1 //===- llvm/CodeGen/MachineRegisterInfo.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MachineRegisterInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
14 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
15
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/PointerUnion.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringSet.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/RegisterBank.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/MC/LaneBitmask.h"
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <iterator>
36 #include <memory>
37 #include <utility>
38 #include <vector>
39
40 namespace llvm {
41
42 class PSetIterator;
43
44 /// Convenient type to represent either a register class or a register bank.
45 using RegClassOrRegBank =
46 PointerUnion<const TargetRegisterClass *, const RegisterBank *>;
47
48 /// MachineRegisterInfo - Keep track of information for virtual and physical
49 /// registers, including vreg register classes, use/def chains for registers,
50 /// etc.
51 class MachineRegisterInfo {
52 public:
53 class Delegate {
54 virtual void anchor();
55
56 public:
57 virtual ~Delegate() = default;
58
59 virtual void MRI_NoteNewVirtualRegister(Register Reg) = 0;
MRI_NoteCloneVirtualRegister(Register NewReg,Register SrcReg)60 virtual void MRI_NoteCloneVirtualRegister(Register NewReg,
61 Register SrcReg) {
62 MRI_NoteNewVirtualRegister(NewReg);
63 }
64 };
65
66 private:
67 MachineFunction *MF;
68 SmallPtrSet<Delegate *, 1> TheDelegates;
69
70 /// True if subregister liveness is tracked.
71 const bool TracksSubRegLiveness;
72
73 /// VRegInfo - Information we keep for each virtual register.
74 ///
75 /// Each element in this list contains the register class of the vreg and the
76 /// start of the use/def list for the register.
77 IndexedMap<std::pair<RegClassOrRegBank, MachineOperand *>,
78 VirtReg2IndexFunctor>
79 VRegInfo;
80
81 /// Map for recovering vreg name from vreg number.
82 /// This map is used by the MIR Printer.
83 IndexedMap<std::string, VirtReg2IndexFunctor> VReg2Name;
84
85 /// StringSet that is used to unique vreg names.
86 StringSet<> VRegNames;
87
88 /// The flag is true upon \p UpdatedCSRs initialization
89 /// and false otherwise.
90 bool IsUpdatedCSRsInitialized = false;
91
92 /// Contains the updated callee saved register list.
93 /// As opposed to the static list defined in register info,
94 /// all registers that were disabled are removed from the list.
95 SmallVector<MCPhysReg, 16> UpdatedCSRs;
96
97 /// RegAllocHints - This vector records register allocation hints for
98 /// virtual registers. For each virtual register, it keeps a pair of hint
99 /// type and hints vector making up the allocation hints. Only the first
100 /// hint may be target specific, and in that case this is reflected by the
101 /// first member of the pair being non-zero. If the hinted register is
102 /// virtual, it means the allocator should prefer the physical register
103 /// allocated to it if any.
104 IndexedMap<std::pair<unsigned, SmallVector<Register, 4>>,
105 VirtReg2IndexFunctor>
106 RegAllocHints;
107
108 /// PhysRegUseDefLists - This is an array of the head of the use/def list for
109 /// physical registers.
110 std::unique_ptr<MachineOperand *[]> PhysRegUseDefLists;
111
112 /// getRegUseDefListHead - Return the head pointer for the register use/def
113 /// list for the specified virtual or physical register.
getRegUseDefListHead(Register RegNo)114 MachineOperand *&getRegUseDefListHead(Register RegNo) {
115 if (RegNo.isVirtual())
116 return VRegInfo[RegNo.id()].second;
117 return PhysRegUseDefLists[RegNo.id()];
118 }
119
getRegUseDefListHead(Register RegNo)120 MachineOperand *getRegUseDefListHead(Register RegNo) const {
121 if (RegNo.isVirtual())
122 return VRegInfo[RegNo.id()].second;
123 return PhysRegUseDefLists[RegNo.id()];
124 }
125
126 /// Get the next element in the use-def chain.
getNextOperandForReg(const MachineOperand * MO)127 static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
128 assert(MO && MO->isReg() && "This is not a register operand!");
129 return MO->Contents.Reg.Next;
130 }
131
132 /// UsedPhysRegMask - Additional used physregs including aliases.
133 /// This bit vector represents all the registers clobbered by function calls.
134 BitVector UsedPhysRegMask;
135
136 /// ReservedRegs - This is a bit vector of reserved registers. The target
137 /// may change its mind about which registers should be reserved. This
138 /// vector is the frozen set of reserved registers when register allocation
139 /// started.
140 BitVector ReservedRegs;
141
142 using VRegToTypeMap = IndexedMap<LLT, VirtReg2IndexFunctor>;
143 /// Map generic virtual registers to their low-level type.
144 VRegToTypeMap VRegToType;
145
146 /// Keep track of the physical registers that are live in to the function.
147 /// Live in values are typically arguments in registers. LiveIn values are
148 /// allowed to have virtual registers associated with them, stored in the
149 /// second element.
150 std::vector<std::pair<MCRegister, Register>> LiveIns;
151
152 public:
153 explicit MachineRegisterInfo(MachineFunction *MF);
154 MachineRegisterInfo(const MachineRegisterInfo &) = delete;
155 MachineRegisterInfo &operator=(const MachineRegisterInfo &) = delete;
156
getTargetRegisterInfo()157 const TargetRegisterInfo *getTargetRegisterInfo() const {
158 return MF->getSubtarget().getRegisterInfo();
159 }
160
resetDelegate(Delegate * delegate)161 void resetDelegate(Delegate *delegate) {
162 // Ensure another delegate does not take over unless the current
163 // delegate first unattaches itself.
164 assert(TheDelegates.count(delegate) &&
165 "Only an existing delegate can perform reset!");
166 TheDelegates.erase(delegate);
167 }
168
addDelegate(Delegate * delegate)169 void addDelegate(Delegate *delegate) {
170 assert(delegate && !TheDelegates.count(delegate) &&
171 "Attempted to add null delegate, or to change it without "
172 "first resetting it!");
173
174 TheDelegates.insert(delegate);
175 }
176
noteNewVirtualRegister(Register Reg)177 void noteNewVirtualRegister(Register Reg) {
178 for (auto *TheDelegate : TheDelegates)
179 TheDelegate->MRI_NoteNewVirtualRegister(Reg);
180 }
181
noteCloneVirtualRegister(Register NewReg,Register SrcReg)182 void noteCloneVirtualRegister(Register NewReg, Register SrcReg) {
183 for (auto *TheDelegate : TheDelegates)
184 TheDelegate->MRI_NoteCloneVirtualRegister(NewReg, SrcReg);
185 }
186
187 //===--------------------------------------------------------------------===//
188 // Function State
189 //===--------------------------------------------------------------------===//
190
191 // isSSA - Returns true when the machine function is in SSA form. Early
192 // passes require the machine function to be in SSA form where every virtual
193 // register has a single defining instruction.
