1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2008,2010 Intel Corporation
5 */
6
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_auth.h>
13 #include <drm/drm_syncobj.h>
14
15 #include "gem/i915_gem_ioctls.h"
16 #include "gt/intel_context.h"
17 #include "gt/intel_gpu_commands.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22
23 #include "pxp/intel_pxp.h"
24
25 #include "i915_cmd_parser.h"
26 #include "i915_drv.h"
27 #include "i915_file_private.h"
28 #include "i915_gem_clflush.h"
29 #include "i915_gem_context.h"
30 #include "i915_gem_evict.h"
31 #include "i915_gem_ioctls.h"
32 #include "i915_reg.h"
33 #include "i915_trace.h"
34 #include "i915_user_extensions.h"
35
36 struct eb_vma {
37 struct i915_vma *vma;
38 unsigned int flags;
39
40 /** This vma's place in the execbuf reservation list */
41 struct drm_i915_gem_exec_object2 *exec;
42 struct list_head bind_link;
43 struct list_head reloc_link;
44
45 struct hlist_node node;
46 u32 handle;
47 };
48
49 enum {
50 FORCE_CPU_RELOC = 1,
51 FORCE_GTT_RELOC,
52 FORCE_GPU_RELOC,
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
54 };
55
56 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN BIT(29)
58 #define __EXEC_OBJECT_HAS_FENCE BIT(28)
59 #define __EXEC_OBJECT_USERPTR_INIT BIT(27)
60 #define __EXEC_OBJECT_NEEDS_MAP BIT(26)
61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(25)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
64
65 #define __EXEC_HAS_RELOC BIT(31)
66 #define __EXEC_ENGINE_PINNED BIT(30)
67 #define __EXEC_USERPTR_USED BIT(29)
68 #define __EXEC_INTERNAL_FLAGS (~0u << 29)
69 #define UPDATE PIN_OFFSET_FIXED
70
71 #define BATCH_OFFSET_BIAS (256*1024)
72
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74 (__I915_EXEC_UNKNOWN_FLAGS | \
75 I915_EXEC_CONSTANTS_MASK | \
76 I915_EXEC_RESOURCE_STREAMER)
77
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80 #undef EINVAL
81 #define EINVAL ({ \
82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83 22; \
84 })
85 #endif
86
87 /**
88 * DOC: User command execution
89 *
90 * Userspace submits commands to be executed on the GPU as an instruction
91 * stream within a GEM object we call a batchbuffer. This instructions may
92 * refer to other GEM objects containing auxiliary state such as kernels,
93 * samplers, render targets and even secondary batchbuffers. Userspace does
94 * not know where in the GPU memory these objects reside and so before the
95 * batchbuffer is passed to the GPU for execution, those addresses in the
96 * batchbuffer and auxiliary objects are updated. This is known as relocation,
97 * or patching. To try and avoid having to relocate each object on the next
98 * execution, userspace is told the location of those objects in this pass,
99 * but this remains just a hint as the kernel may choose a new location for
100 * any object in the future.
101 *
102 * At the level of talking to the hardware, submitting a batchbuffer for the
103 * GPU to execute is to add content to a buffer from which the HW
104 * command streamer is reading.
105 *
106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107 * Execlists, this command is not placed on the same buffer as the
108 * remaining items.
109 *
110 * 2. Add a command to invalidate caches to the buffer.
111 *
112 * 3. Add a batchbuffer start command to the buffer; the start command is
113 * essentially a token together with the GPU address of the batchbuffer
114 * to be executed.
115 *
116 * 4. Add a pipeline flush to the buffer.
117 *
118 * 5. Add a memory write command to the buffer to record when the GPU
119 * is done executing the batchbuffer. The memory write writes the
120 * global sequence number of the request, ``i915_request::global_seqno``;
121 * the i915 driver uses the current value in the register to determine
122 * if the GPU has completed the batchbuffer.
123 *
124 * 6. Add a user interrupt command to the buffer. This command instructs
125 * the GPU to issue an interrupt when the command, pipeline flush and
126 * memory write are completed.
127 *
128 * 7. Inform the hardware of the additional commands added to the buffer
129 * (by updating the tail pointer).
130 *
131 * Processing an execbuf ioctl is conceptually split up into a few phases.
132 *
133 * 1. Validation - Ensure all the pointers, handles and flags are valid.
134 * 2. Reservation - Assign GPU address space for every object
135 * 3. Relocation - Update any addresses to point to the final locations
136 * 4. Serialisation - Order the request with respect to its dependencies
137 * 5. Construction - Construct a request to execute the batchbuffer
138 * 6. Submission (at some point in the future execution)
139 *
140 * Reserving resources for the execbuf is the most complicated phase. We
141 * neither want to have to migrate the object in the address space, nor do
142 * we want to have to update any relocations pointing to this object. Ideally,
143 * we want to leave the object where it is and for all the existing relocations
144 * to match. If the object is given a new address, or if userspace thinks the
145 * object is elsewhere, we have to parse all the relocation entries and update
146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
147 * all the target addresses in all of its objects match the value in the
148 * relocation entries and that they all match the presumed offsets given by the
149 * list of execbuffer objects. Using this knowledge, we know that if we haven't
150 * moved any buffers, all the relocation entries are valid and we can skip
151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153 *
154 * The addresses written in the objects must match the corresponding
155 * reloc.presumed_offset which in turn must match the corresponding
156 * execobject.offset.
157 *
158 * Any render targets written to in the batch must be flagged with
159 * EXEC_OBJECT_WRITE.
160 *
161 * To avoid stalling, execobject.offset should match the current
162 * address of that object within the active context.
163 *
164 * The reservation is done is multiple phases. First we try and keep any
165 * object already bound in its current location - so as long as meets the
166 * constraints imposed by the new execbuffer. Any object left unbound after the
167 * first pass is then fitted into any available idle space. If an object does
168 * not fit, all objects are removed from the reservation and the process rerun
169 * after sorting the objects into a priority order (more difficult to fit
170 * objects are tried first). Failing that, the entire VM is cleared and we try
171 * to fit the execbuf once last time before concluding that it simply will not
172 * fit.
173 *
174 * A small complication to all of this is that we allow userspace not only to
175 * specify an alignment and a size for the object in the address space, but
176 * we also allow userspace to specify the exact offset. This objects are
177 * simpler to place (the location is known a priori) all we have to do is make
178 * sure the space is available.
179 *
180 * Once all the objects are in place, patching up the buried pointers to point
181 * to the final locations is a fairly simple job of walking over the relocation
182 * entry arrays, looking up the right address and rewriting the value into
183 * the object. Simple! ... The relocation entries are stored in user memory
184 * and so to access them we have to copy them into a local buffer. That copy
185 * has to avoid taking any pagefaults as they may lead back to a GEM object
186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
187 * the relocation into multiple passes. First we try to do everything within an
188 * atomic context (avoid the pagefaults) which requires that we never wait. If
189 * we detect that we may wait, or if we need to fault, then we have to fallback
190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191 * bells yet?) Dropping the mutex means that we lose all the state we have
192 * built up so far for the execbuf and we must reset any global data. However,
193 * we do leave the objects pinned in their final locations - which is a
194 * potential issue for concurrent execbufs. Once we have left the mutex, we can
195 * allocate and copy all the relocation entries into a large array at our
196 * leisure, reacquire the mutex, reclaim all the objects and other state and
197 * then proceed to update any incorrect addresses with the objects.
198 *
199 * As we process the relocation entries, we maintain a record of whether the
200 * object is being written to. Using NORELOC, we expect userspace to provide
201 * this information instead. We also check whether we can skip the relocation
202 * by comparing the expected value inside the relocation entry with the target's
203 * final address. If they differ, we have to map the current object and rewrite
204 * the 4 or 8 byte pointer within.
205 *
206 * Serialising an execbuf is quite simple according to the rules of the GEM
207 * ABI. Execution within each context is ordered by the order of submission.
208 * Writes to any GEM object are in order of submission and are exclusive. Reads
209 * from a GEM object are unordered with respect to other reads, but ordered by
210 * writes. A write submitted after a read cannot occur before the read, and
211 * similarly any read submitted after a write cannot occur before the write.
212 * Writes are ordered between engines such that only one write occurs at any
213 * time (completing any reads beforehand) - using semaphores where available
214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216 * reads before starting, and any read (either using set-domain or pread) must
217 * flush all GPU writes before starting. (Note we only employ a barrier before,
218 * we currently rely on userspace not concurrently starting a new execution
219 * whilst reading or writing to an object. This may be an advantage or not
220 * depending on how much you trust userspace not to shoot themselves in the
221 * foot.) Serialisation may just result in the request being inserted into
222 * a DAG awaiting its turn, but most simple is to wait on the CPU until
223 * all dependencies are resolved.
224 *
225 * After all of that, is just a matter of closing the request and handing it to
226 * the hardware (well, leaving it in a queue to be executed). However, we also
227 * offer the ability for batchbuffers to be run with elevated privileges so
228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229 * Before any batch is given extra privileges we first must check that it
230 * contains no nefarious instructions, we check that each instruction is from
231 * our whitelist and all registers are also from an allowed list. We first
232 * copy the user's batchbuffer to a shadow (so that the user doesn't have
233 * access to it, either by the CPU or GPU as we scan it) and then parse each
234 * instruction. If everything is ok, we set a flag telling the hardware to run
235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236 */
237
238 struct eb_fence {
239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240 struct dma_fence *dma_fence;
241 u64 value;
242 struct dma_fence_chain *chain_fence;
243 };
244
245 struct i915_execbuffer {
246 struct drm_i915_private *i915; /** i915 backpointer */
247 struct drm_file *file; /** per-file lookup tables and limits */
248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
250 struct eb_vma *vma;
251
252 struct intel_gt *gt; /* gt for the execbuf */
253 struct intel_context *context; /* logical state for the request */
254 struct i915_gem_context *gem_context; /** caller's context */
255 intel_wakeref_t wakeref;
256 intel_wakeref_t wakeref_gt0;
257
258 /** our requests to build */
259 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
260 /** identity of the batch obj/vma */
261 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
262 struct i915_vma *trampoline; /** trampoline used for chaining */
263
264 /** used for excl fence in dma_resv objects when > 1 BB submitted */
265 struct dma_fence *composite_fence;
266
267 /** actual size of execobj[] as we may extend it for the cmdparser */
268 unsigned int buffer_count;
269
270 /* number of batches in execbuf IOCTL */
271 unsigned int num_batches;
272
273 /** list of vma not yet bound during reservation phase */
274 struct list_head unbound;
275
276 /** list of vma that have execobj.relocation_count */
277 struct list_head relocs;
278
279 struct i915_gem_ww_ctx ww;
280
281 /**
282 * Track the most recently used object for relocations, as we
283 * frequently have to perform multiple relocations within the same
284 * obj/page
285 */
286 struct reloc_cache {
287 struct drm_mm_node node; /** temporary GTT binding */
288 unsigned long vaddr; /** Current kmap address */
289 unsigned long page; /** Currently mapped page index */
290 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
291 bool use_64bit_reloc : 1;
292 bool has_llc : 1;
293 bool has_fence : 1;
294 bool needs_unfenced : 1;
295 } reloc_cache;
296
297 u64 invalid_flags; /** Set of execobj.flags that are invalid */
298
299 /** Length of batch within object */
300 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
301 u32 batch_start_offset; /** Location within object of batch */
302 u32 batch_flags; /** Flags composed for emit_bb_start() */
303 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
304
305 /**
306 * Indicate either the size of the hastable used to resolve
307 * relocation handles, or if negative that we are using a direct
308 * index into the execobj[].
309 */
310 int lut_size;
311 struct hlist_head *buckets; /** ht for relocation handles */
312
313 struct eb_fence *fences;
314 unsigned long num_fences;
315 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
316 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
317 #endif
318 };
319
320 static int eb_parse(struct i915_execbuffer *eb);
321 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
322 static void eb_unpin_engine(struct i915_execbuffer *eb);
323 static void eb_capture_release(struct i915_execbuffer *eb);
324
eb_use_cmdparser(const struct i915_execbuffer * eb)325 static bool eb_use_cmdparser(const struct i915_execbuffer *eb)
326 {
327 return intel_engine_requires_cmd_parser(eb->context->engine) ||
328 (intel_engine_using_cmd_parser(eb->context->engine) &&
329 eb->args->batch_len);
330 }
331
eb_create(struct i915_execbuffer * eb)332 static int eb_create(struct i915_execbuffer *eb)
333 {
334 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
335 unsigned int size = 1 + ilog2(eb->buffer_count);
336
337 /*
338 * Without a 1:1 association between relocation handles and
339 * the execobject[] index, we instead create a hashtable.
340 * We size it dynamically based on available memory, starting
341 * first with 1:1 associative hash and scaling back until
342 * the allocation succeeds.
343 *
344 * Later on we use a positive lut_size to indicate we are
345 * using this hashtable, and a negative value to indicate a
346 * direct lookup.
347 */
348 do {
349 gfp_t flags;
350
351 /* While we can still reduce the allocation size, don't
352 * raise a warning and allow the allocation to fail.
353 * On the last pass though, we want to try as hard
354 * as possible to perform the allocation and warn
355 * if it fails.
356 */
357 flags = GFP_KERNEL;
358 if (size > 1)
359 flags |= __GFP_NORETRY | __GFP_NOWARN;
360
361 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
362 flags);
363 if (eb->buckets)
364 break;
365 } while (--size);
366
367 if (unlikely(!size))
368 return -ENOMEM;
369
370 eb->lut_size = size;
371 } else {
372 eb->lut_size = -eb->buffer_count;
373 }
374
375 return 0;
376 }
377
378 static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 * entry,const struct i915_vma * vma,unsigned int flags)379 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
380 const struct i915_vma *vma,
381 unsigned int flags)
382 {
383 const u64 start = i915_vma_offset(vma);
384 const u64 size = i915_vma_size(vma);
385
386 if (size < entry->pad_to_size)
387 return true;
388
389 if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
390 return true;
391
392 if (flags & EXEC_OBJECT_PINNED &&
393 start != entry->offset)
394 return true;
395
396 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
397 start < BATCH_OFFSET_BIAS)
398 return true;
399
400 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
401 (start + size + 4095) >> 32)
402 return true;
403
404 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
405 !i915_vma_is_map_and_fenceable(vma))
406 return true;
407
408 return false;
409 }
410
eb_pin_flags(const struct drm_i915_gem_exec_object2 * entry,unsigned int exec_flags)411 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
412 unsigned int exec_flags)
413 {
414 u64 pin_flags = 0;
415
416 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
417 pin_flags |= PIN_GLOBAL;
418
419 /*
420 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
421 * limit address to the first 4GBs for unflagged objects.
