xref: /linux/drivers/base/regmap/regmap.c (revision 442bc81bd344dc52c37d8f80b854cc6da062b2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <linux/unaligned.h>
21 
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24 
25 #include "internal.h"
26 
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34 
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43 
44 
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 			       unsigned int mask, unsigned int val,
47 			       bool *change, bool force_write);
48 
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 				unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 			    unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 				       unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 				 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 				 unsigned int val);
59 
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 			  const struct regmap_range *ranges,
62 			  unsigned int nranges)
63 {
64 	const struct regmap_range *r;
65 	int i;
66 
67 	for (i = 0, r = ranges; i < nranges; i++, r++)
68 		if (regmap_reg_in_range(reg, r))
69 			return true;
70 	return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73 
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 			      const struct regmap_access_table *table)
76 {
77 	/* Check "no ranges" first */
78 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 		return false;
80 
81 	/* In case zero "yes ranges" are supplied, any reg is OK */
82 	if (!table->n_yes_ranges)
83 		return true;
84 
85 	return regmap_reg_in_ranges(reg, table->yes_ranges,
86 				    table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89 
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 	if (map->max_register_is_set && reg > map->max_register)
93 		return false;
94 
95 	if (map->writeable_reg)
96 		return map->writeable_reg(map->dev, reg);
97 
98 	if (map->wr_table)
99 		return regmap_check_range_table(map, reg, map->wr_table);
100 
101 	return true;
102 }
103 
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 	int ret;
107 	unsigned int val;
108 
109 	if (map->cache_type == REGCACHE_NONE)
110 		return false;
111 
112 	if (!map->cache_ops)
113 		return false;
114 
115 	if (map->max_register_is_set && reg > map->max_register)
116 		return false;
117 
118 	map->lock(map->lock_arg);
119 	ret = regcache_read(map, reg, &val);
120 	map->unlock(map->lock_arg);
121 	if (ret)
122 		return false;
123 
124 	return true;
125 }
126 
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 	if (!map->reg_read)
130 		return false;
131 
132 	if (map->max_register_is_set && reg > map->max_register)
133 		return false;
134 
135 	if (map->format.format_write)
136 		return false;
137 
138 	if (map->readable_reg)
139 		return map->readable_reg(map->dev, reg);
140 
141 	if (map->rd_table)
142 		return regmap_check_range_table(map, reg, map->rd_table);
143 
144 	return true;
145 }
146 
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 	if (!map->format.format_write && !regmap_readable(map, reg))
150 		return false;
151 
152 	if (map->volatile_reg)
153 		return map->volatile_reg(map->dev, reg);
154 
155 	if (map->volatile_table)
156 		return regmap_check_range_table(map, reg, map->volatile_table);
157 
158 	if (map->cache_ops)
159 		return false;
160 	else
161 		return true;
162 }
163 
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 	if (!regmap_readable(map, reg))
167 		return false;
168 
169 	if (map->precious_reg)
170 		return map->precious_reg(map->dev, reg);
171 
172 	if (map->precious_table)
173 		return regmap_check_range_table(map, reg, map->precious_table);
174 
175 	return false;
176 }
177 
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 	if (map->writeable_noinc_reg)
181 		return map->writeable_noinc_reg(map->dev, reg);
182 
183 	if (map->wr_noinc_table)
184 		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185 
186 	return true;
187 }
188 
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 	if (map->readable_noinc_reg)
192 		return map->readable_noinc_reg(map->dev, reg);
193 
194 	if (map->rd_noinc_table)
195 		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196 
197 	return true;
198 }
199 
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 	size_t num)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < num; i++)
206 		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 			return false;
208 
209 	return true;
210 }
211 
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 				     unsigned int reg, unsigned int val)
214 {
215 	u8 *out = map->work_buf;
216 
217 	out[0] = reg >> 4;
218 	out[1] = (reg << 4) | (val >> 16);
219 	out[2] = val >> 8;
220 	out[3] = val;
221 }
222 
223 
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 				     unsigned int reg, unsigned int val)
226 {
227 	u8 *out = map->work_buf;
228 
229 	*out = (reg << 6) | val;
230 }
231 
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 				     unsigned int reg, unsigned int val)
234 {
235 	__be16 *out = map->work_buf;
236 	*out = cpu_to_be16((reg << 12) | val);
237 }
238 
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 				    unsigned int reg, unsigned int val)
241 {
242 	__be16 *out = map->work_buf;
243 	*out = cpu_to_be16((reg << 9) | val);
244 }
245 
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 				    unsigned int reg, unsigned int val)
248 {
249 	u8 *out = map->work_buf;
250 
251 	out[2] = val;
252 	out[1] = val >> 8;
253 	out[0] = (val >> 16) | (reg << 1);
254 }
255 
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 				    unsigned int reg, unsigned int val)
258 {
259 	u8 *out = map->work_buf;
260 
261 	out[2] = val;
262 	out[1] = (val >> 8) | (reg << 6);
263 	out[0] = reg >> 2;
264 }
265 
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 	u8 *b = buf;
269 
270 	b[0] = val << shift;
271 }
272 
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	put_unaligned_be16(val << shift, buf);
276 }
277 
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 	put_unaligned_le16(val << shift, buf);
281 }
282 
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 				    unsigned int shift)
285 {
286 	u16 v = val << shift;
287 
288 	memcpy(buf, &v, sizeof(v));
289 }
290 
regmap_format_24_be(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293 	put_unaligned_be24(val << shift, buf);
294 }
295 
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298 	put_unaligned_be32(val << shift, buf);
299 }
300 
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303 	put_unaligned_le32(val << shift, buf);
304 }
305 
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)306 static void regmap_format_32_native(void *buf, unsigned int val,
307 				    unsigned int shift)
308 {
309 	u32 v = val << shift;
310 
311 	memcpy(buf, &v, sizeof(v));
312 }
313 
regmap_parse_inplace_noop(void * buf)314 static void regmap_parse_inplace_noop(void *buf)
315 {
316 }
317 
regmap_parse_8(const void * buf)318 static unsigned int regmap_parse_8(const void *buf)
319 {
320 	const u8 *b = buf;
321 
322 	return b[0];
323 }
324 
regmap_parse_16_be(const void * buf)325 static unsigned int regmap_parse_16_be(const void *buf)
326 {
327 	return get_unaligned_be16(buf);
328 }
329 
regmap_parse_16_le(const void * buf)330 static unsigned int regmap_parse_16_le(const void *buf)
331 {
332 	return get_unaligned_le16(buf);
333 }
334 
regmap_parse_16_be_inplace(void * buf)335 static void regmap_parse_16_be_inplace(void *buf)
336 {
337 	u16 v = get_unaligned_be16(buf);
338 
339 	memcpy(buf, &v, sizeof(v));
340 }
341 
regmap_parse_16_le_inplace(void * buf)342 static void regmap_parse_16_le_inplace(void *buf)
343 {
344 	u16 v = get_unaligned_le16(buf);
345 
346 	memcpy(buf, &v, sizeof(v));
347 }
348 
regmap_parse_16_native(const void * buf)349 static unsigned int regmap_parse_16_native(const void *buf)
350 {
351 	u16 v;
352 
353 	memcpy(&v, buf, sizeof(v));
354 	return v;
355 }
356 
regmap_parse_24_be(const void * buf)357 static unsigned int regmap_parse_24_be(const void *buf)
358 {
359 	return get_unaligned_be24(buf);
360 }
361 
regmap_parse_32_be(const void * buf)362 static unsigned int regmap_parse_32_be(const void *buf)
363 {
364 	return get_unaligned_be32(buf);
365 }
366 
regmap_parse_32_le(const void * buf)367 static unsigned int regmap_parse_32_le(const void *buf)
368 {
369 	return get_unaligned_le32(buf);
370 }
371 
regmap_parse_32_be_inplace(void * buf)372 static void regmap_parse_32_be_inplace(void *buf)
373 {
374 	u32 v = get_unaligned_be32(buf);
375 
376 	memcpy(buf, &v, sizeof(v));
377 }
378 
regmap_parse_32_le_inplace(void * buf)379 static void regmap_parse_32_le_inplace(void *buf)
380 {
381 	u32 v = get_unaligned_le32(buf);
382 
383 	memcpy(buf, &v, sizeof(v));
384 }
385 
regmap_parse_32_native(const void * buf)386 static unsigned int regmap_parse_32_native(const void *buf)
387 {
388 	u32 v;
389 
390 	memcpy(&v, buf, sizeof(v));
391 	return v;
392 }
393 
regmap_lock_hwlock(void * __map)394 static void regmap_lock_hwlock(void *__map)
395 {
396 	struct regmap *map = __map;
397 
398 	hwspin_lock_timeout(map->hwlock, UINT_MAX);
399 }
400 
regmap_lock_hwlock_irq(void * __map)401 static void regmap_lock_hwlock_irq(void *__map)
402 {
403 	struct regmap *map = __map;
404 
405 	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406 }
407 
regmap_lock_hwlock_irqsave(void * __map)408 static void regmap_lock_hwlock_irqsave(void *__map)
409 {
410 	struct regmap *map = __map;
411 
412 	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413 				    &map->spinlock_flags);
414 }
415 
regmap_unlock_hwlock(void * __map)416 static void regmap_unlock_hwlock(void *__map)
417 {
418 	struct regmap *map = __map;
419 
420 	hwspin_unlock(map->hwlock);
421 }
422 
regmap_unlock_hwlock_irq(void * __map)423 static void regmap_unlock_hwlock_irq(void *__map)
424 {
425 	struct regmap *map = __map;
426 
427 	hwspin_unlock_irq(map->hwlock);
428 }
429 
regmap_unlock_hwlock_irqrestore(void * __map)430 static void regmap_unlock_hwlock_irqrestore(void *__map)
431 {
432 	struct regmap *map = __map;
433 
434 	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435 }
436 
regmap_lock_unlock_none(void * __map)437 static void regmap_lock_unlock_none(void *__map)
438 {
439 
440 }
441 
regmap_lock_mutex(void * __map)442 static void regmap_lock_mutex(void *__map)
443 {
444 	struct regmap *map = __map;
445 	mutex_lock(&map->mutex);
446 }
447 
regmap_unlock_mutex(void * __map)448 static void regmap_unlock_mutex(void *__map)
449 {
450 	struct regmap *map = __map;
451 	mutex_unlock(&map->mutex);
452 }
453 
regmap_lock_spinlock(void * __map)454 static void regmap_lock_spinlock(void *__map)
455 __acquires(&map->spinlock)
456 {
457 	struct regmap *map = __map;
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&map->spinlock, flags);
461 	map->spinlock_flags = flags;
462 }
463 
regmap_unlock_spinlock(void * __map)464 static void regmap_unlock_spinlock(void *__map)
465 __releases(&map->spinlock)
466 {
467 	struct regmap *map = __map;
468 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469 }
470 
regmap_lock_raw_spinlock(void * __map)471 static void regmap_lock_raw_spinlock(void *__map)
472 __acquires(&map->raw_spinlock)
473 {
474 	struct regmap *map = __map;
475 	unsigned long flags;
476 
477 	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478 	map->raw_spinlock_flags = flags;
479 }
480 
regmap_unlock_raw_spinlock(void * __map)481 static void regmap_unlock_raw_spinlock(void *__map)
482 __releases(&map->raw_spinlock)
483 {
484 	struct regmap *map = __map;
485 	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486 }
487 
dev_get_regmap_release(struct device * dev,void * res)488 static void dev_get_regmap_release(struct device *dev, void *res)
489 {
490 	/*
491 	 * We don't actually have anything to do here; the goal here
492 	 * is not to manage the regmap but to provide a simple way to
493 	 * get the regmap back given a struct device.
