1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "InputFiles.h"
12 #include "OutputSections.h"
13 #include "Relocations.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "SyntheticSections.h"
17 #include "Target.h"
18 #include "lld/Common/CommonLinkerContext.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Compression.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/xxhash.h"
23 #include <algorithm>
24 #include <mutex>
25 #include <optional>
26 #include <vector>
27
28 using namespace llvm;
29 using namespace llvm::ELF;
30 using namespace llvm::object;
31 using namespace llvm::support;
32 using namespace llvm::support::endian;
33 using namespace llvm::sys;
34 using namespace lld;
35 using namespace lld::elf;
36
37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
38
39 // Returns a string to construct an error message.
toString(const InputSectionBase * sec)40 std::string lld::toString(const InputSectionBase *sec) {
41 return (toString(sec->file) + ":(" + sec->name + ")").str();
42 }
43
44 template <class ELFT>
getSectionContents(ObjFile<ELFT> & file,const typename ELFT::Shdr & hdr)45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
46 const typename ELFT::Shdr &hdr) {
47 if (hdr.sh_type == SHT_NOBITS)
48 return ArrayRef<uint8_t>(nullptr, hdr.sh_size);
49 return check(file.getObj().getSectionContents(hdr));
50 }
51
InputSectionBase(InputFile * file,uint64_t flags,uint32_t type,uint64_t entsize,uint32_t link,uint32_t info,uint32_t addralign,ArrayRef<uint8_t> data,StringRef name,Kind sectionKind)52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
53 uint32_t type, uint64_t entsize,
54 uint32_t link, uint32_t info,
55 uint32_t addralign, ArrayRef<uint8_t> data,
56 StringRef name, Kind sectionKind)
57 : SectionBase(sectionKind, name, flags, entsize, addralign, type, info,
58 link),
59 file(file), content_(data.data()), size(data.size()) {
60 // In order to reduce memory allocation, we assume that mergeable
61 // sections are smaller than 4 GiB, which is not an unreasonable
62 // assumption as of 2017.
63 if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX)
64 error(toString(this) + ": section too large");
65
66 // The ELF spec states that a value of 0 means the section has
67 // no alignment constraints.
68 uint32_t v = std::max<uint32_t>(addralign, 1);
69 if (!isPowerOf2_64(v))
70 fatal(toString(this) + ": sh_addralign is not a power of 2");
71 this->addralign = v;
72
73 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
74 // longer supported.
75 if (flags & SHF_COMPRESSED)
76 invokeELFT(parseCompressedHeader,);
77 }
78
79 // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the
80 // output section. However, for relocatable linking without
81 // --force-group-allocation, the SHF_GROUP flag and section groups are retained.
getFlags(uint64_t flags)82 static uint64_t getFlags(uint64_t flags) {
83 flags &= ~(uint64_t)SHF_INFO_LINK;
84 if (config->resolveGroups)
85 flags &= ~(uint64_t)SHF_GROUP;
86 return flags;
87 }
88
89 template <class ELFT>
InputSectionBase(ObjFile<ELFT> & file,const typename ELFT::Shdr & hdr,StringRef name,Kind sectionKind)90 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
91 const typename ELFT::Shdr &hdr,
92 StringRef name, Kind sectionKind)
93 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type,
94 hdr.sh_entsize, hdr.sh_link, hdr.sh_info,
95 hdr.sh_addralign, getSectionContents(file, hdr), name,
96 sectionKind) {
97 // We reject object files having insanely large alignments even though
98 // they are allowed by the spec. I think 4GB is a reasonable limitation.
99 // We might want to relax this in the future.
100 if (hdr.sh_addralign > UINT32_MAX)
101 fatal(toString(&file) + ": section sh_addralign is too large");
102 }
103
getSize() const104 size_t InputSectionBase::getSize() const {
105 if (auto *s = dyn_cast<SyntheticSection>(this))
106 return s->getSize();
107 return size - bytesDropped;
108 }
109
110 template <class ELFT>
decompressAux(const InputSectionBase & sec,uint8_t * out,size_t size)111 static void decompressAux(const InputSectionBase &sec, uint8_t *out,
112 size_t size) {
113 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_);
114 auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize)
115 .slice(sizeof(typename ELFT::Chdr));
116 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
117 ? compression::zlib::decompress(compressed, out, size)
118 : compression::zstd::decompress(compressed, out, size))
119 fatal(toString(&sec) +
120 ": decompress failed: " + llvm::toString(std::move(e)));
121 }
122
decompress() const123 void InputSectionBase::decompress() const {
124 uint8_t *uncompressedBuf;
125 {
126 static std::mutex mu;
127 std::lock_guard<std::mutex> lock(mu);
128 uncompressedBuf = bAlloc().Allocate<uint8_t>(size);
129 }
130
131 invokeELFT(decompressAux, *this, uncompressedBuf, size);
132 content_ = uncompressedBuf;
133 compressed = false;
134 }
135
136 template <class ELFT>
relsOrRelas(bool supportsCrel) const137 RelsOrRelas<ELFT> InputSectionBase::relsOrRelas(bool supportsCrel) const {
138 if (relSecIdx == 0)
139 return {};
140 RelsOrRelas<ELFT> ret;
141 auto *f = cast<ObjFile<ELFT>>(file);
142 typename ELFT::Shdr shdr = f->template getELFShdrs<ELFT>()[relSecIdx];
143 if (shdr.sh_type == SHT_CREL) {
144 // Return an iterator if supported by caller.
145 if (supportsCrel) {
146 ret.crels = Relocs<typename ELFT::Crel>(
147 (const uint8_t *)f->mb.getBufferStart() + shdr.sh_offset);
148 return ret;
149 }
150 InputSectionBase *const &relSec = f->getSections()[relSecIdx];
151 // Otherwise, allocate a buffer to hold the decoded RELA relocations. When
152 // called for the first time, relSec is null (without --emit-relocs) or an
153 // InputSection with false decodedCrel.
154 if (!relSec || !cast<InputSection>(relSec)->decodedCrel) {
155 auto *sec = makeThreadLocal<InputSection>(*f, shdr, name);
156 f->cacheDecodedCrel(relSecIdx, sec);
157 sec->type = SHT_RELA;
158 sec->decodedCrel = true;
159
160 RelocsCrel<ELFT::Is64Bits> entries(sec->content_);
161 sec->size = entries.size() * sizeof(typename ELFT::Rela);
162 auto *relas = makeThreadLocalN<typename ELFT::Rela>(entries.size());
163 sec->content_ = reinterpret_cast<uint8_t *>(relas);
164 for (auto [i, r] : llvm::enumerate(entries)) {
165 relas[i].r_offset = r.r_offset;
166 relas[i].setSymbolAndType(r.r_symidx, r.r_type, false);
167 relas[i].r_addend = r.r_addend;
168 }
169 }
170 ret.relas = {ArrayRef(
171 reinterpret_cast<const typename ELFT::Rela *>(relSec->content_),
172 relSec->size / sizeof(typename ELFT::Rela))};
173 return ret;
174 }
175
176 const void *content = f->mb.getBufferStart() + shdr.sh_offset;
177 size_t size = shdr.sh_size;
178 if (shdr.sh_type == SHT_REL) {
179 ret.rels = {ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(content),
180 size / sizeof(typename ELFT::Rel))};
181 } else {
182 assert(shdr.sh_type == SHT_RELA);
183 ret.relas = {
184 ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(content),
185 size / sizeof(typename ELFT::Rela))};
186 }
187 return ret;
188 }
189
getOffset(uint64_t offset) const190 uint64_t SectionBase::getOffset(uint64_t offset) const {
191 switch (kind()) {
192 case Output: {
193 auto *os = cast<OutputSection>(this);
194 // For output sections we treat offset -1 as the end of the section.
