xref: /linux/drivers/base/regmap/regmap-irq.c (revision c971f11dbf1bff3d1226b92015302326c7c292c3)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/array_size.h>
10 #include <linux/device.h>
11 #include <linux/export.h>
12 #include <linux/interrupt.h>
13 #include <linux/irq.h>
14 #include <linux/irqdomain.h>
15 #include <linux/overflow.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19 
20 #include "internal.h"
21 
22 struct regmap_irq_chip_data {
23 	struct mutex lock;
24 	struct irq_chip irq_chip;
25 
26 	struct regmap *map;
27 	const struct regmap_irq_chip *chip;
28 
29 	int irq_base;
30 	struct irq_domain *domain;
31 
32 	int irq;
33 	int wake_count;
34 
35 	void *status_reg_buf;
36 	unsigned int *main_status_buf;
37 	unsigned int *status_buf;
38 	unsigned int *prev_status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 	unsigned int **config_buf;
45 
46 	unsigned int irq_reg_stride;
47 
48 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
49 				    unsigned int base, int index);
50 
51 	unsigned int clear_status:1;
52 };
53 
54 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)55 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
56 				     int irq)
57 {
58 	return &data->chip->irqs[irq];
59 }
60 
regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data * data)61 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
62 {
63 	struct regmap *map = data->map;
64 
65 	/*
66 	 * While possible that a user-defined ->get_irq_reg() callback might
67 	 * be linear enough to support bulk reads, most of the time it won't.
68 	 * Therefore only allow them if the default callback is being used.
69 	 */
70 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
71 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
72 	       !map->use_single_read;
73 }
74 
regmap_irq_lock(struct irq_data * data)75 static void regmap_irq_lock(struct irq_data *data)
76 {
77 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
78 
79 	mutex_lock(&d->lock);
80 }
81 
regmap_irq_sync_unlock(struct irq_data * data)82 static void regmap_irq_sync_unlock(struct irq_data *data)
83 {
84 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
85 	struct regmap *map = d->map;
86 	int i, j, ret;
87 	u32 reg;
88 	u32 val;
89 
90 	if (d->chip->runtime_pm) {
91 		ret = pm_runtime_get_sync(map->dev);
92 		if (ret < 0)
93 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
94 				ret);
95 	}
96 
97 	if (d->clear_status) {
98 		for (i = 0; i < d->chip->num_regs; i++) {
99 			reg = d->get_irq_reg(d, d->chip->status_base, i);
100 
101 			ret = regmap_read(map, reg, &val);
102 			if (ret)
103 				dev_err(d->map->dev,
104 					"Failed to clear the interrupt status bits\n");
105 		}
106 
107 		d->clear_status = false;
108 	}
109 
110 	/*
111 	 * If there's been a change in the mask write it back to the
112 	 * hardware.  We rely on the use of the regmap core cache to
113 	 * suppress pointless writes.
114 	 */
115 	for (i = 0; i < d->chip->num_regs; i++) {
116 		if (d->chip->handle_mask_sync)
117 			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
118 						  d->mask_buf[i],
119 						  d->chip->irq_drv_data);
120 
121 		if (d->chip->mask_base && !d->chip->handle_mask_sync) {
122 			reg = d->get_irq_reg(d, d->chip->mask_base, i);
123 			ret = regmap_update_bits(d->map, reg,
124 						 d->mask_buf_def[i],
125 						 d->mask_buf[i]);
126 			if (ret)
127 				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
128 		}
129 
130 		if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
131 			reg = d->get_irq_reg(d, d->chip->unmask_base, i);
132 			ret = regmap_update_bits(d->map, reg,
133 					d->mask_buf_def[i], ~d->mask_buf[i]);
134 			if (ret)
135 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
136 					reg);
137 		}
138 
139 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
140 		if (d->wake_buf) {
141 			if (d->chip->wake_invert)
142 				ret = regmap_update_bits(d->map, reg,
143 							 d->mask_buf_def[i],
144 							 ~d->wake_buf[i]);
145 			else
146 				ret = regmap_update_bits(d->map, reg,
147 							 d->mask_buf_def[i],
148 							 d->wake_buf[i]);
149 			if (ret != 0)
150 				dev_err(d->map->dev,
151 					"Failed to sync wakes in %x: %d\n",
152 					reg, ret);
153 		}
154 
155 		if (!d->chip->init_ack_masked)
156 			continue;
157 		/*
158 		 * Ack all the masked interrupts unconditionally,
159 		 * OR if there is masked interrupt which hasn't been Acked,
160 		 * it'll be ignored in irq handler, then may introduce irq storm
161 		 */
162 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
163 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
164 
165 			/* some chips ack by write 0 */
166 			if (d->chip->ack_invert)
167 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
168 			else
169 				ret = regmap_write(map, reg, d->mask_buf[i]);
170 			if (d->chip->clear_ack) {
171 				if (d->chip->ack_invert && !ret)