194 //
195 // The TwoAddressInstructionPass and PHIElimination passes take the machine
196 // function out of SSA form when they introduce multiple defs per virtual
197 // register.
isSSA()198 bool isSSA() const {
199 return MF->getProperties().hasProperty(
200 MachineFunctionProperties::Property::IsSSA);
201 }
202
203 // leaveSSA - Indicates that the machine function is no longer in SSA form.
leaveSSA()204 void leaveSSA() {
205 MF->getProperties().reset(MachineFunctionProperties::Property::IsSSA);
206 }
207
208 /// tracksLiveness - Returns true when tracking register liveness accurately.
209 /// (see MachineFUnctionProperties::Property description for details)
tracksLiveness()210 bool tracksLiveness() const {
211 return MF->getProperties().hasProperty(
212 MachineFunctionProperties::Property::TracksLiveness);
213 }
214
215 /// invalidateLiveness - Indicates that register liveness is no longer being
216 /// tracked accurately.
217 ///
218 /// This should be called by late passes that invalidate the liveness
219 /// information.
invalidateLiveness()220 void invalidateLiveness() {
221 MF->getProperties().reset(
222 MachineFunctionProperties::Property::TracksLiveness);
223 }
224
225 /// Returns true if liveness for register class @p RC should be tracked at
226 /// the subregister level.
shouldTrackSubRegLiveness(const TargetRegisterClass & RC)227 bool shouldTrackSubRegLiveness(const TargetRegisterClass &RC) const {
228 return subRegLivenessEnabled() && RC.HasDisjunctSubRegs;
229 }
shouldTrackSubRegLiveness(Register VReg)230 bool shouldTrackSubRegLiveness(Register VReg) const {
231 assert(VReg.isVirtual() && "Must pass a VReg");
232 const TargetRegisterClass *RC = getRegClassOrNull(VReg);
233 return LLVM_LIKELY(RC) ? shouldTrackSubRegLiveness(*RC) : false;
234 }
subRegLivenessEnabled()235 bool subRegLivenessEnabled() const {
236 return TracksSubRegLiveness;
237 }
238
239 //===--------------------------------------------------------------------===//
240 // Register Info
241 //===--------------------------------------------------------------------===//
242
243 /// Returns true if the updated CSR list was initialized and false otherwise.
isUpdatedCSRsInitialized()244 bool isUpdatedCSRsInitialized() const { return IsUpdatedCSRsInitialized; }
245
246 /// Disables the register from the list of CSRs.
247 /// I.e. the register will not appear as part of the CSR mask.
248 /// \see UpdatedCalleeSavedRegs.
249 void disableCalleeSavedRegister(MCRegister Reg);
250
251 /// Returns list of callee saved registers.
252 /// The function returns the updated CSR list (after taking into account
253 /// registers that are disabled from the CSR list).
254 const MCPhysReg *getCalleeSavedRegs() const;
255
256 /// Sets the updated Callee Saved Registers list.
257 /// Notice that it will override ant previously disabled/saved CSRs.
258 void setCalleeSavedRegs(ArrayRef<MCPhysReg> CSRs);
259
260 // Strictly for use by MachineInstr.cpp.
261 void addRegOperandToUseList(MachineOperand *MO);
262
263 // Strictly for use by MachineInstr.cpp.
264 void removeRegOperandFromUseList(MachineOperand *MO);
265
266 // Strictly for use by MachineInstr.cpp.
267 void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
268
269 /// Verify the sanity of the use list for Reg.
270 void verifyUseList(Register Reg) const;
271
272 /// Verify the use list of all registers.
273 void verifyUseLists() const;
274
275 /// reg_begin/reg_end - Provide iteration support to walk over all definitions
276 /// and uses of a register within the MachineFunction that corresponds to this
277 /// MachineRegisterInfo object.
278 template<bool Uses, bool Defs, bool SkipDebug,
279 bool ByOperand, bool ByInstr, bool ByBundle>
280 class defusechain_iterator;
281 template<bool Uses, bool Defs, bool SkipDebug,
282 bool ByOperand, bool ByInstr, bool ByBundle>
283 class defusechain_instr_iterator;
284
285 // Make it a friend so it can access getNextOperandForReg().
286 template<bool, bool, bool, bool, bool, bool>
287 friend class defusechain_iterator;
288 template<bool, bool, bool, bool, bool, bool>
289 friend class defusechain_instr_iterator;
290
291 /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
292 /// register.
293 using reg_iterator =
294 defusechain_iterator<true, true, false, true, false, false>;
reg_begin(Register RegNo)295 reg_iterator reg_begin(Register RegNo) const {
296 return reg_iterator(getRegUseDefListHead(RegNo));
297 }
reg_end()298 static reg_iterator reg_end() { return reg_iterator(nullptr); }
299
reg_operands(Register Reg)300 inline iterator_range<reg_iterator> reg_operands(Register Reg) const {
301 return make_range(reg_begin(Reg), reg_end());
302 }
303
304 /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses
305 /// of the specified register, stepping by MachineInstr.
306 using reg_instr_iterator =
307 defusechain_instr_iterator<true, true, false, false, true, false>;
reg_instr_begin(Register RegNo)308 reg_instr_iterator reg_instr_begin(Register RegNo) const {
309 return reg_instr_iterator(getRegUseDefListHead(RegNo));
310 }
reg_instr_end()311 static reg_instr_iterator reg_instr_end() {
312 return reg_instr_iterator(nullptr);
313 }
314
315 inline iterator_range<reg_instr_iterator>
reg_instructions(Register Reg)316 reg_instructions(Register Reg) const {
317 return make_range(reg_instr_begin(Reg), reg_instr_end());
318 }
319
320 /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses
321 /// of the specified register, stepping by bundle.
322 using reg_bundle_iterator =
323 defusechain_instr_iterator<true, true, false, false, false, true>;
reg_bundle_begin(Register RegNo)324 reg_bundle_iterator reg_bundle_begin(Register RegNo) const {
325 return reg_bundle_iterator(getRegUseDefListHead(RegNo));
326 }
reg_bundle_end()327 static reg_bundle_iterator reg_bundle_end() {
328 return reg_bundle_iterator(nullptr);
329 }
330
reg_bundles(Register Reg)331 inline iterator_range<reg_bundle_iterator> reg_bundles(Register Reg) const {
332 return make_range(reg_bundle_begin(Reg), reg_bundle_end());
333 }
334
335 /// reg_empty - Return true if there are no instructions using or defining the
336 /// specified register (it may be live-in).
reg_empty(Register RegNo)337 bool reg_empty(Register RegNo) const { return reg_begin(RegNo) == reg_end(); }
338
339 /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
340 /// of the specified register, skipping those marked as Debug.
