1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
26 /* All Rights Reserved */
27
28 /*
29 * Portions of this source code were derived from Berkeley 4.3 BSD
30 * under license from the Regents of the University of California.
31 */
32
33 /*
34 * segkp is a segment driver that administers the allocation and deallocation
35 * of pageable variable size chunks of kernel virtual address space. Each
36 * allocated resource is page-aligned.
37 *
38 * The user may specify whether the resource should be initialized to 0,
39 * include a redzone, or locked in memory.
40 */
41
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/thread.h>
45 #include <sys/param.h>
46 #include <sys/errno.h>
47 #include <sys/sysmacros.h>
48 #include <sys/systm.h>
49 #include <sys/buf.h>
50 #include <sys/mman.h>
51 #include <sys/vnode.h>
52 #include <sys/cmn_err.h>
53 #include <sys/swap.h>
54 #include <sys/tuneable.h>
55 #include <sys/kmem.h>
56 #include <sys/vmem.h>
57 #include <sys/cred.h>
58 #include <sys/dumphdr.h>
59 #include <sys/debug.h>
60 #include <sys/vtrace.h>
61 #include <sys/stack.h>
62 #include <sys/atomic.h>
63 #include <sys/archsystm.h>
64 #include <sys/lgrp.h>
65
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_kp.h>
69 #include <vm/seg_kmem.h>
70 #include <vm/anon.h>
71 #include <vm/page.h>
72 #include <vm/hat.h>
73 #include <sys/bitmap.h>
74
75 /*
76 * Private seg op routines
77 */
78 static void segkp_badop(void);
79 static void segkp_dump(struct seg *seg);
80 static int segkp_checkprot(struct seg *seg, caddr_t addr, size_t len,
81 uint_t prot);
82 static int segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
83 static int segkp_pagelock(struct seg *seg, caddr_t addr, size_t len,
84 struct page ***page, enum lock_type type,
85 enum seg_rw rw);
86 static void segkp_insert(struct seg *seg, struct segkp_data *kpd);
87 static void segkp_delete(struct seg *seg, struct segkp_data *kpd);
88 static caddr_t segkp_get_internal(struct seg *seg, size_t len, uint_t flags,
89 struct segkp_data **tkpd, struct anon_map *amp);
90 static void segkp_release_internal(struct seg *seg,
91 struct segkp_data *kpd, size_t len);
92 static int segkp_unlock(struct hat *hat, struct seg *seg, caddr_t vaddr,
93 size_t len, struct segkp_data *kpd, uint_t flags);
94 static int segkp_load(struct hat *hat, struct seg *seg, caddr_t vaddr,
95 size_t len, struct segkp_data *kpd, uint_t flags);
96 static struct segkp_data *segkp_find(struct seg *seg, caddr_t vaddr);
97 static int segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp);
98 static lgrp_mem_policy_info_t *segkp_getpolicy(struct seg *seg,
99 caddr_t addr);
100 static int segkp_capable(struct seg *seg, segcapability_t capability);
101
102 /*
103 * Lock used to protect the hash table(s) and caches.
104 */
105 static kmutex_t segkp_lock;
106
107 /*
108 * The segkp caches
109 */
110 static struct segkp_cache segkp_cache[SEGKP_MAX_CACHE];
111
112 #define SEGKP_BADOP(t) (t(*)())segkp_badop
113
114 /*
115 * When there are fewer than red_minavail bytes left on the stack,
116 * segkp_map_red() will map in the redzone (if called). 5000 seems
117 * to work reasonably well...
118 */
119 long red_minavail = 5000;
120
121 /*
122 * will be set to 1 for 32 bit x86 systems only, in startup.c
123 */
124 int segkp_fromheap = 0;
125 ulong_t *segkp_bitmap;
126
127 /*
128 * If segkp_map_red() is called with the redzone already mapped and
129 * with less than RED_DEEP_THRESHOLD bytes available on the stack,
130 * then the stack situation has become quite serious; if much more stack
131 * is consumed, we have the potential of scrogging the next thread/LWP
132 * structure. To help debug the "can't happen" panics which may
133 * result from this condition, we record hrestime and the calling thread
134 * in red_deep_hires and red_deep_thread respectively.
135 */
136 #define RED_DEEP_THRESHOLD 2000
137
138 hrtime_t red_deep_hires;
139 kthread_t *red_deep_thread;
140
141 uint32_t red_nmapped;
142 uint32_t red_closest = UINT_MAX;
143 uint32_t red_ndoubles;
144
145 pgcnt_t anon_segkp_pages_locked; /* See vm/anon.h */
146 pgcnt_t anon_segkp_pages_resv; /* anon reserved by seg_kp */
147
148 static struct seg_ops segkp_ops = {
149 SEGKP_BADOP(int), /* dup */
150 SEGKP_BADOP(int), /* unmap */
151 SEGKP_BADOP(void), /* free */
152 segkp_fault,
153 SEGKP_BADOP(faultcode_t), /* faulta */
154 SEGKP_BADOP(int), /* setprot */
155 segkp_checkprot,
156 segkp_kluster,
157 SEGKP_BADOP(size_t), /* swapout */
158 SEGKP_BADOP(int), /* sync */
159 SEGKP_BADOP(size_t), /* incore */
160 SEGKP_BADOP(int), /* lockop */
161 SEGKP_BADOP(int), /* getprot */
162 SEGKP_BADOP(u_offset_t), /* getoffset */
163 SEGKP_BADOP(int), /* gettype */
164 SEGKP_BADOP(int), /* getvp */
165 SEGKP_BADOP(int), /* advise */
166 segkp_dump, /* dump */
167 segkp_pagelock, /* pagelock */
168 SEGKP_BADOP(int), /* setpgsz */
169 segkp_getmemid, /* getmemid */
170 segkp_getpolicy, /* getpolicy */
171 segkp_capable, /* capable */
172 seg_inherit_notsup /* inherit */
173 };
174
175
176 static void
segkp_badop(void)177 segkp_badop(void)
178 {
179 panic("segkp_badop");
180 /*NOTREACHED*/
181 }
182
183 static void segkpinit_mem_config(struct seg *);
184
185 static uint32_t segkp_indel;
186
187 /*
188 * Allocate the segment specific private data struct and fill it in
189 * with the per kp segment mutex, anon ptr. array and hash table.
