,
11349 pf->state))
11350 i40e_notify_client_of_l2_param_changes(pf);
11351 }
11352 i40e_sync_filters_subtask(pf);
11353 } else {
11354 i40e_reset_subtask(pf);
11355 }
11356
11357 i40e_clean_adminq_subtask(pf);
11358
11359 /* flush memory to make sure state is correct before next watchdog */
11360 smp_mb__before_atomic();
11361 clear_bit(__I40E_SERVICE_SCHED, pf->state);
11362
11363 /* If the tasks have taken longer than one timer cycle or there
11364 * is more work to be done, reschedule the service task now
11365 * rather than wait for the timer to tick again.
11366 */
11367 if (time_after(jiffies, (start_time + pf->service_timer_period)) ||
11368 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) ||
11369 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) ||
11370 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state))
11371 i40e_service_event_schedule(pf);
11372 }
11373
11374 /**
11375 * i40e_service_timer - timer callback
11376 * @t: timer list pointer
11377 **/
i40e_service_timer(struct timer_list * t)11378 static void i40e_service_timer(struct timer_list *t)
11379 {
11380 struct i40e_pf *pf = timer_container_of(pf, t, service_timer);
11381
11382 mod_timer(&pf->service_timer,
11383 round_jiffies(jiffies + pf->service_timer_period));
11384 i40e_service_event_schedule(pf);
11385 }
11386
11387 /**
11388 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI
11389 * @vsi: the VSI being configured
11390 **/
i40e_set_num_rings_in_vsi(struct i40e_vsi * vsi)11391 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi)
11392 {
11393 struct i40e_pf *pf = vsi->back;
11394
11395 switch (vsi->type) {
11396 case I40E_VSI_MAIN:
11397 vsi->alloc_queue_pairs = pf->num_lan_qps;
11398 if (!vsi->num_tx_desc)
11399 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11400 I40E_REQ_DESCRIPTOR_MULTIPLE);
11401 if (!vsi->num_rx_desc)
11402 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11403 I40E_REQ_DESCRIPTOR_MULTIPLE);
11404 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
11405 vsi->num_q_vectors = pf->num_lan_msix;
11406 else
11407 vsi->num_q_vectors = 1;
11408
11409 break;
11410
11411 case I40E_VSI_FDIR:
11412 vsi->alloc_queue_pairs = 1;
11413 vsi->num_tx_desc = ALIGN(I40E_FDIR_RING_COUNT,
11414 I40E_REQ_DESCRIPTOR_MULTIPLE);
11415 vsi->num_rx_desc = ALIGN(I40E_FDIR_RING_COUNT,
11416 I40E_REQ_DESCRIPTOR_MULTIPLE);
11417 vsi->num_q_vectors = pf->num_fdsb_msix;
11418 break;
11419
11420 case I40E_VSI_VMDQ2:
11421 vsi->alloc_queue_pairs = pf->num_vmdq_qps;
11422 if (!vsi->num_tx_desc)
11423 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11424 I40E_REQ_DESCRIPTOR_MULTIPLE);
11425 if (!vsi->num_rx_desc)
11426 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11427 I40E_REQ_DESCRIPTOR_MULTIPLE);
11428 vsi->num_q_vectors = pf->num_vmdq_msix;
11429 break;
11430
11431 case I40E_VSI_SRIOV:
11432 vsi->alloc_queue_pairs = pf->num_vf_qps;
11433 if (!vsi->num_tx_desc)
11434 vsi->num_tx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11435 I40E_REQ_DESCRIPTOR_MULTIPLE);
11436 if (!vsi->num_rx_desc)
11437 vsi->num_rx_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
11438 I40E_REQ_DESCRIPTOR_MULTIPLE);
11439 break;
11440
11441 default:
11442 WARN_ON(1);
11443 return -ENODATA;
11444 }
11445
11446 if (is_kdump_kernel()) {
11447 vsi->num_tx_desc = I40E_MIN_NUM_DESCRIPTORS;
11448 vsi->num_rx_desc = I40E_MIN_NUM_DESCRIPTORS;
11449 }
11450
11451 return 0;
11452 }
11453
11454 /**
11455 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
11456 * @vsi: VSI pointer
11457 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
11458 *
11459 * On error: returns error code (negative)
11460 * On success: returns 0
11461 **/
i40e_vsi_alloc_arrays(struct i40e_vsi * vsi,bool alloc_qvectors)11462 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors)
11463 {
11464 struct i40e_ring **next_rings;
11465 int size;
11466 int ret = 0;
11467
11468 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */
11469 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs *
11470 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2);
11471 vsi->tx_rings = kzalloc(size, GFP_KERNEL);
11472 if (!vsi->tx_rings)
11473 return -ENOMEM;
11474 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs;
11475 if (i40e_enabled_xdp_vsi(vsi)) {
11476 vsi->xdp_rings = next_rings;
11477 next_rings += vsi->alloc_queue_pairs;
11478 }
11479 vsi->rx_rings = next_rings;
11480
11481 if (alloc_qvectors) {
11482 /* allocate memory for q_vector pointers */
11483 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors;
11484 vsi->q_vectors = kzalloc(size, GFP_KERNEL);
11485 if (!vsi->q_vectors) {
11486 ret = -ENOMEM;
11487 goto err_vectors;
11488 }
11489 }
11490 return ret;
11491
11492 err_vectors:
11493 kfree(vsi->tx_rings);
11494 return ret;
11495 }
11496
11497 /**
11498 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF
11499 * @pf: board private structure
11500 * @type: type of VSI
11501 *
11502 * On error: returns error code (negative)
11503 * On success: returns vsi index in PF (positive)
11504 **/
i40e_vsi_mem_alloc(struct i40e_pf * pf,enum i40e_vsi_type type)11505 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type)
11506 {
11507 int ret = -ENODEV;
11508 struct i40e_vsi *vsi;
11509 int vsi_idx;
11510 int i;
11511
11512 /* Need to protect the allocation of the VSIs at the PF level */
11513 mutex_lock(&pf->switch_mutex);
11514
11515 /* VSI list may be fragmented if VSI creation/destruction has
11516 * been happening. We can afford to do a quick scan to look
11517 * for any free VSIs in the list.
11518 *
11519 * find next empty vsi slot, looping back around if necessary
11520 */
11521 i = pf->next_vsi;
11522 while (i < pf->num_alloc_vsi && pf->vsi[i])
11523 i++;
11524 if (i >= pf->num_alloc_vsi) {
11525 i = 0;
11526 while (i < pf->next_vsi && pf->vsi[i])
11527 i++;
11528 }
11529
11530 if (i < pf->num_alloc_vsi && !pf->vsi[i]) {
11531 vsi_idx = i; /* Found one! */
11532 } else {
11533 ret = -ENODEV;
11534 goto unlock_pf; /* out of VSI slots! */
11535 }
11536 pf->next_vsi = ++i;
11537
11538 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL);
11539 if (!vsi) {
11540 ret = -ENOMEM;
11541 goto unlock_pf;
11542 }
11543 vsi->type = type;
11544 vsi->back = pf;
11545 set_bit(__I40E_VSI_DOWN, vsi->state);
11546 vsi->flags = 0;
11547 vsi->idx = vsi_idx;
11548 vsi->int_rate_limit = 0;
11549 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ?
11550 pf->rss_table_size : 64;
11551 vsi->netdev_registered = false;
11552 vsi->work_limit = I40E_DEFAULT_IRQ_WORK;
11553 hash_init(vsi->mac_filter_hash);
11554 vsi->irqs_ready = false;
11555
11556 if (type == I40E_VSI_MAIN) {
11557 vsi->af_xdp_zc_qps = bitmap_zalloc(pf->num_lan_qps, GFP_KERNEL);
11558 if (!vsi->af_xdp_zc_qps)
11559 goto err_rings;
11560 }
11561
11562 ret = i40e_set_num_rings_in_vsi(vsi);
11563 if (ret)
11564 goto err_rings;
11565
11566 ret = i40e_vsi_alloc_arrays(vsi, true);
11567 if (ret)
11568 goto err_rings;
11569
11570 /* Setup default MSIX irq handler for VSI */
11571 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings);
11572
11573 /* Initialize VSI lock */
11574 spin_lock_init(&vsi->mac_filter_hash_lock);
11575 pf->vsi[vsi_idx] = vsi;
11576 ret = vsi_idx;
11577 goto unlock_pf;
11578
11579 err_rings:
11580 bitmap_free(vsi->af_xdp_zc_qps);
11581 pf->next_vsi = i - 1;
11582 kfree(vsi);
11583 unlock_pf:
11584 mutex_unlock(&pf->switch_mutex);
11585 return ret;
11586 }
11587
11588 /**
11589 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI
11590 * @vsi: VSI pointer
11591 * @free_qvectors: a bool to specify if q_vectors need to be freed.
11592 *
11593 * On error: returns error code (negative)
11594 * On success: returns 0
11595 **/
i40e_vsi_free_arrays(struct i40e_vsi * vsi,bool free_qvectors)11596 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors)
11597 {
11598 /* free the ring and vector containers */
11599 if (free_qvectors) {
11600 kfree(vsi->q_vectors);
11601 vsi->q_vectors = NULL;
11602 }
11603 kfree(vsi->tx_rings);
11604 vsi->tx_rings = NULL;
11605 vsi->rx_rings = NULL;
11606 vsi->xdp_rings = NULL;
11607 }
11608
11609 /**
11610 * i40e_clear_rss_config_user - clear the user configured RSS hash keys
11611 * and lookup table
11612 * @vsi: Pointer to VSI structure
11613 */
i40e_clear_rss_config_user(struct i40e_vsi * vsi)11614 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi)
11615 {
11616 if (!vsi)
11617 return;
11618
11619 kfree(vsi->rss_hkey_user);
11620 vsi->rss_hkey_user = NULL;
11621
11622 kfree(vsi->rss_lut_user);
11623 vsi->rss_lut_user = NULL;
11624 }
11625
11626 /**
11627 * i40e_vsi_clear - Deallocate the VSI provided
11628 * @vsi: the VSI being un-configured
11629 **/
i40e_vsi_clear(struct i40e_vsi * vsi)11630 static int i40e_vsi_clear(struct i40e_vsi *vsi)
11631 {
11632 struct i40e_pf *pf;
11633
11634 if (!vsi)
11635 return 0;
11636
11637 if (!vsi->back)
11638 goto free_vsi;
11639 pf = vsi->back;
11640
11641 mutex_lock(&pf->switch_mutex);
11642 if (!pf->vsi[vsi->idx]) {
11643 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](type %d)\n",
11644 vsi->idx, vsi->idx, vsi->type);
11645 goto unlock_vsi;
11646 }
11647
11648 if (pf->vsi[vsi->idx] != vsi) {
11649 dev_err(&pf->pdev->dev,
11650 "pf->vsi[%d](type %d) != vsi[%d](type %d): no free!\n",
11651 pf->vsi[vsi->idx]->idx,
11652 pf->vsi[vsi->idx]->type,
11653 vsi->idx, vsi->type);
11654 goto unlock_vsi;
11655 }
11656
11657 /* updates the PF for this cleared vsi */
11658 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
11659 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx);
11660
11661 bitmap_free(vsi->af_xdp_zc_qps);
11662 i40e_vsi_free_arrays(vsi, true);
11663 i40e_clear_rss_config_user(vsi);
11664
11665 pf->vsi[vsi->idx] = NULL;
11666 if (vsi->idx < pf->next_vsi)
11667 pf->next_vsi = vsi->idx;
11668
11669 unlock_vsi:
11670 mutex_unlock(&pf->switch_mutex);
11671 free_vsi:
11672 kfree(vsi);
11673
11674 return 0;
11675 }
11676
11677 /**
11678 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI
11679 * @vsi: the VSI being cleaned
11680 **/
i40e_vsi_clear_rings(struct i40e_vsi * vsi)11681 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi)
11682 {
11683 int i;
11684
11685 if (vsi->tx_rings && vsi->tx_rings[0]) {
11686 for (i = 0; i < vsi->alloc_queue_pairs; i++) {
11687 kfree_rcu(vsi->tx_rings[i], rcu);
11688 WRITE_ONCE(vsi->tx_rings[i], NULL);
11689 WRITE_ONCE(vsi->rx_rings[i], NULL);
11690 if (vsi->xdp_rings)
11691 WRITE_ONCE(vsi->xdp_rings[i], NULL);
11692 }
11693 }
11694 }
11695
11696 /**
11697 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI
11698 * @vsi: the VSI being configured
11699 **/
i40e_alloc_rings(struct i40e_vsi * vsi)11700 static int i40e_alloc_rings(struct i40e_vsi *vsi)
11701 {
11702 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2;
11703 struct i40e_pf *pf = vsi->back;
11704 struct i40e_ring *ring;
11705
11706 /* Set basic values in the rings to be used later during open() */
11707 for (i = 0; i < vsi->alloc_queue_pairs; i++) {
11708 /* allocate space for both Tx and Rx in one shot */
11709 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL);
11710 if (!ring)
11711 goto err_out;
11712
11713 ring->queue_index = i;
11714 ring->reg_idx = vsi->base_queue + i;
11715 ring->ring_active = false;
11716 ring->vsi = vsi;
11717 ring->netdev = vsi->netdev;
11718 ring->dev = &pf->pdev->dev;
11719 ring->count = vsi->num_tx_desc;
11720 ring->size = 0;
11721 ring->dcb_tc = 0;
11722 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps))
11723 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
11724 ring->itr_setting = pf->tx_itr_default;
11725 WRITE_ONCE(vsi->tx_rings[i], ring++);
11726
11727 if (!i40e_enabled_xdp_vsi(vsi))
11728 goto setup_rx;
11729
11730 ring->queue_index = vsi->alloc_queue_pairs + i;
11731 ring->reg_idx = vsi->base_queue + ring->queue_index;
11732 ring->ring_active = false;
11733 ring->vsi = vsi;
11734 ring->netdev = NULL;
11735 ring->dev = &pf->pdev->dev;
11736 ring->count = vsi->num_tx_desc;
11737 ring->size = 0;
11738 ring->dcb_tc = 0;
11739 if (test_bit(I40E_HW_CAP_WB_ON_ITR, vsi->back->hw.caps))
11740 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
11741 set_ring_xdp(ring);
11742 ring->itr_setting = pf->tx_itr_default;
11743 WRITE_ONCE(vsi->xdp_rings[i], ring++);
11744
11745 setup_rx:
11746 ring->queue_index = i;
11747 ring->reg_idx = vsi->base_queue + i;
11748 ring->ring_active = false;
11749 ring->vsi = vsi;
11750 ring->netdev = vsi->netdev;
11751 ring->dev = &pf->pdev->dev;
11752 ring->count = vsi->num_rx_desc;
11753 ring->size = 0;
11754 ring->dcb_tc = 0;
11755 ring->itr_setting = pf->rx_itr_default;
11756 WRITE_ONCE(vsi->rx_rings[i], ring);
11757 }
11758
11759 return 0;
11760
11761 err_out:
11762 i40e_vsi_clear_rings(vsi);
11763 return -ENOMEM;
11764 }
11765
11766 /**
11767 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel
11768 * @pf: board private structure
11769 * @vectors: the number of MSI-X vectors to request
11770 *
11771 * Returns the number of vectors reserved, or error
11772 **/
i40e_reserve_msix_vectors(struct i40e_pf * pf,int vectors)11773 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors)
11774 {
11775 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries,
11776 I40E_MIN_MSIX, vectors);
11777 if (vectors < 0) {
11778 dev_info(&pf->pdev->dev,
11779 "MSI-X vector reservation failed: %d\n", vectors);
11780 vectors = 0;
11781 }
11782
11783 return vectors;
11784 }
11785
11786 /**
11787 * i40e_init_msix - Setup the MSIX capability
11788 * @pf: board private structure
11789 *
11790 * Work with the OS to set up the MSIX vectors needed.
11791 *
11792 * Returns the number of vectors reserved or negative on failure
11793 **/
i40e_init_msix(struct i40e_pf * pf)11794 static int i40e_init_msix(struct i40e_pf *pf)
11795 {
11796 struct i40e_hw *hw = &pf->hw;
11797 int cpus, extra_vectors;
11798 int vectors_left;
11799 int v_budget, i;
11800 int v_actual;
11801 int iwarp_requested = 0;
11802
11803 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
11804 return -ENODEV;
11805
11806 /* The number of vectors we'll request will be comprised of:
11807 * - Add 1 for "other" cause for Admin Queue events, etc.
11808 * - The number of LAN queue pairs
11809 * - Queues being used for RSS.
11810 * We don't need as many as max_rss_size vectors.
11811 * use rss_size instead in the calculation since that
11812 * is governed by number of cpus in the system.
11813 * - assumes symmetric Tx/Rx pairing
11814 * - The number of VMDq pairs
11815 * - The CPU count within the NUMA node if iWARP is enabled
11816 * Once we count this up, try the request.
11817 *
11818 * If we can't get what we want, we'll simplify to nearly nothing
11819 * and try again. If that still fails, we punt.
11820 */
11821 vectors_left = hw->func_caps.num_msix_vectors;
11822 v_budget = 0;
11823
11824 /* reserve one vector for miscellaneous handler */
11825 if (vectors_left) {
11826 v_budget++;
11827 vectors_left--;
11828 }
11829
11830 /* reserve some vectors for the main PF traffic queues. Initially we
11831 * only reserve at most 50% of the available vectors, in the case that
11832 * the number of online CPUs is large. This ensures that we can enable
11833 * extra features as well. Once we've enabled the other features, we
11834 * will use any remaining vectors to reach as close as we can to the
11835 * number of online CPUs.
11836 */
11837 cpus = num_online_cpus();
11838 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2);
11839 vectors_left -= pf->num_lan_msix;
11840
11841 /* reserve one vector for sideband flow director */
11842 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
11843 if (vectors_left) {
11844 pf->num_fdsb_msix = 1;
11845 v_budget++;
11846 vectors_left--;
11847 } else {
11848 pf->num_fdsb_msix = 0;
11849 }
11850 }
11851
11852 /* can we reserve enough for iWARP? */
11853 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
11854 iwarp_requested = pf->num_iwarp_msix;
11855
11856 if (!vectors_left)
11857 pf->num_iwarp_msix = 0;
11858 else if (vectors_left < pf->num_iwarp_msix)
11859 pf->num_iwarp_msix = 1;
11860 v_budget += pf->num_iwarp_msix;
11861 vectors_left -= pf->num_iwarp_msix;
11862 }
11863
11864 /* any vectors left over go for VMDq support */
11865 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags)) {
11866 if (!vectors_left) {
11867 pf->num_vmdq_msix = 0;
11868 pf->num_vmdq_qps = 0;
11869 } else {
11870 int vmdq_vecs_wanted =
11871 pf->num_vmdq_vsis * pf->num_vmdq_qps;
11872 int vmdq_vecs =
11873 min_t(int, vectors_left, vmdq_vecs_wanted);
11874
11875 /* if we're short on vectors for what's desired, we limit
11876 * the queues per vmdq. If this is still more than are
11877 * available, the user will need to change the number of
11878 * queues/vectors used by the PF later with the ethtool
11879 * channels command
11880 */
11881 if (vectors_left < vmdq_vecs_wanted) {
11882 pf->num_vmdq_qps = 1;
11883 vmdq_vecs_wanted = pf->num_vmdq_vsis;
11884 vmdq_vecs = min_t(int,
11885 vectors_left,
11886 vmdq_vecs_wanted);
11887 }
11888 pf->num_vmdq_msix = pf->num_vmdq_qps;
11889
11890 v_budget += vmdq_vecs;
11891 vectors_left -= vmdq_vecs;
11892 }
11893 }
11894
11895 /* On systems with a large number of SMP cores, we previously limited
11896 * the number of vectors for num_lan_msix to be at most 50% of the
11897 * available vectors, to allow for other features. Now, we add back
11898 * the remaining vectors. However, we ensure that the total
11899 * num_lan_msix will not exceed num_online_cpus(). To do this, we
11900 * calculate the number of vectors we can add without going over the
11901 * cap of CPUs. For systems with a small number of CPUs this will be
11902 * zero.
11903 */
11904 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left);
11905 pf->num_lan_msix += extra_vectors;
11906 vectors_left -= extra_vectors;
11907
11908 WARN(vectors_left < 0,
11909 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n");
11910
11911 v_budget += pf->num_lan_msix;
11912 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
11913 GFP_KERNEL);
11914 if (!pf->msix_entries)
11915 return -ENOMEM;
11916
11917 for (i = 0; i < v_budget; i++)
11918 pf->msix_entries[i].entry = i;
11919 v_actual = i40e_reserve_msix_vectors(pf, v_budget);
11920
11921 if (v_actual < I40E_MIN_MSIX) {
11922 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags);
11923 kfree(pf->msix_entries);
11924 pf->msix_entries = NULL;
11925 pci_disable_msix(pf->pdev);
11926 return -ENODEV;
11927
11928 } else if (v_actual == I40E_MIN_MSIX) {
11929 /* Adjust for minimal MSIX use */
11930 pf->num_vmdq_vsis = 0;
11931 pf->num_vmdq_qps = 0;
11932 pf->num_lan_qps = 1;
11933 pf->num_lan_msix = 1;
11934
11935 } else if (v_actual != v_budget) {
11936 /* If we have limited resources, we will start with no vectors
11937 * for the special features and then allocate vectors to some
11938 * of these features based on the policy and at the end disable
11939 * the features that did not get any vectors.
11940 */
11941 int vec;
11942
11943 dev_info(&pf->pdev->dev,
11944 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n",
11945 v_actual, v_budget);
11946 /* reserve the misc vector */
11947 vec = v_actual - 1;
11948
11949 /* Scale vector usage down */
11950 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */
11951 pf->num_vmdq_vsis = 1;
11952 pf->num_vmdq_qps = 1;
11953
11954 /* partition out the remaining vectors */
11955 switch (vec) {
11956 case 2:
11957 pf->num_lan_msix = 1;
11958 break;
11959 case 3:
11960 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
11961 pf->num_lan_msix = 1;
11962 pf->num_iwarp_msix = 1;
11963 } else {
11964 pf->num_lan_msix = 2;
11965 }
11966 break;
11967 default:
11968 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
11969 pf->num_iwarp_msix = min_t(int, (vec / 3),
11970 iwarp_requested);
11971 pf->num_vmdq_vsis = min_t(int, (vec / 3),
11972 I40E_DEFAULT_NUM_VMDQ_VSI);
11973 } else {
11974 pf->num_vmdq_vsis = min_t(int, (vec / 2),
11975 I40E_DEFAULT_NUM_VMDQ_VSI);
11976 }
11977 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
11978 pf->num_fdsb_msix = 1;
11979 vec--;
11980 }
11981 pf->num_lan_msix = min_t(int,
11982 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)),
11983 pf->num_lan_msix);
11984 pf->num_lan_qps = pf->num_lan_msix;
11985 break;
11986 }
11987 }
11988
11989 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) && pf->num_fdsb_msix == 0) {
11990 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n");
11991 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
11992 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
11993 }
11994 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) && pf->num_vmdq_msix == 0) {
11995 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n");
11996 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
11997 }
11998
11999 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags) &&
12000 pf->num_iwarp_msix == 0) {
12001 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n");
12002 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
12003 }
12004 i40e_debug(&pf->hw, I40E_DEBUG_INIT,
12005 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n",
12006 pf->num_lan_msix,
12007 pf->num_vmdq_msix * pf->num_vmdq_vsis,
12008 pf->num_fdsb_msix,
12009 pf->num_iwarp_msix);
12010
12011 return v_actual;
12012 }
12013
12014 /**
12015 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
12016 * @vsi: the VSI being configured
12017 * @v_idx: index of the vector in the vsi struct
12018 *
12019 * We allocate one q_vector. If allocation fails we return -ENOMEM.
12020 **/
i40e_vsi_alloc_q_vector(struct i40e_vsi * vsi,int v_idx)12021 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx)
12022 {
12023 struct i40e_q_vector *q_vector;
12024
12025 /* allocate q_vector */
12026 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL);
12027 if (!q_vector)
12028 return -ENOMEM;
12029
12030 q_vector->vsi = vsi;
12031 q_vector->v_idx = v_idx;
12032 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
12033
12034 if (vsi->netdev)
12035 netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll);
12036
12037 /* tie q_vector and vsi together */
12038 vsi->q_vectors[v_idx] = q_vector;
12039
12040 return 0;
12041 }
12042
12043 /**
12044 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
12045 * @vsi: the VSI being configured
12046 *
12047 * We allocate one q_vector per queue interrupt. If allocation fails we
12048 * return -ENOMEM.