195 return offset == uint64_t(-1) ? os->size : offset;
196 }
197 case Regular:
198 case Synthetic:
199 case Spill:
200 return cast<InputSection>(this)->outSecOff + offset;
201 case EHFrame: {
202 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
203 // crtbeginT.o may reference the start of an empty .eh_frame to identify the
204 // start of the output .eh_frame. Just return offset.
205 //
206 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
207 // discarded due to GC/ICF. We should compute the output section offset.
208 const EhInputSection *es = cast<EhInputSection>(this);
209 if (!es->content().empty())
210 if (InputSection *isec = es->getParent())
211 return isec->outSecOff + es->getParentOffset(offset);
212 return offset;
213 }
214 case Merge:
215 const MergeInputSection *ms = cast<MergeInputSection>(this);
216 if (InputSection *isec = ms->getParent())
217 return isec->outSecOff + ms->getParentOffset(offset);
218 return ms->getParentOffset(offset);
219 }
220 llvm_unreachable("invalid section kind");
221 }
222
getVA(uint64_t offset) const223 uint64_t SectionBase::getVA(uint64_t offset) const {
224 const OutputSection *out = getOutputSection();
225 return (out ? out->addr : 0) + getOffset(offset);
226 }
227
getOutputSection()228 OutputSection *SectionBase::getOutputSection() {
229 InputSection *sec;
230 if (auto *isec = dyn_cast<InputSection>(this))
231 sec = isec;
232 else if (auto *ms = dyn_cast<MergeInputSection>(this))
233 sec = ms->getParent();
234 else if (auto *eh = dyn_cast<EhInputSection>(this))
235 sec = eh->getParent();
236 else
237 return cast<OutputSection>(this);
238 return sec ? sec->getParent() : nullptr;
239 }
240
241 // When a section is compressed, `rawData` consists with a header followed
242 // by zlib-compressed data. This function parses a header to initialize
243 // `uncompressedSize` member and remove the header from `rawData`.
parseCompressedHeader()244 template <typename ELFT> void InputSectionBase::parseCompressedHeader() {
245 flags &= ~(uint64_t)SHF_COMPRESSED;
246
247 // New-style header
248 if (content().size() < sizeof(typename ELFT::Chdr)) {
249 error(toString(this) + ": corrupted compressed section");
250 return;
251 }
252
253 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data());
254 if (hdr->ch_type == ELFCOMPRESS_ZLIB) {
255 if (!compression::zlib::isAvailable())
256 error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is "
257 "not built with zlib support");
258 } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) {
259 if (!compression::zstd::isAvailable())
260 error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is "
261 "not built with zstd support");
262 } else {
263 error(toString(this) + ": unsupported compression type (" +
264 Twine(hdr->ch_type) + ")");
265 return;
266 }
267
268 compressed = true;
269 compressedSize = size;
270 size = hdr->ch_size;
271 addralign = std::max<uint32_t>(hdr->ch_addralign, 1);
272 }
273
getLinkOrderDep() const274 InputSection *InputSectionBase::getLinkOrderDep() const {
275 assert(flags & SHF_LINK_ORDER);
276 if (!link)
277 return nullptr;
278 return cast<InputSection>(file->getSections()[link]);
279 }
280
281 // Find a symbol that encloses a given location.
getEnclosingSymbol(uint64_t offset,uint8_t type) const282 Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset,
283 uint8_t type) const {
284 if (file->isInternal())
285 return nullptr;
286 for (Symbol *b : file->getSymbols())
287 if (Defined *d = dyn_cast<Defined>(b))
288 if (d->section == this && d->value <= offset &&
289 offset < d->value + d->size && (type == 0 || type == d->type))
290 return d;
291 return nullptr;
292 }
293
294 // Returns an object file location string. Used to construct an error message.
getLocation(uint64_t offset) const295 std::string InputSectionBase::getLocation(uint64_t offset) const {
296 std::string secAndOffset =
297 (name + "+0x" + Twine::utohexstr(offset) + ")").str();
298
299 // We don't have file for synthetic sections.
300 if (file == nullptr)
301 return (config->outputFile + ":(" + secAndOffset).str();
302
303 std::string filename = toString(file);
304 if (Defined *d = getEnclosingFunction(offset))
305 return filename + ":(function " + toString(*d) + ": " + secAndOffset;
306
307 return filename + ":(" + secAndOffset;
308 }
309
310 // This function is intended to be used for constructing an error message.
311 // The returned message looks like this:
312 //
313 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
314 //
315 // Returns an empty string if there's no way to get line info.
getSrcMsg(const Symbol & sym,uint64_t offset) const316 std::string InputSectionBase::getSrcMsg(const Symbol &sym,
317 uint64_t offset) const {
318 return file->getSrcMsg(sym, *this, offset);
319 }
320
321 // Returns a filename string along with an optional section name. This
322 // function is intended to be used for constructing an error
323 // message. The returned message looks like this:
324 //
325 // path/to/foo.o:(function bar)
326 //
327 // or
328 //
329 // path/to/foo.o:(function bar) in archive path/to/bar.a
getObjMsg(uint64_t off) const330 std::string InputSectionBase::getObjMsg(uint64_t off) const {
331 std::string filename = std::string(file->getName());
332
333 std::string archive;
334 if (!file->archiveName.empty())
335 archive = (" in archive " + file->archiveName).str();
336
337 // Find a symbol that encloses a given location. getObjMsg may be called
338 // before ObjFile::initSectionsAndLocalSyms where local symbols are
339 // initialized.
340 if (Defined *d = getEnclosingSymbol(off))
341 return filename + ":(" + toString(*d) + ")" + archive;
342
343 // If there's no symbol, print out the offset in the section.
344 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
345 .str();
346 }
347
PotentialSpillSection(const InputSectionBase & source,InputSectionDescription & isd)348 PotentialSpillSection::PotentialSpillSection(const InputSectionBase &source,
349 InputSectionDescription &isd)
350 : InputSection(source.file, source.flags, source.type, source.addralign, {},
351 source.name, SectionBase::Spill),
352 isd(&isd) {}
353
354 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
355
InputSection(InputFile * f,uint64_t flags,uint32_t type,uint32_t addralign,ArrayRef<uint8_t> data,StringRef name,Kind k)356 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
357 uint32_t addralign, ArrayRef<uint8_t> data,
358 StringRef name, Kind k)
359 : InputSectionBase(f, flags, type,
360 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data,
361 name, k) {
362 assert(f || this == &InputSection::discarded);
363 }
364
365 template <class ELFT>
InputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)366 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
367 StringRef name)
368 : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
369
370 // Copy SHT_GROUP section contents. Used only for the -r option.
copyShtGroup(uint8_t * buf)371 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
372 // ELFT::Word is the 32-bit integral type in the target endianness.
373 using u32 = typename ELFT::Word;
374 ArrayRef<u32> from = getDataAs<u32>();
375 auto *to = reinterpret_cast<u32 *>(buf);
376
377 // The first entry is not a section number but a flag.