172 					ret = regmap_write(map, reg, UINT_MAX);
173 				else if (!ret)
174 					ret = regmap_write(map, reg, 0);
175 			}
176 			if (ret != 0)
177 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
178 					reg, ret);
179 		}
180 	}
181 
182 	for (i = 0; i < d->chip->num_config_bases; i++) {
183 		for (j = 0; j < d->chip->num_config_regs; j++) {
184 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
185 			ret = regmap_write(map, reg, d->config_buf[i][j]);
186 			if (ret)
187 				dev_err(d->map->dev,
188 					"Failed to write config %x: %d\n",
189 					reg, ret);
190 		}
191 	}
192 
193 	if (d->chip->runtime_pm)
194 		pm_runtime_put(map->dev);
195 
196 	/* If we've changed our wakeup count propagate it to the parent */
197 	if (d->wake_count < 0)
198 		for (i = d->wake_count; i < 0; i++)
199 			disable_irq_wake(d->irq);
200 	else if (d->wake_count > 0)
201 		for (i = 0; i < d->wake_count; i++)
202 			enable_irq_wake(d->irq);
203 
204 	d->wake_count = 0;
205 
206 	mutex_unlock(&d->lock);
207 }
208 
regmap_irq_enable(struct irq_data * data)209 static void regmap_irq_enable(struct irq_data *data)
210 {
211 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
212 	struct regmap *map = d->map;
213 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
214 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
215 	unsigned int mask;
216 
217 	/*
218 	 * The type_in_mask flag means that the underlying hardware uses
219 	 * separate mask bits for each interrupt trigger type, but we want
220 	 * to have a single logical interrupt with a configurable type.
221 	 *
222 	 * If the interrupt we're enabling defines any supported types
223 	 * then instead of using the regular mask bits for this interrupt,
224 	 * use the value previously written to the type buffer at the
225 	 * corresponding offset in regmap_irq_set_type().
226 	 */
227 	if (d->chip->type_in_mask && irq_data->type.types_supported)
228 		mask = d->type_buf[reg] & irq_data->mask;
229 	else
230 		mask = irq_data->mask;
231 
232 	if (d->chip->clear_on_unmask)
233 		d->clear_status = true;
234 
235 	d->mask_buf[reg] &= ~mask;
236 }
237 
regmap_irq_disable(struct irq_data * data)238 static void regmap_irq_disable(struct irq_data *data)
239 {
240 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
241 	struct regmap *map = d->map;
242 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
243 
244 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
245 }
246 
regmap_irq_set_type(struct irq_data * data,unsigned int type)247 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
248 {
249 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
250 	struct regmap *map = d->map;
251 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
252 	int reg, ret;
253 	const struct regmap_irq_type *t = &irq_data->type;
254 
255 	if ((t->types_supported & type) != type)
256 		return 0;
257 
258 	reg = t->type_reg_offset / map->reg_stride;
259 
260 	if (d->chip->type_in_mask) {
261 		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
262 							irq_data, reg, d->chip->irq_drv_data);
263 		if (ret)
264 			return ret;
265 	}
266 
267 	if (d->chip->set_type_config) {
268 		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
269 					       reg, d->chip->irq_drv_data);
270 		if (ret)
271 			return ret;
272 	}
273 
274 	return 0;
275 }
276 
regmap_irq_set_wake(struct irq_data * data,unsigned int on)277 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
278 {
279 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
280 	struct regmap *map = d->map;
281 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
282 
283 	if (on) {
284 		if (d->wake_buf)
285 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
286 				&= ~irq_data->mask;
287 		d->wake_count++;
288 	} else {
289 		if (d->wake_buf)
290 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
291 				|= irq_data->mask;
292 		d->wake_count--;
293 	}
294 
295 	return 0;
296 }
297 
298 static const struct irq_chip regmap_irq_chip = {
299 	.irq_bus_lock		= regmap_irq_lock,
300 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
301 	.irq_disable		= regmap_irq_disable,
302 	.irq_enable		= regmap_irq_enable,
303 	.irq_set_type		= regmap_irq_set_type,
304 	.irq_set_wake		= regmap_irq_set_wake,
305 };
306 
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)307 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
308 					   unsigned int b)
309 {
310 	const struct regmap_irq_chip *chip = data->chip;
311 	const struct regmap_irq_sub_irq_map *subreg;
312 	struct regmap *map = data->map;
313 	unsigned int reg;
314 	int i, ret = 0;
315 
316 	if (!chip->sub_reg_offsets) {
317 		reg = data->get_irq_reg(data, chip->status_base, b);
318 		ret = regmap_read(map, reg, &data->status_buf[b]);
319 	} else {
320 		/*
321 		 * Note we can't use ->get_irq_reg() here because the offsets
322 		 * in 'subreg' are *not* interchangeable with indices.