12049 **/
i40e_vsi_alloc_q_vectors(struct i40e_vsi * vsi)12050 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi)
12051 {
12052 struct i40e_pf *pf = vsi->back;
12053 int err, v_idx, num_q_vectors;
12054
12055 /* if not MSIX, give the one vector only to the LAN VSI */
12056 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
12057 num_q_vectors = vsi->num_q_vectors;
12058 else if (vsi->type == I40E_VSI_MAIN)
12059 num_q_vectors = 1;
12060 else
12061 return -EINVAL;
12062
12063 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
12064 err = i40e_vsi_alloc_q_vector(vsi, v_idx);
12065 if (err)
12066 goto err_out;
12067 }
12068
12069 return 0;
12070
12071 err_out:
12072 while (v_idx--)
12073 i40e_free_q_vector(vsi, v_idx);
12074
12075 return err;
12076 }
12077
12078 /**
12079 * i40e_init_interrupt_scheme - Determine proper interrupt scheme
12080 * @pf: board private structure to initialize
12081 **/
i40e_init_interrupt_scheme(struct i40e_pf * pf)12082 static int i40e_init_interrupt_scheme(struct i40e_pf *pf)
12083 {
12084 int vectors = 0;
12085 ssize_t size;
12086
12087 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
12088 vectors = i40e_init_msix(pf);
12089 if (vectors < 0) {
12090 clear_bit(I40E_FLAG_MSIX_ENA, pf->flags);
12091 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
12092 clear_bit(I40E_FLAG_RSS_ENA, pf->flags);
12093 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
12094 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
12095 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
12096 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
12097 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
12098 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
12099 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
12100
12101 /* rework the queue expectations without MSIX */
12102 i40e_determine_queue_usage(pf);
12103 }
12104 }
12105
12106 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags) &&
12107 test_bit(I40E_FLAG_MSI_ENA, pf->flags)) {
12108 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n");
12109 vectors = pci_enable_msi(pf->pdev);
12110 if (vectors < 0) {
12111 dev_info(&pf->pdev->dev, "MSI init failed - %d\n",
12112 vectors);
12113 clear_bit(I40E_FLAG_MSI_ENA, pf->flags);
12114 }
12115 vectors = 1; /* one MSI or Legacy vector */
12116 }
12117
12118 if (!test_bit(I40E_FLAG_MSI_ENA, pf->flags) &&
12119 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
12120 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n");
12121
12122 /* set up vector assignment tracking */
12123 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors);
12124 pf->irq_pile = kzalloc(size, GFP_KERNEL);
12125 if (!pf->irq_pile)
12126 return -ENOMEM;
12127
12128 pf->irq_pile->num_entries = vectors;
12129
12130 /* track first vector for misc interrupts, ignore return */
12131 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1);
12132
12133 return 0;
12134 }
12135
12136 /**
12137 * i40e_restore_interrupt_scheme - Restore the interrupt scheme
12138 * @pf: private board data structure
12139 *
12140 * Restore the interrupt scheme that was cleared when we suspended the
12141 * device. This should be called during resume to re-allocate the q_vectors
12142 * and reacquire IRQs.
12143 */
i40e_restore_interrupt_scheme(struct i40e_pf * pf)12144 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf)
12145 {
12146 struct i40e_vsi *vsi;
12147 int err, i;
12148
12149 /* We cleared the MSI and MSI-X flags when disabling the old interrupt
12150 * scheme. We need to re-enabled them here in order to attempt to
12151 * re-acquire the MSI or MSI-X vectors
12152 */
12153 set_bit(I40E_FLAG_MSI_ENA, pf->flags);
12154 set_bit(I40E_FLAG_MSIX_ENA, pf->flags);
12155
12156 err = i40e_init_interrupt_scheme(pf);
12157 if (err)
12158 return err;
12159
12160 /* Now that we've re-acquired IRQs, we need to remap the vectors and
12161 * rings together again.
12162 */
12163 i40e_pf_for_each_vsi(pf, i, vsi) {
12164 err = i40e_vsi_alloc_q_vectors(vsi);
12165 if (err)
12166 goto err_unwind;
12167
12168 i40e_vsi_map_rings_to_vectors(vsi);
12169 }
12170
12171 err = i40e_setup_misc_vector(pf);
12172 if (err)
12173 goto err_unwind;
12174
12175 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags))
12176 i40e_client_update_msix_info(pf);
12177
12178 return 0;
12179
12180 err_unwind:
12181 while (i--) {
12182 if (pf->vsi[i])
12183 i40e_vsi_free_q_vectors(pf->vsi[i]);
12184 }
12185
12186 return err;
12187 }
12188
12189 /**
12190 * i40e_setup_misc_vector_for_recovery_mode - Setup the misc vector to handle
12191 * non queue events in recovery mode
12192 * @pf: board private structure
12193 *
12194 * This sets up the handler for MSIX 0 or MSI/legacy, which is used to manage
12195 * the non-queue interrupts, e.g. AdminQ and errors in recovery mode.
12196 * This is handled differently than in recovery mode since no Tx/Rx resources
12197 * are being allocated.
12198 **/
i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf * pf)12199 static int i40e_setup_misc_vector_for_recovery_mode(struct i40e_pf *pf)
12200 {
12201 int err;
12202
12203 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
12204 err = i40e_setup_misc_vector(pf);
12205
12206 if (err) {
12207 dev_info(&pf->pdev->dev,
12208 "MSI-X misc vector request failed, error %d\n",
12209 err);
12210 return err;
12211 }
12212 } else {
12213 u32 flags = test_bit(I40E_FLAG_MSI_ENA, pf->flags) ? 0 : IRQF_SHARED;
12214
12215 err = request_irq(pf->pdev->irq, i40e_intr, flags,
12216 pf->int_name, pf);
12217
12218 if (err) {
12219 dev_info(&pf->pdev->dev,
12220 "MSI/legacy misc vector request failed, error %d\n",
12221 err);
12222 return err;
12223 }
12224 i40e_enable_misc_int_causes(pf);
12225 i40e_irq_dynamic_enable_icr0(pf);
12226 }
12227
12228 return 0;
12229 }
12230
12231 /**
12232 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events
12233 * @pf: board private structure
12234 *
12235 * This sets up the handler for MSIX 0, which is used to manage the
12236 * non-queue interrupts, e.g. AdminQ and errors. This is not used
12237 * when in MSI or Legacy interrupt mode.
12238 **/
i40e_setup_misc_vector(struct i40e_pf * pf)12239 static int i40e_setup_misc_vector(struct i40e_pf *pf)
12240 {
12241 struct i40e_hw *hw = &pf->hw;
12242 int err = 0;
12243
12244 /* Only request the IRQ once, the first time through. */
12245 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) {
12246 err = request_irq(pf->msix_entries[0].vector,
12247 i40e_intr, 0, pf->int_name, pf);
12248 if (err) {
12249 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state);
12250 dev_info(&pf->pdev->dev,
12251 "request_irq for %s failed: %d\n",
12252 pf->int_name, err);
12253 return -EFAULT;
12254 }
12255 }
12256
12257 i40e_enable_misc_int_causes(pf);
12258
12259 /* associate no queues to the misc vector */
12260 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST);
12261 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K >> 1);
12262
12263 i40e_flush(hw);
12264
12265 i40e_irq_dynamic_enable_icr0(pf);
12266
12267 return err;
12268 }
12269
12270 /**
12271 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands
12272 * @vsi: Pointer to vsi structure
12273 * @seed: Buffter to store the hash keys
12274 * @lut: Buffer to store the lookup table entries
12275 * @lut_size: Size of buffer to store the lookup table entries
12276 *
12277 * Return 0 on success, negative on failure
12278 */
i40e_get_rss_aq(struct i40e_vsi * vsi,const u8 * seed,u8 * lut,u16 lut_size)12279 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
12280 u8 *lut, u16 lut_size)
12281 {
12282 struct i40e_pf *pf = vsi->back;
12283 struct i40e_hw *hw = &pf->hw;
12284 int ret = 0;
12285
12286 if (seed) {
12287 ret = i40e_aq_get_rss_key(hw, vsi->id,
12288 (struct i40e_aqc_get_set_rss_key_data *)seed);
12289 if (ret) {
12290 dev_info(&pf->pdev->dev,
12291 "Cannot get RSS key, err %pe aq_err %s\n",
12292 ERR_PTR(ret),
12293 libie_aq_str(pf->hw.aq.asq_last_status));
12294 return ret;
12295 }
12296 }
12297
12298 if (lut) {
12299 bool pf_lut = vsi->type == I40E_VSI_MAIN;
12300
12301 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
12302 if (ret) {
12303 dev_info(&pf->pdev->dev,
12304 "Cannot get RSS lut, err %pe aq_err %s\n",
12305 ERR_PTR(ret),
12306 libie_aq_str(pf->hw.aq.asq_last_status));
12307 return ret;
12308 }
12309 }
12310
12311 return ret;
12312 }
12313
12314 /**
12315 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers
12316 * @vsi: Pointer to vsi structure
12317 * @seed: RSS hash seed
12318 * @lut: Lookup table
12319 * @lut_size: Lookup table size
12320 *
12321 * Returns 0 on success, negative on failure
12322 **/
i40e_config_rss_reg(struct i40e_vsi * vsi,const u8 * seed,const u8 * lut,u16 lut_size)12323 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed,
12324 const u8 *lut, u16 lut_size)
12325 {
12326 struct i40e_pf *pf = vsi->back;
12327 struct i40e_hw *hw = &pf->hw;
12328 u16 vf_id = vsi->vf_id;
12329 u8 i;
12330
12331 /* Fill out hash function seed */
12332 if (seed) {
12333 u32 *seed_dw = (u32 *)seed;
12334
12335 if (vsi->type == I40E_VSI_MAIN) {
12336 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
12337 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]);
12338 } else if (vsi->type == I40E_VSI_SRIOV) {
12339 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++)
12340 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]);
12341 } else {
12342 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n");
12343 }
12344 }
12345
12346 if (lut) {
12347 u32 *lut_dw = (u32 *)lut;
12348
12349 if (vsi->type == I40E_VSI_MAIN) {
12350 if (lut_size != I40E_HLUT_ARRAY_SIZE)
12351 return -EINVAL;
12352 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
12353 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]);
12354 } else if (vsi->type == I40E_VSI_SRIOV) {
12355 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE)
12356 return -EINVAL;
12357 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
12358 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]);
12359 } else {
12360 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
12361 }
12362 }
12363 i40e_flush(hw);
12364
12365 return 0;
12366 }
12367
12368 /**
12369 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers
12370 * @vsi: Pointer to VSI structure
12371 * @seed: Buffer to store the keys
12372 * @lut: Buffer to store the lookup table entries
12373 * @lut_size: Size of buffer to store the lookup table entries
12374 *
12375 * Returns 0 on success, negative on failure
12376 */
i40e_get_rss_reg(struct i40e_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)12377 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed,
12378 u8 *lut, u16 lut_size)
12379 {
12380 struct i40e_pf *pf = vsi->back;
12381 struct i40e_hw *hw = &pf->hw;
12382 u16 i;
12383
12384 if (seed) {
12385 u32 *seed_dw = (u32 *)seed;
12386
12387 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
12388 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i));
12389 }
12390 if (lut) {
12391 u32 *lut_dw = (u32 *)lut;
12392
12393 if (lut_size != I40E_HLUT_ARRAY_SIZE)
12394 return -EINVAL;
12395 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
12396 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i));
12397 }
12398
12399 return 0;
12400 }
12401
12402 /**
12403 * i40e_config_rss - Configure RSS keys and lut
12404 * @vsi: Pointer to VSI structure
12405 * @seed: RSS hash seed
12406 * @lut: Lookup table
12407 * @lut_size: Lookup table size
12408 *
12409 * Returns 0 on success, negative on failure
12410 */
i40e_config_rss(struct i40e_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)12411 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
12412 {
12413 struct i40e_pf *pf = vsi->back;
12414
12415 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps))
12416 return i40e_config_rss_aq(vsi, seed, lut, lut_size);
12417 else
12418 return i40e_config_rss_reg(vsi, seed, lut, lut_size);
12419 }
12420
12421 /**
12422 * i40e_get_rss - Get RSS keys and lut
12423 * @vsi: Pointer to VSI structure
12424 * @seed: Buffer to store the keys
12425 * @lut: Buffer to store the lookup table entries
12426 * @lut_size: Size of buffer to store the lookup table entries
12427 *
12428 * Returns 0 on success, negative on failure
12429 */
i40e_get_rss(struct i40e_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)12430 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
12431 {
12432 struct i40e_pf *pf = vsi->back;
12433
12434 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps))
12435 return i40e_get_rss_aq(vsi, seed, lut, lut_size);
12436 else
12437 return i40e_get_rss_reg(vsi, seed, lut, lut_size);
12438 }
12439
12440 /**
12441 * i40e_fill_rss_lut - Fill the RSS lookup table with default values
12442 * @pf: Pointer to board private structure
12443 * @lut: Lookup table
12444 * @rss_table_size: Lookup table size
12445 * @rss_size: Range of queue number for hashing
12446 */
i40e_fill_rss_lut(struct i40e_pf * pf,u8 * lut,u16 rss_table_size,u16 rss_size)12447 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut,
12448 u16 rss_table_size, u16 rss_size)
12449 {
12450 u16 i;
12451
12452 for (i = 0; i < rss_table_size; i++)
12453 lut[i] = i % rss_size;
12454 }
12455
12456 /**
12457 * i40e_pf_config_rss - Prepare for RSS if used
12458 * @pf: board private structure
12459 **/
i40e_pf_config_rss(struct i40e_pf * pf)12460 static int i40e_pf_config_rss(struct i40e_pf *pf)
12461 {
12462 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
12463 u8 seed[I40E_HKEY_ARRAY_SIZE];
12464 u8 *lut;
12465 struct i40e_hw *hw = &pf->hw;
12466 u32 reg_val;
12467 u64 hena;
12468 int ret;
12469
12470 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */
12471 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) |
12472 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32);
12473 hena |= i40e_pf_get_default_rss_hashcfg(pf);
12474
12475 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena);
12476 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32));
12477
12478 /* Determine the RSS table size based on the hardware capabilities */
12479 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
12480 reg_val = (pf->rss_table_size == 512) ?
12481 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) :
12482 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512);
12483 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val);
12484
12485 /* Determine the RSS size of the VSI */
12486 if (!vsi->rss_size) {
12487 u16 qcount;
12488 /* If the firmware does something weird during VSI init, we
12489 * could end up with zero TCs. Check for that to avoid
12490 * divide-by-zero. It probably won't pass traffic, but it also
12491 * won't panic.
12492 */
12493 qcount = vsi->num_queue_pairs /
12494 (vsi->tc_config.numtc ? vsi->tc_config.numtc : 1);
12495 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
12496 }
12497 if (!vsi->rss_size)
12498 return -EINVAL;
12499
12500 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
12501 if (!lut)
12502 return -ENOMEM;
12503
12504 /* Use user configured lut if there is one, otherwise use default */
12505 if (vsi->rss_lut_user)
12506 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
12507 else
12508 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
12509
12510 /* Use user configured hash key if there is one, otherwise
12511 * use default.
12512 */
12513 if (vsi->rss_hkey_user)
12514 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
12515 else
12516 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
12517 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
12518 kfree(lut);
12519
12520 return ret;
12521 }
12522
12523 /**
12524 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild
12525 * @pf: board private structure
12526 * @queue_count: the requested queue count for rss.
12527 *
12528 * returns 0 if rss is not enabled, if enabled returns the final rss queue
12529 * count which may be different from the requested queue count.
12530 * Note: expects to be called while under rtnl_lock()
12531 **/
i40e_reconfig_rss_queues(struct i40e_pf * pf,int queue_count)12532 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count)
12533 {
12534 struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
12535 int new_rss_size;
12536
12537 if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags))
12538 return 0;
12539
12540 queue_count = min_t(int, queue_count, num_online_cpus());
12541 new_rss_size = min_t(int, queue_count, pf->rss_size_max);
12542
12543 if (queue_count != vsi->num_queue_pairs) {
12544 u16 qcount;
12545
12546 vsi->req_queue_pairs = queue_count;
12547 i40e_prep_for_reset(pf);
12548 if (test_bit(__I40E_IN_REMOVE, pf->state))
12549 return pf->alloc_rss_size;
12550
12551 pf->alloc_rss_size = new_rss_size;
12552
12553 i40e_reset_and_rebuild(pf, true, true);
12554
12555 /* Discard the user configured hash keys and lut, if less
12556 * queues are enabled.
12557 */
12558 if (queue_count < vsi->rss_size) {
12559 i40e_clear_rss_config_user(vsi);
12560 dev_dbg(&pf->pdev->dev,
12561 "discard user configured hash keys and lut\n");
12562 }
12563
12564 /* Reset vsi->rss_size, as number of enabled queues changed */
12565 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc;
12566 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
12567
12568 i40e_pf_config_rss(pf);
12569 }
12570 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n",
12571 vsi->req_queue_pairs, pf->rss_size_max);
12572 return pf->alloc_rss_size;
12573 }
12574
12575 /**
12576 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition
12577 * @pf: board private structure
12578 **/
i40e_get_partition_bw_setting(struct i40e_pf * pf)12579 int i40e_get_partition_bw_setting(struct i40e_pf *pf)
12580 {
12581 bool min_valid, max_valid;
12582 u32 max_bw, min_bw;
12583 int status;
12584
12585 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw,
12586 &min_valid, &max_valid);
12587
12588 if (!status) {
12589 if (min_valid)
12590 pf->min_bw = min_bw;
12591 if (max_valid)
12592 pf->max_bw = max_bw;
12593 }
12594
12595 return status;
12596 }
12597
12598 /**
12599 * i40e_set_partition_bw_setting - Set BW settings for this PF partition
12600 * @pf: board private structure
12601 **/
i40e_set_partition_bw_setting(struct i40e_pf * pf)12602 int i40e_set_partition_bw_setting(struct i40e_pf *pf)
12603 {
12604 struct i40e_aqc_configure_partition_bw_data bw_data;
12605 int status;
12606
12607 memset(&bw_data, 0, sizeof(bw_data));
12608
12609 /* Set the valid bit for this PF */
12610 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id));
12611 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK;
12612 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK;
12613
12614 /* Set the new bandwidths */
12615 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL);
12616
12617 return status;
12618 }
12619
12620 /**
12621 * i40e_is_total_port_shutdown_enabled - read NVM and return value
12622 * if total port shutdown feature is enabled for this PF
12623 * @pf: board private structure
12624 **/
i40e_is_total_port_shutdown_enabled(struct i40e_pf * pf)12625 static bool i40e_is_total_port_shutdown_enabled(struct i40e_pf *pf)
12626 {
12627 #define I40E_TOTAL_PORT_SHUTDOWN_ENABLED BIT(4)
12628 #define I40E_FEATURES_ENABLE_PTR 0x2A
12629 #define I40E_CURRENT_SETTING_PTR 0x2B
12630 #define I40E_LINK_BEHAVIOR_WORD_OFFSET 0x2D
12631 #define I40E_LINK_BEHAVIOR_WORD_LENGTH 0x1
12632 #define I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED BIT(0)
12633 #define I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH 4
12634 u16 sr_emp_sr_settings_ptr = 0;
12635 u16 features_enable = 0;
12636 u16 link_behavior = 0;
12637 int read_status = 0;
12638 bool ret = false;
12639
12640 read_status = i40e_read_nvm_word(&pf->hw,
12641 I40E_SR_EMP_SR_SETTINGS_PTR,
12642 &sr_emp_sr_settings_ptr);
12643 if (read_status)
12644 goto err_nvm;
12645 read_status = i40e_read_nvm_word(&pf->hw,
12646 sr_emp_sr_settings_ptr +
12647 I40E_FEATURES_ENABLE_PTR,
12648 &features_enable);
12649 if (read_status)
12650 goto err_nvm;
12651 if (I40E_TOTAL_PORT_SHUTDOWN_ENABLED & features_enable) {
12652 read_status = i40e_read_nvm_module_data(&pf->hw,
12653 I40E_SR_EMP_SR_SETTINGS_PTR,
12654 I40E_CURRENT_SETTING_PTR,
12655 I40E_LINK_BEHAVIOR_WORD_OFFSET,
12656 I40E_LINK_BEHAVIOR_WORD_LENGTH,
12657 &link_behavior);
12658 if (read_status)
12659 goto err_nvm;
12660 link_behavior >>= (pf->hw.port * I40E_LINK_BEHAVIOR_PORT_BIT_LENGTH);
12661 ret = I40E_LINK_BEHAVIOR_OS_FORCED_ENABLED & link_behavior;
12662 }
12663 return ret;
12664
12665 err_nvm:
12666 dev_warn(&pf->pdev->dev,
12667 "total-port-shutdown feature is off due to read nvm error: %pe\n",
12668 ERR_PTR(read_status));
12669 return ret;
12670 }
12671
12672 /**
12673 * i40e_sw_init - Initialize general software structures (struct i40e_pf)
12674 * @pf: board private structure to initialize
12675 *
12676 * i40e_sw_init initializes the Adapter private data structure.
12677 * Fields are initialized based on PCI device information and
12678 * OS network device settings (MTU size).
12679 **/
i40e_sw_init(struct i40e_pf * pf)12680 static int i40e_sw_init(struct i40e_pf *pf)
12681 {
12682 int err = 0;
12683 int size;
12684 u16 pow;
12685
12686 /* Set default capability flags */
12687 bitmap_zero(pf->flags, I40E_PF_FLAGS_NBITS);
12688 set_bit(I40E_FLAG_MSI_ENA, pf->flags);
12689 set_bit(I40E_FLAG_MSIX_ENA, pf->flags);
12690
12691 /* Set default ITR */
12692 pf->rx_itr_default = I40E_ITR_RX_DEF;
12693 pf->tx_itr_default = I40E_ITR_TX_DEF;
12694
12695 /* Depending on PF configurations, it is possible that the RSS
12696 * maximum might end up larger than the available queues
12697 */
12698 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width);
12699 pf->alloc_rss_size = 1;
12700 pf->rss_table_size = pf->hw.func_caps.rss_table_size;
12701 pf->rss_size_max = min_t(int, pf->rss_size_max,
12702 pf->hw.func_caps.num_tx_qp);
12703
12704 /* find the next higher power-of-2 of num cpus */
12705 pow = roundup_pow_of_two(num_online_cpus());
12706 pf->rss_size_max = min_t(int, pf->rss_size_max, pow);
12707
12708 if (pf->hw.func_caps.rss) {
12709 set_bit(I40E_FLAG_RSS_ENA, pf->flags);
12710 pf->alloc_rss_size = min_t(int, pf->rss_size_max,
12711 num_online_cpus());
12712 }
12713
12714 /* MFP mode enabled */
12715 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) {
12716 set_bit(I40E_FLAG_MFP_ENA, pf->flags);
12717 dev_info(&pf->pdev->dev, "MFP mode Enabled\n");
12718 if (i40e_get_partition_bw_setting(pf)) {
12719 dev_warn(&pf->pdev->dev,
12720 "Could not get partition bw settings\n");
12721 } else {
12722 dev_info(&pf->pdev->dev,
12723 "Partition BW Min = %8.8x, Max = %8.8x\n",
12724 pf->min_bw, pf->max_bw);
12725
12726 /* nudge the Tx scheduler */
12727 i40e_set_partition_bw_setting(pf);
12728 }
12729 }
12730
12731 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) ||
12732 (pf->hw.func_caps.fd_filters_best_effort > 0)) {
12733 set_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
12734 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) &&
12735 pf->hw.num_partitions > 1)
12736 dev_info(&pf->pdev->dev,
12737 "Flow Director Sideband mode Disabled in MFP mode\n");
12738 else
12739 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
12740 pf->fdir_pf_filter_count =
12741 pf->hw.func_caps.fd_filters_guaranteed;
12742 pf->hw.fdir_shared_filter_count =
12743 pf->hw.func_caps.fd_filters_best_effort;
12744 }
12745
12746 /* Enable HW ATR eviction if possible */
12747 if (test_bit(I40E_HW_CAP_ATR_EVICT, pf->hw.caps))
12748 set_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags);
12749
12750 if (pf->hw.func_caps.vmdq && num_online_cpus() != 1) {
12751 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI;
12752 set_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
12753 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf);
12754 }
12755
12756 if (pf->hw.func_caps.iwarp && num_online_cpus() != 1) {
12757 set_bit(I40E_FLAG_IWARP_ENA, pf->flags);
12758 /* IWARP needs one extra vector for CQP just like MISC.*/
12759 pf->num_iwarp_msix = (int)num_online_cpus() + 1;
12760 }
12761 /* Stopping FW LLDP engine is supported on XL710 and X722
12762 * starting from FW versions determined in i40e_init_adminq.