341 using reg_nodbg_iterator =
342 defusechain_iterator<true, true, true, true, false, false>;
reg_nodbg_begin(Register RegNo)343 reg_nodbg_iterator reg_nodbg_begin(Register RegNo) const {
344 return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
345 }
reg_nodbg_end()346 static reg_nodbg_iterator reg_nodbg_end() {
347 return reg_nodbg_iterator(nullptr);
348 }
349
350 inline iterator_range<reg_nodbg_iterator>
reg_nodbg_operands(Register Reg)351 reg_nodbg_operands(Register Reg) const {
352 return make_range(reg_nodbg_begin(Reg), reg_nodbg_end());
353 }
354
355 /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk
356 /// all defs and uses of the specified register, stepping by MachineInstr,
357 /// skipping those marked as Debug.
358 using reg_instr_nodbg_iterator =
359 defusechain_instr_iterator<true, true, true, false, true, false>;
reg_instr_nodbg_begin(Register RegNo)360 reg_instr_nodbg_iterator reg_instr_nodbg_begin(Register RegNo) const {
361 return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
362 }
reg_instr_nodbg_end()363 static reg_instr_nodbg_iterator reg_instr_nodbg_end() {
364 return reg_instr_nodbg_iterator(nullptr);
365 }
366
367 inline iterator_range<reg_instr_nodbg_iterator>
reg_nodbg_instructions(Register Reg)368 reg_nodbg_instructions(Register Reg) const {
369 return make_range(reg_instr_nodbg_begin(Reg), reg_instr_nodbg_end());
370 }
371
372 /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk
373 /// all defs and uses of the specified register, stepping by bundle,
374 /// skipping those marked as Debug.
375 using reg_bundle_nodbg_iterator =
376 defusechain_instr_iterator<true, true, true, false, false, true>;
reg_bundle_nodbg_begin(Register RegNo)377 reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(Register RegNo) const {
378 return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
379 }
reg_bundle_nodbg_end()380 static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() {
381 return reg_bundle_nodbg_iterator(nullptr);
382 }
383
384 inline iterator_range<reg_bundle_nodbg_iterator>
reg_nodbg_bundles(Register Reg)385 reg_nodbg_bundles(Register Reg) const {
386 return make_range(reg_bundle_nodbg_begin(Reg), reg_bundle_nodbg_end());
387 }
388
389 /// reg_nodbg_empty - Return true if the only instructions using or defining
390 /// Reg are Debug instructions.
reg_nodbg_empty(Register RegNo)391 bool reg_nodbg_empty(Register RegNo) const {
392 return reg_nodbg_begin(RegNo) == reg_nodbg_end();
393 }
394
395 /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
396 using def_iterator =
397 defusechain_iterator<false, true, false, true, false, false>;
def_begin(Register RegNo)398 def_iterator def_begin(Register RegNo) const {
399 return def_iterator(getRegUseDefListHead(RegNo));
400 }
def_end()401 static def_iterator def_end() { return def_iterator(nullptr); }
402
def_operands(Register Reg)403 inline iterator_range<def_iterator> def_operands(Register Reg) const {
404 return make_range(def_begin(Reg), def_end());
405 }
406
407 /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the
408 /// specified register, stepping by MachineInst.
409 using def_instr_iterator =
410 defusechain_instr_iterator<false, true, false, false, true, false>;
def_instr_begin(Register RegNo)411 def_instr_iterator def_instr_begin(Register RegNo) const {
412 return def_instr_iterator(getRegUseDefListHead(RegNo));
413 }
def_instr_end()414 static def_instr_iterator def_instr_end() {
415 return def_instr_iterator(nullptr);
416 }
417
418 inline iterator_range<def_instr_iterator>
def_instructions(Register Reg)419 def_instructions(Register Reg) const {
420 return make_range(def_instr_begin(Reg), def_instr_end());
421 }
422
423 /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the
424 /// specified register, stepping by bundle.
425 using def_bundle_iterator =
426 defusechain_instr_iterator<false, true, false, false, false, true>;
def_bundle_begin(Register RegNo)427 def_bundle_iterator def_bundle_begin(Register RegNo) const {
428 return def_bundle_iterator(getRegUseDefListHead(RegNo));
429 }
def_bundle_end()430 static def_bundle_iterator def_bundle_end() {
431 return def_bundle_iterator(nullptr);
432 }
433
def_bundles(Register Reg)434 inline iterator_range<def_bundle_iterator> def_bundles(Register Reg) const {
435 return make_range(def_bundle_begin(Reg), def_bundle_end());
436 }
437
438 /// def_empty - Return true if there are no instructions defining the
439 /// specified register (it may be live-in).
def_empty(Register RegNo)440 bool def_empty(Register RegNo) const { return def_begin(RegNo) == def_end(); }
441
getVRegName(Register Reg)442 StringRef getVRegName(Register Reg) const {
443 return VReg2Name.inBounds(Reg) ? StringRef(VReg2Name[Reg]) : "";
444 }
445
insertVRegByName(StringRef Name,Register Reg)446 void insertVRegByName(StringRef Name, Register Reg) {
447 assert((Name.empty() || !VRegNames.contains(Name)) &&
448 "Named VRegs Must be Unique.");
449 if (!Name.empty()) {
450 VRegNames.insert(Name);
451 VReg2Name.grow(Reg);
452 VReg2Name[Reg] = Name.str();
453 }
454 }
455
456 /// Return true if there is exactly one operand defining the specified
457 /// register.
hasOneDef(Register RegNo)458 bool hasOneDef(Register RegNo) const {
459 return hasSingleElement(def_operands(RegNo));
460 }
461
462 /// Returns the defining operand if there is exactly one operand defining the
463 /// specified register, otherwise nullptr.
getOneDef(Register Reg)464 MachineOperand *getOneDef(Register Reg) const {
465 def_iterator DI = def_begin(Reg);
466 if (DI == def_end()) // No defs.
467 return nullptr;
468
469 def_iterator OneDef = DI;
470 if (++DI == def_end())
471 return &*OneDef;
472 return nullptr; // Multiple defs.
473 }
474
475 /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
476 using use_iterator =
477 defusechain_iterator<true, false, false, true, false, false>;
use_begin(Register RegNo)478 use_iterator use_begin(Register RegNo) const {
479 return use_iterator(getRegUseDefListHead(RegNo));
480 }
use_end()481 static use_iterator use_end() { return use_iterator(nullptr); }
482
use_operands(Register Reg)483 inline iterator_range<use_iterator> use_operands(Register Reg) const {
484 return make_range(use_begin(Reg), use_end());
485 }
486
487 /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the
488 /// specified register, stepping by MachineInstr.