323 		 */
324 		subreg = &chip->sub_reg_offsets[b];
325 		for (i = 0; i < subreg->num_regs; i++) {
326 			unsigned int offset = subreg->offset[i];
327 			unsigned int index = offset / map->reg_stride;
328 
329 			ret = regmap_read(map, chip->status_base + offset,
330 					  &data->status_buf[index]);
331 			if (ret)
332 				break;
333 		}
334 	}
335 	return ret;
336 }
337 
read_irq_data(struct regmap_irq_chip_data * data)338 static int read_irq_data(struct regmap_irq_chip_data *data)
339 {
340 	const struct regmap_irq_chip *chip = data->chip;
341 	struct regmap *map = data->map;
342 	int ret, i;
343 	u32 reg;
344 
345 	/*
346 	 * Read only registers with active IRQs if the chip has 'main status
347 	 * register'. Else read in the statuses, using a single bulk read if
348 	 * possible in order to reduce the I/O overheads.
349 	 */
350 
351 	if (chip->no_status) {
352 		/* no status register so default to all active */
353 		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
354 	} else if (chip->num_main_regs) {
355 		unsigned int max_main_bits;
356 
357 		max_main_bits = (chip->num_main_status_bits) ?
358 				 chip->num_main_status_bits : chip->num_regs;
359 		/* Clear the status buf as we don't read all status regs */
360 		memset32(data->status_buf, 0, chip->num_regs);
361 
362 		/* We could support bulk read for main status registers
363 		 * but I don't expect to see devices with really many main
364 		 * status registers so let's only support single reads for the
365 		 * sake of simplicity. and add bulk reads only if needed
366 		 */
367 		for (i = 0; i < chip->num_main_regs; i++) {
368 			reg = data->get_irq_reg(data, chip->main_status, i);
369 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
370 			if (ret) {
371 				dev_err(map->dev, "Failed to read IRQ status %d\n", ret);
372 				return ret;
373 			}
374 		}
375 
376 		/* Read sub registers with active IRQs */
377 		for (i = 0; i < chip->num_main_regs; i++) {
378 			unsigned int b;
379 			const unsigned long mreg = data->main_status_buf[i];
380 
381 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
382 				if (i * map->format.val_bytes * 8 + b >
383 				    max_main_bits)
384 					break;
385 				ret = read_sub_irq_data(data, b);
386 
387 				if (ret != 0) {
388 					dev_err(map->dev, "Failed to read IRQ status %d\n", ret);
389 					return ret;
390 				}
391 			}
392 
393 		}
394 	} else if (regmap_irq_can_bulk_read_status(data)) {
395 
396 		u8 *buf8 = data->status_reg_buf;
397 		u16 *buf16 = data->status_reg_buf;
398 		u32 *buf32 = data->status_reg_buf;
399 
400 		BUG_ON(!data->status_reg_buf);
401 
402 		ret = regmap_bulk_read(map, chip->status_base,
403 				       data->status_reg_buf,
404 				       chip->num_regs);
405 		if (ret != 0) {
406 			dev_err(map->dev, "Failed to read IRQ status: %d\n", ret);
407 			return ret;
408 		}
409 
410 		for (i = 0; i < data->chip->num_regs; i++) {
411 			switch (map->format.val_bytes) {
412 			case 1:
413 				data->status_buf[i] = buf8[i];
414 				break;
415 			case 2:
416 				data->status_buf[i] = buf16[i];
417 				break;
418 			case 4:
419 				data->status_buf[i] = buf32[i];
420 				break;
421 			default:
422 				BUG();
423 				return -EIO;
424 			}
425 		}
426 
427 	} else {
428 		for (i = 0; i < data->chip->num_regs; i++) {
429 			unsigned int reg = data->get_irq_reg(data,
430 					data->chip->status_base, i);
431 			ret = regmap_read(map, reg, &data->status_buf[i]);
432 
433 			if (ret != 0) {
434 				dev_err(map->dev, "Failed to read IRQ status: %d\n", ret);
435 				return ret;
436 			}
437 		}
438 	}
439 
440 	if (chip->status_invert)
441 		for (i = 0; i < data->chip->num_regs; i++)
442 			data->status_buf[i] = ~data->status_buf[i];
443 
444 	return 0;
445 }
446 
regmap_irq_thread(int irq,void * d)447 static irqreturn_t regmap_irq_thread(int irq, void *d)
448 {
449 	struct regmap_irq_chip_data *data = d;
450 	const struct regmap_irq_chip *chip = data->chip;
451 	struct regmap *map = data->map;
452 	int ret, i;
453 	bool handled = false;
454 	u32 reg;
455 
456 	if (chip->handle_pre_irq)
457 		chip->handle_pre_irq(chip->irq_drv_data);
458 
459 	if (chip->runtime_pm) {
460 		ret = pm_runtime_get_sync(map->dev);
461 		if (ret < 0) {
462 			dev_err(map->dev, "IRQ thread failed to resume: %d\n", ret);
463 			goto exit;
464 		}
465 	}
466 
467 	ret = read_irq_data(data);
468 	if (ret < 0)
469 		goto exit;
470 
471 	if (chip->status_is_level) {
472 		for (i = 0; i < data->chip->num_regs; i++) {
473 			unsigned int val = data->status_buf[i];
474 
475 			data->status_buf[i] ^= data->prev_status_buf[i];
476 			data->prev_status_buf[i] = val;
477 		}
478 	}
479 
480 	/*
481 	 * Ignore masked IRQs and ack if we need to; we ack early so
482 	 * there is no race between handling and acknowledging the
483 	 * interrupt.  We assume that typically few of the interrupts
484 	 * will fire simultaneously so don't worry about overhead from
485 	 * doing a write per register.