190 */
191 int
segkp_create(struct seg * seg)192 segkp_create(struct seg *seg)
193 {
194 struct segkp_segdata *kpsd;
195 size_t np;
196
197 ASSERT(seg != NULL && seg->s_as == &kas);
198 ASSERT(RW_WRITE_HELD(&seg->s_as->a_lock));
199
200 if (seg->s_size & PAGEOFFSET) {
201 panic("Bad segkp size");
202 /*NOTREACHED*/
203 }
204
205 kpsd = kmem_zalloc(sizeof (struct segkp_segdata), KM_SLEEP);
206
207 /*
208 * Allocate the virtual memory for segkp and initialize it
209 */
210 if (segkp_fromheap) {
211 np = btop(kvseg.s_size);
212 segkp_bitmap = kmem_zalloc(BT_SIZEOFMAP(np), KM_SLEEP);
213 kpsd->kpsd_arena = vmem_create("segkp", NULL, 0, PAGESIZE,
214 vmem_alloc, vmem_free, heap_arena, 5 * PAGESIZE, VM_SLEEP);
215 } else {
216 segkp_bitmap = NULL;
217 np = btop(seg->s_size);
218 kpsd->kpsd_arena = vmem_create("segkp", seg->s_base,
219 seg->s_size, PAGESIZE, NULL, NULL, NULL, 5 * PAGESIZE,
220 VM_SLEEP);
221 }
222
223 kpsd->kpsd_anon = anon_create(np, ANON_SLEEP | ANON_ALLOC_FORCE);
224
225 kpsd->kpsd_hash = kmem_zalloc(SEGKP_HASHSZ * sizeof (struct segkp *),
226 KM_SLEEP);
227 seg->s_data = (void *)kpsd;
228 seg->s_ops = &segkp_ops;
229 segkpinit_mem_config(seg);
230 return (0);
231 }
232
233
234 /*
235 * Find a free 'freelist' and initialize it with the appropriate attributes
236 */
237 void *
segkp_cache_init(struct seg * seg,int maxsize,size_t len,uint_t flags)238 segkp_cache_init(struct seg *seg, int maxsize, size_t len, uint_t flags)
239 {
240 int i;
241
242 if ((flags & KPD_NO_ANON) && !(flags & KPD_LOCKED))
243 return ((void *)-1);
244
245 mutex_enter(&segkp_lock);
246 for (i = 0; i < SEGKP_MAX_CACHE; i++) {
247 if (segkp_cache[i].kpf_inuse)
248 continue;
249 segkp_cache[i].kpf_inuse = 1;
250 segkp_cache[i].kpf_max = maxsize;
251 segkp_cache[i].kpf_flags = flags;
252 segkp_cache[i].kpf_seg = seg;
253 segkp_cache[i].kpf_len = len;
254 mutex_exit(&segkp_lock);
255 return ((void *)(uintptr_t)i);
256 }
257 mutex_exit(&segkp_lock);
258 return ((void *)-1);
259 }
260
261 /*
262 * Free all the cache resources.
263 */
264 void
segkp_cache_free(void)265 segkp_cache_free(void)
266 {
267 struct segkp_data *kpd;
268 struct seg *seg;
269 int i;
270
271 mutex_enter(&segkp_lock);
272 for (i = 0; i < SEGKP_MAX_CACHE; i++) {
273 if (!segkp_cache[i].kpf_inuse)
274 continue;
275 /*
276 * Disconnect the freelist and process each element
277 */
278 kpd = segkp_cache[i].kpf_list;
279 seg = segkp_cache[i].kpf_seg;
280 segkp_cache[i].kpf_list = NULL;
281 segkp_cache[i].kpf_count = 0;
282 mutex_exit(&segkp_lock);
283
284 while (kpd != NULL) {
285 struct segkp_data *next;
286
287 next = kpd->kp_next;
288 segkp_release_internal(seg, kpd, kpd->kp_len);
289 kpd = next;
290 }
291 mutex_enter(&segkp_lock);
292 }
293 mutex_exit(&segkp_lock);
294 }
295
296 /*
297 * There are 2 entries into segkp_get_internal. The first includes a cookie
298 * used to access a pool of cached segkp resources. The second does not
299 * use the cache.
300 */
301 caddr_t
segkp_get(struct seg * seg,size_t len,uint_t flags)302 segkp_get(struct seg *seg, size_t len, uint_t flags)
303 {
304 struct segkp_data *kpd = NULL;
305
306 if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) {
307 kpd->kp_cookie = -1;
308 return (stom(kpd->kp_base, flags));
309 }
310 return (NULL);
311 }
312
313 /*
314 * Return a 'cached' segkp address
315 */
316 caddr_t
segkp_cache_get(void * cookie)317 segkp_cache_get(void *cookie)
318 {
319 struct segkp_cache *freelist = NULL;
320 struct segkp_data *kpd = NULL;
321 int index = (int)(uintptr_t)cookie;
322 struct seg *seg;
323 size_t len;
324 uint_t flags;
325
326 if (index < 0 || index >= SEGKP_MAX_CACHE)
327 return (NULL);
328 freelist = &segkp_cache[index];
329
330 mutex_enter(&segkp_lock);
331 seg = freelist->kpf_seg;
332 flags = freelist->kpf_flags;
333 if (freelist->kpf_list != NULL) {
334 kpd = freelist->kpf_list;
335 freelist->kpf_list = kpd->kp_next;
336 freelist->kpf_count--;
337 mutex_exit(&segkp_lock);
338 kpd->kp_next = NULL;
339 segkp_insert(seg, kpd);
340 return (stom(kpd->kp_base, flags));
341 }
342 len = freelist->kpf_len;
343 mutex_exit(&segkp_lock);
344 if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) {
345 kpd->kp_cookie = index;
346 return (stom(kpd->kp_base, flags));
347 }
348 return (NULL);
349 }
350
351 caddr_t
segkp_get_withanonmap(struct seg * seg,size_t len,uint_t flags,struct anon_map * amp)352 segkp_get_withanonmap(
353 struct seg *seg,
354 size_t len,
355 uint_t flags,
356 struct anon_map *amp)
357 {
358 struct segkp_data *kpd = NULL;
359
360 ASSERT(amp != NULL);
361 flags |= KPD_HASAMP;
362 if (segkp_get_internal(seg, len, flags, &kpd, amp) != NULL) {
363 kpd->kp_cookie = -1;
364 return (stom(kpd->kp_base, flags));
365 }
366 return (NULL);
367 }
368
369 /*
370 * This does the real work of segkp allocation.
371 * Return to client base addr. len must be page-aligned. A null value is
372 * returned if there are no more vm resources (e.g. pages, swap). The len
373 * and base recorded in the private data structure include the redzone
374 * and the redzone length (if applicable). If the user requests a redzone
375 * either the first or last page is left unmapped depending whether stacks
376 * grow to low or high memory.
