1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
27 #include "md-cluster.h"
28
29 /*
30 * RAID10 provides a combination of RAID0 and RAID1 functionality.
31 * The layout of data is defined by
32 * chunk_size
33 * raid_disks
34 * near_copies (stored in low byte of layout)
35 * far_copies (stored in second byte of layout)
36 * far_offset (stored in bit 16 of layout )
37 * use_far_sets (stored in bit 17 of layout )
38 * use_far_sets_bugfixed (stored in bit 18 of layout )
39 *
40 * The data to be stored is divided into chunks using chunksize. Each device
41 * is divided into far_copies sections. In each section, chunks are laid out
42 * in a style similar to raid0, but near_copies copies of each chunk is stored
43 * (each on a different drive). The starting device for each section is offset
44 * near_copies from the starting device of the previous section. Thus there
45 * are (near_copies * far_copies) of each chunk, and each is on a different
46 * drive. near_copies and far_copies must be at least one, and their product
47 * is at most raid_disks.
48 *
49 * If far_offset is true, then the far_copies are handled a bit differently.
50 * The copies are still in different stripes, but instead of being very far
51 * apart on disk, there are adjacent stripes.
52 *
53 * The far and offset algorithms are handled slightly differently if
54 * 'use_far_sets' is true. In this case, the array's devices are grouped into
55 * sets that are (near_copies * far_copies) in size. The far copied stripes
56 * are still shifted by 'near_copies' devices, but this shifting stays confined
57 * to the set rather than the entire array. This is done to improve the number
58 * of device combinations that can fail without causing the array to fail.
59 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
60 * on a device):
61 * A B C D A B C D E
62 * ... ...
63 * D A B C E A B C D
64 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
65 * [A B] [C D] [A B] [C D E]
66 * |...| |...| |...| | ... |
67 * [B A] [D C] [B A] [E C D]
68 */
69
70 static void allow_barrier(struct r10conf *conf);
71 static void lower_barrier(struct r10conf *conf);
72 static int _enough(struct r10conf *conf, int previous, int ignore);
73 static int enough(struct r10conf *conf, int ignore);
74 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
75 int *skipped);
76 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
77 static void end_reshape_write(struct bio *bio);
78 static void end_reshape(struct r10conf *conf);
79
80 #include "raid1-10.c"
81
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84 do { \
85 write_sequnlock_irq(&(conf)->resync_lock); \
86 cmd; \
87 } while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92 cmd_after(conf))
93
94 #define wait_event_barrier(conf, cond) \
95 wait_event_barrier_cmd(conf, cond, NULL_CMD)
96
97 /*
98 * for resync bio, r10bio pointer can be retrieved from the per-bio
99 * 'struct resync_pages'.
100 */
get_resync_r10bio(struct bio * bio)101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103 return get_resync_pages(bio)->raid_bio;
104 }
105
r10bio_pool_alloc(gfp_t gfp_flags,void * data)106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108 struct r10conf *conf = data;
109 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110
111 /* allocate a r10bio with room for raid_disks entries in the
112 * bios array */
113 return kzalloc(size, gfp_flags);
114 }
115
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123
124 /*
125 * When performing a resync, we need to read and compare, so
126 * we need as many pages are there are copies.
127 * When performing a recovery, we need 2 bios, one for read,
128 * one for write (we recover only one drive per r10buf)
129 *
130 */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 struct r10conf *conf = data;
134 struct r10bio *r10_bio;
135 struct bio *bio;
136 int j;
137 int nalloc, nalloc_rp;
138 struct resync_pages *rps;
139
140 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141 if (!r10_bio)
142 return NULL;
143
144 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146 nalloc = conf->copies; /* resync */
147 else
148 nalloc = 2; /* recovery */
149
150 /* allocate once for all bios */
151 if (!conf->have_replacement)
152 nalloc_rp = nalloc;
153 else
154 nalloc_rp = nalloc * 2;
155 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156 if (!rps)
157 goto out_free_r10bio;
158
159 /*
160 * Allocate bios.
161 */
162 for (j = nalloc ; j-- ; ) {
163 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164 if (!bio)
165 goto out_free_bio;
166 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167 r10_bio->devs[j].bio = bio;
168 if (!conf->have_replacement)
169 continue;
170 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171 if (!bio)
172 goto out_free_bio;
173 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174 r10_bio->devs[j].repl_bio = bio;
175 }
176 /*
177 * Allocate RESYNC_PAGES data pages and attach them
178 * where needed.
179 */
180 for (j = 0; j < nalloc; j++) {
181 struct bio *rbio = r10_bio->devs[j].repl_bio;
182 struct resync_pages *rp, *rp_repl;
183
184 rp = &rps[j];
185 if (rbio)
186 rp_repl = &rps[nalloc + j];
187
188 bio = r10_bio->devs[j].bio;
189
190 if (!j || test_bit(MD_RECOVERY_SYNC,
191 &conf->mddev->recovery)) {
192 if (resync_alloc_pages(rp, gfp_flags))
193 goto out_free_pages;
194 } else {
195 memcpy(rp, &rps[0], sizeof(*rp));
196 resync_get_all_pages(rp);
197 }
198
199 rp->raid_bio = r10_bio;
200 bio->bi_private = rp;
201 if (rbio) {
202 memcpy(rp_repl, rp, sizeof(*rp));
203 rbio->bi_private = rp_repl;
204 }
205 }
206
207 return r10_bio;
208
209 out_free_pages:
210 while (--j >= 0)
211 resync_free_pages(&rps[j]);
212
213 j = 0;
214 out_free_bio:
215 for ( ; j < nalloc; j++) {
216 if (r10_bio->devs[j].bio)
217 bio_uninit(r10_bio->devs[j].bio);
218 kfree(r10_bio->devs[j].bio);
219 if (r10_bio->devs[j].repl_bio)
220 bio_uninit(r10_bio->devs[j].repl_bio);
221 kfree(r10_bio->devs[j].repl_bio);
222 }
223 kfree(rps);
224 out_free_r10bio:
225 rbio_pool_free(r10_bio, conf);
226 return NULL;
227 }
228
r10buf_pool_free(void * __r10_bio,void * data)229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231 struct r10conf *conf = data;
232 struct r10bio *r10bio = __r10_bio;
233 int j;
234 struct resync_pages *rp = NULL;
235
236 for (j = conf->copies; j--; ) {
237 struct bio *bio = r10bio->devs[j].bio;
238
239 if (bio) {
240 rp = get_resync_pages(bio);
241 resync_free_pages(rp);
242 bio_uninit(bio);
243 kfree(bio);
244 }
245
246 bio = r10bio->devs[j].repl_bio;
247 if (bio) {
248 bio_uninit(bio);
249 kfree(bio);
250 }
251 }
252
253 /* resync pages array stored in the 1st bio's .bi_private */
254 kfree(rp);
255
256 rbio_pool_free(r10bio, conf);
257 }
258
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261 int i;
262
263 for (i = 0; i < conf->geo.raid_disks; i++) {
264 struct bio **bio = & r10_bio->devs[i].bio;
265 if (!BIO_SPECIAL(*bio))
266 bio_put(*bio);
267 *bio = NULL;
268 bio = &r10_bio->devs[i].repl_bio;
269 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270 bio_put(*bio);
271 *bio = NULL;
272 }
273 }
274
free_r10bio(struct r10bio * r10_bio)275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277 struct r10conf *conf = r10_bio->mddev->private;
278
279 put_all_bios(conf, r10_bio);
280 mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282
put_buf(struct r10bio * r10_bio)283 static void put_buf(struct r10bio *r10_bio)
284 {
285 struct r10conf *conf = r10_bio->mddev->private;
286
287 mempool_free(r10_bio, &conf->r10buf_pool);
288
289 lower_barrier(conf);
290 }
291
wake_up_barrier(struct r10conf * conf)292 static void wake_up_barrier(struct r10conf *conf)
293 {
294 if (wq_has_sleeper(&conf->wait_barrier))
295 wake_up(&conf->wait_barrier);
296 }
297
reschedule_retry(struct r10bio * r10_bio)298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300 unsigned long flags;
301 struct mddev *mddev = r10_bio->mddev;
302 struct r10conf *conf = mddev->private;
303
304 spin_lock_irqsave(&conf->device_lock, flags);
305 list_add(&r10_bio->retry_list, &conf->retry_list);
306 conf->nr_queued ++;
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308
309 /* wake up frozen array... */
310 wake_up(&conf->wait_barrier);
311
312 md_wakeup_thread(mddev->thread);
313 }
314
315 /*
316 * raid_end_bio_io() is called when we have finished servicing a mirrored
317 * operation and are ready to return a success/failure code to the buffer
318 * cache layer.
319 */
raid_end_bio_io(struct r10bio * r10_bio)320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322 struct bio *bio = r10_bio->master_bio;
323 struct r10conf *conf = r10_bio->mddev->private;
324
325 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326 bio->bi_status = BLK_STS_IOERR;
327
328 bio_endio(bio);
329 /*
330 * Wake up any possible resync thread that waits for the device
331 * to go idle.
332 */
333 allow_barrier(conf);
334
335 free_r10bio(r10_bio);
336 }
337
338 /*
339 * Update disk head position estimator based on IRQ completion info.
340 */
update_head_pos(int slot,struct r10bio * r10_bio)341 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342 {
343 struct r10conf *conf = r10_bio->mddev->private;
344
345 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
346 r10_bio->devs[slot].addr + (r10_bio->sectors);
347 }
348
349 /*
350 * Find the disk number which triggered given bio
351 */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
353 struct bio *bio, int *slotp, int *replp)
354 {
355 int slot;
356 int repl = 0;
357
358 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
359 if (r10_bio->devs[slot].bio == bio)
360 break;
361 if (r10_bio->devs[slot].repl_bio == bio) {
362 repl = 1;
363 break;
364 }
365 }
366
367 update_head_pos(slot, r10_bio);
368
369 if (slotp)
370 *slotp = slot;
371 if (replp)
372 *replp = repl;
373 return r10_bio->devs[slot].devnum;
374 }
375
raid10_end_read_request(struct bio * bio)376 static void raid10_end_read_request(struct bio *bio)
377 {
378 int uptodate = !bio->bi_status;
379 struct r10bio *r10_bio = bio->bi_private;
380 int slot;
381 struct md_rdev *rdev;
382 struct r10conf *conf = r10_bio->mddev->private;
383
384 slot = r10_bio->read_slot;
385 rdev = r10_bio->devs[slot].rdev;
386 /*
387 * this branch is our 'one mirror IO has finished' event handler:
388 */
389 update_head_pos(slot, r10_bio);
390
391 if (uptodate) {
392 /*
393 * Set R10BIO_Uptodate in our master bio, so that
394 * we will return a good error code to the higher
395 * levels even if IO on some other mirrored buffer fails.
396 *
397 * The 'master' represents the composite IO operation to
398 * user-side. So if something waits for IO, then it will
399 * wait for the 'master' bio.
400 */
401 set_bit(R10BIO_Uptodate, &r10_bio->state);
402 } else {
403 /* If all other devices that store this block have
404 * failed, we want to return the error upwards rather
405 * than fail the last device. Here we redefine
406 * "uptodate" to mean "Don't want to retry"
407 */
408 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
409 rdev->raid_disk))
410 uptodate = 1;
411 }
412 if (uptodate) {
413 raid_end_bio_io(r10_bio);
414 rdev_dec_pending(rdev, conf->mddev);
415 } else {
416 /*
417 * oops, read error - keep the refcount on the rdev
418 */
419 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
420 mdname(conf->mddev),
421 rdev->bdev,
422 (unsigned long long)r10_bio->sector);
423 set_bit(R10BIO_ReadError, &r10_bio->state);
424 reschedule_retry(r10_bio);
425 }
426 }
427
close_write(struct r10bio * r10_bio)428 static void close_write(struct r10bio *r10_bio)
429 {
430 struct mddev *mddev = r10_bio->mddev;
431
432 md_write_end(mddev);
433 }
434
one_write_done(struct r10bio * r10_bio)435 static void one_write_done(struct r10bio *r10_bio)
436 {
437 if (atomic_dec_and_test(&r10_bio->remaining)) {
438 if (test_bit(R10BIO_WriteError, &r10_bio->state))
439 reschedule_retry(r10_bio);
440 else {
441 close_write(r10_bio);
442 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
443 reschedule_retry(r10_bio);
444 else
445 raid_end_bio_io(r10_bio);
446 }
447 }
448 }
449
raid10_end_write_request(struct bio * bio)450 static void raid10_end_write_request(struct bio *bio)
451 {
452 struct r10bio *r10_bio = bio->bi_private;
453 int dev;
454 int dec_rdev = 1;
455 struct r10conf *conf = r10_bio->mddev->private;
456 int slot, repl;
457 struct md_rdev *rdev = NULL;
458 struct bio *to_put = NULL;
459 bool discard_error;
460
461 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
462
463 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
464
465 if (repl)
466 rdev = conf->mirrors[dev].replacement;
467 if (!rdev) {
468 smp_rmb();
469 repl = 0;
470 rdev = conf->mirrors[dev].rdev;
471 }
472 /*
473 * this branch is our 'one mirror IO has finished' event handler:
474 */
475 if (bio->bi_status && !discard_error) {
476 if (repl)
477 /* Never record new bad blocks to replacement,
478 * just fail it.
479 */
480 md_error(rdev->mddev, rdev);
481 else {
482 set_bit(WriteErrorSeen, &rdev->flags);
483 if (!test_and_set_bit(WantReplacement, &rdev->flags))
484 set_bit(MD_RECOVERY_NEEDED,
485 &rdev->mddev->recovery);
486
487 dec_rdev = 0;
488 if (test_bit(FailFast, &rdev->flags) &&
489 (bio->bi_opf & MD_FAILFAST)) {
490 md_error(rdev->mddev, rdev);
491 }
492
493 /*
494 * When the device is faulty, it is not necessary to
495 * handle write error.
496 */
497 if (!test_bit(Faulty, &rdev->flags))
498 set_bit(R10BIO_WriteError, &r10_bio->state);
499 else {
500 /* Fail the request */
501 r10_bio->devs[slot].bio = NULL;
502 to_put = bio;
503 dec_rdev = 1;
504 }
505 }
506 } else {
507 /*
508 * Set R10BIO_Uptodate in our master bio, so that
509 * we will return a good error code for to the higher
510 * levels even if IO on some other mirrored buffer fails.
511 *
512 * The 'master' represents the composite IO operation to
513 * user-side. So if something waits for IO, then it will
514 * wait for the 'master' bio.
515 *
516 * Do not set R10BIO_Uptodate if the current device is
517 * rebuilding or Faulty. This is because we cannot use
518 * such device for properly reading the data back (we could
519 * potentially use it, if the current write would have felt
520 * before rdev->recovery_offset, but for simplicity we don't
521 * check this here.
522 */
523 if (test_bit(In_sync, &rdev->flags) &&
524 !test_bit(Faulty, &rdev->flags))
525 set_bit(R10BIO_Uptodate, &r10_bio->state);
526
527 /* Maybe we can clear some bad blocks. */
528 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
529 r10_bio->sectors) &&
530 !discard_error) {
531 bio_put(bio);
532 if (repl)
533 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
534 else
535 r10_bio->devs[slot].bio = IO_MADE_GOOD;
536 dec_rdev = 0;
537 set_bit(R10BIO_MadeGood, &r10_bio->state);
538 }
539 }
540
541 /*
542 *
543 * Let's see if all mirrored write operations have finished
544 * already.
545 */
546 one_write_done(r10_bio);
547 if (dec_rdev)
548 rdev_dec_pending(rdev, conf->mddev);
549 if (to_put)
550 bio_put(to_put);
551 }
552
553 /*
554 * RAID10 layout manager
555 * As well as the chunksize and raid_disks count, there are two
556 * parameters: near_copies and far_copies.
557 * near_copies * far_copies must be <= raid_disks.
558 * Normally one of these will be 1.
559 * If both are 1, we get raid0.
560 * If near_copies == raid_disks, we get raid1.
561 *
562 * Chunks are laid out in raid0 style with near_copies copies of the
563 * first chunk, followed by near_copies copies of the next chunk and
564 * so on.
565 * If far_copies > 1, then after 1/far_copies of the array has been assigned
566 * as described above, we start again with a device offset of near_copies.
567 * So we effectively have another copy of the whole array further down all
568 * the drives, but with blocks on different drives.
569 * With this layout, and block is never stored twice on the one device.
570 *
571 * raid10_find_phys finds the sector offset of a given virtual sector
572 * on each device that it is on.
573 *
574 * raid10_find_virt does the reverse mapping, from a device and a
575 * sector offset to a virtual address
576 */
577
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)578 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
579 {
580 int n,f;
581 sector_t sector;
582 sector_t chunk;
583 sector_t stripe;
584 int dev;
585 int slot = 0;
586 int last_far_set_start, last_far_set_size;
587
588 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
589 last_far_set_start *= geo->far_set_size;
590
591 last_far_set_size = geo->far_set_size;
592 last_far_set_size += (geo->raid_disks % geo->far_set_size);
593
594 /* now calculate first sector/dev */
595 chunk = r10bio->sector >> geo->chunk_shift;
596 sector = r10bio->sector & geo->chunk_mask;
597
598 chunk *= geo->near_copies;
599 stripe = chunk;
600 dev = sector_div(stripe, geo->raid_disks);
601 if (geo->far_offset)
602 stripe *= geo->far_copies;
603
604 sector += stripe << geo->chunk_shift;
605
606 /* and calculate all the others */
607 for (n = 0; n < geo->near_copies; n++) {
608 int d = dev;
609 int set;
610 sector_t s = sector;
611 r10bio->devs[slot].devnum = d;
612 r10bio->devs[slot].addr = s;
613 slot++;
614
615 for (f = 1; f < geo->far_copies; f++) {
616 set = d / geo->far_set_size;
617 d += geo->near_copies;
618
619 if ((geo->raid_disks % geo->far_set_size) &&
620 (d > last_far_set_start)) {
621 d -= last_far_set_start;
622 d %= last_far_set_size;
623 d += last_far_set_start;
624 } else {
625 d %= geo->far_set_size;
626 d += geo->far_set_size * set;
627 }
628 s += geo->stride;
629 r10bio->devs[slot].devnum = d;
630 r10bio->devs[slot].addr = s;
631 slot++;
632 }
633 dev++;
634 if (dev >= geo->raid_disks) {
635 dev = 0;
636 sector += (geo->chunk_mask + 1);
637 }
638 }
639 }
640
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)641 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
642 {
643 struct geom *geo = &conf->geo;
644
645 if (conf->reshape_progress != MaxSector &&
646 ((r10bio->sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards)) {
648 set_bit(R10BIO_Previous, &r10bio->state);
649 geo = &conf->prev;
650 } else
651 clear_bit(R10BIO_Previous, &r10bio->state);
652
653 __raid10_find_phys(geo, r10bio);
654 }
655
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)656 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
657 {
658 sector_t offset, chunk, vchunk;
659 /* Never use conf->prev as this is only called during resync
660 * or recovery, so reshape isn't happening
661 */
662 struct geom *geo = &conf->geo;
663 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
664 int far_set_size = geo->far_set_size;
665 int last_far_set_start;
666
667 if (geo->raid_disks % geo->far_set_size) {
668 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
669 last_far_set_start *= geo->far_set_size;
670
671 if (dev >= last_far_set_start) {
672 far_set_size = geo->far_set_size;
673 far_set_size += (geo->raid_disks % geo->far_set_size);
674 far_set_start = last_far_set_start;
675 }
676 }
677
678 offset = sector & geo->chunk_mask;
679 if (geo->far_offset) {
680 int fc;
681 chunk = sector >> geo->chunk_shift;
682 fc = sector_div(chunk, geo->far_copies);
683 dev -= fc * geo->near_copies;
684 if (dev < far_set_start)
685 dev += far_set_size;
686 } else {
687 while (sector >= geo->stride) {
688 sector -= geo->stride;
689 if (dev < (geo->near_copies + far_set_start))
690 dev += far_set_size - geo->near_copies;
691 else
692 dev -= geo->near_copies;
693 }
694 chunk = sector >> geo->chunk_shift;
695 }
696 vchunk = chunk * geo->raid_disks + dev;
697 sector_div(vchunk, geo->near_copies);
698 return (vchunk << geo->chunk_shift) + offset;
699 }
700
701 /*
702 * This routine returns the disk from which the requested read should
703 * be done. There is a per-array 'next expected sequential IO' sector
704 * number - if this matches on the next IO then we use the last disk.
705 * There is also a per-disk 'last know head position' sector that is
706 * maintained from IRQ contexts, both the normal and the resync IO
707 * completion handlers update this position correctly. If there is no
708 * perfect sequential match then we pick the disk whose head is closest.
709 *
710 * If there are 2 mirrors in the same 2 devices, performance degrades
711 * because position is mirror, not device based.
712 *
713 * The rdev for the device selected will have nr_pending incremented.
714 */
715
716 /*
717 * FIXME: possibly should rethink readbalancing and do it differently
718 * depending on near_copies / far_copies geometry.