422 */
423 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
424 pin_flags |= PIN_ZONE_4G;
425
426 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
427 pin_flags |= PIN_MAPPABLE;
428
429 if (exec_flags & EXEC_OBJECT_PINNED)
430 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
431 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
432 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
433
434 return pin_flags;
435 }
436
437 static int
eb_pin_vma(struct i915_execbuffer * eb,const struct drm_i915_gem_exec_object2 * entry,struct eb_vma * ev)438 eb_pin_vma(struct i915_execbuffer *eb,
439 const struct drm_i915_gem_exec_object2 *entry,
440 struct eb_vma *ev)
441 {
442 struct i915_vma *vma = ev->vma;
443 u64 pin_flags;
444 int err;
445
446 if (vma->node.size)
447 pin_flags = __i915_vma_offset(vma);
448 else
449 pin_flags = entry->offset & PIN_OFFSET_MASK;
450
451 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
452 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
453 pin_flags |= PIN_GLOBAL;
454
455 /* Attempt to reuse the current location if available */
456 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
457 if (err == -EDEADLK)
458 return err;
459
460 if (unlikely(err)) {
461 if (entry->flags & EXEC_OBJECT_PINNED)
462 return err;
463
464 /* Failing that pick any _free_ space if suitable */
465 err = i915_vma_pin_ww(vma, &eb->ww,
466 entry->pad_to_size,
467 entry->alignment,
468 eb_pin_flags(entry, ev->flags) |
469 PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
470 if (unlikely(err))
471 return err;
472 }
473
474 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
475 err = i915_vma_pin_fence(vma);
476 if (unlikely(err))
477 return err;
478
479 if (vma->fence)
480 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
481 }
482
483 ev->flags |= __EXEC_OBJECT_HAS_PIN;
484 if (eb_vma_misplaced(entry, vma, ev->flags))
485 return -EBADSLT;
486
487 return 0;
488 }
489
490 static void
eb_unreserve_vma(struct eb_vma * ev)491 eb_unreserve_vma(struct eb_vma *ev)
492 {
493 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
494 __i915_vma_unpin_fence(ev->vma);
495
496 ev->flags &= ~__EXEC_OBJECT_RESERVED;
497 }
498
499 static int
eb_validate_vma(struct i915_execbuffer * eb,struct drm_i915_gem_exec_object2 * entry,struct i915_vma * vma)500 eb_validate_vma(struct i915_execbuffer *eb,
501 struct drm_i915_gem_exec_object2 *entry,
502 struct i915_vma *vma)
503 {
504 /* Relocations are disallowed for all platforms after TGL-LP. This
505 * also covers all platforms with local memory.
506 */
507 if (entry->relocation_count &&
508 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
509 return -EINVAL;
510
511 if (unlikely(entry->flags & eb->invalid_flags))
512 return -EINVAL;
513
514 if (unlikely(entry->alignment &&
515 !is_power_of_2_u64(entry->alignment)))
516 return -EINVAL;
517
518 /*
519 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
520 * any non-page-aligned or non-canonical addresses.
521 */
522 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
523 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
524 return -EINVAL;
525
526 /* pad_to_size was once a reserved field, so sanitize it */
527 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
528 if (unlikely(offset_in_page(entry->pad_to_size)))
529 return -EINVAL;
530 } else {
531 entry->pad_to_size = 0;
532 }
533 /*
534 * From drm_mm perspective address space is continuous,
535 * so from this point we're always using non-canonical
536 * form internally.
537 */
538 entry->offset = gen8_noncanonical_addr(entry->offset);
539
540 if (!eb->reloc_cache.has_fence) {
541 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
542 } else {
543 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
544 eb->reloc_cache.needs_unfenced) &&
545 i915_gem_object_is_tiled(vma->obj))
546 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
547 }
548
549 return 0;
550 }
551
552 static bool
is_batch_buffer(struct i915_execbuffer * eb,unsigned int buffer_idx)553 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
554 {
555 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
556 buffer_idx < eb->num_batches :
557 buffer_idx >= eb->args->buffer_count - eb->num_batches;
558 }
559
560 static int
eb_add_vma(struct i915_execbuffer * eb,unsigned int * current_batch,unsigned int i,struct i915_vma * vma)561 eb_add_vma(struct i915_execbuffer *eb,
562 unsigned int *current_batch,
563 unsigned int i,
564 struct i915_vma *vma)
565 {
566 struct drm_i915_private *i915 = eb->i915;
567 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
568 struct eb_vma *ev = &eb->vma[i];
569
570 ev->vma = vma;
571 ev->exec = entry;
572 ev->flags = entry->flags;
573
574 if (eb->lut_size > 0) {
575 ev->handle = entry->handle;
576 hlist_add_head(&ev->node,
577 &eb->buckets[hash_32(entry->handle,
578 eb->lut_size)]);
579 }
580
581 if (entry->relocation_count)
582 list_add_tail(&ev->reloc_link, &eb->relocs);
583
584 /*
585 * SNA is doing fancy tricks with compressing batch buffers, which leads
586 * to negative relocation deltas. Usually that works out ok since the
587 * relocate address is still positive, except when the batch is placed
588 * very low in the GTT. Ensure this doesn't happen.
589 *
590 * Note that actual hangs have only been observed on gen7, but for
591 * paranoia do it everywhere.
592 */
593 if (is_batch_buffer(eb, i)) {
594 if (entry->relocation_count &&
595 !(ev->flags & EXEC_OBJECT_PINNED))
596 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
597 if (eb->reloc_cache.has_fence)
598 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
599
600 eb->batches[*current_batch] = ev;
601
602 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
603 drm_dbg(&i915->drm,
604 "Attempting to use self-modifying batch buffer\n");
605 return -EINVAL;
606 }
607
608 if (range_overflows_t(u64,
609 eb->batch_start_offset,
610 eb->args->batch_len,
611 ev->vma->size)) {
612 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
613 return -EINVAL;
614 }
615
616 if (eb->args->batch_len == 0)
617 eb->batch_len[*current_batch] = ev->vma->size -
618 eb->batch_start_offset;
619 else
620 eb->batch_len[*current_batch] = eb->args->batch_len;
621 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
622 drm_dbg(&i915->drm, "Invalid batch length\n");
623 return -EINVAL;
624 }
625
626 ++*current_batch;
627 }
628
629 return 0;
630 }
631
use_cpu_reloc(const struct reloc_cache * cache,const struct drm_i915_gem_object * obj)632 static int use_cpu_reloc(const struct reloc_cache *cache,
633 const struct drm_i915_gem_object *obj)
634 {
635 if (!i915_gem_object_has_struct_page(obj))
636 return false;
637
638 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
639 return true;
640
641 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
642 return false;
643
644 /*
645 * For objects created by userspace through GEM_CREATE with pat_index
646 * set by set_pat extension, i915_gem_object_has_cache_level() always
647 * return true, otherwise the call would fall back to checking whether
648 * the object is un-cached.
649 */
650 return (cache->has_llc ||
651 obj->cache_dirty ||
652 !i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
653 }
654
eb_reserve_vma(struct i915_execbuffer * eb,struct eb_vma * ev,u64 pin_flags)655 static int eb_reserve_vma(struct i915_execbuffer *eb,
656 struct eb_vma *ev,
657 u64 pin_flags)
658 {
659 struct drm_i915_gem_exec_object2 *entry = ev->exec;
660 struct i915_vma *vma = ev->vma;
661 int err;
662
663 if (drm_mm_node_allocated(&vma->node) &&
664 eb_vma_misplaced(entry, vma, ev->flags)) {
665 err = i915_vma_unbind(vma);
666 if (err)
667 return err;
668 }
669
670 err = i915_vma_pin_ww(vma, &eb->ww,
671 entry->pad_to_size, entry->alignment,
672 eb_pin_flags(entry, ev->flags) | pin_flags);
673 if (err)
674 return err;
675
676 if (entry->offset != i915_vma_offset(vma)) {
677 entry->offset = i915_vma_offset(vma) | UPDATE;
678 eb->args->flags |= __EXEC_HAS_RELOC;
679 }
680
681 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
682 err = i915_vma_pin_fence(vma);
683 if (unlikely(err))
684 return err;
685
686 if (vma->fence)
687 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
688 }
689
690 ev->flags |= __EXEC_OBJECT_HAS_PIN;
691 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
692
693 return 0;
694 }
695
eb_unbind(struct i915_execbuffer * eb,bool force)696 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
697 {
698 const unsigned int count = eb->buffer_count;
699 unsigned int i;
700 struct list_head last;
701 bool unpinned = false;
702
703 /* Resort *all* the objects into priority order */
704 INIT_LIST_HEAD(&eb->unbound);
705 INIT_LIST_HEAD(&last);
706
707 for (i = 0; i < count; i++) {
708 struct eb_vma *ev = &eb->vma[i];
709 unsigned int flags = ev->flags;
710
711 if (!force && flags & EXEC_OBJECT_PINNED &&
712 flags & __EXEC_OBJECT_HAS_PIN)
713 continue;
714
715 unpinned = true;
716 eb_unreserve_vma(ev);
717
718 if (flags & EXEC_OBJECT_PINNED)
719 /* Pinned must have their slot */
720 list_add(&ev->bind_link, &eb->unbound);
721 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
722 /* Map require the lowest 256MiB (aperture) */
723 list_add_tail(&ev->bind_link, &eb->unbound);
724 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
725 /* Prioritise 4GiB region for restricted bo */
726 list_add(&ev->bind_link, &last);
727 else
728 list_add_tail(&ev->bind_link, &last);
729 }
730
731 list_splice_tail(&last, &eb->unbound);
732 return unpinned;
733 }
734
eb_reserve(struct i915_execbuffer * eb)735 static int eb_reserve(struct i915_execbuffer *eb)
736 {
737 struct eb_vma *ev;
738 unsigned int pass;
739 int err = 0;
740
741 /*
742 * We have one more buffers that we couldn't bind, which could be due to
743 * various reasons. To resolve this we have 4 passes, with every next
744 * level turning the screws tighter:
745 *
746 * 0. Unbind all objects that do not match the GTT constraints for the
747 * execbuffer (fenceable, mappable, alignment etc). Bind all new
748 * objects. This avoids unnecessary unbinding of later objects in order
749 * to make room for the earlier objects *unless* we need to defragment.
750 *
751 * 1. Reorder the buffers, where objects with the most restrictive
752 * placement requirements go first (ignoring fixed location buffers for
753 * now). For example, objects needing the mappable aperture (the first
754 * 256M of GTT), should go first vs objects that can be placed just
755 * about anywhere. Repeat the previous pass.
756 *
757 * 2. Consider buffers that are pinned at a fixed location. Also try to
758 * evict the entire VM this time, leaving only objects that we were
759 * unable to lock. Try again to bind the buffers. (still using the new
760 * buffer order).
761 *
762 * 3. We likely have object lock contention for one or more stubborn
763 * objects in the VM, for which we need to evict to make forward
764 * progress (perhaps we are fighting the shrinker?). When evicting the
765 * VM this time around, anything that we can't lock we now track using
766 * the busy_bo, using the full lock (after dropping the vm->mutex to
767 * prevent deadlocks), instead of trylock. We then continue to evict the
768 * VM, this time with the stubborn object locked, which we can now
769 * hopefully unbind (if still bound in the VM). Repeat until the VM is
770 * evicted. Finally we should be able bind everything.
771 */
772 for (pass = 0; pass <= 3; pass++) {
773 int pin_flags = PIN_USER | PIN_VALIDATE;
774
775 if (pass == 0)
776 pin_flags |= PIN_NONBLOCK;
777
778 if (pass >= 1)
779 eb_unbind(eb, pass >= 2);
780
781 if (pass == 2) {
782 err = mutex_lock_interruptible(&eb->context->vm->mutex);
783 if (!err) {
784 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
785 mutex_unlock(&eb->context->vm->mutex);
786 }
787 if (err)
788 return err;
789 }
790
791 if (pass == 3) {
792 retry:
793 err = mutex_lock_interruptible(&eb->context->vm->mutex);
794 if (!err) {
795 struct drm_i915_gem_object *busy_bo = NULL;
796
797 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
798 mutex_unlock(&eb->context->vm->mutex);
799 if (err && busy_bo) {
800 err = i915_gem_object_lock(busy_bo, &eb->ww);
801 i915_gem_object_put(busy_bo);
802 if (!err)
803 goto retry;
804 }
805 }
806 if (err)
807 return err;
808 }
809
810 list_for_each_entry(ev, &eb->unbound, bind_link) {
811 err = eb_reserve_vma(eb, ev, pin_flags);
812 if (err)
813 break;
814 }
815
816 if (err != -ENOSPC)
817 break;
818 }
819
820 return err;
821 }
822
eb_select_context(struct i915_execbuffer * eb)823 static int eb_select_context(struct i915_execbuffer *eb)
824 {
825 struct i915_gem_context *ctx;
826
827 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
828 if (IS_ERR(ctx))
829 return PTR_ERR(ctx);
830
831 eb->gem_context = ctx;
832 if (i915_gem_context_has_full_ppgtt(ctx))
833 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
834
835 return 0;
836 }
837
__eb_add_lut(struct i915_execbuffer * eb,u32 handle,struct i915_vma * vma)838 static int __eb_add_lut(struct i915_execbuffer *eb,
839 u32 handle, struct i915_vma *vma)
840 {
841 struct i915_gem_context *ctx = eb->gem_context;
842 struct i915_lut_handle *lut;
843 int err;
844
845 lut = i915_lut_handle_alloc();
846 if (unlikely(!lut))
847 return -ENOMEM;
848
849 i915_vma_get(vma);
850 if (!atomic_fetch_inc(&vma->open_count))
851 i915_vma_reopen(vma);
852 lut->handle = handle;
853 lut->ctx = ctx;
854
855 /* Check that the context hasn't been closed in the meantime */
856 err = -EINTR;
857 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
858 if (likely(!i915_gem_context_is_closed(ctx)))
859 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
860 else
861 err = -ENOENT;
862 if (err == 0) { /* And nor has this handle */
863 struct drm_i915_gem_object *obj = vma->obj;
864
865 spin_lock(&obj->lut_lock);
866 if (idr_find(&eb->file->object_idr, handle) == obj) {
867 list_add(&lut->obj_link, &obj->lut_list);
868 } else {
869 radix_tree_delete(&ctx->handles_vma, handle);
870 err = -ENOENT;
871 }
872 spin_unlock(&obj->lut_lock);
873 }
874 mutex_unlock(&ctx->lut_mutex);
875 }
876 if (unlikely(err))
877 goto err;
878
879 return 0;
880
881 err:
882 i915_vma_close(vma);
883 i915_vma_put(vma);
884 i915_lut_handle_free(lut);
885 return err;
886 }
887
eb_lookup_vma(struct i915_execbuffer * eb,u32 handle)888 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
889 {
890 struct i915_address_space *vm = eb->context->vm;
891
892 do {
893 struct drm_i915_gem_object *obj;
894 struct i915_vma *vma;
895 int err;
896
897 rcu_read_lock();
898 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
899 if (likely(vma && vma->vm == vm))
900 vma = i915_vma_tryget(vma);
901 rcu_read_unlock();
902 if (likely(vma))
903 return vma;
904
905 obj = i915_gem_object_lookup(eb->file, handle);
906 if (unlikely(!obj))
907 return ERR_PTR(-ENOENT);
908
909 /*
910 * If the user has opted-in for protected-object tracking, make
911 * sure the object encryption can be used.