494 	 */
495 }
496 
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)497 static bool _regmap_range_add(struct regmap *map,
498 			      struct regmap_range_node *data)
499 {
500 	struct rb_root *root = &map->range_tree;
501 	struct rb_node **new = &(root->rb_node), *parent = NULL;
502 
503 	while (*new) {
504 		struct regmap_range_node *this =
505 			rb_entry(*new, struct regmap_range_node, node);
506 
507 		parent = *new;
508 		if (data->range_max < this->range_min)
509 			new = &((*new)->rb_left);
510 		else if (data->range_min > this->range_max)
511 			new = &((*new)->rb_right);
512 		else
513 			return false;
514 	}
515 
516 	rb_link_node(&data->node, parent, new);
517 	rb_insert_color(&data->node, root);
518 
519 	return true;
520 }
521 
_regmap_range_lookup(struct regmap * map,unsigned int reg)522 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523 						      unsigned int reg)
524 {
525 	struct rb_node *node = map->range_tree.rb_node;
526 
527 	while (node) {
528 		struct regmap_range_node *this =
529 			rb_entry(node, struct regmap_range_node, node);
530 
531 		if (reg < this->range_min)
532 			node = node->rb_left;
533 		else if (reg > this->range_max)
534 			node = node->rb_right;
535 		else
536 			return this;
537 	}
538 
539 	return NULL;
540 }
541 
regmap_range_exit(struct regmap * map)542 static void regmap_range_exit(struct regmap *map)
543 {
544 	struct rb_node *next;
545 	struct regmap_range_node *range_node;
546 
547 	next = rb_first(&map->range_tree);
548 	while (next) {
549 		range_node = rb_entry(next, struct regmap_range_node, node);
550 		next = rb_next(&range_node->node);
551 		rb_erase(&range_node->node, &map->range_tree);
552 		kfree(range_node);
553 	}
554 
555 	kfree(map->selector_work_buf);
556 }
557 
regmap_set_name(struct regmap * map,const struct regmap_config * config)558 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559 {
560 	if (config->name) {
561 		const char *name = kstrdup_const(config->name, GFP_KERNEL);
562 
563 		if (!name)
564 			return -ENOMEM;
565 
566 		kfree_const(map->name);
567 		map->name = name;
568 	}
569 
570 	return 0;
571 }
572 
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)573 int regmap_attach_dev(struct device *dev, struct regmap *map,
574 		      const struct regmap_config *config)
575 {
576 	struct regmap **m;
577 	int ret;
578 
579 	map->dev = dev;
580 
581 	ret = regmap_set_name(map, config);
582 	if (ret)
583 		return ret;
584 
585 	regmap_debugfs_exit(map);
586 	regmap_debugfs_init(map);
587 
588 	/* Add a devres resource for dev_get_regmap() */
589 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590 	if (!m) {
591 		regmap_debugfs_exit(map);
592 		return -ENOMEM;
593 	}
594 	*m = map;
595 	devres_add(dev, m);
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(regmap_attach_dev);
600 
601 static int dev_get_regmap_match(struct device *dev, void *res, void *data);
602 
regmap_detach_dev(struct device * dev,struct regmap * map)603 static int regmap_detach_dev(struct device *dev, struct regmap *map)
604 {
605 	if (!dev)
606 		return 0;
607 
608 	return devres_release(dev, dev_get_regmap_release,
609 			      dev_get_regmap_match, (void *)map->name);
610 }
611 
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)612 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
613 					const struct regmap_config *config)
614 {
615 	enum regmap_endian endian;
616 
617 	/* Retrieve the endianness specification from the regmap config */
618 	endian = config->reg_format_endian;
619 
620 	/* If the regmap config specified a non-default value, use that */
621 	if (endian != REGMAP_ENDIAN_DEFAULT)
622 		return endian;
623 
624 	/* Retrieve the endianness specification from the bus config */
625 	if (bus && bus->reg_format_endian_default)
626 		endian = bus->reg_format_endian_default;
627 
628 	/* If the bus specified a non-default value, use that */
629 	if (endian != REGMAP_ENDIAN_DEFAULT)
630 		return endian;
631 
632 	/* Use this if no other value was found */
633 	return REGMAP_ENDIAN_BIG;
634 }
635 
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)636 enum regmap_endian regmap_get_val_endian(struct device *dev,
637 					 const struct regmap_bus *bus,
638 					 const struct regmap_config *config)
639 {
640 	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
641 	enum regmap_endian endian;
642 
643 	/* Retrieve the endianness specification from the regmap config */
644 	endian = config->val_format_endian;
645 
646 	/* If the regmap config specified a non-default value, use that */
647 	if (endian != REGMAP_ENDIAN_DEFAULT)
648 		return endian;
649 
650 	/* If the firmware node exist try to get endianness from it */
651 	if (fwnode_property_read_bool(fwnode, "big-endian"))
652 		endian = REGMAP_ENDIAN_BIG;
653 	else if (fwnode_property_read_bool(fwnode, "little-endian"))
654 		endian = REGMAP_ENDIAN_LITTLE;
655 	else if (fwnode_property_read_bool(fwnode, "native-endian"))
656 		endian = REGMAP_ENDIAN_NATIVE;
657 
658 	/* If the endianness was specified in fwnode, use that */
659 	if (endian != REGMAP_ENDIAN_DEFAULT)
660 		return endian;
661 
662 	/* Retrieve the endianness specification from the bus config */
663 	if (bus && bus->val_format_endian_default)
664 		endian = bus->val_format_endian_default;
665 
666 	/* If the bus specified a non-default value, use that */
667 	if (endian != REGMAP_ENDIAN_DEFAULT)
668 		return endian;
669 
670 	/* Use this if no other value was found */
671 	return REGMAP_ENDIAN_BIG;
672 }
673 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
674 
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)675 struct regmap *__regmap_init(struct device *dev,
676 			     const struct regmap_bus *bus,
677 			     void *bus_context,
678 			     const struct regmap_config *config,
679 			     struct lock_class_key *lock_key,
680 			     const char *lock_name)
681 {
682 	struct regmap *map;
683 	int ret = -EINVAL;
684 	enum regmap_endian reg_endian, val_endian;
685 	int i, j;
686 
687 	if (!config)
688 		goto err;
689 
690 	map = kzalloc(sizeof(*map), GFP_KERNEL);
691 	if (map == NULL) {
692 		ret = -ENOMEM;
693 		goto err;
694 	}
695 
696 	ret = regmap_set_name(map, config);
697 	if (ret)
698 		goto err_map;
699 
700 	ret = -EINVAL; /* Later error paths rely on this */
701 
702 	if (config->disable_locking) {
703 		map->lock = map->unlock = regmap_lock_unlock_none;
704 		map->can_sleep = config->can_sleep;
705 		regmap_debugfs_disable(map);
706 	} else if (config->lock && config->unlock) {
707 		map->lock = config->lock;
708 		map->unlock = config->unlock;
709 		map->lock_arg = config->lock_arg;
710 		map->can_sleep = config->can_sleep;
711 	} else if (config->use_hwlock) {
712 		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
713 		if (!map->hwlock) {
714 			ret = -ENXIO;
715 			goto err_name;
716 		}
717 
718 		switch (config->hwlock_mode) {
719 		case HWLOCK_IRQSTATE:
720 			map->lock = regmap_lock_hwlock_irqsave;
721 			map->unlock = regmap_unlock_hwlock_irqrestore;
722 			break;
723 		case HWLOCK_IRQ:
724 			map->lock = regmap_lock_hwlock_irq;
725 			map->unlock = regmap_unlock_hwlock_irq;
726 			break;
727 		default:
728 			map->lock = regmap_lock_hwlock;
729 			map->unlock = regmap_unlock_hwlock;
730 			break;
731 		}
732 
733 		map->lock_arg = map;
734 	} else {
735 		if ((bus && bus->fast_io) ||
736 		    config->fast_io) {
737 			if (config->use_raw_spinlock) {
738 				raw_spin_lock_init(&map->raw_spinlock);
739 				map->lock = regmap_lock_raw_spinlock;
740 				map->unlock = regmap_unlock_raw_spinlock;
741 				lockdep_set_class_and_name(&map->raw_spinlock,
742 							   lock_key, lock_name);
743 			} else {
744 				spin_lock_init(&map->spinlock);
745 				map->lock = regmap_lock_spinlock;
746 				map->unlock = regmap_unlock_spinlock;
747 				lockdep_set_class_and_name(&map->spinlock,
748 							   lock_key, lock_name);
749 			}
750 		} else {
751 			mutex_init(&map->mutex);
752 			map->lock = regmap_lock_mutex;
753 			map->unlock = regmap_unlock_mutex;
754 			map->can_sleep = true;
755 			lockdep_set_class_and_name(&map->mutex,
756 						   lock_key, lock_name);
757 		}
758 		map->lock_arg = map;
759 		map->lock_key = lock_key;
760 	}
761 
762 	/*
763 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 	 * scratch buffers with sleeping allocations.
765 	 */
766 	if ((bus && bus->fast_io) || config->fast_io)
767 		map->alloc_flags = GFP_ATOMIC;
768 	else
769 		map->alloc_flags = GFP_KERNEL;
770 
771 	map->reg_base = config->reg_base;
772 	map->reg_shift = config->pad_bits % 8;
773 
774 	map->format.pad_bytes = config->pad_bits / 8;
775 	map->format.reg_shift = config->reg_shift;
776 	map->format.reg_bytes = BITS_TO_BYTES(config->reg_bits);
777 	map->format.val_bytes = BITS_TO_BYTES(config->val_bits);
778 	map->format.buf_size = BITS_TO_BYTES(config->reg_bits + config->val_bits + config->pad_bits);
779 	if (config->reg_stride)
780 		map->reg_stride = config->reg_stride;
781 	else
782 		map->reg_stride = 1;
783 	if (is_power_of_2(map->reg_stride))
784 		map->reg_stride_order = ilog2(map->reg_stride);
785 	else
786 		map->reg_stride_order = -1;
787 	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
788 	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
789 	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
790 	if (bus) {
791 		map->max_raw_read = bus->max_raw_read;
792 		map->max_raw_write = bus->max_raw_write;
793 	} else if (config->max_raw_read && config->max_raw_write) {
794 		map->max_raw_read = config->max_raw_read;
795 		map->max_raw_write = config->max_raw_write;
796 	}
797 	map->dev = dev;
798 	map->bus = bus;
799 	map->bus_context = bus_context;
800 	map->max_register = config->max_register;
801 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
802 	map->wr_table = config->wr_table;
803 	map->rd_table = config->rd_table;
804 	map->volatile_table = config->volatile_table;
805 	map->precious_table = config->precious_table;
806 	map->wr_noinc_table = config->wr_noinc_table;
807 	map->rd_noinc_table = config->rd_noinc_table;
808 	map->writeable_reg = config->writeable_reg;
809 	map->readable_reg = config->readable_reg;
810 	map->volatile_reg = config->volatile_reg;
811 	map->precious_reg = config->precious_reg;
812 	map->writeable_noinc_reg = config->writeable_noinc_reg;
813 	map->readable_noinc_reg = config->readable_noinc_reg;
814 	map->cache_type = config->cache_type;
815 
816 	spin_lock_init(&map->async_lock);
817 	INIT_LIST_HEAD(&map->async_list);
818 	INIT_LIST_HEAD(&map->async_free);
819 	init_waitqueue_head(&map->async_waitq);
820 
821 	if (config->read_flag_mask ||
822 	    config->write_flag_mask ||
823 	    config->zero_flag_mask) {
824 		map->read_flag_mask = config->read_flag_mask;
825 		map->write_flag_mask = config->write_flag_mask;
826 	} else if (bus) {
827 		map->read_flag_mask = bus->read_flag_mask;
828 	}
829 
830 	if (config && config->read && config->write) {
831 		map->reg_read  = _regmap_bus_read;
832 		if (config->reg_update_bits)
833 			map->reg_update_bits = config->reg_update_bits;
834 
835 		/* Bulk read/write */
836 		map->read = config->read;
837 		map->write = config->write;
838 
839 		reg_endian = REGMAP_ENDIAN_NATIVE;
840 		val_endian = REGMAP_ENDIAN_NATIVE;
841 	} else if (!bus) {
842 		map->reg_read  = config->reg_read;
843 		map->reg_write = config->reg_write;
844 		map->reg_update_bits = config->reg_update_bits;
845 
846 		map->defer_caching = false;
847 		goto skip_format_initialization;
848 	} else if (!bus->read || !bus->write) {
849 		map->reg_read = _regmap_bus_reg_read;
850 		map->reg_write = _regmap_bus_reg_write;
851 		map->reg_update_bits = bus->reg_update_bits;
852 
853 		map->defer_caching = false;
854 		goto skip_format_initialization;
855 	} else {
856 		map->reg_read  = _regmap_bus_read;
857 		map->reg_update_bits = bus->reg_update_bits;
858 		/* Bulk read/write */
859 		map->read = bus->read;
860 		map->write = bus->write;
861 
862 		reg_endian = regmap_get_reg_endian(bus, config);
863 		val_endian = regmap_get_val_endian(dev, bus, config);
864 	}
865 
866 	switch (config->reg_bits + map->reg_shift) {
867 	case 2:
868 		switch (config->val_bits) {
869 		case 6:
870 			map->format.format_write = regmap_format_2_6_write;
871 			break;
872 		default:
873 			goto err_hwlock;
874 		}
875 		break;
876 
877 	case 4:
878 		switch (config->val_bits) {
879 		case 12:
880 			map->format.format_write = regmap_format_4_12_write;
881 			break;
882 		default:
883 			goto err_hwlock;
884 		}
885 		break;
886 
887 	case 7:
888 		switch (config->val_bits) {
889 		case 9:
890 			map->format.format_write = regmap_format_7_9_write;
891 			break;
892 		case 17:
893 			map->format.format_write = regmap_format_7_17_write;
894 			break;
895 		default:
896 			goto err_hwlock;
897 		}
898 		break;
899 
900 	case 10:
901 		switch (config->val_bits) {
902 		case 14:
903 			map->format.format_write = regmap_format_10_14_write;
904 			break;
905 		default:
906 			goto err_hwlock;
907 		}
908 		break;
909 
910 	case 12:
911 		switch (config->val_bits) {
912 		case 20:
913 			map->format.format_write = regmap_format_12_20_write;
914 			break;
915 		default:
916 			goto err_hwlock;
917 		}
918 		break;
919 
920 	case 8:
921 		map->format.format_reg = regmap_format_8;
922 		break;
923 
924 	case 16:
925 		switch (reg_endian) {
926 		case REGMAP_ENDIAN_BIG:
927 			map->format.format_reg = regmap_format_16_be;
928 			break;
929 		case REGMAP_ENDIAN_LITTLE:
930 			map->format.format_reg = regmap_format_16_le;
931 			break;
932 		case REGMAP_ENDIAN_NATIVE:
933 			map->format.format_reg = regmap_format_16_native;
934 			break;
935 		default:
936 			goto err_hwlock;
937 		}
938 		break;
939 
940 	case 24:
941 		switch (reg_endian) {
942 		case REGMAP_ENDIAN_BIG:
943 			map->format.format_reg = regmap_format_24_be;
944 			break;
945 		default:
946 			goto err_hwlock;
947 		}
948 		break;
949 
950 	case 32:
951 		switch (reg_endian) {
952 		case REGMAP_ENDIAN_BIG:
953 			map->format.format_reg = regmap_format_32_be;
954 			break;
955 		case REGMAP_ENDIAN_LITTLE:
956 			map->format.format_reg = regmap_format_32_le;
957 			break;
958 		case REGMAP_ENDIAN_NATIVE:
959 			map->format.format_reg = regmap_format_32_native;
960 			break;
961 		default:
962 			goto err_hwlock;
963 		}
964 		break;
965 
966 	default:
967 		goto err_hwlock;
968 	}
969 
970 	if (val_endian == REGMAP_ENDIAN_NATIVE)
971 		map->format.parse_inplace = regmap_parse_inplace_noop;
972 
973 	switch (config->val_bits) {
974 	case 8:
975 		map->format.format_val = regmap_format_8;
976 		map->format.parse_val = regmap_parse_8;
977 		map->format.parse_inplace = regmap_parse_inplace_noop;
978 		break;
979 	case 16:
980 		switch (val_endian) {
981 		case REGMAP_ENDIAN_BIG:
982 			map->format.format_val = regmap_format_16_be;
983 			map->format.parse_val = regmap_parse_16_be;
984 			map->format.parse_inplace = regmap_parse_16_be_inplace;
985 			break;
986 		case REGMAP_ENDIAN_LITTLE:
987 			map->format.format_val = regmap_format_16_le;
988 			map->format.parse_val = regmap_parse_16_le;
989 			map->format.parse_inplace = regmap_parse_16_le_inplace;
990 			break;
991 		case REGMAP_ENDIAN_NATIVE:
992 			map->format.format_val = regmap_format_16_native;
993 			map->format.parse_val = regmap_parse_16_native;
994 			break;
995 		default:
996 			goto err_hwlock;
997 		}
998 		break;
999 	case 24:
1000 		switch (val_endian) {
1001 		case REGMAP_ENDIAN_BIG:
1002 			map->format.format_val = regmap_format_24_be;
1003 			map->format.parse_val = regmap_parse_24_be;
1004 			break;
1005 		default:
1006 			goto err_hwlock;
1007 		}
1008 		break;
1009 	case 32:
1010 		switch (val_endian) {
1011 		case REGMAP_ENDIAN_BIG:
1012 			map->format.format_val = regmap_format_32_be;
1013 			map->format.parse_val = regmap_parse_32_be;
1014 			map->format.parse_inplace = regmap_parse_32_be_inplace;
1015 			break;
1016 		case REGMAP_ENDIAN_LITTLE:
1017 			map->format.format_val = regmap_format_32_le;
1018 			map->format.parse_val = regmap_parse_32_le;
1019 			map->format.parse_inplace = regmap_parse_32_le_inplace;
1020 			break;
1021 		case REGMAP_ENDIAN_NATIVE:
1022 			map->format.format_val = regmap_format_32_native;
1023 			map->format.parse_val = regmap_parse_32_native;
1024 			break;
1025 		default:
1026 			goto err_hwlock;
1027 		}
1028 		break;
1029 	}
1030 
1031 	if (map->format.format_write) {
1032 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1033 		    (val_endian != REGMAP_ENDIAN_BIG))
1034 			goto err_hwlock;
1035 		map->use_single_write = true;
1036 	}
1037 
1038 	if (!map->format.format_write &&
1039 	    !(map->format.format_reg && map->format.format_val))
1040 		goto err_hwlock;
1041 
1042 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1043 	if (map->work_buf == NULL) {
1044 		ret = -ENOMEM;
1045 		goto err_hwlock;
1046 	}
1047 
1048 	if (map->format.format_write) {
1049 		map->defer_caching = false;
1050 		map->reg_write = _regmap_bus_formatted_write;
1051 	} else if (map->format.format_val) {
1052 		map->defer_caching = true;
1053 		map->reg_write = _regmap_bus_raw_write;
1054 	}
1055 
1056 skip_format_initialization:
1057 
1058 	map->range_tree = RB_ROOT;
1059 	for (i = 0; i < config->num_ranges; i++) {
1060 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1061 		struct regmap_range_node *new;
1062 
1063 		/* Sanity check */
1064 		if (range_cfg->range_max < range_cfg->range_min) {
1065 			dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1066 				range_cfg->range_max, range_cfg->range_min);
1067 			goto err_range;
1068 		}
1069 
1070 		if (range_cfg->range_max > map->max_register) {
1071 			dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1072 				range_cfg->range_max, map->max_register);
1073 			goto err_range;
1074 		}
1075 
1076 		if (range_cfg->selector_reg > map->max_register) {
1077 			dev_err(map->dev,
1078 				"Invalid range %d: selector out of map\n", i);
1079 			goto err_range;
1080 		}
1081 
1082 		if (range_cfg->window_len == 0) {
1083 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1084 				i);
1085 			goto err_range;
1086 		}
1087 
1088 		/* Make sure, that this register range has no selector
1089 		   or data window within its boundary */
1090 		for (j = 0; j < config->num_ranges; j++) {
1091 			unsigned int sel_reg = config->ranges[j].selector_reg;
1092 			unsigned int win_min = config->ranges[j].window_start;
1093 			unsigned int win_max = win_min +
1094 					       config->ranges[j].window_len - 1;
1095 
1096 			/* Allow data window inside its own virtual range */
1097 			if (j == i)
1098 				continue;
1099 
1100 			if (range_cfg->range_min <= sel_reg &&
1101 			    sel_reg <= range_cfg->range_max) {
1102 				dev_err(map->dev,
1103 					"Range %d: selector for %d in window\n",
1104 					i, j);
1105 				goto err_range;
1106 			}
1107 
1108 			if (!(win_max < range_cfg->range_min ||
1109 			      win_min > range_cfg->range_max)) {
1110 				dev_err(map->dev,
1111 					"Range %d: window for %d in window\n",
1112 					i, j);
1113 				goto err_range;
1114 			}
1115 		}
1116 
1117 		new = kzalloc(sizeof(*new), GFP_KERNEL);
1118 		if (new == NULL) {
1119 			ret = -ENOMEM;
1120 			goto err_range;
1121 		}
1122 
1123 		new->map = map;
1124 		new->name = range_cfg->name;
1125 		new->range_min = range_cfg->range_min;
1126 		new->range_max = range_cfg->range_max;
1127 		new->selector_reg = range_cfg->selector_reg;
1128 		new->selector_mask = range_cfg->selector_mask;
1129 		new->selector_shift = range_cfg->selector_shift;
1130 		new->window_start = range_cfg->window_start;
1131 		new->window_len = range_cfg->window_len;
1132 
1133 		if (!_regmap_range_add(map, new)) {
1134 			dev_err(map->dev, "Failed to add range %d\n", i);
1135 			kfree(new);
1136 			goto err_range;
1137 		}
1138 
1139 		if (map->selector_work_buf == NULL) {
1140 			map->selector_work_buf =
1141 				kzalloc(map->format.buf_size, GFP_KERNEL);
1142 			if (map->selector_work_buf == NULL) {
1143 				ret = -ENOMEM;
1144 				goto err_range;
1145 			}
1146 		}
1147 	}
1148 
1149 	ret = regcache_init(map, config);
1150 	if (ret != 0)
1151 		goto err_range;
1152 
1153 	if (dev) {
1154 		ret = regmap_attach_dev(dev, map, config);
1155 		if (ret != 0)
1156 			goto err_regcache;
1157 	} else {
1158 		regmap_debugfs_init(map);
1159 	}
1160 
1161 	return map;
1162 
1163 err_regcache:
1164 	regcache_exit(map);
1165 err_range:
1166 	regmap_range_exit(map);
1167 	kfree(map->work_buf);
1168 err_hwlock:
1169 	if (map->hwlock)
1170 		hwspin_lock_free(map->hwlock);
1171 err_name:
1172 	kfree_const(map->name);
1173 err_map:
1174 	kfree(map);
1175 err:
1176 	return ERR_PTR(ret);
1177 }
1178 EXPORT_SYMBOL_GPL(__regmap_init);
1179 
devm_regmap_release(struct device * dev,void * res)1180 static void devm_regmap_release(struct device *dev, void *res)
1181 {
1182 	regmap_exit(*(struct regmap **)res);
1183 }
1184 
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1185 struct regmap *__devm_regmap_init(struct device *dev,
1186 				  const struct regmap_bus *bus,
1187 				  void *bus_context,
1188 				  const struct regmap_config *config,
1189 				  struct lock_class_key *lock_key,
1190 				  const char *lock_name)
1191 {
1192 	struct regmap **ptr, *regmap;
1193 
1194 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1195 	if (!ptr)
1196 		return ERR_PTR(-ENOMEM);
1197 
1198 	regmap = __regmap_init(dev, bus, bus_context, config,
1199 			       lock_key, lock_name);
1200 	if (!IS_ERR(regmap)) {
1201 		*ptr = regmap;
1202 		devres_add(dev, ptr);
1203 	} else {
1204 		devres_free(ptr);
1205 	}
1206 
1207 	return regmap;
1208 }
1209 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1210 
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1211 static void regmap_field_init(struct regmap_field *rm_field,
1212 	struct regmap *regmap, struct reg_field reg_field)
1213 {
1214 	rm_field->regmap = regmap;
1215 	rm_field->reg = reg_field.reg;
1216 	rm_field->shift = reg_field.lsb;
1217 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1218 
1219 	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1220 
1221 	rm_field->id_size = reg_field.id_size;
1222 	rm_field->id_offset = reg_field.id_offset;
1223 }
1224 
1225 /**
1226  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1227  *
1228  * @dev: Device that will be interacted with
1229  * @regmap: regmap bank in which this register field is located.
1230  * @reg_field: Register field with in the bank.
1231  *
1232  * The return value will be an ERR_PTR() on error or a valid pointer
1233  * to a struct regmap_field. The regmap_field will be automatically freed
1234  * by the device management code.
1235  */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1236 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1237 		struct regmap *regmap, struct reg_field reg_field)
1238 {
1239 	struct regmap_field *rm_field = devm_kzalloc(dev,
1240 					sizeof(*rm_field), GFP_KERNEL);
1241 	if (!rm_field)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	regmap_field_init(rm_field, regmap, reg_field);
1245 
1246 	return rm_field;
1247 
1248 }
1249 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1250 
1251 
1252 /**
1253  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1254  *
1255  * @regmap: regmap bank in which this register field is located.
1256  * @rm_field: regmap register fields within the bank.
1257  * @reg_field: Register fields within the bank.
1258  * @num_fields: Number of register fields.
1259  *
1260  * The return value will be an -ENOMEM on error or zero for success.
1261  * Newly allocated regmap_fields should be freed by calling
1262  * regmap_field_bulk_free()
1263  */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1264 int regmap_field_bulk_alloc(struct regmap *regmap,
1265 			    struct regmap_field **rm_field,
1266 			    const struct reg_field *reg_field,
1267 			    int num_fields)
1268 {
1269 	struct regmap_field *rf;
1270 	int i;
1271 
1272 	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1273 	if (!rf)
1274 		return -ENOMEM;
1275 
1276 	for (i = 0; i < num_fields; i++) {
1277 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1278 		rm_field[i] = &rf[i];
1279 	}
1280 
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1284 
1285 /**
1286  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1287  * fields.
1288  *
1289  * @dev: Device that will be interacted with
1290  * @regmap: regmap bank in which this register field is located.
1291  * @rm_field: regmap register fields within the bank.
1292  * @reg_field: Register fields within the bank.
1293  * @num_fields: Number of register fields.
1294  *
1295  * The return value will be an -ENOMEM on error or zero for success.
1296  * Newly allocated regmap_fields will be automatically freed by the
1297  * device management code.
1298  */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1299 int devm_regmap_field_bulk_alloc(struct device *dev,
1300 				 struct regmap *regmap,
1301 				 struct regmap_field **rm_field,
1302 				 const struct reg_field *reg_field,
1303 				 int num_fields)
1304 {
1305 	struct regmap_field *rf;
1306 	int i;
1307 
1308 	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1309 	if (!rf)
1310 		return -ENOMEM;
1311 
1312 	for (i = 0; i < num_fields; i++) {
1313 		regmap_field_init(&rf[i], regmap, reg_field[i]);
1314 		rm_field[i] = &rf[i];
1315 	}
1316 
1317 	return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1320 
1321 /**
1322  * regmap_field_bulk_free() - Free register field allocated using
1323  *                       regmap_field_bulk_alloc.
1324  *
1325  * @field: regmap fields which should be freed.
1326  */
regmap_field_bulk_free(struct regmap_field * field)1327 void regmap_field_bulk_free(struct regmap_field *field)
1328 {
1329 	kfree(field);
1330 }
1331 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1332 
1333 /**
1334  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1335  *                            devm_regmap_field_bulk_alloc.
1336  *
1337  * @dev: Device that will be interacted with
1338  * @field: regmap field which should be freed.
1339  *
1340  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1341  * drivers need not call this function, as the memory allocated via devm
1342  * will be freed as per device-driver life-cycle.
1343  */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1344 void devm_regmap_field_bulk_free(struct device *dev,
1345 				 struct regmap_field *field)
1346 {
1347 	devm_kfree(dev, field);
1348 }
1349 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1350 
1351 /**
1352  * devm_regmap_field_free() - Free a register field allocated using
1353  *                            devm_regmap_field_alloc.