719 */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)720 static struct md_rdev *read_balance(struct r10conf *conf,
721 struct r10bio *r10_bio,
722 int *max_sectors)
723 {
724 const sector_t this_sector = r10_bio->sector;
725 int disk, slot;
726 int sectors = r10_bio->sectors;
727 int best_good_sectors;
728 sector_t new_distance, best_dist;
729 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
730 int do_balance;
731 int best_dist_slot, best_pending_slot;
732 bool has_nonrot_disk = false;
733 unsigned int min_pending;
734 struct geom *geo = &conf->geo;
735
736 raid10_find_phys(conf, r10_bio);
737 best_dist_slot = -1;
738 min_pending = UINT_MAX;
739 best_dist_rdev = NULL;
740 best_pending_rdev = NULL;
741 best_dist = MaxSector;
742 best_good_sectors = 0;
743 do_balance = 1;
744 clear_bit(R10BIO_FailFast, &r10_bio->state);
745
746 if (raid1_should_read_first(conf->mddev, this_sector, sectors))
747 do_balance = 0;
748
749 for (slot = 0; slot < conf->copies ; slot++) {
750 sector_t first_bad;
751 sector_t bad_sectors;
752 sector_t dev_sector;
753 unsigned int pending;
754 bool nonrot;
755
756 if (r10_bio->devs[slot].bio == IO_BLOCKED)
757 continue;
758 disk = r10_bio->devs[slot].devnum;
759 rdev = conf->mirrors[disk].replacement;
760 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
761 r10_bio->devs[slot].addr + sectors >
762 rdev->recovery_offset)
763 rdev = conf->mirrors[disk].rdev;
764 if (rdev == NULL ||
765 test_bit(Faulty, &rdev->flags))
766 continue;
767 if (!test_bit(In_sync, &rdev->flags) &&
768 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
769 continue;
770
771 dev_sector = r10_bio->devs[slot].addr;
772 if (is_badblock(rdev, dev_sector, sectors,
773 &first_bad, &bad_sectors)) {
774 if (best_dist < MaxSector)
775 /* Already have a better slot */
776 continue;
777 if (first_bad <= dev_sector) {
778 /* Cannot read here. If this is the
779 * 'primary' device, then we must not read
780 * beyond 'bad_sectors' from another device.
781 */
782 bad_sectors -= (dev_sector - first_bad);
783 if (!do_balance && sectors > bad_sectors)
784 sectors = bad_sectors;
785 if (best_good_sectors > sectors)
786 best_good_sectors = sectors;
787 } else {
788 sector_t good_sectors =
789 first_bad - dev_sector;
790 if (good_sectors > best_good_sectors) {
791 best_good_sectors = good_sectors;
792 best_dist_slot = slot;
793 best_dist_rdev = rdev;
794 }
795 if (!do_balance)
796 /* Must read from here */
797 break;
798 }
799 continue;
800 } else
801 best_good_sectors = sectors;
802
803 if (!do_balance)
804 break;
805
806 nonrot = bdev_nonrot(rdev->bdev);
807 has_nonrot_disk |= nonrot;
808 pending = atomic_read(&rdev->nr_pending);
809 if (min_pending > pending && nonrot) {
810 min_pending = pending;
811 best_pending_slot = slot;
812 best_pending_rdev = rdev;
813 }
814
815 if (best_dist_slot >= 0)
816 /* At least 2 disks to choose from so failfast is OK */
817 set_bit(R10BIO_FailFast, &r10_bio->state);
818 /* This optimisation is debatable, and completely destroys
819 * sequential read speed for 'far copies' arrays. So only
820 * keep it for 'near' arrays, and review those later.
821 */
822 if (geo->near_copies > 1 && !pending)
823 new_distance = 0;
824
825 /* for far > 1 always use the lowest address */
826 else if (geo->far_copies > 1)
827 new_distance = r10_bio->devs[slot].addr;
828 else
829 new_distance = abs(r10_bio->devs[slot].addr -
830 conf->mirrors[disk].head_position);
831
832 if (new_distance < best_dist) {
833 best_dist = new_distance;
834 best_dist_slot = slot;
835 best_dist_rdev = rdev;
836 }
837 }
838 if (slot >= conf->copies) {
839 if (has_nonrot_disk) {
840 slot = best_pending_slot;
841 rdev = best_pending_rdev;
842 } else {
843 slot = best_dist_slot;
844 rdev = best_dist_rdev;
845 }
846 }
847
848 if (slot >= 0) {
849 atomic_inc(&rdev->nr_pending);
850 r10_bio->read_slot = slot;
851 } else
852 rdev = NULL;
853 *max_sectors = best_good_sectors;
854
855 return rdev;
856 }
857
flush_pending_writes(struct r10conf * conf)858 static void flush_pending_writes(struct r10conf *conf)
859 {
860 /* Any writes that have been queued but are awaiting
861 * bitmap updates get flushed here.
862 */
863 spin_lock_irq(&conf->device_lock);
864
865 if (conf->pending_bio_list.head) {
866 struct blk_plug plug;
867 struct bio *bio;
868
869 bio = bio_list_get(&conf->pending_bio_list);
870 spin_unlock_irq(&conf->device_lock);
871
872 /*
873 * As this is called in a wait_event() loop (see freeze_array),
874 * current->state might be TASK_UNINTERRUPTIBLE which will
875 * cause a warning when we prepare to wait again. As it is
876 * rare that this path is taken, it is perfectly safe to force
877 * us to go around the wait_event() loop again, so the warning
878 * is a false-positive. Silence the warning by resetting
879 * thread state
880 */
881 __set_current_state(TASK_RUNNING);
882
883 blk_start_plug(&plug);
884 raid1_prepare_flush_writes(conf->mddev);
885 wake_up(&conf->wait_barrier);
886
887 while (bio) { /* submit pending writes */
888 struct bio *next = bio->bi_next;
889
890 raid1_submit_write(bio);
891 bio = next;
892 cond_resched();
893 }
894 blk_finish_plug(&plug);
895 } else
896 spin_unlock_irq(&conf->device_lock);
897 }
898
899 /* Barriers....
900 * Sometimes we need to suspend IO while we do something else,
901 * either some resync/recovery, or reconfigure the array.
902 * To do this we raise a 'barrier'.
903 * The 'barrier' is a counter that can be raised multiple times
904 * to count how many activities are happening which preclude
905 * normal IO.
906 * We can only raise the barrier if there is no pending IO.
907 * i.e. if nr_pending == 0.
908 * We choose only to raise the barrier if no-one is waiting for the
909 * barrier to go down. This means that as soon as an IO request
910 * is ready, no other operations which require a barrier will start
911 * until the IO request has had a chance.
912 *
913 * So: regular IO calls 'wait_barrier'. When that returns there
914 * is no backgroup IO happening, It must arrange to call
915 * allow_barrier when it has finished its IO.
916 * backgroup IO calls must call raise_barrier. Once that returns
917 * there is no normal IO happeing. It must arrange to call
918 * lower_barrier when the particular background IO completes.
919 */
920
raise_barrier(struct r10conf * conf,int force)921 static void raise_barrier(struct r10conf *conf, int force)
922 {
923 write_seqlock_irq(&conf->resync_lock);
924
925 if (WARN_ON_ONCE(force && !conf->barrier))
926 force = false;
927
928 /* Wait until no block IO is waiting (unless 'force') */
929 wait_event_barrier(conf, force || !conf->nr_waiting);
930
931 /* block any new IO from starting */
932 WRITE_ONCE(conf->barrier, conf->barrier + 1);
933
934 /* Now wait for all pending IO to complete */
935 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
936 conf->barrier < RESYNC_DEPTH);
937
938 write_sequnlock_irq(&conf->resync_lock);
939 }
940
lower_barrier(struct r10conf * conf)941 static void lower_barrier(struct r10conf *conf)
942 {
943 unsigned long flags;
944
945 write_seqlock_irqsave(&conf->resync_lock, flags);
946 WRITE_ONCE(conf->barrier, conf->barrier - 1);
947 write_sequnlock_irqrestore(&conf->resync_lock, flags);
948 wake_up(&conf->wait_barrier);
949 }
950
stop_waiting_barrier(struct r10conf * conf)951 static bool stop_waiting_barrier(struct r10conf *conf)
952 {
953 struct bio_list *bio_list = current->bio_list;
954 struct md_thread *thread;
955
956 /* barrier is dropped */
957 if (!conf->barrier)
958 return true;
959
960 /*
961 * If there are already pending requests (preventing the barrier from
962 * rising completely), and the pre-process bio queue isn't empty, then
963 * don't wait, as we need to empty that queue to get the nr_pending
964 * count down.
965 */
966 if (atomic_read(&conf->nr_pending) && bio_list &&
967 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
968 return true;
969
970 /* daemon thread must exist while handling io */
971 thread = rcu_dereference_protected(conf->mddev->thread, true);
972 /*
973 * move on if io is issued from raid10d(), nr_pending is not released
974 * from original io(see handle_read_error()). All raise barrier is
975 * blocked until this io is done.
976 */
977 if (thread->tsk == current) {
978 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
979 return true;
980 }
981
982 return false;
983 }
984
wait_barrier_nolock(struct r10conf * conf)985 static bool wait_barrier_nolock(struct r10conf *conf)
986 {
987 unsigned int seq = read_seqbegin(&conf->resync_lock);
988
989 if (READ_ONCE(conf->barrier))
990 return false;
991
992 atomic_inc(&conf->nr_pending);
993 if (!read_seqretry(&conf->resync_lock, seq))
994 return true;
995
996 if (atomic_dec_and_test(&conf->nr_pending))
997 wake_up_barrier(conf);
998
999 return false;
1000 }
1001
wait_barrier(struct r10conf * conf,bool nowait)1002 static bool wait_barrier(struct r10conf *conf, bool nowait)
1003 {
1004 bool ret = true;
1005
1006 if (wait_barrier_nolock(conf))
1007 return true;
1008
1009 write_seqlock_irq(&conf->resync_lock);
1010 if (conf->barrier) {
1011 /* Return false when nowait flag is set */
1012 if (nowait) {
1013 ret = false;
1014 } else {
1015 conf->nr_waiting++;
1016 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1017 wait_event_barrier(conf, stop_waiting_barrier(conf));
1018 conf->nr_waiting--;
1019 }
1020 if (!conf->nr_waiting)
1021 wake_up(&conf->wait_barrier);
1022 }
1023 /* Only increment nr_pending when we wait */
1024 if (ret)
1025 atomic_inc(&conf->nr_pending);
1026 write_sequnlock_irq(&conf->resync_lock);
1027 return ret;
1028 }
1029
allow_barrier(struct r10conf * conf)1030 static void allow_barrier(struct r10conf *conf)
1031 {
1032 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1033 (conf->array_freeze_pending))
1034 wake_up_barrier(conf);
1035 }
1036
freeze_array(struct r10conf * conf,int extra)1037 static void freeze_array(struct r10conf *conf, int extra)
1038 {
1039 /* stop syncio and normal IO and wait for everything to
1040 * go quiet.
1041 * We increment barrier and nr_waiting, and then
1042 * wait until nr_pending match nr_queued+extra
1043 * This is called in the context of one normal IO request
1044 * that has failed. Thus any sync request that might be pending
1045 * will be blocked by nr_pending, and we need to wait for
1046 * pending IO requests to complete or be queued for re-try.
1047 * Thus the number queued (nr_queued) plus this request (extra)
1048 * must match the number of pending IOs (nr_pending) before
1049 * we continue.
1050 */
1051 write_seqlock_irq(&conf->resync_lock);
1052 conf->array_freeze_pending++;
1053 WRITE_ONCE(conf->barrier, conf->barrier + 1);
1054 conf->nr_waiting++;
1055 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1056 conf->nr_queued + extra, flush_pending_writes(conf));
1057 conf->array_freeze_pending--;
1058 write_sequnlock_irq(&conf->resync_lock);
1059 }
1060
unfreeze_array(struct r10conf * conf)1061 static void unfreeze_array(struct r10conf *conf)
1062 {
1063 /* reverse the effect of the freeze */
1064 write_seqlock_irq(&conf->resync_lock);
1065 WRITE_ONCE(conf->barrier, conf->barrier - 1);
1066 conf->nr_waiting--;
1067 wake_up(&conf->wait_barrier);
1068 write_sequnlock_irq(&conf->resync_lock);
1069 }
1070
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1071 static sector_t choose_data_offset(struct r10bio *r10_bio,
1072 struct md_rdev *rdev)
1073 {
1074 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1075 test_bit(R10BIO_Previous, &r10_bio->state))
1076 return rdev->data_offset;
1077 else
1078 return rdev->new_data_offset;
1079 }
1080
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1081 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1082 {
1083 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1084 struct mddev *mddev = plug->cb.data;
1085 struct r10conf *conf = mddev->private;
1086 struct bio *bio;
1087
1088 if (from_schedule) {
1089 spin_lock_irq(&conf->device_lock);
1090 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1091 spin_unlock_irq(&conf->device_lock);
1092 wake_up_barrier(conf);
1093 md_wakeup_thread(mddev->thread);
1094 kfree(plug);
1095 return;
1096 }
1097
1098 /* we aren't scheduling, so we can do the write-out directly. */
1099 bio = bio_list_get(&plug->pending);
1100 raid1_prepare_flush_writes(mddev);
1101 wake_up_barrier(conf);
1102
1103 while (bio) { /* submit pending writes */
1104 struct bio *next = bio->bi_next;
1105
1106 raid1_submit_write(bio);
1107 bio = next;
1108 cond_resched();
1109 }
1110 kfree(plug);
1111 }
1112
1113 /*
1114 * 1. Register the new request and wait if the reconstruction thread has put
1115 * up a bar for new requests. Continue immediately if no resync is active
1116 * currently.
1117 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1118 */
regular_request_wait(struct mddev * mddev,struct r10conf * conf,struct bio * bio,sector_t sectors)1119 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1120 struct bio *bio, sector_t sectors)
1121 {
1122 /* Bail out if REQ_NOWAIT is set for the bio */
1123 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1124 bio_wouldblock_error(bio);
1125 return false;
1126 }
1127 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1128 bio->bi_iter.bi_sector < conf->reshape_progress &&
1129 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1130 allow_barrier(conf);
1131 if (bio->bi_opf & REQ_NOWAIT) {
1132 bio_wouldblock_error(bio);
1133 return false;
1134 }
1135 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1136 wait_event(conf->wait_barrier,
1137 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1138 conf->reshape_progress >= bio->bi_iter.bi_sector +
1139 sectors);
1140 wait_barrier(conf, false);
1141 }
1142 return true;
1143 }
1144
raid10_read_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio,bool io_accounting)1145 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1146 struct r10bio *r10_bio, bool io_accounting)
1147 {
1148 struct r10conf *conf = mddev->private;
1149 struct bio *read_bio;
1150 int max_sectors;
1151 struct md_rdev *rdev;
1152 char b[BDEVNAME_SIZE];
1153 int slot = r10_bio->read_slot;
1154 struct md_rdev *err_rdev = NULL;
1155 gfp_t gfp = GFP_NOIO;
1156 int error;
1157
1158 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1159 /*
1160 * This is an error retry, but we cannot
1161 * safely dereference the rdev in the r10_bio,
1162 * we must use the one in conf.
1163 * If it has already been disconnected (unlikely)
1164 * we lose the device name in error messages.
1165 */
1166 int disk;
1167 /*
1168 * As we are blocking raid10, it is a little safer to
1169 * use __GFP_HIGH.
1170 */
1171 gfp = GFP_NOIO | __GFP_HIGH;
1172
1173 disk = r10_bio->devs[slot].devnum;
1174 err_rdev = conf->mirrors[disk].rdev;
1175 if (err_rdev)
1176 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1177 else {
1178 strcpy(b, "???");
1179 /* This never gets dereferenced */
1180 err_rdev = r10_bio->devs[slot].rdev;
1181 }
1182 }
1183
1184 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1185 return;
1186 rdev = read_balance(conf, r10_bio, &max_sectors);
1187 if (!rdev) {
1188 if (err_rdev) {
1189 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1190 mdname(mddev), b,
1191 (unsigned long long)r10_bio->sector);
1192 }
1193 raid_end_bio_io(r10_bio);
1194 return;
1195 }
1196 if (err_rdev)
1197 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1198 mdname(mddev),
1199 rdev->bdev,
1200 (unsigned long long)r10_bio->sector);
1201 if (max_sectors < bio_sectors(bio)) {
1202 struct bio *split = bio_split(bio, max_sectors,
1203 gfp, &conf->bio_split);
1204 if (IS_ERR(split)) {
1205 error = PTR_ERR(split);
1206 goto err_handle;
1207 }
1208 bio_chain(split, bio);
1209 allow_barrier(conf);
1210 submit_bio_noacct(bio);
1211 wait_barrier(conf, false);
1212 bio = split;
1213 r10_bio->master_bio = bio;
1214 r10_bio->sectors = max_sectors;
1215 }
1216 slot = r10_bio->read_slot;
1217
1218 if (io_accounting) {
1219 md_account_bio(mddev, &bio);
1220 r10_bio->master_bio = bio;
1221 }
1222 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1223
1224 r10_bio->devs[slot].bio = read_bio;
1225 r10_bio->devs[slot].rdev = rdev;
1226
1227 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1228 choose_data_offset(r10_bio, rdev);
1229 read_bio->bi_end_io = raid10_end_read_request;
1230 if (test_bit(FailFast, &rdev->flags) &&
1231 test_bit(R10BIO_FailFast, &r10_bio->state))
1232 read_bio->bi_opf |= MD_FAILFAST;
1233 read_bio->bi_private = r10_bio;
1234 mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1235 submit_bio_noacct(read_bio);
1236 return;
1237 err_handle:
1238 atomic_dec(&rdev->nr_pending);
1239 bio->bi_status = errno_to_blk_status(error);
1240 set_bit(R10BIO_Uptodate, &r10_bio->state);
1241 raid_end_bio_io(r10_bio);
1242 }
1243
raid10_write_one_disk(struct mddev * mddev,struct r10bio * r10_bio,struct bio * bio,bool replacement,int n_copy)1244 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1245 struct bio *bio, bool replacement,
1246 int n_copy)
1247 {
1248 unsigned long flags;
1249 struct r10conf *conf = mddev->private;
1250 struct md_rdev *rdev;
1251 int devnum = r10_bio->devs[n_copy].devnum;
1252 struct bio *mbio;
1253
1254 rdev = replacement ? conf->mirrors[devnum].replacement :
1255 conf->mirrors[devnum].rdev;
1256
1257 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1258 if (replacement)
1259 r10_bio->devs[n_copy].repl_bio = mbio;
1260 else
1261 r10_bio->devs[n_copy].bio = mbio;
1262
1263 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1264 choose_data_offset(r10_bio, rdev));
1265 mbio->bi_end_io = raid10_end_write_request;
1266 if (!replacement && test_bit(FailFast,
1267 &conf->mirrors[devnum].rdev->flags)
1268 && enough(conf, devnum))
1269 mbio->bi_opf |= MD_FAILFAST;
1270 mbio->bi_private = r10_bio;
1271 mddev_trace_remap(mddev, mbio, r10_bio->sector);
1272 /* flush_pending_writes() needs access to the rdev so...*/
1273 mbio->bi_bdev = (void *)rdev;
1274
1275 atomic_inc(&r10_bio->remaining);
1276
1277 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1278 spin_lock_irqsave(&conf->device_lock, flags);
1279 bio_list_add(&conf->pending_bio_list, mbio);
1280 spin_unlock_irqrestore(&conf->device_lock, flags);
1281 md_wakeup_thread(mddev->thread);
1282 }
1283 }
1284
wait_blocked_dev(struct mddev * mddev,struct r10bio * r10_bio)1285 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1286 {
1287 struct r10conf *conf = mddev->private;
1288 struct md_rdev *blocked_rdev;
1289 int i;
1290
1291 retry_wait:
1292 blocked_rdev = NULL;
1293 for (i = 0; i < conf->copies; i++) {
1294 struct md_rdev *rdev, *rrdev;
1295
1296 rdev = conf->mirrors[i].rdev;
1297 if (rdev) {
1298 sector_t dev_sector = r10_bio->devs[i].addr;
1299
1300 /*
1301 * Discard request doesn't care the write result
1302 * so it doesn't need to wait blocked disk here.