912 * We only need to do this when the object is first used with
913 * this context, because the context itself will be banned when
914 * the protected objects become invalid.
915 */
916 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
917 i915_gem_object_is_protected(obj)) {
918 err = intel_pxp_key_check(eb->i915->pxp, intel_bo_to_drm_bo(obj), true);
919 if (err) {
920 i915_gem_object_put(obj);
921 return ERR_PTR(err);
922 }
923 }
924
925 vma = i915_vma_instance(obj, vm, NULL);
926 if (IS_ERR(vma)) {
927 i915_gem_object_put(obj);
928 return vma;
929 }
930
931 err = __eb_add_lut(eb, handle, vma);
932 if (likely(!err))
933 return vma;
934
935 i915_gem_object_put(obj);
936 if (err != -EEXIST)
937 return ERR_PTR(err);
938 } while (1);
939 }
940
eb_lookup_vmas(struct i915_execbuffer * eb)941 static int eb_lookup_vmas(struct i915_execbuffer *eb)
942 {
943 unsigned int i, current_batch = 0;
944 int err = 0;
945
946 INIT_LIST_HEAD(&eb->relocs);
947
948 for (i = 0; i < eb->buffer_count; i++) {
949 struct i915_vma *vma;
950
951 vma = eb_lookup_vma(eb, eb->exec[i].handle);
952 if (IS_ERR(vma)) {
953 err = PTR_ERR(vma);
954 goto err;
955 }
956
957 err = eb_validate_vma(eb, &eb->exec[i], vma);
958 if (unlikely(err)) {
959 i915_vma_put(vma);
960 goto err;
961 }
962
963 err = eb_add_vma(eb, ¤t_batch, i, vma);
964 if (err)
965 return err;
966
967 if (i915_gem_object_is_userptr(vma->obj)) {
968 err = i915_gem_object_userptr_submit_init(vma->obj);
969 if (err) {
970 if (i + 1 < eb->buffer_count) {
971 /*
972 * Execbuffer code expects last vma entry to be NULL,
973 * since we already initialized this entry,
974 * set the next value to NULL or we mess up
975 * cleanup handling.
976 */
977 eb->vma[i + 1].vma = NULL;
978 }
979
980 return err;
981 }
982
983 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
984 eb->args->flags |= __EXEC_USERPTR_USED;
985 }
986 }
987
988 return 0;
989
990 err:
991 eb->vma[i].vma = NULL;
992 return err;
993 }
994
eb_lock_vmas(struct i915_execbuffer * eb)995 static int eb_lock_vmas(struct i915_execbuffer *eb)
996 {
997 unsigned int i;
998 int err;
999
1000 for (i = 0; i < eb->buffer_count; i++) {
1001 struct eb_vma *ev = &eb->vma[i];
1002 struct i915_vma *vma = ev->vma;
1003
1004 err = i915_gem_object_lock(vma->obj, &eb->ww);
1005 if (err)
1006 return err;
1007 }
1008
1009 return 0;
1010 }
1011
eb_validate_vmas(struct i915_execbuffer * eb)1012 static int eb_validate_vmas(struct i915_execbuffer *eb)
1013 {
1014 unsigned int i;
1015 int err;
1016
1017 INIT_LIST_HEAD(&eb->unbound);
1018
1019 err = eb_lock_vmas(eb);
1020 if (err)
1021 return err;
1022
1023 for (i = 0; i < eb->buffer_count; i++) {
1024 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1025 struct eb_vma *ev = &eb->vma[i];
1026 struct i915_vma *vma = ev->vma;
1027
1028 err = eb_pin_vma(eb, entry, ev);
1029 if (err == -EDEADLK)
1030 return err;
1031
1032 if (!err) {
1033 if (entry->offset != i915_vma_offset(vma)) {
1034 entry->offset = i915_vma_offset(vma) | UPDATE;
1035 eb->args->flags |= __EXEC_HAS_RELOC;
1036 }
1037 } else {
1038 eb_unreserve_vma(ev);
1039
1040 list_add_tail(&ev->bind_link, &eb->unbound);
1041 if (drm_mm_node_allocated(&vma->node)) {
1042 err = i915_vma_unbind(vma);
1043 if (err)
1044 return err;
1045 }
1046 }
1047
1048 /* Reserve enough slots to accommodate composite fences */
1049 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1050 if (err)
1051 return err;
1052
1053 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1054 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1055 }
1056
1057 if (!list_empty(&eb->unbound))
1058 return eb_reserve(eb);
1059
1060 return 0;
1061 }
1062
1063 static struct eb_vma *
eb_get_vma(const struct i915_execbuffer * eb,unsigned long handle)1064 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1065 {
1066 if (eb->lut_size < 0) {
1067 if (handle >= -eb->lut_size)
1068 return NULL;
1069 return &eb->vma[handle];
1070 } else {
1071 struct hlist_head *head;
1072 struct eb_vma *ev;
1073
1074 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1075 hlist_for_each_entry(ev, head, node) {
1076 if (ev->handle == handle)
1077 return ev;
1078 }
1079 return NULL;
1080 }
1081 }
1082
eb_release_vmas(struct i915_execbuffer * eb,bool final)1083 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1084 {
1085 const unsigned int count = eb->buffer_count;
1086 unsigned int i;
1087
1088 for (i = 0; i < count; i++) {
1089 struct eb_vma *ev = &eb->vma[i];
1090 struct i915_vma *vma = ev->vma;
1091
1092 if (!vma)
1093 break;
1094
1095 eb_unreserve_vma(ev);
1096
1097 if (final)
1098 i915_vma_put(vma);
1099 }
1100
1101 eb_capture_release(eb);
1102 eb_unpin_engine(eb);
1103 }
1104
eb_destroy(const struct i915_execbuffer * eb)1105 static void eb_destroy(const struct i915_execbuffer *eb)
1106 {
1107 if (eb->lut_size > 0)
1108 kfree(eb->buckets);
1109 }
1110
1111 static u64
relocation_target(const struct drm_i915_gem_relocation_entry * reloc,const struct i915_vma * target)1112 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1113 const struct i915_vma *target)
1114 {
1115 return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1116 }
1117
reloc_cache_init(struct reloc_cache * cache,struct drm_i915_private * i915)1118 static void reloc_cache_init(struct reloc_cache *cache,
1119 struct drm_i915_private *i915)
1120 {
1121 cache->page = -1;
1122 cache->vaddr = 0;
1123 /* Must be a variable in the struct to allow GCC to unroll. */
1124 cache->graphics_ver = GRAPHICS_VER(i915);
1125 cache->has_llc = HAS_LLC(i915);
1126 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1127 cache->has_fence = cache->graphics_ver < 4;
1128 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1129 cache->node.flags = 0;
1130 }
1131
unmask_page(unsigned long p)1132 static void *unmask_page(unsigned long p)
1133 {
1134 return (void *)(uintptr_t)(p & PAGE_MASK);
1135 }
1136
unmask_flags(unsigned long p)1137 static unsigned int unmask_flags(unsigned long p)
1138 {
1139 return p & ~PAGE_MASK;
1140 }
1141
1142 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1143
cache_to_ggtt(struct reloc_cache * cache)1144 static struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1145 {
1146 struct drm_i915_private *i915 =
1147 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1148 return to_gt(i915)->ggtt;
1149 }
1150
reloc_cache_unmap(struct reloc_cache * cache)1151 static void reloc_cache_unmap(struct reloc_cache *cache)
1152 {
1153 void *vaddr;
1154
1155 if (!cache->vaddr)
1156 return;
1157
1158 vaddr = unmask_page(cache->vaddr);
1159 if (cache->vaddr & KMAP)
1160 kunmap_local(vaddr);
1161 else
1162 io_mapping_unmap_atomic((void __iomem *)vaddr);
1163 }
1164
reloc_cache_remap(struct reloc_cache * cache,struct drm_i915_gem_object * obj)1165 static void reloc_cache_remap(struct reloc_cache *cache,
1166 struct drm_i915_gem_object *obj)
1167 {
1168 void *vaddr;
1169
1170 if (!cache->vaddr)
1171 return;
1172
1173 if (cache->vaddr & KMAP) {
1174 struct page *page = i915_gem_object_get_page(obj, cache->page);
1175
1176 vaddr = kmap_local_page(page);
1177 cache->vaddr = unmask_flags(cache->vaddr) |
1178 (unsigned long)vaddr;
1179 } else {
1180 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1181 unsigned long offset;
1182
1183 offset = cache->node.start;
1184 if (!drm_mm_node_allocated(&cache->node))
1185 offset += cache->page << PAGE_SHIFT;
1186
1187 cache->vaddr = (unsigned long)
1188 io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1189 }
1190 }
1191
reloc_cache_reset(struct reloc_cache * cache,struct i915_execbuffer * eb)1192 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1193 {
1194 void *vaddr;
1195
1196 if (!cache->vaddr)
1197 return;
1198
1199 vaddr = unmask_page(cache->vaddr);
1200 if (cache->vaddr & KMAP) {
1201 struct drm_i915_gem_object *obj =
1202 (struct drm_i915_gem_object *)cache->node.mm;
1203 if (cache->vaddr & CLFLUSH_AFTER)
1204 mb();
1205
1206 kunmap_local(vaddr);
1207 i915_gem_object_finish_access(obj);
1208 } else {
1209 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1210
1211 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1212 io_mapping_unmap_atomic((void __iomem *)vaddr);
1213
1214 if (drm_mm_node_allocated(&cache->node)) {
1215 ggtt->vm.clear_range(&ggtt->vm,
1216 cache->node.start,
1217 cache->node.size);
1218 mutex_lock(&ggtt->vm.mutex);
1219 drm_mm_remove_node(&cache->node);
1220 mutex_unlock(&ggtt->vm.mutex);
1221 } else {
1222 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1223 }
1224 }
1225
1226 cache->vaddr = 0;
1227 cache->page = -1;
1228 }
1229
reloc_kmap(struct drm_i915_gem_object * obj,struct reloc_cache * cache,unsigned long pageno)1230 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1231 struct reloc_cache *cache,
1232 unsigned long pageno)
1233 {
1234 void *vaddr;
1235 struct page *page;
1236
1237 if (cache->vaddr) {
1238 kunmap_local(unmask_page(cache->vaddr));
1239 } else {
1240 unsigned int flushes;
1241 int err;
1242
1243 err = i915_gem_object_prepare_write(obj, &flushes);
1244 if (err)
1245 return ERR_PTR(err);
1246
1247 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1248 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1249
1250 cache->vaddr = flushes | KMAP;
1251 cache->node.mm = (void *)obj;
1252 if (flushes)
1253 mb();
1254 }
1255
1256 page = i915_gem_object_get_page(obj, pageno);
1257 if (!obj->mm.dirty)
1258 set_page_dirty(page);
1259
1260 vaddr = kmap_local_page(page);
1261 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1262 cache->page = pageno;
1263
1264 return vaddr;
1265 }
1266
reloc_iomap(struct i915_vma * batch,struct i915_execbuffer * eb,unsigned long page)1267 static void *reloc_iomap(struct i915_vma *batch,
1268 struct i915_execbuffer *eb,
1269 unsigned long page)
1270 {
1271 struct drm_i915_gem_object *obj = batch->obj;
1272 struct reloc_cache *cache = &eb->reloc_cache;
1273 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1274 unsigned long offset;
1275 void *vaddr;
1276
1277 if (cache->vaddr) {
1278 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1279 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1280 } else {
1281 struct i915_vma *vma = ERR_PTR(-ENODEV);
1282 int err;
1283
1284 if (i915_gem_object_is_tiled(obj))
1285 return ERR_PTR(-EINVAL);
1286
1287 if (use_cpu_reloc(cache, obj))
1288 return NULL;
1289
1290 err = i915_gem_object_set_to_gtt_domain(obj, true);
1291 if (err)
1292 return ERR_PTR(err);
1293
1294 /*
1295 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1296 * VMA from the object list because we no longer pin.
1297 *
1298 * Only attempt to pin the batch buffer to ggtt if the current batch
1299 * is not inside ggtt, or the batch buffer is not misplaced.