12763 * Stopping the FW LLDP engine is not supported on XL710
12764 * if NPAR is functioning so unset this hw flag in this case.
12765 */
12766 if (pf->hw.mac.type == I40E_MAC_XL710 &&
12767 pf->hw.func_caps.npar_enable)
12768 clear_bit(I40E_HW_CAP_FW_LLDP_STOPPABLE, pf->hw.caps);
12769
12770 #ifdef CONFIG_PCI_IOV
12771 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) {
12772 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF;
12773 set_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
12774 pf->num_req_vfs = min_t(int,
12775 pf->hw.func_caps.num_vfs,
12776 I40E_MAX_VF_COUNT);
12777 }
12778 #endif /* CONFIG_PCI_IOV */
12779 pf->lan_veb = I40E_NO_VEB;
12780 pf->lan_vsi = I40E_NO_VSI;
12781
12782 /* By default FW has this off for performance reasons */
12783 clear_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags);
12784
12785 /* set up queue assignment tracking */
12786 size = sizeof(struct i40e_lump_tracking)
12787 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp);
12788 pf->qp_pile = kzalloc(size, GFP_KERNEL);
12789 if (!pf->qp_pile) {
12790 err = -ENOMEM;
12791 goto sw_init_done;
12792 }
12793 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp;
12794
12795 pf->tx_timeout_recovery_level = 1;
12796
12797 if (pf->hw.mac.type != I40E_MAC_X722 &&
12798 i40e_is_total_port_shutdown_enabled(pf)) {
12799 /* Link down on close must be on when total port shutdown
12800 * is enabled for a given port
12801 */
12802 set_bit(I40E_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
12803 set_bit(I40E_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
12804 dev_info(&pf->pdev->dev,
12805 "total-port-shutdown was enabled, link-down-on-close is forced on\n");
12806 }
12807 mutex_init(&pf->switch_mutex);
12808
12809 sw_init_done:
12810 return err;
12811 }
12812
12813 /**
12814 * i40e_set_ntuple - set the ntuple feature flag and take action
12815 * @pf: board private structure to initialize
12816 * @features: the feature set that the stack is suggesting
12817 *
12818 * returns a bool to indicate if reset needs to happen
12819 **/
i40e_set_ntuple(struct i40e_pf * pf,netdev_features_t features)12820 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features)
12821 {
12822 bool need_reset = false;
12823
12824 /* Check if Flow Director n-tuple support was enabled or disabled. If
12825 * the state changed, we need to reset.
12826 */
12827 if (features & NETIF_F_NTUPLE) {
12828 /* Enable filters and mark for reset */
12829 if (!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags))
12830 need_reset = true;
12831 /* enable FD_SB only if there is MSI-X vector and no cloud
12832 * filters exist
12833 */
12834 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) {
12835 set_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
12836 clear_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
12837 }
12838 } else {
12839 /* turn off filters, mark for reset and clear SW filter list */
12840 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
12841 need_reset = true;
12842 i40e_fdir_filter_exit(pf);
12843 }
12844 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
12845 clear_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state);
12846 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
12847
12848 /* reset fd counters */
12849 pf->fd_add_err = 0;
12850 pf->fd_atr_cnt = 0;
12851 /* if ATR was auto disabled it can be re-enabled. */
12852 if (test_and_clear_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
12853 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
12854 (I40E_DEBUG_FD & pf->hw.debug_mask))
12855 dev_info(&pf->pdev->dev, "ATR re-enabled.\n");
12856 }
12857 return need_reset;
12858 }
12859
12860 /**
12861 * i40e_clear_rss_lut - clear the rx hash lookup table
12862 * @vsi: the VSI being configured
12863 **/
i40e_clear_rss_lut(struct i40e_vsi * vsi)12864 static void i40e_clear_rss_lut(struct i40e_vsi *vsi)
12865 {
12866 struct i40e_pf *pf = vsi->back;
12867 struct i40e_hw *hw = &pf->hw;
12868 u16 vf_id = vsi->vf_id;
12869 u8 i;
12870
12871 if (vsi->type == I40E_VSI_MAIN) {
12872 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
12873 wr32(hw, I40E_PFQF_HLUT(i), 0);
12874 } else if (vsi->type == I40E_VSI_SRIOV) {
12875 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
12876 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0);
12877 } else {
12878 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
12879 }
12880 }
12881
12882 /**
12883 * i40e_set_loopback - turn on/off loopback mode on underlying PF
12884 * @vsi: ptr to VSI
12885 * @ena: flag to indicate the on/off setting
12886 */
i40e_set_loopback(struct i40e_vsi * vsi,bool ena)12887 static int i40e_set_loopback(struct i40e_vsi *vsi, bool ena)
12888 {
12889 bool if_running = netif_running(vsi->netdev) &&
12890 !test_and_set_bit(__I40E_VSI_DOWN, vsi->state);
12891 int ret;
12892
12893 if (if_running)
12894 i40e_down(vsi);
12895
12896 ret = i40e_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
12897 if (ret)
12898 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
12899 if (if_running)
12900 i40e_up(vsi);
12901
12902 return ret;
12903 }
12904
12905 /**
12906 * i40e_set_features - set the netdev feature flags
12907 * @netdev: ptr to the netdev being adjusted
12908 * @features: the feature set that the stack is suggesting
12909 * Note: expects to be called while under rtnl_lock()
12910 **/
i40e_set_features(struct net_device * netdev,netdev_features_t features)12911 static int i40e_set_features(struct net_device *netdev,
12912 netdev_features_t features)
12913 {
12914 struct i40e_netdev_priv *np = netdev_priv(netdev);
12915 struct i40e_vsi *vsi = np->vsi;
12916 struct i40e_pf *pf = vsi->back;
12917 bool need_reset;
12918
12919 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
12920 i40e_pf_config_rss(pf);
12921 else if (!(features & NETIF_F_RXHASH) &&
12922 netdev->features & NETIF_F_RXHASH)
12923 i40e_clear_rss_lut(vsi);
12924
12925 if (features & NETIF_F_HW_VLAN_CTAG_RX)
12926 i40e_vlan_stripping_enable(vsi);
12927 else
12928 i40e_vlan_stripping_disable(vsi);
12929
12930 if (!(features & NETIF_F_HW_TC) &&
12931 (netdev->features & NETIF_F_HW_TC) && pf->num_cloud_filters) {
12932 dev_err(&pf->pdev->dev,
12933 "Offloaded tc filters active, can't turn hw_tc_offload off");
12934 return -EINVAL;
12935 }
12936
12937 if (!(features & NETIF_F_HW_L2FW_DOFFLOAD) && vsi->macvlan_cnt)
12938 i40e_del_all_macvlans(vsi);
12939
12940 need_reset = i40e_set_ntuple(pf, features);
12941
12942 if (need_reset)
12943 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
12944
12945 if ((features ^ netdev->features) & NETIF_F_LOOPBACK)
12946 return i40e_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
12947
12948 return 0;
12949 }
12950
i40e_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)12951 static int i40e_udp_tunnel_set_port(struct net_device *netdev,
12952 unsigned int table, unsigned int idx,
12953 struct udp_tunnel_info *ti)
12954 {
12955 struct i40e_netdev_priv *np = netdev_priv(netdev);
12956 struct i40e_hw *hw = &np->vsi->back->hw;
12957 u8 type, filter_index;
12958 int ret;
12959
12960 type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? I40E_AQC_TUNNEL_TYPE_VXLAN :
12961 I40E_AQC_TUNNEL_TYPE_NGE;
12962
12963 ret = i40e_aq_add_udp_tunnel(hw, ntohs(ti->port), type, &filter_index,
12964 NULL);
12965 if (ret) {
12966 netdev_info(netdev, "add UDP port failed, err %pe aq_err %s\n",
12967 ERR_PTR(ret), libie_aq_str(hw->aq.asq_last_status));
12968 return -EIO;
12969 }
12970
12971 udp_tunnel_nic_set_port_priv(netdev, table, idx, filter_index);
12972 return 0;
12973 }
12974
i40e_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int idx,struct udp_tunnel_info * ti)12975 static int i40e_udp_tunnel_unset_port(struct net_device *netdev,
12976 unsigned int table, unsigned int idx,
12977 struct udp_tunnel_info *ti)
12978 {
12979 struct i40e_netdev_priv *np = netdev_priv(netdev);
12980 struct i40e_hw *hw = &np->vsi->back->hw;
12981 int ret;
12982
12983 ret = i40e_aq_del_udp_tunnel(hw, ti->hw_priv, NULL);
12984 if (ret) {
12985 netdev_info(netdev, "delete UDP port failed, err %pe aq_err %s\n",
12986 ERR_PTR(ret), libie_aq_str(hw->aq.asq_last_status));
12987 return -EIO;
12988 }
12989
12990 return 0;
12991 }
12992
i40e_get_phys_port_id(struct net_device * netdev,struct netdev_phys_item_id * ppid)12993 static int i40e_get_phys_port_id(struct net_device *netdev,
12994 struct netdev_phys_item_id *ppid)
12995 {
12996 struct i40e_netdev_priv *np = netdev_priv(netdev);
12997 struct i40e_pf *pf = np->vsi->back;
12998 struct i40e_hw *hw = &pf->hw;
12999
13000 if (!test_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps))
13001 return -EOPNOTSUPP;
13002
13003 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id));
13004 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len);
13005
13006 return 0;
13007 }
13008
13009 /**
13010 * i40e_ndo_fdb_add - add an entry to the hardware database
13011 * @ndm: the input from the stack
13012 * @tb: pointer to array of nladdr (unused)
13013 * @dev: the net device pointer
13014 * @addr: the MAC address entry being added
13015 * @vid: VLAN ID
13016 * @flags: instructions from stack about fdb operation
13017 * @notified: whether notification was emitted
13018 * @extack: netlink extended ack, unused currently
13019 */
i40e_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack * extack)13020 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
13021 struct net_device *dev,
13022 const unsigned char *addr, u16 vid,
13023 u16 flags, bool *notified,
13024 struct netlink_ext_ack *extack)
13025 {
13026 struct i40e_netdev_priv *np = netdev_priv(dev);
13027 struct i40e_pf *pf = np->vsi->back;
13028 int err = 0;
13029
13030 if (!test_bit(I40E_FLAG_SRIOV_ENA, pf->flags))
13031 return -EOPNOTSUPP;
13032
13033 if (vid) {
13034 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
13035 return -EINVAL;
13036 }
13037
13038 /* Hardware does not support aging addresses so if a
13039 * ndm_state is given only allow permanent addresses
13040 */
13041 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
13042 netdev_info(dev, "FDB only supports static addresses\n");
13043 return -EINVAL;
13044 }
13045
13046 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
13047 err = dev_uc_add_excl(dev, addr);
13048 else if (is_multicast_ether_addr(addr))
13049 err = dev_mc_add_excl(dev, addr);
13050 else
13051 err = -EINVAL;
13052
13053 /* Only return duplicate errors if NLM_F_EXCL is set */
13054 if (err == -EEXIST && !(flags & NLM_F_EXCL))
13055 err = 0;
13056
13057 return err;
13058 }
13059
13060 /**
13061 * i40e_ndo_bridge_setlink - Set the hardware bridge mode
13062 * @dev: the netdev being configured
13063 * @nlh: RTNL message
13064 * @flags: bridge flags
13065 * @extack: netlink extended ack
13066 *
13067 * Inserts a new hardware bridge if not already created and
13068 * enables the bridging mode requested (VEB or VEPA). If the
13069 * hardware bridge has already been inserted and the request
13070 * is to change the mode then that requires a PF reset to
13071 * allow rebuild of the components with required hardware
13072 * bridge mode enabled.
13073 *
13074 * Note: expects to be called while under rtnl_lock()
13075 **/
i40e_ndo_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 flags,struct netlink_ext_ack * extack)13076 static int i40e_ndo_bridge_setlink(struct net_device *dev,
13077 struct nlmsghdr *nlh,
13078 u16 flags,
13079 struct netlink_ext_ack *extack)
13080 {
13081 struct i40e_netdev_priv *np = netdev_priv(dev);
13082 struct i40e_vsi *vsi = np->vsi;
13083 struct i40e_pf *pf = vsi->back;
13084 struct nlattr *attr, *br_spec;
13085 struct i40e_veb *veb;
13086 int rem;
13087
13088 /* Only for PF VSI for now */
13089 if (vsi->type != I40E_VSI_MAIN)
13090 return -EOPNOTSUPP;
13091
13092 /* Find the HW bridge for PF VSI */
13093 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid);
13094
13095 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
13096 if (!br_spec)
13097 return -EINVAL;
13098
13099 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
13100 __u16 mode = nla_get_u16(attr);
13101
13102 if ((mode != BRIDGE_MODE_VEPA) &&
13103 (mode != BRIDGE_MODE_VEB))
13104 return -EINVAL;
13105
13106 /* Insert a new HW bridge */
13107 if (!veb) {
13108 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid,
13109 vsi->tc_config.enabled_tc);
13110 if (veb) {
13111 veb->bridge_mode = mode;
13112 i40e_config_bridge_mode(veb);
13113 } else {
13114 /* No Bridge HW offload available */
13115 return -ENOENT;
13116 }
13117 break;
13118 } else if (mode != veb->bridge_mode) {
13119 /* Existing HW bridge but different mode needs reset */
13120 veb->bridge_mode = mode;
13121 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */
13122 if (mode == BRIDGE_MODE_VEB)
13123 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
13124 else
13125 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
13126 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
13127 break;
13128 }
13129 }
13130
13131 return 0;
13132 }
13133
13134 /**
13135 * i40e_ndo_bridge_getlink - Get the hardware bridge mode
13136 * @skb: skb buff
13137 * @pid: process id
13138 * @seq: RTNL message seq #
13139 * @dev: the netdev being configured
13140 * @filter_mask: unused
13141 * @nlflags: netlink flags passed in
13142 *
13143 * Return the mode in which the hardware bridge is operating in
13144 * i.e VEB or VEPA.
13145 **/
i40e_ndo_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 __always_unused filter_mask,int nlflags)13146 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
13147 struct net_device *dev,
13148 u32 __always_unused filter_mask,
13149 int nlflags)
13150 {
13151 struct i40e_netdev_priv *np = netdev_priv(dev);
13152 struct i40e_vsi *vsi = np->vsi;
13153 struct i40e_pf *pf = vsi->back;
13154 struct i40e_veb *veb;
13155
13156 /* Only for PF VSI for now */
13157 if (vsi->type != I40E_VSI_MAIN)
13158 return -EOPNOTSUPP;
13159
13160 /* Find the HW bridge for the PF VSI */
13161 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid);
13162 if (!veb)
13163 return 0;
13164
13165 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode,
13166 0, 0, nlflags, filter_mask, NULL);
13167 }
13168
13169 /**
13170 * i40e_features_check - Validate encapsulated packet conforms to limits
13171 * @skb: skb buff
13172 * @dev: This physical port's netdev
13173 * @features: Offload features that the stack believes apply
13174 **/
i40e_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)13175 static netdev_features_t i40e_features_check(struct sk_buff *skb,
13176 struct net_device *dev,
13177 netdev_features_t features)
13178 {
13179 size_t len;
13180
13181 /* No point in doing any of this if neither checksum nor GSO are
13182 * being requested for this frame. We can rule out both by just
13183 * checking for CHECKSUM_PARTIAL
13184 */
13185 if (skb->ip_summed != CHECKSUM_PARTIAL)
13186 return features;
13187
13188 /* We cannot support GSO if the MSS is going to be less than
13189 * 64 bytes. If it is then we need to drop support for GSO.
13190 */
13191 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
13192 features &= ~NETIF_F_GSO_MASK;
13193
13194 /* MACLEN can support at most 63 words */
13195 len = skb_network_offset(skb);
13196 if (len & ~(63 * 2))
13197 goto out_err;
13198
13199 /* IPLEN and EIPLEN can support at most 127 dwords */
13200 len = skb_network_header_len(skb);
13201 if (len & ~(127 * 4))
13202 goto out_err;
13203
13204 if (skb->encapsulation) {
13205 /* L4TUNLEN can support 127 words */
13206 len = skb_inner_network_header(skb) - skb_transport_header(skb);
13207 if (len & ~(127 * 2))
13208 goto out_err;
13209
13210 /* IPLEN can support at most 127 dwords */
13211 len = skb_inner_transport_header(skb) -
13212 skb_inner_network_header(skb);
13213 if (len & ~(127 * 4))
13214 goto out_err;
13215 }
13216
13217 /* No need to validate L4LEN as TCP is the only protocol with a
13218 * flexible value and we support all possible values supported
13219 * by TCP, which is at most 15 dwords
13220 */
13221
13222 return features;
13223 out_err:
13224 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
13225 }
13226
13227 /**
13228 * i40e_xdp_setup - add/remove an XDP program
13229 * @vsi: VSI to changed
13230 * @prog: XDP program
13231 * @extack: netlink extended ack
13232 **/
i40e_xdp_setup(struct i40e_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)13233 static int i40e_xdp_setup(struct i40e_vsi *vsi, struct bpf_prog *prog,
13234 struct netlink_ext_ack *extack)
13235 {
13236 int frame_size = i40e_max_vsi_frame_size(vsi, prog);
13237 struct i40e_pf *pf = vsi->back;
13238 struct bpf_prog *old_prog;
13239 bool need_reset;
13240 int i;
13241
13242 /* VSI shall be deleted in a moment, block loading new programs */
13243 if (prog && test_bit(__I40E_IN_REMOVE, pf->state))
13244 return -EINVAL;
13245
13246 /* Don't allow frames that span over multiple buffers */
13247 if (vsi->netdev->mtu > frame_size - I40E_PACKET_HDR_PAD) {
13248 NL_SET_ERR_MSG_MOD(extack, "MTU too large for linear frames and XDP prog does not support frags");
13249 return -EINVAL;
13250 }
13251
13252 /* When turning XDP on->off/off->on we reset and rebuild the rings. */
13253 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog);
13254 if (need_reset)
13255 i40e_prep_for_reset(pf);
13256
13257 old_prog = xchg(&vsi->xdp_prog, prog);
13258
13259 if (need_reset) {
13260 if (!prog) {
13261 xdp_features_clear_redirect_target(vsi->netdev);
13262 /* Wait until ndo_xsk_wakeup completes. */
13263 synchronize_rcu();
13264 }
13265 i40e_reset_and_rebuild(pf, true, true);
13266 }
13267
13268 if (!i40e_enabled_xdp_vsi(vsi) && prog) {
13269 if (i40e_realloc_rx_bi_zc(vsi, true))
13270 return -ENOMEM;
13271 } else if (i40e_enabled_xdp_vsi(vsi) && !prog) {
13272 if (i40e_realloc_rx_bi_zc(vsi, false))
13273 return -ENOMEM;
13274 }
13275
13276 for (i = 0; i < vsi->num_queue_pairs; i++)
13277 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
13278
13279 if (old_prog)
13280 bpf_prog_put(old_prog);
13281
13282 /* Kick start the NAPI context if there is an AF_XDP socket open
13283 * on that queue id. This so that receiving will start.
13284 */
13285 if (need_reset && prog) {
13286 for (i = 0; i < vsi->num_queue_pairs; i++)
13287 if (vsi->xdp_rings[i]->xsk_pool)
13288 (void)i40e_xsk_wakeup(vsi->netdev, i,
13289 XDP_WAKEUP_RX);
13290 xdp_features_set_redirect_target(vsi->netdev, true);
13291 }
13292
13293 return 0;
13294 }
13295
13296 /**
13297 * i40e_enter_busy_conf - Enters busy config state
13298 * @vsi: vsi
13299 *
13300 * Returns 0 on success, <0 for failure.
13301 **/
i40e_enter_busy_conf(struct i40e_vsi * vsi)13302 static int i40e_enter_busy_conf(struct i40e_vsi *vsi)
13303 {
13304 struct i40e_pf *pf = vsi->back;
13305 int timeout = 50;
13306
13307 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state)) {
13308 timeout--;
13309 if (!timeout)
13310 return -EBUSY;
13311 usleep_range(1000, 2000);
13312 }
13313
13314 return 0;
13315 }
13316
13317 /**
13318 * i40e_exit_busy_conf - Exits busy config state
13319 * @vsi: vsi
13320 **/
i40e_exit_busy_conf(struct i40e_vsi * vsi)13321 static void i40e_exit_busy_conf(struct i40e_vsi *vsi)
13322 {
13323 struct i40e_pf *pf = vsi->back;
13324
13325 clear_bit(__I40E_CONFIG_BUSY, pf->state);
13326 }
13327
13328 /**
13329 * i40e_queue_pair_reset_stats - Resets all statistics for a queue pair
13330 * @vsi: vsi
13331 * @queue_pair: queue pair
13332 **/
i40e_queue_pair_reset_stats(struct i40e_vsi * vsi,int queue_pair)13333 static void i40e_queue_pair_reset_stats(struct i40e_vsi *vsi, int queue_pair)
13334 {
13335 memset(&vsi->rx_rings[queue_pair]->rx_stats, 0,
13336 sizeof(vsi->rx_rings[queue_pair]->rx_stats));
13337 memset(&vsi->tx_rings[queue_pair]->stats, 0,
13338 sizeof(vsi->tx_rings[queue_pair]->stats));
13339 if (i40e_enabled_xdp_vsi(vsi)) {
13340 memset(&vsi->xdp_rings[queue_pair]->stats, 0,
13341 sizeof(vsi->xdp_rings[queue_pair]->stats));
13342 }
13343 }
13344
13345 /**
13346 * i40e_queue_pair_clean_rings - Cleans all the rings of a queue pair
13347 * @vsi: vsi
13348 * @queue_pair: queue pair
13349 **/
i40e_queue_pair_clean_rings(struct i40e_vsi * vsi,int queue_pair)13350 static void i40e_queue_pair_clean_rings(struct i40e_vsi *vsi, int queue_pair)
13351 {
13352 i40e_clean_tx_ring(vsi->tx_rings[queue_pair]);
13353 if (i40e_enabled_xdp_vsi(vsi)) {
13354 /* Make sure that in-progress ndo_xdp_xmit calls are
13355 * completed.
13356 */
13357 synchronize_rcu();
13358 i40e_clean_tx_ring(vsi->xdp_rings[queue_pair]);
13359 }
13360 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]);
13361 }
13362
13363 /**
13364 * i40e_queue_pair_toggle_napi - Enables/disables NAPI for a queue pair
13365 * @vsi: vsi
13366 * @queue_pair: queue pair
13367 * @enable: true for enable, false for disable
13368 **/
i40e_queue_pair_toggle_napi(struct i40e_vsi * vsi,int queue_pair,bool enable)13369 static void i40e_queue_pair_toggle_napi(struct i40e_vsi *vsi, int queue_pair,
13370 bool enable)
13371 {
13372 struct i40e_ring *rxr = vsi->rx_rings[queue_pair];
13373 struct i40e_q_vector *q_vector = rxr->q_vector;
13374
13375 if (!vsi->netdev)
13376 return;
13377
13378 /* All rings in a qp belong to the same qvector. */
13379 if (q_vector->rx.ring || q_vector->tx.ring) {
13380 if (enable)
13381 napi_enable(&q_vector->napi);
13382 else
13383 napi_disable(&q_vector->napi);
13384 }
13385 }
13386
13387 /**
13388 * i40e_queue_pair_toggle_rings - Enables/disables all rings for a queue pair
13389 * @vsi: vsi
13390 * @queue_pair: queue pair
13391 * @enable: true for enable, false for disable
13392 *
13393 * Returns 0 on success, <0 on failure.