1303 */
1304 if (test_bit(WriteErrorSeen, &rdev->flags) &&
1305 r10_bio->sectors &&
1306 rdev_has_badblock(rdev, dev_sector,
1307 r10_bio->sectors) < 0)
1308 /*
1309 * Mustn't write here until the bad
1310 * block is acknowledged
1311 */
1312 set_bit(BlockedBadBlocks, &rdev->flags);
1313
1314 if (rdev_blocked(rdev)) {
1315 blocked_rdev = rdev;
1316 atomic_inc(&rdev->nr_pending);
1317 break;
1318 }
1319 }
1320
1321 rrdev = conf->mirrors[i].replacement;
1322 if (rrdev && rdev_blocked(rrdev)) {
1323 atomic_inc(&rrdev->nr_pending);
1324 blocked_rdev = rrdev;
1325 break;
1326 }
1327 }
1328
1329 if (unlikely(blocked_rdev)) {
1330 /* Have to wait for this device to get unblocked, then retry */
1331 allow_barrier(conf);
1332 mddev_add_trace_msg(conf->mddev,
1333 "raid10 %s wait rdev %d blocked",
1334 __func__, blocked_rdev->raid_disk);
1335 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336 wait_barrier(conf, false);
1337 goto retry_wait;
1338 }
1339 }
1340
raid10_write_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1341 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1342 struct r10bio *r10_bio)
1343 {
1344 struct r10conf *conf = mddev->private;
1345 int i, k;
1346 sector_t sectors;
1347 int max_sectors;
1348 int error;
1349
1350 if ((mddev_is_clustered(mddev) &&
1351 mddev->cluster_ops->area_resyncing(mddev, WRITE,
1352 bio->bi_iter.bi_sector,
1353 bio_end_sector(bio)))) {
1354 DEFINE_WAIT(w);
1355 /* Bail out if REQ_NOWAIT is set for the bio */
1356 if (bio->bi_opf & REQ_NOWAIT) {
1357 bio_wouldblock_error(bio);
1358 return;
1359 }
1360 for (;;) {
1361 prepare_to_wait(&conf->wait_barrier,
1362 &w, TASK_IDLE);
1363 if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
1364 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1365 break;
1366 schedule();
1367 }
1368 finish_wait(&conf->wait_barrier, &w);
1369 }
1370
1371 sectors = r10_bio->sectors;
1372 if (!regular_request_wait(mddev, conf, bio, sectors))
1373 return;
1374 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1375 (mddev->reshape_backwards
1376 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1377 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1378 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1379 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1380 /* Need to update reshape_position in metadata */
1381 mddev->reshape_position = conf->reshape_progress;
1382 set_mask_bits(&mddev->sb_flags, 0,
1383 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1384 md_wakeup_thread(mddev->thread);
1385 if (bio->bi_opf & REQ_NOWAIT) {
1386 allow_barrier(conf);
1387 bio_wouldblock_error(bio);
1388 return;
1389 }
1390 mddev_add_trace_msg(conf->mddev,
1391 "raid10 wait reshape metadata");
1392 wait_event(mddev->sb_wait,
1393 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1394
1395 conf->reshape_safe = mddev->reshape_position;
1396 }
1397
1398 /* first select target devices under rcu_lock and
1399 * inc refcount on their rdev. Record them by setting
1400 * bios[x] to bio
1401 * If there are known/acknowledged bad blocks on any device
1402 * on which we have seen a write error, we want to avoid
1403 * writing to those blocks. This potentially requires several
1404 * writes to write around the bad blocks. Each set of writes
1405 * gets its own r10_bio with a set of bios attached.
1406 */
1407
1408 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1409 raid10_find_phys(conf, r10_bio);
1410
1411 wait_blocked_dev(mddev, r10_bio);
1412
1413 max_sectors = r10_bio->sectors;
1414
1415 for (i = 0; i < conf->copies; i++) {
1416 int d = r10_bio->devs[i].devnum;
1417 struct md_rdev *rdev, *rrdev;
1418
1419 rdev = conf->mirrors[d].rdev;
1420 rrdev = conf->mirrors[d].replacement;
1421 if (rdev && (test_bit(Faulty, &rdev->flags)))
1422 rdev = NULL;
1423 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1424 rrdev = NULL;
1425
1426 r10_bio->devs[i].bio = NULL;
1427 r10_bio->devs[i].repl_bio = NULL;
1428
1429 if (!rdev && !rrdev)
1430 continue;
1431 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1432 sector_t first_bad;
1433 sector_t dev_sector = r10_bio->devs[i].addr;
1434 sector_t bad_sectors;
1435 int is_bad;
1436
1437 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1438 &first_bad, &bad_sectors);
1439 if (is_bad && first_bad <= dev_sector) {
1440 /* Cannot write here at all */
1441 bad_sectors -= (dev_sector - first_bad);
1442 if (bad_sectors < max_sectors)
1443 /* Mustn't write more than bad_sectors
1444 * to other devices yet
1445 */
1446 max_sectors = bad_sectors;
1447 continue;
1448 }
1449 if (is_bad) {
1450 int good_sectors;
1451
1452 /*
1453 * We cannot atomically write this, so just
1454 * error in that case. It could be possible to
1455 * atomically write other mirrors, but the
1456 * complexity of supporting that is not worth
1457 * the benefit.
1458 */
1459 if (bio->bi_opf & REQ_ATOMIC) {
1460 error = -EIO;
1461 goto err_handle;
1462 }
1463
1464 good_sectors = first_bad - dev_sector;
1465 if (good_sectors < max_sectors)
1466 max_sectors = good_sectors;
1467 }
1468 }
1469 if (rdev) {
1470 r10_bio->devs[i].bio = bio;
1471 atomic_inc(&rdev->nr_pending);
1472 }
1473 if (rrdev) {
1474 r10_bio->devs[i].repl_bio = bio;
1475 atomic_inc(&rrdev->nr_pending);
1476 }
1477 }
1478
1479 if (max_sectors < r10_bio->sectors)
1480 r10_bio->sectors = max_sectors;
1481
1482 if (r10_bio->sectors < bio_sectors(bio)) {
1483 struct bio *split = bio_split(bio, r10_bio->sectors,
1484 GFP_NOIO, &conf->bio_split);
1485 if (IS_ERR(split)) {
1486 error = PTR_ERR(split);
1487 goto err_handle;
1488 }
1489 bio_chain(split, bio);
1490 allow_barrier(conf);
1491 submit_bio_noacct(bio);
1492 wait_barrier(conf, false);
1493 bio = split;
1494 r10_bio->master_bio = bio;
1495 }
1496
1497 md_account_bio(mddev, &bio);
1498 r10_bio->master_bio = bio;
1499 atomic_set(&r10_bio->remaining, 1);
1500
1501 for (i = 0; i < conf->copies; i++) {
1502 if (r10_bio->devs[i].bio)
1503 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1504 if (r10_bio->devs[i].repl_bio)
1505 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1506 }
1507 one_write_done(r10_bio);
1508 return;
1509 err_handle:
1510 for (k = 0; k < i; k++) {
1511 int d = r10_bio->devs[k].devnum;
1512 struct md_rdev *rdev = conf->mirrors[d].rdev;
1513 struct md_rdev *rrdev = conf->mirrors[d].replacement;
1514
1515 if (r10_bio->devs[k].bio) {
1516 rdev_dec_pending(rdev, mddev);
1517 r10_bio->devs[k].bio = NULL;
1518 }
1519 if (r10_bio->devs[k].repl_bio) {
1520 rdev_dec_pending(rrdev, mddev);
1521 r10_bio->devs[k].repl_bio = NULL;
1522 }
1523 }
1524
1525 bio->bi_status = errno_to_blk_status(error);
1526 set_bit(R10BIO_Uptodate, &r10_bio->state);
1527 raid_end_bio_io(r10_bio);
1528 }
1529
__make_request(struct mddev * mddev,struct bio * bio,int sectors)1530 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1531 {
1532 struct r10conf *conf = mddev->private;
1533 struct r10bio *r10_bio;
1534
1535 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1536
1537 r10_bio->master_bio = bio;
1538 r10_bio->sectors = sectors;
1539
1540 r10_bio->mddev = mddev;
1541 r10_bio->sector = bio->bi_iter.bi_sector;
1542 r10_bio->state = 0;
1543 r10_bio->read_slot = -1;
1544 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1545 conf->geo.raid_disks);
1546
1547 if (bio_data_dir(bio) == READ)
1548 raid10_read_request(mddev, bio, r10_bio, true);
1549 else
1550 raid10_write_request(mddev, bio, r10_bio);
1551 }
1552
raid_end_discard_bio(struct r10bio * r10bio)1553 static void raid_end_discard_bio(struct r10bio *r10bio)
1554 {
1555 struct r10conf *conf = r10bio->mddev->private;
1556 struct r10bio *first_r10bio;
1557
1558 while (atomic_dec_and_test(&r10bio->remaining)) {
1559
1560 allow_barrier(conf);
1561
1562 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1563 first_r10bio = (struct r10bio *)r10bio->master_bio;
1564 free_r10bio(r10bio);
1565 r10bio = first_r10bio;
1566 } else {
1567 md_write_end(r10bio->mddev);
1568 bio_endio(r10bio->master_bio);
1569 free_r10bio(r10bio);
1570 break;
1571 }
1572 }
1573 }
1574
raid10_end_discard_request(struct bio * bio)1575 static void raid10_end_discard_request(struct bio *bio)
1576 {
1577 struct r10bio *r10_bio = bio->bi_private;
1578 struct r10conf *conf = r10_bio->mddev->private;
1579 struct md_rdev *rdev = NULL;
1580 int dev;
1581 int slot, repl;
1582
1583 /*
1584 * We don't care the return value of discard bio
1585 */
1586 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1587 set_bit(R10BIO_Uptodate, &r10_bio->state);
1588
1589 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1590 rdev = repl ? conf->mirrors[dev].replacement :
1591 conf->mirrors[dev].rdev;
1592
1593 raid_end_discard_bio(r10_bio);
1594 rdev_dec_pending(rdev, conf->mddev);
1595 }
1596
1597 /*
1598 * There are some limitations to handle discard bio
1599 * 1st, the discard size is bigger than stripe_size*2.
1600 * 2st, if the discard bio spans reshape progress, we use the old way to
1601 * handle discard bio
1602 */
raid10_handle_discard(struct mddev * mddev,struct bio * bio)1603 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1604 {
1605 struct r10conf *conf = mddev->private;
1606 struct geom *geo = &conf->geo;
1607 int far_copies = geo->far_copies;
1608 bool first_copy = true;
1609 struct r10bio *r10_bio, *first_r10bio;
1610 struct bio *split;
1611 int disk;
1612 sector_t chunk;
1613 unsigned int stripe_size;
1614 unsigned int stripe_data_disks;
1615 sector_t split_size;
1616 sector_t bio_start, bio_end;
1617 sector_t first_stripe_index, last_stripe_index;
1618 sector_t start_disk_offset;
1619 unsigned int start_disk_index;
1620 sector_t end_disk_offset;
1621 unsigned int end_disk_index;
1622 unsigned int remainder;
1623
1624 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1625 return -EAGAIN;
1626
1627 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1628 bio_wouldblock_error(bio);
1629 return 0;
1630 }
1631
1632 /*
1633 * Check reshape again to avoid reshape happens after checking
1634 * MD_RECOVERY_RESHAPE and before wait_barrier
1635 */
1636 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1637 goto out;
1638
1639 if (geo->near_copies)
1640 stripe_data_disks = geo->raid_disks / geo->near_copies +
1641 geo->raid_disks % geo->near_copies;
1642 else
1643 stripe_data_disks = geo->raid_disks;
1644
1645 stripe_size = stripe_data_disks << geo->chunk_shift;
1646
1647 bio_start = bio->bi_iter.bi_sector;
1648 bio_end = bio_end_sector(bio);
1649
1650 /*
1651 * Maybe one discard bio is smaller than strip size or across one
1652 * stripe and discard region is larger than one stripe size. For far
1653 * offset layout, if the discard region is not aligned with stripe
1654 * size, there is hole when we submit discard bio to member disk.
1655 * For simplicity, we only handle discard bio which discard region
1656 * is bigger than stripe_size * 2
1657 */
1658 if (bio_sectors(bio) < stripe_size*2)
1659 goto out;
1660
1661 /*
1662 * Keep bio aligned with strip size.
1663 */
1664 div_u64_rem(bio_start, stripe_size, &remainder);
1665 if (remainder) {
1666 split_size = stripe_size - remainder;
1667 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1668 if (IS_ERR(split)) {
1669 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1670 bio_endio(bio);
1671 return 0;
1672 }
1673 bio_chain(split, bio);
1674 allow_barrier(conf);
1675 /* Resend the fist split part */
1676 submit_bio_noacct(split);
1677 wait_barrier(conf, false);
1678 }
1679 div_u64_rem(bio_end, stripe_size, &remainder);
1680 if (remainder) {
1681 split_size = bio_sectors(bio) - remainder;
1682 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1683 if (IS_ERR(split)) {
1684 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1685 bio_endio(bio);
1686 return 0;
1687 }
1688 bio_chain(split, bio);
1689 allow_barrier(conf);
1690 /* Resend the second split part */
1691 submit_bio_noacct(bio);
1692 bio = split;
1693 wait_barrier(conf, false);
1694 }
1695
1696 bio_start = bio->bi_iter.bi_sector;
1697 bio_end = bio_end_sector(bio);
1698
1699 /*
1700 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1701 * One stripe contains the chunks from all member disk (one chunk from
1702 * one disk at the same HBA address). For layout detail, see 'man md 4'
1703 */
1704 chunk = bio_start >> geo->chunk_shift;
1705 chunk *= geo->near_copies;
1706 first_stripe_index = chunk;
1707 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1708 if (geo->far_offset)
1709 first_stripe_index *= geo->far_copies;
1710 start_disk_offset = (bio_start & geo->chunk_mask) +
1711 (first_stripe_index << geo->chunk_shift);
1712
1713 chunk = bio_end >> geo->chunk_shift;
1714 chunk *= geo->near_copies;
1715 last_stripe_index = chunk;
1716 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1717 if (geo->far_offset)
1718 last_stripe_index *= geo->far_copies;
1719 end_disk_offset = (bio_end & geo->chunk_mask) +
1720 (last_stripe_index << geo->chunk_shift);
1721
1722 retry_discard:
1723 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1724 r10_bio->mddev = mddev;
1725 r10_bio->state = 0;
1726 r10_bio->sectors = 0;
1727 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1728 wait_blocked_dev(mddev, r10_bio);
1729
1730 /*
1731 * For far layout it needs more than one r10bio to cover all regions.
1732 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1733 * to record the discard bio. Other r10bio->master_bio record the first
1734 * r10bio. The first r10bio only release after all other r10bios finish.
1735 * The discard bio returns only first r10bio finishes
1736 */
1737 if (first_copy) {
1738 md_account_bio(mddev, &bio);
1739 r10_bio->master_bio = bio;
1740 set_bit(R10BIO_Discard, &r10_bio->state);
1741 first_copy = false;
1742 first_r10bio = r10_bio;
1743 } else
1744 r10_bio->master_bio = (struct bio *)first_r10bio;
1745
1746 /*
1747 * first select target devices under rcu_lock and
1748 * inc refcount on their rdev. Record them by setting
1749 * bios[x] to bio
1750 */
1751 for (disk = 0; disk < geo->raid_disks; disk++) {
1752 struct md_rdev *rdev, *rrdev;
1753
1754 rdev = conf->mirrors[disk].rdev;
1755 rrdev = conf->mirrors[disk].replacement;
1756 r10_bio->devs[disk].bio = NULL;
1757 r10_bio->devs[disk].repl_bio = NULL;
1758
1759 if (rdev && (test_bit(Faulty, &rdev->flags)))
1760 rdev = NULL;
1761 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1762 rrdev = NULL;
1763 if (!rdev && !rrdev)
1764 continue;
1765
1766 if (rdev) {
1767 r10_bio->devs[disk].bio = bio;
1768 atomic_inc(&rdev->nr_pending);
1769 }
1770 if (rrdev) {
1771 r10_bio->devs[disk].repl_bio = bio;
1772 atomic_inc(&rrdev->nr_pending);
1773 }
1774 }
1775
1776 atomic_set(&r10_bio->remaining, 1);
1777 for (disk = 0; disk < geo->raid_disks; disk++) {
1778 sector_t dev_start, dev_end;
1779 struct bio *mbio, *rbio = NULL;
1780
1781 /*
1782 * Now start to calculate the start and end address for each disk.
1783 * The space between dev_start and dev_end is the discard region.
1784 *
1785 * For dev_start, it needs to consider three conditions:
1786 * 1st, the disk is before start_disk, you can imagine the disk in
1787 * the next stripe. So the dev_start is the start address of next
1788 * stripe.
1789 * 2st, the disk is after start_disk, it means the disk is at the
1790 * same stripe of first disk
1791 * 3st, the first disk itself, we can use start_disk_offset directly
1792 */
1793 if (disk < start_disk_index)
1794 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1795 else if (disk > start_disk_index)
1796 dev_start = first_stripe_index * mddev->chunk_sectors;
1797 else
1798 dev_start = start_disk_offset;
1799
1800 if (disk < end_disk_index)
1801 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1802 else if (disk > end_disk_index)
1803 dev_end = last_stripe_index * mddev->chunk_sectors;
1804 else
1805 dev_end = end_disk_offset;
1806
1807 /*
1808 * It only handles discard bio which size is >= stripe size, so
1809 * dev_end > dev_start all the time.
1810 * It doesn't need to use rcu lock to get rdev here. We already
1811 * add rdev->nr_pending in the first loop.
1812 */
1813 if (r10_bio->devs[disk].bio) {
1814 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1815 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1816 &mddev->bio_set);
1817 mbio->bi_end_io = raid10_end_discard_request;
1818 mbio->bi_private = r10_bio;
1819 r10_bio->devs[disk].bio = mbio;
1820 r10_bio->devs[disk].devnum = disk;
1821 atomic_inc(&r10_bio->remaining);
1822 md_submit_discard_bio(mddev, rdev, mbio,
1823 dev_start + choose_data_offset(r10_bio, rdev),
1824 dev_end - dev_start);
1825 bio_endio(mbio);
1826 }
1827 if (r10_bio->devs[disk].repl_bio) {
1828 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1829 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1830 &mddev->bio_set);
1831 rbio->bi_end_io = raid10_end_discard_request;
1832 rbio->bi_private = r10_bio;
1833 r10_bio->devs[disk].repl_bio = rbio;
1834 r10_bio->devs[disk].devnum = disk;
1835 atomic_inc(&r10_bio->remaining);
1836 md_submit_discard_bio(mddev, rrdev, rbio,
1837 dev_start + choose_data_offset(r10_bio, rrdev),
1838 dev_end - dev_start);
1839 bio_endio(rbio);
1840 }
1841 }
1842
1843 if (!geo->far_offset && --far_copies) {
1844 first_stripe_index += geo->stride >> geo->chunk_shift;
1845 start_disk_offset += geo->stride;
1846 last_stripe_index += geo->stride >> geo->chunk_shift;
1847 end_disk_offset += geo->stride;
1848 atomic_inc(&first_r10bio->remaining);
1849 raid_end_discard_bio(r10_bio);
1850 wait_barrier(conf, false);
1851 goto retry_discard;
1852 }
1853
1854 raid_end_discard_bio(r10_bio);
1855
1856 return 0;
1857 out:
1858 allow_barrier(conf);
1859 return -EAGAIN;
1860 }
1861
raid10_make_request(struct mddev * mddev,struct bio * bio)1862 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1863 {
1864 struct r10conf *conf = mddev->private;
1865 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1866 int chunk_sects = chunk_mask + 1;
1867 int sectors = bio_sectors(bio);
1868
1869 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1870 && md_flush_request(mddev, bio))
1871 return true;
1872
1873 md_write_start(mddev, bio);
1874
1875 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1876 if (!raid10_handle_discard(mddev, bio))
1877 return true;
1878
1879 /*
1880 * If this request crosses a chunk boundary, we need to split
1881 * it.
1882 */
1883 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1884 sectors > chunk_sects
1885 && (conf->geo.near_copies < conf->geo.raid_disks
1886 || conf->prev.near_copies <
1887 conf->prev.raid_disks)))
1888 sectors = chunk_sects -
1889 (bio->bi_iter.bi_sector &
1890 (chunk_sects - 1));
1891 __make_request(mddev, bio, sectors);
1892
1893 /* In case raid10d snuck in to freeze_array */
1894 wake_up_barrier(conf);
1895 return true;
1896 }
1897
raid10_status(struct seq_file * seq,struct mddev * mddev)1898 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1899 {
1900 struct r10conf *conf = mddev->private;
1901 int i;
1902
1903 lockdep_assert_held(&mddev->lock);
1904
1905 if (conf->geo.near_copies < conf->geo.raid_disks)
1906 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1907 if (conf->geo.near_copies > 1)
1908 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1909 if (conf->geo.far_copies > 1) {
1910 if (conf->geo.far_offset)
1911 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1912 else
1913 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1914 if (conf->geo.far_set_size != conf->geo.raid_disks)
1915 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1916 }
1917 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1918 conf->geo.raid_disks - mddev->degraded);
1919 for (i = 0; i < conf->geo.raid_disks; i++) {
1920 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1921
1922 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1923 }
1924 seq_printf(seq, "]");
1925 }
1926
1927 /* check if there are enough drives for
1928 * every block to appear on atleast one.
1929 * Don't consider the device numbered 'ignore'
1930 * as we might be about to remove it.
1931 */
_enough(struct r10conf * conf,int previous,int ignore)1932 static int _enough(struct r10conf *conf, int previous, int ignore)
1933 {
1934 int first = 0;
1935 int has_enough = 0;
1936 int disks, ncopies;
1937 if (previous) {
1938 disks = conf->prev.raid_disks;
1939 ncopies = conf->prev.near_copies;
1940 } else {
1941 disks = conf->geo.raid_disks;
1942 ncopies = conf->geo.near_copies;
1943 }
1944
1945 do {
1946 int n = conf->copies;
1947 int cnt = 0;
1948 int this = first;
1949 while (n--) {
1950 struct md_rdev *rdev;
1951 if (this != ignore &&
1952 (rdev = conf->mirrors[this].rdev) &&
1953 test_bit(In_sync, &rdev->flags))
1954 cnt++;
1955 this = (this+1) % disks;
1956 }
1957 if (cnt == 0)
1958 goto out;
1959 first = (first + ncopies) % disks;
1960 } while (first != 0);
1961 has_enough = 1;
1962 out:
1963 return has_enough;
1964 }
1965
enough(struct r10conf * conf,int ignore)1966 static int enough(struct r10conf *conf, int ignore)
1967 {
1968 /* when calling 'enough', both 'prev' and 'geo' must
1969 * be stable.
1970 * This is ensured if ->reconfig_mutex or ->device_lock
1971 * is held.
1972 */
1973 return _enough(conf, 0, ignore) &&
1974 _enough(conf, 1, ignore);
1975 }
1976
1977 /**
1978 * raid10_error() - RAID10 error handler.
1979 * @mddev: affected md device.