1354  *
1355  * @dev: Device that will be interacted with
1356  * @field: regmap field which should be freed.
1357  *
1358  * Free register field allocated using devm_regmap_field_alloc(). Usually
1359  * drivers need not call this function, as the memory allocated via devm
1360  * will be freed as per device-driver life-cyle.
1361  */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1362 void devm_regmap_field_free(struct device *dev,
1363 	struct regmap_field *field)
1364 {
1365 	devm_kfree(dev, field);
1366 }
1367 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1368 
1369 /**
1370  * regmap_field_alloc() - Allocate and initialise a register field.
1371  *
1372  * @regmap: regmap bank in which this register field is located.
1373  * @reg_field: Register field with in the bank.
1374  *
1375  * The return value will be an ERR_PTR() on error or a valid pointer
1376  * to a struct regmap_field. The regmap_field should be freed by the
1377  * user once its finished working with it using regmap_field_free().
1378  */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1379 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1380 		struct reg_field reg_field)
1381 {
1382 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1383 
1384 	if (!rm_field)
1385 		return ERR_PTR(-ENOMEM);
1386 
1387 	regmap_field_init(rm_field, regmap, reg_field);
1388 
1389 	return rm_field;
1390 }
1391 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1392 
1393 /**
1394  * regmap_field_free() - Free register field allocated using
1395  *                       regmap_field_alloc.
1396  *
1397  * @field: regmap field which should be freed.
1398  */
regmap_field_free(struct regmap_field * field)1399 void regmap_field_free(struct regmap_field *field)
1400 {
1401 	kfree(field);
1402 }
1403 EXPORT_SYMBOL_GPL(regmap_field_free);
1404 
1405 /**
1406  * regmap_reinit_cache() - Reinitialise the current register cache
1407  *
1408  * @map: Register map to operate on.
1409  * @config: New configuration.  Only the cache data will be used.
1410  *
1411  * Discard any existing register cache for the map and initialize a
1412  * new cache.  This can be used to restore the cache to defaults or to
1413  * update the cache configuration to reflect runtime discovery of the
1414  * hardware.
1415  *
1416  * No explicit locking is done here, the user needs to ensure that
1417  * this function will not race with other calls to regmap.
1418  */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1419 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1420 {
1421 	int ret;
1422 
1423 	regcache_exit(map);
1424 	regmap_debugfs_exit(map);
1425 
1426 	map->max_register = config->max_register;
1427 	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1428 	map->writeable_reg = config->writeable_reg;
1429 	map->readable_reg = config->readable_reg;
1430 	map->volatile_reg = config->volatile_reg;
1431 	map->precious_reg = config->precious_reg;
1432 	map->writeable_noinc_reg = config->writeable_noinc_reg;
1433 	map->readable_noinc_reg = config->readable_noinc_reg;
1434 	map->cache_type = config->cache_type;
1435 
1436 	ret = regmap_set_name(map, config);
1437 	if (ret)
1438 		return ret;
1439 
1440 	regmap_debugfs_init(map);
1441 
1442 	map->cache_bypass = false;
1443 	map->cache_only = false;
1444 
1445 	return regcache_init(map, config);
1446 }
1447 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1448 
1449 /**
1450  * regmap_exit() - Free a previously allocated register map
1451  *
1452  * @map: Register map to operate on.
1453  */
regmap_exit(struct regmap * map)1454 void regmap_exit(struct regmap *map)
1455 {
1456 	struct regmap_async *async;
1457 
1458 	regmap_detach_dev(map->dev, map);
1459 	regcache_exit(map);
1460 
1461 	regmap_debugfs_exit(map);
1462 	regmap_range_exit(map);
1463 	if (map->bus && map->bus->free_context)
1464 		map->bus->free_context(map->bus_context);
1465 	kfree(map->work_buf);
1466 	while (!list_empty(&map->async_free)) {
1467 		async = list_first_entry_or_null(&map->async_free,
1468 						 struct regmap_async,
1469 						 list);
1470 		list_del(&async->list);
1471 		kfree(async->work_buf);
1472 		kfree(async);
1473 	}
1474 	if (map->hwlock)
1475 		hwspin_lock_free(map->hwlock);
1476 	if (map->lock == regmap_lock_mutex)
1477 		mutex_destroy(&map->mutex);
1478 	kfree_const(map->name);
1479 	kfree(map->patch);
1480 	if (map->bus && map->bus->free_on_exit)
1481 		kfree(map->bus);
1482 	kfree(map);
1483 }
1484 EXPORT_SYMBOL_GPL(regmap_exit);
1485 
dev_get_regmap_match(struct device * dev,void * res,void * data)1486 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1487 {
1488 	struct regmap **r = res;
1489 	if (!r || !*r) {
1490 		WARN_ON(!r || !*r);
1491 		return 0;
1492 	}
1493 
1494 	/* If the user didn't specify a name match any */
1495 	if (data)
1496 		return (*r)->name && !strcmp((*r)->name, data);
1497 	else
1498 		return 1;
1499 }
1500 
1501 /**
1502  * dev_get_regmap() - Obtain the regmap (if any) for a device
1503  *
1504  * @dev: Device to retrieve the map for
1505  * @name: Optional name for the register map, usually NULL.
1506  *
1507  * Returns the regmap for the device if one is present, or NULL.  If
1508  * name is specified then it must match the name specified when
1509  * registering the device, if it is NULL then the first regmap found
1510  * will be used.  Devices with multiple register maps are very rare,
1511  * generic code should normally not need to specify a name.
1512  */
dev_get_regmap(struct device * dev,const char * name)1513 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1514 {
1515 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1516 					dev_get_regmap_match, (void *)name);
1517 
1518 	if (!r)
1519 		return NULL;
1520 	return *r;
1521 }
1522 EXPORT_SYMBOL_GPL(dev_get_regmap);
1523 
1524 /**
1525  * regmap_get_device() - Obtain the device from a regmap
1526  *
1527  * @map: Register map to operate on.
1528  *
1529  * Returns the underlying device that the regmap has been created for.
1530  */
regmap_get_device(struct regmap * map)1531 struct device *regmap_get_device(struct regmap *map)
1532 {
1533 	return map->dev;
1534 }
1535 EXPORT_SYMBOL_GPL(regmap_get_device);
1536 
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1537 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1538 			       struct regmap_range_node *range,
1539 			       unsigned int val_num)
1540 {
1541 	void *orig_work_buf;
1542 	unsigned int win_offset;
1543 	unsigned int win_page;
1544 	bool page_chg;
1545 	int ret;
1546 
1547 	win_offset = (*reg - range->range_min) % range->window_len;
1548 	win_page = (*reg - range->range_min) / range->window_len;
1549 
1550 	if (val_num > 1) {
1551 		/* Bulk write shouldn't cross range boundary */
1552 		if (*reg + val_num - 1 > range->range_max)
1553 			return -EINVAL;
1554 
1555 		/* ... or single page boundary */
1556 		if (val_num > range->window_len - win_offset)
1557 			return -EINVAL;
1558 	}
1559 
1560 	/* It is possible to have selector register inside data window.
1561 	   In that case, selector register is located on every page and
1562 	   it needs no page switching, when accessed alone. */
1563 	if (val_num > 1 ||
1564 	    range->window_start + win_offset != range->selector_reg) {
1565 		/* Use separate work_buf during page switching */
1566 		orig_work_buf = map->work_buf;
1567 		map->work_buf = map->selector_work_buf;
1568 
1569 		ret = _regmap_update_bits(map, range->selector_reg,
1570 					  range->selector_mask,
1571 					  win_page << range->selector_shift,
1572 					  &page_chg, false);
1573 
1574 		map->work_buf = orig_work_buf;
1575 
1576 		if (ret != 0)
1577 			return ret;
1578 	}
1579 
1580 	*reg = range->window_start + win_offset;
1581 
1582 	return 0;
1583 }
1584 
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1585 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1586 					  unsigned long mask)
1587 {
1588 	u8 *buf;
1589 	int i;
1590 
1591 	if (!mask || !map->work_buf)
1592 		return;
1593 
1594 	buf = map->work_buf;
1595 
1596 	for (i = 0; i < max_bytes; i++)
1597 		buf[i] |= (mask >> (8 * i)) & 0xff;
1598 }
1599 
regmap_reg_addr(struct regmap * map,unsigned int reg)1600 static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1601 {
1602 	reg += map->reg_base;
1603 
1604 	if (map->format.reg_shift > 0)
1605 		reg >>= map->format.reg_shift;
1606 	else if (map->format.reg_shift < 0)
1607 		reg <<= -(map->format.reg_shift);
1608 
1609 	return reg;
1610 }
1611 
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1612 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1613 				  const void *val, size_t val_len, bool noinc)
1614 {
1615 	struct regmap_range_node *range;
1616 	unsigned long flags;
1617 	void *work_val = map->work_buf + map->format.reg_bytes +
1618 		map->format.pad_bytes;
1619 	void *buf;
1620 	int ret = -ENOTSUPP;
1621 	size_t len;
1622 	int i;
1623 
1624 	/* Check for unwritable or noinc registers in range
1625 	 * before we start
1626 	 */
1627 	if (!regmap_writeable_noinc(map, reg)) {
1628 		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1629 			unsigned int element =
1630 				reg + regmap_get_offset(map, i);
1631 			if (!regmap_writeable(map, element) ||
1632 				regmap_writeable_noinc(map, element))
1633 				return -EINVAL;
1634 		}
1635 	}
1636 
1637 	if (!map->cache_bypass && map->format.parse_val) {
1638 		unsigned int ival, offset;
1639 		int val_bytes = map->format.val_bytes;
1640 
1641 		/* Cache the last written value for noinc writes */
1642 		i = noinc ? val_len - val_bytes : 0;
1643 		for (; i < val_len; i += val_bytes) {
1644 			ival = map->format.parse_val(val + i);
1645 			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1646 			ret = regcache_write(map, reg + offset, ival);
1647 			if (ret) {
1648 				dev_err(map->dev,
1649 					"Error in caching of register: %x ret: %d\n",
1650 					reg + offset, ret);
1651 				return ret;
1652 			}
1653 		}
1654 		if (map->cache_only) {
1655 			map->cache_dirty = true;
1656 			return 0;
1657 		}
1658 	}
1659 
1660 	range = _regmap_range_lookup(map, reg);
1661 	if (range) {
1662 		int val_num = val_len / map->format.val_bytes;
1663 		int win_offset = (reg - range->range_min) % range->window_len;
1664 		int win_residue = range->window_len - win_offset;
1665 
1666 		/* If the write goes beyond the end of the window split it */
1667 		while (val_num > win_residue) {
1668 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1669 				win_residue, val_len / map->format.val_bytes);
1670 			ret = _regmap_raw_write_impl(map, reg, val,
1671 						     win_residue *
1672 						     map->format.val_bytes, noinc);
1673 			if (ret != 0)
1674 				return ret;
1675 
1676 			reg += win_residue;
1677 			val_num -= win_residue;
1678 			val += win_residue * map->format.val_bytes;
1679 			val_len -= win_residue * map->format.val_bytes;
1680 
1681 			win_offset = (reg - range->range_min) %
1682 				range->window_len;
1683 			win_residue = range->window_len - win_offset;
1684 		}
1685 
1686 		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1687 		if (ret != 0)
1688 			return ret;
1689 	}
1690 
1691 	reg = regmap_reg_addr(map, reg);
1692 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1693 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1694 				      map->write_flag_mask);
1695 
1696 	/*
1697 	 * Essentially all I/O mechanisms will be faster with a single
1698 	 * buffer to write.  Since register syncs often generate raw
1699 	 * writes of single registers optimise that case.
1700 	 */
1701 	if (val != work_val && val_len == map->format.val_bytes) {
1702 		memcpy(work_val, val, map->format.val_bytes);
1703 		val = work_val;
1704 	}
1705 
1706 	if (map->async && map->bus && map->bus->async_write) {
1707 		struct regmap_async *async;
1708 
1709 		trace_regmap_async_write_start(map, reg, val_len);
1710 
1711 		spin_lock_irqsave(&map->async_lock, flags);
1712 		async = list_first_entry_or_null(&map->async_free,
1713 						 struct regmap_async,
1714 						 list);
1715 		if (async)
1716 			list_del(&async->list);
1717 		spin_unlock_irqrestore(&map->async_lock, flags);
1718 
1719 		if (!async) {
1720 			async = map->bus->async_alloc();
1721 			if (!async)
1722 				return -ENOMEM;
1723 
1724 			async->work_buf = kzalloc(map->format.buf_size,
1725 						  GFP_KERNEL | GFP_DMA);
1726 			if (!async->work_buf) {
1727 				kfree(async);
1728 				return -ENOMEM;
1729 			}
1730 		}
1731 
1732 		async->map = map;
1733 
1734 		/* If the caller supplied the value we can use it safely. */
1735 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1736 		       map->format.reg_bytes + map->format.val_bytes);
1737 
1738 		spin_lock_irqsave(&map->async_lock, flags);
1739 		list_add_tail(&async->list, &map->async_list);
1740 		spin_unlock_irqrestore(&map->async_lock, flags);
1741 
1742 		if (val != work_val)
1743 			ret = map->bus->async_write(map->bus_context,
1744 						    async->work_buf,
1745 						    map->format.reg_bytes +
1746 						    map->format.pad_bytes,
1747 						    val, val_len, async);
1748 		else
1749 			ret = map->bus->async_write(map->bus_context,
1750 						    async->work_buf,
1751 						    map->format.reg_bytes +
1752 						    map->format.pad_bytes +
1753 						    val_len, NULL, 0, async);
1754 
1755 		if (ret != 0) {
1756 			dev_err(map->dev, "Failed to schedule write: %d\n",
1757 				ret);
1758 
1759 			spin_lock_irqsave(&map->async_lock, flags);
1760 			list_move(&async->list, &map->async_free);
1761 			spin_unlock_irqrestore(&map->async_lock, flags);
1762 		}
1763 
1764 		return ret;
1765 	}
1766 
1767 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1768 
1769 	/* If we're doing a single register write we can probably just
1770 	 * send the work_buf directly, otherwise try to do a gather
1771 	 * write.