13394 **/
i40e_queue_pair_toggle_rings(struct i40e_vsi * vsi,int queue_pair,bool enable)13395 static int i40e_queue_pair_toggle_rings(struct i40e_vsi *vsi, int queue_pair,
13396 bool enable)
13397 {
13398 struct i40e_pf *pf = vsi->back;
13399 int pf_q, ret = 0;
13400
13401 pf_q = vsi->base_queue + queue_pair;
13402 ret = i40e_control_wait_tx_q(vsi->seid, pf, pf_q,
13403 false /*is xdp*/, enable);
13404 if (ret) {
13405 dev_info(&pf->pdev->dev,
13406 "VSI seid %d Tx ring %d %sable timeout\n",
13407 vsi->seid, pf_q, (enable ? "en" : "dis"));
13408 return ret;
13409 }
13410
13411 i40e_control_rx_q(pf, pf_q, enable);
13412 ret = i40e_pf_rxq_wait(pf, pf_q, enable);
13413 if (ret) {
13414 dev_info(&pf->pdev->dev,
13415 "VSI seid %d Rx ring %d %sable timeout\n",
13416 vsi->seid, pf_q, (enable ? "en" : "dis"));
13417 return ret;
13418 }
13419
13420 /* Due to HW errata, on Rx disable only, the register can
13421 * indicate done before it really is. Needs 50ms to be sure
13422 */
13423 if (!enable)
13424 mdelay(50);
13425
13426 if (!i40e_enabled_xdp_vsi(vsi))
13427 return ret;
13428
13429 ret = i40e_control_wait_tx_q(vsi->seid, pf,
13430 pf_q + vsi->alloc_queue_pairs,
13431 true /*is xdp*/, enable);
13432 if (ret) {
13433 dev_info(&pf->pdev->dev,
13434 "VSI seid %d XDP Tx ring %d %sable timeout\n",
13435 vsi->seid, pf_q, (enable ? "en" : "dis"));
13436 }
13437
13438 return ret;
13439 }
13440
13441 /**
13442 * i40e_queue_pair_enable_irq - Enables interrupts for a queue pair
13443 * @vsi: vsi
13444 * @queue_pair: queue_pair
13445 **/
i40e_queue_pair_enable_irq(struct i40e_vsi * vsi,int queue_pair)13446 static void i40e_queue_pair_enable_irq(struct i40e_vsi *vsi, int queue_pair)
13447 {
13448 struct i40e_ring *rxr = vsi->rx_rings[queue_pair];
13449 struct i40e_pf *pf = vsi->back;
13450 struct i40e_hw *hw = &pf->hw;
13451
13452 /* All rings in a qp belong to the same qvector. */
13453 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
13454 i40e_irq_dynamic_enable(vsi, rxr->q_vector->v_idx);
13455 else
13456 i40e_irq_dynamic_enable_icr0(pf);
13457
13458 i40e_flush(hw);
13459 }
13460
13461 /**
13462 * i40e_queue_pair_disable_irq - Disables interrupts for a queue pair
13463 * @vsi: vsi
13464 * @queue_pair: queue_pair
13465 **/
i40e_queue_pair_disable_irq(struct i40e_vsi * vsi,int queue_pair)13466 static void i40e_queue_pair_disable_irq(struct i40e_vsi *vsi, int queue_pair)
13467 {
13468 struct i40e_ring *rxr = vsi->rx_rings[queue_pair];
13469 struct i40e_pf *pf = vsi->back;
13470 struct i40e_hw *hw = &pf->hw;
13471
13472 /* For simplicity, instead of removing the qp interrupt causes
13473 * from the interrupt linked list, we simply disable the interrupt, and
13474 * leave the list intact.
13475 *
13476 * All rings in a qp belong to the same qvector.
13477 */
13478 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
13479 u32 intpf = vsi->base_vector + rxr->q_vector->v_idx;
13480
13481 wr32(hw, I40E_PFINT_DYN_CTLN(intpf - 1), 0);
13482 i40e_flush(hw);
13483 synchronize_irq(pf->msix_entries[intpf].vector);
13484 } else {
13485 /* Legacy and MSI mode - this stops all interrupt handling */
13486 wr32(hw, I40E_PFINT_ICR0_ENA, 0);
13487 wr32(hw, I40E_PFINT_DYN_CTL0, 0);
13488 i40e_flush(hw);
13489 synchronize_irq(pf->pdev->irq);
13490 }
13491 }
13492
13493 /**
13494 * i40e_queue_pair_disable - Disables a queue pair
13495 * @vsi: vsi
13496 * @queue_pair: queue pair
13497 *
13498 * Returns 0 on success, <0 on failure.
13499 **/
i40e_queue_pair_disable(struct i40e_vsi * vsi,int queue_pair)13500 int i40e_queue_pair_disable(struct i40e_vsi *vsi, int queue_pair)
13501 {
13502 int err;
13503
13504 err = i40e_enter_busy_conf(vsi);
13505 if (err)
13506 return err;
13507
13508 i40e_queue_pair_disable_irq(vsi, queue_pair);
13509 i40e_queue_pair_toggle_napi(vsi, queue_pair, false /* off */);
13510 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, false /* off */);
13511 i40e_clean_rx_ring(vsi->rx_rings[queue_pair]);
13512 i40e_queue_pair_clean_rings(vsi, queue_pair);
13513 i40e_queue_pair_reset_stats(vsi, queue_pair);
13514
13515 return err;
13516 }
13517
13518 /**
13519 * i40e_queue_pair_enable - Enables a queue pair
13520 * @vsi: vsi
13521 * @queue_pair: queue pair
13522 *
13523 * Returns 0 on success, <0 on failure.
13524 **/
i40e_queue_pair_enable(struct i40e_vsi * vsi,int queue_pair)13525 int i40e_queue_pair_enable(struct i40e_vsi *vsi, int queue_pair)
13526 {
13527 int err;
13528
13529 err = i40e_configure_tx_ring(vsi->tx_rings[queue_pair]);
13530 if (err)
13531 return err;
13532
13533 if (i40e_enabled_xdp_vsi(vsi)) {
13534 err = i40e_configure_tx_ring(vsi->xdp_rings[queue_pair]);
13535 if (err)
13536 return err;
13537 }
13538
13539 err = i40e_configure_rx_ring(vsi->rx_rings[queue_pair]);
13540 if (err)
13541 return err;
13542
13543 err = i40e_queue_pair_toggle_rings(vsi, queue_pair, true /* on */);
13544 i40e_queue_pair_toggle_napi(vsi, queue_pair, true /* on */);
13545 i40e_queue_pair_enable_irq(vsi, queue_pair);
13546
13547 i40e_exit_busy_conf(vsi);
13548
13549 return err;
13550 }
13551
13552 /**
13553 * i40e_xdp - implements ndo_bpf for i40e
13554 * @dev: netdevice
13555 * @xdp: XDP command
13556 **/
i40e_xdp(struct net_device * dev,struct netdev_bpf * xdp)13557 static int i40e_xdp(struct net_device *dev,
13558 struct netdev_bpf *xdp)
13559 {
13560 struct i40e_netdev_priv *np = netdev_priv(dev);
13561 struct i40e_vsi *vsi = np->vsi;
13562
13563 if (vsi->type != I40E_VSI_MAIN)
13564 return -EINVAL;
13565
13566 switch (xdp->command) {
13567 case XDP_SETUP_PROG:
13568 return i40e_xdp_setup(vsi, xdp->prog, xdp->extack);
13569 case XDP_SETUP_XSK_POOL:
13570 return i40e_xsk_pool_setup(vsi, xdp->xsk.pool,
13571 xdp->xsk.queue_id);
13572 default:
13573 return -EINVAL;
13574 }
13575 }
13576
13577 static const struct net_device_ops i40e_netdev_ops = {
13578 .ndo_open = i40e_open,
13579 .ndo_stop = i40e_close,
13580 .ndo_start_xmit = i40e_lan_xmit_frame,
13581 .ndo_get_stats64 = i40e_get_netdev_stats_struct,
13582 .ndo_set_rx_mode = i40e_set_rx_mode,
13583 .ndo_validate_addr = eth_validate_addr,
13584 .ndo_set_mac_address = i40e_set_mac,
13585 .ndo_change_mtu = i40e_change_mtu,
13586 .ndo_tx_timeout = i40e_tx_timeout,
13587 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid,
13588 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid,
13589 #ifdef CONFIG_NET_POLL_CONTROLLER
13590 .ndo_poll_controller = i40e_netpoll,
13591 #endif
13592 .ndo_setup_tc = __i40e_setup_tc,
13593 .ndo_select_queue = i40e_lan_select_queue,
13594 .ndo_set_features = i40e_set_features,
13595 .ndo_set_vf_mac = i40e_ndo_set_vf_mac,
13596 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan,
13597 .ndo_get_vf_stats = i40e_get_vf_stats,
13598 .ndo_set_vf_rate = i40e_ndo_set_vf_bw,
13599 .ndo_get_vf_config = i40e_ndo_get_vf_config,
13600 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state,
13601 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk,
13602 .ndo_set_vf_trust = i40e_ndo_set_vf_trust,
13603 .ndo_get_phys_port_id = i40e_get_phys_port_id,
13604 .ndo_fdb_add = i40e_ndo_fdb_add,
13605 .ndo_features_check = i40e_features_check,
13606 .ndo_bridge_getlink = i40e_ndo_bridge_getlink,
13607 .ndo_bridge_setlink = i40e_ndo_bridge_setlink,
13608 .ndo_bpf = i40e_xdp,
13609 .ndo_xdp_xmit = i40e_xdp_xmit,
13610 .ndo_xsk_wakeup = i40e_xsk_wakeup,
13611 .ndo_dfwd_add_station = i40e_fwd_add,
13612 .ndo_dfwd_del_station = i40e_fwd_del,
13613 .ndo_hwtstamp_get = i40e_ptp_hwtstamp_get,
13614 .ndo_hwtstamp_set = i40e_ptp_hwtstamp_set,
13615 };
13616
13617 /**
13618 * i40e_config_netdev - Setup the netdev flags
13619 * @vsi: the VSI being configured
13620 *
13621 * Returns 0 on success, negative value on failure
13622 **/
i40e_config_netdev(struct i40e_vsi * vsi)13623 static int i40e_config_netdev(struct i40e_vsi *vsi)
13624 {
13625 struct i40e_pf *pf = vsi->back;
13626 struct i40e_hw *hw = &pf->hw;
13627 struct i40e_netdev_priv *np;
13628 struct net_device *netdev;
13629 u8 broadcast[ETH_ALEN];
13630 u8 mac_addr[ETH_ALEN];
13631 int etherdev_size;
13632 netdev_features_t hw_enc_features;
13633 netdev_features_t hw_features;
13634
13635 etherdev_size = sizeof(struct i40e_netdev_priv);
13636 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs);
13637 if (!netdev)
13638 return -ENOMEM;
13639
13640 vsi->netdev = netdev;
13641 np = netdev_priv(netdev);
13642 np->vsi = vsi;
13643
13644 hw_enc_features = NETIF_F_SG |
13645 NETIF_F_HW_CSUM |
13646 NETIF_F_HIGHDMA |
13647 NETIF_F_SOFT_FEATURES |
13648 NETIF_F_TSO |
13649 NETIF_F_TSO_ECN |
13650 NETIF_F_TSO6 |
13651 NETIF_F_GSO_GRE |
13652 NETIF_F_GSO_GRE_CSUM |
13653 NETIF_F_GSO_PARTIAL |
13654 NETIF_F_GSO_IPXIP4 |
13655 NETIF_F_GSO_IPXIP6 |
13656 NETIF_F_GSO_UDP_TUNNEL |
13657 NETIF_F_GSO_UDP_TUNNEL_CSUM |
13658 NETIF_F_GSO_UDP_L4 |
13659 NETIF_F_SCTP_CRC |
13660 NETIF_F_RXHASH |
13661 NETIF_F_RXCSUM |
13662 0;
13663
13664 if (!test_bit(I40E_HW_CAP_OUTER_UDP_CSUM, pf->hw.caps))
13665 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
13666
13667 netdev->udp_tunnel_nic_info = &pf->udp_tunnel_nic;
13668
13669 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
13670
13671 netdev->hw_enc_features |= hw_enc_features;
13672
13673 /* record features VLANs can make use of */
13674 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
13675
13676 #define I40E_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
13677 NETIF_F_GSO_GRE_CSUM | \
13678 NETIF_F_GSO_IPXIP4 | \
13679 NETIF_F_GSO_IPXIP6 | \
13680 NETIF_F_GSO_UDP_TUNNEL | \
13681 NETIF_F_GSO_UDP_TUNNEL_CSUM)
13682
13683 netdev->gso_partial_features = I40E_GSO_PARTIAL_FEATURES;
13684 netdev->features |= NETIF_F_GSO_PARTIAL |
13685 I40E_GSO_PARTIAL_FEATURES;
13686
13687 netdev->mpls_features |= NETIF_F_SG;
13688 netdev->mpls_features |= NETIF_F_HW_CSUM;
13689 netdev->mpls_features |= NETIF_F_TSO;
13690 netdev->mpls_features |= NETIF_F_TSO6;
13691 netdev->mpls_features |= I40E_GSO_PARTIAL_FEATURES;
13692
13693 /* enable macvlan offloads */
13694 netdev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
13695
13696 hw_features = hw_enc_features |
13697 NETIF_F_HW_VLAN_CTAG_TX |
13698 NETIF_F_HW_VLAN_CTAG_RX;
13699
13700 if (!test_bit(I40E_FLAG_MFP_ENA, pf->flags))
13701 hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC;
13702
13703 netdev->hw_features |= hw_features | NETIF_F_LOOPBACK;
13704
13705 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
13706 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
13707
13708 netdev->features &= ~NETIF_F_HW_TC;
13709
13710 if (vsi->type == I40E_VSI_MAIN) {
13711 SET_NETDEV_DEV(netdev, &pf->pdev->dev);
13712 ether_addr_copy(mac_addr, hw->mac.perm_addr);
13713 /* The following steps are necessary for two reasons. First,
13714 * some older NVM configurations load a default MAC-VLAN
13715 * filter that will accept any tagged packet, and we want to
13716 * replace this with a normal filter. Additionally, it is
13717 * possible our MAC address was provided by the platform using
13718 * Open Firmware or similar.
13719 *
13720 * Thus, we need to remove the default filter and install one
13721 * specific to the MAC address.
13722 */
13723 i40e_rm_default_mac_filter(vsi, mac_addr);
13724 spin_lock_bh(&vsi->mac_filter_hash_lock);
13725 i40e_add_mac_filter(vsi, mac_addr);
13726 spin_unlock_bh(&vsi->mac_filter_hash_lock);
13727
13728 netdev->xdp_features = NETDEV_XDP_ACT_BASIC |
13729 NETDEV_XDP_ACT_REDIRECT |
13730 NETDEV_XDP_ACT_XSK_ZEROCOPY |
13731 NETDEV_XDP_ACT_RX_SG;
13732 netdev->xdp_zc_max_segs = I40E_MAX_BUFFER_TXD;
13733 } else {
13734 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we
13735 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to
13736 * the end, which is 4 bytes long, so force truncation of the
13737 * original name by IFNAMSIZ - 4
13738 */
13739 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
13740
13741 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d", IFNAMSIZ - 4,
13742 main_vsi->netdev->name);
13743 eth_random_addr(mac_addr);
13744
13745 spin_lock_bh(&vsi->mac_filter_hash_lock);
13746 i40e_add_mac_filter(vsi, mac_addr);
13747 spin_unlock_bh(&vsi->mac_filter_hash_lock);
13748 }
13749
13750 /* Add the broadcast filter so that we initially will receive
13751 * broadcast packets. Note that when a new VLAN is first added the
13752 * driver will convert all filters marked I40E_VLAN_ANY into VLAN
13753 * specific filters as part of transitioning into "vlan" operation.
13754 * When more VLANs are added, the driver will copy each existing MAC
13755 * filter and add it for the new VLAN.
13756 *
13757 * Broadcast filters are handled specially by
13758 * i40e_sync_filters_subtask, as the driver must to set the broadcast
13759 * promiscuous bit instead of adding this directly as a MAC/VLAN
13760 * filter. The subtask will update the correct broadcast promiscuous
13761 * bits as VLANs become active or inactive.
13762 */
13763 eth_broadcast_addr(broadcast);
13764 spin_lock_bh(&vsi->mac_filter_hash_lock);
13765 i40e_add_mac_filter(vsi, broadcast);
13766 spin_unlock_bh(&vsi->mac_filter_hash_lock);
13767
13768 eth_hw_addr_set(netdev, mac_addr);
13769 ether_addr_copy(netdev->perm_addr, mac_addr);
13770
13771 /* i40iw_net_event() reads 16 bytes from neigh->primary_key */
13772 netdev->neigh_priv_len = sizeof(u32) * 4;
13773
13774 netdev->priv_flags |= IFF_UNICAST_FLT;
13775 netdev->priv_flags |= IFF_SUPP_NOFCS;
13776 /* Setup netdev TC information */
13777 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc);
13778
13779 netdev->netdev_ops = &i40e_netdev_ops;
13780 netdev->watchdog_timeo = 5 * HZ;
13781 i40e_set_ethtool_ops(netdev);
13782
13783 /* MTU range: 68 - 9706 */
13784 netdev->min_mtu = ETH_MIN_MTU;
13785 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD;
13786
13787 return 0;
13788 }
13789
13790 /**
13791 * i40e_vsi_delete - Delete a VSI from the switch
13792 * @vsi: the VSI being removed
13793 *
13794 * Returns 0 on success, negative value on failure
13795 **/
i40e_vsi_delete(struct i40e_vsi * vsi)13796 static void i40e_vsi_delete(struct i40e_vsi *vsi)
13797 {
13798 /* remove default VSI is not allowed */
13799 if (vsi == vsi->back->vsi[vsi->back->lan_vsi])
13800 return;
13801
13802 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL);
13803 }
13804
13805 /**
13806 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB
13807 * @vsi: the VSI being queried
13808 *
13809 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode
13810 **/
i40e_is_vsi_uplink_mode_veb(struct i40e_vsi * vsi)13811 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi)
13812 {
13813 struct i40e_veb *veb;
13814 struct i40e_pf *pf = vsi->back;
13815
13816 /* Uplink is not a bridge so default to VEB */
13817 if (vsi->veb_idx >= I40E_MAX_VEB)
13818 return 1;
13819
13820 veb = pf->veb[vsi->veb_idx];
13821 if (!veb) {
13822 dev_info(&pf->pdev->dev,
13823 "There is no veb associated with the bridge\n");
13824 return -ENOENT;
13825 }
13826
13827 /* Uplink is a bridge in VEPA mode */
13828 if (veb->bridge_mode & BRIDGE_MODE_VEPA) {
13829 return 0;
13830 } else {
13831 /* Uplink is a bridge in VEB mode */
13832 return 1;
13833 }
13834
13835 /* VEPA is now default bridge, so return 0 */
13836 return 0;
13837 }
13838
13839 /**
13840 * i40e_add_vsi - Add a VSI to the switch
13841 * @vsi: the VSI being configured
13842 *
13843 * This initializes a VSI context depending on the VSI type to be added and
13844 * passes it down to the add_vsi aq command.
13845 **/
i40e_add_vsi(struct i40e_vsi * vsi)13846 static int i40e_add_vsi(struct i40e_vsi *vsi)
13847 {
13848 int ret = -ENODEV;
13849 struct i40e_pf *pf = vsi->back;
13850 struct i40e_hw *hw = &pf->hw;
13851 struct i40e_vsi_context ctxt;
13852 struct i40e_mac_filter *f;
13853 struct hlist_node *h;
13854 int bkt;
13855
13856 u8 enabled_tc = 0x1; /* TC0 enabled */
13857 int f_count = 0;
13858
13859 memset(&ctxt, 0, sizeof(ctxt));
13860 switch (vsi->type) {
13861 case I40E_VSI_MAIN:
13862 /* The PF's main VSI is already setup as part of the
13863 * device initialization, so we'll not bother with
13864 * the add_vsi call, but we will retrieve the current
13865 * VSI context.
13866 */
13867 ctxt.seid = pf->main_vsi_seid;
13868 ctxt.pf_num = pf->hw.pf_id;
13869 ctxt.vf_num = 0;
13870 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
13871 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
13872 if (ret) {
13873 dev_info(&pf->pdev->dev,
13874 "couldn't get PF vsi config, err %pe aq_err %s\n",
13875 ERR_PTR(ret),
13876 libie_aq_str(pf->hw.aq.asq_last_status));
13877 return -ENOENT;
13878 }
13879 vsi->info = ctxt.info;
13880 vsi->info.valid_sections = 0;
13881
13882 vsi->seid = ctxt.seid;
13883 vsi->id = ctxt.vsi_number;
13884
13885 enabled_tc = i40e_pf_get_tc_map(pf);
13886
13887 /* Source pruning is enabled by default, so the flag is
13888 * negative logic - if it's set, we need to fiddle with
13889 * the VSI to disable source pruning.
13890 */
13891 if (test_bit(I40E_FLAG_SOURCE_PRUNING_DIS, pf->flags)) {
13892 memset(&ctxt, 0, sizeof(ctxt));
13893 ctxt.seid = pf->main_vsi_seid;
13894 ctxt.pf_num = pf->hw.pf_id;
13895 ctxt.vf_num = 0;
13896 ctxt.info.valid_sections |=
13897 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
13898 ctxt.info.switch_id =
13899 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB);
13900 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
13901 if (ret) {
13902 dev_info(&pf->pdev->dev,
13903 "update vsi failed, err %d aq_err %s\n",
13904 ret,
13905 libie_aq_str(pf->hw.aq.asq_last_status));
13906 ret = -ENOENT;
13907 goto err;
13908 }
13909 }
13910
13911 /* MFP mode setup queue map and update VSI */
13912 if (test_bit(I40E_FLAG_MFP_ENA, pf->flags) &&
13913 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */
13914 memset(&ctxt, 0, sizeof(ctxt));
13915 ctxt.seid = pf->main_vsi_seid;
13916 ctxt.pf_num = pf->hw.pf_id;
13917 ctxt.vf_num = 0;
13918 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
13919 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
13920 if (ret) {
13921 dev_info(&pf->pdev->dev,
13922 "update vsi failed, err %pe aq_err %s\n",
13923 ERR_PTR(ret),
13924 libie_aq_str(pf->hw.aq.asq_last_status));
13925 ret = -ENOENT;
13926 goto err;
13927 }
13928 /* update the local VSI info queue map */
13929 i40e_vsi_update_queue_map(vsi, &ctxt);
13930 vsi->info.valid_sections = 0;
13931 } else {
13932 /* Default/Main VSI is only enabled for TC0
13933 * reconfigure it to enable all TCs that are
13934 * available on the port in SFP mode.
13935 * For MFP case the iSCSI PF would use this
13936 * flow to enable LAN+iSCSI TC.
13937 */
13938 ret = i40e_vsi_config_tc(vsi, enabled_tc);
13939 if (ret) {
13940 /* Single TC condition is not fatal,
13941 * message and continue
13942 */
13943 dev_info(&pf->pdev->dev,
13944 "failed to configure TCs for main VSI tc_map 0x%08x, err %pe aq_err %s\n",
13945 enabled_tc,
13946 ERR_PTR(ret),
13947 libie_aq_str(pf->hw.aq.asq_last_status));
13948 }
13949 }
13950 break;
13951
13952 case I40E_VSI_FDIR:
13953 ctxt.pf_num = hw->pf_id;
13954 ctxt.vf_num = 0;
13955 ctxt.uplink_seid = vsi->uplink_seid;
13956 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
13957 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
13958 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags) &&
13959 (i40e_is_vsi_uplink_mode_veb(vsi))) {
13960 ctxt.info.valid_sections |=
13961 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
13962 ctxt.info.switch_id =
13963 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
13964 }
13965 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
13966 break;
13967
13968 case I40E_VSI_VMDQ2:
13969 ctxt.pf_num = hw->pf_id;
13970 ctxt.vf_num = 0;
13971 ctxt.uplink_seid = vsi->uplink_seid;
13972 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
13973 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
13974
13975 /* This VSI is connected to VEB so the switch_id
13976 * should be set to zero by default.
13977 */
13978 if (i40e_is_vsi_uplink_mode_veb(vsi)) {
13979 ctxt.info.valid_sections |=
13980 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
13981 ctxt.info.switch_id =
13982 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
13983 }
13984
13985 /* Setup the VSI tx/rx queue map for TC0 only for now */
13986 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
13987 break;
13988
13989 case I40E_VSI_SRIOV:
13990 ctxt.pf_num = hw->pf_id;
13991 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
13992 ctxt.uplink_seid = vsi->uplink_seid;
13993 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
13994 ctxt.flags = I40E_AQ_VSI_TYPE_VF;
13995
13996 /* This VSI is connected to VEB so the switch_id
13997 * should be set to zero by default.