1300 */
1301 if (!i915_is_ggtt(batch->vm) ||
1302 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1303 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1304 PIN_MAPPABLE |
1305 PIN_NONBLOCK /* NOWARN */ |
1306 PIN_NOEVICT);
1307 }
1308
1309 if (vma == ERR_PTR(-EDEADLK))
1310 return vma;
1311
1312 if (IS_ERR(vma)) {
1313 memset(&cache->node, 0, sizeof(cache->node));
1314 mutex_lock(&ggtt->vm.mutex);
1315 err = drm_mm_insert_node_in_range
1316 (&ggtt->vm.mm, &cache->node,
1317 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1318 0, ggtt->mappable_end,
1319 DRM_MM_INSERT_LOW);
1320 mutex_unlock(&ggtt->vm.mutex);
1321 if (err) /* no inactive aperture space, use cpu reloc */
1322 return NULL;
1323 } else {
1324 cache->node.start = i915_ggtt_offset(vma);
1325 cache->node.mm = (void *)vma;
1326 }
1327 }
1328
1329 offset = cache->node.start;
1330 if (drm_mm_node_allocated(&cache->node)) {
1331 ggtt->vm.insert_page(&ggtt->vm,
1332 i915_gem_object_get_dma_address(obj, page),
1333 offset,
1334 i915_gem_get_pat_index(ggtt->vm.i915,
1335 I915_CACHE_NONE),
1336 0);
1337 } else {
1338 offset += page << PAGE_SHIFT;
1339 }
1340
1341 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1342 offset);
1343 cache->page = page;
1344 cache->vaddr = (unsigned long)vaddr;
1345
1346 return vaddr;
1347 }
1348
reloc_vaddr(struct i915_vma * vma,struct i915_execbuffer * eb,unsigned long page)1349 static void *reloc_vaddr(struct i915_vma *vma,
1350 struct i915_execbuffer *eb,
1351 unsigned long page)
1352 {
1353 struct reloc_cache *cache = &eb->reloc_cache;
1354 void *vaddr;
1355
1356 if (cache->page == page) {
1357 vaddr = unmask_page(cache->vaddr);
1358 } else {
1359 vaddr = NULL;
1360 if ((cache->vaddr & KMAP) == 0)
1361 vaddr = reloc_iomap(vma, eb, page);
1362 if (!vaddr)
1363 vaddr = reloc_kmap(vma->obj, cache, page);
1364 }
1365
1366 return vaddr;
1367 }
1368
clflush_write32(u32 * addr,u32 value,unsigned int flushes)1369 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1370 {
1371 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1372 if (flushes & CLFLUSH_BEFORE)
1373 drm_clflush_virt_range(addr, sizeof(*addr));
1374
1375 *addr = value;
1376
1377 /*
1378 * Writes to the same cacheline are serialised by the CPU
1379 * (including clflush). On the write path, we only require
1380 * that it hits memory in an orderly fashion and place
1381 * mb barriers at the start and end of the relocation phase
1382 * to ensure ordering of clflush wrt to the system.
1383 */
1384 if (flushes & CLFLUSH_AFTER)
1385 drm_clflush_virt_range(addr, sizeof(*addr));
1386 } else
1387 *addr = value;
1388 }
1389
1390 static u64
relocate_entry(struct i915_vma * vma,const struct drm_i915_gem_relocation_entry * reloc,struct i915_execbuffer * eb,const struct i915_vma * target)1391 relocate_entry(struct i915_vma *vma,
1392 const struct drm_i915_gem_relocation_entry *reloc,
1393 struct i915_execbuffer *eb,
1394 const struct i915_vma *target)
1395 {
1396 u64 target_addr = relocation_target(reloc, target);
1397 u64 offset = reloc->offset;
1398 bool wide = eb->reloc_cache.use_64bit_reloc;
1399 void *vaddr;
1400
1401 repeat:
1402 vaddr = reloc_vaddr(vma, eb,
1403 offset >> PAGE_SHIFT);
1404 if (IS_ERR(vaddr))
1405 return PTR_ERR(vaddr);
1406
1407 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1408 clflush_write32(vaddr + offset_in_page(offset),
1409 lower_32_bits(target_addr),
1410 eb->reloc_cache.vaddr);
1411
1412 if (wide) {
1413 offset += sizeof(u32);
1414 target_addr >>= 32;
1415 wide = false;
1416 goto repeat;
1417 }
1418
1419 return target->node.start | UPDATE;
1420 }
1421
1422 static u64
eb_relocate_entry(struct i915_execbuffer * eb,struct eb_vma * ev,const struct drm_i915_gem_relocation_entry * reloc)1423 eb_relocate_entry(struct i915_execbuffer *eb,
1424 struct eb_vma *ev,
1425 const struct drm_i915_gem_relocation_entry *reloc)
1426 {
1427 struct drm_i915_private *i915 = eb->i915;
1428 struct eb_vma *target;
1429 int err;
1430
1431 /* we've already hold a reference to all valid objects */
1432 target = eb_get_vma(eb, reloc->target_handle);
1433 if (unlikely(!target))
1434 return -ENOENT;
1435
1436 /* Validate that the target is in a valid r/w GPU domain */
1437 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1438 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1439 "target %d offset %d "
1440 "read %08x write %08x\n",
1441 reloc->target_handle,
1442 (int) reloc->offset,
1443 reloc->read_domains,
1444 reloc->write_domain);
1445 return -EINVAL;
1446 }
1447 if (unlikely((reloc->write_domain | reloc->read_domains)
1448 & ~I915_GEM_GPU_DOMAINS)) {
1449 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1450 "target %d offset %d "
1451 "read %08x write %08x\n",
1452 reloc->target_handle,
1453 (int) reloc->offset,
1454 reloc->read_domains,
1455 reloc->write_domain);
1456 return -EINVAL;
1457 }
1458
1459 if (reloc->write_domain) {
1460 target->flags |= EXEC_OBJECT_WRITE;
1461
1462 /*
1463 * Sandybridge PPGTT errata: We need a global gtt mapping
1464 * for MI and pipe_control writes because the gpu doesn't
1465 * properly redirect them through the ppgtt for non_secure
1466 * batchbuffers.
1467 */
1468 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1469 GRAPHICS_VER(eb->i915) == 6 &&
1470 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1471 struct i915_vma *vma = target->vma;
1472
1473 reloc_cache_unmap(&eb->reloc_cache);
1474 mutex_lock(&vma->vm->mutex);
1475 err = i915_vma_bind(target->vma,
1476 target->vma->obj->pat_index,
1477 PIN_GLOBAL, NULL, NULL);
1478 mutex_unlock(&vma->vm->mutex);
1479 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1480 if (err)
1481 return err;
1482 }
1483 }
1484
1485 /*
1486 * If the relocation already has the right value in it, no
1487 * more work needs to be done.
1488 */
1489 if (!DBG_FORCE_RELOC &&
1490 gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1491 return 0;
1492
1493 /* Check that the relocation address is valid... */
1494 if (unlikely(reloc->offset >
1495 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1496 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1497 "target %d offset %d size %d.\n",
1498 reloc->target_handle,
1499 (int)reloc->offset,
1500 (int)ev->vma->size);
1501 return -EINVAL;
1502 }
1503 if (unlikely(reloc->offset & 3)) {
1504 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1505 "target %d offset %d.\n",
1506 reloc->target_handle,
1507 (int)reloc->offset);
1508 return -EINVAL;
1509 }
1510
1511 /*
1512 * If we write into the object, we need to force the synchronisation
1513 * barrier, either with an asynchronous clflush or if we executed the
1514 * patching using the GPU (though that should be serialised by the
1515 * timeline). To be completely sure, and since we are required to
1516 * do relocations we are already stalling, disable the user's opt
1517 * out of our synchronisation.
1518 */
1519 ev->flags &= ~EXEC_OBJECT_ASYNC;
1520
1521 /* and update the user's relocation entry */
1522 return relocate_entry(ev->vma, reloc, eb, target->vma);
1523 }
1524
eb_relocate_vma(struct i915_execbuffer * eb,struct eb_vma * ev)1525 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1526 {
1527 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1528 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1529 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1530 struct drm_i915_gem_relocation_entry __user *urelocs =
1531 u64_to_user_ptr(entry->relocs_ptr);
1532 unsigned long remain = entry->relocation_count;
1533
1534 if (unlikely(remain > N_RELOC(INT_MAX)))
1535 return -EINVAL;
1536
1537 /*
1538 * We must check that the entire relocation array is safe
1539 * to read. However, if the array is not writable the user loses
1540 * the updated relocation values.
1541 */
1542 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1543 return -EFAULT;
1544
1545 do {
1546 struct drm_i915_gem_relocation_entry *r = stack;
1547 unsigned int count =
1548 min_t(unsigned long, remain, ARRAY_SIZE(stack));
1549 unsigned int copied;
1550
1551 /*
1552 * This is the fast path and we cannot handle a pagefault
1553 * whilst holding the struct mutex lest the user pass in the
1554 * relocations contained within a mmaped bo. For in such a case
1555 * we, the page fault handler would call i915_gem_fault() and
1556 * we would try to acquire the struct mutex again. Obviously
1557 * this is bad and so lockdep complains vehemently.
1558 */
1559 pagefault_disable();
1560 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1561 pagefault_enable();
1562 if (unlikely(copied)) {
1563 remain = -EFAULT;
1564 goto out;
1565 }
1566
1567 remain -= count;
1568 do {
1569 u64 offset = eb_relocate_entry(eb, ev, r);
1570
1571 if (likely(offset == 0)) {
1572 } else if ((s64)offset < 0) {
1573 remain = (int)offset;
1574 goto out;
1575 } else {
1576 /*
1577 * Note that reporting an error now
1578 * leaves everything in an inconsistent
1579 * state as we have *already* changed
1580 * the relocation value inside the
1581 * object. As we have not changed the
1582 * reloc.presumed_offset or will not
1583 * change the execobject.offset, on the
1584 * call we may not rewrite the value
1585 * inside the object, leaving it
1586 * dangling and causing a GPU hang. Unless
1587 * userspace dynamically rebuilds the
1588 * relocations on each execbuf rather than
1589 * presume a static tree.
1590 *
1591 * We did previously check if the relocations
1592 * were writable (access_ok), an error now
1593 * would be a strange race with mprotect,
1594 * having already demonstrated that we
1595 * can read from this userspace address.
1596 */
1597 offset = gen8_canonical_addr(offset & ~UPDATE);
1598 __put_user(offset,
1599 &urelocs[r - stack].presumed_offset);
1600 }
1601 } while (r++, --count);
1602 urelocs += ARRAY_SIZE(stack);
1603 } while (remain);
1604 out:
1605 reloc_cache_reset(&eb->reloc_cache, eb);
1606 return remain;
1607 }
1608
1609 static int
eb_relocate_vma_slow(struct i915_execbuffer * eb,struct eb_vma * ev)1610 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1611 {
1612 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1613 struct drm_i915_gem_relocation_entry *relocs =
1614 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1615 unsigned int i;
1616 int err;
1617
1618 for (i = 0; i < entry->relocation_count; i++) {
1619 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1620
1621 if ((s64)offset < 0) {
1622 err = (int)offset;
1623 goto err;
1624 }
1625 }
1626 err = 0;
1627 err:
1628 reloc_cache_reset(&eb->reloc_cache, eb);
1629 return err;
1630 }
1631
check_relocations(const struct drm_i915_gem_exec_object2 * entry)1632 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1633 {
1634 const char __user *addr, *end;
1635 unsigned long size;
1636 char __maybe_unused c;
1637
1638 size = entry->relocation_count;
1639 if (size == 0)
1640 return 0;
1641
1642 if (size > N_RELOC(INT_MAX))
1643 return -EINVAL;
1644
1645 addr = u64_to_user_ptr(entry->relocs_ptr);
1646 size *= sizeof(struct drm_i915_gem_relocation_entry);
1647 if (!access_ok(addr, size))
1648 return -EFAULT;
1649
1650 end = addr + size;
1651 for (; addr < end; addr += PAGE_SIZE) {
1652 int err = __get_user(c, addr);
1653 if (err)
1654 return err;
1655 }
1656 return __get_user(c, end - 1);
1657 }
1658
eb_copy_relocations(const struct i915_execbuffer * eb)1659 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1660 {
1661 struct drm_i915_gem_relocation_entry *relocs;
1662 const unsigned int count = eb->buffer_count;
1663 unsigned int i;
1664 int err;
1665
1666 for (i = 0; i < count; i++) {
1667 const unsigned int nreloc = eb->exec[i].relocation_count;
1668 struct drm_i915_gem_relocation_entry __user *urelocs;
1669 unsigned long size;
1670 unsigned long copied;
1671
1672 if (nreloc == 0)
1673 continue;
1674
1675 err = check_relocations(&eb->exec[i]);
1676 if (err)
1677 goto err;
1678
1679 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1680 size = nreloc * sizeof(*relocs);
1681
1682 relocs = kvmalloc_array(1, size, GFP_KERNEL);
1683 if (!relocs) {
1684 err = -ENOMEM;
1685 goto err;
1686 }
1687
1688 /* copy_from_user is limited to < 4GiB */
1689 copied = 0;
1690 do {
1691 unsigned int len =
1692 min_t(u64, BIT_ULL(31), size - copied);
1693
1694 if (__copy_from_user((char *)relocs + copied,
1695 (char __user *)urelocs + copied,
1696 len))
1697 goto end;
1698
1699 copied += len;
1700 } while (copied < size);
1701
1702 /*
1703 * As we do not update the known relocation offsets after
1704 * relocating (due to the complexities in lock handling),
1705 * we need to mark them as invalid now so that we force the
1706 * relocation processing next time. Just in case the target
1707 * object is evicted and then rebound into its old
1708 * presumed_offset before the next execbuffer - if that
1709 * happened we would make the mistake of assuming that the
1710 * relocations were valid.
1711 */
1712 if (!user_access_begin(urelocs, size))
1713 goto end;
1714
1715 for (copied = 0; copied < nreloc; copied++)
1716 unsafe_put_user(-1,
1717 &urelocs[copied].presumed_offset,
1718 end_user);
1719 user_access_end();
1720
1721 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1722 }
1723
1724 return 0;
1725
1726 end_user:
1727 user_access_end();
1728 end:
1729 kvfree(relocs);
1730 err = -EFAULT;
1731 err:
1732 while (i--) {
1733 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1734 if (eb->exec[i].relocation_count)
1735 kvfree(relocs);
1736 }
1737 return err;
1738 }
1739
eb_prefault_relocations(const struct i915_execbuffer * eb)1740 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1741 {
1742 const unsigned int count = eb->buffer_count;
1743 unsigned int i;
1744
1745 for (i = 0; i < count; i++) {
1746 int err;
1747
1748 err = check_relocations(&eb->exec[i]);
1749 if (err)
1750 return err;
1751 }
1752
1753 return 0;
1754 }
1755
eb_reinit_userptr(struct i915_execbuffer * eb)1756 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1757 {
1758 const unsigned int count = eb->buffer_count;
1759 unsigned int i;
1760 int ret;
1761
1762 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1763 return 0;
1764
1765 for (i = 0; i < count; i++) {
1766 struct eb_vma *ev = &eb->vma[i];
1767
1768 if (!i915_gem_object_is_userptr(ev->vma->obj))
1769 continue;
1770
1771 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1772 if (ret)
1773 return ret;
1774
1775 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1776 }
1777
1778 return 0;
1779 }
1780
eb_relocate_parse_slow(struct i915_execbuffer * eb)1781 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1782 {
1783 bool have_copy = false;
1784 struct eb_vma *ev;
1785 int err = 0;
1786
1787 repeat:
1788 if (signal_pending(current)) {
1789 err = -ERESTARTSYS;
1790 goto out;
1791 }
1792
1793 /* We may process another execbuffer during the unlock... */
1794 eb_release_vmas(eb, false);
1795 i915_gem_ww_ctx_fini(&eb->ww);
1796
1797 /*
1798 * We take 3 passes through the slowpatch.