486 	 */
487 	for (i = 0; i < data->chip->num_regs; i++) {
488 		data->status_buf[i] &= ~data->mask_buf[i];
489 
490 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
491 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
492 
493 			if (chip->ack_invert)
494 				ret = regmap_write(map, reg,
495 						~data->status_buf[i]);
496 			else
497 				ret = regmap_write(map, reg,
498 						data->status_buf[i]);
499 			if (chip->clear_ack) {
500 				if (chip->ack_invert && !ret)
501 					ret = regmap_write(map, reg, UINT_MAX);
502 				else if (!ret)
503 					ret = regmap_write(map, reg, 0);
504 			}
505 			if (ret != 0)
506 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
507 					reg, ret);
508 		}
509 	}
510 
511 	for (i = 0; i < chip->num_irqs; i++) {
512 		if (data->status_buf[chip->irqs[i].reg_offset /
513 				     map->reg_stride] & chip->irqs[i].mask) {
514 			handle_nested_irq(irq_find_mapping(data->domain, i));
515 			handled = true;
516 		}
517 	}
518 
519 exit:
520 	if (chip->handle_post_irq)
521 		chip->handle_post_irq(chip->irq_drv_data);
522 
523 	if (chip->runtime_pm)
524 		pm_runtime_put(map->dev);
525 
526 	if (handled)
527 		return IRQ_HANDLED;
528 	else
529 		return IRQ_NONE;
530 }
531 
532 static struct lock_class_key regmap_irq_lock_class;
533 static struct lock_class_key regmap_irq_request_class;
534 
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)535 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
536 			  irq_hw_number_t hw)
537 {
538 	struct regmap_irq_chip_data *data = h->host_data;
539 
540 	irq_set_chip_data(virq, data);
541 	irq_set_lockdep_class(virq, &regmap_irq_lock_class, &regmap_irq_request_class);
542 	irq_set_chip(virq, &data->irq_chip);
543 	irq_set_nested_thread(virq, 1);
544 	irq_set_parent(virq, data->irq);
545 	irq_set_noprobe(virq);
546 
547 	return 0;
548 }
549 
550 static const struct irq_domain_ops regmap_domain_ops = {
551 	.map	= regmap_irq_map,
552 	.xlate	= irq_domain_xlate_onetwocell,
553 };
554 
555 /**
556  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
557  * @data: Data for the &struct regmap_irq_chip
558  * @base: Base register
559  * @index: Register index
560  *
561  * Returns the register address corresponding to the given @base and @index
562  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
563  */
regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data * data,unsigned int base,int index)564 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
565 					   unsigned int base, int index)
566 {
567 	struct regmap *map = data->map;
568 
569 	return base + index * map->reg_stride * data->irq_reg_stride;
570 }
571 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
572 
573 /**
574  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
575  * @buf: Buffer containing configuration register values, this is a 2D array of
576  *       `num_config_bases` rows, each of `num_config_regs` elements.
577  * @type: The requested IRQ type.
578  * @irq_data: The IRQ being configured.
579  * @idx: Index of the irq's config registers within each array `buf[i]`
580  * @irq_drv_data: Driver specific IRQ data
581  *
582  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
583  * chips with one config register. Register values are updated according to
584  * the &struct regmap_irq_type data associated with an IRQ.