1980 * @rdev: member device to fail.
1981 *
1982 * The routine acknowledges &rdev failure and determines new @mddev state.
1983 * If it failed, then:
1984 * - &MD_BROKEN flag is set in &mddev->flags.
1985 * Otherwise, it must be degraded:
1986 * - recovery is interrupted.
1987 * - &mddev->degraded is bumped.
1988 *
1989 * @rdev is marked as &Faulty excluding case when array is failed and
1990 * &mddev->fail_last_dev is off.
1991 */
raid10_error(struct mddev * mddev,struct md_rdev * rdev)1992 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1993 {
1994 struct r10conf *conf = mddev->private;
1995 unsigned long flags;
1996
1997 spin_lock_irqsave(&conf->device_lock, flags);
1998
1999 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2000 set_bit(MD_BROKEN, &mddev->flags);
2001
2002 if (!mddev->fail_last_dev) {
2003 spin_unlock_irqrestore(&conf->device_lock, flags);
2004 return;
2005 }
2006 }
2007 if (test_and_clear_bit(In_sync, &rdev->flags))
2008 mddev->degraded++;
2009
2010 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2011 set_bit(Blocked, &rdev->flags);
2012 set_bit(Faulty, &rdev->flags);
2013 set_mask_bits(&mddev->sb_flags, 0,
2014 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2015 spin_unlock_irqrestore(&conf->device_lock, flags);
2016 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2017 "md/raid10:%s: Operation continuing on %d devices.\n",
2018 mdname(mddev), rdev->bdev,
2019 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2020 }
2021
print_conf(struct r10conf * conf)2022 static void print_conf(struct r10conf *conf)
2023 {
2024 int i;
2025 struct md_rdev *rdev;
2026
2027 pr_debug("RAID10 conf printout:\n");
2028 if (!conf) {
2029 pr_debug("(!conf)\n");
2030 return;
2031 }
2032 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2033 conf->geo.raid_disks);
2034
2035 lockdep_assert_held(&conf->mddev->reconfig_mutex);
2036 for (i = 0; i < conf->geo.raid_disks; i++) {
2037 rdev = conf->mirrors[i].rdev;
2038 if (rdev)
2039 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2040 i, !test_bit(In_sync, &rdev->flags),
2041 !test_bit(Faulty, &rdev->flags),
2042 rdev->bdev);
2043 }
2044 }
2045
close_sync(struct r10conf * conf)2046 static void close_sync(struct r10conf *conf)
2047 {
2048 wait_barrier(conf, false);
2049 allow_barrier(conf);
2050
2051 mempool_exit(&conf->r10buf_pool);
2052 }
2053
raid10_spare_active(struct mddev * mddev)2054 static int raid10_spare_active(struct mddev *mddev)
2055 {
2056 int i;
2057 struct r10conf *conf = mddev->private;
2058 struct raid10_info *tmp;
2059 int count = 0;
2060 unsigned long flags;
2061
2062 /*
2063 * Find all non-in_sync disks within the RAID10 configuration
2064 * and mark them in_sync
2065 */
2066 for (i = 0; i < conf->geo.raid_disks; i++) {
2067 tmp = conf->mirrors + i;
2068 if (tmp->replacement
2069 && tmp->replacement->recovery_offset == MaxSector
2070 && !test_bit(Faulty, &tmp->replacement->flags)
2071 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2072 /* Replacement has just become active */
2073 if (!tmp->rdev
2074 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2075 count++;
2076 if (tmp->rdev) {
2077 /* Replaced device not technically faulty,
2078 * but we need to be sure it gets removed
2079 * and never re-added.
2080 */
2081 set_bit(Faulty, &tmp->rdev->flags);
2082 sysfs_notify_dirent_safe(
2083 tmp->rdev->sysfs_state);
2084 }
2085 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2086 } else if (tmp->rdev
2087 && tmp->rdev->recovery_offset == MaxSector
2088 && !test_bit(Faulty, &tmp->rdev->flags)
2089 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2090 count++;
2091 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2092 }
2093 }
2094 spin_lock_irqsave(&conf->device_lock, flags);
2095 mddev->degraded -= count;
2096 spin_unlock_irqrestore(&conf->device_lock, flags);
2097
2098 print_conf(conf);
2099 return count;
2100 }
2101
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)2102 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2103 {
2104 struct r10conf *conf = mddev->private;
2105 int err = -EEXIST;
2106 int mirror, repl_slot = -1;
2107 int first = 0;
2108 int last = conf->geo.raid_disks - 1;
2109 struct raid10_info *p;
2110
2111 if (mddev->recovery_cp < MaxSector)
2112 /* only hot-add to in-sync arrays, as recovery is
2113 * very different from resync
2114 */
2115 return -EBUSY;
2116 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2117 return -EINVAL;
2118
2119 if (rdev->raid_disk >= 0)
2120 first = last = rdev->raid_disk;
2121
2122 if (rdev->saved_raid_disk >= first &&
2123 rdev->saved_raid_disk < conf->geo.raid_disks &&
2124 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2125 mirror = rdev->saved_raid_disk;
2126 else
2127 mirror = first;
2128 for ( ; mirror <= last ; mirror++) {
2129 p = &conf->mirrors[mirror];
2130 if (p->recovery_disabled == mddev->recovery_disabled)
2131 continue;
2132 if (p->rdev) {
2133 if (test_bit(WantReplacement, &p->rdev->flags) &&
2134 p->replacement == NULL && repl_slot < 0)
2135 repl_slot = mirror;
2136 continue;
2137 }
2138
2139 err = mddev_stack_new_rdev(mddev, rdev);
2140 if (err)
2141 return err;
2142 p->head_position = 0;
2143 p->recovery_disabled = mddev->recovery_disabled - 1;
2144 rdev->raid_disk = mirror;
2145 err = 0;
2146 if (rdev->saved_raid_disk != mirror)
2147 conf->fullsync = 1;
2148 WRITE_ONCE(p->rdev, rdev);
2149 break;
2150 }
2151
2152 if (err && repl_slot >= 0) {
2153 p = &conf->mirrors[repl_slot];
2154 clear_bit(In_sync, &rdev->flags);
2155 set_bit(Replacement, &rdev->flags);
2156 rdev->raid_disk = repl_slot;
2157 err = mddev_stack_new_rdev(mddev, rdev);
2158 if (err)
2159 return err;
2160 conf->fullsync = 1;
2161 WRITE_ONCE(p->replacement, rdev);
2162 }
2163
2164 print_conf(conf);
2165 return err;
2166 }
2167
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)2168 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2169 {
2170 struct r10conf *conf = mddev->private;
2171 int err = 0;
2172 int number = rdev->raid_disk;
2173 struct md_rdev **rdevp;
2174 struct raid10_info *p;
2175
2176 print_conf(conf);
2177 if (unlikely(number >= mddev->raid_disks))
2178 return 0;
2179 p = conf->mirrors + number;
2180 if (rdev == p->rdev)
2181 rdevp = &p->rdev;
2182 else if (rdev == p->replacement)
2183 rdevp = &p->replacement;
2184 else
2185 return 0;
2186
2187 if (test_bit(In_sync, &rdev->flags) ||
2188 atomic_read(&rdev->nr_pending)) {
2189 err = -EBUSY;
2190 goto abort;
2191 }
2192 /* Only remove non-faulty devices if recovery
2193 * is not possible.
2194 */
2195 if (!test_bit(Faulty, &rdev->flags) &&
2196 mddev->recovery_disabled != p->recovery_disabled &&
2197 (!p->replacement || p->replacement == rdev) &&
2198 number < conf->geo.raid_disks &&
2199 enough(conf, -1)) {
2200 err = -EBUSY;
2201 goto abort;
2202 }
2203 WRITE_ONCE(*rdevp, NULL);
2204 if (p->replacement) {
2205 /* We must have just cleared 'rdev' */
2206 WRITE_ONCE(p->rdev, p->replacement);
2207 clear_bit(Replacement, &p->replacement->flags);
2208 WRITE_ONCE(p->replacement, NULL);
2209 }
2210
2211 clear_bit(WantReplacement, &rdev->flags);
2212 err = md_integrity_register(mddev);
2213
2214 abort:
2215
2216 print_conf(conf);
2217 return err;
2218 }
2219
__end_sync_read(struct r10bio * r10_bio,struct bio * bio,int d)2220 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2221 {
2222 struct r10conf *conf = r10_bio->mddev->private;
2223
2224 if (!bio->bi_status)
2225 set_bit(R10BIO_Uptodate, &r10_bio->state);
2226 else
2227 /* The write handler will notice the lack of
2228 * R10BIO_Uptodate and record any errors etc
2229 */
2230 atomic_add(r10_bio->sectors,
2231 &conf->mirrors[d].rdev->corrected_errors);
2232
2233 /* for reconstruct, we always reschedule after a read.
2234 * for resync, only after all reads
2235 */
2236 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2237 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2238 atomic_dec_and_test(&r10_bio->remaining)) {
2239 /* we have read all the blocks,
2240 * do the comparison in process context in raid10d
2241 */
2242 reschedule_retry(r10_bio);
2243 }
2244 }
2245
end_sync_read(struct bio * bio)2246 static void end_sync_read(struct bio *bio)
2247 {
2248 struct r10bio *r10_bio = get_resync_r10bio(bio);
2249 struct r10conf *conf = r10_bio->mddev->private;
2250 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2251
2252 __end_sync_read(r10_bio, bio, d);
2253 }
2254
end_reshape_read(struct bio * bio)2255 static void end_reshape_read(struct bio *bio)
2256 {
2257 /* reshape read bio isn't allocated from r10buf_pool */
2258 struct r10bio *r10_bio = bio->bi_private;
2259
2260 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2261 }
2262
end_sync_request(struct r10bio * r10_bio)2263 static void end_sync_request(struct r10bio *r10_bio)
2264 {
2265 struct mddev *mddev = r10_bio->mddev;
2266
2267 while (atomic_dec_and_test(&r10_bio->remaining)) {
2268 if (r10_bio->master_bio == NULL) {
2269 /* the primary of several recovery bios */
2270 sector_t s = r10_bio->sectors;
2271 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2272 test_bit(R10BIO_WriteError, &r10_bio->state))
2273 reschedule_retry(r10_bio);
2274 else
2275 put_buf(r10_bio);
2276 md_done_sync(mddev, s, 1);
2277 break;
2278 } else {
2279 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2280 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2281 test_bit(R10BIO_WriteError, &r10_bio->state))
2282 reschedule_retry(r10_bio);
2283 else
2284 put_buf(r10_bio);
2285 r10_bio = r10_bio2;
2286 }
2287 }
2288 }
2289
end_sync_write(struct bio * bio)2290 static void end_sync_write(struct bio *bio)
2291 {
2292 struct r10bio *r10_bio = get_resync_r10bio(bio);
2293 struct mddev *mddev = r10_bio->mddev;
2294 struct r10conf *conf = mddev->private;
2295 int d;
2296 int slot;
2297 int repl;
2298 struct md_rdev *rdev = NULL;
2299
2300 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2301 if (repl)
2302 rdev = conf->mirrors[d].replacement;
2303 else
2304 rdev = conf->mirrors[d].rdev;
2305
2306 if (bio->bi_status) {
2307 if (repl)
2308 md_error(mddev, rdev);
2309 else {
2310 set_bit(WriteErrorSeen, &rdev->flags);
2311 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2312 set_bit(MD_RECOVERY_NEEDED,
2313 &rdev->mddev->recovery);
2314 set_bit(R10BIO_WriteError, &r10_bio->state);
2315 }
2316 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2317 r10_bio->sectors)) {
2318 set_bit(R10BIO_MadeGood, &r10_bio->state);
2319 }
2320
2321 rdev_dec_pending(rdev, mddev);
2322
2323 end_sync_request(r10_bio);
2324 }
2325
2326 /*
2327 * Note: sync and recover and handled very differently for raid10
2328 * This code is for resync.
2329 * For resync, we read through virtual addresses and read all blocks.
2330 * If there is any error, we schedule a write. The lowest numbered
2331 * drive is authoritative.
2332 * However requests come for physical address, so we need to map.
2333 * For every physical address there are raid_disks/copies virtual addresses,
2334 * which is always are least one, but is not necessarly an integer.
2335 * This means that a physical address can span multiple chunks, so we may
2336 * have to submit multiple io requests for a single sync request.
2337 */
2338 /*
2339 * We check if all blocks are in-sync and only write to blocks that
2340 * aren't in sync
2341 */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)2342 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2343 {
2344 struct r10conf *conf = mddev->private;
2345 int i, first;
2346 struct bio *tbio, *fbio;
2347 int vcnt;
2348 struct page **tpages, **fpages;
2349
2350 atomic_set(&r10_bio->remaining, 1);
2351
2352 /* find the first device with a block */
2353 for (i=0; i<conf->copies; i++)
2354 if (!r10_bio->devs[i].bio->bi_status)
2355 break;
2356
2357 if (i == conf->copies)
2358 goto done;
2359
2360 first = i;
2361 fbio = r10_bio->devs[i].bio;
2362 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2363 fbio->bi_iter.bi_idx = 0;
2364 fpages = get_resync_pages(fbio)->pages;
2365
2366 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2367 /* now find blocks with errors */
2368 for (i=0 ; i < conf->copies ; i++) {
2369 int j, d;
2370 struct md_rdev *rdev;
2371 struct resync_pages *rp;
2372
2373 tbio = r10_bio->devs[i].bio;
2374
2375 if (tbio->bi_end_io != end_sync_read)
2376 continue;
2377 if (i == first)
2378 continue;
2379
2380 tpages = get_resync_pages(tbio)->pages;
2381 d = r10_bio->devs[i].devnum;
2382 rdev = conf->mirrors[d].rdev;
2383 if (!r10_bio->devs[i].bio->bi_status) {
2384 /* We know that the bi_io_vec layout is the same for
2385 * both 'first' and 'i', so we just compare them.
2386 * All vec entries are PAGE_SIZE;
2387 */
2388 int sectors = r10_bio->sectors;
2389 for (j = 0; j < vcnt; j++) {
2390 int len = PAGE_SIZE;
2391 if (sectors < (len / 512))
2392 len = sectors * 512;
2393 if (memcmp(page_address(fpages[j]),
2394 page_address(tpages[j]),
2395 len))
2396 break;
2397 sectors -= len/512;
2398 }
2399 if (j == vcnt)
2400 continue;
2401 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2402 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2403 /* Don't fix anything. */
2404 continue;
2405 } else if (test_bit(FailFast, &rdev->flags)) {
2406 /* Just give up on this device */
2407 md_error(rdev->mddev, rdev);
2408 continue;
2409 }
2410 /* Ok, we need to write this bio, either to correct an
2411 * inconsistency or to correct an unreadable block.
2412 * First we need to fixup bv_offset, bv_len and
2413 * bi_vecs, as the read request might have corrupted these
2414 */
2415 rp = get_resync_pages(tbio);
2416 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2417
2418 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2419
2420 rp->raid_bio = r10_bio;
2421 tbio->bi_private = rp;
2422 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2423 tbio->bi_end_io = end_sync_write;
2424
2425 bio_copy_data(tbio, fbio);
2426
2427 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2428 atomic_inc(&r10_bio->remaining);
2429 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2430
2431 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2432 tbio->bi_opf |= MD_FAILFAST;
2433 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2434 submit_bio_noacct(tbio);
2435 }
2436
2437 /* Now write out to any replacement devices
2438 * that are active
2439 */
2440 for (i = 0; i < conf->copies; i++) {
2441 int d;
2442
2443 tbio = r10_bio->devs[i].repl_bio;
2444 if (!tbio || !tbio->bi_end_io)
2445 continue;
2446 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2447 && r10_bio->devs[i].bio != fbio)
2448 bio_copy_data(tbio, fbio);
2449 d = r10_bio->devs[i].devnum;
2450 atomic_inc(&r10_bio->remaining);
2451 md_sync_acct(conf->mirrors[d].replacement->bdev,
2452 bio_sectors(tbio));
2453 submit_bio_noacct(tbio);
2454 }
2455
2456 done:
2457 if (atomic_dec_and_test(&r10_bio->remaining)) {
2458 md_done_sync(mddev, r10_bio->sectors, 1);
2459 put_buf(r10_bio);
2460 }
2461 }
2462
2463 /*
2464 * Now for the recovery code.
2465 * Recovery happens across physical sectors.
2466 * We recover all non-is_sync drives by finding the virtual address of
2467 * each, and then choose a working drive that also has that virt address.
2468 * There is a separate r10_bio for each non-in_sync drive.
2469 * Only the first two slots are in use. The first for reading,
2470 * The second for writing.
2471 *
2472 */
fix_recovery_read_error(struct r10bio * r10_bio)2473 static void fix_recovery_read_error(struct r10bio *r10_bio)
2474 {
2475 /* We got a read error during recovery.
2476 * We repeat the read in smaller page-sized sections.
2477 * If a read succeeds, write it to the new device or record
2478 * a bad block if we cannot.
2479 * If a read fails, record a bad block on both old and
2480 * new devices.
2481 */
2482 struct mddev *mddev = r10_bio->mddev;
2483 struct r10conf *conf = mddev->private;
2484 struct bio *bio = r10_bio->devs[0].bio;
2485 sector_t sect = 0;
2486 int sectors = r10_bio->sectors;
2487 int idx = 0;
2488 int dr = r10_bio->devs[0].devnum;
2489 int dw = r10_bio->devs[1].devnum;
2490 struct page **pages = get_resync_pages(bio)->pages;
2491
2492 while (sectors) {
2493 int s = sectors;
2494 struct md_rdev *rdev;
2495 sector_t addr;
2496 int ok;
2497
2498 if (s > (PAGE_SIZE>>9))
2499 s = PAGE_SIZE >> 9;
2500
2501 rdev = conf->mirrors[dr].rdev;
2502 addr = r10_bio->devs[0].addr + sect;
2503 ok = sync_page_io(rdev,
2504 addr,
2505 s << 9,
2506 pages[idx],
2507 REQ_OP_READ, false);
2508 if (ok) {
2509 rdev = conf->mirrors[dw].rdev;
2510 addr = r10_bio->devs[1].addr + sect;
2511 ok = sync_page_io(rdev,
2512 addr,
2513 s << 9,
2514 pages[idx],
2515 REQ_OP_WRITE, false);
2516 if (!ok) {
2517 set_bit(WriteErrorSeen, &rdev->flags);
2518 if (!test_and_set_bit(WantReplacement,
2519 &rdev->flags))
2520 set_bit(MD_RECOVERY_NEEDED,
2521 &rdev->mddev->recovery);
2522 }
2523 }
2524 if (!ok) {
2525 /* We don't worry if we cannot set a bad block -
2526 * it really is bad so there is no loss in not
2527 * recording it yet
2528 */
2529 rdev_set_badblocks(rdev, addr, s, 0);
2530
2531 if (rdev != conf->mirrors[dw].rdev) {
2532 /* need bad block on destination too */
2533 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2534 addr = r10_bio->devs[1].addr + sect;
2535 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2536 if (!ok) {
2537 /* just abort the recovery */
2538 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2539 mdname(mddev));
2540
2541 conf->mirrors[dw].recovery_disabled
2542 = mddev->recovery_disabled;
2543 set_bit(MD_RECOVERY_INTR,
2544 &mddev->recovery);
2545 break;
2546 }
2547 }
2548 }
2549
2550 sectors -= s;
2551 sect += s;
2552 idx++;
2553 }
2554 }
2555
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2556 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2557 {
2558 struct r10conf *conf = mddev->private;
2559 int d;
2560 struct bio *wbio = r10_bio->devs[1].bio;
2561 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2562
2563 /* Need to test wbio2->bi_end_io before we call
2564 * submit_bio_noacct as if the former is NULL,
2565 * the latter is free to free wbio2.
2566 */
2567 if (wbio2 && !wbio2->bi_end_io)
2568 wbio2 = NULL;
2569
2570 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2571 fix_recovery_read_error(r10_bio);
2572 if (wbio->bi_end_io)
2573 end_sync_request(r10_bio);
2574 if (wbio2)
2575 end_sync_request(r10_bio);
2576 return;
2577 }
2578
2579 /*
2580 * share the pages with the first bio
2581 * and submit the write request
2582 */
2583 d = r10_bio->devs[1].devnum;
2584 if (wbio->bi_end_io) {
2585 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2586 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2587 submit_bio_noacct(wbio);
2588 }
2589 if (wbio2) {
2590 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2591 md_sync_acct(conf->mirrors[d].replacement->bdev,
2592 bio_sectors(wbio2));
2593 submit_bio_noacct(wbio2);
2594 }
2595 }
2596
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,enum req_op op)2597 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2598 int sectors, struct page *page, enum req_op op)
2599 {
2600 if (rdev_has_badblock(rdev, sector, sectors) &&
2601 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2602 return -1;
2603 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2604 /* success */
2605 return 1;
2606 if (op == REQ_OP_WRITE) {
2607 set_bit(WriteErrorSeen, &rdev->flags);
2608 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2609 set_bit(MD_RECOVERY_NEEDED,
2610 &rdev->mddev->recovery);
2611 }
2612 /* need to record an error - either for the block or the device */
2613 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2614 md_error(rdev->mddev, rdev);
2615 return 0;
2616 }
2617
2618 /*
2619 * This is a kernel thread which:
2620 *
2621 * 1. Retries failed read operations on working mirrors.
2622 * 2. Updates the raid superblock when problems encounter.
2623 * 3. Performs writes following reads for array synchronising.