378 *to++ = from[0];
379
380 // Adjust section numbers because section numbers in an input object files are
381 // different in the output. We also need to handle combined or discarded
382 // members.
383 ArrayRef<InputSectionBase *> sections = file->getSections();
384 DenseSet<uint32_t> seen;
385 for (uint32_t idx : from.slice(1)) {
386 OutputSection *osec = sections[idx]->getOutputSection();
387 if (osec && seen.insert(osec->sectionIndex).second)
388 *to++ = osec->sectionIndex;
389 }
390 }
391
getRelocatedSection() const392 InputSectionBase *InputSection::getRelocatedSection() const {
393 if (file->isInternal() || !isStaticRelSecType(type))
394 return nullptr;
395 ArrayRef<InputSectionBase *> sections = file->getSections();
396 return sections[info];
397 }
398
399 template <class ELFT, class RelTy>
copyRelocations(uint8_t * buf)400 void InputSection::copyRelocations(uint8_t *buf) {
401 if (config->relax && !config->relocatable &&
402 (config->emachine == EM_RISCV || config->emachine == EM_LOONGARCH)) {
403 // On LoongArch and RISC-V, relaxation might change relocations: copy
404 // from internal ones that are updated by relaxation.
405 InputSectionBase *sec = getRelocatedSection();
406 copyRelocations<ELFT, RelTy>(buf, llvm::make_range(sec->relocations.begin(),
407 sec->relocations.end()));
408 } else {
409 // Convert the raw relocations in the input section into Relocation objects
410 // suitable to be used by copyRelocations below.
411 struct MapRel {
412 const ObjFile<ELFT> &file;
413 Relocation operator()(const RelTy &rel) const {
414 // RelExpr is not used so set to a dummy value.
415 return Relocation{R_NONE, rel.getType(config->isMips64EL), rel.r_offset,
416 getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)};
417 }
418 };
419
420 using RawRels = ArrayRef<RelTy>;
421 using MapRelIter =
422 llvm::mapped_iterator<typename RawRels::iterator, MapRel>;
423 auto mapRel = MapRel{*getFile<ELFT>()};
424 RawRels rawRels = getDataAs<RelTy>();
425 auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel),
426 MapRelIter(rawRels.end(), mapRel));
427 copyRelocations<ELFT, RelTy>(buf, rels);
428 }
429 }
430
431 // This is used for -r and --emit-relocs. We can't use memcpy to copy
432 // relocations because we need to update symbol table offset and section index
433 // for each relocation. So we copy relocations one by one.
434 template <class ELFT, class RelTy, class RelIt>
copyRelocations(uint8_t * buf,llvm::iterator_range<RelIt> rels)435 void InputSection::copyRelocations(uint8_t *buf,
436 llvm::iterator_range<RelIt> rels) {
437 const TargetInfo &target = *elf::target;
438 InputSectionBase *sec = getRelocatedSection();
439 (void)sec->contentMaybeDecompress(); // uncompress if needed
440
441 for (const Relocation &rel : rels) {
442 RelType type = rel.type;
443 const ObjFile<ELFT> *file = getFile<ELFT>();
444 Symbol &sym = *rel.sym;
445
446 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
447 buf += sizeof(RelTy);
448
449 if (RelTy::HasAddend)
450 p->r_addend = rel.addend;
451
452 // Output section VA is zero for -r, so r_offset is an offset within the
453 // section, but for --emit-relocs it is a virtual address.
454 p->r_offset = sec->getVA(rel.offset);
455 p->setSymbolAndType(in.symTab->getSymbolIndex(sym), type,
456 config->isMips64EL);
457
458 if (sym.type == STT_SECTION) {
459 // We combine multiple section symbols into only one per
460 // section. This means we have to update the addend. That is
461 // trivial for Elf_Rela, but for Elf_Rel we have to write to the
462 // section data. We do that by adding to the Relocation vector.
463
464 // .eh_frame is horribly special and can reference discarded sections. To
465 // avoid having to parse and recreate .eh_frame, we just replace any
466 // relocation in it pointing to discarded sections with R_*_NONE, which
467 // hopefully creates a frame that is ignored at runtime. Also, don't warn
468 // on .gcc_except_table and debug sections.
469 //
470 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
471 auto *d = dyn_cast<Defined>(&sym);
472 if (!d) {
473 if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
474 sec->name != ".gcc_except_table" && sec->name != ".got2" &&
475 sec->name != ".toc") {
476 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
477 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx];
478 warn("relocation refers to a discarded section: " +
479 CHECK(file->getObj().getSectionName(sec), file) +
480 "\n>>> referenced by " + getObjMsg(p->r_offset));
481 }
482 p->setSymbolAndType(0, 0, false);
483 continue;
484 }
485 SectionBase *section = d->section;
486 assert(section->isLive());
487
488 int64_t addend = rel.addend;
489 const uint8_t *bufLoc = sec->content().begin() + rel.offset;
490 if (!RelTy::HasAddend)
491 addend = target.getImplicitAddend(bufLoc, type);
492
493 if (config->emachine == EM_MIPS &&
494 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
495 // Some MIPS relocations depend on "gp" value. By default,
496 // this value has 0x7ff0 offset from a .got section. But
497 // relocatable files produced by a compiler or a linker
498 // might redefine this default value and we must use it
499 // for a calculation of the relocation result. When we
500 // generate EXE or DSO it's trivial. Generating a relocatable
501 // output is more difficult case because the linker does
502 // not calculate relocations in this mode and loses
503 // individual "gp" values used by each input object file.
504 // As a workaround we add the "gp" value to the relocation
505 // addend and save it back to the file.
506 addend += sec->getFile<ELFT>()->mipsGp0;
507 }
508
509 if (RelTy::HasAddend)
510 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
511 // For SHF_ALLOC sections relocated by REL, append a relocation to
512 // sec->relocations so that relocateAlloc transitively called by
513 // writeSections will update the implicit addend. Non-SHF_ALLOC sections
514 // utilize relocateNonAlloc to process raw relocations and do not need
515 // this sec->relocations change.
516 else if (config->relocatable && (sec->flags & SHF_ALLOC) &&
517 type != target.noneRel)
518 sec->addReloc({R_ABS, type, rel.offset, addend, &sym});
519 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
520 p->r_addend >= 0x8000 && sec->file->ppc32Got2) {
521 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
522 // indicates that r30 is relative to the input section .got2
523 // (r_addend>=0x8000), after linking, r30 should be relative to the output
524 // section .got2 . To compensate for the shift, adjust r_addend by
525 // ppc32Got->outSecOff.
526 p->r_addend += sec->file->ppc32Got2->outSecOff;
527 }
528 }
529 }
530
531 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
532 // references specially. The general rule is that the value of the symbol in
533 // this context is the address of the place P. A further special case is that
534 // branch relocations to an undefined weak reference resolve to the next
535 // instruction.
getARMUndefinedRelativeWeakVA(RelType type,uint32_t a,uint32_t p)536 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
537 uint32_t p) {
538 switch (type) {
539 // Unresolved branch relocations to weak references resolve to next
540 // instruction, this will be either 2 or 4 bytes on from P.
541 case R_ARM_THM_JUMP8:
542 case R_ARM_THM_JUMP11:
543 return p + 2 + a;
544 case R_ARM_CALL:
545 case R_ARM_JUMP24:
546 case R_ARM_PC24:
547 case R_ARM_PLT32:
548 case R_ARM_PREL31:
549 case R_ARM_THM_JUMP19:
550 case R_ARM_THM_JUMP24:
551 return p + 4 + a;
552 case R_ARM_THM_CALL:
553 // We don't want an interworking BLX to ARM
554 return p + 5 + a;
555 // Unresolved non branch pc-relative relocations
556 // R_ARM_TARGET2 which can be resolved relatively is not present as it never
557 // targets a weak-reference.
