1 //===- LiveInterval.cpp - Live Interval Representation --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveRange and LiveInterval classes. Given some 10 // numbering of each the machine instructions an interval [i, j) is said to be a 11 // live range for register v if there is no instruction with number j' >= j 12 // such that v is live at j' and there is no instruction with number i' < i such 13 // that v is live at i'. In this implementation ranges can have holes, 14 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 15 // individual segment is represented as an instance of LiveRange::Segment, 16 // and the whole range is represented as an instance of LiveRange. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "LiveRangeUtils.h" 22 #include "RegisterCoalescer.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/CodeGen/LiveIntervals.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/SlotIndexes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/Config/llvm-config.h" 36 #include "llvm/MC/LaneBitmask.h" 37 #include "llvm/Support/Compiler.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 #include <cassert> 42 #include <cstddef> 43 #include <iterator> 44 #include <utility> 45 46 using namespace llvm; 47 48 namespace { 49 50 //===----------------------------------------------------------------------===// 51 // Implementation of various methods necessary for calculation of live ranges. 52 // The implementation of the methods abstracts from the concrete type of the 53 // segment collection. 54 // 55 // Implementation of the class follows the Template design pattern. The base 56 // class contains generic algorithms that call collection-specific methods, 57 // which are provided in concrete subclasses. In order to avoid virtual calls 58 // these methods are provided by means of C++ template instantiation. 59 // The base class calls the methods of the subclass through method impl(), 60 // which casts 'this' pointer to the type of the subclass. 61 // 62 //===----------------------------------------------------------------------===// 63 64 template <typename ImplT, typename IteratorT, typename CollectionT> 65 class CalcLiveRangeUtilBase { 66 protected: 67 LiveRange *LR; 68 69 protected: 70 CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} 71 72 public: 73 using Segment = LiveRange::Segment; 74 using iterator = IteratorT; 75 76 /// A counterpart of LiveRange::createDeadDef: Make sure the range has a 77 /// value defined at @p Def. 78 /// If @p ForVNI is null, and there is no value defined at @p Def, a new 79 /// value will be allocated using @p VNInfoAllocator. 80 /// If @p ForVNI is null, the return value is the value defined at @p Def, 81 /// either a pre-existing one, or the one newly created. 82 /// If @p ForVNI is not null, then @p Def should be the location where 83 /// @p ForVNI is defined. If the range does not have a value defined at 84 /// @p Def, the value @p ForVNI will be used instead of allocating a new 85 /// one. If the range already has a value defined at @p Def, it must be 86 /// same as @p ForVNI. In either case, @p ForVNI will be the return value. 87 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator, 88 VNInfo *ForVNI) { 89 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 90 assert((!ForVNI || ForVNI->def == Def) && 91 "If ForVNI is specified, it must match Def"); 92 iterator I = impl().find(Def); 93 if (I == segments().end()) { 94 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator); 95 impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); 96 return VNI; 97 } 98 99 Segment *S = segmentAt(I); 100 if (SlotIndex::isSameInstr(Def, S->start)) { 101 assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch"); 102 assert(S->valno->def == S->start && "Inconsistent existing value def"); 103 104 // It is possible to have both normal and early-clobber defs of the same 105 // register on an instruction. It doesn't make a lot of sense, but it is 106 // possible to specify in inline assembly. 107 // 108 // Just convert everything to early-clobber. 109 Def = std::min(Def, S->start); 110 if (Def != S->start) 111 S->start = S->valno->def = Def; 112 return S->valno; 113 } 114 assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def"); 115 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator); 116 segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); 117 return VNI; 118 } 119 120 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) { 121 if (segments().empty()) 122 return nullptr; 123 iterator I = 124 impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr)); 125 if (I == segments().begin()) 126 return nullptr; 127 --I; 128 if (I->end <= StartIdx) 129 return nullptr; 130 if (I->end < Use) 131 extendSegmentEndTo(I, Use); 132 return I->valno; 133 } 134 135 std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, 136 SlotIndex StartIdx, SlotIndex Use) { 137 if (segments().empty()) 138 return std::make_pair(nullptr, false); 139 SlotIndex BeforeUse = Use.getPrevSlot(); 140 iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr)); 141 if (I == segments().begin()) 142 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse)); 143 --I; 144 if (I->end <= StartIdx) 145 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse)); 146 if (I->end < Use) { 147 if (LR->isUndefIn(Undefs, I->end, BeforeUse)) 148 return std::make_pair(nullptr, true); 149 extendSegmentEndTo(I, Use); 150 } 151 return std::make_pair(I->valno, false); 152 } 153 154 /// This method is used when we want to extend the segment specified 155 /// by I to end at the specified endpoint. To do this, we should 156 /// merge and eliminate all segments that this will overlap 157 /// with. The iterator is not invalidated. 