1799 *
1800 * 1 - we try to just prefault all the user relocation entries and
1801 * then attempt to reuse the atomic pagefault disabled fast path again.
1802 *
1803 * 2 - we copy the user entries to a local buffer here outside of the
1804 * local and allow ourselves to wait upon any rendering before
1805 * relocations
1806 *
1807 * 3 - we already have a local copy of the relocation entries, but
1808 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1809 */
1810 if (!err) {
1811 err = eb_prefault_relocations(eb);
1812 } else if (!have_copy) {
1813 err = eb_copy_relocations(eb);
1814 have_copy = err == 0;
1815 } else {
1816 cond_resched();
1817 err = 0;
1818 }
1819
1820 if (!err)
1821 err = eb_reinit_userptr(eb);
1822
1823 i915_gem_ww_ctx_init(&eb->ww, true);
1824 if (err)
1825 goto out;
1826
1827 /* reacquire the objects */
1828 repeat_validate:
1829 err = eb_pin_engine(eb, false);
1830 if (err)
1831 goto err;
1832
1833 err = eb_validate_vmas(eb);
1834 if (err)
1835 goto err;
1836
1837 GEM_BUG_ON(!eb->batches[0]);
1838
1839 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1840 if (!have_copy) {
1841 err = eb_relocate_vma(eb, ev);
1842 if (err)
1843 break;
1844 } else {
1845 err = eb_relocate_vma_slow(eb, ev);
1846 if (err)
1847 break;
1848 }
1849 }
1850
1851 if (err == -EDEADLK)
1852 goto err;
1853
1854 if (err && !have_copy)
1855 goto repeat;
1856
1857 if (err)
1858 goto err;
1859
1860 /* as last step, parse the command buffer */
1861 err = eb_parse(eb);
1862 if (err)
1863 goto err;
1864
1865 /*
1866 * Leave the user relocations as are, this is the painfully slow path,
1867 * and we want to avoid the complication of dropping the lock whilst
1868 * having buffers reserved in the aperture and so causing spurious
1869 * ENOSPC for random operations.
1870 */
1871
1872 err:
1873 if (err == -EDEADLK) {
1874 eb_release_vmas(eb, false);
1875 err = i915_gem_ww_ctx_backoff(&eb->ww);
1876 if (!err)
1877 goto repeat_validate;
1878 }
1879
1880 if (err == -EAGAIN)
1881 goto repeat;
1882
1883 out:
1884 if (have_copy) {
1885 const unsigned int count = eb->buffer_count;
1886 unsigned int i;
1887
1888 for (i = 0; i < count; i++) {
1889 const struct drm_i915_gem_exec_object2 *entry =
1890 &eb->exec[i];
1891 struct drm_i915_gem_relocation_entry *relocs;
1892
1893 if (!entry->relocation_count)
1894 continue;
1895
1896 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1897 kvfree(relocs);
1898 }
1899 }
1900
1901 return err;
1902 }
1903
eb_relocate_parse(struct i915_execbuffer * eb)1904 static int eb_relocate_parse(struct i915_execbuffer *eb)
1905 {
1906 int err;
1907 bool throttle = true;
1908
1909 retry:
1910 err = eb_pin_engine(eb, throttle);
1911 if (err) {
1912 if (err != -EDEADLK)
1913 return err;
1914
1915 goto err;
1916 }
1917
1918 /* only throttle once, even if we didn't need to throttle */
1919 throttle = false;
1920
1921 err = eb_validate_vmas(eb);
1922 if (err == -EAGAIN)
1923 goto slow;
1924 else if (err)
1925 goto err;
1926
1927 /* The objects are in their final locations, apply the relocations. */
1928 if (eb->args->flags & __EXEC_HAS_RELOC) {
1929 struct eb_vma *ev;
1930
1931 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1932 err = eb_relocate_vma(eb, ev);
1933 if (err)
1934 break;
1935 }
1936
1937 if (err == -EDEADLK)
1938 goto err;
1939 else if (err)
1940 goto slow;
1941 }
1942
1943 if (!err)
1944 err = eb_parse(eb);
1945
1946 err:
1947 if (err == -EDEADLK) {
1948 eb_release_vmas(eb, false);
1949 err = i915_gem_ww_ctx_backoff(&eb->ww);
1950 if (!err)
1951 goto retry;
1952 }
1953
1954 return err;
1955
1956 slow:
1957 err = eb_relocate_parse_slow(eb);
1958 if (err)
1959 /*
1960 * If the user expects the execobject.offset and
1961 * reloc.presumed_offset to be an exact match,
1962 * as for using NO_RELOC, then we cannot update
1963 * the execobject.offset until we have completed
1964 * relocation.
1965 */
1966 eb->args->flags &= ~__EXEC_HAS_RELOC;
1967
1968 return err;
1969 }
1970
1971 /*
1972 * Using two helper loops for the order of which requests / batches are created
1973 * and added the to backend. Requests are created in order from the parent to
1974 * the last child. Requests are added in the reverse order, from the last child
1975 * to parent. This is done for locking reasons as the timeline lock is acquired
1976 * during request creation and released when the request is added to the
1977 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1978 * the ordering.
1979 */
1980 #define for_each_batch_create_order(_eb, _i) \
1981 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1982 #define for_each_batch_add_order(_eb, _i) \
1983 BUILD_BUG_ON(!typecheck(int, _i)); \
1984 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1985
1986 static struct i915_request *
eb_find_first_request_added(struct i915_execbuffer * eb)1987 eb_find_first_request_added(struct i915_execbuffer *eb)
1988 {
1989 int i;
1990
1991 for_each_batch_add_order(eb, i)
1992 if (eb->requests[i])
1993 return eb->requests[i];
1994
1995 GEM_BUG_ON("Request not found");
1996
1997 return NULL;
1998 }
1999
2000 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
2001
2002 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
eb_capture_stage(struct i915_execbuffer * eb)2003 static int eb_capture_stage(struct i915_execbuffer *eb)
2004 {
2005 const unsigned int count = eb->buffer_count;
2006 unsigned int i = count, j;
2007
2008 while (i--) {
2009 struct eb_vma *ev = &eb->vma[i];
2010 struct i915_vma *vma = ev->vma;
2011 unsigned int flags = ev->flags;
2012
2013 if (!(flags & EXEC_OBJECT_CAPTURE))
2014 continue;
2015
2016 if (i915_gem_context_is_recoverable(eb->gem_context) &&
2017 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2018 return -EINVAL;
2019
2020 for_each_batch_create_order(eb, j) {
2021 struct i915_capture_list *capture;
2022
2023 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2024 if (!capture)
2025 continue;
2026
2027 capture->next = eb->capture_lists[j];
2028 capture->vma_res = i915_vma_resource_get(vma->resource);
2029 eb->capture_lists[j] = capture;
2030 }
2031 }
2032
2033 return 0;
2034 }
2035
2036 /* Commit once we're in the critical path */
eb_capture_commit(struct i915_execbuffer * eb)2037 static void eb_capture_commit(struct i915_execbuffer *eb)
2038 {
2039 unsigned int j;
2040
2041 for_each_batch_create_order(eb, j) {
2042 struct i915_request *rq = eb->requests[j];
2043
2044 if (!rq)
2045 break;
2046
2047 rq->capture_list = eb->capture_lists[j];
2048 eb->capture_lists[j] = NULL;
2049 }
2050 }
2051
2052 /*
2053 * Release anything that didn't get committed due to errors.
2054 * The capture_list will otherwise be freed at request retire.
2055 */
eb_capture_release(struct i915_execbuffer * eb)2056 static void eb_capture_release(struct i915_execbuffer *eb)
2057 {
2058 unsigned int j;
2059
2060 for_each_batch_create_order(eb, j) {
2061 if (eb->capture_lists[j]) {
2062 i915_request_free_capture_list(eb->capture_lists[j]);
2063 eb->capture_lists[j] = NULL;
2064 }
2065 }
2066 }
2067
eb_capture_list_clear(struct i915_execbuffer * eb)2068 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2069 {
2070 memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2071 }
2072
2073 #else
2074
eb_capture_stage(struct i915_execbuffer * eb)2075 static int eb_capture_stage(struct i915_execbuffer *eb)
2076 {
2077 return 0;
2078 }
2079
eb_capture_commit(struct i915_execbuffer * eb)2080 static void eb_capture_commit(struct i915_execbuffer *eb)
2081 {
2082 }
2083
eb_capture_release(struct i915_execbuffer * eb)2084 static void eb_capture_release(struct i915_execbuffer *eb)
2085 {
2086 }
2087
eb_capture_list_clear(struct i915_execbuffer * eb)2088 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2089 {
2090 }
2091
2092 #endif
2093
eb_move_to_gpu(struct i915_execbuffer * eb)2094 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2095 {
2096 const unsigned int count = eb->buffer_count;
2097 unsigned int i = count;
2098 int err = 0, j;
2099
2100 while (i--) {
2101 struct eb_vma *ev = &eb->vma[i];
2102 struct i915_vma *vma = ev->vma;
2103 unsigned int flags = ev->flags;
2104 struct drm_i915_gem_object *obj = vma->obj;
2105
2106 assert_vma_held(vma);
2107
2108 /*
2109 * If the GPU is not _reading_ through the CPU cache, we need
2110 * to make sure that any writes (both previous GPU writes from
2111 * before a change in snooping levels and normal CPU writes)
2112 * caught in that cache are flushed to main memory.
2113 *
2114 * We want to say
2115 * obj->cache_dirty &&
2116 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2117 * but gcc's optimiser doesn't handle that as well and emits
2118 * two jumps instead of one. Maybe one day...
2119 *
2120 * FIXME: There is also sync flushing in set_pages(), which
2121 * serves a different purpose(some of the time at least).
2122 *
2123 * We should consider:
2124 *
2125 * 1. Rip out the async flush code.
2126 *
2127 * 2. Or make the sync flushing use the async clflush path
2128 * using mandatory fences underneath. Currently the below
2129 * async flush happens after we bind the object.
2130 */
2131 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2132 if (i915_gem_clflush_object(obj, 0))
2133 flags &= ~EXEC_OBJECT_ASYNC;
2134 }
2135
2136 /* We only need to await on the first request */
2137 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2138 err = i915_request_await_object
2139 (eb_find_first_request_added(eb), obj,
2140 flags & EXEC_OBJECT_WRITE);
2141 }
2142
2143 for_each_batch_add_order(eb, j) {
2144 if (err)
2145 break;
2146 if (!eb->requests[j])
2147 continue;
2148
2149 err = _i915_vma_move_to_active(vma, eb->requests[j],
2150 j ? NULL :
2151 eb->composite_fence ?
2152 eb->composite_fence :
2153 &eb->requests[j]->fence,
2154 flags | __EXEC_OBJECT_NO_RESERVE |
2155 __EXEC_OBJECT_NO_REQUEST_AWAIT);
2156 }
2157 }
2158
2159 #ifdef CONFIG_MMU_NOTIFIER
2160 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2161 for (i = 0; i < count; i++) {
2162 struct eb_vma *ev = &eb->vma[i];
2163 struct drm_i915_gem_object *obj = ev->vma->obj;
2164
2165 if (!i915_gem_object_is_userptr(obj))
2166 continue;
2167
2168 err = i915_gem_object_userptr_submit_done(obj);
2169 if (err)
2170 break;
2171 }
2172 }
2173 #endif
2174
2175 if (unlikely(err))
2176 goto err_skip;
2177
2178 /* Unconditionally flush any chipset caches (for streaming writes). */
2179 intel_gt_chipset_flush(eb->gt);
2180 eb_capture_commit(eb);
2181
2182 return 0;
2183
2184 err_skip:
2185 for_each_batch_create_order(eb, j) {
2186 if (!eb->requests[j])
2187 break;
2188
2189 i915_request_set_error_once(eb->requests[j], err);
2190 }
2191 return err;
2192 }
2193
i915_gem_check_execbuffer(struct drm_i915_private * i915,struct drm_i915_gem_execbuffer2 * exec)2194 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2195 struct drm_i915_gem_execbuffer2 *exec)
2196 {
2197 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2198 return -EINVAL;
2199
2200 /* Kernel clipping was a DRI1 misfeature */
2201 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2202 I915_EXEC_USE_EXTENSIONS))) {
2203 if (exec->num_cliprects || exec->cliprects_ptr)
2204 return -EINVAL;
2205 }
2206
2207 if (exec->DR4 == 0xffffffff) {
2208 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2209 exec->DR4 = 0;
2210 }
2211 if (exec->DR1 || exec->DR4)
2212 return -EINVAL;
2213
2214 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2215 return -EINVAL;
2216
2217 return 0;
2218 }
2219
i915_reset_gen7_sol_offsets(struct i915_request * rq)2220 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2221 {
2222 u32 *cs;
2223 int i;
2224
2225 if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
2226 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
2227 return -EINVAL;
2228 }
2229
2230 cs = intel_ring_begin(rq, 4 * 2 + 2);
2231 if (IS_ERR(cs))
2232 return PTR_ERR(cs);
2233
2234 *cs++ = MI_LOAD_REGISTER_IMM(4);
2235 for (i = 0; i < 4; i++) {
2236 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2237 *cs++ = 0;
2238 }
2239 *cs++ = MI_NOOP;
2240 intel_ring_advance(rq, cs);
2241
2242 return 0;
2243 }
2244
2245 static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer * eb,struct drm_i915_gem_object * obj,struct i915_address_space * vm,unsigned int flags)2246 shadow_batch_pin(struct i915_execbuffer *eb,
2247 struct drm_i915_gem_object *obj,
2248 struct i915_address_space *vm,
2249 unsigned int flags)
2250 {
2251 struct i915_vma *vma;
2252 int err;
2253
2254 vma = i915_vma_instance(obj, vm, NULL);
2255 if (IS_ERR(vma))
2256 return vma;
2257
2258 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2259 if (err)
2260 return ERR_PTR(err);
2261
2262 return vma;
2263 }
2264
eb_dispatch_secure(struct i915_execbuffer * eb,struct i915_vma * vma)2265 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2266 {
2267 /*
2268 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2269 * batch" bit. Hence we need to pin secure batches into the global gtt.