558 case R_ARM_MOVW_PREL_NC:
559 case R_ARM_MOVT_PREL:
560 case R_ARM_REL32:
561 case R_ARM_THM_ALU_PREL_11_0:
562 case R_ARM_THM_MOVW_PREL_NC:
563 case R_ARM_THM_MOVT_PREL:
564 case R_ARM_THM_PC12:
565 return p + a;
566 // p + a is unrepresentable as negative immediates can't be encoded.
567 case R_ARM_THM_PC8:
568 return p;
569 }
570 llvm_unreachable("ARM pc-relative relocation expected\n");
571 }
572
573 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
getAArch64UndefinedRelativeWeakVA(uint64_t type,uint64_t p)574 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
575 switch (type) {
576 // Unresolved branch relocations to weak references resolve to next
577 // instruction, this is 4 bytes on from P.
578 case R_AARCH64_CALL26:
579 case R_AARCH64_CONDBR19:
580 case R_AARCH64_JUMP26:
581 case R_AARCH64_TSTBR14:
582 return p + 4;
583 // Unresolved non branch pc-relative relocations
584 case R_AARCH64_PREL16:
585 case R_AARCH64_PREL32:
586 case R_AARCH64_PREL64:
587 case R_AARCH64_ADR_PREL_LO21:
588 case R_AARCH64_LD_PREL_LO19:
589 case R_AARCH64_PLT32:
590 return p;
591 }
592 llvm_unreachable("AArch64 pc-relative relocation expected\n");
593 }
594
getRISCVUndefinedRelativeWeakVA(uint64_t type,uint64_t p)595 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
596 switch (type) {
597 case R_RISCV_BRANCH:
598 case R_RISCV_JAL:
599 case R_RISCV_CALL:
600 case R_RISCV_CALL_PLT:
601 case R_RISCV_RVC_BRANCH:
602 case R_RISCV_RVC_JUMP:
603 case R_RISCV_PLT32:
604 return p;
605 default:
606 return 0;
607 }
608 }
609
610 // ARM SBREL relocations are of the form S + A - B where B is the static base
611 // The ARM ABI defines base to be "addressing origin of the output segment
612 // defining the symbol S". We defined the "addressing origin"/static base to be
613 // the base of the PT_LOAD segment containing the Sym.
614 // The procedure call standard only defines a Read Write Position Independent
615 // RWPI variant so in practice we should expect the static base to be the base
616 // of the RW segment.
getARMStaticBase(const Symbol & sym)617 static uint64_t getARMStaticBase(const Symbol &sym) {
618 OutputSection *os = sym.getOutputSection();
619 if (!os || !os->ptLoad || !os->ptLoad->firstSec)
620 fatal("SBREL relocation to " + sym.getName() + " without static base");
621 return os->ptLoad->firstSec->addr;
622 }
623
624 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
625 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
626 // is calculated using PCREL_HI20's symbol.
627 //
628 // This function returns the R_RISCV_PCREL_HI20 relocation from
629 // R_RISCV_PCREL_LO12's symbol and addend.
getRISCVPCRelHi20(const Symbol * sym,uint64_t addend)630 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
631 const Defined *d = cast<Defined>(sym);
632 if (!d->section) {
633 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
634 sym->getName());
635 return nullptr;
636 }
637 InputSection *isec = cast<InputSection>(d->section);
638
639 if (addend != 0)
640 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
641 isec->getObjMsg(d->value) + " is ignored");
642
643 // Relocations are sorted by offset, so we can use std::equal_range to do
644 // binary search.
645 Relocation r;
646 r.offset = d->value;
647 auto range =
648 std::equal_range(isec->relocs().begin(), isec->relocs().end(), r,
649 [](const Relocation &lhs, const Relocation &rhs) {
650 return lhs.offset < rhs.offset;
651 });
652
653 for (auto it = range.first; it != range.second; ++it)
654 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
655 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
656 return &*it;
657
658 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " +
659 isec->getObjMsg(d->value) +
660 " without an associated R_RISCV_PCREL_HI20 relocation");
661 return nullptr;
662 }
663
664 // A TLS symbol's virtual address is relative to the TLS segment. Add a
665 // target-specific adjustment to produce a thread-pointer-relative offset.
getTlsTpOffset(const Symbol & s)666 static int64_t getTlsTpOffset(const Symbol &s) {
667 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
668 if (&s == ElfSym::tlsModuleBase)
669 return 0;
670
671 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
672 // while most others use Variant 1. At run time TP will be aligned to p_align.
673
674 // Variant 1. TP will be followed by an optional gap (which is the size of 2
675 // pointers on ARM/AArch64, 0 on other targets), followed by alignment
676 // padding, then the static TLS blocks. The alignment padding is added so that
677 // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
678 //
679 // Variant 2. Static TLS blocks, followed by alignment padding are placed
680 // before TP. The alignment padding is added so that (TP - padding -
681 // p_memsz) is congruent to p_vaddr modulo p_align.
682 PhdrEntry *tls = Out::tlsPhdr;
683 switch (config->emachine) {
684 // Variant 1.
685 case EM_ARM:
686 case EM_AARCH64:
687 return s.getVA(0) + config->wordsize * 2 +
688 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
689 case EM_MIPS:
690 case EM_PPC:
691 case EM_PPC64:
692 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
693 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
694 // data and 0xf000 of the program's TLS segment.
695 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
696 case EM_LOONGARCH:
697 case EM_RISCV:
698 // See the comment in handleTlsRelocation. For TLSDESC=>IE,
699 // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While
700 // `tls` may be null, the return value is ignored.
701 if (s.type != STT_TLS)
702 return 0;
703 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
704
705 // Variant 2.
706 case EM_HEXAGON:
707 case EM_S390:
708 case EM_SPARCV9:
709 case EM_386:
710 case EM_X86_64:
711 return s.getVA(0) - tls->p_memsz -
712 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
713 default:
714 llvm_unreachable("unhandled Config->EMachine");
715 }
716 }
717
getRelocTargetVA(const InputFile * file,RelType type,int64_t a,uint64_t p,const Symbol & sym,RelExpr expr)718 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
719 int64_t a, uint64_t p,
720 const Symbol &sym, RelExpr expr) {
721 switch (expr) {
722 case R_ABS:
723 case R_DTPREL:
724 case R_RELAX_TLS_LD_TO_LE_ABS:
725 case R_RELAX_GOT_PC_NOPIC:
726 case R_AARCH64_AUTH:
727 case R_RISCV_ADD:
728 case R_RISCV_LEB128:
729 return sym.getVA(a);
730 case R_ADDEND:
731 return a;
732 case R_RELAX_HINT:
733 return 0;
734 case R_ARM_SBREL:
735 return sym.getVA(a) - getARMStaticBase(sym);
736 case R_GOT:
737 case R_RELAX_TLS_GD_TO_IE_ABS:
738 return sym.getGotVA() + a;
739 case R_LOONGARCH_GOT:
740 // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type
741 // for their page offsets. The arithmetics are different in the TLS case
742 // so we have to duplicate some logic here.