2624 */
2625
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2626 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2627 {
2628 int sect = 0; /* Offset from r10_bio->sector */
2629 int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2630 struct md_rdev *rdev;
2631 int d = r10_bio->devs[slot].devnum;
2632
2633 /* still own a reference to this rdev, so it cannot
2634 * have been cleared recently.
2635 */
2636 rdev = conf->mirrors[d].rdev;
2637
2638 if (test_bit(Faulty, &rdev->flags))
2639 /* drive has already been failed, just ignore any
2640 more fix_read_error() attempts */
2641 return;
2642
2643 if (exceed_read_errors(mddev, rdev)) {
2644 r10_bio->devs[slot].bio = IO_BLOCKED;
2645 return;
2646 }
2647
2648 while(sectors) {
2649 int s = sectors;
2650 int sl = slot;
2651 int success = 0;
2652 int start;
2653
2654 if (s > (PAGE_SIZE>>9))
2655 s = PAGE_SIZE >> 9;
2656
2657 do {
2658 d = r10_bio->devs[sl].devnum;
2659 rdev = conf->mirrors[d].rdev;
2660 if (rdev &&
2661 test_bit(In_sync, &rdev->flags) &&
2662 !test_bit(Faulty, &rdev->flags) &&
2663 rdev_has_badblock(rdev,
2664 r10_bio->devs[sl].addr + sect,
2665 s) == 0) {
2666 atomic_inc(&rdev->nr_pending);
2667 success = sync_page_io(rdev,
2668 r10_bio->devs[sl].addr +
2669 sect,
2670 s<<9,
2671 conf->tmppage,
2672 REQ_OP_READ, false);
2673 rdev_dec_pending(rdev, mddev);
2674 if (success)
2675 break;
2676 }
2677 sl++;
2678 if (sl == conf->copies)
2679 sl = 0;
2680 } while (sl != slot);
2681
2682 if (!success) {
2683 /* Cannot read from anywhere, just mark the block
2684 * as bad on the first device to discourage future
2685 * reads.
2686 */
2687 int dn = r10_bio->devs[slot].devnum;
2688 rdev = conf->mirrors[dn].rdev;
2689
2690 if (!rdev_set_badblocks(
2691 rdev,
2692 r10_bio->devs[slot].addr
2693 + sect,
2694 s, 0)) {
2695 md_error(mddev, rdev);
2696 r10_bio->devs[slot].bio
2697 = IO_BLOCKED;
2698 }
2699 break;
2700 }
2701
2702 start = sl;
2703 /* write it back and re-read */
2704 while (sl != slot) {
2705 if (sl==0)
2706 sl = conf->copies;
2707 sl--;
2708 d = r10_bio->devs[sl].devnum;
2709 rdev = conf->mirrors[d].rdev;
2710 if (!rdev ||
2711 test_bit(Faulty, &rdev->flags) ||
2712 !test_bit(In_sync, &rdev->flags))
2713 continue;
2714
2715 atomic_inc(&rdev->nr_pending);
2716 if (r10_sync_page_io(rdev,
2717 r10_bio->devs[sl].addr +
2718 sect,
2719 s, conf->tmppage, REQ_OP_WRITE)
2720 == 0) {
2721 /* Well, this device is dead */
2722 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2723 mdname(mddev), s,
2724 (unsigned long long)(
2725 sect +
2726 choose_data_offset(r10_bio,
2727 rdev)),
2728 rdev->bdev);
2729 pr_notice("md/raid10:%s: %pg: failing drive\n",
2730 mdname(mddev),
2731 rdev->bdev);
2732 }
2733 rdev_dec_pending(rdev, mddev);
2734 }
2735 sl = start;
2736 while (sl != slot) {
2737 if (sl==0)
2738 sl = conf->copies;
2739 sl--;
2740 d = r10_bio->devs[sl].devnum;
2741 rdev = conf->mirrors[d].rdev;
2742 if (!rdev ||
2743 test_bit(Faulty, &rdev->flags) ||
2744 !test_bit(In_sync, &rdev->flags))
2745 continue;
2746
2747 atomic_inc(&rdev->nr_pending);
2748 switch (r10_sync_page_io(rdev,
2749 r10_bio->devs[sl].addr +
2750 sect,
2751 s, conf->tmppage, REQ_OP_READ)) {
2752 case 0:
2753 /* Well, this device is dead */
2754 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2755 mdname(mddev), s,
2756 (unsigned long long)(
2757 sect +
2758 choose_data_offset(r10_bio, rdev)),
2759 rdev->bdev);
2760 pr_notice("md/raid10:%s: %pg: failing drive\n",
2761 mdname(mddev),
2762 rdev->bdev);
2763 break;
2764 case 1:
2765 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2766 mdname(mddev), s,
2767 (unsigned long long)(
2768 sect +
2769 choose_data_offset(r10_bio, rdev)),
2770 rdev->bdev);
2771 atomic_add(s, &rdev->corrected_errors);
2772 }
2773
2774 rdev_dec_pending(rdev, mddev);
2775 }
2776
2777 sectors -= s;
2778 sect += s;
2779 }
2780 }
2781
narrow_write_error(struct r10bio * r10_bio,int i)2782 static bool narrow_write_error(struct r10bio *r10_bio, int i)
2783 {
2784 struct bio *bio = r10_bio->master_bio;
2785 struct mddev *mddev = r10_bio->mddev;
2786 struct r10conf *conf = mddev->private;
2787 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2788 /* bio has the data to be written to slot 'i' where
2789 * we just recently had a write error.
2790 * We repeatedly clone the bio and trim down to one block,
2791 * then try the write. Where the write fails we record
2792 * a bad block.
2793 * It is conceivable that the bio doesn't exactly align with
2794 * blocks. We must handle this.
2795 *
2796 * We currently own a reference to the rdev.
2797 */
2798
2799 int block_sectors;
2800 sector_t sector;
2801 int sectors;
2802 int sect_to_write = r10_bio->sectors;
2803 bool ok = true;
2804
2805 if (rdev->badblocks.shift < 0)
2806 return false;
2807
2808 block_sectors = roundup(1 << rdev->badblocks.shift,
2809 bdev_logical_block_size(rdev->bdev) >> 9);
2810 sector = r10_bio->sector;
2811 sectors = ((r10_bio->sector + block_sectors)
2812 & ~(sector_t)(block_sectors - 1))
2813 - sector;
2814
2815 while (sect_to_write) {
2816 struct bio *wbio;
2817 sector_t wsector;
2818 if (sectors > sect_to_write)
2819 sectors = sect_to_write;
2820 /* Write at 'sector' for 'sectors' */
2821 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2822 &mddev->bio_set);
2823 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2824 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2825 wbio->bi_iter.bi_sector = wsector +
2826 choose_data_offset(r10_bio, rdev);
2827 wbio->bi_opf = REQ_OP_WRITE;
2828
2829 if (submit_bio_wait(wbio) < 0)
2830 /* Failure! */
2831 ok = rdev_set_badblocks(rdev, wsector,
2832 sectors, 0)
2833 && ok;
2834
2835 bio_put(wbio);
2836 sect_to_write -= sectors;
2837 sector += sectors;
2838 sectors = block_sectors;
2839 }
2840 return ok;
2841 }
2842
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2843 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2844 {
2845 int slot = r10_bio->read_slot;
2846 struct bio *bio;
2847 struct r10conf *conf = mddev->private;
2848 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2849
2850 /* we got a read error. Maybe the drive is bad. Maybe just
2851 * the block and we can fix it.
2852 * We freeze all other IO, and try reading the block from
2853 * other devices. When we find one, we re-write
2854 * and check it that fixes the read error.
2855 * This is all done synchronously while the array is
2856 * frozen.
2857 */
2858 bio = r10_bio->devs[slot].bio;
2859 bio_put(bio);
2860 r10_bio->devs[slot].bio = NULL;
2861
2862 if (mddev->ro)
2863 r10_bio->devs[slot].bio = IO_BLOCKED;
2864 else if (!test_bit(FailFast, &rdev->flags)) {
2865 freeze_array(conf, 1);
2866 fix_read_error(conf, mddev, r10_bio);
2867 unfreeze_array(conf);
2868 } else
2869 md_error(mddev, rdev);
2870
2871 rdev_dec_pending(rdev, mddev);
2872 r10_bio->state = 0;
2873 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2874 /*
2875 * allow_barrier after re-submit to ensure no sync io
2876 * can be issued while regular io pending.
2877 */
2878 allow_barrier(conf);
2879 }
2880
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2881 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2882 {
2883 /* Some sort of write request has finished and it
2884 * succeeded in writing where we thought there was a
2885 * bad block. So forget the bad block.
2886 * Or possibly if failed and we need to record
2887 * a bad block.
2888 */
2889 int m;
2890 struct md_rdev *rdev;
2891
2892 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2893 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2894 for (m = 0; m < conf->copies; m++) {
2895 int dev = r10_bio->devs[m].devnum;
2896 rdev = conf->mirrors[dev].rdev;
2897 if (r10_bio->devs[m].bio == NULL ||
2898 r10_bio->devs[m].bio->bi_end_io == NULL)
2899 continue;
2900 if (!r10_bio->devs[m].bio->bi_status) {
2901 rdev_clear_badblocks(
2902 rdev,
2903 r10_bio->devs[m].addr,
2904 r10_bio->sectors, 0);
2905 } else {
2906 if (!rdev_set_badblocks(
2907 rdev,
2908 r10_bio->devs[m].addr,
2909 r10_bio->sectors, 0))
2910 md_error(conf->mddev, rdev);
2911 }
2912 rdev = conf->mirrors[dev].replacement;
2913 if (r10_bio->devs[m].repl_bio == NULL ||
2914 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2915 continue;
2916
2917 if (!r10_bio->devs[m].repl_bio->bi_status) {
2918 rdev_clear_badblocks(
2919 rdev,
2920 r10_bio->devs[m].addr,
2921 r10_bio->sectors, 0);
2922 } else {
2923 if (!rdev_set_badblocks(
2924 rdev,
2925 r10_bio->devs[m].addr,
2926 r10_bio->sectors, 0))
2927 md_error(conf->mddev, rdev);
2928 }
2929 }
2930 put_buf(r10_bio);
2931 } else {
2932 bool fail = false;
2933 for (m = 0; m < conf->copies; m++) {
2934 int dev = r10_bio->devs[m].devnum;
2935 struct bio *bio = r10_bio->devs[m].bio;
2936 rdev = conf->mirrors[dev].rdev;
2937 if (bio == IO_MADE_GOOD) {
2938 rdev_clear_badblocks(
2939 rdev,
2940 r10_bio->devs[m].addr,
2941 r10_bio->sectors, 0);
2942 rdev_dec_pending(rdev, conf->mddev);
2943 } else if (bio != NULL && bio->bi_status) {
2944 fail = true;
2945 if (!narrow_write_error(r10_bio, m))
2946 md_error(conf->mddev, rdev);
2947 rdev_dec_pending(rdev, conf->mddev);
2948 }
2949 bio = r10_bio->devs[m].repl_bio;
2950 rdev = conf->mirrors[dev].replacement;
2951 if (rdev && bio == IO_MADE_GOOD) {
2952 rdev_clear_badblocks(
2953 rdev,
2954 r10_bio->devs[m].addr,
2955 r10_bio->sectors, 0);
2956 rdev_dec_pending(rdev, conf->mddev);
2957 }
2958 }
2959 if (fail) {
2960 spin_lock_irq(&conf->device_lock);
2961 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2962 conf->nr_queued++;
2963 spin_unlock_irq(&conf->device_lock);
2964 /*
2965 * In case freeze_array() is waiting for condition
2966 * nr_pending == nr_queued + extra to be true.
2967 */
2968 wake_up(&conf->wait_barrier);
2969 md_wakeup_thread(conf->mddev->thread);
2970 } else {
2971 if (test_bit(R10BIO_WriteError,
2972 &r10_bio->state))
2973 close_write(r10_bio);
2974 raid_end_bio_io(r10_bio);
2975 }
2976 }
2977 }
2978
raid10d(struct md_thread * thread)2979 static void raid10d(struct md_thread *thread)
2980 {
2981 struct mddev *mddev = thread->mddev;
2982 struct r10bio *r10_bio;
2983 unsigned long flags;
2984 struct r10conf *conf = mddev->private;
2985 struct list_head *head = &conf->retry_list;
2986 struct blk_plug plug;
2987
2988 md_check_recovery(mddev);
2989
2990 if (!list_empty_careful(&conf->bio_end_io_list) &&
2991 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2992 LIST_HEAD(tmp);
2993 spin_lock_irqsave(&conf->device_lock, flags);
2994 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2995 while (!list_empty(&conf->bio_end_io_list)) {
2996 list_move(conf->bio_end_io_list.prev, &tmp);
2997 conf->nr_queued--;
2998 }
2999 }
3000 spin_unlock_irqrestore(&conf->device_lock, flags);
3001 while (!list_empty(&tmp)) {
3002 r10_bio = list_first_entry(&tmp, struct r10bio,
3003 retry_list);
3004 list_del(&r10_bio->retry_list);
3005
3006 if (test_bit(R10BIO_WriteError,
3007 &r10_bio->state))
3008 close_write(r10_bio);
3009 raid_end_bio_io(r10_bio);
3010 }
3011 }
3012
3013 blk_start_plug(&plug);
3014 for (;;) {
3015
3016 flush_pending_writes(conf);
3017
3018 spin_lock_irqsave(&conf->device_lock, flags);
3019 if (list_empty(head)) {
3020 spin_unlock_irqrestore(&conf->device_lock, flags);
3021 break;
3022 }
3023 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3024 list_del(head->prev);
3025 conf->nr_queued--;
3026 spin_unlock_irqrestore(&conf->device_lock, flags);
3027
3028 mddev = r10_bio->mddev;
3029 conf = mddev->private;
3030 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3031 test_bit(R10BIO_WriteError, &r10_bio->state))
3032 handle_write_completed(conf, r10_bio);
3033 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3034 reshape_request_write(mddev, r10_bio);
3035 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3036 sync_request_write(mddev, r10_bio);
3037 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3038 recovery_request_write(mddev, r10_bio);
3039 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3040 handle_read_error(mddev, r10_bio);
3041 else
3042 WARN_ON_ONCE(1);
3043
3044 cond_resched();
3045 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3046 md_check_recovery(mddev);
3047 }
3048 blk_finish_plug(&plug);
3049 }
3050
init_resync(struct r10conf * conf)3051 static int init_resync(struct r10conf *conf)
3052 {
3053 int ret, buffs, i;
3054
3055 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3056 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3057 conf->have_replacement = 0;
3058 for (i = 0; i < conf->geo.raid_disks; i++)
3059 if (conf->mirrors[i].replacement)
3060 conf->have_replacement = 1;
3061 ret = mempool_init(&conf->r10buf_pool, buffs,
3062 r10buf_pool_alloc, r10buf_pool_free, conf);
3063 if (ret)
3064 return ret;
3065 conf->next_resync = 0;
3066 return 0;
3067 }
3068
raid10_alloc_init_r10buf(struct r10conf * conf)3069 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3070 {
3071 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3072 struct rsync_pages *rp;
3073 struct bio *bio;
3074 int nalloc;
3075 int i;
3076
3077 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3078 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3079 nalloc = conf->copies; /* resync */
3080 else
3081 nalloc = 2; /* recovery */
3082
3083 for (i = 0; i < nalloc; i++) {
3084 bio = r10bio->devs[i].bio;
3085 rp = bio->bi_private;
3086 bio_reset(bio, NULL, 0);
3087 bio->bi_private = rp;
3088 bio = r10bio->devs[i].repl_bio;
3089 if (bio) {
3090 rp = bio->bi_private;
3091 bio_reset(bio, NULL, 0);
3092 bio->bi_private = rp;
3093 }
3094 }
3095 return r10bio;
3096 }
3097
3098 /*
3099 * Set cluster_sync_high since we need other nodes to add the
3100 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3101 */
raid10_set_cluster_sync_high(struct r10conf * conf)3102 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3103 {
3104 sector_t window_size;
3105 int extra_chunk, chunks;
3106
3107 /*
3108 * First, here we define "stripe" as a unit which across
3109 * all member devices one time, so we get chunks by use
3110 * raid_disks / near_copies. Otherwise, if near_copies is
3111 * close to raid_disks, then resync window could increases
3112 * linearly with the increase of raid_disks, which means
3113 * we will suspend a really large IO window while it is not
3114 * necessary. If raid_disks is not divisible by near_copies,
3115 * an extra chunk is needed to ensure the whole "stripe" is
3116 * covered.
3117 */
3118
3119 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3120 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3121 extra_chunk = 0;
3122 else
3123 extra_chunk = 1;
3124 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3125
3126 /*
3127 * At least use a 32M window to align with raid1's resync window
3128 */
3129 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3130 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3131
3132 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3133 }
3134
3135 /*
3136 * perform a "sync" on one "block"
3137 *
3138 * We need to make sure that no normal I/O request - particularly write
3139 * requests - conflict with active sync requests.
3140 *
3141 * This is achieved by tracking pending requests and a 'barrier' concept
3142 * that can be installed to exclude normal IO requests.
3143 *
3144 * Resync and recovery are handled very differently.
3145 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3146 *
3147 * For resync, we iterate over virtual addresses, read all copies,
3148 * and update if there are differences. If only one copy is live,
3149 * skip it.
3150 * For recovery, we iterate over physical addresses, read a good
3151 * value for each non-in_sync drive, and over-write.
3152 *
3153 * So, for recovery we may have several outstanding complex requests for a
3154 * given address, one for each out-of-sync device. We model this by allocating
3155 * a number of r10_bio structures, one for each out-of-sync device.
3156 * As we setup these structures, we collect all bio's together into a list
3157 * which we then process collectively to add pages, and then process again
3158 * to pass to submit_bio_noacct.
3159 *
3160 * The r10_bio structures are linked using a borrowed master_bio pointer.
3161 * This link is counted in ->remaining. When the r10_bio that points to NULL
3162 * has its remaining count decremented to 0, the whole complex operation
3163 * is complete.
3164 *
3165 */
3166
raid10_sync_request(struct mddev * mddev,sector_t sector_nr,sector_t max_sector,int * skipped)3167 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3168 sector_t max_sector, int *skipped)
3169 {
3170 struct r10conf *conf = mddev->private;
3171 struct r10bio *r10_bio;
3172 struct bio *biolist = NULL, *bio;
3173 sector_t nr_sectors;
3174 int i;
3175 int max_sync;
3176 sector_t sync_blocks;
3177 sector_t sectors_skipped = 0;
3178 int chunks_skipped = 0;
3179 sector_t chunk_mask = conf->geo.chunk_mask;
3180 int page_idx = 0;
3181 int error_disk = -1;
3182
3183 /*
3184 * Allow skipping a full rebuild for incremental assembly
3185 * of a clean array, like RAID1 does.
3186 */
3187 if (mddev->bitmap == NULL &&
3188 mddev->recovery_cp == MaxSector &&
3189 mddev->reshape_position == MaxSector &&
3190 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3191 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3192 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3193 conf->fullsync == 0) {
3194 *skipped = 1;
3195 return mddev->dev_sectors - sector_nr;
3196 }
3197
3198 if (!mempool_initialized(&conf->r10buf_pool))
3199 if (init_resync(conf))
3200 return 0;
3201
3202 skipped:
3203 if (sector_nr >= max_sector) {
3204 conf->cluster_sync_low = 0;
3205 conf->cluster_sync_high = 0;
3206
3207 /* If we aborted, we need to abort the
3208 * sync on the 'current' bitmap chucks (there can
3209 * be several when recovering multiple devices).
3210 * as we may have started syncing it but not finished.
3211 * We can find the current address in
3212 * mddev->curr_resync, but for recovery,
3213 * we need to convert that to several
3214 * virtual addresses.
3215 */
3216 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3217 end_reshape(conf);
3218 close_sync(conf);
3219 return 0;
3220 }
3221
3222 if (mddev->curr_resync < max_sector) { /* aborted */
3223 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3224 mddev->bitmap_ops->end_sync(mddev,
3225 mddev->curr_resync,
3226 &sync_blocks);
3227 else for (i = 0; i < conf->geo.raid_disks; i++) {
3228 sector_t sect =
3229 raid10_find_virt(conf, mddev->curr_resync, i);
3230
3231 mddev->bitmap_ops->end_sync(mddev, sect,
3232 &sync_blocks);
3233 }
3234 } else {
3235 /* completed sync */
3236 if ((!mddev->bitmap || conf->fullsync)
3237 && conf->have_replacement
3238 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3239 /* Completed a full sync so the replacements
3240 * are now fully recovered.
3241 */
3242 for (i = 0; i < conf->geo.raid_disks; i++) {
3243 struct md_rdev *rdev =
3244 conf->mirrors[i].replacement;
3245
3246 if (rdev)
3247 rdev->recovery_offset = MaxSector;
3248 }
3249 }
3250 conf->fullsync = 0;
3251 }
3252 mddev->bitmap_ops->close_sync(mddev);
3253 close_sync(conf);
3254 *skipped = 1;
3255 return sectors_skipped;
3256 }
3257
3258 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3259 return reshape_request(mddev, sector_nr, skipped);
3260
3261 if (chunks_skipped >= conf->geo.raid_disks) {
3262 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3263 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery");
3264 if (error_disk >= 0 &&
3265 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3266 /*
3267 * recovery fails, set mirrors.recovery_disabled,
3268 * device shouldn't be added to there.