489 using use_instr_iterator =
490 defusechain_instr_iterator<true, false, false, false, true, false>;
use_instr_begin(Register RegNo)491 use_instr_iterator use_instr_begin(Register RegNo) const {
492 return use_instr_iterator(getRegUseDefListHead(RegNo));
493 }
use_instr_end()494 static use_instr_iterator use_instr_end() {
495 return use_instr_iterator(nullptr);
496 }
497
498 inline iterator_range<use_instr_iterator>
use_instructions(Register Reg)499 use_instructions(Register Reg) const {
500 return make_range(use_instr_begin(Reg), use_instr_end());
501 }
502
503 /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the
504 /// specified register, stepping by bundle.
505 using use_bundle_iterator =
506 defusechain_instr_iterator<true, false, false, false, false, true>;
use_bundle_begin(Register RegNo)507 use_bundle_iterator use_bundle_begin(Register RegNo) const {
508 return use_bundle_iterator(getRegUseDefListHead(RegNo));
509 }
use_bundle_end()510 static use_bundle_iterator use_bundle_end() {
511 return use_bundle_iterator(nullptr);
512 }
513
use_bundles(Register Reg)514 inline iterator_range<use_bundle_iterator> use_bundles(Register Reg) const {
515 return make_range(use_bundle_begin(Reg), use_bundle_end());
516 }
517
518 /// use_empty - Return true if there are no instructions using the specified
519 /// register.
use_empty(Register RegNo)520 bool use_empty(Register RegNo) const { return use_begin(RegNo) == use_end(); }
521
522 /// hasOneUse - Return true if there is exactly one instruction using the
523 /// specified register.
hasOneUse(Register RegNo)524 bool hasOneUse(Register RegNo) const {
525 return hasSingleElement(use_operands(RegNo));
526 }
527
528 /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
529 /// specified register, skipping those marked as Debug.
530 using use_nodbg_iterator =
531 defusechain_iterator<true, false, true, true, false, false>;
use_nodbg_begin(Register RegNo)532 use_nodbg_iterator use_nodbg_begin(Register RegNo) const {
533 return use_nodbg_iterator(getRegUseDefListHead(RegNo));
534 }
use_nodbg_end()535 static use_nodbg_iterator use_nodbg_end() {
536 return use_nodbg_iterator(nullptr);
537 }
538
539 inline iterator_range<use_nodbg_iterator>
use_nodbg_operands(Register Reg)540 use_nodbg_operands(Register Reg) const {
541 return make_range(use_nodbg_begin(Reg), use_nodbg_end());
542 }
543
544 /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk
545 /// all uses of the specified register, stepping by MachineInstr, skipping
546 /// those marked as Debug.
547 using use_instr_nodbg_iterator =
548 defusechain_instr_iterator<true, false, true, false, true, false>;
use_instr_nodbg_begin(Register RegNo)549 use_instr_nodbg_iterator use_instr_nodbg_begin(Register RegNo) const {
550 return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
551 }
use_instr_nodbg_end()552 static use_instr_nodbg_iterator use_instr_nodbg_end() {
553 return use_instr_nodbg_iterator(nullptr);
554 }
555
556 inline iterator_range<use_instr_nodbg_iterator>
use_nodbg_instructions(Register Reg)557 use_nodbg_instructions(Register Reg) const {
558 return make_range(use_instr_nodbg_begin(Reg), use_instr_nodbg_end());
559 }
560
561 /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk
562 /// all uses of the specified register, stepping by bundle, skipping
563 /// those marked as Debug.
564 using use_bundle_nodbg_iterator =
565 defusechain_instr_iterator<true, false, true, false, false, true>;
use_bundle_nodbg_begin(Register RegNo)566 use_bundle_nodbg_iterator use_bundle_nodbg_begin(Register RegNo) const {
567 return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
568 }
use_bundle_nodbg_end()569 static use_bundle_nodbg_iterator use_bundle_nodbg_end() {
570 return use_bundle_nodbg_iterator(nullptr);
571 }
572
573 inline iterator_range<use_bundle_nodbg_iterator>
use_nodbg_bundles(Register Reg)574 use_nodbg_bundles(Register Reg) const {
575 return make_range(use_bundle_nodbg_begin(Reg), use_bundle_nodbg_end());
576 }
577
578 /// use_nodbg_empty - Return true if there are no non-Debug instructions
579 /// using the specified register.
use_nodbg_empty(Register RegNo)580 bool use_nodbg_empty(Register RegNo) const {
581 return use_nodbg_begin(RegNo) == use_nodbg_end();
582 }
583
584 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
585 /// use of the specified register.
586 bool hasOneNonDBGUse(Register RegNo) const;
587
588 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
589 /// instruction using the specified register. Said instruction may have
590 /// multiple uses.
591 bool hasOneNonDBGUser(Register RegNo) const;
592
593
594 /// hasAtMostUses - Return true if the given register has at most \p MaxUsers
595 /// non-debug user instructions.
596 bool hasAtMostUserInstrs(Register Reg, unsigned MaxUsers) const;
597
598 /// replaceRegWith - Replace all instances of FromReg with ToReg in the
599 /// machine function. This is like llvm-level X->replaceAllUsesWith(Y),
600 /// except that it also changes any definitions of the register as well.
601 ///
602 /// Note that it is usually necessary to first constrain ToReg's register
603 /// class and register bank to match the FromReg constraints using one of the
604 /// methods:
605 ///
606 /// constrainRegClass(ToReg, getRegClass(FromReg))
607 /// constrainRegAttrs(ToReg, FromReg)
608 /// RegisterBankInfo::constrainGenericRegister(ToReg,
609 /// *MRI.getRegClass(FromReg), MRI)
610 ///
611 /// These functions will return a falsy result if the virtual registers have
612 /// incompatible constraints.
613 ///
614 /// Note that if ToReg is a physical register the function will replace and
615 /// apply sub registers to ToReg in order to obtain a final/proper physical
616 /// register.
617 void replaceRegWith(Register FromReg, Register ToReg);
618
619 /// getVRegDef - Return the machine instr that defines the specified virtual
620 /// register or null if none is found. This assumes that the code is in SSA
621 /// form, so there should only be one definition.
622 MachineInstr *getVRegDef(Register Reg) const;
623
624 /// getUniqueVRegDef - Return the unique machine instr that defines the
625 /// specified virtual register or null if none is found. If there are
626 /// multiple definitions or no definition, return null.
627 MachineInstr *getUniqueVRegDef(Register Reg) const;
628
629 /// clearKillFlags - Iterate over all the uses of the given register and
630 /// clear the kill flag from the MachineOperand. This function is used by
631 /// optimization passes which extend register lifetimes and need only
632 /// preserve conservative kill flag information.
633 void clearKillFlags(Register Reg) const;
634
635 void dumpUses(Register RegNo) const;
636
637 /// Returns true if PhysReg is unallocatable and constant throughout the
638 /// function. Writing to a constant register has no effect.
639 bool isConstantPhysReg(MCRegister PhysReg) const;
640
641 /// Get an iterator over the pressure sets affected by the given physical or
642 /// virtual register. If RegUnit is physical, it must be a register unit (from
643 /// MCRegUnitIterator).