158 void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { 159 assert(I != segments().end() && "Not a valid segment!"); 160 Segment *S = segmentAt(I); 161 VNInfo *ValNo = I->valno; 162 163 // Search for the first segment that we can't merge with. 164 iterator MergeTo = std::next(I); 165 for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) 166 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 167 168 // If NewEnd was in the middle of a segment, make sure to get its endpoint. 169 S->end = std::max(NewEnd, std::prev(MergeTo)->end); 170 171 // If the newly formed segment now touches the segment after it and if they 172 // have the same value number, merge the two segments into one segment. 173 if (MergeTo != segments().end() && MergeTo->start <= I->end && 174 MergeTo->valno == ValNo) { 175 S->end = MergeTo->end; 176 ++MergeTo; 177 } 178 179 // Erase any dead segments. 180 segments().erase(std::next(I), MergeTo); 181 } 182 183 /// This method is used when we want to extend the segment specified 184 /// by I to start at the specified endpoint. To do this, we should 185 /// merge and eliminate all segments that this will overlap with. 186 iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { 187 assert(I != segments().end() && "Not a valid segment!"); 188 Segment *S = segmentAt(I); 189 VNInfo *ValNo = I->valno; 190 191 // Search for the first segment that we can't merge with. 192 iterator MergeTo = I; 193 do { 194 if (MergeTo == segments().begin()) { 195 S->start = NewStart; 196 segments().erase(MergeTo, I); 197 return I; 198 } 199 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 200 --MergeTo; 201 } while (NewStart <= MergeTo->start); 202 203 // If we start in the middle of another segment, just delete a range and 204 // extend that segment. 205 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 206 segmentAt(MergeTo)->end = S->end; 207 } else { 208 // Otherwise, extend the segment right after. 209 ++MergeTo; 210 Segment *MergeToSeg = segmentAt(MergeTo); 211 MergeToSeg->start = NewStart; 212 MergeToSeg->end = S->end; 213 } 214 215 segments().erase(std::next(MergeTo), std::next(I)); 216 return MergeTo; 217 } 218 219 iterator addSegment(Segment S) { 220 SlotIndex Start = S.start, End = S.end; 221 iterator I = impl().findInsertPos(S); 222 223 // If the inserted segment starts in the middle or right at the end of 224 // another segment, just extend that segment to contain the segment of S. 225 if (I != segments().begin()) { 226 iterator B = std::prev(I); 227 if (S.valno == B->valno) { 228 if (B->start <= Start && B->end >= Start) { 229 extendSegmentEndTo(B, End); 230 return B; 231 } 232 } else { 233 // Check to make sure that we are not overlapping two live segments with 234 // different valno's. 235 assert(B->end <= Start && 236 "Cannot overlap two segments with differing ValID's" 237 " (did you def the same reg twice in a MachineInstr?)"); 238 } 239 } 240 241 // Otherwise, if this segment ends in the middle of, or right next 242 // to, another segment, merge it into that segment. 243 if (I != segments().end()) { 244 if (S.valno == I->valno) { 245 if (I->start <= End) { 246 I = extendSegmentStartTo(I, Start); 247 248 // If S is a complete superset of a segment, we may need to grow its 249 // endpoint as well. 250 if (End > I->end) 251 extendSegmentEndTo(I, End); 252 return I; 253 } 254 } else { 255 // Check to make sure that we are not overlapping two live segments with 256 // different valno's. 257 assert(I->start >= End && 258 "Cannot overlap two segments with differing ValID's"); 259 } 260 } 261 262 // Otherwise, this is just a new segment that doesn't interact with 263 // anything. 264 // Insert it. 265 return segments().insert(I, S); 266 } 267 268 private: 269 ImplT &impl() { return *static_cast<ImplT *>(this); } 270 271 CollectionT &segments() { return impl().segmentsColl(); } 272 273 Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } 274 }; 275 276 //===----------------------------------------------------------------------===// 277 // Instantiation of the methods for calculation of live ranges 278 // based on a segment vector. 279 //===----------------------------------------------------------------------===// 280 281 class CalcLiveRangeUtilVector; 282 using CalcLiveRangeUtilVectorBase = 283 CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, 284 LiveRange::Segments>; 285 286 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { 287 public: 288 CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} 289 290 private: 291 friend CalcLiveRangeUtilVectorBase; 292 293 LiveRange::Segments &segmentsColl() { return LR->segments; } 294 295 void insertAtEnd(const Segment &S) { LR->segments.push_back(S); } 296 297 iterator find(SlotIndex Pos) { return LR->find(Pos); } 298 299 iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); } 300 }; 301 302 //===----------------------------------------------------------------------===// 303 // Instantiation of the methods for calculation of live ranges 304 // based on a segment set. 305 //===----------------------------------------------------------------------===// 306 307 class CalcLiveRangeUtilSet; 308 using CalcLiveRangeUtilSetBase = 309 CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator, 310 LiveRange::SegmentSet>; 311 312 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { 313 public: 314 CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} 315 316 private: 317 friend CalcLiveRangeUtilSetBase; 318 319 LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } 320 321 void insertAtEnd(const Segment &S) { 322 LR->segmentSet->insert(LR->segmentSet->end(), S); 323 } 324 325 iterator find(SlotIndex Pos) { 326 iterator I = 327 LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr)); 328 if (I == LR->segmentSet->begin()) 329 return I; 330 iterator PrevI = std::prev(I); 331 if (Pos < (*PrevI).end) 332 return PrevI; 333 return I; 334 } 335 336 iterator findInsertPos(Segment S) { 337 iterator I = LR->segmentSet->upper_bound(S); 338 if (I != LR->segmentSet->end() && !