13998 */
13999 if (i40e_is_vsi_uplink_mode_veb(vsi)) {
14000 ctxt.info.valid_sections |=
14001 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
14002 ctxt.info.switch_id =
14003 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
14004 }
14005
14006 if (test_bit(I40E_FLAG_IWARP_ENA, vsi->back->flags)) {
14007 ctxt.info.valid_sections |=
14008 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
14009 ctxt.info.queueing_opt_flags |=
14010 (I40E_AQ_VSI_QUE_OPT_TCP_ENA |
14011 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI);
14012 }
14013
14014 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
14015 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
14016 if (pf->vf[vsi->vf_id].spoofchk) {
14017 ctxt.info.valid_sections |=
14018 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID);
14019 ctxt.info.sec_flags |=
14020 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK |
14021 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK);
14022 }
14023 /* Setup the VSI tx/rx queue map for TC0 only for now */
14024 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
14025 break;
14026
14027 case I40E_VSI_IWARP:
14028 /* send down message to iWARP */
14029 break;
14030
14031 default:
14032 return -ENODEV;
14033 }
14034
14035 if (vsi->type != I40E_VSI_MAIN) {
14036 ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
14037 if (ret) {
14038 dev_info(&vsi->back->pdev->dev,
14039 "add vsi failed, err %pe aq_err %s\n",
14040 ERR_PTR(ret),
14041 libie_aq_str(pf->hw.aq.asq_last_status));
14042 ret = -ENOENT;
14043 goto err;
14044 }
14045 vsi->info = ctxt.info;
14046 vsi->info.valid_sections = 0;
14047 vsi->seid = ctxt.seid;
14048 vsi->id = ctxt.vsi_number;
14049 }
14050
14051 spin_lock_bh(&vsi->mac_filter_hash_lock);
14052 vsi->active_filters = 0;
14053 /* If macvlan filters already exist, force them to get loaded */
14054 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
14055 f->state = I40E_FILTER_NEW;
14056 f_count++;
14057 }
14058 spin_unlock_bh(&vsi->mac_filter_hash_lock);
14059 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
14060
14061 if (f_count) {
14062 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
14063 set_bit(__I40E_MACVLAN_SYNC_PENDING, pf->state);
14064 }
14065
14066 /* Update VSI BW information */
14067 ret = i40e_vsi_get_bw_info(vsi);
14068 if (ret) {
14069 dev_info(&pf->pdev->dev,
14070 "couldn't get vsi bw info, err %pe aq_err %s\n",
14071 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
14072 /* VSI is already added so not tearing that up */
14073 ret = 0;
14074 }
14075
14076 err:
14077 return ret;
14078 }
14079
14080 /**
14081 * i40e_vsi_release - Delete a VSI and free its resources
14082 * @vsi: the VSI being removed
14083 *
14084 * Returns 0 on success or < 0 on error
14085 **/
i40e_vsi_release(struct i40e_vsi * vsi)14086 int i40e_vsi_release(struct i40e_vsi *vsi)
14087 {
14088 struct i40e_mac_filter *f;
14089 struct hlist_node *h;
14090 struct i40e_veb *veb;
14091 struct i40e_pf *pf;
14092 u16 uplink_seid;
14093 int i, n, bkt;
14094
14095 pf = vsi->back;
14096
14097 /* release of a VEB-owner or last VSI is not allowed */
14098 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) {
14099 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n",
14100 vsi->seid, vsi->uplink_seid);
14101 return -ENODEV;
14102 }
14103 if (vsi->type == I40E_VSI_MAIN && !test_bit(__I40E_DOWN, pf->state)) {
14104 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n");
14105 return -ENODEV;
14106 }
14107 set_bit(__I40E_VSI_RELEASING, vsi->state);
14108 uplink_seid = vsi->uplink_seid;
14109
14110 if (vsi->type != I40E_VSI_SRIOV) {
14111 if (vsi->netdev_registered) {
14112 vsi->netdev_registered = false;
14113 if (vsi->netdev) {
14114 /* results in a call to i40e_close() */
14115 unregister_netdev(vsi->netdev);
14116 }
14117 } else {
14118 i40e_vsi_close(vsi);
14119 }
14120 i40e_vsi_disable_irq(vsi);
14121 }
14122
14123 if (vsi->type == I40E_VSI_MAIN)
14124 i40e_devlink_destroy_port(pf);
14125
14126 spin_lock_bh(&vsi->mac_filter_hash_lock);
14127
14128 /* clear the sync flag on all filters */
14129 if (vsi->netdev) {
14130 __dev_uc_unsync(vsi->netdev, NULL);
14131 __dev_mc_unsync(vsi->netdev, NULL);
14132 }
14133
14134 /* make sure any remaining filters are marked for deletion */
14135 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist)
14136 __i40e_del_filter(vsi, f);
14137
14138 spin_unlock_bh(&vsi->mac_filter_hash_lock);
14139
14140 i40e_sync_vsi_filters(vsi);
14141
14142 i40e_vsi_delete(vsi);
14143 i40e_vsi_free_q_vectors(vsi);
14144 if (vsi->netdev) {
14145 free_netdev(vsi->netdev);
14146 vsi->netdev = NULL;
14147 }
14148 i40e_vsi_clear_rings(vsi);
14149 i40e_vsi_clear(vsi);
14150
14151 /* If this was the last thing on the VEB, except for the
14152 * controlling VSI, remove the VEB, which puts the controlling
14153 * VSI onto the uplink port.
14154 *
14155 * Well, okay, there's one more exception here: don't remove
14156 * the floating VEBs yet. We'll wait for an explicit remove request
14157 * from up the network stack.
14158 */
14159 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid);
14160 if (veb && veb->uplink_seid) {
14161 n = 0;
14162
14163 /* Count non-controlling VSIs present on the VEB */
14164 i40e_pf_for_each_vsi(pf, i, vsi)
14165 if (vsi->uplink_seid == uplink_seid &&
14166 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
14167 n++;
14168
14169 /* If there is no VSI except the control one then release
14170 * the VEB and put the control VSI onto VEB uplink.
14171 */
14172 if (!n)
14173 i40e_veb_release(veb);
14174 }
14175
14176 return 0;
14177 }
14178
14179 /**
14180 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI
14181 * @vsi: ptr to the VSI
14182 *
14183 * This should only be called after i40e_vsi_mem_alloc() which allocates the
14184 * corresponding SW VSI structure and initializes num_queue_pairs for the
14185 * newly allocated VSI.
14186 *
14187 * Returns 0 on success or negative on failure
14188 **/
i40e_vsi_setup_vectors(struct i40e_vsi * vsi)14189 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi)
14190 {
14191 int ret = -ENOENT;
14192 struct i40e_pf *pf = vsi->back;
14193
14194 if (vsi->q_vectors[0]) {
14195 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
14196 vsi->seid);
14197 return -EEXIST;
14198 }
14199
14200 if (vsi->base_vector) {
14201 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
14202 vsi->seid, vsi->base_vector);
14203 return -EEXIST;
14204 }
14205
14206 ret = i40e_vsi_alloc_q_vectors(vsi);
14207 if (ret) {
14208 dev_info(&pf->pdev->dev,
14209 "failed to allocate %d q_vector for VSI %d, ret=%d\n",
14210 vsi->num_q_vectors, vsi->seid, ret);
14211 vsi->num_q_vectors = 0;
14212 goto vector_setup_out;
14213 }
14214
14215 /* In Legacy mode, we do not have to get any other vector since we
14216 * piggyback on the misc/ICR0 for queue interrupts.
14217 */
14218 if (!test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
14219 return ret;
14220 if (vsi->num_q_vectors)
14221 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile,
14222 vsi->num_q_vectors, vsi->idx);
14223 if (vsi->base_vector < 0) {
14224 dev_info(&pf->pdev->dev,
14225 "failed to get tracking for %d vectors for VSI %d, err=%d\n",
14226 vsi->num_q_vectors, vsi->seid, vsi->base_vector);
14227 i40e_vsi_free_q_vectors(vsi);
14228 ret = -ENOENT;
14229 goto vector_setup_out;
14230 }
14231
14232 vector_setup_out:
14233 return ret;
14234 }
14235
14236 /**
14237 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI
14238 * @vsi: pointer to the vsi.
14239 *
14240 * This re-allocates a vsi's queue resources.
14241 *
14242 * Returns pointer to the successfully allocated and configured VSI sw struct
14243 * on success, otherwise returns NULL on failure.
14244 **/
i40e_vsi_reinit_setup(struct i40e_vsi * vsi)14245 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi)
14246 {
14247 struct i40e_vsi *main_vsi;
14248 u16 alloc_queue_pairs;
14249 struct i40e_pf *pf;
14250 int ret;
14251
14252 if (!vsi)
14253 return NULL;
14254
14255 pf = vsi->back;
14256
14257 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
14258 i40e_vsi_clear_rings(vsi);
14259
14260 i40e_vsi_free_arrays(vsi, false);
14261 i40e_set_num_rings_in_vsi(vsi);
14262 ret = i40e_vsi_alloc_arrays(vsi, false);
14263 if (ret)
14264 goto err_vsi;
14265
14266 alloc_queue_pairs = vsi->alloc_queue_pairs *
14267 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
14268
14269 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
14270 if (ret < 0) {
14271 dev_info(&pf->pdev->dev,
14272 "failed to get tracking for %d queues for VSI %d err %d\n",
14273 alloc_queue_pairs, vsi->seid, ret);
14274 goto err_vsi;
14275 }
14276 vsi->base_queue = ret;
14277
14278 /* Update the FW view of the VSI. Force a reset of TC and queue
14279 * layout configurations.
14280 */
14281 main_vsi = i40e_pf_get_main_vsi(pf);
14282 main_vsi->seid = pf->main_vsi_seid;
14283 i40e_vsi_reconfig_tc(main_vsi);
14284
14285 if (vsi->type == I40E_VSI_MAIN)
14286 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr);
14287
14288 /* assign it some queues */
14289 ret = i40e_alloc_rings(vsi);
14290 if (ret)
14291 goto err_rings;
14292
14293 /* map all of the rings to the q_vectors */
14294 i40e_vsi_map_rings_to_vectors(vsi);
14295 return vsi;
14296
14297 err_rings:
14298 i40e_vsi_free_q_vectors(vsi);
14299 if (vsi->netdev_registered) {
14300 vsi->netdev_registered = false;
14301 unregister_netdev(vsi->netdev);
14302 free_netdev(vsi->netdev);
14303 vsi->netdev = NULL;
14304 }
14305 if (vsi->type == I40E_VSI_MAIN)
14306 i40e_devlink_destroy_port(pf);
14307 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
14308 err_vsi:
14309 i40e_vsi_clear(vsi);
14310 return NULL;
14311 }
14312
14313 /**
14314 * i40e_vsi_setup - Set up a VSI by a given type
14315 * @pf: board private structure
14316 * @type: VSI type
14317 * @uplink_seid: the switch element to link to
14318 * @param1: usage depends upon VSI type. For VF types, indicates VF id
14319 *
14320 * This allocates the sw VSI structure and its queue resources, then add a VSI
14321 * to the identified VEB.
14322 *
14323 * Returns pointer to the successfully allocated and configure VSI sw struct on
14324 * success, otherwise returns NULL on failure.
14325 **/
i40e_vsi_setup(struct i40e_pf * pf,u8 type,u16 uplink_seid,u32 param1)14326 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type,
14327 u16 uplink_seid, u32 param1)
14328 {
14329 struct i40e_vsi *vsi = NULL;
14330 struct i40e_veb *veb = NULL;
14331 u16 alloc_queue_pairs;
14332 int v_idx;
14333 int ret;
14334
14335 /* The requested uplink_seid must be either
14336 * - the PF's port seid
14337 * no VEB is needed because this is the PF
14338 * or this is a Flow Director special case VSI
14339 * - seid of an existing VEB
14340 * - seid of a VSI that owns an existing VEB
14341 * - seid of a VSI that doesn't own a VEB
14342 * a new VEB is created and the VSI becomes the owner
14343 * - seid of the PF VSI, which is what creates the first VEB
14344 * this is a special case of the previous
14345 *
14346 * Find which uplink_seid we were given and create a new VEB if needed
14347 */
14348 veb = i40e_pf_get_veb_by_seid(pf, uplink_seid);
14349 if (!veb && uplink_seid != pf->mac_seid) {
14350 vsi = i40e_pf_get_vsi_by_seid(pf, uplink_seid);
14351 if (!vsi) {
14352 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n",
14353 uplink_seid);
14354 return NULL;
14355 }
14356
14357 if (vsi->uplink_seid == pf->mac_seid)
14358 veb = i40e_veb_setup(pf, pf->mac_seid, vsi->seid,
14359 vsi->tc_config.enabled_tc);
14360 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
14361 veb = i40e_veb_setup(pf, vsi->uplink_seid, vsi->seid,
14362 vsi->tc_config.enabled_tc);
14363 if (veb) {
14364 if (vsi->type != I40E_VSI_MAIN) {
14365 dev_info(&vsi->back->pdev->dev,
14366 "New VSI creation error, uplink seid of LAN VSI expected.\n");
14367 return NULL;
14368 }
14369 /* We come up by default in VEPA mode if SRIOV is not
14370 * already enabled, in which case we can't force VEPA
14371 * mode.
14372 */
14373 if (!test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags)) {
14374 veb->bridge_mode = BRIDGE_MODE_VEPA;
14375 clear_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
14376 }
14377 i40e_config_bridge_mode(veb);
14378 }
14379 veb = i40e_pf_get_veb_by_seid(pf, vsi->uplink_seid);
14380 if (!veb) {
14381 dev_info(&pf->pdev->dev, "couldn't add VEB\n");
14382 return NULL;
14383 }
14384
14385 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
14386 uplink_seid = veb->seid;
14387 }
14388
14389 /* get vsi sw struct */
14390 v_idx = i40e_vsi_mem_alloc(pf, type);
14391 if (v_idx < 0)
14392 goto err_alloc;
14393 vsi = pf->vsi[v_idx];
14394 if (!vsi)
14395 goto err_alloc;
14396 vsi->type = type;
14397 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB);
14398
14399 if (type == I40E_VSI_MAIN)
14400 pf->lan_vsi = v_idx;
14401 else if (type == I40E_VSI_SRIOV)
14402 vsi->vf_id = param1;
14403 /* assign it some queues */
14404 alloc_queue_pairs = vsi->alloc_queue_pairs *
14405 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
14406
14407 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
14408 if (ret < 0) {
14409 dev_info(&pf->pdev->dev,
14410 "failed to get tracking for %d queues for VSI %d err=%d\n",
14411 alloc_queue_pairs, vsi->seid, ret);
14412 goto err_vsi;
14413 }
14414 vsi->base_queue = ret;
14415
14416 /* get a VSI from the hardware */
14417 vsi->uplink_seid = uplink_seid;
14418 ret = i40e_add_vsi(vsi);
14419 if (ret)
14420 goto err_vsi;
14421
14422 switch (vsi->type) {
14423 /* setup the netdev if needed */
14424 case I40E_VSI_MAIN:
14425 case I40E_VSI_VMDQ2:
14426 ret = i40e_config_netdev(vsi);
14427 if (ret)
14428 goto err_netdev;
14429 ret = i40e_netif_set_realnum_tx_rx_queues(vsi);
14430 if (ret)
14431 goto err_netdev;
14432 if (vsi->type == I40E_VSI_MAIN) {
14433 ret = i40e_devlink_create_port(pf);
14434 if (ret)
14435 goto err_netdev;
14436 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
14437 }
14438 ret = register_netdev(vsi->netdev);
14439 if (ret)
14440 goto err_dl_port;
14441 vsi->netdev_registered = true;
14442 netif_carrier_off(vsi->netdev);
14443 #ifdef CONFIG_I40E_DCB
14444 /* Setup DCB netlink interface */
14445 i40e_dcbnl_setup(vsi);
14446 #endif /* CONFIG_I40E_DCB */
14447 fallthrough;
14448 case I40E_VSI_FDIR:
14449 /* set up vectors and rings if needed */
14450 ret = i40e_vsi_setup_vectors(vsi);
14451 if (ret)
14452 goto err_msix;
14453
14454 ret = i40e_alloc_rings(vsi);
14455 if (ret)
14456 goto err_rings;
14457
14458 /* map all of the rings to the q_vectors */
14459 i40e_vsi_map_rings_to_vectors(vsi);
14460
14461 i40e_vsi_reset_stats(vsi);
14462 break;
14463 default:
14464 /* no netdev or rings for the other VSI types */
14465 break;
14466 }
14467
14468 if (test_bit(I40E_HW_CAP_RSS_AQ, pf->hw.caps) &&
14469 vsi->type == I40E_VSI_VMDQ2) {
14470 ret = i40e_vsi_config_rss(vsi);
14471 if (ret)
14472 goto err_config;
14473 }
14474 return vsi;
14475
14476 err_config:
14477 i40e_vsi_clear_rings(vsi);
14478 err_rings:
14479 i40e_vsi_free_q_vectors(vsi);
14480 err_msix:
14481 if (vsi->netdev_registered) {
14482 vsi->netdev_registered = false;
14483 unregister_netdev(vsi->netdev);
14484 free_netdev(vsi->netdev);
14485 vsi->netdev = NULL;
14486 }
14487 err_dl_port:
14488 if (vsi->type == I40E_VSI_MAIN)
14489 i40e_devlink_destroy_port(pf);
14490 err_netdev:
14491 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
14492 err_vsi:
14493 i40e_vsi_clear(vsi);
14494 err_alloc:
14495 return NULL;
14496 }
14497
14498 /**
14499 * i40e_veb_get_bw_info - Query VEB BW information
14500 * @veb: the veb to query
14501 *
14502 * Query the Tx scheduler BW configuration data for given VEB
14503 **/
i40e_veb_get_bw_info(struct i40e_veb * veb)14504 static int i40e_veb_get_bw_info(struct i40e_veb *veb)
14505 {
14506 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data;
14507 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data;
14508 struct i40e_pf *pf = veb->pf;
14509 struct i40e_hw *hw = &pf->hw;
14510 u32 tc_bw_max;
14511 int ret = 0;
14512 int i;
14513
14514 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid,
14515 &bw_data, NULL);
14516 if (ret) {
14517 dev_info(&pf->pdev->dev,
14518 "query veb bw config failed, err %pe aq_err %s\n",
14519 ERR_PTR(ret), libie_aq_str(hw->aq.asq_last_status));
14520 goto out;
14521 }
14522
14523 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid,
14524 &ets_data, NULL);
14525 if (ret) {
14526 dev_info(&pf->pdev->dev,
14527 "query veb bw ets config failed, err %pe aq_err %s\n",
14528 ERR_PTR(ret), libie_aq_str(hw->aq.asq_last_status));
14529 goto out;
14530 }
14531
14532 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit);
14533 veb->bw_max_quanta = ets_data.tc_bw_max;
14534 veb->is_abs_credits = bw_data.absolute_credits_enable;
14535 veb->enabled_tc = ets_data.tc_valid_bits;
14536 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) |
14537 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16);
14538 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
14539 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i];
14540 veb->bw_tc_limit_credits[i] =
14541 le16_to_cpu(bw_data.tc_bw_limits[i]);
14542 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7);
14543 }
14544
14545 out:
14546 return ret;
14547 }
14548
14549 /**
14550 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF
14551 * @pf: board private structure
14552 *
14553 * On error: returns error code (negative)
14554 * On success: returns vsi index in PF (positive)
14555 **/
i40e_veb_mem_alloc(struct i40e_pf * pf)14556 static int i40e_veb_mem_alloc(struct i40e_pf *pf)
14557 {
14558 int ret = -ENOENT;
14559 struct i40e_veb *veb;
14560 int i;
14561
14562 /* Need to protect the allocation of switch elements at the PF level */
14563 mutex_lock(&pf->switch_mutex);
14564
14565 /* VEB list may be fragmented if VEB creation/destruction has
14566 * been happening. We can afford to do a quick scan to look
14567 * for any free slots in the list.
14568 *
14569 * find next empty veb slot, looping back around if necessary
14570 */
14571 i = 0;
14572 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL))
14573 i++;
14574 if (i >= I40E_MAX_VEB) {
14575 ret = -ENOMEM;
14576 goto err_alloc_veb; /* out of VEB slots! */
14577 }
14578
14579 veb = kzalloc(sizeof(*veb), GFP_KERNEL);
14580 if (!veb) {
14581 ret = -ENOMEM;
14582 goto err_alloc_veb;
14583 }
14584 veb->pf = pf;
14585 veb->idx = i;
14586 veb->enabled_tc = 1;
14587
14588 pf->veb[i] = veb;
14589 ret = i;
14590 err_alloc_veb:
14591 mutex_unlock(&pf->switch_mutex);
14592 return ret;
14593 }
14594
14595 /**
14596 * i40e_switch_branch_release - Delete a branch of the switch tree
14597 * @branch: where to start deleting
14598 *
14599 * This uses recursion to find the tips of the branch to be
14600 * removed, deleting until we get back to and can delete this VEB.
14601 **/
i40e_switch_branch_release(struct i40e_veb * branch)14602 static void i40e_switch_branch_release(struct i40e_veb *branch)
14603 {
14604 struct i40e_pf *pf = branch->pf;
14605 u16 branch_seid = branch->seid;
14606 u16 veb_idx = branch->idx;
14607 struct i40e_vsi *vsi;
14608 struct i40e_veb *veb;
14609 int i;
14610
14611 /* release any VEBs on this VEB - RECURSION */
14612 i40e_pf_for_each_veb(pf, i, veb)
14613 if (veb->uplink_seid == branch->seid)
14614 i40e_switch_branch_release(veb);
14615
14616 /* Release the VSIs on this VEB, but not the owner VSI.
14617 *
14618 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing
14619 * the VEB itself, so don't use (*branch) after this loop.
14620 */
14621 i40e_pf_for_each_vsi(pf, i, vsi)
14622 if (vsi->uplink_seid == branch_seid &&
14623 (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
14624 i40e_vsi_release(vsi);
14625
14626 /* There's one corner case where the VEB might not have been
14627 * removed, so double check it here and remove it if needed.
14628 * This case happens if the veb was created from the debugfs
14629 * commands and no VSIs were added to it.
14630 */
14631 if (pf->veb[veb_idx])
14632 i40e_veb_release(pf->veb[veb_idx]);
14633 }
14634
14635 /**
14636 * i40e_veb_clear - remove veb struct
14637 * @veb: the veb to remove
14638 **/
i40e_veb_clear(struct i40e_veb * veb)14639 static void i40e_veb_clear(struct i40e_veb *veb)
14640 {
14641 if (!veb)
14642 return;
14643
14644 if (veb->pf) {
14645 struct i40e_pf *pf = veb->pf;
14646
14647 mutex_lock(&pf->switch_mutex);
14648 if (pf->veb[veb->idx] == veb)
14649 pf->veb[veb->idx] = NULL;
14650 mutex_unlock(&pf->switch_mutex);
14651 }
14652
14653 kfree(veb);
14654 }
14655
14656 /**
14657 * i40e_veb_release - Delete a VEB and free its resources
14658 * @veb: the VEB being removed
14659 **/
i40e_veb_release(struct i40e_veb * veb)14660 void i40e_veb_release(struct i40e_veb *veb)
14661 {
14662 struct i40e_vsi *vsi, *vsi_it;
14663 struct i40e_pf *pf;
14664 int i, n = 0;
14665
14666 pf = veb->pf;
14667
14668 /* find the remaining VSI and check for extras */
14669 i40e_pf_for_each_vsi(pf, i, vsi_it)
14670 if (vsi_it->uplink_seid == veb->seid) {
14671 if (vsi_it->flags & I40E_VSI_FLAG_VEB_OWNER)
14672 vsi = vsi_it;
14673 n++;
14674 }
14675
14676 /* Floating VEB has to be empty and regular one must have
14677 * single owner VSI.
14678 */
14679 if ((veb->uplink_seid && n != 1) || (!veb->uplink_seid && n != 0)) {
14680 dev_info(&pf->pdev->dev,
14681 "can't remove VEB %d with %d VSIs left\n",
14682 veb->seid, n);
14683 return;
14684 }
14685
14686 /* For regular VEB move the owner VSI to uplink port */
14687 if (veb->uplink_seid) {
14688 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER;
14689 vsi->uplink_seid = veb->uplink_seid;
14690 vsi->veb_idx = I40E_NO_VEB;
14691 }
14692
14693 i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
14694 i40e_veb_clear(veb);
14695 }
14696
14697 /**
14698 * i40e_add_veb - create the VEB in the switch
14699 * @veb: the VEB to be instantiated
14700 * @vsi: the controlling VSI
14701 **/
i40e_add_veb(struct i40e_veb * veb,struct i40e_vsi * vsi)14702 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi)
14703 {
14704 struct i40e_pf *pf = veb->pf;
14705 bool enable_stats = !!test_bit(I40E_FLAG_VEB_STATS_ENA, pf->flags);
14706 int ret;
14707
14708 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi ? vsi->seid : 0,
14709 veb->enabled_tc, vsi ? false : true,
14710 &veb->seid, enable_stats, NULL);
14711
14712 /* get a VEB from the hardware */
14713 if (ret) {
14714 dev_info(&pf->pdev->dev,
14715 "couldn't add VEB, err %pe aq_err %s\n",
14716 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
14717 return -EPERM;
14718 }
14719
14720 /* get statistics counter */
14721 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL,
14722 &veb->stats_idx, NULL, NULL, NULL);
14723 if (ret) {
14724 dev_info(&pf->pdev->dev,
14725 "couldn't get VEB statistics idx, err %pe aq_err %s\n",
14726 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
14727 return -EPERM;
14728 }
14729 ret = i40e_veb_get_bw_info(veb);
14730 if (ret) {
14731 dev_info(&pf->pdev->dev,
14732 "couldn't get VEB bw info, err %pe aq_err %s\n",
14733 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
14734 i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
14735 return -ENOENT;
14736 }
14737
14738 if (vsi) {
14739 vsi->uplink_seid = veb->seid;
14740 vsi->veb_idx = veb->idx;
14741 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
14742 }
14743
14744 return 0;
14745 }
14746
14747 /**
14748 * i40e_veb_setup - Set up a VEB
14749 * @pf: board private structure
14750 * @uplink_seid: the switch element to link to
14751 * @vsi_seid: the initial VSI seid
14752 * @enabled_tc: Enabled TC bit-map
14753 *
14754 * This allocates the sw VEB structure and links it into the switch
14755 * It is possible and legal for this to be a duplicate of an already
14756 * existing VEB. It is also possible for both uplink and vsi seids
14757 * to be zero, in order to create a floating VEB.