743 if (sym.hasFlag(NEEDS_TLSGD) && type != R_LARCH_TLS_IE_PC_LO12)
744 // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value.
745 return in.got->getGlobalDynAddr(sym) + a;
746 return getRelocTargetVA(file, type, a, p, sym, R_GOT);
747 case R_GOTONLY_PC:
748 return in.got->getVA() + a - p;
749 case R_GOTPLTONLY_PC:
750 return in.gotPlt->getVA() + a - p;
751 case R_GOTREL:
752 case R_PPC64_RELAX_TOC:
753 return sym.getVA(a) - in.got->getVA();
754 case R_GOTPLTREL:
755 return sym.getVA(a) - in.gotPlt->getVA();
756 case R_GOTPLT:
757 case R_RELAX_TLS_GD_TO_IE_GOTPLT:
758 return sym.getGotVA() + a - in.gotPlt->getVA();
759 case R_TLSLD_GOT_OFF:
760 case R_GOT_OFF:
761 case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
762 return sym.getGotOffset() + a;
763 case R_AARCH64_GOT_PAGE_PC:
764 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
765 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
766 case R_AARCH64_GOT_PAGE:
767 return sym.getGotVA() + a - getAArch64Page(in.got->getVA());
768 case R_GOT_PC:
769 case R_RELAX_TLS_GD_TO_IE:
770 return sym.getGotVA() + a - p;
771 case R_GOTPLT_GOTREL:
772 return sym.getGotPltVA() + a - in.got->getVA();
773 case R_GOTPLT_PC:
774 return sym.getGotPltVA() + a - p;
775 case R_LOONGARCH_GOT_PAGE_PC:
776 if (sym.hasFlag(NEEDS_TLSGD))
777 return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p, type);
778 return getLoongArchPageDelta(sym.getGotVA() + a, p, type);
779 case R_MIPS_GOTREL:
780 return sym.getVA(a) - in.mipsGot->getGp(file);
781 case R_MIPS_GOT_GP:
782 return in.mipsGot->getGp(file) + a;
783 case R_MIPS_GOT_GP_PC: {
784 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
785 // is _gp_disp symbol. In that case we should use the following
786 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
787 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
788 // microMIPS variants of these relocations use slightly different
789 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
790 // to correctly handle less-significant bit of the microMIPS symbol.
791 uint64_t v = in.mipsGot->getGp(file) + a - p;
792 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
793 v += 4;
794 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
795 v -= 1;
796 return v;
797 }
798 case R_MIPS_GOT_LOCAL_PAGE:
799 // If relocation against MIPS local symbol requires GOT entry, this entry
800 // should be initialized by 'page address'. This address is high 16-bits
801 // of sum the symbol's value and the addend.
802 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
803 in.mipsGot->getGp(file);
804 case R_MIPS_GOT_OFF:
805 case R_MIPS_GOT_OFF32:
806 // In case of MIPS if a GOT relocation has non-zero addend this addend
807 // should be applied to the GOT entry content not to the GOT entry offset.
808 // That is why we use separate expression type.
809 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
810 in.mipsGot->getGp(file);
811 case R_MIPS_TLSGD:
812 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
813 in.mipsGot->getGp(file);
814 case R_MIPS_TLSLD:
815 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
816 in.mipsGot->getGp(file);
817 case R_AARCH64_PAGE_PC: {
818 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
819 return getAArch64Page(val) - getAArch64Page(p);
820 }
821 case R_RISCV_PC_INDIRECT: {
822 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
823 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
824 *hiRel->sym, hiRel->expr);
825 return 0;
826 }
827 case R_LOONGARCH_PAGE_PC:
828 return getLoongArchPageDelta(sym.getVA(a), p, type);
829 case R_PC:
830 case R_ARM_PCA: {
831 uint64_t dest;
832 if (expr == R_ARM_PCA)
833 // Some PC relative ARM (Thumb) relocations align down the place.
834 p = p & 0xfffffffc;
835 if (sym.isUndefined()) {
836 // On ARM and AArch64 a branch to an undefined weak resolves to the next
837 // instruction, otherwise the place. On RISC-V, resolve an undefined weak
838 // to the same instruction to cause an infinite loop (making the user
839 // aware of the issue) while ensuring no overflow.
840 // Note: if the symbol is hidden, its binding has been converted to local,
841 // so we just check isUndefined() here.
842 if (config->emachine == EM_ARM)
843 dest = getARMUndefinedRelativeWeakVA(type, a, p);
844 else if (config->emachine == EM_AARCH64)
845 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a;
846 else if (config->emachine == EM_PPC)
847 dest = p;
848 else if (config->emachine == EM_RISCV)
849 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a;
850 else
851 dest = sym.getVA(a);
852 } else {
853 dest = sym.getVA(a);
854 }
855 return dest - p;
856 }
857 case R_PLT:
858 return sym.getPltVA() + a;
859 case R_PLT_PC:
860 case R_PPC64_CALL_PLT:
861 return sym.getPltVA() + a - p;
862 case R_LOONGARCH_PLT_PAGE_PC:
863 return getLoongArchPageDelta(sym.getPltVA() + a, p, type);
864 case R_PLT_GOTPLT:
865 return sym.getPltVA() + a - in.gotPlt->getVA();
866 case R_PLT_GOTREL:
867 return sym.getPltVA() + a - in.got->getVA();
868 case R_PPC32_PLTREL:
869 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
870 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
871 // target VA computation.
872 return sym.getPltVA() - p;
873 case R_PPC64_CALL: {
874 uint64_t symVA = sym.getVA(a);
875 // If we have an undefined weak symbol, we might get here with a symbol
876 // address of zero. That could overflow, but the code must be unreachable,
877 // so don't bother doing anything at all.
878 if (!symVA)
879 return 0;
880
881 // PPC64 V2 ABI describes two entry points to a function. The global entry
882 // point is used for calls where the caller and callee (may) have different
883 // TOC base pointers and r2 needs to be modified to hold the TOC base for
884 // the callee. For local calls the caller and callee share the same
885 // TOC base and so the TOC pointer initialization code should be skipped by
886 // branching to the local entry point.
887 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
888 }
889 case R_PPC64_TOCBASE:
890 return getPPC64TocBase() + a;
891 case R_RELAX_GOT_PC:
892 case R_PPC64_RELAX_GOT_PC:
893 return sym.getVA(a) - p;
894 case R_RELAX_TLS_GD_TO_LE:
895 case R_RELAX_TLS_IE_TO_LE:
896 case R_RELAX_TLS_LD_TO_LE:
897 case R_TPREL:
898 // It is not very clear what to return if the symbol is undefined. With
899 // --noinhibit-exec, even a non-weak undefined reference may reach here.
900 // Just return A, which matches R_ABS, and the behavior of some dynamic
901 // loaders.