(S.start < *I)) 339 ++I; 340 return I; 341 } 342 }; 343 344 } // end anonymous namespace 345 346 //===----------------------------------------------------------------------===// 347 // LiveRange methods 348 //===----------------------------------------------------------------------===// 349 350 LiveRange::iterator LiveRange::find(SlotIndex Pos) { 351 return llvm::partition_point(*this, 352 [&](const Segment &X) { return X.end <= Pos; }); 353 } 354 355 VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) { 356 // Use the segment set, if it is available. 357 if (segmentSet != nullptr) 358 return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr); 359 // Otherwise use the segment vector. 360 return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr); 361 } 362 363 VNInfo *LiveRange::createDeadDef(VNInfo *VNI) { 364 // Use the segment set, if it is available. 365 if (segmentSet != nullptr) 366 return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI); 367 // Otherwise use the segment vector. 368 return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI); 369 } 370 371 // overlaps - Return true if the intersection of the two live ranges is 372 // not empty. 373 // 374 // An example for overlaps(): 375 // 376 // 0: A = ... 377 // 4: B = ... 378 // 8: C = A + B ;; last use of A 379 // 380 // The live ranges should look like: 381 // 382 // A = [3, 11) 383 // B = [7, x) 384 // C = [11, y) 385 // 386 // A->overlaps(C) should return false since we want to be able to join 387 // A and C. 388 // 389 bool LiveRange::overlapsFrom(const LiveRange& other, 390 const_iterator StartPos) const { 391 assert(!empty() && "empty range"); 392 const_iterator i = begin(); 393 const_iterator ie = end(); 394 const_iterator j = StartPos; 395 const_iterator je = other.end(); 396 397 assert((StartPos->start <= i->start || StartPos == other.begin()) && 398 StartPos != other.end() && "Bogus start position hint!"); 399 400 if (i->start < j->start) { 401 i = std::upper_bound(i, ie, j->start); 402 if (i != begin()) --i; 403 } else if (j->start < i->start) { 404 ++StartPos; 405 if (StartPos != other.end() && StartPos->start <= i->start) { 406 assert(StartPos < other.end() && i < end()); 407 j = std::upper_bound(j, je, i->start); 408 if (j != other.begin()) --j; 409 } 410 } else { 411 return true; 412 } 413 414 if (j == je) return false; 415 416 while (i != ie) { 417 if (i->start > j->start) { 418 std::swap(i, j); 419 std::swap(ie, je); 420 } 421 422 if (i->end > j->start) 423 return true; 424 ++i; 425 } 426 427 return false; 428 } 429 430 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, 431 const SlotIndexes &Indexes) const { 432 assert(!empty() && "empty range"); 433 if (Other.empty()) 434 return false; 435 436 // Use binary searches to find initial positions. 437 const_iterator I = find(Other.beginIndex()); 438 const_iterator IE = end(); 439 if (I == IE) 440 return false; 441 const_iterator J = Other.find(I->start); 442 const_iterator JE = Other.end(); 443 if (J == JE) 444 return false; 445 446 while (true) { 447 // J has just been advanced to satisfy: 448 assert(J->end > I->start); 449 // Check for an overlap. 450 if (J->start < I->end) { 451 // I and J are overlapping. Find the later start. 452 SlotIndex Def = std::max(I->start, J->start); 453 // Allow the overlap if Def is a coalescable copy. 454 if (Def.isBlock() || 455 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 456 return true; 457 } 458 // Advance the iterator that ends first to check for more overlaps. 459 if (J->end > I->end) { 460 std::swap(I, J); 461 std::swap(IE, JE); 462 } 463 // Advance J until J->end > I->start. 464 do 465 if (++J == JE) 466 return false; 467 while (J->end <= I->start); 468 } 469 } 470 471 /// overlaps - Return true if the live range overlaps an interval specified 472 /// by [Start, End). 473 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { 474 assert(Start < End && "Invalid range"); 475 const_iterator I = lower_bound(*this, End); 476 return I != begin() && (--I)->end > Start; 477 } 478 479 bool LiveRange::covers(const LiveRange &Other) const { 480 if (empty()) 481 return Other.empty(); 482 483 const_iterator I = begin(); 484 for (const Segment &O : Other.segments) { 485 I = advanceTo(I, O.start); 486 if (I == end() || I->start > O.start) 487 return false; 488 489 // Check adjacent live segments and see if we can get behind O.end. 490 while (I->end < O.end) { 491 const_iterator Last = I; 492 // Get next segment and abort if it was not adjacent. 493 ++I; 494 if (I == end() || Last->end != I->start) 495 return false; 496 } 497 } 498 return true; 499 } 500 501 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 502 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 503 /// it can be nuked later. 504 void LiveRange::markValNoForDeletion(VNInfo *ValNo) { 505 if (ValNo->id == getNumValNums()-1) { 506 do { 507 valnos.pop_back(); 508 } while (!valnos.empty() && valnos.back()->isUnused()); 509 } else { 510 ValNo->markUnused(); 511 } 512 } 513 514 /// RenumberValues - Renumber all values in order of appearance and delete the 515 /// remaining unused values. 516 void LiveRange::RenumberValues() { 517 SmallPtrSet<VNInfo*, 8> Seen; 518 valnos.clear(); 519 for (const Segment &S : segments) { 520 VNInfo *VNI = S.valno; 521 if (!Seen.insert(VNI).second) 522 continue; 523 assert(!VNI->isUnused() && "Unused valno used by live segment"); 524 VNI->id = (unsigned)valnos.size(); 525 valnos.push_back(VNI); 526 } 527 } 528 529 void LiveRange::addSegmentToSet(Segment S) { 530 CalcLiveRangeUtilSet(this).addSegment(S); 531 } 532 533 LiveRange::iterator LiveRange::addSegment(Segment S) { 534 // Use the segment set, if it is available. 