14758 *
14759 * Returns pointer to the successfully allocated VEB sw struct on
14760 * success, otherwise returns NULL on failure.
14761 **/
i40e_veb_setup(struct i40e_pf * pf,u16 uplink_seid,u16 vsi_seid,u8 enabled_tc)14762 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 uplink_seid,
14763 u16 vsi_seid, u8 enabled_tc)
14764 {
14765 struct i40e_vsi *vsi = NULL;
14766 struct i40e_veb *veb;
14767 int veb_idx;
14768 int ret;
14769
14770 /* if one seid is 0, the other must be 0 to create a floating relay */
14771 if ((uplink_seid == 0 || vsi_seid == 0) &&
14772 (uplink_seid + vsi_seid != 0)) {
14773 dev_info(&pf->pdev->dev,
14774 "one, not both seid's are 0: uplink=%d vsi=%d\n",
14775 uplink_seid, vsi_seid);
14776 return NULL;
14777 }
14778
14779 /* make sure there is such a vsi and uplink */
14780 if (vsi_seid) {
14781 vsi = i40e_pf_get_vsi_by_seid(pf, vsi_seid);
14782 if (!vsi) {
14783 dev_err(&pf->pdev->dev, "vsi seid %d not found\n",
14784 vsi_seid);
14785 return NULL;
14786 }
14787 }
14788
14789 /* get veb sw struct */
14790 veb_idx = i40e_veb_mem_alloc(pf);
14791 if (veb_idx < 0)
14792 goto err_alloc;
14793 veb = pf->veb[veb_idx];
14794 veb->uplink_seid = uplink_seid;
14795 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1);
14796
14797 /* create the VEB in the switch */
14798 ret = i40e_add_veb(veb, vsi);
14799 if (ret)
14800 goto err_veb;
14801
14802 if (vsi && vsi->idx == pf->lan_vsi)
14803 pf->lan_veb = veb->idx;
14804
14805 return veb;
14806
14807 err_veb:
14808 i40e_veb_clear(veb);
14809 err_alloc:
14810 return NULL;
14811 }
14812
14813 /**
14814 * i40e_setup_pf_switch_element - set PF vars based on switch type
14815 * @pf: board private structure
14816 * @ele: element we are building info from
14817 * @num_reported: total number of elements
14818 * @printconfig: should we print the contents
14819 *
14820 * helper function to assist in extracting a few useful SEID values.
14821 **/
i40e_setup_pf_switch_element(struct i40e_pf * pf,struct i40e_aqc_switch_config_element_resp * ele,u16 num_reported,bool printconfig)14822 static void i40e_setup_pf_switch_element(struct i40e_pf *pf,
14823 struct i40e_aqc_switch_config_element_resp *ele,
14824 u16 num_reported, bool printconfig)
14825 {
14826 u16 downlink_seid = le16_to_cpu(ele->downlink_seid);
14827 u16 uplink_seid = le16_to_cpu(ele->uplink_seid);
14828 u8 element_type = ele->element_type;
14829 u16 seid = le16_to_cpu(ele->seid);
14830 struct i40e_veb *veb;
14831
14832 if (printconfig)
14833 dev_info(&pf->pdev->dev,
14834 "type=%d seid=%d uplink=%d downlink=%d\n",
14835 element_type, seid, uplink_seid, downlink_seid);
14836
14837 switch (element_type) {
14838 case I40E_SWITCH_ELEMENT_TYPE_MAC:
14839 pf->mac_seid = seid;
14840 break;
14841 case I40E_SWITCH_ELEMENT_TYPE_VEB:
14842 /* Main VEB? */
14843 if (uplink_seid != pf->mac_seid)
14844 break;
14845 veb = i40e_pf_get_main_veb(pf);
14846 if (!veb) {
14847 int v;
14848
14849 /* find existing or else empty VEB */
14850 veb = i40e_pf_get_veb_by_seid(pf, seid);
14851 if (veb) {
14852 pf->lan_veb = veb->idx;
14853 } else {
14854 v = i40e_veb_mem_alloc(pf);
14855 if (v < 0)
14856 break;
14857 pf->lan_veb = v;
14858 }
14859 }
14860
14861 /* Try to get again main VEB as pf->lan_veb may have changed */
14862 veb = i40e_pf_get_main_veb(pf);
14863 if (!veb)
14864 break;
14865
14866 veb->seid = seid;
14867 veb->uplink_seid = pf->mac_seid;
14868 veb->pf = pf;
14869 break;
14870 case I40E_SWITCH_ELEMENT_TYPE_VSI:
14871 if (num_reported != 1)
14872 break;
14873 /* This is immediately after a reset so we can assume this is
14874 * the PF's VSI
14875 */
14876 pf->mac_seid = uplink_seid;
14877 pf->main_vsi_seid = seid;
14878 if (printconfig)
14879 dev_info(&pf->pdev->dev,
14880 "pf_seid=%d main_vsi_seid=%d\n",
14881 downlink_seid, pf->main_vsi_seid);
14882 break;
14883 case I40E_SWITCH_ELEMENT_TYPE_PF:
14884 case I40E_SWITCH_ELEMENT_TYPE_VF:
14885 case I40E_SWITCH_ELEMENT_TYPE_EMP:
14886 case I40E_SWITCH_ELEMENT_TYPE_BMC:
14887 case I40E_SWITCH_ELEMENT_TYPE_PE:
14888 case I40E_SWITCH_ELEMENT_TYPE_PA:
14889 /* ignore these for now */
14890 break;
14891 default:
14892 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n",
14893 element_type, seid);
14894 break;
14895 }
14896 }
14897
14898 /**
14899 * i40e_fetch_switch_configuration - Get switch config from firmware
14900 * @pf: board private structure
14901 * @printconfig: should we print the contents
14902 *
14903 * Get the current switch configuration from the device and
14904 * extract a few useful SEID values.
14905 **/
i40e_fetch_switch_configuration(struct i40e_pf * pf,bool printconfig)14906 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig)
14907 {
14908 struct i40e_aqc_get_switch_config_resp *sw_config;
14909 u16 next_seid = 0;
14910 int ret = 0;
14911 u8 *aq_buf;
14912 int i;
14913
14914 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL);
14915 if (!aq_buf)
14916 return -ENOMEM;
14917
14918 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
14919 do {
14920 u16 num_reported, num_total;
14921
14922 ret = i40e_aq_get_switch_config(&pf->hw, sw_config,
14923 I40E_AQ_LARGE_BUF,
14924 &next_seid, NULL);
14925 if (ret) {
14926 dev_info(&pf->pdev->dev,
14927 "get switch config failed err %d aq_err %s\n",
14928 ret, libie_aq_str(pf->hw.aq.asq_last_status));
14929 kfree(aq_buf);
14930 return -ENOENT;
14931 }
14932
14933 num_reported = le16_to_cpu(sw_config->header.num_reported);
14934 num_total = le16_to_cpu(sw_config->header.num_total);
14935
14936 if (printconfig)
14937 dev_info(&pf->pdev->dev,
14938 "header: %d reported %d total\n",
14939 num_reported, num_total);
14940
14941 for (i = 0; i < num_reported; i++) {
14942 struct i40e_aqc_switch_config_element_resp *ele =
14943 &sw_config->element[i];
14944
14945 i40e_setup_pf_switch_element(pf, ele, num_reported,
14946 printconfig);
14947 }
14948 } while (next_seid != 0);
14949
14950 kfree(aq_buf);
14951 return ret;
14952 }
14953
14954 /**
14955 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset
14956 * @pf: board private structure
14957 * @reinit: if the Main VSI needs to re-initialized.
14958 * @lock_acquired: indicates whether or not the lock has been acquired
14959 *
14960 * Returns 0 on success, negative value on failure
14961 **/
i40e_setup_pf_switch(struct i40e_pf * pf,bool reinit,bool lock_acquired)14962 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit, bool lock_acquired)
14963 {
14964 struct i40e_vsi *main_vsi;
14965 u16 flags = 0;
14966 int ret;
14967
14968 /* find out what's out there already */
14969 ret = i40e_fetch_switch_configuration(pf, false);
14970 if (ret) {
14971 dev_info(&pf->pdev->dev,
14972 "couldn't fetch switch config, err %pe aq_err %s\n",
14973 ERR_PTR(ret), libie_aq_str(pf->hw.aq.asq_last_status));
14974 return ret;
14975 }
14976 i40e_pf_reset_stats(pf);
14977
14978 /* set the switch config bit for the whole device to
14979 * support limited promisc or true promisc
14980 * when user requests promisc. The default is limited
14981 * promisc.
14982 */
14983
14984 if ((pf->hw.pf_id == 0) &&
14985 !test_bit(I40E_FLAG_TRUE_PROMISC_ENA, pf->flags)) {
14986 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
14987 pf->last_sw_conf_flags = flags;
14988 }
14989
14990 if (pf->hw.pf_id == 0) {
14991 u16 valid_flags;
14992
14993 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
14994 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0,
14995 NULL);
14996 if (ret && pf->hw.aq.asq_last_status != LIBIE_AQ_RC_ESRCH) {
14997 dev_info(&pf->pdev->dev,
14998 "couldn't set switch config bits, err %pe aq_err %s\n",
14999 ERR_PTR(ret),
15000 libie_aq_str(pf->hw.aq.asq_last_status));
15001 /* not a fatal problem, just keep going */
15002 }
15003 pf->last_sw_conf_valid_flags = valid_flags;
15004 }
15005
15006 /* first time setup */
15007 main_vsi = i40e_pf_get_main_vsi(pf);
15008 if (!main_vsi || reinit) {
15009 struct i40e_veb *veb;
15010 u16 uplink_seid;
15011
15012 /* Set up the PF VSI associated with the PF's main VSI
15013 * that is already in the HW switch
15014 */
15015 veb = i40e_pf_get_main_veb(pf);
15016 if (veb)
15017 uplink_seid = veb->seid;
15018 else
15019 uplink_seid = pf->mac_seid;
15020 if (!main_vsi)
15021 main_vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN,
15022 uplink_seid, 0);
15023 else if (reinit)
15024 main_vsi = i40e_vsi_reinit_setup(main_vsi);
15025 if (!main_vsi) {
15026 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n");
15027 i40e_cloud_filter_exit(pf);
15028 i40e_fdir_teardown(pf);
15029 return -EAGAIN;
15030 }
15031 } else {
15032 /* force a reset of TC and queue layout configurations */
15033 main_vsi->seid = pf->main_vsi_seid;
15034 i40e_vsi_reconfig_tc(main_vsi);
15035 }
15036 i40e_vlan_stripping_disable(main_vsi);
15037
15038 i40e_fdir_sb_setup(pf);
15039
15040 /* Setup static PF queue filter control settings */
15041 ret = i40e_setup_pf_filter_control(pf);
15042 if (ret) {
15043 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n",
15044 ret);
15045 /* Failure here should not stop continuing other steps */
15046 }
15047
15048 /* enable RSS in the HW, even for only one queue, as the stack can use
15049 * the hash
15050 */
15051 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags))
15052 i40e_pf_config_rss(pf);
15053
15054 /* fill in link information and enable LSE reporting */
15055 i40e_link_event(pf);
15056
15057 i40e_ptp_init(pf);
15058
15059 if (!lock_acquired)
15060 rtnl_lock();
15061
15062 /* repopulate tunnel port filters */
15063 udp_tunnel_nic_reset_ntf(main_vsi->netdev);
15064
15065 if (!lock_acquired)
15066 rtnl_unlock();
15067
15068 return ret;
15069 }
15070
15071 /**
15072 * i40e_determine_queue_usage - Work out queue distribution
15073 * @pf: board private structure
15074 **/
i40e_determine_queue_usage(struct i40e_pf * pf)15075 static void i40e_determine_queue_usage(struct i40e_pf *pf)
15076 {
15077 int queues_left;
15078 int q_max;
15079
15080 pf->num_lan_qps = 0;
15081
15082 /* Find the max queues to be put into basic use. We'll always be
15083 * using TC0, whether or not DCB is running, and TC0 will get the
15084 * big RSS set.
15085 */
15086 queues_left = pf->hw.func_caps.num_tx_qp;
15087
15088 if ((queues_left == 1) ||
15089 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
15090 /* one qp for PF, no queues for anything else */
15091 queues_left = 0;
15092 pf->alloc_rss_size = pf->num_lan_qps = 1;
15093
15094 /* make sure all the fancies are disabled */
15095 clear_bit(I40E_FLAG_RSS_ENA, pf->flags);
15096 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
15097 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
15098 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
15099 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
15100 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
15101 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
15102 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
15103 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
15104 } else if (!test_bit(I40E_FLAG_RSS_ENA, pf->flags) &&
15105 !test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
15106 !test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
15107 !test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags)) {
15108 /* one qp for PF */
15109 pf->alloc_rss_size = pf->num_lan_qps = 1;
15110 queues_left -= pf->num_lan_qps;
15111
15112 clear_bit(I40E_FLAG_RSS_ENA, pf->flags);
15113 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
15114 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
15115 clear_bit(I40E_FLAG_FD_ATR_ENA, pf->flags);
15116 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
15117 clear_bit(I40E_FLAG_VMDQ_ENA, pf->flags);
15118 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
15119 } else {
15120 /* Not enough queues for all TCs */
15121 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags) &&
15122 queues_left < I40E_MAX_TRAFFIC_CLASS) {
15123 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
15124 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
15125 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n");
15126 }
15127
15128 /* limit lan qps to the smaller of qps, cpus or msix */
15129 q_max = max_t(int, pf->rss_size_max, num_online_cpus());
15130 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp);
15131 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors);
15132 pf->num_lan_qps = q_max;
15133
15134 queues_left -= pf->num_lan_qps;
15135 }
15136
15137 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
15138 if (queues_left > 1) {
15139 queues_left -= 1; /* save 1 queue for FD */
15140 } else {
15141 clear_bit(I40E_FLAG_FD_SB_ENA, pf->flags);
15142 set_bit(I40E_FLAG_FD_SB_INACTIVE, pf->flags);
15143 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n");
15144 }
15145 }
15146
15147 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) &&
15148 pf->num_vf_qps && pf->num_req_vfs && queues_left) {
15149 pf->num_req_vfs = min_t(int, pf->num_req_vfs,
15150 (queues_left / pf->num_vf_qps));
15151 queues_left -= (pf->num_req_vfs * pf->num_vf_qps);
15152 }
15153
15154 if (test_bit(I40E_FLAG_VMDQ_ENA, pf->flags) &&
15155 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) {
15156 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis,
15157 (queues_left / pf->num_vmdq_qps));
15158 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps);
15159 }
15160
15161 pf->queues_left = queues_left;
15162 dev_dbg(&pf->pdev->dev,
15163 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n",
15164 pf->hw.func_caps.num_tx_qp,
15165 !!test_bit(I40E_FLAG_FD_SB_ENA, pf->flags),
15166 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs,
15167 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps,
15168 queues_left);
15169 }
15170
15171 /**
15172 * i40e_setup_pf_filter_control - Setup PF static filter control
15173 * @pf: PF to be setup
15174 *
15175 * i40e_setup_pf_filter_control sets up a PF's initial filter control
15176 * settings. If PE/FCoE are enabled then it will also set the per PF
15177 * based filter sizes required for them. It also enables Flow director,
15178 * ethertype and macvlan type filter settings for the pf.
15179 *
15180 * Returns 0 on success, negative on failure
15181 **/
i40e_setup_pf_filter_control(struct i40e_pf * pf)15182 static int i40e_setup_pf_filter_control(struct i40e_pf *pf)
15183 {
15184 struct i40e_filter_control_settings *settings = &pf->filter_settings;
15185
15186 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128;
15187
15188 /* Flow Director is enabled */
15189 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) ||
15190 test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
15191 settings->enable_fdir = true;
15192
15193 /* Ethtype and MACVLAN filters enabled for PF */
15194 settings->enable_ethtype = true;
15195 settings->enable_macvlan = true;
15196
15197 if (i40e_set_filter_control(&pf->hw, settings))
15198 return -ENOENT;
15199
15200 return 0;
15201 }
15202
15203 #define INFO_STRING_LEN 255
15204 #define REMAIN(__x) (INFO_STRING_LEN - (__x))
i40e_print_features(struct i40e_pf * pf)15205 static void i40e_print_features(struct i40e_pf *pf)
15206 {
15207 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
15208 struct i40e_hw *hw = &pf->hw;
15209 char *buf;
15210 int i;
15211
15212 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL);
15213 if (!buf)
15214 return;
15215
15216 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id);
15217 #ifdef CONFIG_PCI_IOV
15218 i += scnprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs);
15219 #endif
15220 i += scnprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d",
15221 pf->hw.func_caps.num_vsis, main_vsi->num_queue_pairs);
15222 if (test_bit(I40E_FLAG_RSS_ENA, pf->flags))
15223 i += scnprintf(&buf[i], REMAIN(i), " RSS");
15224 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
15225 i += scnprintf(&buf[i], REMAIN(i), " FD_ATR");
15226 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags)) {
15227 i += scnprintf(&buf[i], REMAIN(i), " FD_SB");
15228 i += scnprintf(&buf[i], REMAIN(i), " NTUPLE");
15229 }
15230 if (test_bit(I40E_FLAG_DCB_CAPABLE, pf->flags))
15231 i += scnprintf(&buf[i], REMAIN(i), " DCB");
15232 i += scnprintf(&buf[i], REMAIN(i), " VxLAN");
15233 i += scnprintf(&buf[i], REMAIN(i), " Geneve");
15234 if (test_bit(I40E_FLAG_PTP_ENA, pf->flags))
15235 i += scnprintf(&buf[i], REMAIN(i), " PTP");
15236 if (test_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags))
15237 i += scnprintf(&buf[i], REMAIN(i), " VEB");
15238 else
15239 i += scnprintf(&buf[i], REMAIN(i), " VEPA");
15240
15241 dev_info(&pf->pdev->dev, "%s\n", buf);
15242 kfree(buf);
15243 WARN_ON(i > INFO_STRING_LEN);
15244 }
15245
15246 /**
15247 * i40e_get_platform_mac_addr - get platform-specific MAC address
15248 * @pdev: PCI device information struct
15249 * @pf: board private structure
15250 *
15251 * Look up the MAC address for the device. First we'll try
15252 * eth_platform_get_mac_address, which will check Open Firmware, or arch
15253 * specific fallback. Otherwise, we'll default to the stored value in
15254 * firmware.
15255 **/
i40e_get_platform_mac_addr(struct pci_dev * pdev,struct i40e_pf * pf)15256 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf)
15257 {
15258 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr))
15259 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr);
15260 }
15261
15262 /**
15263 * i40e_set_fec_in_flags - helper function for setting FEC options in flags
15264 * @fec_cfg: FEC option to set in flags
15265 * @flags: ptr to flags in which we set FEC option
15266 **/
i40e_set_fec_in_flags(u8 fec_cfg,unsigned long * flags)15267 void i40e_set_fec_in_flags(u8 fec_cfg, unsigned long *flags)
15268 {
15269 if (fec_cfg & I40E_AQ_SET_FEC_AUTO) {
15270 set_bit(I40E_FLAG_RS_FEC, flags);
15271 set_bit(I40E_FLAG_BASE_R_FEC, flags);
15272 }
15273 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_RS) ||
15274 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_RS)) {
15275 set_bit(I40E_FLAG_RS_FEC, flags);
15276 clear_bit(I40E_FLAG_BASE_R_FEC, flags);
15277 }
15278 if ((fec_cfg & I40E_AQ_SET_FEC_REQUEST_KR) ||
15279 (fec_cfg & I40E_AQ_SET_FEC_ABILITY_KR)) {
15280 set_bit(I40E_FLAG_BASE_R_FEC, flags);
15281 clear_bit(I40E_FLAG_RS_FEC, flags);
15282 }
15283 if (fec_cfg == 0) {
15284 clear_bit(I40E_FLAG_RS_FEC, flags);
15285 clear_bit(I40E_FLAG_BASE_R_FEC, flags);
15286 }
15287 }
15288
15289 /**
15290 * i40e_check_recovery_mode - check if we are running transition firmware
15291 * @pf: board private structure
15292 *
15293 * Check registers indicating the firmware runs in recovery mode. Sets the
15294 * appropriate driver state.
15295 *
15296 * Returns true if the recovery mode was detected, false otherwise
15297 **/
i40e_check_recovery_mode(struct i40e_pf * pf)15298 static bool i40e_check_recovery_mode(struct i40e_pf *pf)
15299 {
15300 u32 val = rd32(&pf->hw, I40E_GL_FWSTS);
15301
15302 if (val & I40E_GL_FWSTS_FWS1B_MASK) {
15303 dev_crit(&pf->pdev->dev, "Firmware recovery mode detected. Limiting functionality.\n");
15304 dev_crit(&pf->pdev->dev, "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode.\n");
15305 set_bit(__I40E_RECOVERY_MODE, pf->state);
15306
15307 return true;
15308 }
15309 if (test_bit(__I40E_RECOVERY_MODE, pf->state))
15310 dev_info(&pf->pdev->dev, "Please do Power-On Reset to initialize adapter in normal mode with full functionality.\n");
15311
15312 return false;
15313 }
15314
15315 /**
15316 * i40e_pf_loop_reset - perform reset in a loop.
15317 * @pf: board private structure
15318 *
15319 * This function is useful when a NIC is about to enter recovery mode.
15320 * When a NIC's internal data structures are corrupted the NIC's
15321 * firmware is going to enter recovery mode.
15322 * Right after a POR it takes about 7 minutes for firmware to enter
15323 * recovery mode. Until that time a NIC is in some kind of intermediate
15324 * state. After that time period the NIC almost surely enters
15325 * recovery mode. The only way for a driver to detect intermediate
15326 * state is to issue a series of pf-resets and check a return value.
15327 * If a PF reset returns success then the firmware could be in recovery
15328 * mode so the caller of this code needs to check for recovery mode
15329 * if this function returns success. There is a little chance that
15330 * firmware will hang in intermediate state forever.
15331 * Since waiting 7 minutes is quite a lot of time this function waits
15332 * 10 seconds and then gives up by returning an error.
15333 *
15334 * Return 0 on success, negative on failure.
15335 **/
i40e_pf_loop_reset(struct i40e_pf * pf)15336 static int i40e_pf_loop_reset(struct i40e_pf *pf)
15337 {
15338 /* wait max 10 seconds for PF reset to succeed */
15339 const unsigned long time_end = jiffies + 10 * HZ;
15340 struct i40e_hw *hw = &pf->hw;
15341 int ret;
15342
15343 ret = i40e_pf_reset(hw);
15344 while (ret != 0 && time_before(jiffies, time_end)) {
15345 usleep_range(10000, 20000);
15346 ret = i40e_pf_reset(hw);
15347 }
15348
15349 if (ret == 0)
15350 pf->pfr_count++;
15351 else
15352 dev_info(&pf->pdev->dev, "PF reset failed: %d\n", ret);
15353
15354 return ret;
15355 }
15356
15357 /**
15358 * i40e_check_fw_empr - check if FW issued unexpected EMP Reset
15359 * @pf: board private structure
15360 *
15361 * Check FW registers to determine if FW issued unexpected EMP Reset.