644 PSetIterator getPressureSets(Register RegUnit) const;
645
646 //===--------------------------------------------------------------------===//
647 // Virtual Register Info
648 //===--------------------------------------------------------------------===//
649
650 /// Return the register class of the specified virtual register.
651 /// This shouldn't be used directly unless \p Reg has a register class.
652 /// \see getRegClassOrNull when this might happen.
getRegClass(Register Reg)653 const TargetRegisterClass *getRegClass(Register Reg) const {
654 assert(isa<const TargetRegisterClass *>(VRegInfo[Reg.id()].first) &&
655 "Register class not set, wrong accessor");
656 return cast<const TargetRegisterClass *>(VRegInfo[Reg.id()].first);
657 }
658
659 /// Return the register class of \p Reg, or null if Reg has not been assigned
660 /// a register class yet.
661 ///
662 /// \note A null register class can only happen when these two
663 /// conditions are met:
664 /// 1. Generic virtual registers are created.
665 /// 2. The machine function has not completely been through the
666 /// instruction selection process.
667 /// None of this condition is possible without GlobalISel for now.
668 /// In other words, if GlobalISel is not used or if the query happens after
669 /// the select pass, using getRegClass is safe.
getRegClassOrNull(Register Reg)670 const TargetRegisterClass *getRegClassOrNull(Register Reg) const {
671 const RegClassOrRegBank &Val = VRegInfo[Reg].first;
672 return dyn_cast_if_present<const TargetRegisterClass *>(Val);
673 }
674
675 /// Return the register bank of \p Reg, or null if Reg has not been assigned
676 /// a register bank or has been assigned a register class.
677 /// \note It is possible to get the register bank from the register class via
678 /// RegisterBankInfo::getRegBankFromRegClass.
getRegBankOrNull(Register Reg)679 const RegisterBank *getRegBankOrNull(Register Reg) const {
680 const RegClassOrRegBank &Val = VRegInfo[Reg].first;
681 return dyn_cast_if_present<const RegisterBank *>(Val);
682 }
683
684 /// Return the register bank or register class of \p Reg.
685 /// \note Before the register bank gets assigned (i.e., before the
686 /// RegBankSelect pass) \p Reg may not have either.
getRegClassOrRegBank(Register Reg)687 const RegClassOrRegBank &getRegClassOrRegBank(Register Reg) const {
688 return VRegInfo[Reg].first;
689 }
690
691 /// setRegClass - Set the register class of the specified virtual register.
692 void setRegClass(Register Reg, const TargetRegisterClass *RC);
693
694 /// Set the register bank to \p RegBank for \p Reg.
695 void setRegBank(Register Reg, const RegisterBank &RegBank);
696
setRegClassOrRegBank(Register Reg,const RegClassOrRegBank & RCOrRB)697 void setRegClassOrRegBank(Register Reg,
698 const RegClassOrRegBank &RCOrRB){
699 VRegInfo[Reg].first = RCOrRB;
700 }
701
702 /// constrainRegClass - Constrain the register class of the specified virtual
703 /// register to be a common subclass of RC and the current register class,
704 /// but only if the new class has at least MinNumRegs registers. Return the
705 /// new register class, or NULL if no such class exists.
706 /// This should only be used when the constraint is known to be trivial, like
707 /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
708 ///
709 /// \note Assumes that the register has a register class assigned.
710 /// Use RegisterBankInfo::constrainGenericRegister in GlobalISel's
711 /// InstructionSelect pass and constrainRegAttrs in every other pass,
712 /// including non-select passes of GlobalISel, instead.
713 const TargetRegisterClass *constrainRegClass(Register Reg,
714 const TargetRegisterClass *RC,
715 unsigned MinNumRegs = 0);
716
717 /// Constrain the register class or the register bank of the virtual register
718 /// \p Reg (and low-level type) to be a common subclass or a common bank of
719 /// both registers provided respectively (and a common low-level type). Do
720 /// nothing if any of the attributes (classes, banks, or low-level types) of
721 /// the registers are deemed incompatible, or if the resulting register will
722 /// have a class smaller than before and of size less than \p MinNumRegs.
723 /// Return true if such register attributes exist, false otherwise.
724 ///
725 /// \note Use this method instead of constrainRegClass and
726 /// RegisterBankInfo::constrainGenericRegister everywhere but SelectionDAG
727 /// ISel / FastISel and GlobalISel's InstructionSelect pass respectively.
728 bool constrainRegAttrs(Register Reg, Register ConstrainingReg,
729 unsigned MinNumRegs = 0);
730
731 /// recomputeRegClass - Try to find a legal super-class of Reg's register
732 /// class that still satisfies the constraints from the instructions using
733 /// Reg. Returns true if Reg was upgraded.
734 ///
735 /// This method can be used after constraints have been removed from a
736 /// virtual register, for example after removing instructions or splitting
737 /// the live range.
738 bool recomputeRegClass(Register Reg);
739
740 /// createVirtualRegister - Create and return a new virtual register in the
741 /// function with the specified register class.
742 Register createVirtualRegister(const TargetRegisterClass *RegClass,
743 StringRef Name = "");
744
745 /// All attributes(register class or bank and low-level type) a virtual
746 /// register can have.
747 struct VRegAttrs {
748 RegClassOrRegBank RCOrRB;
749 LLT Ty;
750 };
751
752 /// Returns register class or bank and low level type of \p Reg. Always safe
753 /// to use. Special values are returned when \p Reg does not have some of the
754 /// attributes.
getVRegAttrs(Register Reg)755 VRegAttrs getVRegAttrs(Register Reg) {
756 return {getRegClassOrRegBank(Reg), getType(Reg)};
757 }
758
759 /// Create and return a new virtual register in the function with the
760 /// specified register attributes(register class or bank and low level type).
761 Register createVirtualRegister(VRegAttrs RegAttr, StringRef Name = "");
762
763 /// Create and return a new virtual register in the function with the same
764 /// attributes as the given register.
765 Register cloneVirtualRegister(Register VReg, StringRef Name = "");
766
767 /// Get the low-level type of \p Reg or LLT{} if Reg is not a generic
768 /// (target independent) virtual register.
getType(Register Reg)769 LLT getType(Register Reg) const {
770 if (Reg.isVirtual() && VRegToType.inBounds(Reg))
771 return VRegToType[Reg];
772 return LLT{};
773 }
774
775 /// Set the low-level type of \p VReg to \p Ty.
776 void setType(Register VReg, LLT Ty);
777
778 /// Create and return a new generic virtual register with low-level
779 /// type \p Ty.
780 Register createGenericVirtualRegister(LLT Ty, StringRef Name = "");
781
782 /// Remove all types associated to virtual registers (after instruction
783 /// selection and constraining of all generic virtual registers).