535 if (segmentSet != nullptr) { 536 addSegmentToSet(S); 537 return end(); 538 } 539 // Otherwise use the segment vector. 540 return CalcLiveRangeUtilVector(this).addSegment(S); 541 } 542 543 void LiveRange::append(const Segment S) { 544 // Check that the segment belongs to the back of the list. 545 assert(segments.empty() || segments.back().end <= S.start); 546 segments.push_back(S); 547 } 548 549 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs, 550 SlotIndex StartIdx, SlotIndex Kill) { 551 // Use the segment set, if it is available. 552 if (segmentSet != nullptr) 553 return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill); 554 // Otherwise use the segment vector. 555 return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill); 556 } 557 558 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 559 // Use the segment set, if it is available. 560 if (segmentSet != nullptr) 561 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill); 562 // Otherwise use the segment vector. 563 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill); 564 } 565 566 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, 567 bool RemoveDeadValNo) { 568 // Find the Segment containing this span. 569 iterator I = find(Start); 570 571 // No Segment found, so nothing to do. 572 if (I == end()) 573 return; 574 575 assert(I->containsInterval(Start, End) 576 && "Segment is not entirely in range!"); 577 578 // If the span we are removing is at the start of the Segment, adjust it. 579 VNInfo *ValNo = I->valno; 580 if (I->start == Start) { 581 if (I->end == End) { 582 segments.erase(I); // Removed the whole Segment. 583 584 if (RemoveDeadValNo) 585 removeValNoIfDead(ValNo); 586 } else 587 I->start = End; 588 return; 589 } 590 591 // Otherwise if the span we are removing is at the end of the Segment, 592 // adjust the other way. 593 if (I->end == End) { 594 I->end = Start; 595 return; 596 } 597 598 // Otherwise, we are splitting the Segment into two pieces. 599 SlotIndex OldEnd = I->end; 600 I->end = Start; // Trim the old segment. 601 602 // Insert the new one. 603 segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); 604 } 605 606 LiveRange::iterator LiveRange::removeSegment(iterator I, bool RemoveDeadValNo) { 607 VNInfo *ValNo = I->valno; 608 I = segments.erase(I); 609 if (RemoveDeadValNo) 610 removeValNoIfDead(ValNo); 611 return I; 612 } 613 614 void LiveRange::removeValNoIfDead(VNInfo *ValNo) { 615 if (none_of(*this, [=](const Segment &S) { return S.valno == ValNo; })) 616 markValNoForDeletion(ValNo); 617 } 618 619 /// removeValNo - Remove all the segments defined by the specified value#. 620 /// Also remove the value# from value# list. 621 void LiveRange::removeValNo(VNInfo *ValNo) { 622 if (empty()) return; 623 llvm::erase_if(segments, 624 [ValNo](const Segment &S) { return S.valno == ValNo; }); 625 // Now that ValNo is dead, remove it. 626 markValNoForDeletion(ValNo); 627 } 628 629 void LiveRange::join(LiveRange &Other, 630 const int *LHSValNoAssignments, 631 const int *RHSValNoAssignments, 632 SmallVectorImpl<VNInfo *> &NewVNInfo) { 633 verify(); 634 Other.verify(); 635 636 // Determine if any of our values are mapped. This is uncommon, so we want 637 // to avoid the range scan if not. 638 bool MustMapCurValNos = false; 639 unsigned NumVals = getNumValNums(); 640 unsigned NumNewVals = NewVNInfo.size(); 641 for (unsigned i = 0; i != NumVals; ++i) { 642 unsigned LHSValID = LHSValNoAssignments[i]; 643 if (i != LHSValID || 644 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 645 MustMapCurValNos = true; 646 break; 647 } 648 } 649 650 // If we have to apply a mapping to our base range assignment, rewrite it now. 651 if (MustMapCurValNos && !empty()) { 652 // Map the first live range. 653 654 iterator OutIt = begin(); 655 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 656 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { 657 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 658 assert(nextValNo && "Huh?"); 659 660 // If this live range has the same value # as its immediate predecessor, 661 // and if they are neighbors, remove one Segment. This happens when we 662 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 663 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 664 OutIt->end = I->end; 665 } else { 666 // Didn't merge. Move OutIt to the next segment, 667 ++OutIt; 668 OutIt->valno = nextValNo; 669 if (OutIt != I) { 670 OutIt->start = I->start; 671 OutIt->end = I->end; 672 } 673 } 674 } 675 // If we merge some segments, chop off the end. 676 ++OutIt; 677 segments.erase(OutIt, end()); 678 } 679 680 // Rewrite Other values before changing the VNInfo ids. 681 // This can leave Other in an invalid state because we're not coalescing 682 // touching segments that now have identical values. That's OK since Other is 683 // not supposed to be valid after calling join(); 684 for (Segment &S : Other.segments) 685 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; 686 687 // Update val# info. Renumber them and make sure they all belong to this 688 // LiveRange now. Also remove dead val#'s. 689 unsigned NumValNos = 0; 690 for (unsigned i = 0; i < NumNewVals; ++i) { 691 VNInfo *VNI = NewVNInfo[i]; 692 if (VNI) { 693 if (NumValNos >= NumVals) 694 valnos.push_back(VNI); 695 else 696 valnos[NumValNos] = VNI; 697 VNI->id = NumValNos++; // Renumber val#. 698 } 699 } 700 if (NumNewVals < NumVals) 701 valnos.resize(NumNewVals); // shrinkify 702 703 // Okay, now insert the RHS live segments into the LHS. 704 LiveRangeUpdater Updater(this); 705 for (Segment &S : Other.segments) 706 Updater.add(S); 707 } 708 709 /// Merge all of the segments in RHS into this live range as the specified 710 /// value number. The segments in RHS are allowed to overlap with segments in 711 /// the current range, but only if the overlapping segments have the 712 /// specified value number. 