2270 * hsw should have this fixed, but bdw mucks it up again. */
2271 if (eb->batch_flags & I915_DISPATCH_SECURE)
2272 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2273
2274 return NULL;
2275 }
2276
eb_parse(struct i915_execbuffer * eb)2277 static int eb_parse(struct i915_execbuffer *eb)
2278 {
2279 struct drm_i915_private *i915 = eb->i915;
2280 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2281 struct i915_vma *shadow, *trampoline, *batch;
2282 unsigned long len;
2283 int err;
2284
2285 if (!eb_use_cmdparser(eb)) {
2286 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2287 if (IS_ERR(batch))
2288 return PTR_ERR(batch);
2289
2290 goto secure_batch;
2291 }
2292
2293 if (intel_context_is_parallel(eb->context))
2294 return -EINVAL;
2295
2296 len = eb->batch_len[0];
2297 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2298 /*
2299 * ppGTT backed shadow buffers must be mapped RO, to prevent
2300 * post-scan tampering
2301 */
2302 if (!eb->context->vm->has_read_only) {
2303 drm_dbg(&i915->drm,
2304 "Cannot prevent post-scan tampering without RO capable vm\n");
2305 return -EINVAL;
2306 }
2307 } else {
2308 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2309 }
2310 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2311 return -EINVAL;
2312
2313 if (!pool) {
2314 pool = intel_gt_get_buffer_pool(eb->gt, len,
2315 I915_MAP_WB);
2316 if (IS_ERR(pool))
2317 return PTR_ERR(pool);
2318 eb->batch_pool = pool;
2319 }
2320
2321 err = i915_gem_object_lock(pool->obj, &eb->ww);
2322 if (err)
2323 return err;
2324
2325 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2326 if (IS_ERR(shadow))
2327 return PTR_ERR(shadow);
2328
2329 intel_gt_buffer_pool_mark_used(pool);
2330 i915_gem_object_set_readonly(shadow->obj);
2331 shadow->private = pool;
2332
2333 trampoline = NULL;
2334 if (CMDPARSER_USES_GGTT(eb->i915)) {
2335 trampoline = shadow;
2336
2337 shadow = shadow_batch_pin(eb, pool->obj,
2338 &eb->gt->ggtt->vm,
2339 PIN_GLOBAL);
2340 if (IS_ERR(shadow))
2341 return PTR_ERR(shadow);
2342
2343 shadow->private = pool;
2344
2345 eb->batch_flags |= I915_DISPATCH_SECURE;
2346 }
2347
2348 batch = eb_dispatch_secure(eb, shadow);
2349 if (IS_ERR(batch))
2350 return PTR_ERR(batch);
2351
2352 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2353 if (err)
2354 return err;
2355
2356 err = intel_engine_cmd_parser(eb->context->engine,
2357 eb->batches[0]->vma,
2358 eb->batch_start_offset,
2359 eb->batch_len[0],
2360 shadow, trampoline);
2361 if (err)
2362 return err;
2363
2364 eb->batches[0] = &eb->vma[eb->buffer_count++];
2365 eb->batches[0]->vma = i915_vma_get(shadow);
2366 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2367
2368 eb->trampoline = trampoline;
2369 eb->batch_start_offset = 0;
2370
2371 secure_batch:
2372 if (batch) {
2373 if (intel_context_is_parallel(eb->context))
2374 return -EINVAL;
2375
2376 eb->batches[0] = &eb->vma[eb->buffer_count++];
2377 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2378 eb->batches[0]->vma = i915_vma_get(batch);
2379 }
2380 return 0;
2381 }
2382
eb_request_submit(struct i915_execbuffer * eb,struct i915_request * rq,struct i915_vma * batch,u64 batch_len)2383 static int eb_request_submit(struct i915_execbuffer *eb,
2384 struct i915_request *rq,
2385 struct i915_vma *batch,
2386 u64 batch_len)
2387 {
2388 int err;
2389
2390 if (intel_context_nopreempt(rq->context))
2391 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2392
2393 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2394 err = i915_reset_gen7_sol_offsets(rq);
2395 if (err)
2396 return err;
2397 }
2398
2399 /*
2400 * After we completed waiting for other engines (using HW semaphores)
2401 * then we can signal that this request/batch is ready to run. This
2402 * allows us to determine if the batch is still waiting on the GPU
2403 * or actually running by checking the breadcrumb.
2404 */
2405 if (rq->context->engine->emit_init_breadcrumb) {
2406 err = rq->context->engine->emit_init_breadcrumb(rq);
2407 if (err)
2408 return err;
2409 }
2410
2411 err = rq->context->engine->emit_bb_start(rq,
2412 i915_vma_offset(batch) +
2413 eb->batch_start_offset,
2414 batch_len,
2415 eb->batch_flags);
2416 if (err)
2417 return err;
2418
2419 if (eb->trampoline) {
2420 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2421 GEM_BUG_ON(eb->batch_start_offset);
2422 err = rq->context->engine->emit_bb_start(rq,
2423 i915_vma_offset(eb->trampoline) +
2424 batch_len, 0, 0);
2425 if (err)
2426 return err;
2427 }
2428
2429 return 0;
2430 }
2431
eb_submit(struct i915_execbuffer * eb)2432 static int eb_submit(struct i915_execbuffer *eb)
2433 {
2434 unsigned int i;
2435 int err;
2436
2437 err = eb_move_to_gpu(eb);
2438
2439 for_each_batch_create_order(eb, i) {
2440 if (!eb->requests[i])
2441 break;
2442
2443 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2444 if (!err)
2445 err = eb_request_submit(eb, eb->requests[i],
2446 eb->batches[i]->vma,
2447 eb->batch_len[i]);
2448 }
2449
2450 return err;
2451 }
2452
2453 /*
2454 * Find one BSD ring to dispatch the corresponding BSD command.
2455 * The engine index is returned.
2456 */
2457 static unsigned int
gen8_dispatch_bsd_engine(struct drm_i915_private * i915,struct drm_file * file)2458 gen8_dispatch_bsd_engine(struct drm_i915_private *i915,
2459 struct drm_file *file)
2460 {
2461 struct drm_i915_file_private *file_priv = file->driver_priv;
2462
2463 /* Check whether the file_priv has already selected one ring. */
2464 if ((int)file_priv->bsd_engine < 0)
2465 file_priv->bsd_engine =
2466 get_random_u32_below(i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2467
2468 return file_priv->bsd_engine;
2469 }
2470
2471 static const enum intel_engine_id user_ring_map[] = {
2472 [I915_EXEC_DEFAULT] = RCS0,
2473 [I915_EXEC_RENDER] = RCS0,
2474 [I915_EXEC_BLT] = BCS0,
2475 [I915_EXEC_BSD] = VCS0,
2476 [I915_EXEC_VEBOX] = VECS0
2477 };
2478
eb_throttle(struct i915_execbuffer * eb,struct intel_context * ce)2479 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2480 {
2481 struct intel_ring *ring = ce->ring;
2482 struct intel_timeline *tl = ce->timeline;
2483 struct i915_request *rq;
2484
2485 /*
2486 * Completely unscientific finger-in-the-air estimates for suitable
2487 * maximum user request size (to avoid blocking) and then backoff.
2488 */
2489 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2490 return NULL;
2491
2492 /*
2493 * Find a request that after waiting upon, there will be at least half
2494 * the ring available. The hysteresis allows us to compete for the
2495 * shared ring and should mean that we sleep less often prior to
2496 * claiming our resources, but not so long that the ring completely
2497 * drains before we can submit our next request.
2498 */
2499 list_for_each_entry(rq, &tl->requests, link) {
2500 if (rq->ring != ring)
2501 continue;
2502
2503 if (__intel_ring_space(rq->postfix,
2504 ring->emit, ring->size) > ring->size / 2)
2505 break;
2506 }
2507 if (&rq->link == &tl->requests)
2508 return NULL; /* weird, we will check again later for real */
2509
2510 return i915_request_get(rq);
2511 }
2512
eb_pin_timeline(struct i915_execbuffer * eb,struct intel_context * ce,bool throttle)2513 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2514 bool throttle)
2515 {
2516 struct intel_timeline *tl;
2517 struct i915_request *rq = NULL;
2518
2519 /*
2520 * Take a local wakeref for preparing to dispatch the execbuf as
2521 * we expect to access the hardware fairly frequently in the
2522 * process, and require the engine to be kept awake between accesses.
2523 * Upon dispatch, we acquire another prolonged wakeref that we hold
2524 * until the timeline is idle, which in turn releases the wakeref
2525 * taken on the engine, and the parent device.
2526 */
2527 tl = intel_context_timeline_lock(ce);
2528 if (IS_ERR(tl))
2529 return PTR_ERR(tl);
2530
2531 intel_context_enter(ce);
2532 if (throttle)
2533 rq = eb_throttle(eb, ce);
2534 intel_context_timeline_unlock(tl);
2535
2536 if (rq) {
2537 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2538 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2539
2540 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2541 timeout) < 0) {
2542 i915_request_put(rq);
2543
2544 /*
2545 * Error path, cannot use intel_context_timeline_lock as
2546 * that is user interruptable and this clean up step
2547 * must be done.
2548 */
2549 mutex_lock(&ce->timeline->mutex);
2550 intel_context_exit(ce);
2551 mutex_unlock(&ce->timeline->mutex);
2552
2553 if (nonblock)
2554 return -EWOULDBLOCK;
2555 else
2556 return -EINTR;
2557 }
2558 i915_request_put(rq);
2559 }
2560
2561 return 0;
2562 }
2563
eb_pin_engine(struct i915_execbuffer * eb,bool throttle)2564 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2565 {
2566 struct intel_context *ce = eb->context, *child;
2567 int err;
2568 int i = 0, j = 0;
2569
2570 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2571
2572 if (unlikely(intel_context_is_banned(ce)))
2573 return -EIO;
2574
2575 /*
2576 * Pinning the contexts may generate requests in order to acquire
2577 * GGTT space, so do this first before we reserve a seqno for
2578 * ourselves.
2579 */
2580 err = intel_context_pin_ww(ce, &eb->ww);
2581 if (err)
2582 return err;
2583 for_each_child(ce, child) {
2584 err = intel_context_pin_ww(child, &eb->ww);
2585 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2586 }
2587
2588 for_each_child(ce, child) {
2589 err = eb_pin_timeline(eb, child, throttle);
2590 if (err)
2591 goto unwind;
2592 ++i;
2593 }
2594 err = eb_pin_timeline(eb, ce, throttle);
2595 if (err)
2596 goto unwind;
2597
2598 eb->args->flags |= __EXEC_ENGINE_PINNED;
2599 return 0;
2600
2601 unwind:
2602 for_each_child(ce, child) {
2603 if (j++ < i) {
2604 mutex_lock(&child->timeline->mutex);
2605 intel_context_exit(child);
2606 mutex_unlock(&child->timeline->mutex);
2607 }
2608 }
2609 for_each_child(ce, child)
2610 intel_context_unpin(child);
2611 intel_context_unpin(ce);
2612 return err;
2613 }
2614
eb_unpin_engine(struct i915_execbuffer * eb)2615 static void eb_unpin_engine(struct i915_execbuffer *eb)
2616 {
2617 struct intel_context *ce = eb->context, *child;
2618
2619 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2620 return;
2621
2622 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2623
2624 for_each_child(ce, child) {
2625 mutex_lock(&child->timeline->mutex);
2626 intel_context_exit(child);
2627 mutex_unlock(&child->timeline->mutex);
2628
2629 intel_context_unpin(child);
2630 }
2631
2632 mutex_lock(&ce->timeline->mutex);
2633 intel_context_exit(ce);
2634 mutex_unlock(&ce->timeline->mutex);
2635
2636 intel_context_unpin(ce);
2637 }
2638
2639 static unsigned int
eb_select_legacy_ring(struct i915_execbuffer * eb)2640 eb_select_legacy_ring(struct i915_execbuffer *eb)
2641 {
2642 struct drm_i915_private *i915 = eb->i915;
2643 struct drm_i915_gem_execbuffer2 *args = eb->args;
2644 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2645
2646 if (user_ring_id != I915_EXEC_BSD &&
2647 (args->flags & I915_EXEC_BSD_MASK)) {
2648 drm_dbg(&i915->drm,
2649 "execbuf with non bsd ring but with invalid "
2650 "bsd dispatch flags: %d\n", (int)(args->flags));
2651 return -1;
2652 }
2653
2654 if (user_ring_id == I915_EXEC_BSD &&
2655 i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2656 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2657
2658 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2659 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2660 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2661 bsd_idx <= I915_EXEC_BSD_RING2) {
2662 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2663 bsd_idx--;
2664 } else {
2665 drm_dbg(&i915->drm,
2666 "execbuf with unknown bsd ring: %u\n",
2667 bsd_idx);
2668 return -1;
2669 }
2670
2671 return _VCS(bsd_idx);
2672 }
2673
2674 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2675 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2676 user_ring_id);
2677 return -1;
2678 }
2679
2680 return user_ring_map[user_ring_id];
2681 }
2682
2683 static int
eb_select_engine(struct i915_execbuffer * eb)2684 eb_select_engine(struct i915_execbuffer *eb)
2685 {
2686 struct intel_context *ce, *child;
2687 struct intel_gt *gt;
2688 unsigned int idx;
2689 int err;
2690
2691 if (i915_gem_context_user_engines(eb->gem_context))
2692 idx = eb->args->flags & I915_EXEC_RING_MASK;
2693 else
2694 idx = eb_select_legacy_ring(eb);
2695
2696 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2697 if (IS_ERR(ce))
2698 return PTR_ERR(ce);
2699
2700 if (intel_context_is_parallel(ce)) {
2701 if (eb->buffer_count < ce->parallel.number_children + 1) {
2702 intel_context_put(ce);
2703 return -EINVAL;
2704 }
2705 if (eb->batch_start_offset || eb->args->batch_len) {
2706 intel_context_put(ce);
2707 return -EINVAL;
2708 }
2709 }
2710 eb->num_batches = ce->parallel.number_children + 1;
2711 gt = ce->engine->gt;
2712
2713 for_each_child(ce, child)
2714 intel_context_get(child);
2715 eb->wakeref = intel_gt_pm_get(ce->engine->gt);
2716 /*
2717 * Keep GT0 active on MTL so that i915_vma_parked() doesn't
2718 * free VMAs while execbuf ioctl is validating VMAs.