902 if (sym.isUndefined())
903 return a;
904 return getTlsTpOffset(sym) + a;
905 case R_RELAX_TLS_GD_TO_LE_NEG:
906 case R_TPREL_NEG:
907 if (sym.isUndefined())
908 return a;
909 return -getTlsTpOffset(sym) + a;
910 case R_SIZE:
911 return sym.getSize() + a;
912 case R_TLSDESC:
913 return in.got->getTlsDescAddr(sym) + a;
914 case R_TLSDESC_PC:
915 return in.got->getTlsDescAddr(sym) + a - p;
916 case R_TLSDESC_GOTPLT:
917 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA();
918 case R_AARCH64_TLSDESC_PAGE:
919 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p);
920 case R_LOONGARCH_TLSDESC_PAGE_PC:
921 return getLoongArchPageDelta(in.got->getTlsDescAddr(sym) + a, p, type);
922 case R_TLSGD_GOT:
923 return in.got->getGlobalDynOffset(sym) + a;
924 case R_TLSGD_GOTPLT:
925 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA();
926 case R_TLSGD_PC:
927 return in.got->getGlobalDynAddr(sym) + a - p;
928 case R_LOONGARCH_TLSGD_PAGE_PC:
929 return getLoongArchPageDelta(in.got->getGlobalDynAddr(sym) + a, p, type);
930 case R_TLSLD_GOTPLT:
931 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
932 case R_TLSLD_GOT:
933 return in.got->getTlsIndexOff() + a;
934 case R_TLSLD_PC:
935 return in.got->getTlsIndexVA() + a - p;
936 default:
937 llvm_unreachable("invalid expression");
938 }
939 }
940
941 // This function applies relocations to sections without SHF_ALLOC bit.
942 // Such sections are never mapped to memory at runtime. Debug sections are
943 // an example. Relocations in non-alloc sections are much easier to
944 // handle than in allocated sections because it will never need complex
945 // treatment such as GOT or PLT (because at runtime no one refers them).
946 // So, we handle relocations for non-alloc sections directly in this
947 // function as a performance optimization.
948 template <class ELFT, class RelTy>
relocateNonAlloc(uint8_t * buf,Relocs<RelTy> rels)949 void InputSection::relocateNonAlloc(uint8_t *buf, Relocs<RelTy> rels) {
950 const unsigned bits = sizeof(typename ELFT::uint) * 8;
951 const TargetInfo &target = *elf::target;
952 const auto emachine = config->emachine;
953 const bool isDebug = isDebugSection(*this);
954 const bool isDebugLine = isDebug && name == ".debug_line";
955 std::optional<uint64_t> tombstone;
956 if (isDebug) {
957 if (name == ".debug_loc" || name == ".debug_ranges")
958 tombstone = 1;
959 else if (name == ".debug_names")
960 tombstone = UINT64_MAX; // tombstone value
961 else
962 tombstone = 0;
963 }
964 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
965 if (patAndValue.first.match(this->name)) {
966 tombstone = patAndValue.second;
967 break;
968 }
969
970 const InputFile *f = this->file;
971 for (auto it = rels.begin(), end = rels.end(); it != end; ++it) {
972 const RelTy &rel = *it;
973 const RelType type = rel.getType(config->isMips64EL);
974 const uint64_t offset = rel.r_offset;
975 uint8_t *bufLoc = buf + offset;
976 int64_t addend = getAddend<ELFT>(rel);
977 if (!RelTy::HasAddend)
978 addend += target.getImplicitAddend(bufLoc, type);
979
980 Symbol &sym = f->getRelocTargetSym(rel);
981 RelExpr expr = target.getRelExpr(type, sym, bufLoc);
982 if (expr == R_NONE)
983 continue;
984 auto *ds = dyn_cast<Defined>(&sym);
985
986 if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) {
987 if (++it != end &&
988 it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 &&
989 it->r_offset == offset) {
990 uint64_t val;
991 if (!ds && tombstone) {
992 val = *tombstone;
993 } else {
994 val = sym.getVA(addend) -
995 (f->getRelocTargetSym(*it).getVA(0) + getAddend<ELFT>(*it));
996 }
997 if (overwriteULEB128(bufLoc, val) >= 0x80)
998 errorOrWarn(getLocation(offset) + ": ULEB128 value " + Twine(val) +
999 " exceeds available space; references '" +
1000 lld::toString(sym) + "'");
1001 continue;
1002 }
1003 errorOrWarn(getLocation(offset) +
1004 ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128");
1005 return;
1006 }
1007
1008 if (tombstone && (expr == R_ABS || expr == R_DTPREL)) {
1009 // Resolve relocations in .debug_* referencing (discarded symbols or ICF
1010 // folded section symbols) to a tombstone value. Resolving to addend is
1011 // unsatisfactory because the result address range may collide with a
1012 // valid range of low address, or leave multiple CUs claiming ownership of
1013 // the same range of code, which may confuse consumers.
1014 //
1015 // To address the problems, we use -1 as a tombstone value for most
1016 // .debug_* sections. We have to ignore the addend because we don't want
1017 // to resolve an address attribute (which may have a non-zero addend) to
1018 // -1+addend (wrap around to a low address).
1019 //
1020 // R_DTPREL type relocations represent an offset into the dynamic thread
1021 // vector. The computed value is st_value plus a non-negative offset.
1022 // Negative values are invalid, so -1 can be used as the tombstone value.
1023 //
1024 // If the referenced symbol is relative to a discarded section (due to
1025 // --gc-sections, COMDAT, etc), it has been converted to a Undefined.
1026 // `ds->folded` catches the ICF folded case. However, resolving a
1027 // relocation in .debug_line to -1 would stop debugger users from setting
1028 // breakpoints on the folded-in function, so exclude .debug_line.
1029 //
1030 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
1031 // (base address selection entry), use 1 (which is used by GNU ld for
1032 // .debug_ranges).
1033 //
1034 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
1035 // value. Enable -1 in a future release.
1036 if (!ds || (ds->folded && !isDebugLine)) {
1037 // If -z dead-reloc-in-nonalloc= is specified, respect it.
1038 uint64_t value = SignExtend64<bits>(*tombstone);
1039 // For a 32-bit local TU reference in .debug_names, X86_64::relocate
1040 // requires that the unsigned value for R_X86_64_32 is truncated to
1041 // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit
1042 // absolute relocations and do not need this change.
1043 if (emachine == EM_X86_64 && type == R_X86_64_32)
1044 value = static_cast<uint32_t>(value);
1045 target.relocateNoSym(bufLoc, type, value);
1046 continue;
1047 }
1048 }
1049
1050 // For a relocatable link, content relocated by relocation types with an
1051 // explicit addend, such as RELA, remain unchanged and we can stop here.
1052 // While content relocated by relocation types with an implicit addend, such
1053 // as REL, needs the implicit addend updated.
1054 if (config->relocatable && (RelTy::HasAddend || sym.type != STT_SECTION))
1055 continue;
1056
1057 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
1058 // sections.
1059 if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL ||
1060 expr == R_RISCV_ADD) {
1061 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
1062 continue;
1063 }
1064
1065 if (expr == R_SIZE) {
1066 target.relocateNoSym(bufLoc, type,
1067 SignExtend64<bits>(sym.getSize() + addend));
1068 continue;
1069 }
1070
1071 std::string msg = getLocation(offset) + ": has non-ABS relocation " +
1072 toString(type) + " against symbol '" + toString(sym) +
1073 "'";
1074 if (expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC)) {
1075 errorOrWarn(msg);
1076 return;
1077 }
1078
1079 // If the control reaches here, we found a PC-relative relocation in a
1080 // non-ALLOC section. Since non-ALLOC section is not loaded into memory
1081 // at runtime, the notion of PC-relative doesn't make sense here. So,
1082 // this is a usage error. However, GNU linkers historically accept such
1083 // relocations without any errors and relocate them as if they were at
1084 // address 0. For bug-compatibility, we accept them with warnings. We
1085 // know Steel Bank Common Lisp as of 2018 have this bug.