713 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, 714 VNInfo *LHSValNo) { 715 LiveRangeUpdater Updater(this); 716 for (const Segment &S : RHS.segments) 717 Updater.add(S.start, S.end, LHSValNo); 718 } 719 720 /// MergeValueInAsValue - Merge all of the live segments of a specific val# 721 /// in RHS into this live range as the specified value number. 722 /// The segments in RHS are allowed to overlap with segments in the 723 /// current range, it will replace the value numbers of the overlaped 724 /// segments with the specified value number. 725 void LiveRange::MergeValueInAsValue(const LiveRange &RHS, 726 const VNInfo *RHSValNo, 727 VNInfo *LHSValNo) { 728 LiveRangeUpdater Updater(this); 729 for (const Segment &S : RHS.segments) 730 if (S.valno == RHSValNo) 731 Updater.add(S.start, S.end, LHSValNo); 732 } 733 734 /// MergeValueNumberInto - This method is called when two value nubmers 735 /// are found to be equivalent. This eliminates V1, replacing all 736 /// segments with the V1 value number with the V2 value number. This can 737 /// cause merging of V1/V2 values numbers and compaction of the value space. 738 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 739 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 740 741 // This code actually merges the (numerically) larger value number into the 742 // smaller value number, which is likely to allow us to compactify the value 743 // space. The only thing we have to be careful of is to preserve the 744 // instruction that defines the result value. 745 746 // Make sure V2 is smaller than V1. 747 if (V1->id < V2->id) { 748 V1->copyFrom(*V2); 749 std::swap(V1, V2); 750 } 751 752 // Merge V1 segments into V2. 753 for (iterator I = begin(); I != end(); ) { 754 iterator S = I++; 755 if (S->valno != V1) continue; // Not a V1 Segment. 756 757 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 758 // range, extend it. 759 if (S != begin()) { 760 iterator Prev = S-1; 761 if (Prev->valno == V2 && Prev->end == S->start) { 762 Prev->end = S->end; 763 764 // Erase this live-range. 765 segments.erase(S); 766 I = Prev+1; 767 S = Prev; 768 } 769 } 770 771 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 772 // Ensure that it is a V2 live-range. 773 S->valno = V2; 774 775 // If we can merge it into later V2 segments, do so now. We ignore any 776 // following V1 segments, as they will be merged in subsequent iterations 777 // of the loop. 778 if (I != end()) { 779 if (I->start == S->end && I->valno == V2) { 780 S->end = I->end; 781 segments.erase(I); 782 I = S+1; 783 } 784 } 785 } 786 787 // Now that V1 is dead, remove it. 788 markValNoForDeletion(V1); 789 790 return V2; 791 } 792 793 void LiveRange::flushSegmentSet() { 794 assert(segmentSet != nullptr && "segment set must have been created"); 795 assert( 796 segments.empty() && 797 "segment set can be used only initially before switching to the array"); 798 segments.append(segmentSet->begin(), segmentSet->end()); 799 segmentSet = nullptr; 800 verify(); 801 } 802 803 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const { 804 ArrayRef<SlotIndex>::iterator SlotI = Slots.begin(); 805 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 806 807 // If there are no regmask slots, we have nothing to search. 808 if (SlotI == SlotE) 809 return false; 810 811 // Start our search at the first segment that ends after the first slot. 812 const_iterator SegmentI = find(*SlotI); 813 const_iterator SegmentE = end(); 814 815 // If there are no segments that end after the first slot, we're done. 816 if (SegmentI == SegmentE) 817 return false; 818 819 // Look for each slot in the live range. 820 for ( ; SlotI != SlotE; ++SlotI) { 821 // Go to the next segment that ends after the current slot. 822 // The slot may be within a hole in the range. 823 SegmentI = advanceTo(SegmentI, *SlotI); 824 if (SegmentI == SegmentE) 825 return false; 826 827 // If this segment contains the slot, we're done. 828 if (SegmentI->contains(*SlotI)) 829 return true; 830 // Otherwise, look for the next slot. 831 } 832 833 // We didn't find a segment containing any of the slots. 834 return false; 835 } 836 837 void LiveInterval::freeSubRange(SubRange *S) { 838 S->~SubRange(); 839 // Memory was allocated with BumpPtr allocator and is not freed here. 840 } 841 842 void LiveInterval::removeEmptySubRanges() { 843 SubRange **NextPtr = &SubRanges; 844 SubRange *I = *NextPtr; 845 while (I != nullptr) { 846 if (!I->empty()) { 847 NextPtr = &I->Next; 848 I = *NextPtr; 849 continue; 850 } 851 // Skip empty subranges until we find the first nonempty one. 852 do { 853 SubRange *Next = I->Next; 854 freeSubRange(I); 855 I = Next; 856 } while (I != nullptr && I->empty()); 857 *NextPtr = I; 858 } 859 } 860 861 void LiveInterval::clearSubRanges() { 862 for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { 863 Next = I->Next; 864 freeSubRange(I); 865 } 866 SubRanges = nullptr; 867 } 868 869 /// For each VNI in \p SR, check whether or not that value defines part 870 /// of the mask describe by \p LaneMask and if not, remove that value 871 /// from \p SR. 872 static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR, 873 LaneBitmask LaneMask, 874 const SlotIndexes &Indexes, 875 const TargetRegisterInfo &TRI, 876 unsigned ComposeSubRegIdx) { 877 // Phys reg should not be tracked at subreg level. 878 // Same for noreg (Reg == 0). 879 if (!Register::isVirtualRegister(Reg) || !Reg) 880 return; 881 // Remove the values that don't define those lanes. 