784 void clearVirtRegTypes();
785
786 /// Creates a new virtual register that has no register class, register bank
787 /// or size assigned yet. This is only allowed to be used
788 /// temporarily while constructing machine instructions. Most operations are
789 /// undefined on an incomplete register until one of setRegClass(),
790 /// setRegBank() or setSize() has been called on it.
791 Register createIncompleteVirtualRegister(StringRef Name = "");
792
793 /// getNumVirtRegs - Return the number of virtual registers created.
getNumVirtRegs()794 unsigned getNumVirtRegs() const { return VRegInfo.size(); }
795
796 /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
797 void clearVirtRegs();
798
799 /// setRegAllocationHint - Specify a register allocation hint for the
800 /// specified virtual register. This is typically used by target, and in case
801 /// of an earlier hint it will be overwritten.
setRegAllocationHint(Register VReg,unsigned Type,Register PrefReg)802 void setRegAllocationHint(Register VReg, unsigned Type, Register PrefReg) {
803 assert(VReg.isVirtual());
804 RegAllocHints[VReg].first = Type;
805 RegAllocHints[VReg].second.clear();
806 RegAllocHints[VReg].second.push_back(PrefReg);
807 }
808
809 /// addRegAllocationHint - Add a register allocation hint to the hints
810 /// vector for VReg.
addRegAllocationHint(Register VReg,Register PrefReg)811 void addRegAllocationHint(Register VReg, Register PrefReg) {
812 assert(VReg.isVirtual());
813 RegAllocHints[VReg].second.push_back(PrefReg);
814 }
815
816 /// Specify the preferred (target independent) register allocation hint for
817 /// the specified virtual register.
setSimpleHint(Register VReg,Register PrefReg)818 void setSimpleHint(Register VReg, Register PrefReg) {
819 setRegAllocationHint(VReg, /*Type=*/0, PrefReg);
820 }
821
clearSimpleHint(Register VReg)822 void clearSimpleHint(Register VReg) {
823 assert (!RegAllocHints[VReg].first &&
824 "Expected to clear a non-target hint!");
825 RegAllocHints[VReg].second.clear();
826 }
827
828 /// getRegAllocationHint - Return the register allocation hint for the
829 /// specified virtual register. If there are many hints, this returns the
830 /// one with the greatest weight.
getRegAllocationHint(Register VReg)831 std::pair<unsigned, Register> getRegAllocationHint(Register VReg) const {
832 assert(VReg.isVirtual());
833 Register BestHint = (RegAllocHints[VReg.id()].second.size() ?
834 RegAllocHints[VReg.id()].second[0] : Register());
835 return {RegAllocHints[VReg.id()].first, BestHint};
836 }
837
838 /// getSimpleHint - same as getRegAllocationHint except it will only return
839 /// a target independent hint.
getSimpleHint(Register VReg)840 Register getSimpleHint(Register VReg) const {
841 assert(VReg.isVirtual());
842 std::pair<unsigned, Register> Hint = getRegAllocationHint(VReg);
843 return Hint.first ? Register() : Hint.second;
844 }
845
846 /// getRegAllocationHints - Return a reference to the vector of all
847 /// register allocation hints for VReg.
848 const std::pair<unsigned, SmallVector<Register, 4>> &
getRegAllocationHints(Register VReg)849 getRegAllocationHints(Register VReg) const {
850 assert(VReg.isVirtual());
851 return RegAllocHints[VReg];
852 }
853
854 /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
855 /// specified register as undefined which causes the DBG_VALUE to be
856 /// deleted during LiveDebugVariables analysis.
857 void markUsesInDebugValueAsUndef(Register Reg) const;
858
859 /// updateDbgUsersToReg - Update a collection of debug instructions
860 /// to refer to the designated register.
updateDbgUsersToReg(MCRegister OldReg,MCRegister NewReg,ArrayRef<MachineInstr * > Users)861 void updateDbgUsersToReg(MCRegister OldReg, MCRegister NewReg,
862 ArrayRef<MachineInstr *> Users) const {
863 // If this operand is a register, check whether it overlaps with OldReg.
864 // If it does, replace with NewReg.
865 auto UpdateOp = [this, &NewReg, &OldReg](MachineOperand &Op) {
866 if (Op.isReg() &&
867 getTargetRegisterInfo()->regsOverlap(Op.getReg(), OldReg))
868 Op.setReg(NewReg);
869 };
870
871 // Iterate through (possibly several) operands to DBG_VALUEs and update
872 // each. For DBG_PHIs, only one operand will be present.
873 for (MachineInstr *MI : Users) {
874 if (MI->isDebugValue()) {
875 for (auto &Op : MI->debug_operands())
876 UpdateOp(Op);
877 assert(MI->hasDebugOperandForReg(NewReg) &&
878 "Expected debug value to have some overlap with OldReg");
879 } else if (MI->isDebugPHI()) {
880 UpdateOp(MI->getOperand(0));
881 } else {
882 llvm_unreachable("Non-DBG_VALUE, Non-DBG_PHI debug instr updated");
883 }
884 }
885 }
886
887 /// Return true if the specified register is modified in this function.
888 /// This checks that no defining machine operands exist for the register or
889 /// any of its aliases. Definitions found on functions marked noreturn are
890 /// ignored, to consider them pass 'true' for optional parameter
891 /// SkipNoReturnDef. The register is also considered modified when it is set
892 /// in the UsedPhysRegMask.
893 bool isPhysRegModified(MCRegister PhysReg, bool SkipNoReturnDef = false) const;
894
895 /// Return true if the specified register is modified or read in this
896 /// function. This checks that no machine operands exist for the register or
897 /// any of its aliases. If SkipRegMaskTest is false, the register is
898 /// considered used when it is set in the UsedPhysRegMask.
899 bool isPhysRegUsed(MCRegister PhysReg, bool SkipRegMaskTest = false) const;
900
901 /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
902 /// This corresponds to the bit mask attached to register mask operands.
addPhysRegsUsedFromRegMask(const uint32_t * RegMask)903 void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
904 UsedPhysRegMask.setBitsNotInMask(RegMask);
905 }
906
getUsedPhysRegsMask()907 const BitVector &getUsedPhysRegsMask() const { return UsedPhysRegMask; }
908
909 //===--------------------------------------------------------------------===//
910 // Reserved Register Info
911 //===--------------------------------------------------------------------===//
912 //
913 // The set of reserved registers must be invariant during register
914 // allocation. For example, the target cannot suddenly decide it needs a
915 // frame pointer when the register allocator has already used the frame
916 // pointer register for something else.
917 //
918 // These methods can be used by target hooks like hasFP() to avoid changing
919 // the reserved register set during register allocation.
920
921 /// freezeReservedRegs - Called by the register allocator to freeze the set
922 /// of reserved registers before allocation begins.