1772 	 */
1773 	if (val == work_val)
1774 		ret = map->write(map->bus_context, map->work_buf,
1775 				 map->format.reg_bytes +
1776 				 map->format.pad_bytes +
1777 				 val_len);
1778 	else if (map->bus && map->bus->gather_write)
1779 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1780 					     map->format.reg_bytes +
1781 					     map->format.pad_bytes,
1782 					     val, val_len);
1783 	else
1784 		ret = -ENOTSUPP;
1785 
1786 	/* If that didn't work fall back on linearising by hand. */
1787 	if (ret == -ENOTSUPP) {
1788 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1789 		buf = kzalloc(len, GFP_KERNEL);
1790 		if (!buf)
1791 			return -ENOMEM;
1792 
1793 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1794 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1795 		       val, val_len);
1796 		ret = map->write(map->bus_context, buf, len);
1797 
1798 		kfree(buf);
1799 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1800 		/* regcache_drop_region() takes lock that we already have,
1801 		 * thus call map->cache_ops->drop() directly
1802 		 */
1803 		if (map->cache_ops && map->cache_ops->drop)
1804 			map->cache_ops->drop(map, reg, reg + 1);
1805 	}
1806 
1807 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1808 
1809 	return ret;
1810 }
1811 
1812 /**
1813  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1814  *
1815  * @map: Map to check.
1816  */
regmap_can_raw_write(struct regmap * map)1817 bool regmap_can_raw_write(struct regmap *map)
1818 {
1819 	return map->write && map->format.format_val && map->format.format_reg;
1820 }
1821 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1822 
1823 /**
1824  * regmap_get_raw_read_max - Get the maximum size we can read
1825  *
1826  * @map: Map to check.
1827  */
regmap_get_raw_read_max(struct regmap * map)1828 size_t regmap_get_raw_read_max(struct regmap *map)
1829 {
1830 	return map->max_raw_read;
1831 }
1832 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1833 
1834 /**
1835  * regmap_get_raw_write_max - Get the maximum size we can read
1836  *
1837  * @map: Map to check.
1838  */
regmap_get_raw_write_max(struct regmap * map)1839 size_t regmap_get_raw_write_max(struct regmap *map)
1840 {
1841 	return map->max_raw_write;
1842 }
1843 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1844 
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1845 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1846 				       unsigned int val)
1847 {
1848 	int ret;
1849 	struct regmap_range_node *range;
1850 	struct regmap *map = context;
1851 
1852 	WARN_ON(!map->format.format_write);
1853 
1854 	range = _regmap_range_lookup(map, reg);
1855 	if (range) {
1856 		ret = _regmap_select_page(map, &reg, range, 1);
1857 		if (ret != 0)
1858 			return ret;
1859 	}
1860 
1861 	reg = regmap_reg_addr(map, reg);
1862 	map->format.format_write(map, reg, val);
1863 
1864 	trace_regmap_hw_write_start(map, reg, 1);
1865 
1866 	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1867 
1868 	trace_regmap_hw_write_done(map, reg, 1);
1869 
1870 	return ret;
1871 }
1872 
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1873 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1874 				 unsigned int val)
1875 {
1876 	struct regmap *map = context;
1877 	struct regmap_range_node *range;
1878 	int ret;
1879 
1880 	range = _regmap_range_lookup(map, reg);
1881 	if (range) {
1882 		ret = _regmap_select_page(map, &reg, range, 1);
1883 		if (ret != 0)
1884 			return ret;
1885 	}
1886 
1887 	reg = regmap_reg_addr(map, reg);
1888 	return map->bus->reg_write(map->bus_context, reg, val);
1889 }
1890 
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1891 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1892 				 unsigned int val)
1893 {
1894 	struct regmap *map = context;
1895 
1896 	WARN_ON(!map->format.format_val);
1897 
1898 	map->format.format_val(map->work_buf + map->format.reg_bytes
1899 			       + map->format.pad_bytes, val, 0);
1900 	return _regmap_raw_write_impl(map, reg,
1901 				      map->work_buf +
1902 				      map->format.reg_bytes +
1903 				      map->format.pad_bytes,
1904 				      map->format.val_bytes,
1905 				      false);
1906 }
1907 
_regmap_map_get_context(struct regmap * map)1908 static inline void *_regmap_map_get_context(struct regmap *map)
1909 {
1910 	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1911 }
1912 
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1913 int _regmap_write(struct regmap *map, unsigned int reg,
1914 		  unsigned int val)
1915 {
1916 	int ret;
1917 	void *context = _regmap_map_get_context(map);
1918 
1919 	if (!regmap_writeable(map, reg))
1920 		return -EIO;
1921 
1922 	if (!map->cache_bypass && !map->defer_caching) {
1923 		ret = regcache_write(map, reg, val);
1924 		if (ret != 0)
1925 			return ret;
1926 		if (map->cache_only) {
1927 			map->cache_dirty = true;
1928 			return 0;
1929 		}
1930 	}
1931 
1932 	ret = map->reg_write(context, reg, val);
1933 	if (ret == 0) {
1934 		if (regmap_should_log(map))
1935 			dev_info(map->dev, "%x <= %x\n", reg, val);
1936 
1937 		trace_regmap_reg_write(map, reg, val);
1938 	}
1939 
1940 	return ret;
1941 }
1942 
1943 /**
1944  * regmap_write() - Write a value to a single register
1945  *
1946  * @map: Register map to write to
1947  * @reg: Register to write to
1948  * @val: Value to be written
1949  *
1950  * A value of zero will be returned on success, a negative errno will
1951  * be returned in error cases.
1952  */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1953 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1954 {
1955 	int ret;
1956 
1957 	if (!IS_ALIGNED(reg, map->reg_stride))
1958 		return -EINVAL;
1959 
1960 	map->lock(map->lock_arg);
1961 
1962 	ret = _regmap_write(map, reg, val);
1963 
1964 	map->unlock(map->lock_arg);
1965 
1966 	return ret;
1967 }
1968 EXPORT_SYMBOL_GPL(regmap_write);
1969 
1970 /**
1971  * regmap_write_async() - Write a value to a single register asynchronously
1972  *
1973  * @map: Register map to write to
1974  * @reg: Register to write to
1975  * @val: Value to be written
1976  *
1977  * A value of zero will be returned on success, a negative errno will
1978  * be returned in error cases.
1979  */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1980 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1981 {
1982 	int ret;
1983 
1984 	if (!IS_ALIGNED(reg, map->reg_stride))
1985 		return -EINVAL;
1986 
1987 	map->lock(map->lock_arg);
1988 
1989 	map->async = true;
1990 
1991 	ret = _regmap_write(map, reg, val);
1992 
1993 	map->async = false;
1994 
1995 	map->unlock(map->lock_arg);
1996 
1997 	return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(regmap_write_async);
2000 
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2001 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2002 		      const void *val, size_t val_len, bool noinc)
2003 {
2004 	size_t val_bytes = map->format.val_bytes;
2005 	size_t val_count = val_len / val_bytes;
2006 	size_t chunk_count, chunk_bytes;
2007 	size_t chunk_regs = val_count;
2008 	int ret, i;
2009 
2010 	if (!val_count)
2011 		return -EINVAL;
2012 
2013 	if (map->use_single_write)
2014 		chunk_regs = 1;
2015 	else if (map->max_raw_write && val_len > map->max_raw_write)
2016 		chunk_regs = map->max_raw_write / val_bytes;
2017 
2018 	chunk_count = val_count / chunk_regs;
2019 	chunk_bytes = chunk_regs * val_bytes;
2020 
2021 	/* Write as many bytes as possible with chunk_size */
2022 	for (i = 0; i < chunk_count; i++) {
2023 		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2024 		if (ret)
2025 			return ret;
2026 
2027 		reg += regmap_get_offset(map, chunk_regs);
2028 		val += chunk_bytes;
2029 		val_len -= chunk_bytes;
2030 	}
2031 
2032 	/* Write remaining bytes */
2033 	if (val_len)
2034 		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2035 
2036 	return ret;
2037 }
2038 
2039 /**
2040  * regmap_raw_write() - Write raw values to one or more registers
2041  *
2042  * @map: Register map to write to
2043  * @reg: Initial register to write to
2044  * @val: Block of data to be written, laid out for direct transmission to the
2045  *       device
2046  * @val_len: Length of data pointed to by val.
2047  *
2048  * This function is intended to be used for things like firmware
2049  * download where a large block of data needs to be transferred to the
2050  * device.  No formatting will be done on the data provided.
2051  *
2052  * A value of zero will be returned on success, a negative errno will
2053  * be returned in error cases.
2054  */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2055 int regmap_raw_write(struct regmap *map, unsigned int reg,
2056 		     const void *val, size_t val_len)
2057 {
2058 	int ret;
2059 
2060 	if (!regmap_can_raw_write(map))
2061 		return -EINVAL;
2062 	if (val_len % map->format.val_bytes)
2063 		return -EINVAL;
2064 
2065 	map->lock(map->lock_arg);
2066 
2067 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2068 
2069 	map->unlock(map->lock_arg);
2070 
2071 	return ret;
2072 }
2073 EXPORT_SYMBOL_GPL(regmap_raw_write);
2074 
regmap_noinc_readwrite(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool write)2075 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2076 				  void *val, unsigned int val_len, bool write)
2077 {
2078 	size_t val_bytes = map->format.val_bytes;
2079 	size_t val_count = val_len / val_bytes;
2080 	unsigned int lastval;
2081 	u8 *u8p;
2082 	u16 *u16p;
2083 	u32 *u32p;
2084 	int ret;
2085 	int i;
2086 
2087 	switch (val_bytes) {
2088 	case 1:
2089 		u8p = val;
2090 		if (write)
2091 			lastval = (unsigned int)u8p[val_count - 1];
2092 		break;
2093 	case 2:
2094 		u16p = val;
2095 		if (write)
2096 			lastval = (unsigned int)u16p[val_count - 1];
2097 		break;
2098 	case 4:
2099 		u32p = val;
2100 		if (write)
2101 			lastval = (unsigned int)u32p[val_count - 1];
2102 		break;
2103 	default:
2104 		return -EINVAL;
2105 	}
2106 
2107 	/*
2108 	 * Update the cache with the last value we write, the rest is just
2109 	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2110 	 * sure a single read from the cache will work.
2111 	 */
2112 	if (write) {
2113 		if (!map->cache_bypass && !map->defer_caching) {
2114 			ret = regcache_write(map, reg, lastval);
2115 			if (ret != 0)
2116 				return ret;
2117 			if (map->cache_only) {
2118 				map->cache_dirty = true;
2119 				return 0;
2120 			}
2121 		}
2122 		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2123 	} else {
2124 		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2125 	}
2126 
2127 	if (!ret && regmap_should_log(map)) {
2128 		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2129 		for (i = 0; i < val_count; i++) {
2130 			switch (val_bytes) {
2131 			case 1:
2132 				pr_cont("%x", u8p[i]);
2133 				break;
2134 			case 2:
2135 				pr_cont("%x", u16p[i]);
2136 				break;
2137 			case 4:
2138 				pr_cont("%x", u32p[i]);
2139 				break;
2140 			default:
2141 				break;
2142 			}
2143 			if (i == (val_count - 1))
2144 				pr_cont("]\n");
2145 			else
2146 				pr_cont(",");
2147 		}
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 /**
2154  * regmap_noinc_write(): Write data to a register without incrementing the
2155  *			register number
2156  *
2157  * @map: Register map to write to
2158  * @reg: Register to write to
2159  * @val: Pointer to data buffer
2160  * @val_len: Length of output buffer in bytes.
2161  *
2162  * The regmap API usually assumes that bulk bus write operations will write a
2163  * range of registers. Some devices have certain registers for which a write
2164  * operation can write to an internal FIFO.
2165  *
2166  * The target register must be volatile but registers after it can be
2167  * completely unrelated cacheable registers.
2168  *
2169  * This will attempt multiple writes as required to write val_len bytes.
2170  *
2171  * A value of zero will be returned on success, a negative errno will be
2172  * returned in error cases.