3269 */
3270 conf->mirrors[error_disk].recovery_disabled =
3271 mddev->recovery_disabled;
3272 return 0;
3273 }
3274 /*
3275 * if there has been nothing to do on any drive,
3276 * then there is nothing to do at all.
3277 */
3278 *skipped = 1;
3279 return (max_sector - sector_nr) + sectors_skipped;
3280 }
3281
3282 if (max_sector > mddev->resync_max)
3283 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3284
3285 /* make sure whole request will fit in a chunk - if chunks
3286 * are meaningful
3287 */
3288 if (conf->geo.near_copies < conf->geo.raid_disks &&
3289 max_sector > (sector_nr | chunk_mask))
3290 max_sector = (sector_nr | chunk_mask) + 1;
3291
3292 /*
3293 * If there is non-resync activity waiting for a turn, then let it
3294 * though before starting on this new sync request.
3295 */
3296 if (conf->nr_waiting)
3297 schedule_timeout_uninterruptible(1);
3298
3299 /* Again, very different code for resync and recovery.
3300 * Both must result in an r10bio with a list of bios that
3301 * have bi_end_io, bi_sector, bi_bdev set,
3302 * and bi_private set to the r10bio.
3303 * For recovery, we may actually create several r10bios
3304 * with 2 bios in each, that correspond to the bios in the main one.
3305 * In this case, the subordinate r10bios link back through a
3306 * borrowed master_bio pointer, and the counter in the master
3307 * includes a ref from each subordinate.
3308 */
3309 /* First, we decide what to do and set ->bi_end_io
3310 * To end_sync_read if we want to read, and
3311 * end_sync_write if we will want to write.
3312 */
3313
3314 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3315 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3316 /* recovery... the complicated one */
3317 int j;
3318 r10_bio = NULL;
3319
3320 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3321 bool still_degraded;
3322 struct r10bio *rb2;
3323 sector_t sect;
3324 bool must_sync;
3325 int any_working;
3326 struct raid10_info *mirror = &conf->mirrors[i];
3327 struct md_rdev *mrdev, *mreplace;
3328
3329 mrdev = mirror->rdev;
3330 mreplace = mirror->replacement;
3331
3332 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3333 test_bit(In_sync, &mrdev->flags)))
3334 mrdev = NULL;
3335 if (mreplace && test_bit(Faulty, &mreplace->flags))
3336 mreplace = NULL;
3337
3338 if (!mrdev && !mreplace)
3339 continue;
3340
3341 still_degraded = false;
3342 /* want to reconstruct this device */
3343 rb2 = r10_bio;
3344 sect = raid10_find_virt(conf, sector_nr, i);
3345 if (sect >= mddev->resync_max_sectors)
3346 /* last stripe is not complete - don't
3347 * try to recover this sector.
3348 */
3349 continue;
3350 /* Unless we are doing a full sync, or a replacement
3351 * we only need to recover the block if it is set in
3352 * the bitmap
3353 */
3354 must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3355 &sync_blocks,
3356 true);
3357 if (sync_blocks < max_sync)
3358 max_sync = sync_blocks;
3359 if (!must_sync &&
3360 mreplace == NULL &&
3361 !conf->fullsync) {
3362 /* yep, skip the sync_blocks here, but don't assume
3363 * that there will never be anything to do here
3364 */
3365 chunks_skipped = -1;
3366 continue;
3367 }
3368 if (mrdev)
3369 atomic_inc(&mrdev->nr_pending);
3370 if (mreplace)
3371 atomic_inc(&mreplace->nr_pending);
3372
3373 r10_bio = raid10_alloc_init_r10buf(conf);
3374 r10_bio->state = 0;
3375 raise_barrier(conf, rb2 != NULL);
3376 atomic_set(&r10_bio->remaining, 0);
3377
3378 r10_bio->master_bio = (struct bio*)rb2;
3379 if (rb2)
3380 atomic_inc(&rb2->remaining);
3381 r10_bio->mddev = mddev;
3382 set_bit(R10BIO_IsRecover, &r10_bio->state);
3383 r10_bio->sector = sect;
3384
3385 raid10_find_phys(conf, r10_bio);
3386
3387 /* Need to check if the array will still be
3388 * degraded
3389 */
3390 for (j = 0; j < conf->geo.raid_disks; j++) {
3391 struct md_rdev *rdev = conf->mirrors[j].rdev;
3392
3393 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3394 still_degraded = false;
3395 break;
3396 }
3397 }
3398
3399 must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3400 &sync_blocks, still_degraded);
3401
3402 any_working = 0;
3403 for (j=0; j<conf->copies;j++) {
3404 int k;
3405 int d = r10_bio->devs[j].devnum;
3406 sector_t from_addr, to_addr;
3407 struct md_rdev *rdev = conf->mirrors[d].rdev;
3408 sector_t sector, first_bad;
3409 sector_t bad_sectors;
3410 if (!rdev ||
3411 !test_bit(In_sync, &rdev->flags))
3412 continue;
3413 /* This is where we read from */
3414 any_working = 1;
3415 sector = r10_bio->devs[j].addr;
3416
3417 if (is_badblock(rdev, sector, max_sync,
3418 &first_bad, &bad_sectors)) {
3419 if (first_bad > sector)
3420 max_sync = first_bad - sector;
3421 else {
3422 bad_sectors -= (sector
3423 - first_bad);
3424 if (max_sync > bad_sectors)
3425 max_sync = bad_sectors;
3426 continue;
3427 }
3428 }
3429 bio = r10_bio->devs[0].bio;
3430 bio->bi_next = biolist;
3431 biolist = bio;
3432 bio->bi_end_io = end_sync_read;
3433 bio->bi_opf = REQ_OP_READ;
3434 if (test_bit(FailFast, &rdev->flags))
3435 bio->bi_opf |= MD_FAILFAST;
3436 from_addr = r10_bio->devs[j].addr;
3437 bio->bi_iter.bi_sector = from_addr +
3438 rdev->data_offset;
3439 bio_set_dev(bio, rdev->bdev);
3440 atomic_inc(&rdev->nr_pending);
3441 /* and we write to 'i' (if not in_sync) */
3442
3443 for (k=0; k<conf->copies; k++)
3444 if (r10_bio->devs[k].devnum == i)
3445 break;
3446 BUG_ON(k == conf->copies);
3447 to_addr = r10_bio->devs[k].addr;
3448 r10_bio->devs[0].devnum = d;
3449 r10_bio->devs[0].addr = from_addr;
3450 r10_bio->devs[1].devnum = i;
3451 r10_bio->devs[1].addr = to_addr;
3452
3453 if (mrdev) {
3454 bio = r10_bio->devs[1].bio;
3455 bio->bi_next = biolist;
3456 biolist = bio;
3457 bio->bi_end_io = end_sync_write;
3458 bio->bi_opf = REQ_OP_WRITE;
3459 bio->bi_iter.bi_sector = to_addr
3460 + mrdev->data_offset;
3461 bio_set_dev(bio, mrdev->bdev);
3462 atomic_inc(&r10_bio->remaining);
3463 } else
3464 r10_bio->devs[1].bio->bi_end_io = NULL;
3465
3466 /* and maybe write to replacement */
3467 bio = r10_bio->devs[1].repl_bio;
3468 if (bio)
3469 bio->bi_end_io = NULL;
3470 /* Note: if replace is not NULL, then bio
3471 * cannot be NULL as r10buf_pool_alloc will
3472 * have allocated it.
3473 */
3474 if (!mreplace)
3475 break;
3476 bio->bi_next = biolist;
3477 biolist = bio;
3478 bio->bi_end_io = end_sync_write;
3479 bio->bi_opf = REQ_OP_WRITE;
3480 bio->bi_iter.bi_sector = to_addr +
3481 mreplace->data_offset;
3482 bio_set_dev(bio, mreplace->bdev);
3483 atomic_inc(&r10_bio->remaining);
3484 break;
3485 }
3486 if (j == conf->copies) {
3487 /* Cannot recover, so abort the recovery or
3488 * record a bad block */
3489 if (any_working) {
3490 /* problem is that there are bad blocks
3491 * on other device(s)
3492 */
3493 int k;
3494 for (k = 0; k < conf->copies; k++)
3495 if (r10_bio->devs[k].devnum == i)
3496 break;
3497 if (mrdev && !test_bit(In_sync,
3498 &mrdev->flags)
3499 && !rdev_set_badblocks(
3500 mrdev,
3501 r10_bio->devs[k].addr,
3502 max_sync, 0))
3503 any_working = 0;
3504 if (mreplace &&
3505 !rdev_set_badblocks(
3506 mreplace,
3507 r10_bio->devs[k].addr,
3508 max_sync, 0))
3509 any_working = 0;
3510 }
3511 if (!any_working) {
3512 if (!test_and_set_bit(MD_RECOVERY_INTR,
3513 &mddev->recovery))
3514 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3515 mdname(mddev));
3516 mirror->recovery_disabled
3517 = mddev->recovery_disabled;
3518 } else {
3519 error_disk = i;
3520 }
3521 put_buf(r10_bio);
3522 if (rb2)
3523 atomic_dec(&rb2->remaining);
3524 r10_bio = rb2;
3525 if (mrdev)
3526 rdev_dec_pending(mrdev, mddev);
3527 if (mreplace)
3528 rdev_dec_pending(mreplace, mddev);
3529 break;
3530 }
3531 if (mrdev)
3532 rdev_dec_pending(mrdev, mddev);
3533 if (mreplace)
3534 rdev_dec_pending(mreplace, mddev);
3535 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3536 /* Only want this if there is elsewhere to
3537 * read from. 'j' is currently the first
3538 * readable copy.
3539 */
3540 int targets = 1;
3541 for (; j < conf->copies; j++) {
3542 int d = r10_bio->devs[j].devnum;
3543 if (conf->mirrors[d].rdev &&
3544 test_bit(In_sync,
3545 &conf->mirrors[d].rdev->flags))
3546 targets++;
3547 }
3548 if (targets == 1)
3549 r10_bio->devs[0].bio->bi_opf
3550 &= ~MD_FAILFAST;
3551 }
3552 }
3553 if (biolist == NULL) {
3554 while (r10_bio) {
3555 struct r10bio *rb2 = r10_bio;
3556 r10_bio = (struct r10bio*) rb2->master_bio;
3557 rb2->master_bio = NULL;
3558 put_buf(rb2);
3559 }
3560 goto giveup;
3561 }
3562 } else {
3563 /* resync. Schedule a read for every block at this virt offset */
3564 int count = 0;
3565
3566 /*
3567 * Since curr_resync_completed could probably not update in
3568 * time, and we will set cluster_sync_low based on it.
3569 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3570 * safety reason, which ensures curr_resync_completed is
3571 * updated in bitmap_cond_end_sync.
3572 */
3573 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3574 mddev_is_clustered(mddev) &&
3575 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3576
3577 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3578 &sync_blocks,
3579 mddev->degraded) &&
3580 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3581 &mddev->recovery)) {
3582 /* We can skip this block */
3583 *skipped = 1;
3584 return sync_blocks + sectors_skipped;
3585 }
3586 if (sync_blocks < max_sync)
3587 max_sync = sync_blocks;
3588 r10_bio = raid10_alloc_init_r10buf(conf);
3589 r10_bio->state = 0;
3590
3591 r10_bio->mddev = mddev;
3592 atomic_set(&r10_bio->remaining, 0);
3593 raise_barrier(conf, 0);
3594 conf->next_resync = sector_nr;
3595
3596 r10_bio->master_bio = NULL;
3597 r10_bio->sector = sector_nr;
3598 set_bit(R10BIO_IsSync, &r10_bio->state);
3599 raid10_find_phys(conf, r10_bio);
3600 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3601
3602 for (i = 0; i < conf->copies; i++) {
3603 int d = r10_bio->devs[i].devnum;
3604 sector_t first_bad, sector;
3605 sector_t bad_sectors;
3606 struct md_rdev *rdev;
3607
3608 if (r10_bio->devs[i].repl_bio)
3609 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3610
3611 bio = r10_bio->devs[i].bio;
3612 bio->bi_status = BLK_STS_IOERR;
3613 rdev = conf->mirrors[d].rdev;
3614 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3615 continue;
3616
3617 sector = r10_bio->devs[i].addr;
3618 if (is_badblock(rdev, sector, max_sync,
3619 &first_bad, &bad_sectors)) {
3620 if (first_bad > sector)
3621 max_sync = first_bad - sector;
3622 else {
3623 bad_sectors -= (sector - first_bad);
3624 if (max_sync > bad_sectors)
3625 max_sync = bad_sectors;
3626 continue;
3627 }
3628 }
3629 atomic_inc(&rdev->nr_pending);
3630 atomic_inc(&r10_bio->remaining);
3631 bio->bi_next = biolist;
3632 biolist = bio;
3633 bio->bi_end_io = end_sync_read;
3634 bio->bi_opf = REQ_OP_READ;
3635 if (test_bit(FailFast, &rdev->flags))
3636 bio->bi_opf |= MD_FAILFAST;
3637 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3638 bio_set_dev(bio, rdev->bdev);
3639 count++;
3640
3641 rdev = conf->mirrors[d].replacement;
3642 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3643 continue;
3644
3645 atomic_inc(&rdev->nr_pending);
3646
3647 /* Need to set up for writing to the replacement */
3648 bio = r10_bio->devs[i].repl_bio;
3649 bio->bi_status = BLK_STS_IOERR;
3650
3651 sector = r10_bio->devs[i].addr;
3652 bio->bi_next = biolist;
3653 biolist = bio;
3654 bio->bi_end_io = end_sync_write;
3655 bio->bi_opf = REQ_OP_WRITE;
3656 if (test_bit(FailFast, &rdev->flags))
3657 bio->bi_opf |= MD_FAILFAST;
3658 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3659 bio_set_dev(bio, rdev->bdev);
3660 count++;
3661 }
3662
3663 if (count < 2) {
3664 for (i=0; i<conf->copies; i++) {
3665 int d = r10_bio->devs[i].devnum;
3666 if (r10_bio->devs[i].bio->bi_end_io)
3667 rdev_dec_pending(conf->mirrors[d].rdev,
3668 mddev);
3669 if (r10_bio->devs[i].repl_bio &&
3670 r10_bio->devs[i].repl_bio->bi_end_io)
3671 rdev_dec_pending(
3672 conf->mirrors[d].replacement,
3673 mddev);
3674 }
3675 put_buf(r10_bio);
3676 biolist = NULL;
3677 goto giveup;
3678 }
3679 }
3680
3681 nr_sectors = 0;
3682 if (sector_nr + max_sync < max_sector)
3683 max_sector = sector_nr + max_sync;
3684 do {
3685 struct page *page;
3686 int len = PAGE_SIZE;
3687 if (sector_nr + (len>>9) > max_sector)
3688 len = (max_sector - sector_nr) << 9;
3689 if (len == 0)
3690 break;
3691 for (bio= biolist ; bio ; bio=bio->bi_next) {
3692 struct resync_pages *rp = get_resync_pages(bio);
3693 page = resync_fetch_page(rp, page_idx);
3694 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3695 bio->bi_status = BLK_STS_RESOURCE;
3696 bio_endio(bio);
3697 goto giveup;
3698 }
3699 }
3700 nr_sectors += len>>9;
3701 sector_nr += len>>9;
3702 } while (++page_idx < RESYNC_PAGES);
3703 r10_bio->sectors = nr_sectors;
3704
3705 if (mddev_is_clustered(mddev) &&
3706 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3707 /* It is resync not recovery */
3708 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3709 conf->cluster_sync_low = mddev->curr_resync_completed;
3710 raid10_set_cluster_sync_high(conf);
3711 /* Send resync message */
3712 mddev->cluster_ops->resync_info_update(mddev,
3713 conf->cluster_sync_low,
3714 conf->cluster_sync_high);
3715 }
3716 } else if (mddev_is_clustered(mddev)) {
3717 /* This is recovery not resync */
3718 sector_t sect_va1, sect_va2;
3719 bool broadcast_msg = false;
3720
3721 for (i = 0; i < conf->geo.raid_disks; i++) {
3722 /*
3723 * sector_nr is a device address for recovery, so we
3724 * need translate it to array address before compare
3725 * with cluster_sync_high.
3726 */
3727 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3728
3729 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3730 broadcast_msg = true;
3731 /*
3732 * curr_resync_completed is similar as
3733 * sector_nr, so make the translation too.
3734 */
3735 sect_va2 = raid10_find_virt(conf,
3736 mddev->curr_resync_completed, i);
3737
3738 if (conf->cluster_sync_low == 0 ||
3739 conf->cluster_sync_low > sect_va2)
3740 conf->cluster_sync_low = sect_va2;
3741 }
3742 }
3743 if (broadcast_msg) {
3744 raid10_set_cluster_sync_high(conf);
3745 mddev->cluster_ops->resync_info_update(mddev,
3746 conf->cluster_sync_low,
3747 conf->cluster_sync_high);
3748 }
3749 }
3750
3751 while (biolist) {
3752 bio = biolist;
3753 biolist = biolist->bi_next;
3754
3755 bio->bi_next = NULL;
3756 r10_bio = get_resync_r10bio(bio);
3757 r10_bio->sectors = nr_sectors;
3758
3759 if (bio->bi_end_io == end_sync_read) {
3760 md_sync_acct_bio(bio, nr_sectors);
3761 bio->bi_status = 0;
3762 submit_bio_noacct(bio);
3763 }
3764 }
3765
3766 if (sectors_skipped)
3767 /* pretend they weren't skipped, it makes
3768 * no important difference in this case
3769 */
3770 md_done_sync(mddev, sectors_skipped, 1);
3771
3772 return sectors_skipped + nr_sectors;
3773 giveup:
3774 /* There is nowhere to write, so all non-sync
3775 * drives must be failed or in resync, all drives
3776 * have a bad block, so try the next chunk...
3777 */
3778 if (sector_nr + max_sync < max_sector)
3779 max_sector = sector_nr + max_sync;
3780
3781 sectors_skipped += (max_sector - sector_nr);
3782 chunks_skipped ++;
3783 sector_nr = max_sector;
3784 goto skipped;
3785 }
3786
3787 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3788 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3789 {
3790 sector_t size;
3791 struct r10conf *conf = mddev->private;
3792
3793 if (!raid_disks)
3794 raid_disks = min(conf->geo.raid_disks,
3795 conf->prev.raid_disks);
3796 if (!sectors)
3797 sectors = conf->dev_sectors;
3798
3799 size = sectors >> conf->geo.chunk_shift;
3800 sector_div(size, conf->geo.far_copies);
3801 size = size * raid_disks;
3802 sector_div(size, conf->geo.near_copies);
3803
3804 return size << conf->geo.chunk_shift;
3805 }
3806
calc_sectors(struct r10conf * conf,sector_t size)3807 static void calc_sectors(struct r10conf *conf, sector_t size)
3808 {
3809 /* Calculate the number of sectors-per-device that will
3810 * actually be used, and set conf->dev_sectors and
3811 * conf->stride
3812 */
3813
3814 size = size >> conf->geo.chunk_shift;
3815 sector_div(size, conf->geo.far_copies);
3816 size = size * conf->geo.raid_disks;
3817 sector_div(size, conf->geo.near_copies);
3818 /* 'size' is now the number of chunks in the array */
3819 /* calculate "used chunks per device" */
3820 size = size * conf->copies;
3821
3822 /* We need to round up when dividing by raid_disks to
3823 * get the stride size.