882 SmallVector<VNInfo *, 8> ToBeRemoved; 883 for (VNInfo *VNI : SR.valnos) { 884 if (VNI->isUnused()) 885 continue; 886 // PHI definitions don't have MI attached, so there is nothing 887 // we can use to strip the VNI. 888 if (VNI->isPHIDef()) 889 continue; 890 const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def); 891 assert(MI && "Cannot find the definition of a value"); 892 bool hasDef = false; 893 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 894 if (!MOI->isReg() || !MOI->isDef()) 895 continue; 896 if (MOI->getReg() != Reg) 897 continue; 898 LaneBitmask OrigMask = TRI.getSubRegIndexLaneMask(MOI->getSubReg()); 899 LaneBitmask ExpectedDefMask = 900 ComposeSubRegIdx 901 ? TRI.composeSubRegIndexLaneMask(ComposeSubRegIdx, OrigMask) 902 : OrigMask; 903 if ((ExpectedDefMask & LaneMask).none()) 904 continue; 905 hasDef = true; 906 break; 907 } 908 909 if (!hasDef) 910 ToBeRemoved.push_back(VNI); 911 } 912 for (VNInfo *VNI : ToBeRemoved) 913 SR.removeValNo(VNI); 914 915 // If the subrange is empty at this point, the MIR is invalid. Do not assert 916 // and let the verifier catch this case. 917 } 918 919 void LiveInterval::refineSubRanges( 920 BumpPtrAllocator &Allocator, LaneBitmask LaneMask, 921 std::function<void(LiveInterval::SubRange &)> Apply, 922 const SlotIndexes &Indexes, const TargetRegisterInfo &TRI, 923 unsigned ComposeSubRegIdx) { 924 LaneBitmask ToApply = LaneMask; 925 for (SubRange &SR : subranges()) { 926 LaneBitmask SRMask = SR.LaneMask; 927 LaneBitmask Matching = SRMask & LaneMask; 928 if (Matching.none()) 929 continue; 930 931 SubRange *MatchingRange; 932 if (SRMask == Matching) { 933 // The subrange fits (it does not cover bits outside \p LaneMask). 934 MatchingRange = &SR; 935 } else { 936 // We have to split the subrange into a matching and non-matching part. 937 // Reduce lanemask of existing lane to non-matching part. 938 SR.LaneMask = SRMask & ~Matching; 939 // Create a new subrange for the matching part 940 MatchingRange = createSubRangeFrom(Allocator, Matching, SR); 941 // Now that the subrange is split in half, make sure we 942 // only keep in the subranges the VNIs that touch the related half. 943 stripValuesNotDefiningMask(reg(), *MatchingRange, Matching, Indexes, TRI, 944 ComposeSubRegIdx); 945 stripValuesNotDefiningMask(reg(), SR, SR.LaneMask, Indexes, TRI, 946 ComposeSubRegIdx); 947 } 948 Apply(*MatchingRange); 949 ToApply &= ~Matching; 950 } 951 // Create a new subrange if there are uncovered bits left. 952 if (ToApply.any()) { 953 SubRange *NewRange = createSubRange(Allocator, ToApply); 954 Apply(*NewRange); 955 } 956 } 957 958 unsigned LiveInterval::getSize() const { 959 unsigned Sum = 0; 960 for (const Segment &S : segments) 961 Sum += S.start.distance(S.end); 962 return Sum; 963 } 964 965 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, 966 LaneBitmask LaneMask, 967 const MachineRegisterInfo &MRI, 968 const SlotIndexes &Indexes) const { 969 assert(reg().isVirtual()); 970 LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg()); 971 assert((VRegMask & LaneMask).any()); 972 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 973 for (const MachineOperand &MO : MRI.def_operands(reg())) { 974 if (!MO.isUndef()) 975 continue; 976 unsigned SubReg = MO.getSubReg(); 977 assert(SubReg != 0 && "Undef should only be set on subreg defs"); 978 LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg); 979 LaneBitmask UndefMask = VRegMask & ~DefMask; 980 if ((UndefMask & LaneMask).any()) { 981 const MachineInstr &MI = *MO.getParent(); 982 bool EarlyClobber = MO.isEarlyClobber(); 983 SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber); 984 Undefs.push_back(Pos); 985 } 986 } 987 } 988 989 raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) { 990 return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')'; 991 } 992 993 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 994 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const { 995 dbgs() << *this << '\n'; 996 } 997 #endif 998 999 void LiveRange::print(raw_ostream &OS) const { 1000 if (empty()) 1001 OS << "EMPTY"; 1002 else { 1003 for (const Segment &S : segments) { 1004 OS << S; 1005 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); 1006 } 1007 } 1008 1009 // Print value number info. 1010 if (getNumValNums()) { 1011 OS << ' '; 1012 unsigned vnum = 0; 1013 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 1014 ++i, ++vnum) { 1015 const VNInfo *vni = *i; 1016 if (vnum) OS << ' '; 1017 OS << vnum << '@'; 1018 if (vni->isUnused()) { 1019 OS << 'x'; 1020 } else { 1021 OS << vni->def; 1022 if (vni->isPHIDef()) 1023 OS << "-phi"; 1024 } 1025 } 1026 } 1027 } 1028 1029 void LiveInterval::SubRange::print(raw_ostream &OS) const { 1030 OS << " L" << PrintLaneMask(LaneMask) << ' ' 1031 << static_cast<const LiveRange &>(*this); 1032 } 1033 1034 void LiveInterval::print(raw_ostream &OS) const { 1035 OS << printReg(reg()) << ' '; 1036 super::print(OS); 1037 // Print subranges 1038 for (const SubRange &SR : subranges()) 1039 OS << SR; 1040 OS << " weight:" << Weight; 1041 } 1042 1043 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1044 LLVM_DUMP_METHOD void LiveRange::dump() const { 1045 dbgs() << *this << '\n'; 1046 } 1047 1048 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const { 1049 dbgs() << *this << '\n'; 1050 } 1051 1052 LLVM_DUMP_METHOD void LiveInterval::dump() const { 1053 dbgs() << *this << '\n'; 1054 } 1055 #endif 1056 1057 #ifndef NDEBUG 1058 void LiveRange::verify() const { 1059 for (const_iterator I = begin(), E = end(); I != E; ++I) { 1060 assert(I->start.isValid()); 1061 assert(I->end.isValid()); 1062 assert(I->start < I->end); 1063 assert(I->valno != nullptr); 1064 assert(I->valno->id < valnos.size()); 1065 assert(I->valno == valnos[I->valno->id]); 1066 if (std::next(I) != E) { 1067 assert(I->end <= std::next(I)->start); 1068 if (I->end == std::next(I)->start) 1069 assert(I->valno != std::next(I)->valno); 1070 } 1071 } 1072 } 1073 1074 void LiveInterval::verify(const MachineRegisterInfo *MRI) const { 1075 super::verify(); 1076 1077 // Make sure SubRanges are fine and LaneMasks are disjunct. 