377 *
378 * The client may also specify a no-wait flag. If that is set then the
379 * request will choose a non-blocking path when requesting resources.
380 * The default is make the client wait.
381 */
382 static caddr_t
segkp_get_internal(struct seg * seg,size_t len,uint_t flags,struct segkp_data ** tkpd,struct anon_map * amp)383 segkp_get_internal(
384 struct seg *seg,
385 size_t len,
386 uint_t flags,
387 struct segkp_data **tkpd,
388 struct anon_map *amp)
389 {
390 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
391 struct segkp_data *kpd;
392 caddr_t vbase = NULL; /* always first virtual, may not be mapped */
393 pgcnt_t np = 0; /* number of pages in the resource */
394 pgcnt_t segkpindex;
395 long i;
396 caddr_t va;
397 pgcnt_t pages = 0;
398 ulong_t anon_idx = 0;
399 int kmflag = (flags & KPD_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
400 caddr_t s_base = (segkp_fromheap) ? kvseg.s_base : seg->s_base;
401
402 if (len & PAGEOFFSET) {
403 panic("segkp_get: len is not page-aligned");
404 /*NOTREACHED*/
405 }
406
407 ASSERT(((flags & KPD_HASAMP) == 0) == (amp == NULL));
408
409 /* Only allow KPD_NO_ANON if we are going to lock it down */
410 if ((flags & (KPD_LOCKED|KPD_NO_ANON)) == KPD_NO_ANON)
411 return (NULL);
412
413 if ((kpd = kmem_zalloc(sizeof (struct segkp_data), kmflag)) == NULL)
414 return (NULL);
415 /*
416 * Fix up the len to reflect the REDZONE if applicable
417 */
418 if (flags & KPD_HASREDZONE)
419 len += PAGESIZE;
420 np = btop(len);
421
422 vbase = vmem_alloc(SEGKP_VMEM(seg), len, kmflag | VM_BESTFIT);
423 if (vbase == NULL) {
424 kmem_free(kpd, sizeof (struct segkp_data));
425 return (NULL);
426 }
427
428 /* If locking, reserve physical memory */
429 if (flags & KPD_LOCKED) {
430 pages = btop(SEGKP_MAPLEN(len, flags));
431 if (page_resv(pages, kmflag) == 0) {
432 vmem_free(SEGKP_VMEM(seg), vbase, len);
433 kmem_free(kpd, sizeof (struct segkp_data));
434 return (NULL);
435 }
436 if ((flags & KPD_NO_ANON) == 0)
437 atomic_add_long(&anon_segkp_pages_locked, pages);
438 }
439
440 /*
441 * Reserve sufficient swap space for this vm resource. We'll
442 * actually allocate it in the loop below, but reserving it
443 * here allows us to back out more gracefully than if we
444 * had an allocation failure in the body of the loop.
445 *
446 * Note that we don't need swap space for the red zone page.
447 */
448 if (amp != NULL) {
449 /*
450 * The swap reservation has been done, if required, and the
451 * anon_hdr is separate.
452 */
453 anon_idx = 0;
454 kpd->kp_anon_idx = anon_idx;
455 kpd->kp_anon = amp->ahp;
456
457 TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
458 kpd, vbase, len, flags, 1);
459
460 } else if ((flags & KPD_NO_ANON) == 0) {
461 if (anon_resv_zone(SEGKP_MAPLEN(len, flags), NULL) == 0) {
462 if (flags & KPD_LOCKED) {
463 atomic_add_long(&anon_segkp_pages_locked,
464 -pages);
465 page_unresv(pages);
466 }
467 vmem_free(SEGKP_VMEM(seg), vbase, len);
468 kmem_free(kpd, sizeof (struct segkp_data));
469 return (NULL);
470 }
471 atomic_add_long(&anon_segkp_pages_resv,
472 btop(SEGKP_MAPLEN(len, flags)));
473 anon_idx = ((uintptr_t)(vbase - s_base)) >> PAGESHIFT;
474 kpd->kp_anon_idx = anon_idx;
475 kpd->kp_anon = kpsd->kpsd_anon;
476
477 TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
478 kpd, vbase, len, flags, 1);
479 } else {
480 kpd->kp_anon = NULL;
481 kpd->kp_anon_idx = 0;
482 }
483
484 /*
485 * Allocate page and anon resources for the virtual address range
486 * except the redzone
487 */
488 if (segkp_fromheap)
489 segkpindex = btop((uintptr_t)(vbase - kvseg.s_base));
490 for (i = 0, va = vbase; i < np; i++, va += PAGESIZE) {
491 page_t *pl[2];
492 struct vnode *vp;
493 anoff_t off;
494 int err;
495 page_t *pp = NULL;
496
497 /*
498 * Mark this page to be a segkp page in the bitmap.
499 */
500 if (segkp_fromheap) {
501 BT_ATOMIC_SET(segkp_bitmap, segkpindex);
502 segkpindex++;
503 }
504
505 /*
506 * If this page is the red zone page, we don't need swap
507 * space for it. Note that we skip over the code that
508 * establishes MMU mappings, so that the page remains
509 * invalid.
510 */
511 if ((flags & KPD_HASREDZONE) && KPD_REDZONE(kpd) == i)
512 continue;
513
514 if (kpd->kp_anon != NULL) {
515 struct anon *ap;
516
517 ASSERT(anon_get_ptr(kpd->kp_anon, anon_idx + i)
518 == NULL);
519 /*
520 * Determine the "vp" and "off" of the anon slot.
521 */
522 ap = anon_alloc(NULL, 0);
523 if (amp != NULL)
524 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER);
525 (void) anon_set_ptr(kpd->kp_anon, anon_idx + i,
526 ap, ANON_SLEEP);
527 if (amp != NULL)
528 ANON_LOCK_EXIT(&->a_rwlock);
529 swap_xlate(ap, &vp, &off);
530
531 /*
532 * Create a page with the specified identity. The
533 * page is returned with the "shared" lock held.
534 */
535 err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
536 NULL, pl, PAGESIZE, seg, va, S_CREATE,
537 kcred, NULL);
538 if (err) {
539 /*
540 * XXX - This should not fail.
541 */
542 panic("segkp_get: no pages");
543 /*NOTREACHED*/
544 }
545 pp = pl[0];
546 } else {
547 ASSERT(page_exists(&kvp,
548 (u_offset_t)(uintptr_t)va) == NULL);
549
550 if ((pp = page_create_va(&kvp,
551 (u_offset_t)(uintptr_t)va, PAGESIZE,
552 (flags & KPD_NOWAIT ? 0 : PG_WAIT) | PG_EXCL |
553 PG_NORELOC, seg, va)) == NULL) {
554 /*
555 * Legitimize resource; then destroy it.