15362 * Every time when unexpected EMP Reset occurs the FW increments
15363 * a counter of unexpected EMP Resets. When the counter reaches 10
15364 * the FW should enter the Recovery mode
15365 *
15366 * Returns true if FW issued unexpected EMP Reset
15367 **/
i40e_check_fw_empr(struct i40e_pf * pf)15368 static bool i40e_check_fw_empr(struct i40e_pf *pf)
15369 {
15370 const u32 fw_sts = rd32(&pf->hw, I40E_GL_FWSTS) &
15371 I40E_GL_FWSTS_FWS1B_MASK;
15372 return (fw_sts > I40E_GL_FWSTS_FWS1B_EMPR_0) &&
15373 (fw_sts <= I40E_GL_FWSTS_FWS1B_EMPR_10);
15374 }
15375
15376 /**
15377 * i40e_handle_resets - handle EMP resets and PF resets
15378 * @pf: board private structure
15379 *
15380 * Handle both EMP resets and PF resets and conclude whether there are
15381 * any issues regarding these resets. If there are any issues then
15382 * generate log entry.
15383 *
15384 * Return 0 if NIC is healthy or negative value when there are issues
15385 * with resets
15386 **/
i40e_handle_resets(struct i40e_pf * pf)15387 static int i40e_handle_resets(struct i40e_pf *pf)
15388 {
15389 const int pfr = i40e_pf_loop_reset(pf);
15390 const bool is_empr = i40e_check_fw_empr(pf);
15391
15392 if (is_empr || pfr != 0)
15393 dev_crit(&pf->pdev->dev, "Entering recovery mode due to repeated FW resets. This may take several minutes. Refer to the Intel(R) Ethernet Adapters and Devices User Guide.\n");
15394
15395 return is_empr ? -EIO : pfr;
15396 }
15397
15398 /**
15399 * i40e_init_recovery_mode - initialize subsystems needed in recovery mode
15400 * @pf: board private structure
15401 * @hw: ptr to the hardware info
15402 *
15403 * This function does a minimal setup of all subsystems needed for running
15404 * recovery mode.
15405 *
15406 * Returns 0 on success, negative on failure
15407 **/
i40e_init_recovery_mode(struct i40e_pf * pf,struct i40e_hw * hw)15408 static int i40e_init_recovery_mode(struct i40e_pf *pf, struct i40e_hw *hw)
15409 {
15410 struct i40e_vsi *vsi;
15411 int err;
15412 int v_idx;
15413
15414 pci_set_drvdata(pf->pdev, pf);
15415 pci_save_state(pf->pdev);
15416
15417 /* set up periodic task facility */
15418 timer_setup(&pf->service_timer, i40e_service_timer, 0);
15419 pf->service_timer_period = HZ;
15420
15421 INIT_WORK(&pf->service_task, i40e_service_task);
15422 clear_bit(__I40E_SERVICE_SCHED, pf->state);
15423
15424 err = i40e_init_interrupt_scheme(pf);
15425 if (err)
15426 goto err_switch_setup;
15427
15428 /* The number of VSIs reported by the FW is the minimum guaranteed
15429 * to us; HW supports far more and we share the remaining pool with
15430 * the other PFs. We allocate space for more than the guarantee with
15431 * the understanding that we might not get them all later.
15432 */
15433 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC)
15434 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC;
15435 else
15436 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis;
15437
15438 /* Set up the vsi struct and our local tracking of the MAIN PF vsi. */
15439 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *),
15440 GFP_KERNEL);
15441 if (!pf->vsi) {
15442 err = -ENOMEM;
15443 goto err_switch_setup;
15444 }
15445
15446 /* We allocate one VSI which is needed as absolute minimum
15447 * in order to register the netdev
15448 */
15449 v_idx = i40e_vsi_mem_alloc(pf, I40E_VSI_MAIN);
15450 if (v_idx < 0) {
15451 err = v_idx;
15452 goto err_switch_setup;
15453 }
15454 pf->lan_vsi = v_idx;
15455 vsi = pf->vsi[v_idx];
15456 if (!vsi) {
15457 err = -EFAULT;
15458 goto err_switch_setup;
15459 }
15460 vsi->alloc_queue_pairs = 1;
15461 err = i40e_config_netdev(vsi);
15462 if (err)
15463 goto err_switch_setup;
15464 err = register_netdev(vsi->netdev);
15465 if (err)
15466 goto err_switch_setup;
15467 vsi->netdev_registered = true;
15468 i40e_dbg_pf_init(pf);
15469
15470 err = i40e_setup_misc_vector_for_recovery_mode(pf);
15471 if (err)
15472 goto err_switch_setup;
15473
15474 /* tell the firmware that we're starting */
15475 i40e_send_version(pf);
15476
15477 /* since everything's happy, start the service_task timer */
15478 mod_timer(&pf->service_timer,
15479 round_jiffies(jiffies + pf->service_timer_period));
15480
15481 return 0;
15482
15483 err_switch_setup:
15484 i40e_reset_interrupt_capability(pf);
15485 timer_shutdown_sync(&pf->service_timer);
15486 i40e_shutdown_adminq(hw);
15487 iounmap(hw->hw_addr);
15488 pci_release_mem_regions(pf->pdev);
15489 pci_disable_device(pf->pdev);
15490 i40e_free_pf(pf);
15491
15492 return err;
15493 }
15494
15495 /**
15496 * i40e_set_subsystem_device_id - set subsystem device id
15497 * @hw: pointer to the hardware info
15498 *
15499 * Set PCI subsystem device id either from a pci_dev structure or
15500 * a specific FW register.
15501 **/
i40e_set_subsystem_device_id(struct i40e_hw * hw)15502 static inline void i40e_set_subsystem_device_id(struct i40e_hw *hw)
15503 {
15504 struct i40e_pf *pf = i40e_hw_to_pf(hw);
15505
15506 hw->subsystem_device_id = pf->pdev->subsystem_device ?
15507 pf->pdev->subsystem_device :
15508 (ushort)(rd32(hw, I40E_PFPCI_SUBSYSID) & USHRT_MAX);
15509 }
15510
15511 /**
15512 * i40e_probe - Device initialization routine
15513 * @pdev: PCI device information struct
15514 * @ent: entry in i40e_pci_tbl
15515 *
15516 * i40e_probe initializes a PF identified by a pci_dev structure.
15517 * The OS initialization, configuring of the PF private structure,
15518 * and a hardware reset occur.
15519 *
15520 * Returns 0 on success, negative on failure
15521 **/
i40e_probe(struct pci_dev * pdev,const struct pci_device_id * ent)15522 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
15523 {
15524 struct i40e_aq_get_phy_abilities_resp abilities;
15525 #ifdef CONFIG_I40E_DCB
15526 enum i40e_get_fw_lldp_status_resp lldp_status;
15527 #endif /* CONFIG_I40E_DCB */
15528 struct i40e_vsi *vsi;
15529 struct i40e_pf *pf;
15530 struct i40e_hw *hw;
15531 u16 wol_nvm_bits;
15532 char nvm_ver[32];
15533 u16 link_status;
15534 #ifdef CONFIG_I40E_DCB
15535 int status;
15536 #endif /* CONFIG_I40E_DCB */
15537 int err;
15538 u32 val;
15539
15540 err = pci_enable_device_mem(pdev);
15541 if (err)
15542 return err;
15543
15544 /* set up for high or low dma */
15545 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
15546 if (err) {
15547 dev_err(&pdev->dev,
15548 "DMA configuration failed: 0x%x\n", err);
15549 goto err_dma;
15550 }
15551
15552 /* set up pci connections */
15553 err = pci_request_mem_regions(pdev, i40e_driver_name);
15554 if (err) {
15555 dev_info(&pdev->dev,
15556 "pci_request_selected_regions failed %d\n", err);
15557 goto err_pci_reg;
15558 }
15559
15560 pci_set_master(pdev);
15561
15562 /* Now that we have a PCI connection, we need to do the
15563 * low level device setup. This is primarily setting up
15564 * the Admin Queue structures and then querying for the
15565 * device's current profile information.
15566 */
15567 pf = i40e_alloc_pf(&pdev->dev);
15568 if (!pf) {
15569 err = -ENOMEM;
15570 goto err_pf_alloc;
15571 }
15572 pf->next_vsi = 0;
15573 pf->pdev = pdev;
15574 set_bit(__I40E_DOWN, pf->state);
15575
15576 hw = &pf->hw;
15577
15578 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0),
15579 I40E_MAX_CSR_SPACE);
15580 /* We believe that the highest register to read is
15581 * I40E_GLGEN_STAT_CLEAR, so we check if the BAR size
15582 * is not less than that before mapping to prevent a
15583 * kernel panic.
15584 */
15585 if (pf->ioremap_len < I40E_GLGEN_STAT_CLEAR) {
15586 dev_err(&pdev->dev, "Cannot map registers, bar size 0x%X too small, aborting\n",
15587 pf->ioremap_len);
15588 err = -ENOMEM;
15589 goto err_ioremap;
15590 }
15591 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len);
15592 if (!hw->hw_addr) {
15593 err = -EIO;
15594 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n",
15595 (unsigned int)pci_resource_start(pdev, 0),
15596 pf->ioremap_len, err);
15597 goto err_ioremap;
15598 }
15599 hw->vendor_id = pdev->vendor;
15600 hw->device_id = pdev->device;
15601 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
15602 hw->subsystem_vendor_id = pdev->subsystem_vendor;
15603 i40e_set_subsystem_device_id(hw);
15604 hw->bus.device = PCI_SLOT(pdev->devfn);
15605 hw->bus.func = PCI_FUNC(pdev->devfn);
15606 hw->bus.bus_id = pdev->bus->number;
15607
15608 /* Select something other than the 802.1ad ethertype for the
15609 * switch to use internally and drop on ingress.
15610 */
15611 hw->switch_tag = 0xffff;
15612 hw->first_tag = ETH_P_8021AD;
15613 hw->second_tag = ETH_P_8021Q;
15614
15615 INIT_LIST_HEAD(&pf->l3_flex_pit_list);
15616 INIT_LIST_HEAD(&pf->l4_flex_pit_list);
15617 INIT_LIST_HEAD(&pf->ddp_old_prof);
15618
15619 /* set up the locks for the AQ, do this only once in probe
15620 * and destroy them only once in remove
15621 */
15622 mutex_init(&hw->aq.asq_mutex);
15623 mutex_init(&hw->aq.arq_mutex);
15624
15625 pf->msg_enable = netif_msg_init(debug,
15626 NETIF_MSG_DRV |
15627 NETIF_MSG_PROBE |
15628 NETIF_MSG_LINK);
15629 if (debug < -1)
15630 pf->hw.debug_mask = debug;
15631
15632 /* do a special CORER for clearing PXE mode once at init */
15633 if (hw->revision_id == 0 &&
15634 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) {
15635 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK);
15636 i40e_flush(hw);
15637 msleep(200);
15638 pf->corer_count++;
15639
15640 i40e_clear_pxe_mode(hw);
15641 }
15642
15643 /* Reset here to make sure all is clean and to define PF 'n' */
15644 i40e_clear_hw(hw);
15645
15646 err = i40e_set_mac_type(hw);
15647 if (err) {
15648 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n",
15649 err);
15650 goto err_pf_reset;
15651 }
15652
15653 err = i40e_handle_resets(pf);
15654 if (err)
15655 goto err_pf_reset;
15656
15657 i40e_check_recovery_mode(pf);
15658
15659 if (is_kdump_kernel()) {
15660 hw->aq.num_arq_entries = I40E_MIN_ARQ_LEN;
15661 hw->aq.num_asq_entries = I40E_MIN_ASQ_LEN;
15662 } else {
15663 hw->aq.num_arq_entries = I40E_AQ_LEN;
15664 hw->aq.num_asq_entries = I40E_AQ_LEN;
15665 }
15666 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE;
15667 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE;
15668
15669 snprintf(pf->int_name, sizeof(pf->int_name) - 1,
15670 "%s-%s:misc",
15671 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev));
15672
15673 err = i40e_init_shared_code(hw);
15674 if (err) {
15675 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n",
15676 err);
15677 goto err_pf_reset;
15678 }
15679
15680 /* set up a default setting for link flow control */
15681 pf->hw.fc.requested_mode = I40E_FC_NONE;
15682
15683 err = i40e_init_adminq(hw);
15684 if (err) {
15685 if (err == -EIO)
15686 dev_info(&pdev->dev,
15687 "The driver for the device stopped because the NVM image v%u.%u is newer than expected v%u.%u. You must install the most recent version of the network driver.\n",
15688 hw->aq.api_maj_ver,
15689 hw->aq.api_min_ver,
15690 I40E_FW_API_VERSION_MAJOR,
15691 I40E_FW_MINOR_VERSION(hw));
15692 else
15693 dev_info(&pdev->dev,
15694 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n");
15695
15696 goto err_pf_reset;
15697 }
15698 i40e_get_oem_version(hw);
15699 i40e_get_pba_string(hw);
15700
15701 /* provide nvm, fw, api versions, vendor:device id, subsys vendor:device id */
15702 i40e_nvm_version_str(hw, nvm_ver, sizeof(nvm_ver));
15703 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s [%04x:%04x] [%04x:%04x]\n",
15704 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build,
15705 hw->aq.api_maj_ver, hw->aq.api_min_ver, nvm_ver,
15706 hw->vendor_id, hw->device_id, hw->subsystem_vendor_id,
15707 hw->subsystem_device_id);
15708
15709 if (i40e_is_aq_api_ver_ge(hw, I40E_FW_API_VERSION_MAJOR,
15710 I40E_FW_MINOR_VERSION(hw) + 1))
15711 dev_dbg(&pdev->dev,
15712 "The driver for the device detected a newer version of the NVM image v%u.%u than v%u.%u.\n",
15713 hw->aq.api_maj_ver,
15714 hw->aq.api_min_ver,
15715 I40E_FW_API_VERSION_MAJOR,
15716 I40E_FW_MINOR_VERSION(hw));
15717 else if (i40e_is_aq_api_ver_lt(hw, 1, 4))
15718 dev_info(&pdev->dev,
15719 "The driver for the device detected an older version of the NVM image v%u.%u than expected v%u.%u. Please update the NVM image.\n",
15720 hw->aq.api_maj_ver,
15721 hw->aq.api_min_ver,
15722 I40E_FW_API_VERSION_MAJOR,
15723 I40E_FW_MINOR_VERSION(hw));
15724
15725 i40e_verify_eeprom(pf);
15726
15727 /* Rev 0 hardware was never productized */
15728 if (hw->revision_id < 1)
15729 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n");
15730
15731 i40e_clear_pxe_mode(hw);
15732
15733 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities);
15734 if (err)
15735 goto err_adminq_setup;
15736
15737 err = i40e_sw_init(pf);
15738 if (err) {
15739 dev_info(&pdev->dev, "sw_init failed: %d\n", err);
15740 goto err_sw_init;
15741 }
15742
15743 if (test_bit(__I40E_RECOVERY_MODE, pf->state))
15744 return i40e_init_recovery_mode(pf, hw);
15745
15746 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
15747 hw->func_caps.num_rx_qp, 0, 0);
15748 if (err) {
15749 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err);
15750 goto err_init_lan_hmc;
15751 }
15752
15753 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
15754 if (err) {
15755 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err);
15756 err = -ENOENT;
15757 goto err_configure_lan_hmc;
15758 }
15759
15760 /* Disable LLDP for NICs that have firmware versions lower than v4.3.
15761 * Ignore error return codes because if it was already disabled via
15762 * hardware settings this will fail
15763 */
15764 if (test_bit(I40E_HW_CAP_STOP_FW_LLDP, pf->hw.caps)) {
15765 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n");
15766 i40e_aq_stop_lldp(hw, true, false, NULL);
15767 }
15768
15769 /* allow a platform config to override the HW addr */
15770 i40e_get_platform_mac_addr(pdev, pf);
15771
15772 if (!is_valid_ether_addr(hw->mac.addr)) {
15773 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr);
15774 err = -EIO;
15775 goto err_mac_addr;
15776 }
15777 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr);
15778 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr);
15779 i40e_get_port_mac_addr(hw, hw->mac.port_addr);
15780 if (is_valid_ether_addr(hw->mac.port_addr))
15781 set_bit(I40E_HW_CAP_PORT_ID_VALID, pf->hw.caps);
15782
15783 i40e_ptp_alloc_pins(pf);
15784 pci_set_drvdata(pdev, pf);
15785 pci_save_state(pdev);
15786
15787 #ifdef CONFIG_I40E_DCB
15788 status = i40e_get_fw_lldp_status(&pf->hw, &lldp_status);
15789 (!status &&
15790 lldp_status == I40E_GET_FW_LLDP_STATUS_ENABLED) ?
15791 (clear_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags)) :
15792 (set_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags));
15793 dev_info(&pdev->dev,
15794 test_bit(I40E_FLAG_FW_LLDP_DIS, pf->flags) ?
15795 "FW LLDP is disabled\n" :
15796 "FW LLDP is enabled\n");
15797
15798 /* Enable FW to write default DCB config on link-up */
15799 i40e_aq_set_dcb_parameters(hw, true, NULL);
15800
15801 err = i40e_init_pf_dcb(pf);
15802 if (err) {
15803 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err);
15804 clear_bit(I40E_FLAG_DCB_CAPABLE, pf->flags);
15805 clear_bit(I40E_FLAG_DCB_ENA, pf->flags);
15806 /* Continue without DCB enabled */
15807 }
15808 #endif /* CONFIG_I40E_DCB */
15809
15810 /* set up periodic task facility */
15811 timer_setup(&pf->service_timer, i40e_service_timer, 0);
15812 pf->service_timer_period = HZ;
15813
15814 INIT_WORK(&pf->service_task, i40e_service_task);
15815 clear_bit(__I40E_SERVICE_SCHED, pf->state);
15816
15817 /* NVM bit on means WoL disabled for the port */
15818 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits);
15819 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1)
15820 pf->wol_en = false;
15821 else
15822 pf->wol_en = true;
15823 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en);
15824
15825 /* set up the main switch operations */
15826 i40e_determine_queue_usage(pf);
15827 err = i40e_init_interrupt_scheme(pf);
15828 if (err)
15829 goto err_switch_setup;
15830
15831 /* Reduce Tx and Rx pairs for kdump
15832 * When MSI-X is enabled, it's not allowed to use more TC queue
15833 * pairs than MSI-X vectors (pf->num_lan_msix) exist. Thus
15834 * vsi->num_queue_pairs will be equal to pf->num_lan_msix, i.e., 1.
15835 */
15836 if (is_kdump_kernel())
15837 pf->num_lan_msix = 1;
15838
15839 pf->udp_tunnel_nic.set_port = i40e_udp_tunnel_set_port;
15840 pf->udp_tunnel_nic.unset_port = i40e_udp_tunnel_unset_port;
15841 pf->udp_tunnel_nic.shared = &pf->udp_tunnel_shared;
15842 pf->udp_tunnel_nic.tables[0].n_entries = I40E_MAX_PF_UDP_OFFLOAD_PORTS;
15843 pf->udp_tunnel_nic.tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
15844 UDP_TUNNEL_TYPE_GENEVE;
15845
15846 /* The number of VSIs reported by the FW is the minimum guaranteed
15847 * to us; HW supports far more and we share the remaining pool with
15848 * the other PFs. We allocate space for more than the guarantee with
15849 * the understanding that we might not get them all later.
15850 */
15851 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC)
15852 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC;
15853 else
15854 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis;
15855 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
15856 dev_warn(&pf->pdev->dev,
15857 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
15858 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
15859 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
15860 }
15861
15862 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */
15863 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *),
15864 GFP_KERNEL);
15865 if (!pf->vsi) {
15866 err = -ENOMEM;
15867 goto err_switch_setup;
15868 }
15869
15870 #ifdef CONFIG_PCI_IOV
15871 /* prep for VF support */
15872 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) &&
15873 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) &&
15874 !test_bit(__I40E_BAD_EEPROM, pf->state)) {
15875 if (pci_num_vf(pdev))
15876 set_bit(I40E_FLAG_VEB_MODE_ENA, pf->flags);
15877 }
15878 #endif
15879 err = i40e_setup_pf_switch(pf, false, false);
15880 if (err) {
15881 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err);
15882 goto err_vsis;
15883 }
15884
15885 vsi = i40e_pf_get_main_vsi(pf);
15886 INIT_LIST_HEAD(&vsi->ch_list);
15887
15888 /* if FDIR VSI was set up, start it now */
15889 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
15890 if (vsi)
15891 i40e_vsi_open(vsi);
15892
15893 /* The driver only wants link up/down and module qualification
15894 * reports from firmware. Note the negative logic.
15895 */
15896 err = i40e_aq_set_phy_int_mask(&pf->hw,
15897 ~(I40E_AQ_EVENT_LINK_UPDOWN |
15898 I40E_AQ_EVENT_MEDIA_NA |
15899 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
15900 if (err)
15901 dev_info(&pf->pdev->dev, "set phy mask fail, err %pe aq_err %s\n",
15902 ERR_PTR(err), libie_aq_str(pf->hw.aq.asq_last_status));
15903
15904 /* VF MDD event logs are rate limited to one second intervals */
15905 ratelimit_state_init(&pf->mdd_message_rate_limit, 1 * HZ, 1);
15906
15907 /* Reconfigure hardware for allowing smaller MSS in the case
15908 * of TSO, so that we avoid the MDD being fired and causing
15909 * a reset in the case of small MSS+TSO.
15910 */
15911 val = rd32(hw, I40E_REG_MSS);
15912 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
15913 val &= ~I40E_REG_MSS_MIN_MASK;
15914 val |= I40E_64BYTE_MSS;
15915 wr32(hw, I40E_REG_MSS, val);
15916 }
15917
15918 if (test_bit(I40E_HW_CAP_RESTART_AUTONEG, pf->hw.caps)) {
15919 msleep(75);
15920 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
15921 if (err)
15922 dev_info(&pf->pdev->dev, "link restart failed, err %pe aq_err %s\n",
15923 ERR_PTR(err),
15924 libie_aq_str(pf->hw.aq.asq_last_status));
15925 }
15926 /* The main driver is (mostly) up and happy. We need to set this state
15927 * before setting up the misc vector or we get a race and the vector
15928 * ends up disabled forever.
15929 */
15930 clear_bit(__I40E_DOWN, pf->state);
15931
15932 /* In case of MSIX we are going to setup the misc vector right here
15933 * to handle admin queue events etc. In case of legacy and MSI
15934 * the misc functionality and queue processing is combined in
15935 * the same vector and that gets setup at open.
15936 */
15937 if (test_bit(I40E_FLAG_MSIX_ENA, pf->flags)) {
15938 err = i40e_setup_misc_vector(pf);
15939 if (err) {
15940 dev_info(&pdev->dev,
15941 "setup of misc vector failed: %d\n", err);
15942 i40e_cloud_filter_exit(pf);
15943 i40e_fdir_teardown(pf);
15944 goto err_vsis;
15945 }
15946 }
15947
15948 #ifdef CONFIG_PCI_IOV
15949 /* prep for VF support */
15950 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags) &&
15951 test_bit(I40E_FLAG_MSIX_ENA, pf->flags) &&
15952 !test_bit(__I40E_BAD_EEPROM, pf->state)) {
15953 /* disable link interrupts for VFs */
15954 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM);
15955 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK;
15956 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val);
15957 i40e_flush(hw);
15958
15959 if (pci_num_vf(pdev)) {
15960 dev_info(&pdev->dev,
15961 "Active VFs found, allocating resources.\n");
15962 err = i40e_alloc_vfs(pf, pci_num_vf(pdev));
15963 if (err)
15964 dev_info(&pdev->dev,
15965 "Error %d allocating resources for existing VFs\n",
15966 err);
15967 }
15968 }
15969 #endif /* CONFIG_PCI_IOV */
15970
15971 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
15972 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile,
15973 pf->num_iwarp_msix,
15974 I40E_IWARP_IRQ_PILE_ID);
15975 if (pf->iwarp_base_vector < 0) {
15976 dev_info(&pdev->dev,
15977 "failed to get tracking for %d vectors for IWARP err=%d\n",
15978 pf->num_iwarp_msix, pf->iwarp_base_vector);
15979 clear_bit(I40E_FLAG_IWARP_ENA, pf->flags);
15980 }
15981 }
15982
15983 i40e_dbg_pf_init(pf);
15984
15985 /* tell the firmware that we're starting */
15986 i40e_send_version(pf);
15987
15988 /* since everything's happy, start the service_task timer */
15989 mod_timer(&pf->service_timer,
15990 round_jiffies(jiffies + pf->service_timer_period));
15991
15992 /* add this PF to client device list and launch a client service task */
15993 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
15994 err = i40e_lan_add_device(pf);
15995 if (err)
15996 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n",
15997 err);
15998 }
15999
16000 #define PCI_SPEED_SIZE 8
16001 #define PCI_WIDTH_SIZE 8
16002 /* Devices on the IOSF bus do not have this information
16003 * and will report PCI Gen 1 x 1 by default so don't bother
16004 * checking them.