1078 LaneBitmask Mask; 1079 LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg()) 1080 : LaneBitmask::getAll(); 1081 for (const SubRange &SR : subranges()) { 1082 // Subrange lanemask should be disjunct to any previous subrange masks. 1083 assert((Mask & SR.LaneMask).none()); 1084 Mask |= SR.LaneMask; 1085 1086 // subrange mask should not contained in maximum lane mask for the vreg. 1087 assert((Mask & ~MaxMask).none()); 1088 // empty subranges must be removed. 1089 assert(!SR.empty()); 1090 1091 SR.verify(); 1092 // Main liverange should cover subrange. 1093 assert(covers(SR)); 1094 } 1095 } 1096 #endif 1097 1098 //===----------------------------------------------------------------------===// 1099 // LiveRangeUpdater class 1100 //===----------------------------------------------------------------------===// 1101 // 1102 // The LiveRangeUpdater class always maintains these invariants: 1103 // 1104 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 1105 // This is the initial state, and the state created by flush(). 1106 // In this state, isDirty() returns false. 1107 // 1108 // Otherwise, segments are kept in three separate areas: 1109 // 1110 // 1. [begin; WriteI) at the front of LR. 1111 // 2. [ReadI; end) at the back of LR. 1112 // 3. Spills. 1113 // 1114 // - LR.begin() <= WriteI <= ReadI <= LR.end(). 1115 // - Segments in all three areas are fully ordered and coalesced. 1116 // - Segments in area 1 precede and can't coalesce with segments in area 2. 1117 // - Segments in Spills precede and can't coalesce with segments in area 2. 1118 // - No coalescing is possible between segments in Spills and segments in area 1119 // 1, and there are no overlapping segments. 1120 // 1121 // The segments in Spills are not ordered with respect to the segments in area 1122 // 1. They need to be merged. 1123 // 1124 // When they exist, Spills.back().start <= LastStart, 1125 // and WriteI[-1].start <= LastStart. 1126 1127 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1128 void LiveRangeUpdater::print(raw_ostream &OS) const { 1129 if (!isDirty()) { 1130 if (LR) 1131 OS << "Clean updater: " << *LR << '\n'; 1132 else 1133 OS << "Null updater.\n"; 1134 return; 1135 } 1136 assert(LR && "Can't have null LR in dirty updater."); 1137 OS << " updater with gap = " << (ReadI - WriteI) 1138 << ", last start = " << LastStart 1139 << ":\n Area 1:"; 1140 for (const auto &S : make_range(LR->begin(), WriteI)) 1141 OS << ' ' << S; 1142 OS << "\n Spills:"; 1143 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 1144 OS << ' ' << Spills[I]; 1145 OS << "\n Area 2:"; 1146 for (const auto &S : make_range(ReadI, LR->end())) 1147 OS << ' ' << S; 1148 OS << '\n'; 1149 } 1150 1151 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const { 1152 print(errs()); 1153 } 1154 #endif 1155 1156 // Determine if A and B should be coalesced. 1157 static inline bool coalescable(const LiveRange::Segment &A, 1158 const LiveRange::Segment &B) { 1159 assert(A.start <= B.start && "Unordered live segments."); 1160 if (A.end == B.start) 1161 return A.valno == B.valno; 1162 if (A.end < B.start) 1163 return false; 1164 assert(A.valno == B.valno && "Cannot overlap different values"); 1165 return true; 1166 } 1167 1168 void LiveRangeUpdater::add(LiveRange::Segment Seg) { 1169 assert(LR && "Cannot add to a null destination"); 1170 1171 // Fall back to the regular add method if the live range 1172 // is using the segment set instead of the segment vector. 1173 if (LR->segmentSet != nullptr) { 1174 LR->addSegmentToSet(Seg); 1175 return; 1176 } 1177 1178 // Flush the state if Start moves backwards. 1179 if (!LastStart.isValid() || LastStart > Seg.start) { 1180 if (isDirty()) 1181 flush(); 1182 // This brings us to an uninitialized state. Reinitialize. 1183 assert(Spills.empty() && "Leftover spilled segments"); 1184 WriteI = ReadI = LR->begin(); 1185 } 1186 1187 // Remember start for next time. 1188 LastStart = Seg.start; 1189 1190 // Advance ReadI until it ends after Seg.start. 1191 LiveRange::iterator E = LR->end(); 1192 if (ReadI != E && ReadI->end <= Seg.start) { 1193 // First try to close the gap between WriteI and ReadI with spills. 1194 if (ReadI != WriteI) 1195 mergeSpills(); 1196 // Then advance ReadI. 1197 if (ReadI == WriteI) 1198 ReadI = WriteI = LR->find(Seg.start); 1199 else 1200 while (ReadI != E && ReadI->end <= Seg.start) 1201 *WriteI++ = *ReadI++; 1202 } 1203 1204 assert(ReadI == E || ReadI->end > Seg.start); 1205 1206 // Check if the ReadI segment begins early. 1207 if (ReadI != E && ReadI->start <= Seg.start) { 1208 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 1209 // Bail if Seg is completely contained in ReadI. 1210 if (ReadI->end >= Seg.end) 1211 return; 1212 // Coalesce into Seg. 1213 Seg.start = ReadI->start; 1214 ++ReadI; 1215 } 1216 1217 // Coalesce as much as possible from ReadI into Seg. 1218 while (ReadI != E && coalescable(Seg, *ReadI)) { 1219 Seg.end = std::max(Seg.end, ReadI->end); 1220 ++ReadI; 1221 } 1222 1223 // Try coalescing Spills.back() into Seg. 1224 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 1225 Seg.start = Spills.back().start; 1226 Seg.end = std::max(Spills.back().end, Seg.end); 1227 Spills.pop_back(); 1228 } 1229 1230 // Try coalescing Seg into WriteI[-1]. 1231 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { 1232 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 1233 return; 1234 } 1235 1236 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 1237 if (WriteI != ReadI) { 1238 *WriteI++ = Seg; 1239 return; 1240 } 1241 1242 // Finally, append to LR or Spills. 