556 * Easier than trying to unwind here.
557 */
558 kpd->kp_flags = flags;
559 kpd->kp_base = vbase;
560 kpd->kp_len = len;
561 segkp_release_internal(seg, kpd, va - vbase);
562 return (NULL);
563 }
564 page_io_unlock(pp);
565 }
566
567 if (flags & KPD_ZERO)
568 pagezero(pp, 0, PAGESIZE);
569
570 /*
571 * Load and lock an MMU translation for the page.
572 */
573 hat_memload(seg->s_as->a_hat, va, pp, (PROT_READ|PROT_WRITE),
574 ((flags & KPD_LOCKED) ? HAT_LOAD_LOCK : HAT_LOAD));
575
576 /*
577 * Now, release lock on the page.
578 */
579 if (flags & KPD_LOCKED) {
580 /*
581 * Indicate to page_retire framework that this
582 * page can only be retired when it is freed.
583 */
584 PP_SETRAF(pp);
585 page_downgrade(pp);
586 } else
587 page_unlock(pp);
588 }
589
590 kpd->kp_flags = flags;
591 kpd->kp_base = vbase;
592 kpd->kp_len = len;
593 segkp_insert(seg, kpd);
594 *tkpd = kpd;
595 return (stom(kpd->kp_base, flags));
596 }
597
598 /*
599 * Release the resource to cache if the pool(designate by the cookie)
600 * has less than the maximum allowable. If inserted in cache,
601 * segkp_delete insures element is taken off of active list.
602 */
603 void
segkp_release(struct seg * seg,caddr_t vaddr)604 segkp_release(struct seg *seg, caddr_t vaddr)
605 {
606 struct segkp_cache *freelist;
607 struct segkp_data *kpd = NULL;
608
609 if ((kpd = segkp_find(seg, vaddr)) == NULL) {
610 panic("segkp_release: null kpd");
611 /*NOTREACHED*/
612 }
613
614 if (kpd->kp_cookie != -1) {
615 freelist = &segkp_cache[kpd->kp_cookie];
616 mutex_enter(&segkp_lock);
617 if (!segkp_indel && freelist->kpf_count < freelist->kpf_max) {
618 segkp_delete(seg, kpd);
619 kpd->kp_next = freelist->kpf_list;
620 freelist->kpf_list = kpd;
621 freelist->kpf_count++;
622 mutex_exit(&segkp_lock);
623 return;
624 } else {
625 mutex_exit(&segkp_lock);
626 kpd->kp_cookie = -1;
627 }
628 }
629 segkp_release_internal(seg, kpd, kpd->kp_len);
630 }
631
632 /*
633 * Free the entire resource. segkp_unlock gets called with the start of the
634 * mapped portion of the resource. The length is the size of the mapped
635 * portion
636 */
637 static void
segkp_release_internal(struct seg * seg,struct segkp_data * kpd,size_t len)638 segkp_release_internal(struct seg *seg, struct segkp_data *kpd, size_t len)
639 {
640 caddr_t va;
641 long i;
642 long redzone;
643 size_t np;
644 page_t *pp;
645 struct vnode *vp;
646 anoff_t off;
647 struct anon *ap;
648 pgcnt_t segkpindex;
649
650 ASSERT(kpd != NULL);
651 ASSERT((kpd->kp_flags & KPD_HASAMP) == 0 || kpd->kp_cookie == -1);
652 np = btop(len);
653
654 /* Remove from active hash list */
655 if (kpd->kp_cookie == -1) {
656 mutex_enter(&segkp_lock);
657 segkp_delete(seg, kpd);
658 mutex_exit(&segkp_lock);
659 }
660
661 /*
662 * Precompute redzone page index.
663 */
664 redzone = -1;
665 if (kpd->kp_flags & KPD_HASREDZONE)
666 redzone = KPD_REDZONE(kpd);
667
668
669 va = kpd->kp_base;
670
671 hat_unload(seg->s_as->a_hat, va, (np << PAGESHIFT),
672 ((kpd->kp_flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD));
673 /*
674 * Free up those anon resources that are quiescent.
675 */
676 if (segkp_fromheap)
677 segkpindex = btop((uintptr_t)(va - kvseg.s_base));
678 for (i = 0; i < np; i++, va += PAGESIZE) {
679
680 /*
681 * Clear the bit for this page from the bitmap.
682 */
683 if (segkp_fromheap) {
684 BT_ATOMIC_CLEAR(segkp_bitmap, segkpindex);
685 segkpindex++;
686 }
687
688 if (i == redzone)
689 continue;
690 if (kpd->kp_anon) {
691 /*
692 * Free up anon resources and destroy the
693 * associated pages.
694 *
695 * Release the lock if there is one. Have to get the
696 * page to do this, unfortunately.
697 */
698 if (kpd->kp_flags & KPD_LOCKED) {
699 ap = anon_get_ptr(kpd->kp_anon,
700 kpd->kp_anon_idx + i);
701 swap_xlate(ap, &vp, &off);
702 /* Find the shared-locked page. */
703 pp = page_find(vp, (u_offset_t)off);
704 if (pp == NULL) {
705 panic("segkp_release: "
706 "kp_anon: no page to unlock ");
707 /*NOTREACHED*/
708 }
709 if (PP_ISRAF(pp))
710 PP_CLRRAF(pp);
711
712 page_unlock(pp);
713 }
714 if ((kpd->kp_flags & KPD_HASAMP) == 0) {
715 anon_free(kpd->kp_anon, kpd->kp_anon_idx + i,
716 PAGESIZE);
717 anon_unresv_zone(PAGESIZE, NULL);
718 atomic_dec_ulong(&anon_segkp_pages_resv);
719 }
720 TRACE_5(TR_FAC_VM,
721 TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
722 kpd, va, PAGESIZE, 0, 0);
723 } else {
724 if (kpd->kp_flags & KPD_LOCKED) {
725 pp = page_find(&kvp, (u_offset_t)(uintptr_t)va);
726 if (pp == NULL) {
727 panic("segkp_release: "
728 "no page to unlock");
729 /*NOTREACHED*/
730 }
731 if (PP_ISRAF(pp))
732 PP_CLRRAF(pp);
733 /*
734 * We should just upgrade the lock here
735 * but there is no upgrade that waits.