16005 */
16006 if (!test_bit(I40E_HW_CAP_NO_PCI_LINK_CHECK, pf->hw.caps)) {
16007 char speed[PCI_SPEED_SIZE] = "Unknown";
16008 char width[PCI_WIDTH_SIZE] = "Unknown";
16009
16010 /* Get the negotiated link width and speed from PCI config
16011 * space
16012 */
16013 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA,
16014 &link_status);
16015
16016 i40e_set_pci_config_data(hw, link_status);
16017
16018 switch (hw->bus.speed) {
16019 case i40e_bus_speed_8000:
16020 strscpy(speed, "8.0", PCI_SPEED_SIZE); break;
16021 case i40e_bus_speed_5000:
16022 strscpy(speed, "5.0", PCI_SPEED_SIZE); break;
16023 case i40e_bus_speed_2500:
16024 strscpy(speed, "2.5", PCI_SPEED_SIZE); break;
16025 default:
16026 break;
16027 }
16028 switch (hw->bus.width) {
16029 case i40e_bus_width_pcie_x8:
16030 strscpy(width, "8", PCI_WIDTH_SIZE); break;
16031 case i40e_bus_width_pcie_x4:
16032 strscpy(width, "4", PCI_WIDTH_SIZE); break;
16033 case i40e_bus_width_pcie_x2:
16034 strscpy(width, "2", PCI_WIDTH_SIZE); break;
16035 case i40e_bus_width_pcie_x1:
16036 strscpy(width, "1", PCI_WIDTH_SIZE); break;
16037 default:
16038 break;
16039 }
16040
16041 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n",
16042 speed, width);
16043
16044 if (hw->bus.width < i40e_bus_width_pcie_x8 ||
16045 hw->bus.speed < i40e_bus_speed_8000) {
16046 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n");
16047 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n");
16048 }
16049 }
16050
16051 /* get the requested speeds from the fw */
16052 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL);
16053 if (err)
16054 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %pe last_status = %s\n",
16055 ERR_PTR(err), libie_aq_str(pf->hw.aq.asq_last_status));
16056 pf->hw.phy.link_info.requested_speeds = abilities.link_speed;
16057
16058 /* set the FEC config due to the board capabilities */
16059 i40e_set_fec_in_flags(abilities.fec_cfg_curr_mod_ext_info, pf->flags);
16060
16061 /* get the supported phy types from the fw */
16062 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL);
16063 if (err)
16064 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %pe last_status = %s\n",
16065 ERR_PTR(err), libie_aq_str(pf->hw.aq.asq_last_status));
16066
16067 #define MAX_FRAME_SIZE_DEFAULT 0x2600
16068
16069 err = i40e_aq_set_mac_config(hw, MAX_FRAME_SIZE_DEFAULT, NULL);
16070 if (err)
16071 dev_warn(&pdev->dev, "set mac config ret = %pe last_status = %s\n",
16072 ERR_PTR(err), libie_aq_str(pf->hw.aq.asq_last_status));
16073
16074 /* Make sure the MFS is set to the expected value */
16075 val = rd32(hw, I40E_PRTGL_SAH);
16076 FIELD_MODIFY(I40E_PRTGL_SAH_MFS_MASK, &val, MAX_FRAME_SIZE_DEFAULT);
16077 wr32(hw, I40E_PRTGL_SAH, val);
16078
16079 /* Add a filter to drop all Flow control frames from any VSI from being
16080 * transmitted. By doing so we stop a malicious VF from sending out
16081 * PAUSE or PFC frames and potentially controlling traffic for other
16082 * PF/VF VSIs.
16083 * The FW can still send Flow control frames if enabled.
16084 */
16085 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
16086 pf->main_vsi_seid);
16087
16088 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) ||
16089 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4))
16090 set_bit(I40E_HW_CAP_PHY_CONTROLS_LEDS, pf->hw.caps);
16091 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722)
16092 set_bit(I40E_HW_CAP_CRT_RETIMER, pf->hw.caps);
16093 /* print a string summarizing features */
16094 i40e_print_features(pf);
16095
16096 i40e_devlink_register(pf);
16097
16098 return 0;
16099
16100 /* Unwind what we've done if something failed in the setup */
16101 err_vsis:
16102 set_bit(__I40E_DOWN, pf->state);
16103 i40e_clear_interrupt_scheme(pf);
16104 kfree(pf->vsi);
16105 err_switch_setup:
16106 i40e_reset_interrupt_capability(pf);
16107 timer_shutdown_sync(&pf->service_timer);
16108 err_mac_addr:
16109 err_configure_lan_hmc:
16110 (void)i40e_shutdown_lan_hmc(hw);
16111 err_init_lan_hmc:
16112 kfree(pf->qp_pile);
16113 err_sw_init:
16114 err_adminq_setup:
16115 err_pf_reset:
16116 iounmap(hw->hw_addr);
16117 err_ioremap:
16118 i40e_free_pf(pf);
16119 err_pf_alloc:
16120 pci_release_mem_regions(pdev);
16121 err_pci_reg:
16122 err_dma:
16123 pci_disable_device(pdev);
16124 return err;
16125 }
16126
16127 /**
16128 * i40e_remove - Device removal routine
16129 * @pdev: PCI device information struct
16130 *
16131 * i40e_remove is called by the PCI subsystem to alert the driver
16132 * that is should release a PCI device. This could be caused by a
16133 * Hot-Plug event, or because the driver is going to be removed from
16134 * memory.
16135 **/
i40e_remove(struct pci_dev * pdev)16136 static void i40e_remove(struct pci_dev *pdev)
16137 {
16138 struct i40e_pf *pf = pci_get_drvdata(pdev);
16139 struct i40e_hw *hw = &pf->hw;
16140 struct i40e_vsi *vsi;
16141 struct i40e_veb *veb;
16142 int ret_code;
16143 int i;
16144
16145 i40e_devlink_unregister(pf);
16146
16147 i40e_dbg_pf_exit(pf);
16148
16149 i40e_ptp_stop(pf);
16150
16151 /* Disable RSS in hw */
16152 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0);
16153 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0);
16154
16155 /* Grab __I40E_RESET_RECOVERY_PENDING and set __I40E_IN_REMOVE
16156 * flags, once they are set, i40e_rebuild should not be called as
16157 * i40e_prep_for_reset always returns early.
16158 */
16159 while (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
16160 usleep_range(1000, 2000);
16161 set_bit(__I40E_IN_REMOVE, pf->state);
16162
16163 if (test_bit(I40E_FLAG_SRIOV_ENA, pf->flags)) {
16164 set_bit(__I40E_VF_RESETS_DISABLED, pf->state);
16165 i40e_free_vfs(pf);
16166 clear_bit(I40E_FLAG_SRIOV_ENA, pf->flags);
16167 }
16168 /* no more scheduling of any task */
16169 set_bit(__I40E_SUSPENDED, pf->state);
16170 set_bit(__I40E_DOWN, pf->state);
16171 if (pf->service_timer.function)
16172 timer_shutdown_sync(&pf->service_timer);
16173 if (pf->service_task.func)
16174 cancel_work_sync(&pf->service_task);
16175
16176 if (test_bit(__I40E_RECOVERY_MODE, pf->state)) {
16177 struct i40e_vsi *vsi = pf->vsi[0];
16178
16179 /* We know that we have allocated only one vsi for this PF,
16180 * it was just for registering netdevice, so the interface
16181 * could be visible in the 'ifconfig' output
16182 */
16183 unregister_netdev(vsi->netdev);
16184 free_netdev(vsi->netdev);
16185
16186 goto unmap;
16187 }
16188
16189 /* Client close must be called explicitly here because the timer
16190 * has been stopped.
16191 */
16192 i40e_notify_client_of_netdev_close(pf, false);
16193
16194 i40e_fdir_teardown(pf);
16195
16196 /* If there is a switch structure or any orphans, remove them.
16197 * This will leave only the PF's VSI remaining.
16198 */
16199 i40e_pf_for_each_veb(pf, i, veb)
16200 if (veb->uplink_seid == pf->mac_seid ||
16201 veb->uplink_seid == 0)
16202 i40e_switch_branch_release(veb);
16203
16204 /* Now we can shutdown the PF's VSIs, just before we kill
16205 * adminq and hmc.
16206 */
16207 i40e_pf_for_each_vsi(pf, i, vsi) {
16208 i40e_vsi_close(vsi);
16209 i40e_vsi_release(vsi);
16210 pf->vsi[i] = NULL;
16211 }
16212
16213 i40e_cloud_filter_exit(pf);
16214
16215 /* remove attached clients */
16216 if (test_bit(I40E_FLAG_IWARP_ENA, pf->flags)) {
16217 ret_code = i40e_lan_del_device(pf);
16218 if (ret_code)
16219 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
16220 ret_code);
16221 }
16222
16223 /* shutdown and destroy the HMC */
16224 if (hw->hmc.hmc_obj) {
16225 ret_code = i40e_shutdown_lan_hmc(hw);
16226 if (ret_code)
16227 dev_warn(&pdev->dev,
16228 "Failed to destroy the HMC resources: %d\n",
16229 ret_code);
16230 }
16231
16232 unmap:
16233 /* Free MSI/legacy interrupt 0 when in recovery mode. */
16234 if (test_bit(__I40E_RECOVERY_MODE, pf->state) &&
16235 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
16236 free_irq(pf->pdev->irq, pf);
16237
16238 /* shutdown the adminq */
16239 i40e_shutdown_adminq(hw);
16240
16241 /* destroy the locks only once, here */
16242 mutex_destroy(&hw->aq.arq_mutex);
16243 mutex_destroy(&hw->aq.asq_mutex);
16244
16245 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */
16246 rtnl_lock();
16247 i40e_clear_interrupt_scheme(pf);
16248 i40e_pf_for_each_vsi(pf, i, vsi) {
16249 if (!test_bit(__I40E_RECOVERY_MODE, pf->state))
16250 i40e_vsi_clear_rings(vsi);
16251
16252 i40e_vsi_clear(vsi);
16253 pf->vsi[i] = NULL;
16254 }
16255 rtnl_unlock();
16256
16257 i40e_pf_for_each_veb(pf, i, veb) {
16258 kfree(veb);
16259 pf->veb[i] = NULL;
16260 }
16261
16262 kfree(pf->qp_pile);
16263 kfree(pf->vsi);
16264
16265 iounmap(hw->hw_addr);
16266 i40e_free_pf(pf);
16267 pci_release_mem_regions(pdev);
16268
16269 pci_disable_device(pdev);
16270 }
16271
16272 /**
16273 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up
16274 * using the mac_address_write admin q function
16275 * @pf: pointer to i40e_pf struct
16276 **/
i40e_enable_mc_magic_wake(struct i40e_pf * pf)16277 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf)
16278 {
16279 struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
16280 struct i40e_hw *hw = &pf->hw;
16281 u8 mac_addr[6];
16282 u16 flags = 0;
16283 int ret;
16284
16285 /* Get current MAC address in case it's an LAA */
16286 if (main_vsi && main_vsi->netdev) {
16287 ether_addr_copy(mac_addr, main_vsi->netdev->dev_addr);
16288 } else {
16289 dev_err(&pf->pdev->dev,
16290 "Failed to retrieve MAC address; using default\n");
16291 ether_addr_copy(mac_addr, hw->mac.addr);
16292 }
16293
16294 /* The FW expects the mac address write cmd to first be called with
16295 * one of these flags before calling it again with the multicast
16296 * enable flags.
16297 */
16298 flags = I40E_AQC_WRITE_TYPE_LAA_WOL;
16299
16300 if (hw->func_caps.flex10_enable && hw->partition_id != 1)
16301 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY;
16302
16303 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
16304 if (ret) {
16305 dev_err(&pf->pdev->dev,
16306 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up");
16307 return;
16308 }
16309
16310 flags = I40E_AQC_MC_MAG_EN
16311 | I40E_AQC_WOL_PRESERVE_ON_PFR
16312 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG;
16313 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
16314 if (ret)
16315 dev_err(&pf->pdev->dev,
16316 "Failed to enable Multicast Magic Packet wake up\n");
16317 }
16318
16319 /**
16320 * i40e_io_suspend - suspend all IO operations
16321 * @pf: pointer to i40e_pf struct
16322 *
16323 **/
i40e_io_suspend(struct i40e_pf * pf)16324 static int i40e_io_suspend(struct i40e_pf *pf)
16325 {
16326 struct i40e_hw *hw = &pf->hw;
16327
16328 set_bit(__I40E_DOWN, pf->state);
16329
16330 /* Ensure service task will not be running */
16331 timer_delete_sync(&pf->service_timer);
16332 cancel_work_sync(&pf->service_task);
16333
16334 /* Client close must be called explicitly here because the timer
16335 * has been stopped.
16336 */
16337 i40e_notify_client_of_netdev_close(pf, false);
16338
16339 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) &&
16340 pf->wol_en)
16341 i40e_enable_mc_magic_wake(pf);
16342
16343 /* Since we're going to destroy queues during the
16344 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this
16345 * whole section
16346 */
16347 rtnl_lock();
16348
16349 i40e_prep_for_reset(pf);
16350
16351 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
16352 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
16353
16354 /* Clear the interrupt scheme and release our IRQs so that the system
16355 * can safely hibernate even when there are a large number of CPUs.
16356 * Otherwise hibernation might fail when mapping all the vectors back
16357 * to CPU0.
16358 */
16359 i40e_clear_interrupt_scheme(pf);
16360
16361 rtnl_unlock();
16362
16363 return 0;
16364 }
16365
16366 /**
16367 * i40e_io_resume - resume IO operations
16368 * @pf: pointer to i40e_pf struct
16369 *
16370 **/
i40e_io_resume(struct i40e_pf * pf)16371 static int i40e_io_resume(struct i40e_pf *pf)
16372 {
16373 struct device *dev = &pf->pdev->dev;
16374 int err;
16375
16376 /* We need to hold the RTNL lock prior to restoring interrupt schemes,
16377 * since we're going to be restoring queues
16378 */
16379 rtnl_lock();
16380
16381 /* We cleared the interrupt scheme when we suspended, so we need to
16382 * restore it now to resume device functionality.
16383 */
16384 err = i40e_restore_interrupt_scheme(pf);
16385 if (err) {
16386 dev_err(dev, "Cannot restore interrupt scheme: %d\n",
16387 err);
16388 }
16389
16390 clear_bit(__I40E_DOWN, pf->state);
16391 i40e_reset_and_rebuild(pf, false, true);
16392
16393 rtnl_unlock();
16394
16395 /* Clear suspended state last after everything is recovered */
16396 clear_bit(__I40E_SUSPENDED, pf->state);
16397
16398 /* Restart the service task */
16399 mod_timer(&pf->service_timer,
16400 round_jiffies(jiffies + pf->service_timer_period));
16401
16402 return 0;
16403 }
16404
16405 /**
16406 * i40e_pci_error_detected - warning that something funky happened in PCI land
16407 * @pdev: PCI device information struct
16408 * @error: the type of PCI error
16409 *
16410 * Called to warn that something happened and the error handling steps
16411 * are in progress. Allows the driver to quiesce things, be ready for
16412 * remediation.
16413 **/
i40e_pci_error_detected(struct pci_dev * pdev,pci_channel_state_t error)16414 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev,
16415 pci_channel_state_t error)
16416 {
16417 struct i40e_pf *pf = pci_get_drvdata(pdev);
16418
16419 dev_info(&pdev->dev, "%s: error %d\n", __func__, error);
16420
16421 if (!pf) {
16422 dev_info(&pdev->dev,
16423 "Cannot recover - error happened during device probe\n");
16424 return PCI_ERS_RESULT_DISCONNECT;
16425 }
16426
16427 /* shutdown all operations */
16428 if (!test_bit(__I40E_SUSPENDED, pf->state))
16429 i40e_io_suspend(pf);
16430
16431 /* Request a slot reset */
16432 return PCI_ERS_RESULT_NEED_RESET;
16433 }
16434
16435 /**
16436 * i40e_pci_error_slot_reset - a PCI slot reset just happened
16437 * @pdev: PCI device information struct
16438 *
16439 * Called to find if the driver can work with the device now that
16440 * the pci slot has been reset. If a basic connection seems good
16441 * (registers are readable and have sane content) then return a
16442 * happy little PCI_ERS_RESULT_xxx.
16443 **/
i40e_pci_error_slot_reset(struct pci_dev * pdev)16444 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev)
16445 {
16446 struct i40e_pf *pf = pci_get_drvdata(pdev);
16447 pci_ers_result_t result;
16448 u32 reg;
16449
16450 dev_dbg(&pdev->dev, "%s\n", __func__);
16451 /* enable I/O and memory of the device */
16452 if (pci_enable_device(pdev)) {
16453 dev_info(&pdev->dev,
16454 "Cannot re-enable PCI device after reset.\n");
16455 result = PCI_ERS_RESULT_DISCONNECT;
16456 } else {
16457 pci_set_master(pdev);
16458 pci_restore_state(pdev);
16459 pci_wake_from_d3(pdev, false);
16460
16461 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG);
16462 if (reg == 0)
16463 result = PCI_ERS_RESULT_RECOVERED;
16464 else
16465 result = PCI_ERS_RESULT_DISCONNECT;
16466 }
16467
16468 return result;
16469 }
16470
16471 /**
16472 * i40e_pci_error_reset_prepare - prepare device driver for pci reset
16473 * @pdev: PCI device information struct
16474 */
i40e_pci_error_reset_prepare(struct pci_dev * pdev)16475 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev)
16476 {
16477 struct i40e_pf *pf = pci_get_drvdata(pdev);
16478
16479 i40e_prep_for_reset(pf);
16480 }
16481
16482 /**
16483 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin
16484 * @pdev: PCI device information struct
16485 */
i40e_pci_error_reset_done(struct pci_dev * pdev)16486 static void i40e_pci_error_reset_done(struct pci_dev *pdev)
16487 {
16488 struct i40e_pf *pf = pci_get_drvdata(pdev);
16489
16490 if (test_bit(__I40E_IN_REMOVE, pf->state))
16491 return;
16492
16493 i40e_reset_and_rebuild(pf, false, false);
16494 #ifdef CONFIG_PCI_IOV
16495 i40e_restore_all_vfs_msi_state(pdev);
16496 #endif /* CONFIG_PCI_IOV */
16497 }
16498
16499 /**
16500 * i40e_pci_error_resume - restart operations after PCI error recovery
16501 * @pdev: PCI device information struct
16502 *
16503 * Called to allow the driver to bring things back up after PCI error
16504 * and/or reset recovery has finished.
16505 **/
i40e_pci_error_resume(struct pci_dev * pdev)16506 static void i40e_pci_error_resume(struct pci_dev *pdev)
16507 {
16508 struct i40e_pf *pf = pci_get_drvdata(pdev);
16509
16510 dev_dbg(&pdev->dev, "%s\n", __func__);
16511 if (test_bit(__I40E_SUSPENDED, pf->state))
16512 return;
16513
16514 i40e_io_resume(pf);
16515 }
16516
16517 /**
16518 * i40e_shutdown - PCI callback for shutting down
16519 * @pdev: PCI device information struct
16520 **/
i40e_shutdown(struct pci_dev * pdev)16521 static void i40e_shutdown(struct pci_dev *pdev)
16522 {
16523 struct i40e_pf *pf = pci_get_drvdata(pdev);
16524 struct i40e_hw *hw = &pf->hw;
16525
16526 set_bit(__I40E_SUSPENDED, pf->state);
16527 set_bit(__I40E_DOWN, pf->state);
16528
16529 timer_delete_sync(&pf->service_timer);
16530 cancel_work_sync(&pf->service_task);
16531 i40e_cloud_filter_exit(pf);
16532 i40e_fdir_teardown(pf);
16533
16534 /* Client close must be called explicitly here because the timer
16535 * has been stopped.
16536 */
16537 i40e_notify_client_of_netdev_close(pf, false);
16538
16539 if (test_bit(I40E_HW_CAP_WOL_MC_MAGIC_PKT_WAKE, pf->hw.caps) &&
16540 pf->wol_en)
16541 i40e_enable_mc_magic_wake(pf);
16542
16543 i40e_prep_for_reset(pf);
16544
16545 wr32(hw, I40E_PFPM_APM,
16546 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
16547 wr32(hw, I40E_PFPM_WUFC,
16548 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
16549
16550 /* Free MSI/legacy interrupt 0 when in recovery mode. */
16551 if (test_bit(__I40E_RECOVERY_MODE, pf->state) &&
16552 !test_bit(I40E_FLAG_MSIX_ENA, pf->flags))
16553 free_irq(pf->pdev->irq, pf);
16554
16555 /* Since we're going to destroy queues during the
16556 * i40e_clear_interrupt_scheme() we should hold the RTNL lock for this
16557 * whole section
16558 */
16559 rtnl_lock();
16560 i40e_clear_interrupt_scheme(pf);
16561 rtnl_unlock();
16562
16563 if (system_state == SYSTEM_POWER_OFF) {
16564 pci_wake_from_d3(pdev, pf->wol_en);
16565 pci_set_power_state(pdev, PCI_D3hot);
16566 }
16567 }
16568
16569 /**
16570 * i40e_suspend - PM callback for moving to D3
16571 * @dev: generic device information structure
16572 **/
i40e_suspend(struct device * dev)16573 static int i40e_suspend(struct device *dev)
16574 {
16575 struct i40e_pf *pf = dev_get_drvdata(dev);
16576
16577 /* If we're already suspended, then there is nothing to do */
16578 if (test_and_set_bit(__I40E_SUSPENDED, pf->state))
16579 return 0;
16580 return i40e_io_suspend(pf);
16581 }
16582
16583 /**
16584 * i40e_resume - PM callback for waking up from D3
16585 * @dev: generic device information structure
16586 **/
i40e_resume(struct device * dev)16587 static int i40e_resume(struct device *dev)
16588 {
16589 struct i40e_pf *pf = dev_get_drvdata(dev);
16590
16591 /* If we're not suspended, then there is nothing to do */
16592 if (!test_bit(__I40E_SUSPENDED, pf->state))
16593 return 0;
16594 return i40e_io_resume(pf);
16595 }
16596
16597 static const struct pci_error_handlers i40e_err_handler = {
16598 .error_detected = i40e_pci_error_detected,
16599 .slot_reset = i40e_pci_error_slot_reset,
16600 .reset_prepare = i40e_pci_error_reset_prepare,
16601 .reset_done = i40e_pci_error_reset_done,
16602 .resume = i40e_pci_error_resume,
16603 };
16604
16605 static DEFINE_SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume);
16606
16607 static struct pci_driver i40e_driver = {
16608 .name = i40e_driver_name,
16609 .id_table = i40e_pci_tbl,
16610 .probe = i40e_probe,
16611 .remove = i40e_remove,
16612 .driver.pm = pm_sleep_ptr(&i40e_pm_ops),
16613 .shutdown = i40e_shutdown,
16614 .err_handler = &i40e_err_handler,
16615 .sriov_configure = i40e_pci_sriov_configure,
16616 };
16617
16618 /**
16619 * i40e_init_module - Driver registration routine
16620 *
16621 * i40e_init_module is the first routine called when the driver is
16622 * loaded. All it does is register with the PCI subsystem.
16623 **/
i40e_init_module(void)16624 static int __init i40e_init_module(void)
16625 {
16626 int err;
16627
16628 pr_info("%s: %s\n", i40e_driver_name, i40e_driver_string);
16629 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright);
16630
16631 /* There is no need to throttle the number of active tasks because
16632 * each device limits its own task using a state bit for scheduling
16633 * the service task, and the device tasks do not interfere with each
16634 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM
16635 * since we need to be able to guarantee forward progress even under
16636 * memory pressure.
16637 */
16638 i40e_wq = alloc_workqueue("%s", WQ_PERCPU, 0, i40e_driver_name);
16639 if (!i40e_wq) {
16640 pr_err("%s: Failed to create workqueue\n", i40e_driver_name);
16641 return -ENOMEM;
16642 }
16643
16644 i40e_dbg_init();
16645 err = pci_register_driver(&i40e_driver);
16646 if (err) {
16647 destroy_workqueue(i40e_wq);
16648 i40e_dbg_exit();
16649 return err;
16650 }
16651
16652 return 0;
16653 }
16654 module_init(i40e_init_module);
16655
16656 /**
16657 * i40e_exit_module - Driver exit cleanup routine
16658 *
16659 * i40e_exit_module is called just before the driver is removed
16660 * from memory.
16661 **/
i40e_exit_module(void)16662 static void __exit i40e_exit_module(void)
16663 {
16664 pci_unregister_driver(&i40e_driver);
16665 destroy_workqueue(i40e_wq);
16666 ida_destroy(&i40e_client_ida);
16667 i40e_dbg_exit();
16668 }
16669 module_exit(i40e_exit_module);
16670