2173  */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2174 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2175 		      const void *val, size_t val_len)
2176 {
2177 	size_t write_len;
2178 	int ret;
2179 
2180 	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2181 		return -EINVAL;
2182 	if (val_len % map->format.val_bytes)
2183 		return -EINVAL;
2184 	if (!IS_ALIGNED(reg, map->reg_stride))
2185 		return -EINVAL;
2186 	if (val_len == 0)
2187 		return -EINVAL;
2188 
2189 	map->lock(map->lock_arg);
2190 
2191 	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2192 		ret = -EINVAL;
2193 		goto out_unlock;
2194 	}
2195 
2196 	/*
2197 	 * Use the accelerated operation if we can. The val drops the const
2198 	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2199 	 */
2200 	if (map->bus->reg_noinc_write) {
2201 		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2202 		goto out_unlock;
2203 	}
2204 
2205 	while (val_len) {
2206 		if (map->max_raw_write && map->max_raw_write < val_len)
2207 			write_len = map->max_raw_write;
2208 		else
2209 			write_len = val_len;
2210 		ret = _regmap_raw_write(map, reg, val, write_len, true);
2211 		if (ret)
2212 			goto out_unlock;
2213 		val = ((u8 *)val) + write_len;
2214 		val_len -= write_len;
2215 	}
2216 
2217 out_unlock:
2218 	map->unlock(map->lock_arg);
2219 	return ret;
2220 }
2221 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2222 
2223 /**
2224  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2225  *                                   register field.
2226  *
2227  * @field: Register field to write to
2228  * @mask: Bitmask to change
2229  * @val: Value to be written
2230  * @change: Boolean indicating if a write was done
2231  * @async: Boolean indicating asynchronously
2232  * @force: Boolean indicating use force update
2233  *
2234  * Perform a read/modify/write cycle on the register field with change,
2235  * async, force option.
2236  *
2237  * A value of zero will be returned on success, a negative errno will
2238  * be returned in error cases.
2239  */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2240 int regmap_field_update_bits_base(struct regmap_field *field,
2241 				  unsigned int mask, unsigned int val,
2242 				  bool *change, bool async, bool force)
2243 {
2244 	mask = (mask << field->shift) & field->mask;
2245 
2246 	return regmap_update_bits_base(field->regmap, field->reg,
2247 				       mask, val << field->shift,
2248 				       change, async, force);
2249 }
2250 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2251 
2252 /**
2253  * regmap_field_test_bits() - Check if all specified bits are set in a
2254  *                            register field.
2255  *
2256  * @field: Register field to operate on
2257  * @bits: Bits to test
2258  *
2259  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2260  * tested bits is not set and 1 if all tested bits are set.
2261  */
regmap_field_test_bits(struct regmap_field * field,unsigned int bits)2262 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2263 {
2264 	unsigned int val, ret;
2265 
2266 	ret = regmap_field_read(field, &val);
2267 	if (ret)
2268 		return ret;
2269 
2270 	return (val & bits) == bits;
2271 }
2272 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2273 
2274 /**
2275  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2276  *                                    register field with port ID
2277  *
2278  * @field: Register field to write to
2279  * @id: port ID
2280  * @mask: Bitmask to change
2281  * @val: Value to be written
2282  * @change: Boolean indicating if a write was done
2283  * @async: Boolean indicating asynchronously
2284  * @force: Boolean indicating use force update
2285  *
2286  * A value of zero will be returned on success, a negative errno will
2287  * be returned in error cases.
2288  */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2289 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2290 				   unsigned int mask, unsigned int val,
2291 				   bool *change, bool async, bool force)
2292 {
2293 	if (id >= field->id_size)
2294 		return -EINVAL;
2295 
2296 	mask = (mask << field->shift) & field->mask;
2297 
2298 	return regmap_update_bits_base(field->regmap,
2299 				       field->reg + (field->id_offset * id),
2300 				       mask, val << field->shift,
2301 				       change, async, force);
2302 }
2303 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2304 
2305 /**
2306  * regmap_bulk_write() - Write multiple registers to the device
2307  *
2308  * @map: Register map to write to
2309  * @reg: First register to be write from
2310  * @val: Block of data to be written, in native register size for device
2311  * @val_count: Number of registers to write
2312  *
2313  * This function is intended to be used for writing a large block of
2314  * data to the device either in single transfer or multiple transfer.
2315  *
2316  * A value of zero will be returned on success, a negative errno will
2317  * be returned in error cases.
2318  */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2319 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2320 		     size_t val_count)
2321 {
2322 	int ret = 0, i;
2323 	size_t val_bytes = map->format.val_bytes;
2324 
2325 	if (!IS_ALIGNED(reg, map->reg_stride))
2326 		return -EINVAL;
2327 
2328 	/*
2329 	 * Some devices don't support bulk write, for them we have a series of
2330 	 * single write operations.
2331 	 */
2332 	if (!map->write || !map->format.parse_inplace) {
2333 		map->lock(map->lock_arg);
2334 		for (i = 0; i < val_count; i++) {
2335 			unsigned int ival;
2336 
2337 			switch (val_bytes) {
2338 			case 1:
2339 				ival = *(u8 *)(val + (i * val_bytes));
2340 				break;
2341 			case 2:
2342 				ival = *(u16 *)(val + (i * val_bytes));
2343 				break;
2344 			case 4:
2345 				ival = *(u32 *)(val + (i * val_bytes));
2346 				break;
2347 			default:
2348 				ret = -EINVAL;
2349 				goto out;
2350 			}
2351 
2352 			ret = _regmap_write(map,
2353 					    reg + regmap_get_offset(map, i),
2354 					    ival);
2355 			if (ret != 0)
2356 				goto out;
2357 		}
2358 out:
2359 		map->unlock(map->lock_arg);
2360 	} else {
2361 		void *wval;
2362 
2363 		wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2364 		if (!wval)
2365 			return -ENOMEM;
2366 
2367 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2368 			map->format.parse_inplace(wval + i);
2369 
2370 		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2371 
2372 		kfree(wval);
2373 	}
2374 
2375 	if (!ret)
2376 		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2377 
2378 	return ret;
2379 }
2380 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2381 
2382 /*
2383  * _regmap_raw_multi_reg_write()
2384  *
2385  * the (register,newvalue) pairs in regs have not been formatted, but
2386  * they are all in the same page and have been changed to being page
2387  * relative. The page register has been written if that was necessary.
2388  */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2389 static int _regmap_raw_multi_reg_write(struct regmap *map,
2390 				       const struct reg_sequence *regs,
2391 				       size_t num_regs)
2392 {
2393 	int ret;
2394 	void *buf;
2395 	int i;
2396 	u8 *u8;
2397 	size_t val_bytes = map->format.val_bytes;
2398 	size_t reg_bytes = map->format.reg_bytes;
2399 	size_t pad_bytes = map->format.pad_bytes;
2400 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2401 	size_t len = pair_size * num_regs;
2402 
2403 	if (!len)
2404 		return -EINVAL;
2405 
2406 	buf = kzalloc(len, GFP_KERNEL);
2407 	if (!buf)
2408 		return -ENOMEM;
2409 
2410 	/* We have to linearise by hand. */
2411 
2412 	u8 = buf;
2413 
2414 	for (i = 0; i < num_regs; i++) {
2415 		unsigned int reg = regs[i].reg;
2416 		unsigned int val = regs[i].def;
2417 		trace_regmap_hw_write_start(map, reg, 1);
2418 		reg = regmap_reg_addr(map, reg);
2419 		map->format.format_reg(u8, reg, map->reg_shift);
2420 		u8 += reg_bytes + pad_bytes;
2421 		map->format.format_val(u8, val, 0);
2422 		u8 += val_bytes;
2423 	}
2424 	u8 = buf;
2425 	*u8 |= map->write_flag_mask;
2426 
2427 	ret = map->write(map->bus_context, buf, len);
2428 
2429 	kfree(buf);
2430 
2431 	for (i = 0; i < num_regs; i++) {
2432 		int reg = regs[i].reg;
2433 		trace_regmap_hw_write_done(map, reg, 1);
2434 	}
2435 	return ret;
2436 }
2437 
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2438 static unsigned int _regmap_register_page(struct regmap *map,
2439 					  unsigned int reg,
2440 					  struct regmap_range_node *range)
2441 {
2442 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2443 
2444 	return win_page;
2445 }
2446 
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2447 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2448 					       struct reg_sequence *regs,
2449 					       size_t num_regs)
2450 {
2451 	int ret;
2452 	int i, n;
2453 	struct reg_sequence *base;
2454 	unsigned int this_page = 0;
2455 	unsigned int page_change = 0;
2456 	/*
2457 	 * the set of registers are not neccessarily in order, but
2458 	 * since the order of write must be preserved this algorithm
2459 	 * chops the set each time the page changes. This also applies
2460 	 * if there is a delay required at any point in the sequence.
2461 	 */
2462 	base = regs;
2463 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2464 		unsigned int reg = regs[i].reg;
2465 		struct regmap_range_node *range;
2466 
2467 		range = _regmap_range_lookup(map, reg);
2468 		if (range) {
2469 			unsigned int win_page = _regmap_register_page(map, reg,
2470 								      range);
2471 
2472 			if (i == 0)
2473 				this_page = win_page;
2474 			if (win_page != this_page) {
2475 				this_page = win_page;
2476 				page_change = 1;
2477 			}
2478 		}
2479 
2480 		/* If we have both a page change and a delay make sure to
2481 		 * write the regs and apply the delay before we change the
2482 		 * page.
2483 		 */
2484 
2485 		if (page_change || regs[i].delay_us) {
2486 
2487 				/* For situations where the first write requires
2488 				 * a delay we need to make sure we don't call
2489 				 * raw_multi_reg_write with n=0
2490 				 * This can't occur with page breaks as we
2491 				 * never write on the first iteration
2492 				 */
2493 				if (regs[i].delay_us && i == 0)
2494 					n = 1;
2495 
2496 				ret = _regmap_raw_multi_reg_write(map, base, n);
2497 				if (ret != 0)
2498 					return ret;
2499 
2500 				if (regs[i].delay_us) {
2501 					if (map->can_sleep)
2502 						fsleep(regs[i].delay_us);
2503 					else
2504 						udelay(regs[i].delay_us);
2505 				}
2506 
2507 				base += n;
2508 				n = 0;
2509 
2510 				if (page_change) {
2511 					ret = _regmap_select_page(map,
2512 								  &base[n].reg,
2513 								  range, 1);
2514 					if (ret != 0)
2515 						return ret;
2516 
2517 					page_change = 0;
2518 				}
2519 
2520 		}
2521 
2522 	}
2523 	if (n > 0)
2524 		return _regmap_raw_multi_reg_write(map, base, n);
2525 	return 0;
2526 }
2527 
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2528 static int _regmap_multi_reg_write(struct regmap *map,
2529 				   const struct reg_sequence *regs,
2530 				   size_t num_regs)
2531 {
2532 	int i;
2533 	int ret;
2534 
2535 	if (!map->can_multi_write) {
2536 		for (i = 0; i < num_regs; i++) {
2537 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2538 			if (ret != 0)
2539 				return ret;
2540 
2541 			if (regs[i].delay_us) {
2542 				if (map->can_sleep)
2543 					fsleep(regs[i].delay_us);
2544 				else
2545 					udelay(regs[i].delay_us);
2546 			}
2547 		}
2548 		return 0;
2549 	}
2550 
2551 	if (!map->format.parse_inplace)
2552 		return -EINVAL;
2553 
2554 	if (map->writeable_reg)
2555 		for (i = 0; i < num_regs; i++) {
2556 			int reg = regs[i].reg;
2557 			if (!map->writeable_reg(map->dev, reg))
2558 				return -EINVAL;
2559 			if (!IS_ALIGNED(reg, map->reg_stride))
2560 				return -EINVAL;
2561 		}
2562 
2563 	if (!map->cache_bypass) {
2564 		for (i = 0; i < num_regs; i++) {
2565 			unsigned int val = regs[i].def;
2566 			unsigned int reg = regs[i].reg;
2567 			ret = regcache_write(map, reg, val);
2568 			if (ret) {
2569 				dev_err(map->dev,
2570 				"Error in caching of register: %x ret: %d\n",
2571 								reg, ret);
2572 				return ret;
2573 			}
2574 		}
2575 		if (map->cache_only) {
2576 			map->cache_dirty = true;
2577 			return 0;
2578 		}
2579 	}
2580 
2581 	WARN_ON(!map->bus);
2582 
2583 	for (i = 0; i < num_regs; i++) {
2584 		unsigned int reg = regs[i].reg;
2585 		struct regmap_range_node *range;
2586 
2587 		/* Coalesce all the writes between a page break or a delay
2588 		 * in a sequence
2589 		 */
2590 		range = _regmap_range_lookup(map, reg);
2591 		if (range || regs[i].delay_us) {
2592 			size_t len = sizeof(struct reg_sequence)*num_regs;
2593 			struct reg_sequence *base = kmemdup(regs, len,
2594 							   GFP_KERNEL);
2595 			if (!base)
2596 				return -ENOMEM;
2597 			ret = _regmap_range_multi_paged_reg_write(map, base,
2598 								  num_regs);
2599 			kfree(base);
2600 
2601 			return ret;
2602 		}
2603 	}
2604 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2605 }
2606 
2607 /**
2608  * regmap_multi_reg_write() - Write multiple registers to the device
2609  *
2610  * @map: Register map to write to
2611  * @regs: Array of structures containing register,value to be written
2612  * @num_regs: Number of registers to write
2613  *
2614  * Write multiple registers to the device where the set of register, value
2615  * pairs are supplied in any order, possibly not all in a single range.
2616  *
2617  * The 'normal' block write mode will send ultimately send data on the
2618  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2619  * addressed. However, this alternative block multi write mode will send
2620  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2621  * must of course support the mode.
2622  *
2623  * A value of zero will be returned on success, a negative errno will be
2624  * returned in error cases.