1086 //
1087 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
1088 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in
1089 // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to
1090 // keep this bug-compatible code for a while.
1091 warn(msg);
1092 target.relocateNoSym(
1093 bufLoc, type,
1094 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff)));
1095 }
1096 }
1097
1098 template <class ELFT>
relocate(uint8_t * buf,uint8_t * bufEnd)1099 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
1100 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack))
1101 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
1102
1103 if (flags & SHF_ALLOC) {
1104 target->relocateAlloc(*this, buf);
1105 return;
1106 }
1107
1108 auto *sec = cast<InputSection>(this);
1109 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
1110 // locations with tombstone values.
1111 invokeOnRelocs(*sec, sec->relocateNonAlloc<ELFT>, buf);
1112 }
1113
1114 // For each function-defining prologue, find any calls to __morestack,
1115 // and replace them with calls to __morestack_non_split.
switchMorestackCallsToMorestackNonSplit(DenseSet<Defined * > & prologues,SmallVector<Relocation *,0> & morestackCalls)1116 static void switchMorestackCallsToMorestackNonSplit(
1117 DenseSet<Defined *> &prologues,
1118 SmallVector<Relocation *, 0> &morestackCalls) {
1119
1120 // If the target adjusted a function's prologue, all calls to
1121 // __morestack inside that function should be switched to
1122 // __morestack_non_split.
1123 Symbol *moreStackNonSplit = symtab.find("__morestack_non_split");
1124 if (!moreStackNonSplit) {
1125 error("mixing split-stack objects requires a definition of "
1126 "__morestack_non_split");
1127 return;
1128 }
1129
1130 // Sort both collections to compare addresses efficiently.
1131 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1132 return l->offset < r->offset;
1133 });
1134 std::vector<Defined *> functions(prologues.begin(), prologues.end());
1135 llvm::sort(functions, [](const Defined *l, const Defined *r) {
1136 return l->value < r->value;
1137 });
1138
1139 auto it = morestackCalls.begin();
1140 for (Defined *f : functions) {
1141 // Find the first call to __morestack within the function.
1142 while (it != morestackCalls.end() && (*it)->offset < f->value)
1143 ++it;
1144 // Adjust all calls inside the function.
1145 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1146 (*it)->sym = moreStackNonSplit;
1147 ++it;
1148 }
1149 }
1150 }
1151
enclosingPrologueAttempted(uint64_t offset,const DenseSet<Defined * > & prologues)1152 static bool enclosingPrologueAttempted(uint64_t offset,
1153 const DenseSet<Defined *> &prologues) {
1154 for (Defined *f : prologues)
1155 if (f->value <= offset && offset < f->value + f->size)
1156 return true;
1157 return false;
1158 }
1159
1160 // If a function compiled for split stack calls a function not
1161 // compiled for split stack, then the caller needs its prologue
1162 // adjusted to ensure that the called function will have enough stack
1163 // available. Find those functions, and adjust their prologues.
1164 template <class ELFT>
adjustSplitStackFunctionPrologues(uint8_t * buf,uint8_t * end)1165 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1166 uint8_t *end) {
1167 DenseSet<Defined *> prologues;
1168 SmallVector<Relocation *, 0> morestackCalls;
1169
1170 for (Relocation &rel : relocs()) {
1171 // Ignore calls into the split-stack api.
1172 if (rel.sym->getName().starts_with("__morestack")) {
1173 if (rel.sym->getName() == "__morestack")
1174 morestackCalls.push_back(&rel);
1175 continue;
1176 }
1177
1178 // A relocation to non-function isn't relevant. Sometimes
1179 // __morestack is not marked as a function, so this check comes
1180 // after the name check.
1181 if (rel.sym->type != STT_FUNC)
1182 continue;
1183
1184 // If the callee's-file was compiled with split stack, nothing to do. In
1185 // this context, a "Defined" symbol is one "defined by the binary currently
1186 // being produced". So an "undefined" symbol might be provided by a shared
1187 // library. It is not possible to tell how such symbols were compiled, so be
1188 // conservative.
1189 if (Defined *d = dyn_cast<Defined>(rel.sym))
1190 if (InputSection *isec = cast_or_null<InputSection>(d->section))
1191 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1192 continue;
1193
1194 if (enclosingPrologueAttempted(rel.offset, prologues))
1195 continue;
1196
1197 if (Defined *f = getEnclosingFunction(rel.offset)) {
1198 prologues.insert(f);
1199 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end,
1200 f->stOther))
1201 continue;
1202 if (!getFile<ELFT>()->someNoSplitStack)
1203 error(lld::toString(this) + ": " + f->getName() +
1204 " (with -fsplit-stack) calls " + rel.sym->getName() +
1205 " (without -fsplit-stack), but couldn't adjust its prologue");
1206 }
1207 }
1208
1209 if (target->needsMoreStackNonSplit)
1210 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1211 }
1212
writeTo(uint8_t * buf)1213 template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1214 if (LLVM_UNLIKELY(type == SHT_NOBITS))
1215 return;
1216 // If -r or --emit-relocs is given, then an InputSection
1217 // may be a relocation section.
1218 if (LLVM_UNLIKELY(type == SHT_RELA)) {
1219 copyRelocations<ELFT, typename ELFT::Rela>(buf);
1220 return;
1221 }
1222 if (LLVM_UNLIKELY(type == SHT_REL)) {
1223 copyRelocations<ELFT, typename ELFT::Rel>(buf);
1224 return;
1225 }
1226
1227 // If -r is given, we may have a SHT_GROUP section.
1228 if (LLVM_UNLIKELY(type == SHT_GROUP)) {
1229 copyShtGroup<ELFT>(buf);
1230 return;
1231 }
1232
1233 // If this is a compressed section, uncompress section contents directly
1234 // to the buffer.
1235 if (compressed) {
1236 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_);
1237 auto compressed = ArrayRef<uint8_t>(content_, compressedSize)
1238 .slice(sizeof(typename ELFT::Chdr));
1239 size_t size = this->size;
1240 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
1241 ? compression::zlib::decompress(compressed, buf, size)
1242 : compression::zstd::decompress(compressed, buf, size))
1243 fatal(toString(this) +
1244 ": decompress failed: " + llvm::toString(std::move(e)));
1245 uint8_t *bufEnd = buf + size;
1246 relocate<ELFT>(buf, bufEnd);
1247 return;
1248 }
1249
1250 // Copy section contents from source object file to output file
1251 // and then apply relocations.
1252 memcpy(buf, content().data(), content().size());
1253 relocate<ELFT>(buf, buf + content().size());
1254 }
1255
replace(InputSection * other)1256 void InputSection::replace(InputSection *other) {
1257 addralign = std::max(addralign, other->addralign);
1258
1259 // When a section is replaced with another section that was allocated to
1260 // another partition, the replacement section (and its associated sections)
1261 // need to be placed in the main partition so that both partitions will be
1262 // able to access it.
1263 if (partition != other->partition) {
1264 partition = 1;
1265 for (InputSection *isec : dependentSections)
1266 isec->partition = 1;
1267 }
1268
1269 other->repl = repl;
1270 other->markDead();
1271 }
1272
1273 template <class ELFT>
EhInputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)1274 EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1275 const typename ELFT::Shdr &header,
1276 StringRef name)
1277 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1278
getParent() const1279 SyntheticSection *EhInputSection::getParent() const {
1280 return cast_or_null<SyntheticSection>(parent);
1281 }
1282
1283 // .eh_frame is a sequence of CIE or FDE records.