736 */
737 page_unlock(pp);
738 }
739 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)va,
740 SE_EXCL);
741 if (pp != NULL)
742 page_destroy(pp, 0);
743 }
744 }
745
746 /* If locked, release physical memory reservation */
747 if (kpd->kp_flags & KPD_LOCKED) {
748 pgcnt_t pages = btop(SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags));
749 if ((kpd->kp_flags & KPD_NO_ANON) == 0)
750 atomic_add_long(&anon_segkp_pages_locked, -pages);
751 page_unresv(pages);
752 }
753
754 vmem_free(SEGKP_VMEM(seg), kpd->kp_base, kpd->kp_len);
755 kmem_free(kpd, sizeof (struct segkp_data));
756 }
757
758 /*
759 * segkp_map_red() will check the current frame pointer against the
760 * stack base. If the amount of stack remaining is questionable
761 * (less than red_minavail), then segkp_map_red() will map in the redzone
762 * and return 1. Otherwise, it will return 0. segkp_map_red() can
763 * _only_ be called when:
764 *
765 * - it is safe to sleep on page_create_va().
766 * - the caller is non-swappable.
767 *
768 * It is up to the caller to remember whether segkp_map_red() successfully
769 * mapped the redzone, and, if so, to call segkp_unmap_red() at a later
770 * time. Note that the caller must _remain_ non-swappable until after
771 * calling segkp_unmap_red().
772 *
773 * Currently, this routine is only called from pagefault() (which necessarily
774 * satisfies the above conditions).
775 */
776 #if defined(STACK_GROWTH_DOWN)
777 int
segkp_map_red(void)778 segkp_map_red(void)
779 {
780 uintptr_t fp = STACK_BIAS + (uintptr_t)getfp();
781 #ifndef _LP64
782 caddr_t stkbase;
783 #endif
784
785 ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
786
787 /*
788 * Optimize for the common case where we simply return.
789 */
790 if ((curthread->t_red_pp == NULL) &&
791 (fp - (uintptr_t)curthread->t_stkbase >= red_minavail))
792 return (0);
793
794 #if defined(_LP64)
795 /*
796 * XXX We probably need something better than this.
797 */
798 panic("kernel stack overflow");
799 /*NOTREACHED*/
800 #else /* _LP64 */
801 if (curthread->t_red_pp == NULL) {
802 page_t *red_pp;
803 struct seg kseg;
804
805 caddr_t red_va = (caddr_t)
806 (((uintptr_t)curthread->t_stkbase & (uintptr_t)PAGEMASK) -
807 PAGESIZE);
808
809 ASSERT(page_exists(&kvp, (u_offset_t)(uintptr_t)red_va) ==
810 NULL);
811
812 /*
813 * Allocate the physical for the red page.
814 */
815 /*
816 * No PG_NORELOC here to avoid waits. Unlikely to get
817 * a relocate happening in the short time the page exists
818 * and it will be OK anyway.
819 */
820
821 kseg.s_as = &kas;
822 red_pp = page_create_va(&kvp, (u_offset_t)(uintptr_t)red_va,
823 PAGESIZE, PG_WAIT | PG_EXCL, &kseg, red_va);
824 ASSERT(red_pp != NULL);
825
826 /*
827 * So we now have a page to jam into the redzone...
828 */
829 page_io_unlock(red_pp);
830
831 hat_memload(kas.a_hat, red_va, red_pp,
832 (PROT_READ|PROT_WRITE), HAT_LOAD_LOCK);
833 page_downgrade(red_pp);
834
835 /*
836 * The page is left SE_SHARED locked so we can hold on to
837 * the page_t pointer.
838 */
839 curthread->t_red_pp = red_pp;
840
841 atomic_inc_32(&red_nmapped);
842 while (fp - (uintptr_t)curthread->t_stkbase < red_closest) {
843 (void) atomic_cas_32(&red_closest, red_closest,
844 (uint32_t)(fp - (uintptr_t)curthread->t_stkbase));
845 }
846 return (1);
847 }
848
849 stkbase = (caddr_t)(((uintptr_t)curthread->t_stkbase &
850 (uintptr_t)PAGEMASK) - PAGESIZE);
851
852 atomic_inc_32(&red_ndoubles);
853
854 if (fp - (uintptr_t)stkbase < RED_DEEP_THRESHOLD) {
855 /*
856 * Oh boy. We're already deep within the mapped-in
857 * redzone page, and the caller is trying to prepare
858 * for a deep stack run. We're running without a
859 * redzone right now: if the caller plows off the
860 * end of the stack, it'll plow another thread or
861 * LWP structure. That situation could result in
862 * a very hard-to-debug panic, so, in the spirit of
863 * recording the name of one's killer in one's own
864 * blood, we're going to record hrestime and the calling
865 * thread.
866 */
867 red_deep_hires = hrestime.tv_nsec;
868 red_deep_thread = curthread;
869 }
870
871 /*
872 * If this is a DEBUG kernel, and we've run too deep for comfort, toss.
873 */
874 ASSERT(fp - (uintptr_t)stkbase >= RED_DEEP_THRESHOLD);
875 return (0);
876 #endif /* _LP64 */
877 }
878
879 void
segkp_unmap_red(void)880 segkp_unmap_red(void)
881 {
882 page_t *pp;
883 caddr_t red_va = (caddr_t)(((uintptr_t)curthread->t_stkbase &
884 (uintptr_t)PAGEMASK) - PAGESIZE);
885
886 ASSERT(curthread->t_red_pp != NULL);
887 ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
888
889 /*
890 * Because we locked the mapping down, we can't simply rely
891 * on page_destroy() to clean everything up; we need to call
892 * hat_unload() to explicitly unlock the mapping resources.
893 */
894 hat_unload(kas.a_hat, red_va, PAGESIZE, HAT_UNLOAD_UNLOCK);
895
896 pp = curthread->t_red_pp;
897
898 ASSERT(pp == page_find(&kvp, (u_offset_t)(uintptr_t)red_va));
899
900 /*
901 * Need to upgrade the SE_SHARED lock to SE_EXCL.
902 */
903 if (!page_tryupgrade(pp)) {
904 /*
905 * As there is now wait for upgrade, release the
906 * SE_SHARED lock and wait for SE_EXCL.
907 */
908 page_unlock(pp);
909 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)red_va, SE_EXCL);
910 /* pp may be NULL here, hence the test below */
911 }
912
913 /*
914 * Destroy the page, with dontfree set to zero (i.e. free it).