585  */
regmap_irq_set_type_config_simple(unsigned int ** buf,unsigned int type,const struct regmap_irq * irq_data,int idx,void * irq_drv_data)586 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
587 				      const struct regmap_irq *irq_data,
588 				      int idx, void *irq_drv_data)
589 {
590 	const struct regmap_irq_type *t = &irq_data->type;
591 
592 	if (t->type_reg_mask)
593 		buf[0][idx] &= ~t->type_reg_mask;
594 	else
595 		buf[0][idx] &= ~(t->type_falling_val |
596 				 t->type_rising_val |
597 				 t->type_level_low_val |
598 				 t->type_level_high_val);
599 
600 	switch (type) {
601 	case IRQ_TYPE_EDGE_FALLING:
602 		buf[0][idx] |= t->type_falling_val;
603 		break;
604 
605 	case IRQ_TYPE_EDGE_RISING:
606 		buf[0][idx] |= t->type_rising_val;
607 		break;
608 
609 	case IRQ_TYPE_EDGE_BOTH:
610 		buf[0][idx] |= (t->type_falling_val |
611 				t->type_rising_val);
612 		break;
613 
614 	case IRQ_TYPE_LEVEL_HIGH:
615 		buf[0][idx] |= t->type_level_high_val;
616 		break;
617 
618 	case IRQ_TYPE_LEVEL_LOW:
619 		buf[0][idx] |= t->type_level_low_val;
620 		break;
621 
622 	default:
623 		return -EINVAL;
624 	}
625 
626 	return 0;
627 }
628 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
629 
regmap_irq_create_domain(struct fwnode_handle * fwnode,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data * d)630 static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base,
631 				    const struct regmap_irq_chip *chip,
632 				    struct regmap_irq_chip_data *d)
633 {
634 	struct irq_domain_info info = {
635 		.fwnode = fwnode,
636 		.size = chip->num_irqs,
637 		.hwirq_max = chip->num_irqs,
638 		.virq_base = irq_base,
639 		.ops = &regmap_domain_ops,
640 		.host_data = d,
641 		.name_suffix = chip->domain_suffix,
642 	};
643 
644 	d->domain = irq_domain_instantiate(&info);
645 	if (IS_ERR(d->domain)) {
646 		dev_err(d->map->dev, "Failed to create IRQ domain\n");
647 		return PTR_ERR(d->domain);
648 	}
649 
650 	return 0;
651 }
652 
653 
654 /**
655  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
656  *
657  * @fwnode: The firmware node where the IRQ domain should be added to.
658  * @map: The regmap for the device.
659  * @irq: The IRQ the device uses to signal interrupts.
660  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
661  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
662  * @chip: Configuration for the interrupt controller.
663  * @data: Runtime data structure for the controller, allocated on success.
664  *
665  * Returns 0 on success or an errno on failure.
666  *
667  * In order for this to be efficient the chip really should use a
668  * register cache.  The chip driver is responsible for restoring the
669  * register values used by the IRQ controller over suspend and resume.
670  */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)671 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
672 			       struct regmap *map, int irq,
673 			       int irq_flags, int irq_base,
674 			       const struct regmap_irq_chip *chip,
675 			       struct regmap_irq_chip_data **data)
676 {
677 	struct regmap_irq_chip_data *d;
678 	int i;
679 	int ret = -ENOMEM;
680 	u32 reg;
681 
682 	if (chip->num_regs <= 0)
683 		return -EINVAL;
684 
685 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
686 		return -EINVAL;
687 
688 	if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
689 		return -EINVAL;
690 
691 	for (i = 0; i < chip->num_irqs; i++) {
692 		if (chip->irqs[i].reg_offset % map->reg_stride)
693 			return -EINVAL;
694 		if (chip->irqs[i].reg_offset / map->reg_stride >=
695 		    chip->num_regs)
696 			return -EINVAL;
697 	}
698 
699 	if (irq_base) {
700 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
701 		if (irq_base < 0) {
702 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
703 				 irq_base);
704 			return irq_base;
705 		}
706 	}
707 
708 	d = kzalloc(sizeof(*d), GFP_KERNEL);
709 	if (!d)
710 		return -ENOMEM;
711 
712 	if (chip->num_main_regs) {
713 		d->main_status_buf = kcalloc(chip->num_main_regs,
714 					     sizeof(*d->main_status_buf),
715 					     GFP_KERNEL);
716 
717 		if (!d->main_status_buf)
718 			goto err_alloc;
719 	}
720 
721 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
722 				GFP_KERNEL);
723 	if (!d->status_buf)
724 		goto err_alloc;
725 
726 	if (chip->status_is_level) {
727 		d->prev_status_buf = kcalloc(chip->num_regs, sizeof(*d->prev_status_buf),
728 					     GFP_KERNEL);
729 		if (!d->prev_status_buf)
730 			goto err_alloc;
731 	}
732 
733 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
734 			      GFP_KERNEL);
735 	if (!d->mask_buf)
736 		goto err_alloc;
737 