2719 */
2720 if (gt->info.id)
2721 eb->wakeref_gt0 = intel_gt_pm_get(to_gt(gt->i915));
2722
2723 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2724 err = intel_context_alloc_state(ce);
2725 if (err)
2726 goto err;
2727 }
2728 for_each_child(ce, child) {
2729 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2730 err = intel_context_alloc_state(child);
2731 if (err)
2732 goto err;
2733 }
2734 }
2735
2736 /*
2737 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2738 * EIO if the GPU is already wedged.
2739 */
2740 err = intel_gt_terminally_wedged(ce->engine->gt);
2741 if (err)
2742 goto err;
2743
2744 if (!i915_vm_tryget(ce->vm)) {
2745 err = -ENOENT;
2746 goto err;
2747 }
2748
2749 eb->context = ce;
2750 eb->gt = ce->engine->gt;
2751
2752 /*
2753 * Make sure engine pool stays alive even if we call intel_context_put
2754 * during ww handling. The pool is destroyed when last pm reference
2755 * is dropped, which breaks our -EDEADLK handling.
2756 */
2757 return err;
2758
2759 err:
2760 if (gt->info.id)
2761 intel_gt_pm_put(to_gt(gt->i915), eb->wakeref_gt0);
2762
2763 intel_gt_pm_put(ce->engine->gt, eb->wakeref);
2764 for_each_child(ce, child)
2765 intel_context_put(child);
2766 intel_context_put(ce);
2767 return err;
2768 }
2769
2770 static void
eb_put_engine(struct i915_execbuffer * eb)2771 eb_put_engine(struct i915_execbuffer *eb)
2772 {
2773 struct intel_context *child;
2774
2775 i915_vm_put(eb->context->vm);
2776 /*
2777 * This works in conjunction with eb_select_engine() to prevent
2778 * i915_vma_parked() from interfering while execbuf validates vmas.
2779 */
2780 if (eb->gt->info.id)
2781 intel_gt_pm_put(to_gt(eb->gt->i915), eb->wakeref_gt0);
2782 intel_gt_pm_put(eb->context->engine->gt, eb->wakeref);
2783 for_each_child(eb->context, child)
2784 intel_context_put(child);
2785 intel_context_put(eb->context);
2786 }
2787
2788 static void
__free_fence_array(struct eb_fence * fences,unsigned int n)2789 __free_fence_array(struct eb_fence *fences, unsigned int n)
2790 {
2791 while (n--) {
2792 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2793 dma_fence_put(fences[n].dma_fence);
2794 dma_fence_chain_free(fences[n].chain_fence);
2795 }
2796 kvfree(fences);
2797 }
2798
2799 static int
add_timeline_fence_array(struct i915_execbuffer * eb,const struct drm_i915_gem_execbuffer_ext_timeline_fences * timeline_fences)2800 add_timeline_fence_array(struct i915_execbuffer *eb,
2801 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2802 {
2803 struct drm_i915_gem_exec_fence __user *user_fences;
2804 u64 __user *user_values;
2805 struct eb_fence *f;
2806 u64 nfences;
2807 int err = 0;
2808
2809 nfences = timeline_fences->fence_count;
2810 if (!nfences)
2811 return 0;
2812
2813 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2814 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2815 if (nfences > min_t(unsigned long,
2816 ULONG_MAX / sizeof(*user_fences),
2817 SIZE_MAX / sizeof(*f)) - eb->num_fences)
2818 return -EINVAL;
2819
2820 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2821 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2822 return -EFAULT;
2823
2824 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2825 if (!access_ok(user_values, nfences * sizeof(*user_values)))
2826 return -EFAULT;
2827
2828 f = krealloc(eb->fences,
2829 (eb->num_fences + nfences) * sizeof(*f),
2830 __GFP_NOWARN | GFP_KERNEL);
2831 if (!f)
2832 return -ENOMEM;
2833
2834 eb->fences = f;
2835 f += eb->num_fences;
2836
2837 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2838 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2839
2840 while (nfences--) {
2841 struct drm_i915_gem_exec_fence user_fence;
2842 struct drm_syncobj *syncobj;
2843 struct dma_fence *fence = NULL;
2844 u64 point;
2845
2846 if (__copy_from_user(&user_fence,
2847 user_fences++,
2848 sizeof(user_fence)))
2849 return -EFAULT;
2850
2851 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2852 return -EINVAL;
2853
2854 if (__get_user(point, user_values++))
2855 return -EFAULT;
2856
2857 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2858 if (!syncobj) {
2859 drm_dbg(&eb->i915->drm,
2860 "Invalid syncobj handle provided\n");
2861 return -ENOENT;
2862 }
2863
2864 fence = drm_syncobj_fence_get(syncobj);
2865
2866 if (!fence && user_fence.flags &&
2867 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2868 drm_dbg(&eb->i915->drm,
2869 "Syncobj handle has no fence\n");
2870 drm_syncobj_put(syncobj);
2871 return -EINVAL;
2872 }
2873
2874 if (fence)
2875 err = dma_fence_chain_find_seqno(&fence, point);
2876
2877 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2878 drm_dbg(&eb->i915->drm,
2879 "Syncobj handle missing requested point %llu\n",
2880 point);
2881 dma_fence_put(fence);
2882 drm_syncobj_put(syncobj);
2883 return err;
2884 }
2885
2886 /*
2887 * A point might have been signaled already and
2888 * garbage collected from the timeline. In this case
2889 * just ignore the point and carry on.
2890 */
2891 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2892 drm_syncobj_put(syncobj);
2893 continue;
2894 }
2895
2896 /*
2897 * For timeline syncobjs we need to preallocate chains for
2898 * later signaling.
2899 */
2900 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2901 /*
2902 * Waiting and signaling the same point (when point !=
2903 * 0) would break the timeline.
2904 */
2905 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2906 drm_dbg(&eb->i915->drm,
2907 "Trying to wait & signal the same timeline point.\n");
2908 dma_fence_put(fence);
2909 drm_syncobj_put(syncobj);
2910 return -EINVAL;
2911 }
2912
2913 f->chain_fence = dma_fence_chain_alloc();
2914 if (!f->chain_fence) {
2915 drm_syncobj_put(syncobj);
2916 dma_fence_put(fence);
2917 return -ENOMEM;
2918 }
2919 } else {
2920 f->chain_fence = NULL;
2921 }
2922
2923 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2924 f->dma_fence = fence;
2925 f->value = point;
2926 f++;
2927 eb->num_fences++;
2928 }
2929
2930 return 0;
2931 }
2932
add_fence_array(struct i915_execbuffer * eb)2933 static int add_fence_array(struct i915_execbuffer *eb)
2934 {
2935 struct drm_i915_gem_execbuffer2 *args = eb->args;
2936 struct drm_i915_gem_exec_fence __user *user;
2937 unsigned long num_fences = args->num_cliprects;
2938 struct eb_fence *f;
2939
2940 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2941 return 0;
2942
2943 if (!num_fences)
2944 return 0;
2945
2946 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2947 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2948 if (num_fences > min_t(unsigned long,
2949 ULONG_MAX / sizeof(*user),
2950 SIZE_MAX / sizeof(*f) - eb->num_fences))
2951 return -EINVAL;
2952
2953 user = u64_to_user_ptr(args->cliprects_ptr);
2954 if (!access_ok(user, num_fences * sizeof(*user)))
2955 return -EFAULT;
2956
2957 f = krealloc(eb->fences,
2958 (eb->num_fences + num_fences) * sizeof(*f),
2959 __GFP_NOWARN | GFP_KERNEL);
2960 if (!f)
2961 return -ENOMEM;
2962
2963 eb->fences = f;
2964 f += eb->num_fences;
2965 while (num_fences--) {
2966 struct drm_i915_gem_exec_fence user_fence;
2967 struct drm_syncobj *syncobj;
2968 struct dma_fence *fence = NULL;
2969
2970 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2971 return -EFAULT;
2972
2973 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2974 return -EINVAL;
2975
2976 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2977 if (!syncobj) {
2978 drm_dbg(&eb->i915->drm,
2979 "Invalid syncobj handle provided\n");
2980 return -ENOENT;
2981 }
2982
2983 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2984 fence = drm_syncobj_fence_get(syncobj);
2985 if (!fence) {
2986 drm_dbg(&eb->i915->drm,
2987 "Syncobj handle has no fence\n");
2988 drm_syncobj_put(syncobj);
2989 return -EINVAL;
2990 }
2991 }
2992
2993 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2994 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2995
2996 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2997 f->dma_fence = fence;
2998 f->value = 0;
2999 f->chain_fence = NULL;
3000 f++;
3001 eb->num_fences++;
3002 }
3003
3004 return 0;
3005 }
3006
put_fence_array(struct eb_fence * fences,int num_fences)3007 static void put_fence_array(struct eb_fence *fences, int num_fences)
3008 {
3009 if (fences)
3010 __free_fence_array(fences, num_fences);
3011 }
3012
3013 static int
await_fence_array(struct i915_execbuffer * eb,struct i915_request * rq)3014 await_fence_array(struct i915_execbuffer *eb,
3015 struct i915_request *rq)
3016 {
3017 unsigned int n;
3018 int err;
3019
3020 for (n = 0; n < eb->num_fences; n++) {
3021 if (!eb->fences[n].dma_fence)
3022 continue;
3023
3024 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3025 if (err < 0)
3026 return err;
3027 }
3028
3029 return 0;
3030 }
3031
signal_fence_array(const struct i915_execbuffer * eb,struct dma_fence * const fence)3032 static void signal_fence_array(const struct i915_execbuffer *eb,
3033 struct dma_fence * const fence)
3034 {
3035 unsigned int n;
3036
3037 for (n = 0; n < eb->num_fences; n++) {
3038 struct drm_syncobj *syncobj;
3039 unsigned int flags;
3040
3041 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3042 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3043 continue;
3044
3045 if (eb->fences[n].chain_fence) {
3046 drm_syncobj_add_point(syncobj,
3047 eb->fences[n].chain_fence,
3048 fence,
3049 eb->fences[n].value);
3050 /*
3051 * The chain's ownership is transferred to the
3052 * timeline.
3053 */
3054 eb->fences[n].chain_fence = NULL;
3055 } else {
3056 drm_syncobj_replace_fence(syncobj, fence);
3057 }
3058 }
3059 }
3060
3061 static int
parse_timeline_fences(struct i915_user_extension __user * ext,void * data)3062 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3063 {
3064 struct i915_execbuffer *eb = data;
3065 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3066
3067 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3068 return -EFAULT;
3069
3070 return add_timeline_fence_array(eb, &timeline_fences);
3071 }
3072
retire_requests(struct intel_timeline * tl,struct i915_request * end)3073 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3074 {
3075 struct i915_request *rq, *rn;
3076
3077 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3078 if (rq == end || !i915_request_retire(rq))
3079 break;
3080 }
3081
eb_request_add(struct i915_execbuffer * eb,struct i915_request * rq,int err,bool last_parallel)3082 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3083 int err, bool last_parallel)
3084 {
3085 struct intel_timeline * const tl = i915_request_timeline(rq);
3086 struct i915_sched_attr attr = {};
3087 struct i915_request *prev;
3088
3089 lockdep_assert_held(&tl->mutex);
3090 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3091
3092 trace_i915_request_add(rq);
3093
3094 prev = __i915_request_commit(rq);
3095
3096 /* Check that the context wasn't destroyed before submission */
3097 if (likely(!intel_context_is_closed(eb->context))) {
3098 attr = eb->gem_context->sched;
3099 } else {
3100 /* Serialise with context_close via the add_to_timeline */
3101 i915_request_set_error_once(rq, -ENOENT);
3102 __i915_request_skip(rq);
3103 err = -ENOENT; /* override any transient errors */
3104 }
3105
3106 if (intel_context_is_parallel(eb->context)) {
3107 if (err) {
3108 __i915_request_skip(rq);
3109 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3110 &rq->fence.flags);
3111 }
3112 if (last_parallel)
3113 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3114 &rq->fence.flags);
3115 }
3116
3117 __i915_request_queue(rq, &attr);
3118
3119 /* Try to clean up the client's timeline after submitting the request */
3120 if (prev)
3121 retire_requests(tl, prev);
3122
3123 mutex_unlock(&tl->mutex);
3124
3125 return err;
3126 }
3127
eb_requests_add(struct i915_execbuffer * eb,int err)3128 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3129 {
3130 int i;
3131
3132 /*
3133 * We iterate in reverse order of creation to release timeline mutexes in
3134 * same order.
3135 */
3136 for_each_batch_add_order(eb, i) {
3137 struct i915_request *rq = eb->requests[i];
3138
3139 if (!rq)
3140 continue;
3141 err |= eb_request_add(eb, rq, err, i == 0);
3142 }
3143
3144 return err;
3145 }
3146
3147 static const i915_user_extension_fn execbuf_extensions[] = {
3148 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3149 };
3150
3151 static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 * args,struct i915_execbuffer * eb)3152 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3153 struct i915_execbuffer *eb)
3154 {
3155 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3156 return 0;
3157
3158 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3159 * have another flag also using it at the same time.