915 */
916 if (pp != NULL)
917 page_destroy(pp, 0);
918 curthread->t_red_pp = NULL;
919 }
920 #else
921 #error Red stacks only supported with downwards stack growth.
922 #endif
923
924 /*
925 * Handle a fault on an address corresponding to one of the
926 * resources in the segkp segment.
927 */
928 faultcode_t
segkp_fault(struct hat * hat,struct seg * seg,caddr_t vaddr,size_t len,enum fault_type type,enum seg_rw rw)929 segkp_fault(
930 struct hat *hat,
931 struct seg *seg,
932 caddr_t vaddr,
933 size_t len,
934 enum fault_type type,
935 enum seg_rw rw)
936 {
937 struct segkp_data *kpd = NULL;
938 int err;
939
940 ASSERT(seg->s_as == &kas && RW_READ_HELD(&seg->s_as->a_lock));
941
942 /*
943 * Sanity checks.
944 */
945 if (type == F_PROT) {
946 panic("segkp_fault: unexpected F_PROT fault");
947 /*NOTREACHED*/
948 }
949
950 if ((kpd = segkp_find(seg, vaddr)) == NULL)
951 return (FC_NOMAP);
952
953 mutex_enter(&kpd->kp_lock);
954
955 if (type == F_SOFTLOCK) {
956 ASSERT(!(kpd->kp_flags & KPD_LOCKED));
957 /*
958 * The F_SOFTLOCK case has more stringent
959 * range requirements: the given range must exactly coincide
960 * with the resource's mapped portion. Note reference to
961 * redzone is handled since vaddr would not equal base
962 */
963 if (vaddr != stom(kpd->kp_base, kpd->kp_flags) ||
964 len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) {
965 mutex_exit(&kpd->kp_lock);
966 return (FC_MAKE_ERR(EFAULT));
967 }
968
969 if ((err = segkp_load(hat, seg, vaddr, len, kpd, KPD_LOCKED))) {
970 mutex_exit(&kpd->kp_lock);
971 return (FC_MAKE_ERR(err));
972 }
973 kpd->kp_flags |= KPD_LOCKED;
974 mutex_exit(&kpd->kp_lock);
975 return (0);
976 }
977
978 if (type == F_INVAL) {
979 ASSERT(!(kpd->kp_flags & KPD_NO_ANON));
980
981 /*
982 * Check if we touched the redzone. Somewhat optimistic
983 * here if we are touching the redzone of our own stack
984 * since we wouldn't have a stack to get this far...
985 */
986 if ((kpd->kp_flags & KPD_HASREDZONE) &&
987 btop((uintptr_t)(vaddr - kpd->kp_base)) == KPD_REDZONE(kpd))
988 panic("segkp_fault: accessing redzone");
989
990 /*
991 * This fault may occur while the page is being F_SOFTLOCK'ed.
992 * Return since a 2nd segkp_load is unnecessary and also would
993 * result in the page being locked twice and eventually
994 * hang the thread_reaper thread.
995 */
996 if (kpd->kp_flags & KPD_LOCKED) {
997 mutex_exit(&kpd->kp_lock);
998 return (0);
999 }
1000
1001 err = segkp_load(hat, seg, vaddr, len, kpd, kpd->kp_flags);
1002 mutex_exit(&kpd->kp_lock);
1003 return (err ? FC_MAKE_ERR(err) : 0);
1004 }
1005
1006 if (type == F_SOFTUNLOCK) {
1007 uint_t flags;
1008
1009 /*
1010 * Make sure the addr is LOCKED and it has anon backing
1011 * before unlocking
1012 */
1013 if ((kpd->kp_flags & (KPD_LOCKED|KPD_NO_ANON)) != KPD_LOCKED) {
1014 panic("segkp_fault: bad unlock");
1015 /*NOTREACHED*/
1016 }
1017
1018 if (vaddr != stom(kpd->kp_base, kpd->kp_flags) ||
1019 len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) {
1020 panic("segkp_fault: bad range");
1021 /*NOTREACHED*/
1022 }
1023
1024 if (rw == S_WRITE)
1025 flags = kpd->kp_flags | KPD_WRITEDIRTY;
1026 else
1027 flags = kpd->kp_flags;
1028 err = segkp_unlock(hat, seg, vaddr, len, kpd, flags);
1029 kpd->kp_flags &= ~KPD_LOCKED;
1030 mutex_exit(&kpd->kp_lock);
1031 return (err ? FC_MAKE_ERR(err) : 0);
1032 }
1033 mutex_exit(&kpd->kp_lock);
1034 panic("segkp_fault: bogus fault type: %d\n", type);
1035 /*NOTREACHED*/
1036 }
1037
1038 /*
1039 * Check that the given protections suffice over the range specified by
1040 * vaddr and len. For this segment type, the only issue is whether or
1041 * not the range lies completely within the mapped part of an allocated
1042 * resource.
1043 */
1044 /* ARGSUSED */
1045 static int
segkp_checkprot(struct seg * seg,caddr_t vaddr,size_t len,uint_t prot)1046 segkp_checkprot(struct seg *seg, caddr_t vaddr, size_t len, uint_t prot)
1047 {
1048 struct segkp_data *kpd = NULL;
1049 caddr_t mbase;
1050 size_t mlen;
1051
1052 if ((kpd = segkp_find(seg, vaddr)) == NULL)
1053 return (EACCES);
1054
1055 mutex_enter(&kpd->kp_lock);
1056 mbase = stom(kpd->kp_base, kpd->kp_flags);
1057 mlen = SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags);
1058 if (len > mlen || vaddr < mbase ||
1059 ((vaddr + len) > (mbase + mlen))) {
1060 mutex_exit(&kpd->kp_lock);
1061 return (EACCES);
1062 }
1063 mutex_exit(&kpd->kp_lock);
1064 return (0);
1065 }
1066
1067
1068 /*
1069 * Check to see if it makes sense to do kluster/read ahead to
1070 * addr + delta relative to the mapping at addr. We assume here
1071 * that delta is a signed PAGESIZE'd multiple (which can be negative).
1072 *
1073 * For seg_u we always "approve" of this action from our standpoint.
1074 */
1075 /*ARGSUSED*/
1076 static int
segkp_kluster(struct seg * seg,caddr_t addr,ssize_t delta)1077 segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
1078 {
1079 return (0);
1080 }
1081
1082 /*
1083 * Load and possibly lock intra-slot resources in the range given by
1084 * vaddr and len.