738 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
739 				  GFP_KERNEL);
740 	if (!d->mask_buf_def)
741 		goto err_alloc;
742 
743 	if (chip->wake_base) {
744 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
745 				      GFP_KERNEL);
746 		if (!d->wake_buf)
747 			goto err_alloc;
748 	}
749 
750 	if (chip->type_in_mask) {
751 		d->type_buf_def = kcalloc(chip->num_regs,
752 					  sizeof(*d->type_buf_def), GFP_KERNEL);
753 		if (!d->type_buf_def)
754 			goto err_alloc;
755 
756 		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
757 		if (!d->type_buf)
758 			goto err_alloc;
759 	}
760 
761 	if (chip->num_config_bases && chip->num_config_regs) {
762 		/*
763 		 * Create config_buf[num_config_bases][num_config_regs]
764 		 */
765 		d->config_buf = kcalloc(chip->num_config_bases,
766 					sizeof(*d->config_buf), GFP_KERNEL);
767 		if (!d->config_buf)
768 			goto err_alloc;
769 
770 		for (i = 0; i < chip->num_config_bases; i++) {
771 			d->config_buf[i] = kcalloc(chip->num_config_regs,
772 						   sizeof(**d->config_buf),
773 						   GFP_KERNEL);
774 			if (!d->config_buf[i])
775 				goto err_alloc;
776 		}
777 	}
778 
779 	d->irq_chip = regmap_irq_chip;
780 	d->irq_chip.name = chip->name;
781 	d->irq = irq;
782 	d->map = map;
783 	d->chip = chip;
784 	d->irq_base = irq_base;
785 
786 	if (chip->irq_reg_stride)
787 		d->irq_reg_stride = chip->irq_reg_stride;
788 	else
789 		d->irq_reg_stride = 1;
790 
791 	if (chip->get_irq_reg)
792 		d->get_irq_reg = chip->get_irq_reg;
793 	else
794 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
795 
796 	if (regmap_irq_can_bulk_read_status(d)) {
797 		d->status_reg_buf = kmalloc_array(chip->num_regs,
798 						  map->format.val_bytes,
799 						  GFP_KERNEL);
800 		if (!d->status_reg_buf)
801 			goto err_alloc;
802 	}
803 
804 	mutex_init(&d->lock);
805 
806 	for (i = 0; i < chip->num_irqs; i++)
807 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
808 			|= chip->irqs[i].mask;
809 
810 	/* Mask all the interrupts by default */
811 	for (i = 0; i < chip->num_regs; i++) {
812 		d->mask_buf[i] = d->mask_buf_def[i];
813 
814 		if (chip->handle_mask_sync) {
815 			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
816 						     d->mask_buf[i],
817 						     chip->irq_drv_data);
818 			if (ret)
819 				goto err_alloc;
820 		}
821 
822 		if (chip->mask_base && !chip->handle_mask_sync) {
823 			reg = d->get_irq_reg(d, chip->mask_base, i);
824 			ret = regmap_update_bits(d->map, reg,
825 						 d->mask_buf_def[i],
826 						 d->mask_buf[i]);
827 			if (ret) {
828 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
829 					reg, ret);
830 				goto err_alloc;
831 			}
832 		}
833 
834 		if (chip->unmask_base && !chip->handle_mask_sync) {
835 			reg = d->get_irq_reg(d, chip->unmask_base, i);
836 			ret = regmap_update_bits(d->map, reg,
837 					d->mask_buf_def[i], ~d->mask_buf[i]);
838 			if (ret) {
839 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
840 					reg, ret);
841 				goto err_alloc;
842 			}
843 		}
844 
845 		if (!chip->init_ack_masked)
846 			continue;
847 
848 		/* Ack masked but set interrupts */
849 		if (d->chip->no_status) {
850 			/* no status register so default to all active */
851 			d->status_buf[i] = UINT_MAX;
852 		} else {
853 			reg = d->get_irq_reg(d, d->chip->status_base, i);
854 			ret = regmap_read(map, reg, &d->status_buf[i]);
855 			if (ret != 0) {
856 				dev_err(map->dev, "Failed to read IRQ status: %d\n",
857 					ret);
858 				goto err_alloc;
859 			}
860 		}
861 
862 		if (chip->status_invert)
863 			d->status_buf[i] = ~d->status_buf[i];
864 
865 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
866 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
867 			if (chip->ack_invert)
868 				ret = regmap_write(map, reg,
869 					~(d->status_buf[i] & d->mask_buf[i]));
870 			else
871 				ret = regmap_write(map, reg,
872 					d->status_buf[i] & d->mask_buf[i]);
873 			if (chip->clear_ack) {
874 				if (chip->ack_invert && !ret)
875 					ret = regmap_write(map, reg, UINT_MAX);
876 				else if (!ret)
877 					ret = regmap_write(map, reg, 0);
878 			}
879 			if (ret != 0) {
880 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
881 					reg, ret);
882 				goto err_alloc;
883 			}
884 		}
885 	}
886 
887 	/* Wake is disabled by default */
888 	if (d->wake_buf) {
889 		for (i = 0; i < chip->num_regs; i++) {
890 			d->wake_buf[i] = d->mask_buf_def[i];
891 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
892 
893 			if (chip->wake_invert)
894 				ret = regmap_update_bits(d->map, reg,
895 							 d->mask_buf_def[i],
896 							 0);
897 			else
898 				ret = regmap_update_bits(d->map, reg,