3160 */
3161 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3162 return -EINVAL;
3163
3164 if (args->num_cliprects != 0)
3165 return -EINVAL;
3166
3167 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3168 execbuf_extensions,
3169 ARRAY_SIZE(execbuf_extensions),
3170 eb);
3171 }
3172
eb_requests_get(struct i915_execbuffer * eb)3173 static void eb_requests_get(struct i915_execbuffer *eb)
3174 {
3175 unsigned int i;
3176
3177 for_each_batch_create_order(eb, i) {
3178 if (!eb->requests[i])
3179 break;
3180
3181 i915_request_get(eb->requests[i]);
3182 }
3183 }
3184
eb_requests_put(struct i915_execbuffer * eb)3185 static void eb_requests_put(struct i915_execbuffer *eb)
3186 {
3187 unsigned int i;
3188
3189 for_each_batch_create_order(eb, i) {
3190 if (!eb->requests[i])
3191 break;
3192
3193 i915_request_put(eb->requests[i]);
3194 }
3195 }
3196
3197 static struct sync_file *
eb_composite_fence_create(struct i915_execbuffer * eb,int out_fence_fd)3198 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3199 {
3200 struct sync_file *out_fence = NULL;
3201 struct dma_fence_array *fence_array;
3202 struct dma_fence **fences;
3203 unsigned int i;
3204
3205 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3206
3207 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3208 if (!fences)
3209 return ERR_PTR(-ENOMEM);
3210
3211 for_each_batch_create_order(eb, i) {
3212 fences[i] = &eb->requests[i]->fence;
3213 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3214 &eb->requests[i]->fence.flags);
3215 }
3216
3217 fence_array = dma_fence_array_create(eb->num_batches,
3218 fences,
3219 eb->context->parallel.fence_context,
3220 eb->context->parallel.seqno++,
3221 false);
3222 if (!fence_array) {
3223 kfree(fences);
3224 return ERR_PTR(-ENOMEM);
3225 }
3226
3227 /* Move ownership to the dma_fence_array created above */
3228 for_each_batch_create_order(eb, i)
3229 dma_fence_get(fences[i]);
3230
3231 if (out_fence_fd != -1) {
3232 out_fence = sync_file_create(&fence_array->base);
3233 /* sync_file now owns fence_arry, drop creation ref */
3234 dma_fence_put(&fence_array->base);
3235 if (!out_fence)
3236 return ERR_PTR(-ENOMEM);
3237 }
3238
3239 eb->composite_fence = &fence_array->base;
3240
3241 return out_fence;
3242 }
3243
3244 static struct sync_file *
eb_fences_add(struct i915_execbuffer * eb,struct i915_request * rq,struct dma_fence * in_fence,int out_fence_fd)3245 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3246 struct dma_fence *in_fence, int out_fence_fd)
3247 {
3248 struct sync_file *out_fence = NULL;
3249 int err;
3250
3251 if (unlikely(eb->gem_context->syncobj)) {
3252 struct dma_fence *fence;
3253
3254 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3255 err = i915_request_await_dma_fence(rq, fence);
3256 dma_fence_put(fence);
3257 if (err)
3258 return ERR_PTR(err);
3259 }
3260
3261 if (in_fence) {
3262 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3263 err = i915_request_await_execution(rq, in_fence);
3264 else
3265 err = i915_request_await_dma_fence(rq, in_fence);
3266 if (err < 0)
3267 return ERR_PTR(err);
3268 }
3269
3270 if (eb->fences) {
3271 err = await_fence_array(eb, rq);
3272 if (err)
3273 return ERR_PTR(err);
3274 }
3275
3276 if (intel_context_is_parallel(eb->context)) {
3277 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3278 if (IS_ERR(out_fence))
3279 return ERR_PTR(-ENOMEM);
3280 } else if (out_fence_fd != -1) {
3281 out_fence = sync_file_create(&rq->fence);
3282 if (!out_fence)
3283 return ERR_PTR(-ENOMEM);
3284 }
3285
3286 return out_fence;
3287 }
3288
3289 static struct intel_context *
eb_find_context(struct i915_execbuffer * eb,unsigned int context_number)3290 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3291 {
3292 struct intel_context *child;
3293
3294 if (likely(context_number == 0))
3295 return eb->context;
3296
3297 for_each_child(eb->context, child)
3298 if (!--context_number)
3299 return child;
3300
3301 GEM_BUG_ON("Context not found");
3302
3303 return NULL;
3304 }
3305
3306 static struct sync_file *
eb_requests_create(struct i915_execbuffer * eb,struct dma_fence * in_fence,int out_fence_fd)3307 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3308 int out_fence_fd)
3309 {
3310 struct sync_file *out_fence = NULL;
3311 unsigned int i;
3312
3313 for_each_batch_create_order(eb, i) {
3314 /* Allocate a request for this batch buffer nice and early. */
3315 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3316 if (IS_ERR(eb->requests[i])) {
3317 out_fence = ERR_CAST(eb->requests[i]);
3318 eb->requests[i] = NULL;
3319 return out_fence;
3320 }
3321
3322 /*
3323 * Only the first request added (committed to backend) has to
3324 * take the in fences into account as all subsequent requests
3325 * will have fences inserted inbetween them.
3326 */
3327 if (i + 1 == eb->num_batches) {
3328 out_fence = eb_fences_add(eb, eb->requests[i],
3329 in_fence, out_fence_fd);
3330 if (IS_ERR(out_fence))
3331 return out_fence;
3332 }
3333
3334 /*
3335 * Not really on stack, but we don't want to call
3336 * kfree on the batch_snapshot when we put it, so use the
3337 * _onstack interface.
3338 */
3339 if (eb->batches[i]->vma)
3340 eb->requests[i]->batch_res =
3341 i915_vma_resource_get(eb->batches[i]->vma->resource);
3342 if (eb->batch_pool) {
3343 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3344 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3345 eb->requests[i]);
3346 }
3347 }
3348
3349 return out_fence;
3350 }
3351
3352 static int
i915_gem_do_execbuffer(struct drm_device * dev,struct drm_file * file,struct drm_i915_gem_execbuffer2 * args,struct drm_i915_gem_exec_object2 * exec)3353 i915_gem_do_execbuffer(struct drm_device *dev,
3354 struct drm_file *file,
3355 struct drm_i915_gem_execbuffer2 *args,
3356 struct drm_i915_gem_exec_object2 *exec)
3357 {
3358 struct drm_i915_private *i915 = to_i915(dev);
3359 struct i915_execbuffer eb;
3360 struct dma_fence *in_fence = NULL;
3361 struct sync_file *out_fence = NULL;
3362 int out_fence_fd = -1;
3363 int err;
3364
3365 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3366 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3367 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3368
3369 eb.i915 = i915;
3370 eb.file = file;
3371 eb.args = args;
3372 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3373 args->flags |= __EXEC_HAS_RELOC;
3374
3375 eb.exec = exec;
3376 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3377 eb.vma[0].vma = NULL;
3378 eb.batch_pool = NULL;
3379
3380 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3381 reloc_cache_init(&eb.reloc_cache, eb.i915);
3382
3383 eb.buffer_count = args->buffer_count;
3384 eb.batch_start_offset = args->batch_start_offset;
3385 eb.trampoline = NULL;
3386
3387 eb.fences = NULL;
3388 eb.num_fences = 0;
3389
3390 eb_capture_list_clear(&eb);
3391
3392 memset(eb.requests, 0, sizeof(struct i915_request *) *
3393 ARRAY_SIZE(eb.requests));
3394 eb.composite_fence = NULL;
3395
3396 eb.batch_flags = 0;
3397 if (args->flags & I915_EXEC_SECURE) {
3398 if (GRAPHICS_VER(i915) >= 11)
3399 return -ENODEV;
3400
3401 /* Return -EPERM to trigger fallback code on old binaries. */
3402 if (!HAS_SECURE_BATCHES(i915))
3403 return -EPERM;
3404
3405 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3406 return -EPERM;
3407
3408 eb.batch_flags |= I915_DISPATCH_SECURE;
3409 }
3410 if (args->flags & I915_EXEC_IS_PINNED)
3411 eb.batch_flags |= I915_DISPATCH_PINNED;
3412
3413 err = parse_execbuf2_extensions(args, &eb);
3414 if (err)
3415 goto err_ext;
3416
3417 err = add_fence_array(&eb);
3418 if (err)
3419 goto err_ext;
3420
3421 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3422 if (args->flags & IN_FENCES) {
3423 if ((args->flags & IN_FENCES) == IN_FENCES)
3424 return -EINVAL;
3425
3426 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3427 if (!in_fence) {
3428 err = -EINVAL;
3429 goto err_ext;
3430 }
3431 }
3432 #undef IN_FENCES
3433
3434 if (args->flags & I915_EXEC_FENCE_OUT) {
3435 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3436 if (out_fence_fd < 0) {
3437 err = out_fence_fd;
3438 goto err_in_fence;
3439 }
3440 }
3441
3442 err = eb_create(&eb);
3443 if (err)
3444 goto err_out_fence;
3445
3446 GEM_BUG_ON(!eb.lut_size);
3447
3448 err = eb_select_context(&eb);
3449 if (unlikely(err))
3450 goto err_destroy;
3451
3452 err = eb_select_engine(&eb);
3453 if (unlikely(err))
3454 goto err_context;
3455
3456 err = eb_lookup_vmas(&eb);
3457 if (err) {
3458 eb_release_vmas(&eb, true);
3459 goto err_engine;
3460 }
3461
3462 i915_gem_ww_ctx_init(&eb.ww, true);
3463
3464 err = eb_relocate_parse(&eb);
3465 if (err) {
3466 /*
3467 * If the user expects the execobject.offset and
3468 * reloc.presumed_offset to be an exact match,
3469 * as for using NO_RELOC, then we cannot update
3470 * the execobject.offset until we have completed
3471 * relocation.
3472 */
3473 args->flags &= ~__EXEC_HAS_RELOC;
3474 goto err_vma;
3475 }
3476
3477 ww_acquire_done(&eb.ww.ctx);
3478 err = eb_capture_stage(&eb);
3479 if (err)
3480 goto err_vma;
3481
3482 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3483 if (IS_ERR(out_fence)) {
3484 err = PTR_ERR(out_fence);
3485 out_fence = NULL;
3486 if (eb.requests[0])
3487 goto err_request;
3488 else
3489 goto err_vma;
3490 }
3491
3492 err = eb_submit(&eb);
3493
3494 err_request:
3495 eb_requests_get(&eb);
3496 err = eb_requests_add(&eb, err);
3497
3498 if (eb.fences)
3499 signal_fence_array(&eb, eb.composite_fence ?
3500 eb.composite_fence :
3501 &eb.requests[0]->fence);
3502
3503 if (unlikely(eb.gem_context->syncobj)) {
3504 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3505 eb.composite_fence ?
3506 eb.composite_fence :
3507 &eb.requests[0]->fence);
3508 }
3509
3510 if (out_fence) {
3511 if (err == 0) {
3512 fd_install(out_fence_fd, out_fence->file);
3513 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3514 args->rsvd2 |= (u64)out_fence_fd << 32;
3515 out_fence_fd = -1;
3516 } else {
3517 fput(out_fence->file);
3518 }
3519 }
3520
3521 if (!out_fence && eb.composite_fence)
3522 dma_fence_put(eb.composite_fence);
3523
3524 eb_requests_put(&eb);
3525
3526 err_vma:
3527 eb_release_vmas(&eb, true);
3528 WARN_ON(err == -EDEADLK);
3529 i915_gem_ww_ctx_fini(&eb.ww);
3530
3531 if (eb.batch_pool)
3532 intel_gt_buffer_pool_put(eb.batch_pool);
3533 err_engine:
3534 eb_put_engine(&eb);
3535 err_context:
3536 i915_gem_context_put(eb.gem_context);
3537 err_destroy:
3538 eb_destroy(&eb);
3539 err_out_fence:
3540 if (out_fence_fd != -1)
3541 put_unused_fd(out_fence_fd);
3542 err_in_fence:
3543 dma_fence_put(in_fence);
3544 err_ext:
3545 put_fence_array(eb.fences, eb.num_fences);
3546 return err;
3547 }
3548
eb_element_size(void)3549 static size_t eb_element_size(void)
3550 {
3551 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3552 }
3553
check_buffer_count(size_t count)3554 static bool check_buffer_count(size_t count)
3555 {
3556 const size_t sz = eb_element_size();
3557
3558 /*
3559 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3560 * array size (see eb_create()). Otherwise, we can accept an array as
3561 * large as can be addressed (though use large arrays at your peril)!
3562 */
3563
3564 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3565 }
3566
3567 int
i915_gem_execbuffer2_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3568 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3569 struct drm_file *file)
3570 {
3571 struct drm_i915_private *i915 = to_i915(dev);
3572 struct drm_i915_gem_execbuffer2 *args = data;
3573 struct drm_i915_gem_exec_object2 *exec2_list;
3574 const size_t count = args->buffer_count;
3575 int err;
3576
3577 if (!check_buffer_count(count)) {
3578 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3579 return -EINVAL;
3580 }
3581
3582 err = i915_gem_check_execbuffer(i915, args);
3583 if (err)
3584 return err;
3585
3586 /* Allocate extra slots for use by the command parser */
3587 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3588 __GFP_NOWARN | GFP_KERNEL);
3589 if (exec2_list == NULL) {
3590 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3591 count);
3592 return -ENOMEM;
3593 }
3594 if (copy_from_user(exec2_list,
3595 u64_to_user_ptr(args->buffers_ptr),
3596 sizeof(*exec2_list) * count)) {
3597 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3598 kvfree(exec2_list);
3599 return -EFAULT;
3600 }
3601
3602 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3603
3604 /*
3605 * Now that we have begun execution of the batchbuffer, we ignore
3606 * any new error after this point. Also given that we have already
3607 * updated the associated relocations, we try to write out the current
3608 * object locations irrespective of any error.
3609 */
3610 if (args->flags & __EXEC_HAS_RELOC) {
3611 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3612 u64_to_user_ptr(args->buffers_ptr);
3613 unsigned int i;
3614
3615 /* Copy the new buffer offsets back to the user's exec list. */
3616 /*
3617 * Note: count * sizeof(*user_exec_list) does not overflow,
3618 * because we checked 'count' in check_buffer_count().
3619 *
3620 * And this range already got effectively checked earlier
3621 * when we did the "copy_from_user()" above.
3622 */
3623 if (!user_write_access_begin(user_exec_list,
3624 count * sizeof(*user_exec_list)))
3625 goto end;
3626
3627 for (i = 0; i < args->buffer_count; i++) {
3628 if (!(exec2_list[i].offset & UPDATE))
3629 continue;
3630
3631 exec2_list[i].offset =
3632 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3633 unsafe_put_user(exec2_list[i].offset,
3634 &user_exec_list[i].offset,
3635 end_user);
3636 }
3637 end_user:
3638 user_write_access_end();
3639 end:;
3640 }
3641
3642 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3643 kvfree(exec2_list);
3644 return err;
3645 }
3646