3824 */
3825 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3826
3827 conf->dev_sectors = size << conf->geo.chunk_shift;
3828
3829 if (conf->geo.far_offset)
3830 conf->geo.stride = 1 << conf->geo.chunk_shift;
3831 else {
3832 sector_div(size, conf->geo.far_copies);
3833 conf->geo.stride = size << conf->geo.chunk_shift;
3834 }
3835 }
3836
3837 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3838 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3839 {
3840 int nc, fc, fo;
3841 int layout, chunk, disks;
3842 switch (new) {
3843 case geo_old:
3844 layout = mddev->layout;
3845 chunk = mddev->chunk_sectors;
3846 disks = mddev->raid_disks - mddev->delta_disks;
3847 break;
3848 case geo_new:
3849 layout = mddev->new_layout;
3850 chunk = mddev->new_chunk_sectors;
3851 disks = mddev->raid_disks;
3852 break;
3853 default: /* avoid 'may be unused' warnings */
3854 case geo_start: /* new when starting reshape - raid_disks not
3855 * updated yet. */
3856 layout = mddev->new_layout;
3857 chunk = mddev->new_chunk_sectors;
3858 disks = mddev->raid_disks + mddev->delta_disks;
3859 break;
3860 }
3861 if (layout >> 19)
3862 return -1;
3863 if (chunk < (PAGE_SIZE >> 9) ||
3864 !is_power_of_2(chunk))
3865 return -2;
3866 nc = layout & 255;
3867 fc = (layout >> 8) & 255;
3868 fo = layout & (1<<16);
3869 geo->raid_disks = disks;
3870 geo->near_copies = nc;
3871 geo->far_copies = fc;
3872 geo->far_offset = fo;
3873 switch (layout >> 17) {
3874 case 0: /* original layout. simple but not always optimal */
3875 geo->far_set_size = disks;
3876 break;
3877 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3878 * actually using this, but leave code here just in case.*/
3879 geo->far_set_size = disks/fc;
3880 WARN(geo->far_set_size < fc,
3881 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3882 break;
3883 case 2: /* "improved" layout fixed to match documentation */
3884 geo->far_set_size = fc * nc;
3885 break;
3886 default: /* Not a valid layout */
3887 return -1;
3888 }
3889 geo->chunk_mask = chunk - 1;
3890 geo->chunk_shift = ffz(~chunk);
3891 return nc*fc;
3892 }
3893
raid10_free_conf(struct r10conf * conf)3894 static void raid10_free_conf(struct r10conf *conf)
3895 {
3896 if (!conf)
3897 return;
3898
3899 mempool_exit(&conf->r10bio_pool);
3900 kfree(conf->mirrors);
3901 kfree(conf->mirrors_old);
3902 kfree(conf->mirrors_new);
3903 safe_put_page(conf->tmppage);
3904 bioset_exit(&conf->bio_split);
3905 kfree(conf);
3906 }
3907
setup_conf(struct mddev * mddev)3908 static struct r10conf *setup_conf(struct mddev *mddev)
3909 {
3910 struct r10conf *conf = NULL;
3911 int err = -EINVAL;
3912 struct geom geo;
3913 int copies;
3914
3915 copies = setup_geo(&geo, mddev, geo_new);
3916
3917 if (copies == -2) {
3918 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3919 mdname(mddev), PAGE_SIZE);
3920 goto out;
3921 }
3922
3923 if (copies < 2 || copies > mddev->raid_disks) {
3924 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3925 mdname(mddev), mddev->new_layout);
3926 goto out;
3927 }
3928
3929 err = -ENOMEM;
3930 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3931 if (!conf)
3932 goto out;
3933
3934 /* FIXME calc properly */
3935 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3936 sizeof(struct raid10_info),
3937 GFP_KERNEL);
3938 if (!conf->mirrors)
3939 goto out;
3940
3941 conf->tmppage = alloc_page(GFP_KERNEL);
3942 if (!conf->tmppage)
3943 goto out;
3944
3945 conf->geo = geo;
3946 conf->copies = copies;
3947 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3948 rbio_pool_free, conf);
3949 if (err)
3950 goto out;
3951
3952 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3953 if (err)
3954 goto out;
3955
3956 calc_sectors(conf, mddev->dev_sectors);
3957 if (mddev->reshape_position == MaxSector) {
3958 conf->prev = conf->geo;
3959 conf->reshape_progress = MaxSector;
3960 } else {
3961 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3962 err = -EINVAL;
3963 goto out;
3964 }
3965 conf->reshape_progress = mddev->reshape_position;
3966 if (conf->prev.far_offset)
3967 conf->prev.stride = 1 << conf->prev.chunk_shift;
3968 else
3969 /* far_copies must be 1 */
3970 conf->prev.stride = conf->dev_sectors;
3971 }
3972 conf->reshape_safe = conf->reshape_progress;
3973 spin_lock_init(&conf->device_lock);
3974 INIT_LIST_HEAD(&conf->retry_list);
3975 INIT_LIST_HEAD(&conf->bio_end_io_list);
3976
3977 seqlock_init(&conf->resync_lock);
3978 init_waitqueue_head(&conf->wait_barrier);
3979 atomic_set(&conf->nr_pending, 0);
3980
3981 err = -ENOMEM;
3982 rcu_assign_pointer(conf->thread,
3983 md_register_thread(raid10d, mddev, "raid10"));
3984 if (!conf->thread)
3985 goto out;
3986
3987 conf->mddev = mddev;
3988 return conf;
3989
3990 out:
3991 raid10_free_conf(conf);
3992 return ERR_PTR(err);
3993 }
3994
raid10_nr_stripes(struct r10conf * conf)3995 static unsigned int raid10_nr_stripes(struct r10conf *conf)
3996 {
3997 unsigned int raid_disks = conf->geo.raid_disks;
3998
3999 if (conf->geo.raid_disks % conf->geo.near_copies)
4000 return raid_disks;
4001 return raid_disks / conf->geo.near_copies;
4002 }
4003
raid10_set_queue_limits(struct mddev * mddev)4004 static int raid10_set_queue_limits(struct mddev *mddev)
4005 {
4006 struct r10conf *conf = mddev->private;
4007 struct queue_limits lim;
4008 int err;
4009
4010 md_init_stacking_limits(&lim);
4011 lim.max_write_zeroes_sectors = 0;
4012 lim.io_min = mddev->chunk_sectors << 9;
4013 lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
4014 lim.features |= BLK_FEAT_ATOMIC_WRITES;
4015 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
4016 if (err)
4017 return err;
4018 return queue_limits_set(mddev->gendisk->queue, &lim);
4019 }
4020
raid10_run(struct mddev * mddev)4021 static int raid10_run(struct mddev *mddev)
4022 {
4023 struct r10conf *conf;
4024 int i, disk_idx;
4025 struct raid10_info *disk;
4026 struct md_rdev *rdev;
4027 sector_t size;
4028 sector_t min_offset_diff = 0;
4029 int first = 1;
4030 int ret = -EIO;
4031
4032 if (mddev->private == NULL) {
4033 conf = setup_conf(mddev);
4034 if (IS_ERR(conf))
4035 return PTR_ERR(conf);
4036 mddev->private = conf;
4037 }
4038 conf = mddev->private;
4039 if (!conf)
4040 goto out;
4041
4042 rcu_assign_pointer(mddev->thread, conf->thread);
4043 rcu_assign_pointer(conf->thread, NULL);
4044
4045 if (mddev_is_clustered(conf->mddev)) {
4046 int fc, fo;
4047
4048 fc = (mddev->layout >> 8) & 255;
4049 fo = mddev->layout & (1<<16);
4050 if (fc > 1 || fo > 0) {
4051 pr_err("only near layout is supported by clustered"
4052 " raid10\n");
4053 goto out_free_conf;
4054 }
4055 }
4056
4057 rdev_for_each(rdev, mddev) {
4058 long long diff;
4059
4060 disk_idx = rdev->raid_disk;
4061 if (disk_idx < 0)
4062 continue;
4063 if (disk_idx >= conf->geo.raid_disks &&
4064 disk_idx >= conf->prev.raid_disks)
4065 continue;
4066 disk = conf->mirrors + disk_idx;
4067
4068 if (test_bit(Replacement, &rdev->flags)) {
4069 if (disk->replacement)
4070 goto out_free_conf;
4071 disk->replacement = rdev;
4072 } else {
4073 if (disk->rdev)
4074 goto out_free_conf;
4075 disk->rdev = rdev;
4076 }
4077 diff = (rdev->new_data_offset - rdev->data_offset);
4078 if (!mddev->reshape_backwards)
4079 diff = -diff;
4080 if (diff < 0)
4081 diff = 0;
4082 if (first || diff < min_offset_diff)
4083 min_offset_diff = diff;
4084
4085 disk->head_position = 0;
4086 first = 0;
4087 }
4088
4089 if (!mddev_is_dm(conf->mddev)) {
4090 int err = raid10_set_queue_limits(mddev);
4091
4092 if (err) {
4093 ret = err;
4094 goto out_free_conf;
4095 }
4096 }
4097
4098 /* need to check that every block has at least one working mirror */
4099 if (!enough(conf, -1)) {
4100 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4101 mdname(mddev));
4102 goto out_free_conf;
4103 }
4104
4105 if (conf->reshape_progress != MaxSector) {
4106 /* must ensure that shape change is supported */
4107 if (conf->geo.far_copies != 1 &&
4108 conf->geo.far_offset == 0)
4109 goto out_free_conf;
4110 if (conf->prev.far_copies != 1 &&
4111 conf->prev.far_offset == 0)
4112 goto out_free_conf;
4113 }
4114
4115 mddev->degraded = 0;
4116 for (i = 0;
4117 i < conf->geo.raid_disks
4118 || i < conf->prev.raid_disks;
4119 i++) {
4120
4121 disk = conf->mirrors + i;
4122
4123 if (!disk->rdev && disk->replacement) {
4124 /* The replacement is all we have - use it */
4125 disk->rdev = disk->replacement;
4126 disk->replacement = NULL;
4127 clear_bit(Replacement, &disk->rdev->flags);
4128 }
4129
4130 if (!disk->rdev ||
4131 !test_bit(In_sync, &disk->rdev->flags)) {
4132 disk->head_position = 0;
4133 mddev->degraded++;
4134 if (disk->rdev &&
4135 disk->rdev->saved_raid_disk < 0)
4136 conf->fullsync = 1;
4137 }
4138
4139 if (disk->replacement &&
4140 !test_bit(In_sync, &disk->replacement->flags) &&
4141 disk->replacement->saved_raid_disk < 0) {
4142 conf->fullsync = 1;
4143 }
4144
4145 disk->recovery_disabled = mddev->recovery_disabled - 1;
4146 }
4147
4148 if (mddev->recovery_cp != MaxSector)
4149 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4150 mdname(mddev));
4151 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4152 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4153 conf->geo.raid_disks);
4154 /*
4155 * Ok, everything is just fine now
4156 */
4157 mddev->dev_sectors = conf->dev_sectors;
4158 size = raid10_size(mddev, 0, 0);
4159 md_set_array_sectors(mddev, size);
4160 mddev->resync_max_sectors = size;
4161 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4162
4163 if (md_integrity_register(mddev))
4164 goto out_free_conf;
4165
4166 if (conf->reshape_progress != MaxSector) {
4167 unsigned long before_length, after_length;
4168
4169 before_length = ((1 << conf->prev.chunk_shift) *
4170 conf->prev.far_copies);
4171 after_length = ((1 << conf->geo.chunk_shift) *
4172 conf->geo.far_copies);
4173
4174 if (max(before_length, after_length) > min_offset_diff) {
4175 /* This cannot work */
4176 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4177 goto out_free_conf;
4178 }
4179 conf->offset_diff = min_offset_diff;
4180
4181 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4182 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4183 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4184 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4185 }
4186
4187 return 0;
4188
4189 out_free_conf:
4190 md_unregister_thread(mddev, &mddev->thread);
4191 raid10_free_conf(conf);
4192 mddev->private = NULL;
4193 out:
4194 return ret;
4195 }
4196
raid10_free(struct mddev * mddev,void * priv)4197 static void raid10_free(struct mddev *mddev, void *priv)
4198 {
4199 raid10_free_conf(priv);
4200 }
4201
raid10_quiesce(struct mddev * mddev,int quiesce)4202 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4203 {
4204 struct r10conf *conf = mddev->private;
4205
4206 if (quiesce)
4207 raise_barrier(conf, 0);
4208 else
4209 lower_barrier(conf);
4210 }
4211
raid10_resize(struct mddev * mddev,sector_t sectors)4212 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4213 {
4214 /* Resize of 'far' arrays is not supported.
4215 * For 'near' and 'offset' arrays we can set the
4216 * number of sectors used to be an appropriate multiple
4217 * of the chunk size.
4218 * For 'offset', this is far_copies*chunksize.
4219 * For 'near' the multiplier is the LCM of
4220 * near_copies and raid_disks.
4221 * So if far_copies > 1 && !far_offset, fail.
4222 * Else find LCM(raid_disks, near_copy)*far_copies and
4223 * multiply by chunk_size. Then round to this number.
4224 * This is mostly done by raid10_size()
4225 */
4226 struct r10conf *conf = mddev->private;
4227 sector_t oldsize, size;
4228 int ret;
4229
4230 if (mddev->reshape_position != MaxSector)
4231 return -EBUSY;
4232
4233 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4234 return -EINVAL;
4235
4236 oldsize = raid10_size(mddev, 0, 0);
4237 size = raid10_size(mddev, sectors, 0);
4238 if (mddev->external_size &&
4239 mddev->array_sectors > size)
4240 return -EINVAL;
4241
4242 ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
4243 if (ret)
4244 return ret;
4245
4246 md_set_array_sectors(mddev, size);
4247 if (sectors > mddev->dev_sectors &&
4248 mddev->recovery_cp > oldsize) {
4249 mddev->recovery_cp = oldsize;
4250 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4251 }
4252 calc_sectors(conf, sectors);
4253 mddev->dev_sectors = conf->dev_sectors;
4254 mddev->resync_max_sectors = size;
4255 return 0;
4256 }
4257
raid10_takeover_raid0(struct mddev * mddev,sector_t size,int devs)4258 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4259 {
4260 struct md_rdev *rdev;
4261 struct r10conf *conf;
4262
4263 if (mddev->degraded > 0) {
4264 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4265 mdname(mddev));
4266 return ERR_PTR(-EINVAL);
4267 }
4268 sector_div(size, devs);
4269
4270 /* Set new parameters */
4271 mddev->new_level = 10;
4272 /* new layout: far_copies = 1, near_copies = 2 */
4273 mddev->new_layout = (1<<8) + 2;
4274 mddev->new_chunk_sectors = mddev->chunk_sectors;
4275 mddev->delta_disks = mddev->raid_disks;
4276 mddev->raid_disks *= 2;
4277 /* make sure it will be not marked as dirty */
4278 mddev->recovery_cp = MaxSector;
4279 mddev->dev_sectors = size;
4280
4281 conf = setup_conf(mddev);
4282 if (!IS_ERR(conf)) {
4283 rdev_for_each(rdev, mddev)
4284 if (rdev->raid_disk >= 0) {
4285 rdev->new_raid_disk = rdev->raid_disk * 2;
4286 rdev->sectors = size;
4287 }
4288 }
4289
4290 return conf;
4291 }
4292
raid10_takeover(struct mddev * mddev)4293 static void *raid10_takeover(struct mddev *mddev)
4294 {
4295 struct r0conf *raid0_conf;
4296
4297 /* raid10 can take over:
4298 * raid0 - providing it has only two drives
4299 */
4300 if (mddev->level == 0) {
4301 /* for raid0 takeover only one zone is supported */
4302 raid0_conf = mddev->private;
4303 if (raid0_conf->nr_strip_zones > 1) {
4304 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4305 mdname(mddev));
4306 return ERR_PTR(-EINVAL);
4307 }
4308 return raid10_takeover_raid0(mddev,
4309 raid0_conf->strip_zone->zone_end,
4310 raid0_conf->strip_zone->nb_dev);
4311 }
4312 return ERR_PTR(-EINVAL);
4313 }
4314
raid10_check_reshape(struct mddev * mddev)4315 static int raid10_check_reshape(struct mddev *mddev)
4316 {
4317 /* Called when there is a request to change
4318 * - layout (to ->new_layout)
4319 * - chunk size (to ->new_chunk_sectors)
4320 * - raid_disks (by delta_disks)
4321 * or when trying to restart a reshape that was ongoing.
4322 *
4323 * We need to validate the request and possibly allocate
4324 * space if that might be an issue later.
4325 *
4326 * Currently we reject any reshape of a 'far' mode array,
4327 * allow chunk size to change if new is generally acceptable,
4328 * allow raid_disks to increase, and allow
4329 * a switch between 'near' mode and 'offset' mode.
4330 */
4331 struct r10conf *conf = mddev->private;
4332 struct geom geo;
4333
4334 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4335 return -EINVAL;
4336
4337 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4338 /* mustn't change number of copies */
4339 return -EINVAL;
4340 if (geo.far_copies > 1 && !geo.far_offset)
4341 /* Cannot switch to 'far' mode */
4342 return -EINVAL;
4343
4344 if (mddev->array_sectors & geo.chunk_mask)
4345 /* not factor of array size */
4346 return -EINVAL;
4347
4348 if (!enough(conf, -1))
4349 return -EINVAL;
4350
4351 kfree(conf->mirrors_new);
4352 conf->mirrors_new = NULL;
4353 if (mddev->delta_disks > 0) {
4354 /* allocate new 'mirrors' list */
4355 conf->mirrors_new =
4356 kcalloc(mddev->raid_disks + mddev->delta_disks,
4357 sizeof(struct raid10_info),
4358 GFP_KERNEL);
4359 if (!conf->mirrors_new)
4360 return -ENOMEM;
4361 }
4362 return 0;
4363 }
4364
4365 /*
4366 * Need to check if array has failed when deciding whether to:
4367 * - start an array
4368 * - remove non-faulty devices
4369 * - add a spare
4370 * - allow a reshape
4371 * This determination is simple when no reshape is happening.
4372 * However if there is a reshape, we need to carefully check
4373 * both the before and after sections.
4374 * This is because some failed devices may only affect one
4375 * of the two sections, and some non-in_sync devices may
4376 * be insync in the section most affected by failed devices.
4377 */
calc_degraded(struct r10conf * conf)4378 static int calc_degraded(struct r10conf *conf)
4379 {
4380 int degraded, degraded2;
4381 int i;
4382
4383 degraded = 0;
4384 /* 'prev' section first */
4385 for (i = 0; i < conf->prev.raid_disks; i++) {
4386 struct md_rdev *rdev = conf->mirrors[i].rdev;
4387
4388 if (!rdev || test_bit(Faulty, &rdev->flags))
4389 degraded++;
4390 else if (!test_bit(In_sync, &rdev->flags))
4391 /* When we can reduce the number of devices in
4392 * an array, this might not contribute to
4393 * 'degraded'. It does now.
4394 */
4395 degraded++;
4396 }
4397 if (conf->geo.raid_disks == conf->prev.raid_disks)
4398 return degraded;
4399 degraded2 = 0;
4400 for (i = 0; i < conf->geo.raid_disks; i++) {
4401 struct md_rdev *rdev = conf->mirrors[i].rdev;
4402
4403 if (!rdev || test_bit(Faulty, &rdev->flags))
4404 degraded2++;
4405 else if (!test_bit(In_sync, &rdev->flags)) {
4406 /* If reshape is increasing the number of devices,
4407 * this section has already been recovered, so
4408 * it doesn't contribute to degraded.
4409 * else it does.
4410 */
4411 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4412 degraded2++;
4413 }
4414 }
4415 if (degraded2 > degraded)
4416 return degraded2;
4417 return degraded;
4418 }
4419
raid10_start_reshape(struct mddev * mddev)4420 static int raid10_start_reshape(struct mddev *mddev)
4421 {
4422 /* A 'reshape' has been requested. This commits
4423 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4424 * This also checks if there are enough spares and adds them
4425 * to the array.
4426 * We currently require enough spares to make the final
4427 * array non-degraded. We also require that the difference
4428 * between old and new data_offset - on each device - is
4429 * enough that we never risk over-writing.
4430 */
4431
4432 unsigned long before_length, after_length;
4433 sector_t min_offset_diff = 0;
4434 int first = 1;
4435 struct geom new;
4436 struct r10conf *conf = mddev->private;
4437 struct md_rdev *rdev;
4438 int spares = 0;
4439 int ret;
4440
4441 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4442 return -EBUSY;
4443
4444 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4445 return -EINVAL;
4446
4447 before_length = ((1 << conf->prev.chunk_shift) *
4448 conf->prev.far_copies);
4449 after_length = ((1 << conf->geo.chunk_shift) *
4450 conf->geo.far_copies);
4451
4452 rdev_for_each(rdev, mddev) {
4453 if (!test_bit(In_sync, &rdev->flags)
4454 && !test_bit(Faulty, &rdev->flags))
4455 spares++;
4456 if (rdev->raid_disk >= 0) {
4457 long long diff = (rdev->new_data_offset
4458 - rdev->data_offset);
4459 if (!mddev->reshape_backwards)
4460 diff = -diff;
4461 if (diff < 0)
4462 diff = 0;
4463 if (first || diff < min_offset_diff)
4464 min_offset_diff = diff;
4465 first = 0;
4466 }
4467 }
4468
4469 if (max(before_length, after_length) > min_offset_diff)
4470 return -EINVAL;
4471
4472 if (spares < mddev->delta_disks)
4473 return -EINVAL;
4474
4475 conf->offset_diff = min_offset_diff;
4476 spin_lock_irq(&conf->device_lock);
4477 if (conf->mirrors_new) {
4478 memcpy(conf->mirrors_new, conf->mirrors,
4479 sizeof(struct raid10_info)*conf->prev.raid_disks);
4480 smp_mb();
4481 kfree(conf->mirrors_old);
4482 conf->mirrors_old = conf->mirrors;
4483 conf->mirrors = conf->mirrors_new;
4484 conf->mirrors_new = NULL;
4485 }
4486 setup_geo(&conf->geo, mddev, geo_start);
4487 smp_mb();
4488 if (mddev->reshape_backwards) {
4489 sector_t size = raid10_size(mddev, 0, 0);
4490 if (size < mddev->array_sectors) {
4491 spin_unlock_irq(&conf->device_lock);
4492 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4493 mdname(mddev));
4494 return -EINVAL;
4495 }
4496 mddev->resync_max_sectors = size;
4497 conf->reshape_progress = size;
4498 } else
4499 conf->reshape_progress = 0;
4500 conf->reshape_safe = conf->reshape_progress;
4501 spin_unlock_irq(&conf->device_lock);
4502
4503 if (mddev->delta_disks && mddev->bitmap) {
4504 struct mdp_superblock_1 *sb = NULL;
4505 sector_t oldsize, newsize;
4506
4507 oldsize = raid10_size(mddev, 0, 0);
4508 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4509
4510 if (!mddev_is_clustered(mddev)) {
4511 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4512 if (ret)
4513 goto abort;
4514 else
4515 goto out;
4516 }
4517
4518 rdev_for_each(rdev, mddev) {
4519 if (rdev->raid_disk > -1 &&
4520 !test_bit(Faulty, &rdev->flags))
4521 sb = page_address(rdev->sb_page);
4522 }
4523
4524 /*
4525 * some node is already performing reshape, and no need to
4526 * call bitmap_ops->resize again since it should be called when
4527 * receiving BITMAP_RESIZE msg
4528 */
4529 if ((sb && (le32_to_cpu(sb->feature_map) &
4530 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4531 goto out;
4532
4533 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4534 if (ret)
4535 goto abort;
4536
4537 ret = mddev->cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4538 if (ret) {
4539 mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
4540 goto abort;
4541 }
4542 }
4543 out:
4544 if (mddev->delta_disks > 0) {
4545 rdev_for_each(rdev, mddev)
4546 if (rdev->raid_disk < 0 &&
4547 !test_bit(Faulty, &rdev->flags)) {
4548 if (raid10_add_disk(mddev, rdev) == 0) {
4549 if (rdev->raid_disk >=
4550 conf->prev.raid_disks)
4551 set_bit(In_sync, &rdev->flags);
4552 else
4553 rdev->recovery_offset = 0;
4554
4555 /* Failure here is OK */
4556 sysfs_link_rdev(mddev, rdev);
4557 }
4558 } else if (rdev->raid_disk >= conf->prev.raid_disks
4559 && !test_bit(Faulty, &rdev->flags)) {
4560 /* This is a spare that was manually added */
4561 set_bit(In_sync, &rdev->flags);
4562 }
4563 }
4564 /* When a reshape changes the number of devices,
4565 * ->degraded is measured against the larger of the
4566 * pre and post numbers.