899 							 d->mask_buf_def[i],
900 							 d->wake_buf[i]);
901 			if (ret != 0) {
902 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
903 					reg, ret);
904 				goto err_alloc;
905 			}
906 		}
907 	}
908 
909 	/* Store current levels */
910 	if (chip->status_is_level) {
911 		ret = read_irq_data(d);
912 		if (ret < 0)
913 			goto err_alloc;
914 
915 		memcpy(d->prev_status_buf, d->status_buf,
916 		       array_size(d->chip->num_regs, sizeof(d->prev_status_buf[0])));
917 	}
918 
919 	ret = regmap_irq_create_domain(fwnode, irq_base, chip, d);
920 	if (ret)
921 		goto err_alloc;
922 
923 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
924 				   irq_flags | IRQF_ONESHOT,
925 				   chip->name, d);
926 	if (ret != 0) {
927 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
928 			irq, chip->name, ret);
929 		goto err_domain;
930 	}
931 
932 	*data = d;
933 
934 	return 0;
935 
936 err_domain:
937 	/* Should really dispose of the domain but... */
938 err_alloc:
939 	kfree(d->type_buf);
940 	kfree(d->type_buf_def);
941 	kfree(d->wake_buf);
942 	kfree(d->mask_buf_def);
943 	kfree(d->mask_buf);
944 	kfree(d->main_status_buf);
945 	kfree(d->status_buf);
946 	kfree(d->prev_status_buf);
947 	kfree(d->status_reg_buf);
948 	if (d->config_buf) {
949 		for (i = 0; i < chip->num_config_bases; i++)
950 			kfree(d->config_buf[i]);
951 		kfree(d->config_buf);
952 	}
953 	kfree(d);
954 	return ret;
955 }
956 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
957 
958 /**
959  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
960  *
961  * @map: The regmap for the device.
962  * @irq: The IRQ the device uses to signal interrupts.
963  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
964  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
965  * @chip: Configuration for the interrupt controller.
966  * @data: Runtime data structure for the controller, allocated on success.
967  *
968  * Returns 0 on success or an errno on failure.
969  *
970  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
971  * node of the regmap is used.
972  */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)973 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
974 			int irq_base, const struct regmap_irq_chip *chip,
975 			struct regmap_irq_chip_data **data)
976 {
977 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
978 					  irq_flags, irq_base, chip, data);
979 }
980 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
981 
982 /**
983  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
984  *
985  * @irq: Primary IRQ for the device
986  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
987  *
988  * This function also disposes of all mapped IRQs on the chip.
989  */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)990 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
991 {
992 	unsigned int virq;
993 	int i, hwirq;
994 
995 	if (!d)
996 		return;
997 
998 	free_irq(irq, d);
999 
1000 	/* Dispose all virtual irq from irq domain before removing it */
1001 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1002 		/* Ignore hwirq if holes in the IRQ list */
1003 		if (!d->chip->irqs[hwirq].mask)
1004 			continue;
1005 
1006 		/*
1007 		 * Find the virtual irq of hwirq on chip and if it is
1008 		 * there then dispose it
1009 		 */
1010 		virq = irq_find_mapping(d->domain, hwirq);
1011 		if (virq)
1012 			irq_dispose_mapping(virq);
1013 	}
1014 
1015 	irq_domain_remove(d->domain);
1016 	kfree(d->type_buf);
1017 	kfree(d->type_buf_def);
1018 	kfree(d->wake_buf);
1019 	kfree(d->mask_buf_def);
1020 	kfree(d->mask_buf);
1021 	kfree(d->main_status_buf);
1022 	kfree(d->status_reg_buf);
1023 	kfree(d->status_buf);
1024 	kfree(d->prev_status_buf);
1025 	if (d->config_buf) {
1026 		for (i = 0; i < d->chip->num_config_bases; i++)
1027 			kfree(d->config_buf[i]);
1028 		kfree(d->config_buf);
1029 	}
1030 	kfree(d);
1031 }
1032 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1033 
devm_regmap_irq_chip_release(struct device * dev,void * res)1034 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1035 {
1036 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1037 
1038 	regmap_del_irq_chip(d->irq, d);
1039 }
1040 
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)1041 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1042 
1043 {
1044 	struct regmap_irq_chip_data **r = res;
1045 
1046 	if (!r || !*r) {
1047 		WARN_ON(!r || !*r);
1048 		return 0;
1049 	}
1050 	return *r == data;
1051 }
1052 
1053 /**
1054  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1055  *
1056  * @dev: The device pointer on which irq_chip belongs to.