1243 if (WriteI == E) { 1244 LR->segments.push_back(Seg); 1245 WriteI = ReadI = LR->end(); 1246 } else 1247 Spills.push_back(Seg); 1248 } 1249 1250 // Merge as many spilled segments as possible into the gap between WriteI 1251 // and ReadI. Advance WriteI to reflect the inserted instructions. 1252 void LiveRangeUpdater::mergeSpills() { 1253 // Perform a backwards merge of Spills and [SpillI;WriteI). 1254 size_t GapSize = ReadI - WriteI; 1255 size_t NumMoved = std::min(Spills.size(), GapSize); 1256 LiveRange::iterator Src = WriteI; 1257 LiveRange::iterator Dst = Src + NumMoved; 1258 LiveRange::iterator SpillSrc = Spills.end(); 1259 LiveRange::iterator B = LR->begin(); 1260 1261 // This is the new WriteI position after merging spills. 1262 WriteI = Dst; 1263 1264 // Now merge Src and Spills backwards. 1265 while (Src != Dst) { 1266 if (Src != B && Src[-1].start > SpillSrc[-1].start) 1267 *--Dst = *--Src; 1268 else 1269 *--Dst = *--SpillSrc; 1270 } 1271 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 1272 Spills.erase(SpillSrc, Spills.end()); 1273 } 1274 1275 void LiveRangeUpdater::flush() { 1276 if (!isDirty()) 1277 return; 1278 // Clear the dirty state. 1279 LastStart = SlotIndex(); 1280 1281 assert(LR && "Cannot add to a null destination"); 1282 1283 // Nothing to merge? 1284 if (Spills.empty()) { 1285 LR->segments.erase(WriteI, ReadI); 1286 LR->verify(); 1287 return; 1288 } 1289 1290 // Resize the WriteI - ReadI gap to match Spills. 1291 size_t GapSize = ReadI - WriteI; 1292 if (GapSize < Spills.size()) { 1293 // The gap is too small. Make some room. 1294 size_t WritePos = WriteI - LR->begin(); 1295 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); 1296 // This also invalidated ReadI, but it is recomputed below. 1297 WriteI = LR->begin() + WritePos; 1298 } else { 1299 // Shrink the gap if necessary. 1300 LR->segments.erase(WriteI + Spills.size(), ReadI); 1301 } 1302 ReadI = WriteI + Spills.size(); 1303 mergeSpills(); 1304 LR->verify(); 1305 } 1306 1307 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) { 1308 // Create initial equivalence classes. 1309 EqClass.clear(); 1310 EqClass.grow(LR.getNumValNums()); 1311 1312 const VNInfo *used = nullptr, *unused = nullptr; 1313 1314 // Determine connections. 1315 for (const VNInfo *VNI : LR.valnos) { 1316 // Group all unused values into one class. 1317 if (VNI->isUnused()) { 1318 if (unused) 1319 EqClass.join(unused->id, VNI->id); 1320 unused = VNI; 1321 continue; 1322 } 1323 used = VNI; 1324 if (VNI->isPHIDef()) { 1325 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 1326 assert(MBB && "Phi-def has no defining MBB"); 1327 // Connect to values live out of predecessors. 1328 for (MachineBasicBlock *Pred : MBB->predecessors()) 1329 if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(Pred))) 1330 EqClass.join(VNI->id, PVNI->id); 1331 } else { 1332 // Normal value defined by an instruction. Check for two-addr redef. 1333 // FIXME: This could be coincidental. Should we really check for a tied 1334 // operand constraint? 1335 // Note that VNI->def may be a use slot for an early clobber def. 1336 if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def)) 1337 EqClass.join(VNI->id, UVNI->id); 1338 } 1339 } 1340 1341 // Lump all the unused values in with the last used value. 1342 if (used && unused) 1343 EqClass.join(used->id, unused->id); 1344 1345 EqClass.compress(); 1346 return EqClass.getNumClasses(); 1347 } 1348 1349 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[], 1350 MachineRegisterInfo &MRI) { 1351 // Rewrite instructions. 1352 for (MachineOperand &MO : 1353 llvm::make_early_inc_range(MRI.reg_operands(LI.reg()))) { 1354 MachineInstr *MI = MO.getParent(); 1355 const VNInfo *VNI; 1356 if (MI->isDebugValue()) { 1357 // DBG_VALUE instructions don't have slot indexes, so get the index of 1358 // the instruction before them. The value is defined there too. 1359 SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI); 1360 VNI = LI.Query(Idx).valueOut(); 1361 } else { 1362 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1363 LiveQueryResult LRQ = LI.Query(Idx); 1364 VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 1365 } 1366 // In the case of an <undef> use that isn't tied to any def, VNI will be 1367 // NULL. If the use is tied to a def, VNI will be the defined value. 1368 if (!VNI) 1369 continue; 1370 if (unsigned EqClass = getEqClass(VNI)) 1371 MO.setReg(LIV[EqClass - 1]->reg()); 1372 } 1373 1374 // Distribute subregister liveranges. 1375 if (LI.hasSubRanges()) { 1376 unsigned NumComponents = EqClass.getNumClasses(); 1377 SmallVector<unsigned, 8> VNIMapping; 1378 SmallVector<LiveInterval::SubRange*, 8> SubRanges; 1379 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1380 for (LiveInterval::SubRange &SR : LI.subranges()) { 1381 // Create new subranges in the split intervals and construct a mapping 1382 // for the VNInfos in the subrange. 1383 unsigned NumValNos = SR.valnos.size(); 1384 VNIMapping.clear(); 1385 VNIMapping.reserve(NumValNos); 1386 SubRanges.clear(); 1387 SubRanges.resize(NumComponents-1, nullptr); 1388 for (unsigned I = 0; I < NumValNos; ++I) { 1389 const VNInfo &VNI = *SR.valnos[I]; 1390 unsigned ComponentNum; 1391 if (VNI.isUnused()) { 1392 ComponentNum = 0; 1393 } else { 1394 const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def); 1395 assert(MainRangeVNI != nullptr 1396 && "SubRange def must have corresponding main range def"); 1397 ComponentNum = getEqClass(MainRangeVNI); 1398 if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) { 1399 SubRanges[ComponentNum-1] 1400 = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask); 1401 } 1402 } 1403 VNIMapping.push_back(ComponentNum); 1404 } 1405 DistributeRange(SR, SubRanges.data(), VNIMapping); 1406 } 1407 LI.removeEmptySubRanges(); 1408 } 1409 1410 // Distribute main liverange. 1411 DistributeRange(LI, LIV, EqClass); 1412 } 1413