1284 // This function splits an input section into records and returns them.
split()1285 template <class ELFT> void EhInputSection::split() {
1286 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(/*supportsCrel=*/false);
1287 // getReloc expects the relocations to be sorted by r_offset. See the comment
1288 // in scanRelocs.
1289 if (rels.areRelocsRel()) {
1290 SmallVector<typename ELFT::Rel, 0> storage;
1291 split<ELFT>(sortRels(rels.rels, storage));
1292 } else {
1293 SmallVector<typename ELFT::Rela, 0> storage;
1294 split<ELFT>(sortRels(rels.relas, storage));
1295 }
1296 }
1297
1298 template <class ELFT, class RelTy>
split(ArrayRef<RelTy> rels)1299 void EhInputSection::split(ArrayRef<RelTy> rels) {
1300 ArrayRef<uint8_t> d = content();
1301 const char *msg = nullptr;
1302 unsigned relI = 0;
1303 while (!d.empty()) {
1304 if (d.size() < 4) {
1305 msg = "CIE/FDE too small";
1306 break;
1307 }
1308 uint64_t size = endian::read32<ELFT::Endianness>(d.data());
1309 if (size == 0) // ZERO terminator
1310 break;
1311 uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4);
1312 size += 4;
1313 if (LLVM_UNLIKELY(size > d.size())) {
1314 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1315 // but we do not support that format yet.
1316 msg = size == UINT32_MAX + uint64_t(4)
1317 ? "CIE/FDE too large"
1318 : "CIE/FDE ends past the end of the section";
1319 break;
1320 }
1321
1322 // Find the first relocation that points to [off,off+size). Relocations
1323 // have been sorted by r_offset.
1324 const uint64_t off = d.data() - content().data();
1325 while (relI != rels.size() && rels[relI].r_offset < off)
1326 ++relI;
1327 unsigned firstRel = -1;
1328 if (relI != rels.size() && rels[relI].r_offset < off + size)
1329 firstRel = relI;
1330 (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel);
1331 d = d.slice(size);
1332 }
1333 if (msg)
1334 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " +
1335 getObjMsg(d.data() - content().data()));
1336 }
1337
1338 // Return the offset in an output section for a given input offset.
getParentOffset(uint64_t offset) const1339 uint64_t EhInputSection::getParentOffset(uint64_t offset) const {
1340 auto it = partition_point(
1341 fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; });
1342 if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) {
1343 it = partition_point(
1344 cies, [=](EhSectionPiece p) { return p.inputOff <= offset; });
1345 if (it == cies.begin()) // invalid piece
1346 return offset;
1347 }
1348 if (it[-1].outputOff == -1) // invalid piece
1349 return offset - it[-1].inputOff;
1350 return it[-1].outputOff + (offset - it[-1].inputOff);
1351 }
1352
findNull(StringRef s,size_t entSize)1353 static size_t findNull(StringRef s, size_t entSize) {
1354 for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1355 const char *b = s.begin() + i;
1356 if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1357 return i;
1358 }
1359 llvm_unreachable("");
1360 }
1361
1362 // Split SHF_STRINGS section. Such section is a sequence of
1363 // null-terminated strings.
splitStrings(StringRef s,size_t entSize)1364 void MergeInputSection::splitStrings(StringRef s, size_t entSize) {
1365 const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1366 const char *p = s.data(), *end = s.data() + s.size();
1367 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; }))
1368 fatal(toString(this) + ": string is not null terminated");
1369 if (entSize == 1) {
1370 // Optimize the common case.
1371 do {
1372 size_t size = strlen(p);
1373 pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live);
1374 p += size + 1;
1375 } while (p != end);
1376 } else {
1377 do {
1378 size_t size = findNull(StringRef(p, end - p), entSize);
1379 pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live);
1380 p += size + entSize;
1381 } while (p != end);
1382 }
1383 }
1384
1385 // Split non-SHF_STRINGS section. Such section is a sequence of
1386 // fixed size records.
splitNonStrings(ArrayRef<uint8_t> data,size_t entSize)1387 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1388 size_t entSize) {
1389 size_t size = data.size();
1390 assert((size % entSize) == 0);
1391 const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1392
1393 pieces.resize_for_overwrite(size / entSize);
1394 for (size_t i = 0, j = 0; i != size; i += entSize, j++)
1395 pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live};
1396 }
1397
1398 template <class ELFT>
MergeInputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)1399 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1400 const typename ELFT::Shdr &header,
1401 StringRef name)
1402 : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1403
MergeInputSection(uint64_t flags,uint32_t type,uint64_t entsize,ArrayRef<uint8_t> data,StringRef name)1404 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1405 uint64_t entsize, ArrayRef<uint8_t> data,
1406 StringRef name)
1407 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1408 /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1409
1410 // This function is called after we obtain a complete list of input sections
1411 // that need to be linked. This is responsible to split section contents
1412 // into small chunks for further processing.
1413 //
1414 // Note that this function is called from parallelForEach. This must be
1415 // thread-safe (i.e. no memory allocation from the pools).
splitIntoPieces()1416 void MergeInputSection::splitIntoPieces() {
1417 assert(pieces.empty());
1418
1419 if (flags & SHF_STRINGS)
1420 splitStrings(toStringRef(contentMaybeDecompress()), entsize);
1421 else
1422 splitNonStrings(contentMaybeDecompress(), entsize);
1423 }
1424
getSectionPiece(uint64_t offset)1425 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) {
1426 if (content().size() <= offset)
1427 fatal(toString(this) + ": offset is outside the section");
1428 return partition_point(
1429 pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1];
1430 }
1431
1432 // Return the offset in an output section for a given input offset.
getParentOffset(uint64_t offset) const1433 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1434 const SectionPiece &piece = getSectionPiece(offset);
1435 return piece.outputOff + (offset - piece.inputOff);
1436 }
1437
1438 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1439 StringRef);
1440 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1441 StringRef);
1442 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1443 StringRef);
1444 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1445 StringRef);
1446
1447 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1448 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1449 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1450 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1451
1452 template RelsOrRelas<ELF32LE>
1453 InputSectionBase::relsOrRelas<ELF32LE>(bool) const;
1454 template RelsOrRelas<ELF32BE>
1455 InputSectionBase::relsOrRelas<ELF32BE>(bool) const;
1456 template RelsOrRelas<ELF64LE>
1457 InputSectionBase::relsOrRelas<ELF64LE>(bool) const;
1458 template RelsOrRelas<ELF64BE>
1459 InputSectionBase::relsOrRelas<ELF64BE>(bool) const;
1460
1461 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1462 const ELF32LE::Shdr &, StringRef);
1463 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1464 const ELF32BE::Shdr &, StringRef);
1465 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1466 const ELF64LE::Shdr &, StringRef);
1467 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1468 const ELF64BE::Shdr &, StringRef);
1469
1470 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1471 const ELF32LE::Shdr &, StringRef);
1472 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1473 const ELF32BE::Shdr &, StringRef);
1474 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1475 const ELF64LE::Shdr &, StringRef);
1476 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1477 const ELF64BE::Shdr &, StringRef);
1478
1479 template void EhInputSection::split<ELF32LE>();
1480 template void EhInputSection::split<ELF32BE>();
1481 template void EhInputSection::split<ELF64LE>();
1482 template void EhInputSection::split<ELF64BE>();
1483