923 void freezeReservedRegs();
924
925 /// reserveReg -- Mark a register as reserved so checks like isAllocatable
926 /// will not suggest using it. This should not be used during the middle
927 /// of a function walk, or when liveness info is available.
reserveReg(MCRegister PhysReg,const TargetRegisterInfo * TRI)928 void reserveReg(MCRegister PhysReg, const TargetRegisterInfo *TRI) {
929 assert(reservedRegsFrozen() &&
930 "Reserved registers haven't been frozen yet. ");
931 MCRegAliasIterator R(PhysReg, TRI, true);
932
933 for (; R.isValid(); ++R)
934 ReservedRegs.set(*R);
935 }
936
937 /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
938 /// to ensure the set of reserved registers stays constant.
reservedRegsFrozen()939 bool reservedRegsFrozen() const {
940 return !ReservedRegs.empty();
941 }
942
943 /// canReserveReg - Returns true if PhysReg can be used as a reserved
944 /// register. Any register can be reserved before freezeReservedRegs() is
945 /// called.
canReserveReg(MCRegister PhysReg)946 bool canReserveReg(MCRegister PhysReg) const {
947 return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
948 }
949
950 /// getReservedRegs - Returns a reference to the frozen set of reserved
951 /// registers. This method should always be preferred to calling
952 /// TRI::getReservedRegs() when possible.
getReservedRegs()953 const BitVector &getReservedRegs() const {
954 assert(reservedRegsFrozen() &&
955 "Reserved registers haven't been frozen yet. "
956 "Use TRI::getReservedRegs().");
957 return ReservedRegs;
958 }
959
960 /// isReserved - Returns true when PhysReg is a reserved register.
961 ///
962 /// Reserved registers may belong to an allocatable register class, but the
963 /// target has explicitly requested that they are not used.
isReserved(MCRegister PhysReg)964 bool isReserved(MCRegister PhysReg) const {
965 return getReservedRegs().test(PhysReg.id());
966 }
967
968 /// Returns true when the given register unit is considered reserved.
969 ///
970 /// Register units are considered reserved when for at least one of their
971 /// root registers, the root register and all super registers are reserved.
972 /// This currently iterates the register hierarchy and may be slower than
973 /// expected.
974 bool isReservedRegUnit(unsigned Unit) const;
975
976 /// isAllocatable - Returns true when PhysReg belongs to an allocatable
977 /// register class and it hasn't been reserved.
978 ///
979 /// Allocatable registers may show up in the allocation order of some virtual
980 /// register, so a register allocator needs to track its liveness and
981 /// availability.
isAllocatable(MCRegister PhysReg)982 bool isAllocatable(MCRegister PhysReg) const {
983 return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
984 !isReserved(PhysReg);
985 }
986
987 //===--------------------------------------------------------------------===//
988 // LiveIn Management
989 //===--------------------------------------------------------------------===//
990
991 /// addLiveIn - Add the specified register as a live-in. Note that it
992 /// is an error to add the same register to the same set more than once.
993 void addLiveIn(MCRegister Reg, Register vreg = Register()) {
994 LiveIns.push_back(std::make_pair(Reg, vreg));
995 }
996
997 // Iteration support for the live-ins set. It's kept in sorted order
998 // by register number.
999 using livein_iterator =
1000 std::vector<std::pair<MCRegister,Register>>::const_iterator;
livein_begin()1001 livein_iterator livein_begin() const { return LiveIns.begin(); }
livein_end()1002 livein_iterator livein_end() const { return LiveIns.end(); }
livein_empty()1003 bool livein_empty() const { return LiveIns.empty(); }
1004
liveins()1005 ArrayRef<std::pair<MCRegister, Register>> liveins() const {
1006 return LiveIns;
1007 }
1008
1009 bool isLiveIn(Register Reg) const;
1010
1011 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
1012 /// corresponding live-in physical register.
1013 MCRegister getLiveInPhysReg(Register VReg) const;
1014
1015 /// getLiveInVirtReg - If PReg is a live-in physical register, return the
1016 /// corresponding live-in virtual register.
1017 Register getLiveInVirtReg(MCRegister PReg) const;
1018
1019 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
1020 /// into the given entry block.
1021 void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
1022 const TargetRegisterInfo &TRI,
1023 const TargetInstrInfo &TII);
1024
1025 /// Returns a mask covering all bits that can appear in lane masks of
1026 /// subregisters of the virtual register @p Reg.
1027 LaneBitmask getMaxLaneMaskForVReg(Register Reg) const;
1028
1029 /// defusechain_iterator - This class provides iterator support for machine
1030 /// operands in the function that use or define a specific register. If
1031 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
1032 /// returns defs. If neither are true then you are silly and it always
1033 /// returns end(). If SkipDebug is true it skips uses marked Debug
1034 /// when incrementing.
1035 template <bool ReturnUses, bool ReturnDefs, bool SkipDebug, bool ByOperand,
1036 bool ByInstr, bool ByBundle>
1037 class defusechain_iterator {
1038 friend class MachineRegisterInfo;
1039
1040 public:
1041 using iterator_category = std::forward_iterator_tag;
1042 using value_type = MachineOperand;
1043 using difference_type = std::ptrdiff_t;
1044 using pointer = value_type *;
1045 using reference = value_type &;
1046
1047 private:
1048 MachineOperand *Op = nullptr;
1049
defusechain_iterator(MachineOperand * op)1050 explicit defusechain_iterator(MachineOperand *op) : Op(op) {
1051 // If the first node isn't one we're interested in, advance to one that
1052 // we are interested in.
1053 if (op) {
1054 if ((!ReturnUses && op->isUse()) ||
1055 (!ReturnDefs && op->isDef()) ||
1056 (SkipDebug && op->isDebug()))
1057 advance();
1058 }
1059 }
1060
advance()1061 void advance() {
1062 assert(Op && "Cannot increment end iterator!");
1063 Op = getNextOperandForReg(Op);
1064
1065 // All defs come before the uses, so stop def_iterator early.
1066 if (!ReturnUses) {
1067 if (Op) {
1068 if (Op->isUse())
1069 Op = nullptr;
1070 else
1071 assert(!Op->isDebug() && "Can't have debug defs");
1072 }
1073 } else {
1074 // If this is an operand we don't care about, skip it.