1085 */
1086 static int
segkp_load(struct hat * hat,struct seg * seg,caddr_t vaddr,size_t len,struct segkp_data * kpd,uint_t flags)1087 segkp_load(
1088 struct hat *hat,
1089 struct seg *seg,
1090 caddr_t vaddr,
1091 size_t len,
1092 struct segkp_data *kpd,
1093 uint_t flags)
1094 {
1095 caddr_t va;
1096 caddr_t vlim;
1097 ulong_t i;
1098 uint_t lock;
1099
1100 ASSERT(MUTEX_HELD(&kpd->kp_lock));
1101
1102 len = P2ROUNDUP(len, PAGESIZE);
1103
1104 /* If locking, reserve physical memory */
1105 if (flags & KPD_LOCKED) {
1106 pgcnt_t pages = btop(len);
1107 if ((kpd->kp_flags & KPD_NO_ANON) == 0)
1108 atomic_add_long(&anon_segkp_pages_locked, pages);
1109 (void) page_resv(pages, KM_SLEEP);
1110 }
1111
1112 /*
1113 * Loop through the pages in the given range.
1114 */
1115 va = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
1116 vaddr = va;
1117 vlim = va + len;
1118 lock = flags & KPD_LOCKED;
1119 i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT;
1120 for (; va < vlim; va += PAGESIZE, i++) {
1121 page_t *pl[2]; /* second element NULL terminator */
1122 struct vnode *vp;
1123 anoff_t off;
1124 int err;
1125 struct anon *ap;
1126
1127 /*
1128 * Summon the page. If it's not resident, arrange
1129 * for synchronous i/o to pull it in.
1130 */
1131 ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i);
1132 swap_xlate(ap, &vp, &off);
1133
1134 /*
1135 * The returned page list will have exactly one entry,
1136 * which is returned to us already kept.
1137 */
1138 err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, NULL,
1139 pl, PAGESIZE, seg, va, S_READ, kcred, NULL);
1140
1141 if (err) {
1142 /*
1143 * Back out of what we've done so far.
1144 */
1145 (void) segkp_unlock(hat, seg, vaddr,
1146 (va - vaddr), kpd, flags);
1147 return (err);
1148 }
1149
1150 /*
1151 * Load an MMU translation for the page.
1152 */
1153 hat_memload(hat, va, pl[0], (PROT_READ|PROT_WRITE),
1154 lock ? HAT_LOAD_LOCK : HAT_LOAD);
1155
1156 if (!lock) {
1157 /*
1158 * Now, release "shared" lock on the page.
1159 */
1160 page_unlock(pl[0]);
1161 }
1162 }
1163 return (0);
1164 }
1165
1166 /*
1167 * At the very least unload the mmu-translations and unlock the range if locked
1168 * Can be called with the following flag value KPD_WRITEDIRTY which specifies
1169 * any dirty pages should be written to disk.
1170 */
1171 static int
segkp_unlock(struct hat * hat,struct seg * seg,caddr_t vaddr,size_t len,struct segkp_data * kpd,uint_t flags)1172 segkp_unlock(
1173 struct hat *hat,
1174 struct seg *seg,
1175 caddr_t vaddr,
1176 size_t len,
1177 struct segkp_data *kpd,
1178 uint_t flags)
1179 {
1180 caddr_t va;
1181 caddr_t vlim;
1182 ulong_t i;
1183 struct page *pp;
1184 struct vnode *vp;
1185 anoff_t off;
1186 struct anon *ap;
1187
1188 #ifdef lint
1189 seg = seg;
1190 #endif /* lint */
1191
1192 ASSERT(MUTEX_HELD(&kpd->kp_lock));
1193
1194 /*
1195 * Loop through the pages in the given range. It is assumed
1196 * segkp_unlock is called with page aligned base
1197 */
1198 va = vaddr;
1199 vlim = va + len;
1200 i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT;
1201 hat_unload(hat, va, len,
1202 ((flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD));
1203 for (; va < vlim; va += PAGESIZE, i++) {
1204 /*
1205 * Find the page associated with this part of the
1206 * slot, tracking it down through its associated swap
1207 * space.
1208 */
1209 ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i);
1210 swap_xlate(ap, &vp, &off);
1211
1212 if (flags & KPD_LOCKED) {
1213 if ((pp = page_find(vp, off)) == NULL) {
1214 if (flags & KPD_LOCKED) {
1215 panic("segkp_softunlock: missing page");
1216 /*NOTREACHED*/
1217 }
1218 }
1219 } else {
1220 /*
1221 * Nothing to do if the slot is not locked and the
1222 * page doesn't exist.
1223 */
1224 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL)
1225 continue;
1226 }
1227
1228 /*
1229 * If the page doesn't have any translations, is
1230 * dirty and not being shared, then push it out
1231 * asynchronously and avoid waiting for the
1232 * pageout daemon to do it for us.
1233 *
1234 * XXX - Do we really need to get the "exclusive"
1235 * lock via an upgrade?
1236 */
1237 if ((flags & KPD_WRITEDIRTY) && !hat_page_is_mapped(pp) &&
1238 hat_ismod(pp) && page_tryupgrade(pp)) {
1239 /*
1240 * Hold the vnode before releasing the page lock to
1241 * prevent it from being freed and re-used by some
1242 * other thread.
1243 */
1244 VN_HOLD(vp);
1245 page_unlock(pp);
1246
1247 /*
1248 * Want most powerful credentials we can get so
1249 * use kcred.
1250 */
1251 (void) VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
1252 B_ASYNC | B_FREE, kcred, NULL);
1253 VN_RELE(vp);
1254 } else {
1255 page_unlock(pp);
1256 }
1257 }
1258
1259 /* If unlocking, release physical memory */
1260 if (flags & KPD_LOCKED) {
1261 pgcnt_t pages = btopr(len);
1262 if ((kpd->kp_flags & KPD_NO_ANON) == 0)
1263 atomic_add_long(&anon_segkp_pages_locked, -pages);
1264 page_unresv(pages);
1265 }
1266 return (0);
1267 }
1268
1269 /*
1270 * Insert the kpd in the hash table.
1271 */
1272 static void
segkp_insert(struct seg * seg,struct segkp_data * kpd)1273 segkp_insert(struct seg *seg, struct segkp_data *kpd)
1274 {
1275 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1276 int index;
1277
1278 /*
1279 * Insert the kpd based on the address that will be returned
1280 * via segkp_release.
1281 */
1282 index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags));
1283 mutex_enter(&segkp_lock);
1284 kpd->kp_next = kpsd->kpsd_hash[index];
1285 kpsd->kpsd_hash[index] = kpd;
1286 mutex_exit(&segkp_lock);
1287 }
1288
1289 /*
1290 * Remove kpd from the hash table.