2625  */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2626 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2627 			   int num_regs)
2628 {
2629 	int ret;
2630 
2631 	map->lock(map->lock_arg);
2632 
2633 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2634 
2635 	map->unlock(map->lock_arg);
2636 
2637 	return ret;
2638 }
2639 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2640 
2641 /**
2642  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2643  *                                     device but not the cache
2644  *
2645  * @map: Register map to write to
2646  * @regs: Array of structures containing register,value to be written
2647  * @num_regs: Number of registers to write
2648  *
2649  * Write multiple registers to the device but not the cache where the set
2650  * of register are supplied in any order.
2651  *
2652  * This function is intended to be used for writing a large block of data
2653  * atomically to the device in single transfer for those I2C client devices
2654  * that implement this alternative block write mode.
2655  *
2656  * A value of zero will be returned on success, a negative errno will
2657  * be returned in error cases.
2658  */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2659 int regmap_multi_reg_write_bypassed(struct regmap *map,
2660 				    const struct reg_sequence *regs,
2661 				    int num_regs)
2662 {
2663 	int ret;
2664 	bool bypass;
2665 
2666 	map->lock(map->lock_arg);
2667 
2668 	bypass = map->cache_bypass;
2669 	map->cache_bypass = true;
2670 
2671 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2672 
2673 	map->cache_bypass = bypass;
2674 
2675 	map->unlock(map->lock_arg);
2676 
2677 	return ret;
2678 }
2679 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2680 
2681 /**
2682  * regmap_raw_write_async() - Write raw values to one or more registers
2683  *                            asynchronously
2684  *
2685  * @map: Register map to write to
2686  * @reg: Initial register to write to
2687  * @val: Block of data to be written, laid out for direct transmission to the
2688  *       device.  Must be valid until regmap_async_complete() is called.
2689  * @val_len: Length of data pointed to by val.
2690  *
2691  * This function is intended to be used for things like firmware
2692  * download where a large block of data needs to be transferred to the
2693  * device.  No formatting will be done on the data provided.
2694  *
2695  * If supported by the underlying bus the write will be scheduled
2696  * asynchronously, helping maximise I/O speed on higher speed buses
2697  * like SPI.  regmap_async_complete() can be called to ensure that all
2698  * asynchrnous writes have been completed.
2699  *
2700  * A value of zero will be returned on success, a negative errno will
2701  * be returned in error cases.
2702  */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2703 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2704 			   const void *val, size_t val_len)
2705 {
2706 	int ret;
2707 
2708 	if (val_len % map->format.val_bytes)
2709 		return -EINVAL;
2710 	if (!IS_ALIGNED(reg, map->reg_stride))
2711 		return -EINVAL;
2712 
2713 	map->lock(map->lock_arg);
2714 
2715 	map->async = true;
2716 
2717 	ret = _regmap_raw_write(map, reg, val, val_len, false);
2718 
2719 	map->async = false;
2720 
2721 	map->unlock(map->lock_arg);
2722 
2723 	return ret;
2724 }
2725 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2726 
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2727 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2728 			    unsigned int val_len, bool noinc)
2729 {
2730 	struct regmap_range_node *range;
2731 	int ret;
2732 
2733 	if (!map->read)
2734 		return -EINVAL;
2735 
2736 	range = _regmap_range_lookup(map, reg);
2737 	if (range) {
2738 		ret = _regmap_select_page(map, &reg, range,
2739 					  noinc ? 1 : val_len / map->format.val_bytes);
2740 		if (ret != 0)
2741 			return ret;
2742 	}
2743 
2744 	reg = regmap_reg_addr(map, reg);
2745 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2746 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2747 				      map->read_flag_mask);
2748 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2749 
2750 	ret = map->read(map->bus_context, map->work_buf,
2751 			map->format.reg_bytes + map->format.pad_bytes,
2752 			val, val_len);
2753 
2754 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2755 
2756 	return ret;
2757 }
2758 
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2759 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2760 				unsigned int *val)
2761 {
2762 	struct regmap *map = context;
2763 	struct regmap_range_node *range;
2764 	int ret;
2765 
2766 	range = _regmap_range_lookup(map, reg);
2767 	if (range) {
2768 		ret = _regmap_select_page(map, &reg, range, 1);
2769 		if (ret != 0)
2770 			return ret;
2771 	}
2772 
2773 	reg = regmap_reg_addr(map, reg);
2774 	return map->bus->reg_read(map->bus_context, reg, val);
2775 }
2776 
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2777 static int _regmap_bus_read(void *context, unsigned int reg,
2778 			    unsigned int *val)
2779 {
2780 	int ret;
2781 	struct regmap *map = context;
2782 	void *work_val = map->work_buf + map->format.reg_bytes +
2783 		map->format.pad_bytes;
2784 
2785 	if (!map->format.parse_val)
2786 		return -EINVAL;
2787 
2788 	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2789 	if (ret == 0)
2790 		*val = map->format.parse_val(work_val);
2791 
2792 	return ret;
2793 }
2794 
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2795 static int _regmap_read(struct regmap *map, unsigned int reg,
2796 			unsigned int *val)
2797 {
2798 	int ret;
2799 	void *context = _regmap_map_get_context(map);
2800 
2801 	if (!map->cache_bypass) {
2802 		ret = regcache_read(map, reg, val);
2803 		if (ret == 0)
2804 			return 0;
2805 	}
2806 
2807 	if (map->cache_only)
2808 		return -EBUSY;
2809 
2810 	if (!regmap_readable(map, reg))
2811 		return -EIO;
2812 
2813 	ret = map->reg_read(context, reg, val);
2814 	if (ret == 0) {
2815 		if (regmap_should_log(map))
2816 			dev_info(map->dev, "%x => %x\n", reg, *val);
2817 
2818 		trace_regmap_reg_read(map, reg, *val);
2819 
2820 		if (!map->cache_bypass)
2821 			regcache_write(map, reg, *val);
2822 	}
2823 
2824 	return ret;
2825 }
2826 
2827 /**
2828  * regmap_read() - Read a value from a single register
2829  *
2830  * @map: Register map to read from
2831  * @reg: Register to be read from
2832  * @val: Pointer to store read value
2833  *
2834  * A value of zero will be returned on success, a negative errno will
2835  * be returned in error cases.
2836  */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2837 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2838 {
2839 	int ret;
2840 
2841 	if (!IS_ALIGNED(reg, map->reg_stride))
2842 		return -EINVAL;
2843 
2844 	map->lock(map->lock_arg);
2845 
2846 	ret = _regmap_read(map, reg, val);
2847 
2848 	map->unlock(map->lock_arg);
2849 
2850 	return ret;
2851 }
2852 EXPORT_SYMBOL_GPL(regmap_read);
2853 
2854 /**
2855  * regmap_read_bypassed() - Read a value from a single register direct
2856  *			    from the device, bypassing the cache
2857  *
2858  * @map: Register map to read from
2859  * @reg: Register to be read from
2860  * @val: Pointer to store read value
2861  *
2862  * A value of zero will be returned on success, a negative errno will
2863  * be returned in error cases.
2864  */
regmap_read_bypassed(struct regmap * map,unsigned int reg,unsigned int * val)2865 int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2866 {
2867 	int ret;
2868 	bool bypass, cache_only;
2869 
2870 	if (!IS_ALIGNED(reg, map->reg_stride))
2871 		return -EINVAL;
2872 
2873 	map->lock(map->lock_arg);
2874 
2875 	bypass = map->cache_bypass;
2876 	cache_only = map->cache_only;
2877 	map->cache_bypass = true;
2878 	map->cache_only = false;
2879 
2880 	ret = _regmap_read(map, reg, val);
2881 
2882 	map->cache_bypass = bypass;
2883 	map->cache_only = cache_only;
2884 
2885 	map->unlock(map->lock_arg);
2886 
2887 	return ret;
2888 }
2889 EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2890 
2891 /**
2892  * regmap_raw_read() - Read raw data from the device
2893  *
2894  * @map: Register map to read from
2895  * @reg: First register to be read from
2896  * @val: Pointer to store read value
2897  * @val_len: Size of data to read
2898  *
2899  * A value of zero will be returned on success, a negative errno will
2900  * be returned in error cases.
2901  */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2902 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2903 		    size_t val_len)
2904 {
2905 	size_t val_bytes = map->format.val_bytes;
2906 	size_t val_count = val_len / val_bytes;
2907 	unsigned int v;
2908 	int ret, i;
2909 
2910 	if (val_len % map->format.val_bytes)
2911 		return -EINVAL;
2912 	if (!IS_ALIGNED(reg, map->reg_stride))
2913 		return -EINVAL;
2914 	if (val_count == 0)
2915 		return -EINVAL;
2916 
2917 	map->lock(map->lock_arg);
2918 
2919 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2920 	    map->cache_type == REGCACHE_NONE) {
2921 		size_t chunk_count, chunk_bytes;
2922 		size_t chunk_regs = val_count;
2923 
2924 		if (!map->cache_bypass && map->cache_only) {
2925 			ret = -EBUSY;
2926 			goto out;
2927 		}
2928 
2929 		if (!map->read) {
2930 			ret = -ENOTSUPP;
2931 			goto out;
2932 		}
2933 
2934 		if (map->use_single_read)
2935 			chunk_regs = 1;
2936 		else if (map->max_raw_read && val_len > map->max_raw_read)
2937 			chunk_regs = map->max_raw_read / val_bytes;
2938 
2939 		chunk_count = val_count / chunk_regs;
2940 		chunk_bytes = chunk_regs * val_bytes;
2941 
2942 		/* Read bytes that fit into whole chunks */
2943 		for (i = 0; i < chunk_count; i++) {
2944 			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2945 			if (ret != 0)
2946 				goto out;
2947 
2948 			reg += regmap_get_offset(map, chunk_regs);
2949 			val += chunk_bytes;
2950 			val_len -= chunk_bytes;
2951 		}
2952 
2953 		/* Read remaining bytes */
2954 		if (val_len) {
2955 			ret = _regmap_raw_read(map, reg, val, val_len, false);
2956 			if (ret != 0)
2957 				goto out;
2958 		}
2959 	} else {
2960 		/* Otherwise go word by word for the cache; should be low
2961 		 * cost as we expect to hit the cache.
2962 		 */
2963 		for (i = 0; i < val_count; i++) {
2964 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2965 					   &v);
2966 			if (ret != 0)
2967 				goto out;
2968 
2969 			map->format.format_val(val + (i * val_bytes), v, 0);
2970 		}
2971 	}
2972 
2973  out:
2974 	map->unlock(map->lock_arg);
2975 
2976 	return ret;
2977 }
2978 EXPORT_SYMBOL_GPL(regmap_raw_read);
2979 
2980 /**
2981  * regmap_noinc_read(): Read data from a register without incrementing the
2982  *			register number
2983  *
2984  * @map: Register map to read from
2985  * @reg: Register to read from
2986  * @val: Pointer to data buffer
2987  * @val_len: Length of output buffer in bytes.
2988  *
2989  * The regmap API usually assumes that bulk read operations will read a
2990  * range of registers. Some devices have certain registers for which a read
2991  * operation read will read from an internal FIFO.
2992  *
2993  * The target register must be volatile but registers after it can be
2994  * completely unrelated cacheable registers.
2995  *
2996  * This will attempt multiple reads as required to read val_len bytes.
2997  *
2998  * A value of zero will be returned on success, a negative errno will be
2999  * returned in error cases.
3000  */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)3001 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3002 		      void *val, size_t val_len)
3003 {
3004 	size_t read_len;
3005 	int ret;
3006 
3007 	if (!map->read)
3008 		return -ENOTSUPP;
3009 
3010 	if (val_len % map->format.val_bytes)
3011 		return -EINVAL;
3012 	if (!IS_ALIGNED(reg, map->reg_stride))
3013 		return -EINVAL;
3014 	if (val_len == 0)
3015 		return -EINVAL;
3016 
3017 	map->lock(map->lock_arg);
3018 
3019 	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3020 		ret = -EINVAL;
3021 		goto out_unlock;
3022 	}
3023 
3024 	/*
3025 	 * We have not defined the FIFO semantics for cache, as the
3026 	 * cache is just one value deep. Should we return the last
3027 	 * written value? Just avoid this by always reading the FIFO
3028 	 * even when using cache. Cache only will not work.
3029 	 */
3030 	if (!map->cache_bypass && map->cache_only) {
3031 		ret = -EBUSY;
3032 		goto out_unlock;
3033 	}
3034 
3035 	/* Use the accelerated operation if we can */
3036 	if (map->bus->reg_noinc_read) {
3037 		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3038 		goto out_unlock;
3039 	}
3040 
3041 	while (val_len) {
3042 		if (map->max_raw_read && map->max_raw_read < val_len)
3043 			read_len = map->max_raw_read;
3044 		else
3045 			read_len = val_len;
3046 		ret = _regmap_raw_read(map, reg, val, read_len, true);
3047 		if (ret)
3048 			goto out_unlock;
3049 		val = ((u8 *)val) + read_len;
3050 		val_len -= read_len;
3051 	}
3052 
3053 out_unlock:
3054 	map->unlock(map->lock_arg);
3055 	return ret;
3056 }
3057 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3058 
3059 /**
3060  * regmap_field_read(): Read a value to a single register field
3061  *
3062  * @field: Register field to read from
3063  * @val: Pointer to store read value
3064  *
3065  * A value of zero will be returned on success, a negative errno will
3066  * be returned in error cases.