1075 while (Op && ((!ReturnDefs && Op->isDef()) ||
1076 (SkipDebug && Op->isDebug())))
1077 Op = getNextOperandForReg(Op);
1078 }
1079 }
1080
1081 public:
1082 defusechain_iterator() = default;
1083
1084 bool operator==(const defusechain_iterator &x) const {
1085 return Op == x.Op;
1086 }
1087 bool operator!=(const defusechain_iterator &x) const {
1088 return !operator==(x);
1089 }
1090
1091 /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()1092 bool atEnd() const { return Op == nullptr; }
1093
1094 // Iterator traversal: forward iteration only
1095 defusechain_iterator &operator++() { // Preincrement
1096 assert(Op && "Cannot increment end iterator!");
1097 if (ByOperand)
1098 advance();
1099 else if (ByInstr) {
1100 MachineInstr *P = Op->getParent();
1101 do {
1102 advance();
1103 } while (Op && Op->getParent() == P);
1104 } else if (ByBundle) {
1105 MachineBasicBlock::instr_iterator P =
1106 getBundleStart(Op->getParent()->getIterator());
1107 do {
1108 advance();
1109 } while (Op && getBundleStart(Op->getParent()->getIterator()) == P);
1110 }
1111
1112 return *this;
1113 }
1114 defusechain_iterator operator++(int) { // Postincrement
1115 defusechain_iterator tmp = *this; ++*this; return tmp;
1116 }
1117
1118 /// getOperandNo - Return the operand # of this MachineOperand in its
1119 /// MachineInstr.
getOperandNo()1120 unsigned getOperandNo() const {
1121 assert(Op && "Cannot dereference end iterator!");
1122 return Op - &Op->getParent()->getOperand(0);
1123 }
1124
1125 // Retrieve a reference to the current operand.
1126 MachineOperand &operator*() const {
1127 assert(Op && "Cannot dereference end iterator!");
1128 return *Op;
1129 }
1130
1131 MachineOperand *operator->() const {
1132 assert(Op && "Cannot dereference end iterator!");
1133 return Op;
1134 }
1135 };
1136
1137 /// defusechain_iterator - This class provides iterator support for machine
1138 /// operands in the function that use or define a specific register. If
1139 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
1140 /// returns defs. If neither are true then you are silly and it always
1141 /// returns end(). If SkipDebug is true it skips uses marked Debug
1142 /// when incrementing.
1143 template <bool ReturnUses, bool ReturnDefs, bool SkipDebug, bool ByOperand,
1144 bool ByInstr, bool ByBundle>
1145 class defusechain_instr_iterator {
1146 friend class MachineRegisterInfo;
1147
1148 public:
1149 using iterator_category = std::forward_iterator_tag;
1150 using value_type = MachineInstr;
1151 using difference_type = std::ptrdiff_t;
1152 using pointer = value_type *;
1153 using reference = value_type &;
1154
1155 private:
1156 MachineOperand *Op = nullptr;
1157
defusechain_instr_iterator(MachineOperand * op)1158 explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) {
1159 // If the first node isn't one we're interested in, advance to one that
1160 // we are interested in.
1161 if (op) {
1162 if ((!ReturnUses && op->isUse()) ||
1163 (!ReturnDefs && op->isDef()) ||
1164 (SkipDebug && op->isDebug()))
1165 advance();
1166 }
1167 }
1168
advance()1169 void advance() {
1170 assert(Op && "Cannot increment end iterator!");
1171 Op = getNextOperandForReg(Op);
1172
1173 // All defs come before the uses, so stop def_iterator early.
1174 if (!ReturnUses) {
1175 if (Op) {
1176 if (Op->isUse())
1177 Op = nullptr;
1178 else
1179 assert(!Op->isDebug() && "Can't have debug defs");
1180 }
1181 } else {
1182 // If this is an operand we don't care about, skip it.
1183 while (Op && ((!ReturnDefs && Op->isDef()) ||
1184 (SkipDebug && Op->isDebug())))
1185 Op = getNextOperandForReg(Op);
1186 }
1187 }
1188
1189 public:
1190 defusechain_instr_iterator() = default;
1191
1192 bool operator==(const defusechain_instr_iterator &x) const {
1193 return Op == x.Op;
1194 }
1195 bool operator!=(const defusechain_instr_iterator &x) const {
1196 return !operator==(x);
1197 }
1198
1199 /// atEnd - return true if this iterator is equal to reg_end() on the value.
atEnd()1200 bool atEnd() const { return Op == nullptr; }
1201
1202 // Iterator traversal: forward iteration only
1203 defusechain_instr_iterator &operator++() { // Preincrement
1204 assert(Op && "Cannot increment end iterator!");
1205 if (ByOperand)
1206 advance();
1207 else if (ByInstr) {
1208 MachineInstr *P = Op->getParent();
1209 do {
1210 advance();
1211 } while (Op && Op->getParent() == P);
1212 } else if (ByBundle) {
1213 MachineBasicBlock::instr_iterator P =
1214 getBundleStart(Op->getParent()->getIterator());
1215 do {
1216 advance();
1217 } while (Op && getBundleStart(Op->getParent()->getIterator()) == P);
1218 }
1219
1220 return *this;
1221 }
1222 defusechain_instr_iterator operator++(int) { // Postincrement
1223 defusechain_instr_iterator tmp = *this; ++*this; return tmp;
1224 }
1225
1226 // Retrieve a reference to the current operand.
1227 MachineInstr &operator*() const {
1228 assert(Op && "Cannot dereference end iterator!");
1229 if (ByBundle)
1230 return *getBundleStart(Op->getParent()->getIterator());
1231 return *Op->getParent();
1232 }
1233
1234 MachineInstr *operator->() const { return &operator*(); }
1235 };
1236 };
1237
1238 /// Iterate over the pressure sets affected by the given physical or virtual
1239 /// register. If Reg is physical, it must be a register unit (from
1240 /// MCRegUnitIterator).
1241 class PSetIterator {
1242 const int *PSet = nullptr;
1243 unsigned Weight = 0;
1244
1245 public:
1246 PSetIterator() = default;
1247
PSetIterator(Register RegUnit,const MachineRegisterInfo * MRI)1248 PSetIterator(Register RegUnit, const MachineRegisterInfo *MRI) {
1249 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
1250 if (RegUnit.isVirtual()) {
1251 const TargetRegisterClass *RC = MRI->getRegClass(RegUnit);
1252 PSet = TRI->getRegClassPressureSets(RC);
1253 Weight = TRI->getRegClassWeight(RC).RegWeight;
1254 } else {
1255 PSet = TRI->getRegUnitPressureSets(RegUnit);
1256 Weight = TRI->getRegUnitWeight(RegUnit);
1257 }
1258 if (*PSet == -1)
1259 PSet = nullptr;
1260 }
1261
isValid()1262 bool isValid() const { return PSet; }
1263
getWeight()1264 unsigned getWeight() const { return Weight; }
1265
1266 unsigned operator*() const { return *PSet; }
1267
1268 void operator++() {
1269 assert(isValid() && "Invalid PSetIterator.");
1270 ++PSet;
1271 if (*PSet == -1)
1272 PSet = nullptr;
1273 }
1274 };
1275
1276 inline PSetIterator
getPressureSets(Register RegUnit)1277 MachineRegisterInfo::getPressureSets(Register RegUnit) const {
1278 return PSetIterator(RegUnit, this);
1279 }
1280
1281 } // end namespace llvm
1282
1283 #endif // LLVM_CODEGEN_MACHINEREGISTERINFO_H
1284