1057  * @fwnode: The firmware node where the IRQ domain should be added to.
1058  * @map: The regmap for the device.
1059  * @irq: The IRQ the device uses to signal interrupts
1060  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1061  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1062  * @chip: Configuration for the interrupt controller.
1063  * @data: Runtime data structure for the controller, allocated on success
1064  *
1065  * Returns 0 on success or an errno on failure.
1066  *
1067  * The &regmap_irq_chip_data will be automatically released when the device is
1068  * unbound.
1069  */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1070 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1071 				    struct fwnode_handle *fwnode,
1072 				    struct regmap *map, int irq,
1073 				    int irq_flags, int irq_base,
1074 				    const struct regmap_irq_chip *chip,
1075 				    struct regmap_irq_chip_data **data)
1076 {
1077 	struct regmap_irq_chip_data **ptr, *d;
1078 	int ret;
1079 
1080 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1081 			   GFP_KERNEL);
1082 	if (!ptr)
1083 		return -ENOMEM;
1084 
1085 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1086 					 chip, &d);
1087 	if (ret < 0) {
1088 		devres_free(ptr);
1089 		return ret;
1090 	}
1091 
1092 	*ptr = d;
1093 	devres_add(dev, ptr);
1094 	*data = d;
1095 	return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1098 
1099 /**
1100  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1101  *
1102  * @dev: The device pointer on which irq_chip belongs to.
1103  * @map: The regmap for the device.
1104  * @irq: The IRQ the device uses to signal interrupts
1105  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1106  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1107  * @chip: Configuration for the interrupt controller.
1108  * @data: Runtime data structure for the controller, allocated on success
1109  *
1110  * Returns 0 on success or an errno on failure.
1111  *
1112  * The &regmap_irq_chip_data will be automatically released when the device is
1113  * unbound.
1114  */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1115 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1116 			     int irq_flags, int irq_base,
1117 			     const struct regmap_irq_chip *chip,
1118 			     struct regmap_irq_chip_data **data)
1119 {
1120 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1121 					       irq, irq_flags, irq_base, chip,
1122 					       data);
1123 }
1124 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1125 
1126 /**
1127  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1128  *
1129  * @dev: Device for which the resource was allocated.
1130  * @irq: Primary IRQ for the device.
1131  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1132  *
1133  * A resource managed version of regmap_del_irq_chip().
1134  */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1135 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1136 			      struct regmap_irq_chip_data *data)
1137 {
1138 	int rc;
1139 
1140 	WARN_ON(irq != data->irq);
1141 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1142 			    devm_regmap_irq_chip_match, data);
1143 
1144 	if (rc != 0)
1145 		WARN_ON(rc);
1146 }
1147 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1148 
1149 /**
1150  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1151  *
1152  * @data: regmap irq controller to operate on.
1153  *
1154  * Useful for drivers to request their own IRQs.
1155  */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1156 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1157 {
1158 	WARN_ON(!data->irq_base);
1159 	return data->irq_base;
1160 }
1161 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1162 
1163 /**
1164  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1165  *
1166  * @data: regmap irq controller to operate on.
1167  * @irq: index of the interrupt requested in the chip IRQs.
1168  *
1169  * Useful for drivers to request their own IRQs.
1170  */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1171 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1172 {
1173 	/* Handle holes in the IRQ list */
1174 	if (!data->chip->irqs[irq].mask)
1175 		return -EINVAL;
1176 
1177 	return irq_create_mapping(data->domain, irq);
1178 }
1179 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1180 
1181 /**
1182  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1183  *
1184  * @data: regmap_irq controller to operate on.
1185  *
1186  * Useful for drivers to request their own IRQs and for integration
1187  * with subsystems.  For ease of integration NULL is accepted as a
1188  * domain, allowing devices to just call this even if no domain is
1189  * allocated.
1190  */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1191 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1192 {
1193 	if (data)
1194 		return data->domain;
1195 	else
1196 		return NULL;
1197 }
1198 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1199