3067  */
regmap_field_read(struct regmap_field * field,unsigned int * val)3068 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3069 {
3070 	int ret;
3071 	unsigned int reg_val;
3072 	ret = regmap_read(field->regmap, field->reg, &reg_val);
3073 	if (ret != 0)
3074 		return ret;
3075 
3076 	reg_val &= field->mask;
3077 	reg_val >>= field->shift;
3078 	*val = reg_val;
3079 
3080 	return ret;
3081 }
3082 EXPORT_SYMBOL_GPL(regmap_field_read);
3083 
3084 /**
3085  * regmap_fields_read() - Read a value to a single register field with port ID
3086  *
3087  * @field: Register field to read from
3088  * @id: port ID
3089  * @val: Pointer to store read value
3090  *
3091  * A value of zero will be returned on success, a negative errno will
3092  * be returned in error cases.
3093  */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)3094 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3095 		       unsigned int *val)
3096 {
3097 	int ret;
3098 	unsigned int reg_val;
3099 
3100 	if (id >= field->id_size)
3101 		return -EINVAL;
3102 
3103 	ret = regmap_read(field->regmap,
3104 			  field->reg + (field->id_offset * id),
3105 			  &reg_val);
3106 	if (ret != 0)
3107 		return ret;
3108 
3109 	reg_val &= field->mask;
3110 	reg_val >>= field->shift;
3111 	*val = reg_val;
3112 
3113 	return ret;
3114 }
3115 EXPORT_SYMBOL_GPL(regmap_fields_read);
3116 
_regmap_bulk_read(struct regmap * map,unsigned int reg,const unsigned int * regs,void * val,size_t val_count)3117 static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3118 			     const unsigned int *regs, void *val, size_t val_count)
3119 {
3120 	u32 *u32 = val;
3121 	u16 *u16 = val;
3122 	u8 *u8 = val;
3123 	int ret, i;
3124 
3125 	map->lock(map->lock_arg);
3126 
3127 	for (i = 0; i < val_count; i++) {
3128 		unsigned int ival;
3129 
3130 		if (regs) {
3131 			if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3132 				ret = -EINVAL;
3133 				goto out;
3134 			}
3135 			ret = _regmap_read(map, regs[i], &ival);
3136 		} else {
3137 			ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3138 		}
3139 		if (ret != 0)
3140 			goto out;
3141 
3142 		switch (map->format.val_bytes) {
3143 		case 4:
3144 			u32[i] = ival;
3145 			break;
3146 		case 2:
3147 			u16[i] = ival;
3148 			break;
3149 		case 1:
3150 			u8[i] = ival;
3151 			break;
3152 		default:
3153 			ret = -EINVAL;
3154 			goto out;
3155 		}
3156 	}
3157 out:
3158 	map->unlock(map->lock_arg);
3159 	return ret;
3160 }
3161 
3162 /**
3163  * regmap_bulk_read() - Read multiple sequential registers from the device
3164  *
3165  * @map: Register map to read from
3166  * @reg: First register to be read from
3167  * @val: Pointer to store read value, in native register size for device
3168  * @val_count: Number of registers to read
3169  *
3170  * A value of zero will be returned on success, a negative errno will
3171  * be returned in error cases.
3172  */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)3173 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3174 		     size_t val_count)
3175 {
3176 	int ret, i;
3177 	size_t val_bytes = map->format.val_bytes;
3178 	bool vol = regmap_volatile_range(map, reg, val_count);
3179 
3180 	if (!IS_ALIGNED(reg, map->reg_stride))
3181 		return -EINVAL;
3182 	if (val_count == 0)
3183 		return -EINVAL;
3184 
3185 	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3186 		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3187 		if (ret != 0)
3188 			return ret;
3189 
3190 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3191 			map->format.parse_inplace(val + i);
3192 	} else {
3193 		ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
3194 	}
3195 	if (!ret)
3196 		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3197 	return ret;
3198 }
3199 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3200 
3201 /**
3202  * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3203  *
3204  * @map: Register map to read from
3205  * @regs: Array of registers to read from
3206  * @val: Pointer to store read value, in native register size for device
3207  * @val_count: Number of registers to read
3208  *
3209  * A value of zero will be returned on success, a negative errno will
3210  * be returned in error cases.
3211  */
regmap_multi_reg_read(struct regmap * map,const unsigned int * regs,void * val,size_t val_count)3212 int regmap_multi_reg_read(struct regmap *map, const unsigned int *regs, void *val,
3213 			  size_t val_count)
3214 {
3215 	if (val_count == 0)
3216 		return -EINVAL;
3217 
3218 	return _regmap_bulk_read(map, 0, regs, val, val_count);
3219 }
3220 EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3221 
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3222 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3223 			       unsigned int mask, unsigned int val,
3224 			       bool *change, bool force_write)
3225 {
3226 	int ret;
3227 	unsigned int tmp, orig;
3228 
3229 	if (change)
3230 		*change = false;
3231 
3232 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3233 		reg = regmap_reg_addr(map, reg);
3234 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3235 		if (ret == 0 && change)
3236 			*change = true;
3237 	} else {
3238 		ret = _regmap_read(map, reg, &orig);
3239 		if (ret != 0)
3240 			return ret;
3241 
3242 		tmp = orig & ~mask;
3243 		tmp |= val & mask;
3244 
3245 		if (force_write || (tmp != orig) || map->force_write_field) {
3246 			ret = _regmap_write(map, reg, tmp);
3247 			if (ret == 0 && change)
3248 				*change = true;
3249 		}
3250 	}
3251 
3252 	return ret;
3253 }
3254 
3255 /**
3256  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3257  *
3258  * @map: Register map to update
3259  * @reg: Register to update
3260  * @mask: Bitmask to change
3261  * @val: New value for bitmask
3262  * @change: Boolean indicating if a write was done
3263  * @async: Boolean indicating asynchronously
3264  * @force: Boolean indicating use force update
3265  *
3266  * Perform a read/modify/write cycle on a register map with change, async, force
3267  * options.
3268  *
3269  * If async is true:
3270  *
3271  * With most buses the read must be done synchronously so this is most useful
3272  * for devices with a cache which do not need to interact with the hardware to
3273  * determine the current register value.
3274  *
3275  * Returns zero for success, a negative number on error.
3276  */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3277 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3278 			    unsigned int mask, unsigned int val,
3279 			    bool *change, bool async, bool force)
3280 {
3281 	int ret;
3282 
3283 	map->lock(map->lock_arg);
3284 
3285 	map->async = async;
3286 
3287 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3288 
3289 	map->async = false;
3290 
3291 	map->unlock(map->lock_arg);
3292 
3293 	return ret;
3294 }
3295 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3296 
3297 /**
3298  * regmap_test_bits() - Check if all specified bits are set in a register.
3299  *
3300  * @map: Register map to operate on
3301  * @reg: Register to read from
3302  * @bits: Bits to test
3303  *
3304  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3305  * bits are set and a negative error number if the underlying regmap_read()
3306  * fails.
3307  */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3308 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3309 {
3310 	unsigned int val, ret;
3311 
3312 	ret = regmap_read(map, reg, &val);
3313 	if (ret)
3314 		return ret;
3315 
3316 	return (val & bits) == bits;
3317 }
3318 EXPORT_SYMBOL_GPL(regmap_test_bits);
3319 
regmap_async_complete_cb(struct regmap_async * async,int ret)3320 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3321 {
3322 	struct regmap *map = async->map;
3323 	bool wake;
3324 
3325 	trace_regmap_async_io_complete(map);
3326 
3327 	spin_lock(&map->async_lock);
3328 	list_move(&async->list, &map->async_free);
3329 	wake = list_empty(&map->async_list);
3330 
3331 	if (ret != 0)
3332 		map->async_ret = ret;
3333 
3334 	spin_unlock(&map->async_lock);
3335 
3336 	if (wake)
3337 		wake_up(&map->async_waitq);
3338 }
3339 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3340 
regmap_async_is_done(struct regmap * map)3341 static int regmap_async_is_done(struct regmap *map)
3342 {
3343 	unsigned long flags;
3344 	int ret;
3345 
3346 	spin_lock_irqsave(&map->async_lock, flags);
3347 	ret = list_empty(&map->async_list);
3348 	spin_unlock_irqrestore(&map->async_lock, flags);
3349 
3350 	return ret;
3351 }
3352 
3353 /**
3354  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3355  *
3356  * @map: Map to operate on.
3357  *
3358  * Blocks until any pending asynchronous I/O has completed.  Returns
3359  * an error code for any failed I/O operations.
3360  */
regmap_async_complete(struct regmap * map)3361 int regmap_async_complete(struct regmap *map)
3362 {
3363 	unsigned long flags;
3364 	int ret;
3365 
3366 	/* Nothing to do with no async support */
3367 	if (!map->bus || !map->bus->async_write)
3368 		return 0;
3369 
3370 	trace_regmap_async_complete_start(map);
3371 
3372 	wait_event(map->async_waitq, regmap_async_is_done(map));
3373 
3374 	spin_lock_irqsave(&map->async_lock, flags);
3375 	ret = map->async_ret;
3376 	map->async_ret = 0;
3377 	spin_unlock_irqrestore(&map->async_lock, flags);
3378 
3379 	trace_regmap_async_complete_done(map);
3380 
3381 	return ret;
3382 }
3383 EXPORT_SYMBOL_GPL(regmap_async_complete);
3384 
3385 /**
3386  * regmap_register_patch - Register and apply register updates to be applied
3387  *                         on device initialistion
3388  *
3389  * @map: Register map to apply updates to.
3390  * @regs: Values to update.
3391  * @num_regs: Number of entries in regs.
3392  *
3393  * Register a set of register updates to be applied to the device
3394  * whenever the device registers are synchronised with the cache and
3395  * apply them immediately.  Typically this is used to apply
3396  * corrections to be applied to the device defaults on startup, such
3397  * as the updates some vendors provide to undocumented registers.
3398  *
3399  * The caller must ensure that this function cannot be called
3400  * concurrently with either itself or regcache_sync().
3401  */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3402 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3403 			  int num_regs)
3404 {
3405 	struct reg_sequence *p;
3406 	int ret;
3407 	bool bypass;
3408 
3409 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3410 	    num_regs))
3411 		return 0;
3412 
3413 	p = krealloc(map->patch,
3414 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3415 		     GFP_KERNEL);
3416 	if (p) {
3417 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3418 		map->patch = p;
3419 		map->patch_regs += num_regs;
3420 	} else {
3421 		return -ENOMEM;
3422 	}
3423 
3424 	map->lock(map->lock_arg);
3425 
3426 	bypass = map->cache_bypass;
3427 
3428 	map->cache_bypass = true;
3429 	map->async = true;
3430 
3431 	ret = _regmap_multi_reg_write(map, regs, num_regs);
3432 
3433 	map->async = false;
3434 	map->cache_bypass = bypass;
3435 
3436 	map->unlock(map->lock_arg);
3437 
3438 	regmap_async_complete(map);
3439 
3440 	return ret;
3441 }
3442 EXPORT_SYMBOL_GPL(regmap_register_patch);
3443 
3444 /**
3445  * regmap_get_val_bytes() - Report the size of a register value
3446  *
3447  * @map: Register map to operate on.
3448  *
3449  * Report the size of a register value, mainly intended to for use by
3450  * generic infrastructure built on top of regmap.
3451  */
regmap_get_val_bytes(struct regmap * map)3452 int regmap_get_val_bytes(struct regmap *map)
3453 {
3454 	if (map->format.format_write)
3455 		return -EINVAL;
3456 
3457 	return map->format.val_bytes;
3458 }
3459 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3460 
3461 /**
3462  * regmap_get_max_register() - Report the max register value
3463  *
3464  * @map: Register map to operate on.
3465  *
3466  * Report the max register value, mainly intended to for use by
3467  * generic infrastructure built on top of regmap.
3468  */
regmap_get_max_register(struct regmap * map)3469 int regmap_get_max_register(struct regmap *map)
3470 {
3471 	return map->max_register_is_set ? map->max_register : -EINVAL;
3472 }
3473 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3474 
3475 /**
3476  * regmap_get_reg_stride() - Report the register address stride
3477  *
3478  * @map: Register map to operate on.
3479  *
3480  * Report the register address stride, mainly intended to for use by
3481  * generic infrastructure built on top of regmap.
3482  */
regmap_get_reg_stride(struct regmap * map)3483 int regmap_get_reg_stride(struct regmap *map)
3484 {
3485 	return map->reg_stride;
3486 }
3487 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3488 
3489 /**
3490  * regmap_might_sleep() - Returns whether a regmap access might sleep.
3491  *
3492  * @map: Register map to operate on.
3493  *
3494  * Returns true if an access to the register might sleep, else false.
3495  */
regmap_might_sleep(struct regmap * map)3496 bool regmap_might_sleep(struct regmap *map)
3497 {
3498 	return map->can_sleep;
3499 }
3500 EXPORT_SYMBOL_GPL(regmap_might_sleep);
3501 
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3502 int regmap_parse_val(struct regmap *map, const void *buf,
3503 			unsigned int *val)
3504 {
3505 	if (!map->format.parse_val)
3506 		return -EINVAL;
3507 
3508 	*val = map->format.parse_val(buf);
3509 
3510 	return 0;
3511 }
3512 EXPORT_SYMBOL_GPL(regmap_parse_val);
3513 
regmap_initcall(void)3514 static int __init regmap_initcall(void)
3515 {
3516 	regmap_debugfs_initcall();
3517 
3518 	return 0;
3519 }
3520 postcore_initcall(regmap_initcall);
3521