4567 */
4568 spin_lock_irq(&conf->device_lock);
4569 mddev->degraded = calc_degraded(conf);
4570 spin_unlock_irq(&conf->device_lock);
4571 mddev->raid_disks = conf->geo.raid_disks;
4572 mddev->reshape_position = conf->reshape_progress;
4573 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4574
4575 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4576 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4577 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4578 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4579 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4580 conf->reshape_checkpoint = jiffies;
4581 md_new_event();
4582 return 0;
4583
4584 abort:
4585 mddev->recovery = 0;
4586 spin_lock_irq(&conf->device_lock);
4587 conf->geo = conf->prev;
4588 mddev->raid_disks = conf->geo.raid_disks;
4589 rdev_for_each(rdev, mddev)
4590 rdev->new_data_offset = rdev->data_offset;
4591 smp_wmb();
4592 conf->reshape_progress = MaxSector;
4593 conf->reshape_safe = MaxSector;
4594 mddev->reshape_position = MaxSector;
4595 spin_unlock_irq(&conf->device_lock);
4596 return ret;
4597 }
4598
4599 /* Calculate the last device-address that could contain
4600 * any block from the chunk that includes the array-address 's'
4601 * and report the next address.
4602 * i.e. the address returned will be chunk-aligned and after
4603 * any data that is in the chunk containing 's'.
4604 */
last_dev_address(sector_t s,struct geom * geo)4605 static sector_t last_dev_address(sector_t s, struct geom *geo)
4606 {
4607 s = (s | geo->chunk_mask) + 1;
4608 s >>= geo->chunk_shift;
4609 s *= geo->near_copies;
4610 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4611 s *= geo->far_copies;
4612 s <<= geo->chunk_shift;
4613 return s;
4614 }
4615
4616 /* Calculate the first device-address that could contain
4617 * any block from the chunk that includes the array-address 's'.
4618 * This too will be the start of a chunk
4619 */
first_dev_address(sector_t s,struct geom * geo)4620 static sector_t first_dev_address(sector_t s, struct geom *geo)
4621 {
4622 s >>= geo->chunk_shift;
4623 s *= geo->near_copies;
4624 sector_div(s, geo->raid_disks);
4625 s *= geo->far_copies;
4626 s <<= geo->chunk_shift;
4627 return s;
4628 }
4629
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4630 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4631 int *skipped)
4632 {
4633 /* We simply copy at most one chunk (smallest of old and new)
4634 * at a time, possibly less if that exceeds RESYNC_PAGES,
4635 * or we hit a bad block or something.
4636 * This might mean we pause for normal IO in the middle of
4637 * a chunk, but that is not a problem as mddev->reshape_position
4638 * can record any location.
4639 *
4640 * If we will want to write to a location that isn't
4641 * yet recorded as 'safe' (i.e. in metadata on disk) then
4642 * we need to flush all reshape requests and update the metadata.
4643 *
4644 * When reshaping forwards (e.g. to more devices), we interpret
4645 * 'safe' as the earliest block which might not have been copied
4646 * down yet. We divide this by previous stripe size and multiply
4647 * by previous stripe length to get lowest device offset that we
4648 * cannot write to yet.
4649 * We interpret 'sector_nr' as an address that we want to write to.
4650 * From this we use last_device_address() to find where we might
4651 * write to, and first_device_address on the 'safe' position.
4652 * If this 'next' write position is after the 'safe' position,
4653 * we must update the metadata to increase the 'safe' position.
4654 *
4655 * When reshaping backwards, we round in the opposite direction
4656 * and perform the reverse test: next write position must not be
4657 * less than current safe position.
4658 *
4659 * In all this the minimum difference in data offsets
4660 * (conf->offset_diff - always positive) allows a bit of slack,
4661 * so next can be after 'safe', but not by more than offset_diff
4662 *
4663 * We need to prepare all the bios here before we start any IO
4664 * to ensure the size we choose is acceptable to all devices.
4665 * The means one for each copy for write-out and an extra one for
4666 * read-in.
4667 * We store the read-in bio in ->master_bio and the others in
4668 * ->devs[x].bio and ->devs[x].repl_bio.
4669 */
4670 struct r10conf *conf = mddev->private;
4671 struct r10bio *r10_bio;
4672 sector_t next, safe, last;
4673 int max_sectors;
4674 int nr_sectors;
4675 int s;
4676 struct md_rdev *rdev;
4677 int need_flush = 0;
4678 struct bio *blist;
4679 struct bio *bio, *read_bio;
4680 int sectors_done = 0;
4681 struct page **pages;
4682
4683 if (sector_nr == 0) {
4684 /* If restarting in the middle, skip the initial sectors */
4685 if (mddev->reshape_backwards &&
4686 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4687 sector_nr = (raid10_size(mddev, 0, 0)
4688 - conf->reshape_progress);
4689 } else if (!mddev->reshape_backwards &&
4690 conf->reshape_progress > 0)
4691 sector_nr = conf->reshape_progress;
4692 if (sector_nr) {
4693 mddev->curr_resync_completed = sector_nr;
4694 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4695 *skipped = 1;
4696 return sector_nr;
4697 }
4698 }
4699
4700 /* We don't use sector_nr to track where we are up to
4701 * as that doesn't work well for ->reshape_backwards.
4702 * So just use ->reshape_progress.
4703 */
4704 if (mddev->reshape_backwards) {
4705 /* 'next' is the earliest device address that we might
4706 * write to for this chunk in the new layout
4707 */
4708 next = first_dev_address(conf->reshape_progress - 1,
4709 &conf->geo);
4710
4711 /* 'safe' is the last device address that we might read from
4712 * in the old layout after a restart
4713 */
4714 safe = last_dev_address(conf->reshape_safe - 1,
4715 &conf->prev);
4716
4717 if (next + conf->offset_diff < safe)
4718 need_flush = 1;
4719
4720 last = conf->reshape_progress - 1;
4721 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4722 & conf->prev.chunk_mask);
4723 if (sector_nr + RESYNC_SECTORS < last)
4724 sector_nr = last + 1 - RESYNC_SECTORS;
4725 } else {
4726 /* 'next' is after the last device address that we
4727 * might write to for this chunk in the new layout
4728 */
4729 next = last_dev_address(conf->reshape_progress, &conf->geo);
4730
4731 /* 'safe' is the earliest device address that we might
4732 * read from in the old layout after a restart
4733 */
4734 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4735
4736 /* Need to update metadata if 'next' might be beyond 'safe'
4737 * as that would possibly corrupt data
4738 */
4739 if (next > safe + conf->offset_diff)
4740 need_flush = 1;
4741
4742 sector_nr = conf->reshape_progress;
4743 last = sector_nr | (conf->geo.chunk_mask
4744 & conf->prev.chunk_mask);
4745
4746 if (sector_nr + RESYNC_SECTORS <= last)
4747 last = sector_nr + RESYNC_SECTORS - 1;
4748 }
4749
4750 if (need_flush ||
4751 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4752 /* Need to update reshape_position in metadata */
4753 wait_barrier(conf, false);
4754 mddev->reshape_position = conf->reshape_progress;
4755 if (mddev->reshape_backwards)
4756 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4757 - conf->reshape_progress;
4758 else
4759 mddev->curr_resync_completed = conf->reshape_progress;
4760 conf->reshape_checkpoint = jiffies;
4761 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4762 md_wakeup_thread(mddev->thread);
4763 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4764 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4765 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4766 allow_barrier(conf);
4767 return sectors_done;
4768 }
4769 conf->reshape_safe = mddev->reshape_position;
4770 allow_barrier(conf);
4771 }
4772
4773 raise_barrier(conf, 0);
4774 read_more:
4775 /* Now schedule reads for blocks from sector_nr to last */
4776 r10_bio = raid10_alloc_init_r10buf(conf);
4777 r10_bio->state = 0;
4778 raise_barrier(conf, 1);
4779 atomic_set(&r10_bio->remaining, 0);
4780 r10_bio->mddev = mddev;
4781 r10_bio->sector = sector_nr;
4782 set_bit(R10BIO_IsReshape, &r10_bio->state);
4783 r10_bio->sectors = last - sector_nr + 1;
4784 rdev = read_balance(conf, r10_bio, &max_sectors);
4785 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4786
4787 if (!rdev) {
4788 /* Cannot read from here, so need to record bad blocks
4789 * on all the target devices.
4790 */
4791 // FIXME
4792 mempool_free(r10_bio, &conf->r10buf_pool);
4793 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4794 return sectors_done;
4795 }
4796
4797 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4798 GFP_KERNEL, &mddev->bio_set);
4799 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4800 + rdev->data_offset);
4801 read_bio->bi_private = r10_bio;
4802 read_bio->bi_end_io = end_reshape_read;
4803 r10_bio->master_bio = read_bio;
4804 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4805
4806 /*
4807 * Broadcast RESYNC message to other nodes, so all nodes would not
4808 * write to the region to avoid conflict.
4809 */
4810 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4811 struct mdp_superblock_1 *sb = NULL;
4812 int sb_reshape_pos = 0;
4813
4814 conf->cluster_sync_low = sector_nr;
4815 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4816 sb = page_address(rdev->sb_page);
4817 if (sb) {
4818 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4819 /*
4820 * Set cluster_sync_low again if next address for array
4821 * reshape is less than cluster_sync_low. Since we can't
4822 * update cluster_sync_low until it has finished reshape.
4823 */
4824 if (sb_reshape_pos < conf->cluster_sync_low)
4825 conf->cluster_sync_low = sb_reshape_pos;
4826 }
4827
4828 mddev->cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4829 conf->cluster_sync_high);
4830 }
4831
4832 /* Now find the locations in the new layout */
4833 __raid10_find_phys(&conf->geo, r10_bio);
4834
4835 blist = read_bio;
4836 read_bio->bi_next = NULL;
4837
4838 for (s = 0; s < conf->copies*2; s++) {
4839 struct bio *b;
4840 int d = r10_bio->devs[s/2].devnum;
4841 struct md_rdev *rdev2;
4842 if (s&1) {
4843 rdev2 = conf->mirrors[d].replacement;
4844 b = r10_bio->devs[s/2].repl_bio;
4845 } else {
4846 rdev2 = conf->mirrors[d].rdev;
4847 b = r10_bio->devs[s/2].bio;
4848 }
4849 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4850 continue;
4851
4852 bio_set_dev(b, rdev2->bdev);
4853 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4854 rdev2->new_data_offset;
4855 b->bi_end_io = end_reshape_write;
4856 b->bi_opf = REQ_OP_WRITE;
4857 b->bi_next = blist;
4858 blist = b;
4859 }
4860
4861 /* Now add as many pages as possible to all of these bios. */
4862
4863 nr_sectors = 0;
4864 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4865 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4866 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4867 int len = (max_sectors - s) << 9;
4868 if (len > PAGE_SIZE)
4869 len = PAGE_SIZE;
4870 for (bio = blist; bio ; bio = bio->bi_next) {
4871 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4872 bio->bi_status = BLK_STS_RESOURCE;
4873 bio_endio(bio);
4874 return sectors_done;
4875 }
4876 }
4877 sector_nr += len >> 9;
4878 nr_sectors += len >> 9;
4879 }
4880 r10_bio->sectors = nr_sectors;
4881
4882 /* Now submit the read */
4883 md_sync_acct_bio(read_bio, r10_bio->sectors);
4884 atomic_inc(&r10_bio->remaining);
4885 read_bio->bi_next = NULL;
4886 submit_bio_noacct(read_bio);
4887 sectors_done += nr_sectors;
4888 if (sector_nr <= last)
4889 goto read_more;
4890
4891 lower_barrier(conf);
4892
4893 /* Now that we have done the whole section we can
4894 * update reshape_progress
4895 */
4896 if (mddev->reshape_backwards)
4897 conf->reshape_progress -= sectors_done;
4898 else
4899 conf->reshape_progress += sectors_done;
4900
4901 return sectors_done;
4902 }
4903
4904 static void end_reshape_request(struct r10bio *r10_bio);
4905 static int handle_reshape_read_error(struct mddev *mddev,
4906 struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)4907 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4908 {
4909 /* Reshape read completed. Hopefully we have a block
4910 * to write out.
4911 * If we got a read error then we do sync 1-page reads from
4912 * elsewhere until we find the data - or give up.
4913 */
4914 struct r10conf *conf = mddev->private;
4915 int s;
4916
4917 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4918 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4919 /* Reshape has been aborted */
4920 md_done_sync(mddev, r10_bio->sectors, 0);
4921 return;
4922 }
4923
4924 /* We definitely have the data in the pages, schedule the
4925 * writes.
4926 */
4927 atomic_set(&r10_bio->remaining, 1);
4928 for (s = 0; s < conf->copies*2; s++) {
4929 struct bio *b;
4930 int d = r10_bio->devs[s/2].devnum;
4931 struct md_rdev *rdev;
4932 if (s&1) {
4933 rdev = conf->mirrors[d].replacement;
4934 b = r10_bio->devs[s/2].repl_bio;
4935 } else {
4936 rdev = conf->mirrors[d].rdev;
4937 b = r10_bio->devs[s/2].bio;
4938 }
4939 if (!rdev || test_bit(Faulty, &rdev->flags))
4940 continue;
4941
4942 atomic_inc(&rdev->nr_pending);
4943 md_sync_acct_bio(b, r10_bio->sectors);
4944 atomic_inc(&r10_bio->remaining);
4945 b->bi_next = NULL;
4946 submit_bio_noacct(b);
4947 }
4948 end_reshape_request(r10_bio);
4949 }
4950
end_reshape(struct r10conf * conf)4951 static void end_reshape(struct r10conf *conf)
4952 {
4953 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4954 return;
4955
4956 spin_lock_irq(&conf->device_lock);
4957 conf->prev = conf->geo;
4958 md_finish_reshape(conf->mddev);
4959 smp_wmb();
4960 conf->reshape_progress = MaxSector;
4961 conf->reshape_safe = MaxSector;
4962 spin_unlock_irq(&conf->device_lock);
4963
4964 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4965 conf->fullsync = 0;
4966 }
4967
raid10_update_reshape_pos(struct mddev * mddev)4968 static void raid10_update_reshape_pos(struct mddev *mddev)
4969 {
4970 struct r10conf *conf = mddev->private;
4971 sector_t lo, hi;
4972
4973 mddev->cluster_ops->resync_info_get(mddev, &lo, &hi);
4974 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4975 || mddev->reshape_position == MaxSector)
4976 conf->reshape_progress = mddev->reshape_position;
4977 else
4978 WARN_ON_ONCE(1);
4979 }
4980
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)4981 static int handle_reshape_read_error(struct mddev *mddev,
4982 struct r10bio *r10_bio)
4983 {
4984 /* Use sync reads to get the blocks from somewhere else */
4985 int sectors = r10_bio->sectors;
4986 struct r10conf *conf = mddev->private;
4987 struct r10bio *r10b;
4988 int slot = 0;
4989 int idx = 0;
4990 struct page **pages;
4991
4992 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4993 if (!r10b) {
4994 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4995 return -ENOMEM;
4996 }
4997
4998 /* reshape IOs share pages from .devs[0].bio */
4999 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5000
5001 r10b->sector = r10_bio->sector;
5002 __raid10_find_phys(&conf->prev, r10b);
5003
5004 while (sectors) {
5005 int s = sectors;
5006 int success = 0;
5007 int first_slot = slot;
5008
5009 if (s > (PAGE_SIZE >> 9))
5010 s = PAGE_SIZE >> 9;
5011
5012 while (!success) {
5013 int d = r10b->devs[slot].devnum;
5014 struct md_rdev *rdev = conf->mirrors[d].rdev;
5015 sector_t addr;
5016 if (rdev == NULL ||
5017 test_bit(Faulty, &rdev->flags) ||
5018 !test_bit(In_sync, &rdev->flags))
5019 goto failed;
5020
5021 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5022 atomic_inc(&rdev->nr_pending);
5023 success = sync_page_io(rdev,
5024 addr,
5025 s << 9,
5026 pages[idx],
5027 REQ_OP_READ, false);
5028 rdev_dec_pending(rdev, mddev);
5029 if (success)
5030 break;
5031 failed:
5032 slot++;
5033 if (slot >= conf->copies)
5034 slot = 0;
5035 if (slot == first_slot)
5036 break;
5037 }
5038 if (!success) {
5039 /* couldn't read this block, must give up */
5040 set_bit(MD_RECOVERY_INTR,
5041 &mddev->recovery);
5042 kfree(r10b);
5043 return -EIO;
5044 }
5045 sectors -= s;
5046 idx++;
5047 }
5048 kfree(r10b);
5049 return 0;
5050 }
5051
end_reshape_write(struct bio * bio)5052 static void end_reshape_write(struct bio *bio)
5053 {
5054 struct r10bio *r10_bio = get_resync_r10bio(bio);
5055 struct mddev *mddev = r10_bio->mddev;
5056 struct r10conf *conf = mddev->private;
5057 int d;
5058 int slot;
5059 int repl;
5060 struct md_rdev *rdev = NULL;
5061
5062 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5063 rdev = repl ? conf->mirrors[d].replacement :
5064 conf->mirrors[d].rdev;
5065
5066 if (bio->bi_status) {
5067 /* FIXME should record badblock */
5068 md_error(mddev, rdev);
5069 }
5070
5071 rdev_dec_pending(rdev, mddev);
5072 end_reshape_request(r10_bio);
5073 }
5074
end_reshape_request(struct r10bio * r10_bio)5075 static void end_reshape_request(struct r10bio *r10_bio)
5076 {
5077 if (!atomic_dec_and_test(&r10_bio->remaining))
5078 return;
5079 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5080 bio_put(r10_bio->master_bio);
5081 put_buf(r10_bio);
5082 }
5083
raid10_finish_reshape(struct mddev * mddev)5084 static void raid10_finish_reshape(struct mddev *mddev)
5085 {
5086 struct r10conf *conf = mddev->private;
5087
5088 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5089 return;
5090
5091 if (mddev->delta_disks > 0) {
5092 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5093 mddev->recovery_cp = mddev->resync_max_sectors;
5094 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5095 }
5096 mddev->resync_max_sectors = mddev->array_sectors;
5097 } else {
5098 int d;
5099 for (d = conf->geo.raid_disks ;
5100 d < conf->geo.raid_disks - mddev->delta_disks;
5101 d++) {
5102 struct md_rdev *rdev = conf->mirrors[d].rdev;
5103 if (rdev)
5104 clear_bit(In_sync, &rdev->flags);
5105 rdev = conf->mirrors[d].replacement;
5106 if (rdev)
5107 clear_bit(In_sync, &rdev->flags);
5108 }
5109 }
5110 mddev->layout = mddev->new_layout;
5111 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5112 mddev->reshape_position = MaxSector;
5113 mddev->delta_disks = 0;
5114 mddev->reshape_backwards = 0;
5115 }
5116
5117 static struct md_personality raid10_personality =
5118 {
5119 .head = {
5120 .type = MD_PERSONALITY,
5121 .id = ID_RAID10,
5122 .name = "raid10",
5123 .owner = THIS_MODULE,
5124 },
5125
5126 .make_request = raid10_make_request,
5127 .run = raid10_run,
5128 .free = raid10_free,
5129 .status = raid10_status,
5130 .error_handler = raid10_error,
5131 .hot_add_disk = raid10_add_disk,
5132 .hot_remove_disk= raid10_remove_disk,
5133 .spare_active = raid10_spare_active,
5134 .sync_request = raid10_sync_request,
5135 .quiesce = raid10_quiesce,
5136 .size = raid10_size,
5137 .resize = raid10_resize,
5138 .takeover = raid10_takeover,
5139 .check_reshape = raid10_check_reshape,
5140 .start_reshape = raid10_start_reshape,
5141 .finish_reshape = raid10_finish_reshape,
5142 .update_reshape_pos = raid10_update_reshape_pos,
5143 };
5144
raid10_init(void)5145 static int __init raid10_init(void)
5146 {
5147 return register_md_submodule(&raid10_personality.head);
5148 }
5149
raid10_exit(void)5150 static void __exit raid10_exit(void)
5151 {
5152 unregister_md_submodule(&raid10_personality.head);
5153 }
5154
5155 module_init(raid10_init);
5156 module_exit(raid10_exit);
5157 MODULE_LICENSE("GPL");
5158 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5159 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5160 MODULE_ALIAS("md-raid10");
5161 MODULE_ALIAS("md-level-10");
5162