1291 */
1292 static void
segkp_delete(struct seg * seg,struct segkp_data * kpd)1293 segkp_delete(struct seg *seg, struct segkp_data *kpd)
1294 {
1295 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1296 struct segkp_data **kpp;
1297 int index;
1298
1299 ASSERT(MUTEX_HELD(&segkp_lock));
1300
1301 index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags));
1302 for (kpp = &kpsd->kpsd_hash[index];
1303 *kpp != NULL; kpp = &((*kpp)->kp_next)) {
1304 if (*kpp == kpd) {
1305 *kpp = kpd->kp_next;
1306 return;
1307 }
1308 }
1309 panic("segkp_delete: unable to find element to delete");
1310 /*NOTREACHED*/
1311 }
1312
1313 /*
1314 * Find the kpd associated with a vaddr.
1315 *
1316 * Most of the callers of segkp_find will pass the vaddr that
1317 * hashes to the desired index, but there are cases where
1318 * this is not true in which case we have to (potentially) scan
1319 * the whole table looking for it. This should be very rare
1320 * (e.g. a segkp_fault(F_INVAL) on an address somewhere in the
1321 * middle of the segkp_data region).
1322 */
1323 static struct segkp_data *
segkp_find(struct seg * seg,caddr_t vaddr)1324 segkp_find(struct seg *seg, caddr_t vaddr)
1325 {
1326 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1327 struct segkp_data *kpd;
1328 int i;
1329 int stop;
1330
1331 i = stop = SEGKP_HASH(vaddr);
1332 mutex_enter(&segkp_lock);
1333 do {
1334 for (kpd = kpsd->kpsd_hash[i]; kpd != NULL;
1335 kpd = kpd->kp_next) {
1336 if (vaddr >= kpd->kp_base &&
1337 vaddr < kpd->kp_base + kpd->kp_len) {
1338 mutex_exit(&segkp_lock);
1339 return (kpd);
1340 }
1341 }
1342 if (--i < 0)
1343 i = SEGKP_HASHSZ - 1; /* Wrap */
1344 } while (i != stop);
1345 mutex_exit(&segkp_lock);
1346 return (NULL); /* Not found */
1347 }
1348
1349 /*
1350 * returns size of swappable area.
1351 */
1352 size_t
swapsize(caddr_t v)1353 swapsize(caddr_t v)
1354 {
1355 struct segkp_data *kpd;
1356
1357 if ((kpd = segkp_find(segkp, v)) != NULL)
1358 return (SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags));
1359 else
1360 return (NULL);
1361 }
1362
1363 /*
1364 * Dump out all the active segkp pages
1365 */
1366 static void
segkp_dump(struct seg * seg)1367 segkp_dump(struct seg *seg)
1368 {
1369 int i;
1370 struct segkp_data *kpd;
1371 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1372
1373 for (i = 0; i < SEGKP_HASHSZ; i++) {
1374 for (kpd = kpsd->kpsd_hash[i];
1375 kpd != NULL; kpd = kpd->kp_next) {
1376 pfn_t pfn;
1377 caddr_t addr;
1378 caddr_t eaddr;
1379
1380 addr = kpd->kp_base;
1381 eaddr = addr + kpd->kp_len;
1382 while (addr < eaddr) {
1383 ASSERT(seg->s_as == &kas);
1384 pfn = hat_getpfnum(seg->s_as->a_hat, addr);
1385 if (pfn != PFN_INVALID)
1386 dump_addpage(seg->s_as, addr, pfn);
1387 addr += PAGESIZE;
1388 dump_timeleft = dump_timeout;
1389 }
1390 }
1391 }
1392 }
1393
1394 /*ARGSUSED*/
1395 static int
segkp_pagelock(struct seg * seg,caddr_t addr,size_t len,struct page *** ppp,enum lock_type type,enum seg_rw rw)1396 segkp_pagelock(struct seg *seg, caddr_t addr, size_t len,
1397 struct page ***ppp, enum lock_type type, enum seg_rw rw)
1398 {
1399 return (ENOTSUP);
1400 }
1401
1402 /*ARGSUSED*/
1403 static int
segkp_getmemid(struct seg * seg,caddr_t addr,memid_t * memidp)1404 segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
1405 {
1406 return (ENODEV);
1407 }
1408
1409 /*ARGSUSED*/
1410 static lgrp_mem_policy_info_t *
segkp_getpolicy(struct seg * seg,caddr_t addr)1411 segkp_getpolicy(struct seg *seg, caddr_t addr)
1412 {
1413 return (NULL);
1414 }
1415
1416 /*ARGSUSED*/
1417 static int
segkp_capable(struct seg * seg,segcapability_t capability)1418 segkp_capable(struct seg *seg, segcapability_t capability)
1419 {
1420 return (0);
1421 }
1422
1423 #include <sys/mem_config.h>
1424
1425 /*ARGSUSED*/
1426 static void
segkp_mem_config_post_add(void * arg,pgcnt_t delta_pages)1427 segkp_mem_config_post_add(void *arg, pgcnt_t delta_pages)
1428 {}
1429
1430 /*
1431 * During memory delete, turn off caches so that pages are not held.
1432 * A better solution may be to unlock the pages while they are
1433 * in the cache so that they may be collected naturally.
1434 */
1435
1436 /*ARGSUSED*/
1437 static int
segkp_mem_config_pre_del(void * arg,pgcnt_t delta_pages)1438 segkp_mem_config_pre_del(void *arg, pgcnt_t delta_pages)
1439 {
1440 atomic_inc_32(&segkp_indel);
1441 segkp_cache_free();
1442 return (0);
1443 }
1444
1445 /*ARGSUSED*/
1446 static void
segkp_mem_config_post_del(void * arg,pgcnt_t delta_pages,int cancelled)1447 segkp_mem_config_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
1448 {
1449 atomic_dec_32(&segkp_indel);
1450 }
1451
1452 static kphysm_setup_vector_t segkp_mem_config_vec = {
1453 KPHYSM_SETUP_VECTOR_VERSION,
1454 segkp_mem_config_post_add,
1455 segkp_mem_config_pre_del,
1456 segkp_mem_config_post_del,
1457 };
1458
1459 static void
segkpinit_mem_config(struct seg * seg)1460 segkpinit_mem_config(struct seg *seg)
1461 {
1462 int ret;
1463
1464 ret = kphysm_setup_func_register(&segkp_mem_config_vec, (void *)seg);
1465 ASSERT(ret == 0);
1466 }
1467